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ABSTRACT 

Effective partitioning of feature space for high classification accuracy with due 

attention to rare class members is often a difficult task. In this paper, the border feature 

detection and adaptation (BFDA) algorithm is proposed for this purpose. The BFDA 

consist of two parts. In the first part of the algorithm, some specially selected training 

samples are assigned as initial reference vectors called border features. In the second part 

of the algorithm, the border features are adapted by moving them towards the decision 

boundaries. At the end of the adaptation process, the border features are finalized. The 

method next uses the minimum distance to border feature rule for classification. In 

supervised learning, the training process should be unbiased to reach more accurate 

results in testing. In the BFDA, decision region borders are related to the initialization of 

the border features and the input ordering of the training samples. Consensus strategy can 

be applied with cross validation to reduce these dependencies. The performance of the 

BFDA and Consensual BFDA (C-BFDA) were studied in comparison to other 

classification algorithms including neural network with back-propagation learning (NN-

BP), support vector machines (SVMs), and some statistical classification techniques.  

Keywords: Decision region borders, BFDA, data classification, remote sensing, 

consensual classification.  
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I.  INTRODUCTION  

Performance of a classifier is heavily related to the number and quality of training 

samples in supervised learning [1,2]. A desirable classifier is expected to achieve 

sufficient classification accuracy while rare class members are also correctly classified in 

the same process. Achieving this aim is not a trivial task, especially when the training 

samples are limited in number. Lack of a sufficient number of training samples decreases 

generalization performance of a classifier. Especially in remote sensing, collecting 

training samples is a costly and difficult process. Therefore, a limited number of training 

samples is obtained in practice. A heuristic metric is that the number of training samples 

for each class should be at least 10-30 times the number of attributes (features/bands) 

[3,4]. It is true that this may be achieved for multispectral data classification. However, 

for hyperspectral data which has at least 100-200 bands, sufficient number of training 

samples can not be collected. Normally, when the number of bands used in the 

classification process increases, more accurate class determination is expected. For a high 

dimensional feature space, when a new feature is added to the data, classification error 

decreases, but at the same time the bias of the classification error increases [5]. If the 

increment of the bias of the classification error is more than the reduction in classification 

error, then the use of the additional feature actually decreases the performance of the 

classifier. This phenomenon is called the Hughes effect [6], and it may be much more 

harmful with hyperspectral data than multispectral data.  

Special attention can be given to the determination of significant samples which 

are much more effective to use for forming the decision boundary [7]. Structure of 

discriminant functions used by classifiers can give some important clues about the 

positions of the effective samples in the feature space. The training samples near the 

decision boundaries can be considered significant samples. The problem would be to 

specify the positions of these samples in the image. In crop mapping applications, some 

samples near parcel borders (spatial boundary in the image) are assumed to be samples 

with mixed spectral responses. Samples compromising mixed spectral responses can be 

taken into consideration to determine significant samples. Therefore, the same 

classification accuracy can be achieved by using a lower number of significant samples 

than a larger number of samples collected from pure pixels [8]. Consequently, one major 
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classifier design consideration should be the detection and usage of training samples near 

the decision boundaries [9].  

It is obvious that the training stage is very important in supervised learning and 

affects the generalization capability of a classification algorithm. In some cases, not all 

training samples are useful, and some may even be detrimental to classification [10]. In 

such a case, some (noisy) samples may be discarded from the training set, or their 

intensity values may be filtered for noise reduction by using appropriate spatial filtering 

operations such as mean filtering to enhance generalization capability of the classifier 

[11]. For example, this kind of spatial filtering with a small window size (1x2) has been 

applied to parcel borders in agricultural areas to find appropriate intensity values of the 

spectral mixture type pixels [8].  

The training process should not be biased. Equal number of training samples 

should be selected for each class if possible. In practice, this may not be possible. In 

addition, the training process may be affected by the order of the input training samples. 

To reduce such dependencies and to increase classification accuracy, a consensual rule 

[12,13] can be applied to combine results obtained from a pool of classifiers. This process 

can also be combined with cross validation to improve the generalization capability of a 

classifier.  

Our motivation in this study is to overcome some of these general classification 

problems, by developing a classification algorithm which is directly based on the 

detection of significant training samples without relying on the underlying statistical data 

distribution. Our proposed algorithm, the BFDA, uses detected border features near the 

decision boundaries which are adapted to make a precise partitioning in the feature space 

by using a maximum margin principle.  

Many supervised classification techniques have been used for multispectral and 

hyperspectral data classification, such as the maximum-likelihood (ML), neural networks 

(NNs) and support vector machines (SVMs). Practical implementational issues and 

computational load are additional factors used to evaluate classification algorithms.  

Statistical classification algorithms are fast and reliable, but they assume that the 

data has a specific distribution. For real world data, these kinds of assumptions may not 

be sufficiently accurate, especially for low probability classes. For a high dimensional 
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feature space, first and especially second order statistics (mean and covariance matrix) 

could not be accurately estimated. The total number of parameters in the covariance 

matrix is equal to the square of the feature size. Therefore, the proper estimation of the 

covariance matrix is especially a difficult challenge. To overcome proper parameter 

estimation problems, some valuable methods are introduced in the literature. Covariance 

matrix regularization is one of the methods that can be applied to estimate more accurate 

covariance matrix [14,15]. In this method, sample and common covariance matrices are 

combined in some way to achieve more accurate covariance matrix estimation. 

Enhancing statistics by using unlabeled samples iteratively is another method to reduce 

the effects of poor statistics. The expectation maximization (EM) algorithm can be used 

for this purpose to enhance statistics [16]. In hyperspectral data, neighbor bands are 

usually highly correlated. Methods such as discriminant analysis feature extraction 

(DAFE) [5], and decision boundary feature extraction (DBFE) [17] can be applied. 

Working in a high dimensional feature space directly is also problematic for these two 

methods. Therefore, subset feature selection via band grouping such as projection pursuit 

(PP) [18] can be used before DAFE and DBFE. 

Non-parametric classification methods are robust with both multispectral and 

hyperspectral data. Therefore, the Hughes effect is less harmful with nonparametric 

methods than parametric ones. The K-nearest neighbor (KNN) rule is one of the simple 

and effective classification techniques in nonparametric pattern recognition that does not 

need knowledge of distribution of the patterns [19], but it is also sensitive to the presence 

of noise in the data. Neural networks are widely used in the analysis of remotely sensed 

data. There is a variety of network types used in remote sensing such as multilayer 

perceptron (MLP) or feed forward neural network with back-propagation learning (NN-

BP) [20]. There are also some additional classification schemes to improve classification 

performance of neural networks to simplify the complex classification problem by 

accepting or rejecting samples in a number of modules such as parallel, self-organizing 

hierarchical neural networks (PSHNNs) [21]. By using parallel stages of neural network 

modules, hard vectors are rejected to be processed in the succeeding stage modules, and 

this rejection scheme is effective in enhancing classification accuracy. Consensual 

classifiers are related to PSHNNs, and also reach high classification accuracies [22-24]. 
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In recent years, kernel methods such as support vector machines (SVMs) have 

demonstrated good performance in multispectral and hyperspectral data classification 

[25-27]. Some of the drawbacks of SVMs are the necessity of choosing an appropriate 

kernel function and time-intensive optimization. In addition, the assumptions made in the 

presence of samples which are not linearly separable are not necessarily optimal. It is also 

possible to use composite kernels [27] for remote sensing image classification to reach 

higher classification accuracies. 

In this paper, a new classification algorithm well suited for classification of 

remote sensing images is developed with a new approach to detecting and adapting 

border features with the training data. This approach is especially effective when the 

information source has a limited amount of data samples, and the distribution of the data 

is not necessarily Gaussian. Training samples closer to class borders are more prone to 

generate misclassification, and therefore are significant features to be used to reduce 

classification errors. The proposed classification algorithm searches for such error-

causing training samples in a special way, and adapts them to generate border features to 

be used as labeled features for classification.  

The BFDA algorithm can be considered in two parts. The first part of the 

algorithm consists of defining initial border features using class centers and misclassified 

training samples. With this approach, a manageable number of border features are 

detected. The second part of the algorithm is the adaptation of the border features by 

using a technique which has some similarity with the learning vector quantization (LVQ) 

algorithm [28]. In this adaptation process, the border features are adaptively modified to 

support proper distances between them and the class centers, and to increase the margins 

between neighboring border features with different class labels. The class centers are also 

adapted during this process. Subsequent classification is based on labeled border features 

and class centers. With this approach, a proper number of features for each class is 

generated by the algorithm.  

The paper consists of four sections. The BFDA and consensual BFDA (C-BFDA) 

are presented in Section II. The data sets used and the experimental results obtained with 

them are presented in Section III. Conclusions and discussion of future research are 

presented in Section IV. 
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II. BORDER FEATURE DETECTION AND ADAPTATION 

Partitioning feature space by using some selected reference vectors from a 

training set is a well-known approach in pattern recognition [29]. In general, there is an 

optimal number of reference vectors which can be used. More number of reference 

vectors above the optimal number may cause reduction of generalization performance. To 

avoid performance reduction, additional efforts should be taken to discard redundant 

reference vectors. An example of such a procedure is discussed in the grow and learn 

algorithm (GAL) [29]. 

We propose a new approach to reference vector selection called border feature 

detection. In developing such an approach, the selected reference vectors are required to 

satisfy certain geometric considerations. For example, a major property of SVMs is to 

optimize the margin between the hyperplanes characterizing different classes [9]. The 

training vectors on the hyperplanes (in a separable problem) are called support vectors. In 

the proposed algorithm, the same type of consideration leads to the positions of the 

reference vectors selected from the training set to be adapted so that they better represent 

the decision boundaries while the reference vectors from different classes are as far away 

from each other as possible. These adapted reference vectors are called border features. 

 

A. Border Feature Detection 

The border feature detection algorithm is developed by considering the following 

requirements: 

1. Border features should be adapted so that they represent the decision boundaries as 

well as possible. 

2. The initial selection and adaptation procedure is desired to be automatic, with a 

reasonable number of initial border features. 

3. Every class should be represented with an appropriate number of border features to 

properly represent the class.  

In order to choose the initial border features, the class centers are used. A 

particular class center is defined as the nearest vector to its class mean. Using class center 
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instead of class mean is a precaution for some classes which are spread in a concave form 

in the feature space.  

Assuming a labeled training dataset 1 2{( , ), ( , ),     , ( , )}ny y y⋅ ⋅ ⋅1 2 nx x x  where the 

training samples are , 1,...,N i∈ =ix n , the class labels are {1, 2,     , }iy m∈ ⋅ ⋅ ⋅ ,  is the 

total number of training samples, and  is the number of classes, the class means are 

calculated as follows: 

n

m
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where  is the total number of training samples for class i. The class center in ic for class i 
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Let  be a set of border features in the feature space. For t=0,  is the set of initial 

border features chosen as a combination of initial border feature sets :  

tΒ 0Β

iB

  (3) 0
i

0

=
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0B  is chosen as the set of initial class centers. They can be written together with their 

class labels as 

 { }0 1 2 1 2( , ), ( , ),       , ( , ) {( ), ( ),       , ( )}m my y y y y y= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅B 1 2 m 1 2 mc c c b , b , b , .  (4) 

The number of members for the set is0B 0m m= . Additionally,  

is chosen as a set of initial border features detected for class i as discussed next. Assume 

that the total number of detected border features is  for class i. In this assignment 

procedure, is called the reference set for class i, and the number of members 

for the reference set is . At the beginning of the detection procedure for every 

class, ,and therefore, . During the detection process for class i=q, 

 , 1     i m= ⋅ ⋅ ⋅Bi

im

0= ∪R B Bi i

0  im m+

(t=0)=∅Bi 0t=0R ( ) = Bi
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every member of the training samples belonging to class  is randomly selected only 

once as an input. Assume that 

q

( , )k ky q=x  is selected. Then, the Euclidean distances 

calculated between this sample and the current reference set members are given by  

 0( , ) ,   1...( )qj m m= − = +j k j k jD x b x b   (5) 

The winning border feature is chosen by 

 { }arg min jw D=   (6) 

If the label of the winning border feature wb  is w ky y q≠ = , then ( , )k ky q=x  is 

chosen as a new reference vector for class q and added to the reference vector set. This 

can be written as (t) = (t -1) {( , )}ky q=∪R Ri=q i=q kx . This procedure is somewhat similar 

to the ART1 algorithm [30]. The procedure for selecting border features is applied with 

all the classes. 

We define b as the total number of border features, and  as the 

number of detected border features for class i, with being the number of classes. 

Then, the following is true: 

, 1,...,im i m=

0 =  m m

 
0 1

m m

i
i i

b m m
= =

= = + im∑ ∑ . (7) 

As an example, a binary classification problem in a two-dimensional feature space 

is depicted in Fig. 1. In this figure, the training samples shown with symbols + and x are 

for classes 1 and 2, respectively. The samples detected as initial border features are 

shown as circles. The initial decision boundary based on only the class centers, , is 

shown as a line. The border features other than the class centers are selected from the 

misclassified samples, as seen in Fig. 1.  

0B

In Fig. 2, all the detected border features, , are used to partition the feature 

space. The next step is to adapt the border features so that they more accurately represent 

the class boundaries. Additionally, in the adaptation procedure, if any new border feature 

requirement occurs, additional border features are added to the border feature set.  

0Β
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B. Adaptation Procedure 

In the adaptation process, competitive learning principles are applied as follows: 

The initial border features, are adaptively modified to support maximum distance 

between the border features and their means, and to increase the margins between 

neighboring border features with different class labels. The means of border features to 

be used during adaptation are given by  

0Β

 
1

1 ,{ | ,    1,     , }
1

b

j
ji

y i i m
m =

= = = ⋅
+ ∑i j jm b b ⋅ ⋅   (8) 

 { }0
1 2( , ), ( , ),   ,( , )   my y y= ⋅ ⋅ ⋅M 1 2 mm m m  (9) 

The means of border features are not taken in to account in the final decision 

process. Hence, at the end of the adaptation process, the means of border features are 

redundant. During the adaptation process, they are used to decide whether new border 

features should be generated. They are also adapted during learning due to the changes of 

border features.  

The strategy of adaptation can be explained as follows: a nearest border feature 

( )twb  which causes wrong decision should be farther away from the current training 

sample. On the other hand, the nearest border feature ( )tlb  with the correct class label 

should be closer to the current training sample. The corresponding adaptation process 

used has some similarity with the LVQ algorithm [28]. The adaptation procedure is 

depicted as a flow graph in Fig. 3.  

Let jx be one of the training samples with label jy . Assume that ( )w tb  is the 

nearest border feature to jx  with label .If 
wby

wj by y≠ , then the adaptation is applied as 

follows: 

 ( 1) ( ) ( ) ( ( ))         jt t t tη+ = − ⋅ −w w wb b x b  (10) 

 ( )( )( 1) ( ) ( ) ( )          
b bw wy jt m t t t mη+ = ⋅ − ⋅ −

b bw wy y wm m x b y  (11) 

On the other hand, if ( )tlb  is the nearest border feature to jx  with label  and 
lby

lj by y= , 

then 

 ( 1) ( ) ( ) ( ( ))         jt t t tη+ = + ⋅ −l l lb b x b  (12) 
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 ( )( )( 1) ( ) ( ) ( )          
bl ly jt m t t t mη+ = ⋅ + ⋅ −

b bl ly y lm m x b
by  (13) 

where ( )tη  is a descending function of time and is called the learning rate. A good choice 

for it is given by 

 /
0( ) tt e τη η −=  (14) 

During training, after a predefined number of iterations, t′ , the combination of 

and are used as reference nodes to classify input training samples. If the nearest 

node to a selected training sample 

Mt tΒ

jx with label jy  is one of the means of the border 

features (t t′>wm )  with label and if 
wmy

wj my y≠ , then the wrongly classified training 

sample jx  is added as an additional border feature : 

 {( , )},   ( )jy t t′= >∪t+1 tΒ Β jx  (15) 

The corresponding mean vector is also adapted as follows: 

 ( )( 1) ( ) ( ) ( ( ) 1)
jy j yt m t t m t+ = ⋅ + +

j jy ym m x
j

 (16) 

where  is the number of border features belonging to class ( )
jym t jy at iteration t. 

Therefore  is the number of border features in class ( 1)
jym t + jy after the addition of the 

new border feature.  

To illustrate the theory, the synthetic data result for the chosen binary 

classification problem in the two-dimensional space is depicted in Fig. 4. After the 

adaptation process, the final border features shown as circles and the final decision 

boundary as combination of partial lines is observed in Fig. 4.  

During testing with the testing dataset, classification is currently based on the 

minimum distance rule with the border features determined at the end of the adaptation 

procedure.  

 

C. Consensus Strategy with Cross Validation 

In supervised learning, the training process should be unbiased to reach more 

accurate results in testing. In the BFDA, accuracy is related to the initialization of the 

border features and the input ordering of the training samples. These dependencies make 

the classifier a biased decision maker. Consensus strategy can be applied with cross 

http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&va=descending
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validation to reduce these dependencies. The cross validation fold number, f should be 

chosen big enough with a limited number of training samples. The block scheme of 

consensus strategy with k fold cross validation is depicted in Fig. 5. 

There are a variety of consensual rules that can be applied to combine k individual 

results to obtain improved classification. The reliability factor of the classification results 

is depicted as a weight kλ  for the kth BFDA classifier in Fig. 5. This reliability factor can 

be specified by the consensual rule applied. For majority voting (MV) rule, weights can 

be equally chosen, and the majority label is taken as the final label. It is also possible to 

use a non-equal voting structure (Qualified Majority Voting, QMV) based on training 

accuracies [31]. By using cross validation as a part of the consensual strategy, part of the 

training samples are used for cross validation, and reliability factors can be assigned more 

precisely based on validation. Once the reliability factors are determined, consensual 

classification results can be obtained by applying a maximum rule with reliability factors. 

Additionally, obtaining optimal reliability factors (weights, kλ ) can be done by least 

squares analysis [12].  

 

III. EXPERIMENTAL RESULTS  

Reliable datasets well-known in the literature are more convenient to evaluate the 

performance of the proposed BFDA algorithm than datasets which are not tested before. 

Two well known data sets which are widely encountered in the literature were used in the 

experiments for this purpose [32,33]. One additional data set from Turkey [34] was also 

used to make proper comparison, and to show the robustness of the proposed algorithm. 

As a consequence, three different data sets, one of them having four different 

combinations of training samples and corresponding classes, were used in the 

experiments to demonstrate a large number of results obtained with the BFDA. We were 

able to show that the overall classification accuracies obtained with the BFDA are 

satisfactory. Additionally, we were able to present rare class members are more 

accurately classified than some other classification methods. Another goal of the 

experiments was to show the Hughes effect [6] is less harmful with the BFDA than other 

conventional statistical methods. This meant that the performance of the BFDA with a 
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limited number of training samples is generally higher than the performances of 

conventional classifiers. 

The performance of the BFDA was compared with other classification algorithms 

including neural networks with back-propagation learning (NN-BP) [7], support vector 

machines (SVMs) [25,26] and some statistical classification techniques such as maximum 

likelihood (ML) and Fisher linear likelihood (FLL) [35]. The data analysis software called 

Multispec [32] was used to perform the statistical classification methods. Linear SVM and 

SVM with a radial basis kernel function were implemented in MATLAB using SVMlight 

[36], and its MATLAB interface [37]. A one-against-one multiclassification scheme was 

adopted in the experiments to compare SVMs performance to BFDA’s. Only spectral 

features were taken into account in the comparison of the BFDA with other classification 

techniques. 

 

A. Choice of Parameters  

How to choose the parameters for the BFDA is an important concern. Three 

parameters need to be assigned. These parameters are the learning rate η, the time constant 

τ and predefined number of iterations, t′ . For fast convergence, η=0.1 and τ=1000 were 

found satisfactory. Faster training is suitable for relatively less complex classification 

problems. For more complex classification problems, finer tuning may be necessary, and 

η=0.2, τ=6750 can be chosen. Parameter selection for the BFDA has also some similarity 

with the SOM [28]. Additionally, extra border feature requirements are controlled by 

using a predefined number of iterations, t′ , during the adaptation process. This situation 

occurs especially for complex classification problems. In the experiments, t =  was 

chosen. During the training process, a validation set can be used with a pocket algorithm 

to avoid overfitting.  

5000′

Determination of proper parameters is also an important concern for most other 

classification algorithms such as the SVM classifiers. SVM is a binary classifier, and one-

against-one (OAO) strategy was used to generate multi-class SVM classifier in this study. 

For one-against-one strategy, C and γ should be chosen for every binary class 

combination. We assigned common parameters for each binary SVM classifier empirically 

based on the training samples. High overall classification accuracies can be obtained by 
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using common parameter selection. Similar common parameter assignment was applied in 

[25]. One drawback may occur with datasets which have unbalanced numbers of training 

samples. In this situation, although high overall classification accuracy may be obtained, 

accuracies of the rare classes may be lower than overall classification accuracy. It is 

possible to use a multi class SVM classifier by reducing the classification to a single 

optimization problem. This approach may also require fewer support vectors than a multi-

class classification approach based on combined use of many binary SVMs [38]. 

Neural network with back-propagation learning (NN-BP) was chosen in the 

experiments as a well-known neural network classifier. 1 hidden layer with 15 neurons 

was chosen as the network structure with learning rate equal to 0.01 and maximum 

iteration number equal to 1000.  

For the KNN classifier also used in the experiments, the choice of K is related to 

the generalization performance of the classifier. Choosing a small number of K causes 

reduction of generalization of the KNN classifier. It is also true that K=1 is the most 

sensitive choice to noisy samples. Therefore K=5 was chosen in the experiments.  

 

B. Description of the Datasets and the Experiments  

Three different datasets were used in the experiments. The names of the 

experiments are chosen the same as the names of the datasets, which are AVIRIS 

(Airborne Visible/Infrared Imaging Spectrometer) Data [32], Satimage Data [33] and 

Karacabey data [34].  

 

B.1. AVIRIS Data Experiment 

The AVIRIS image taken from the northwest Indiana’s Pine site in June 1992 [32] 

was used in the experiments. This is a well known test image and has been often used for 

validating hyperspectral image classification techniques [35,39]. Detailed comparisons 

were made by using the AVIRIS data set in this paper. We used the whole scene 

consisting of the full 145 x 145 pixels with two different class combinations, and two 

different spectral band combinations. The training sample sets with 17 classes (pixels with 

class labels of mixture type were considered for classification) and 9 classes (more 

significant classes from the statistical viewpoint) were generated with different 
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combinations of 9 (to illustrate multispectral data classification performance) and 190 

spectral bands (30 channels discarded from the original 220 spectral channels because of 

atmospheric problems). 9 spectral bands used in datasets 1 and 3 were obtained by using 

projection pursuit based on subset feature selection via band grouping. Table I shows the 

number of training and testing samples for 17 and 9 class sets which were used in the 

experiments. Datasets 1 and 2 contain background and building-grass-tree classes which 

are of mixture type. Therefore, these two classification experiments involved more 

complex classification problems than the other datasets. Additionally, datasets 1 and 2 

have rare class members which have a limited number of training samples (alfalfa, oats, 

stone steel towers, etc). Statistically meaningful classes were chosen for the datasets 3 and 

4.  

In the BFDA, classification is currently based on the minimum distance rule with 

the finalized border features for the testing data. This rule can be thought of as a 1- 

nearest neighbor (1-NN) with border features. The aim of the BFDA is to occupy the 

feature space by using a minimum number of border features. Therefore, the nearest 

border features typically have different class labels, causing K > 1 to yield worse results. 

For example, the classification accuracies for dataset 1 are shown in Fig. 6 for different K 

values. The highest accuracies were obtained with K=1 as expected. 

Average testing accuracies obtained are shown in Fig. 7 for the AVIRIS data 

experiments. The maximum likelihood classifier (MLC) results were obtained only for 

datasets 1 and 3 because of the requirement of additional training samples to accurately 

estimate the sample covariance matrix for every class. Higher number of training samples 

is needed for proper sample covariance matrix estimation in high dimensional feature 

space (datasets 2 and 4). Additionally, the Hughes effect is much more harmful for 

quadratic classifiers.  

The Fisher linear likelihood (FLL) algorithm was also used as an example of 

statistical classifiers. The inverse of the common covariance matrix is used in the 

discriminant function of the FLL. Therefore, all the classes are assumed to have the same 

variance and correlation structure. 

The results obtained with the K-Nearest Neighbor (KNN) were very satisfactory in 

lower dimensional feature space (datasets 1 and 3). In the KNN algorithm, all the training 
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set members are used as reference vectors. Therefore, testing time takes more than other 

conventional classification techniques.  

For complex classification problems (datasets 1 and 2) we obtained relatively poor 

classification results with the neural network based on back-propagation learning (NN-

BP). For statistically meaningful datasets, we obtained satisfactory results with the NN-BP 

(datasets 3 and 4). Therefore, approximately equal number of training samples should be 

selected to achieve better results with the NN-BP.  

In general, the differences of the accuracies between datasets 2 and 1 and datasets 

4 and 3 illustrate the robustness of the algorithms with respect to the Hughes effect (see 

Fig. 7). Based on this consideration, the RBF-SVM, Consensual BFDA (C-BFDA), the 

BFDA and the Linear SVM are observed to be the most robust algorithms with respect to 

the Hughes effect. As observed in Fig. 7, these algorithms also produce case independent 

results.  

In low dimensional feature space, we obtained higher classification accuracies with 

the BFDA and the C-BFDA. The performance of the BFDA in high dimensional feature 

space was also satisfactory as seen in Fig. 7. In high dimensional feature space, we 

obtained highest classification accuracies with the RBF-SVM and the C-BFDA. The 

accuracies obtained with the C-BFDA versus fold number K are shown in Fig. 8 with four 

different consensual rules for dataset 1. These rules are majority voting (MV), qualified 

majority voting based on overall classification accuracies obtained by each validation set 

(every fold) (QMV-1), qualified majority voting based on class by class accuracies 

obtained by each validation set (QMV-2) and optimal weight selection based on least 

squares analysis (LSE). Best accuracies were obtained for f=10 and MV rule for dataset 1.  

Processing time is also an important concern for our proposed consensual strategy 

which is related to fold number (f). The total processing time for the C-BFDA versus fold 

number f are shown in Fig. 9 for datasets 1-4. More complex classification problem 

(dataset 2) needs much more time when we compare with other datasets. This is directly 

related to the number of classes and feature size. Total processing times are shown in Fig. 

10 for RBF-SVM, BFDA and C-BFDA. It is shown that the RBF-SVM used more 

processing time as compared to the C-BFDA and the BFDA. As observed in Fig. 10, the 

processing time of the BFDA is reasonable.  
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The average number of border features used in the BFDA algorithm is shown in 

Table II together with processing times for datasets 1-4. Border feature detection 

procedure supports a proper number of border feature requirements dependent on the 

complexity of the problem. For detailed analysis, class by class accuracies are also given 

for datasets 1 and 4 in Table III and Table IV, respectively.  

The relatively low accuracy of class 1 (background class which is mixture type) in 

dataset 1 reduced overall classification accuracy for the MLC as observed in Table III. 

Reduction effects of the mixture type classes are much more harmful with the FLL in 

dataset 1. We can conclude that the presence of the mixture type class members reduces 

the overall classification accuracy with the statistical classifiers, as observed with dataset 

1.  

The neural network with back-propagation learning (NN-BP) is based on 

minimizing the overall square error. As a result, the rare class members are not detected in 

dataset 1 as expected. The performance of the NN-BP was satisfactory for dataset 4 which 

has only statistically meaningful classes, as observed in Table IV. One interesting 

observation was the very low accuracy of class 16 (building-grass-tree which is mixture 

type rare class member) in dataset 1 with the RBF-SVM classifier as observed in Table 

III. Common parameter assignment for each binary SVM classifier may have caused this 

result.  

With the BFDA and the C-BFDA, we obtained very satisfactory results for both 

datasets 1 and 4, as observed in Tables III and IV. The BFDA reached high overall 

classification accuracy while correctly classifying rare class members as observed in Table 

III. Furthermore, the C-BFDA was used to enhance classification accuracy of the single 

BFDA classifier by using cross validation in the consensual strategy with reasonable 

processing time, as observed in Tables III and IV. The thematic maps obtained with the 

BFDA and the C- BFDA are depicted in Figures 11.b, and 11.c for datasets 1-2 and 

Figures 11.d and 11.e for datasets 3-4, respectively. 

 

B.2. Satimage Data Experiment 

The satimage data set is a part of the Landsat MSS data and contains six different 

classes. 4435 training samples and 2000 testing samples were obtained from the statlog 
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web site with their labels [33]. Training set contains statistical meaningful samples for 

each class as shown in Table V. 4 spectral bands were used with one neighboring feature 

extraction method to extract features. As a result, 4x9=36 features were assigned to a 

pixel.  

Highest accuracy in previous works with this data set was obtained with the SVM 

[38]. In this experiment, the RBF-SVM classifier, the NN-BP and the MLC were used to 

make comparisons with the BFDA and the C-BFDA. The aim of this experiment was to 

demonstrate the robustness of the results obtained with the BFDA, and to illustrate the 

performance of the BFDA on additional types of remotely sensed data in comparison 

with other methods. The parameters of the BFDA were chosen as η=0.2, and τ=6750 for 

learning rate and time constant respectively in this experiment. This parameter selection 

makes slow convergence and fine tuning possible. The classification accuracy of the 

RBF-SVM (C=16, γ=1) classifier with one-against-one strategy was reported as 91.3 % 

for the satimage testing data set in reference [38]. In this experiment C=6 and γ=1.5 were 

chosen by using a pattern search algorithm with a validation set. 15 neurons in one 

hidden layer were chosen with the learning rate equal to 0.01 as network parameters for 

the neural network with back-propagation learning. The activation function of the neural 

network was chosen as the sigmoid function. In comparison, the testing results obtained 

with the C-BFDA and the RBF-SVM were almost same and satisfactory for the satimage 

data set as observed in Table V. Approximately 4 % less average accuracy were obtained 

for the NN-BP when we compare the average of results obtained by the RBF-SVM, the 

BFDA and the C-BFDA. Additionally less accurate result (27.48 %) was obtained for 

class damp grey soil by the MLC. Therefore, the MLC were not sufficient to make 

detailed class discrimination (for class damp grey soil) for this experiment. Obtained 

accuracies for this problematic class were %54.04, %66.82, %67.29 and %68.72 by NN-

BP, RBF-SVM, BFDA and C-BFDA respectively. Therefore the best accurate results 

were obtained by the BFDA and the C-BFDA for this specific class is obvious. 

 

B.3. Karacabey Data Experiment 

The Karacabey Data set is a Landsat 7 ETM+ image taken from northwest 

Turkey, Karacabey region in Bursa in July 2000 [34]. Six visible infrared bands (Band 1-
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5 & 7) having 30 m resolution were used as spectral features. Previous work was used as 

auxiliary information for extraction of the ground reference data [34]. A color composite 

of the sub-image is shown in Fig. 12.a, and the ground truth map used in our experiments 

is depicted in Fig. 12.b. 

9 classes were utilized while background and parcel boundaries (depicted as w0 

and w10
 in the ground truth map, see Fig. 12.b) were discarded from evaluation. 

Discarding of parcel boundaries supports selection of pure pixels. Therefore, pixels 

which contain mixture spectral responses discarded in this experiment. Same selection 

process was applied in reference [34]. However, there have been some advantages 

reported in reference [8] related to selection of pixels which have mixture type spectral 

responses especially for classifiers such as SVMs which are utilized training samples near 

decision boundaries.  

The description of the classes and the numbers of class samples used in the 

experiment depicted in Table VI and the average training and testing accuracies as well 

as the accuracies obtained with the whole scene are shown in Table VII. Balanced 

numbers of training and testing samples were selected randomly; therefore obtained 

results for testing and whole scene are shown same behavior. Our goal was to 

demonstrate whether the BFDA is robust and performs well, in general. In this 

experiment, we compared the BFDA with the SVM classifiers and the MLC.  

As we observe in Table VII, the results obtained with the BFDA and the C-BFDA 

(67.41 % and 68.80 % respectively for whole scene) are satisfactory in comparison to 

MLC (63.80 %). We obtained better result (%69.20 for whole scene) with RBF-SVM 

classifier in this experiment. The average classification accuracies are less than 70 %. 

Using only one multispectral data is not sufficient for discriminating detailed class types. 

In the previous work [34], three different scenes acquired in approximately one month 

period were used for classification. This indicates that multitemporal data classification 

can be used to improve classification accuracy further. The thematic map of the BFDA 

result for the Karacabey dataset is depicted in Fig. 12.c. 

IV. CONCLUSIONS AND FUTURE WORK 

In this study, we proposed a new algorithm for classification of remote sensing 

images. The method first makes use of detected border features as part of an adaptation 
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process aimed at better describing the classes, and then uses minimum distance to border 

feature rule for classification. The concept of border features proposed in this paper has 

some similarity with support vectors in SVM classifiers. However, the procedure of the 

initialization of border features, and subsequent adaptation process to find final border 

features is completely different. The competitive learning principle is applied during the 

adaptation procedure. In this sense, the adaptation algorithm used has some similarity 

with the LVQ algorithm. The reason for this adaptation strategy is to satisfy the 

maximum margin principle adaptively. It may be useful to mention some other 

classification algorithms which have some similarity to the BFDA. The GAL algorithm 

randomly chooses a subset of training samples to satisfy a predefined training accuracy 

until a reaching predefined iteration number without any geometric consideration. The 

border features chosen in the BFDA are different. The KNN algorithm uses the whole 

training set as reference vectors. This makes the obtained results very sensitive to noise. 

Another drawback of the KNN is processing time which is very high for classification of 

large datasets. In the BFDA algorithm, a small number of border features are chosen.  

The BFDA is a nonparametric classifier, robust against the Hughes effect, and 

well-suited for remote sensing applications. In order to reach higher classification 

accuracies C-BFDA which combines individual results of the BFDAs based on 

consensual rule via cross validation was introduced. Additionally, appropriate safe 

rejection schemes [21] can be applied to the BFDA to reach higher classification 

accuracies. The BFDA algorithm utilizes training samples near decision boundaries. 

Therefore using pixels which are mixed spectral responses can be increased the 

performance of the classifier with the limited number of training samples which has been 

reported in reference [8] for the SVM classifiers. Additionally in the spatial space, there 

are also a variety of applications suitable for processing with the BFDA, such as target 

detection, and contour specification. In conclusion, the BFDA can be applied in various 

suitable applications in remote sensing, image processing, and other classification 

applications. 
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Fig. 1. Binary classification problem: class centers and selected initial border features 
depicted as circles, and the initial border line between classes when the decision is made 
based on only class centers. 
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Fig. 2. Partitioning of the two-dimensional feature space by using initial border features 
obtained at the end of the border feature selection procedure. 
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Fig. 3. Flow graph of the adaptation stage of the BFDA. 
 



 30

 

 
Fig. 4. Partitioning of the two-dimensional feature space by using the final border 
features obtained at the end of the adaptation procedure.  
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Fig. 5. Block scheme of consensus strategy with k fold cross validation.  
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Fig. 6. Training accuracies obtained by the BFDA with various K values for AVIRIS 
datasets 1-4 when KNN with border features were applied after adaptation.  
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Fig. 7. Average training accuracies for AVIRIS datasets 1-4. 
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Fig. 8. Accuracies obtained by consensual BFDA versus fold number for four different 
consensual rules.  
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Fig. 9. Processing times for the consensual BFDA versus fold number for AVIRIS 
datasets 1-4. 
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Fig. 10. Processing times for AVIRIS datasets 1-4 for RBF-SVM, C-BFDA, and BFDA. 

 
 
 

 
Fig. 11.a. Ground truth of the AVIRIS data set with 17 classes. 
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Fig. 11.b. The thematic map of the BFDA result with  data set 1. 

 

 
Fig. 11.c. The thematic map of the consensual BFDA result with dataset 2. 
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Fig. 11.d. The thematic map of the BFDA result with dataset 3. 

 

 
Fig. 11.e. The thematic map of the consensual BFDA result with dataset 4. 
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Fig. 12.a. Color composite image of Karacabey Data set for bands 2, 3 and 4. 

 

Figure 12.b. The ground truth of the Karacabey data set with 9 classes. 
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Fig. 12.c. The thematic map obtained with the BFDA and the Karacabey dataset. 
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TABLE I 
NUMBERS OF TRAINING AND TESTING SAMPLES USED IN AVIRIS DATA EXPERIMENTS 

17-CLASS DATASET-1/2            
(9 / 190 FEATURES) 

9-CLASS DATASET 3/4               
(9/190 FEATURES) CLASS DESCRIPTION OF 

AVIRIS DATASETS 1-4 
CLASS TRAINIG TESTING CLASS TRAINING TESTING 

BACKGROUND ω1 719 2627 - - - 
ALFALFA ω2 16 39 - - - 

CORN-NOTILL ω3 201 720 ω1 288 846 
CORN-MIN ω4 157 498 ω2 200 448 

CORN ω5 63 117 - - - 
GRASS/PASTURE ω6 112 265 ω3 197 281 

GRASS/TREES ω7 207 409 ω4 200 442 
GRASS/PASTURE MOVED ω8 12 24 - - - 

HAY-WINDOWED ω9 196 374 ω5 209 357 
OATS ω10 14 16 - - - 

SOYBEANS-NOTILL ω11 255 519 ω6 193 597 
SOYBEANS-MIN ω12 545 1302 ω7 493 1757 

SOYBEANS-CLEAN ω13 128 310 ω8 199 286 
WHEAT ω14 102 132 - - - 
WOODS ω15 546 870 ω9 258 795 

BLDG-GRASS-TREE ω16 109 229 - - - 
STONE STEEL TOWERS ω17 21 44 - - - 
TOTAL NUMBER OF 

SAMPLES  3403 8495  2237 5809 

WHOLE SCENE  21065  9345 
 
 
 

TABLE II AVERAGE NUMBER OF BORDER FEATURES OBTAINED WITH THE BFDA 
AVIRIS DATASETS 1 2 3 4 

AVERAGE NUMBER OF  
BORDER FEATURES  189 184 93 95 

TIME [h] 0.116 1.25 0.034 0.45 
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TABLE III CLASS BY CLASS ACCURACIES OBTAINED WITH AVIRIS DATASET 1 

METHOD 
DATASET  

1 
MLC FLL NN-BP RBF  

SVM BFDA C-BFDA 
[f=10] 

ω1 43.81 25.31 66.23 67.83 58.20 65.93 
ω2 64.10 79.48 0 35.89 84.61 87.17 
ω3 78.19 55.97 52.22 56.80 65.27 63.88 
ω4 42.57 47.99 45.78 49.39 53.81 54.41 
ω5 74.35 41.88 0 52.99 71.79 68.37 
ω6 66.41 64.15 57.73 61.13 64.52 65.28 
ω7 91.44 82.39 88.26 89.24 90.22 94.37 
ω8 54.16 87.5 0 87.5 91.66 91.66 
ω9 99.46 63.10 100 99.46 96.52 96.79 
ω10 87.5 87.5 0 68.75 100 100 
ω11 76.49 64.35 80.34 76.30 75.91 76.30 
ω12 78.18 32.25 76.34 82.79 83.79 85.33 
ω13 72.25 43.22 17.74 72.90 73.54 73.87 
ω14 99.24 100 93.93 100 94.69 99.24 
ω15 92.41 80.22 75.86 76.20 74.94 75.86 
ω16 63.31 41.04 0 5.24 61.57 58.95 

A 
C 
C 
U 
R 
A 
C 
Y 

[%] 

ω17 77.27 88.63 75 90.90 97.72 95.45 
OA 67.56 47.27 64.52 70.52 70.59 73.45 

TIME [h] <0.01 <0.01 0.23 0.51 0.11 0.66 
 
 

TABLE IV CLASS BY CLASS ACCURACIES OBTAINED WITH AVIRIS DATASET 4 

METHOD DATASET  
4 NN-

BP 
RBF-
SVM BFDA C-BFDA 

[f=10] 
ω1 80.73 84.51 78.95 82.15 
ω2 78.57 86.38 86.16 91.07 
ω3 99.29 95.72 97.15 96.79 
ω4 93.89 99.77 95.70 97.73 
ω5 100 99.71 99.15 98.88 
ω6 77.38 83.75 80.90 87.10 
ω7 81.56 88.10 85.82 85.31 
ω8 86.36 96.15 91.95 90.55 

A 
C 
C 
U 
R 
A 
C 
Y 

[%] ω9 100 99.37 99.11 99.87 
OA 86.46 90.91 88.59 90.06 

TIME [h] 0.54 1.38 0.45 1.95 
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TABLE V CLASS BY CLASS ACCURACIES OBTAINED WITH SATIMAGE DATASET  

TOTAL NUMBER OF 
SAMPLES METHOD SATIMAGE DATASET 

CLASS DESCRIPTION 
TRAINING TESTING MLC NN-BP RBF-

SVM BFDA C-BFDA 
[f=10] 

RED SOIL 1072 461 97.83 97.18 98.91 99.13 99.62 
COTTON CROP 479 224 99.10 94.64 98.21 96.87 95.53 

GREY SOIL 961 397 95.21 91.68 92.94 91.43 94.45 
DAMP GREY SOIL 415 211 27.48 54.02 66.82 67.29 68.72 

SOIL WITH STUBBLE 470 237 85.23 80.59 94.93 91.56 93.60 
VERY DAMP GREY SOIL 1038 470 

C
LA

SS
 B

Y
 C

LA
SS

 
A

C
C

U
R

A
C

Y
 [%

] 

85.74 84.46 90.85 86.38 90.42 
OA 85.7 86.3 91.9 90.1 92 TOTAL NUMBER OF 

SAMPLES 4435 2000 
AA 85.7 87.2 91.75 89.9 91.95 

 

 
TABLE VI NUMBER OF SAMPLES FOR TRAINING, TESTING, AND WHOLE SCENE 

KARACABEY DATASET 

LABEL CLASS TRAINIG TESTING WHOLE 
SCENE 

BARE SOIL ω1 10 10 66 
WATERMELON  ω2 10 10 27 

PEPPER ω3 60 60 2110 
PASTURE  ω4 60 60 508 
CLOVER  ω5 60 60 442 

SUGAR BEET ω6 60 60 300 
TOMATO ω7 60 60 2694 
RESIDU ω8 60 60 6846 
CORN ω9 60 60 4752 

TOTAL NUMBER OF SAMPLES 440 440 17737 
 

 

TABLE VII AVERAGE CLASSIFICATION RESULTS WITH THE KARACABEY DATA SET 
ACCURACY [%] 

METHOD 
TRAINING TESTING WHOLE 

SCENE 
MLC 73.86 65.90 63.80 

LINEER SVM  82.30 67.90 65.80 
RBF-SVM  85.20 70.24 69.20 

BFDA 87.24 68.80 67.41 
C-BFDA [f=10] 88.40 70.02 68.80 
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