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Abstract. In this paper, we report the 2015 community-based Signal
Separation Evaluation Campaign (SiSEC 2015). This SiSEC consists of
four speech and music datasets including two new datasets: “Profession-
ally produced music recordings” and “Asynchronous recordings of speech
mixtures”. Focusing on them, we overview the campaign specifications
such as the tasks, datasets and evaluation criteria. We also summarize
the performance of the submitted systems.

1 Introduction

Sharing datasets and evaluating methods with common tasks and criteria has re-
cently become a general and popular methodology to accelerate the development
of new technologies. Aiming to evaluate signal separation methods, the Signal
Separation Evaluation Campaign (SiSEC) has been held about every one-and-
half year in conjunction with the LVA/ICA conference since 2008. The tasks,
datasets, and evaluation criteria in the past SiSECs are still available online
with the results of the participants. They have been referred to and utilized
for comparison and further evaluation by researchers in the source separation
community, not limited to the past participants, as shown in Figure 1.

In this fifth SiSEC, two new datasets were added: A new music dataset for
a large-scale evaluation was provided in “Professionally produced music record-
ings” and another new dataset including real recording was provided in “Asyn-
chronous recordings of speech mixtures”. For further details, the readers are
referred to the web page of SiSEC 2015 at https://sisec.inria.fr/. In sec-
tion 2, we specify the tasks, datasets and evaluation criteria, with a particular
focus on these new datasets. Section 3 summarizes the evaluation results.

2 Specifications

SiSEC 2015 focused on the following source separation tasks and datasets.

T1 Single-channel source estimation
T2 Multichannel source image estimation
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Fig. 1. The number of papers referring SiSEC datasets found by full-text-search on all
ICASSP proceedings (ICASSP) and by abstract-search on IEEE Xplore (Others).

D1 Underdetermined speech and music mixtures
D2 Two-channel mixtures of speech and real-world background noise
D3 Professionally produced music recordings
D4 Asynchronous recordings of speech mixtures

T1 aims to estimate single-channel source signals observed by a specific ref-
erence microphone, whereas T2 aims to estimate multichannel source images
observed by the microphone array.

In D1 and D2, we utilized the same datasets as in SiSEC 2013, which permits
easy comparison. Their specifications are given in details in [1].

The new D3 dataset, the Mixing Secret Dataset 100 (MSD100) is designed
to evaluate the separation of multiple sources from professionally-produced mu-
sic recordings. MSD100 consists of 100 full-track songs of different styles, and
includes both the stereophonic mixtures and the original stereo sources images.
The data is divided into a development set and a test set, each consisting of 50
songs, so that algorithms which need supervised learning can be trained on the
development set and tested on the test set. The duration of the songs ranges
from 2 minutes and 22 seconds to 7 minutes and 20 seconds, with an average
duration of 4 minutes and 10 seconds.

For each song, MSD100 includes 4 stereo sources corresponding to the bass,
the drums, the vocals and “other” (i.e., the other instruments). The sources were
created using stems from selected raw multitrack projects downloaded from the
’Mixing Secrets’ Free Multitrack Download Library1. Stems corresponding to a
given source were summed together and the result was normalized, then scaled so
that the mixture would also be normalized. The mixtures were then generated by
summing the sources together. For a given song, the mixture and the sources have
the same duration; however, while the mixture is always stereo, some sources can
be mono (typically, the vocals). In that case, it appears identical in the left and
right channels of the mixture. All items are WAV files sampled at 44.1kHz.

The D4 dataset aims to evaluate the separation of mixtures recorded with
asynchronous devices. A new dataset added to D4 contains real recordings of
1 www.cambridge-mt.com/ms-mtk.htm



three or four speakers using four different stereo IC recorders (8 channels in
total). A standard way to make datasets for BSS evaluation is to record each
source image first, which is used as the ground truth, and then to make a mixture
by summing them up. Unlike conventional synchronized recording, it is not easy
in an asynchronous setting because the time offset (time of recording start) of
each device is unknown and because there is a sampling frequency mismatch
between channels. To obtain consistent source images and real mixtures, a chirp
signal was played back from a loudspeaker for time-marking, and the time offsets
at the different devices were aligned precisely at a sub-sample level. It is assumed
that the sampling frequency of each device is invariant over the whole recording.
This dataset consists of three types of mixing: realmix, sumrefs and mix. The
realmix is a recording of the real mixture, the sumrefs is the summation of the
source images, and the mix is the simulated mixture generated by convolving
impulse responses with the dry source and applying resampling for the artificial
sampling frequency mismatch.

The BSS Eval toolbox [2] was used to evaluate the following four power-based
criteria: the signal to distortion ratio (SDR), the source image to spatial distor-
tion ratio (ISR), the signal to interference ratio (SIR), and signal to artifacts ratio
(SAR). The version 2.0 of the PEASS toolbox [3] was used to evaluate the follow-
ing four perceptually-motivated criteria: the overall perceptual score (OPS), the
target-related perceptual score (TPS), the interference-related perceptual score
(IPS), and the artifact-related perceptual score (APS). More specifically, T1 was
evaluated by bss eval source denoising.m for D2 or bss eval source.m for
others. T2 on D3 and D4 was evaluated with bss eval image.m. For D1 and
D2, the PEASS toolbox was used for the comparison with previous SiSEC.

3 Results

We evaluated 27 algorithms in total: 3, 2, 19, and 3 algorithms for D1, D2, D3
and D4, respectively. The average performance of the systems is summarized in
Tables 1 to 3, and Figures 2 and 3. Because of the space limitation, only part of
the results is shown.

Three algorithms were submitted to D1 as shown in Table 1. Sgouros’s
method [4] for instantaneous mixtures is based on direction of arrival (DOA)
estimation by fitting a mixture of directional Laplacian distributions. The other
two algorithms are for convolutive mixtures. Bouafif’s method [5] exploits a de-
tection of glottal closure instants in order to estimate the number of speakers
and their time delays of arrival (TDOA). It also aims at separation with less
artifacts and distortion. Indeed, it shows higher SARs and APSs. However, the
SIRs and IPSs are lower. This fact illustrates the well known trade-off between
SIR and SAR in BSS. Nguyen’s method is similar to [6] and the permutation
problem is solved by multi-band alignment [25]. Overall, the performance is al-
most equivalent to the past SiSEC, which indicates that underdetermined BSS
for convolutive mixtures is still a tough problem.

Two algorithms were submitted to D2 as shown in Table 3. López’s method [7]
designs the demixing matrix and the post-filters based on a single-channel source



separation method. In this submission, they used spectral subtraction as the
single-channel source separation method. Note that the performance may vary
depending on the choice of the single-channel method. Ito’s method is based on
full-band clustering of the time-frequency components [8]. Thanks to a frequency-
independent time-varying source presence model, the method robustly solves the
permutation problem and shows good denoising performance even though it does
not explicitly include spectral modeling of speech and noise.

Similarly to the previous SiSEC, D3 attracted most participants. The eval-
uated methods includes 5 methods available online (not submitted by partici-
pants) and are as follows.

– CHA: system using a two-stage Robust Principal Component Analysis (RPCA)2,
with an automatic vocal activity detector and a melody detector [9].

– DUR1, DUR2: systems using a source-filter model for the voice and a Non-
negative Matrix Factorization (NMF) model for the accompaniment3, with-
out (DUR1) and with (DUR2) unvoiced vocals model [10].

– HUA1, HUA2: systems using RPCA4, with binary (HUA1) and soft (HUA2)
masking [11].

– KAM1, KAM2, KAM3: systems using Kernel Additive Modelling (KAM),
with light kernel additive modelling (KAM1)5, a variant with only one iter-
ation (KAM2), and a variant where the energy of the vocals is adjusted at
each iteration (KAM3) [12, 13].

– NUG1, NUG2, NUG3: systems using spatial covariance models and Deep
Neural Networks (DNN) for the spectrograms, with one set of four DNNs
for the four sources for all the iterations (NUG1), one set for the first iteration
and another set for the subsequent iterations (NUG2), and one DNN for all
the sources (NUG3) [14].

– OZE: system using the Flexible Audio Source Separation Toolbox (FASST)
(version 1)6 [15, 16].

– RAF1, RAF2, RAF3: systems using the REpeating Pattern Extraction Tech-
nique (REPET)7, with the original REPET with segmentation (RAF1), the
adaptive REPET (RAF2), and REPET-SIM (RAF3) [17–20].

– STO: system using a predominant pitch extraction and an efficient comb
filtering8 [21, 22].

– UHL1, UHL2, UHL3: systems using DNN, with an independent training
material, with four DNNs for the four sources (UHL1), then augmented
with an extended training material (UHL2), then using a phase-sensitive
cost function (UHL3) [23, 24].

– Ideal: system using the ideal soft masks computed from the mixtures and
the sources.

2 http://mac.citi.sinica.edu.tw/ikala/
3 http://www.durrieu.ch/research/jstsp2010.html
4 https://sites.google.com/site/singingvoiceseparationrpca/
5 http://www.loria.fr/ aliutkus/kaml/
6 http://bass-db.gforge.inria.fr/fasst/
7 http://zafarrafii.com/repet.html
8 http://www.audiolabs-erlangen.de/resources/2014-DAFx-Unison/



Table 1. Results for the D1 dataset: (a) The performance of T1 for the instantaneous
mixtures averaged over datasets “test” and “test2” in 2 mics and the over dataset
“test3” in 3 mics. (b) The performance of T2 for the convolutive mixtures averaged
over “test” dataset in 2 mics and over “test3” dataset in 3 mics. SP and MU represents
speech and music data, respectively.

(a)

2mic/3src (SP) 2mic/3src (MU) 2mic/4src (SP) 3mic/4src (SP)
System SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

Sgouros [4] 7.6 18.8 8.6 8.3 18.4 9.4 5.6 15.6 6.5 6.6 19.1 7.0

(b)

2mic/3src (SP) 2mic/4src (SP) 3mic/4src (SP)
System SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR

OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS

Bouafif [5]
-4.3 1.4 -1.9 8.6 -5.7 1.6 -3.6 8.2 – – – –
8.4 67.0 1.4 85.1 8.4 55.1 1.0 83.3 – – – –

Nguyen
7.0 11.6 11.6 9.2 4.5 8.3 8.0 6.4 4.3 7.2 6.6 8.0
40.9 65.3 55.9 58.0 36.9 62.2 51.0 48.7 35.6 62.2 53.3 47.0

Figures 2 and 3 show the box plots for the SDR, ISR, SIR, and SAR (in dB), for
the vocals and the accompaniment, respectively, for the test subset. Outliers are
not shown, median values are displayed, and higher values are better. As we can
see, the separation performance is overall better for the accompaniment, as many
songs feature weak vocals. Also, supervised systems typically achieved better
results compared to unsupervised systems. Finally, depending on the systems,
more or less large statistical dispersions are observed, meaning that different
methods lead to different performances, depending on the songs, hence the need
for a large-scale evaluation for music source separation.

Three methods were submitted to D4. Wang’s method consists of an ex-
haustive search for estimating the sampling frequency mismatch and a state-
of-the-art source separation technique [25]. Their results show the highest SIR
but ISR is not so high. Miyabe’s method consists of the maximum likelihood
estimation of the sampling frequency mismatch [26] followed by auxiliary func-
tion based independent vector analysis [27]. Their results show the highest ISR.
So, this combination would be interesting. Murase’s system does not include
the compensation of sampling frequency mismatch. It directly designs the time-
frequency mask based on non-negative matrix factorization in the time-channel
domain with sparse penalty added to [28]. It is robust to the sampling frequency
mismatch, but the performance is limited due to using amplitude information
only. Also, the results of realmix and simrefs are almost the same for all algo-
rithms, which indicates that an effective evaluation was obtained by preparing
the ground truth with time marking proposed in this task.



Table 2. Results for the D2 dataset (only for task T1)

systems criteria
dev test

Ca1 Sq1 Su1 Ca1 Ca2 Sq1 Sq2 Su1 Su2

López [7]
SDR - - - 4.0 4.5 5.1 11.0 −3.8 3.9
SIR - - - 14.9 16.1 9.6 16.3 −1.6 8.8
SAR - - - 4.7 5.0 8.6 13.0 4.3 6.3

Ito [8]
SDR 7.2 8.9 4.9 8.1 7.8 10.8 13.8 6.7 7.6
SIR 25.9 23.7 15.3 25.7 27.7 26.8 28.6 21.0 27.9
SAR 7.2 9.2 5.6 8.2 7.8 11.0 14.0 6.9 7.7

Table 3. Results of T2 for the D4 dataset

Systems criteria
3src 4src

realmix sumrefs mix realmix sumrefs mix

Wang [25]

SDR 4.4 4.4 4.6 3.0 3.0 2.5
ISR 4.8 4.9 5.2 3.5 3.6 3.3
SIR 20.8 20.7 18.6 18.0 17.9 16.8
SAR 12.8 12.9 13.9 11.0 11.2 10.9

Miyabe [26]

SDR 6.9 6.8 10.6 4.0 3.8 3.3
ISR 11.2 11.1 15.1 8.8 8.5 7.3
SIR 11.0 10.9 14.9 6.7 6.4 6.0
SAR 11.7 11.6 15.5 7.8 7.6 7.4

Murase

SDR 2.7 2.6 2.4 0.9 0.8 1.0
ISR 7.0 6.8 7.0 5.2 5.1 5.3
SIR 5.2 4.6 4.2 1.7 1.6 2.3
SAR 5.0 5.3 5.5 4.2 4.2 3.6

4 Conclusion

In this paper, we reported the tasks, datasets and evaluation criteria with the
evaluation results in SiSEC 2015. Two new datasets were added in this SiSEC.
We hope that these datasets and the evaluation results will be used in future
research of the source separation field. Also, we have a plan to conduct web-based
perceptual evaluation, which will be presented as follow-up report.
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