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Abstract

Wireless mesh networks (WMNs) have been proposed to provide cheap, easily deployable and robust

Internet access. The dominant Internet-bound traffic from clients causes a congestion bottleneck around

the gateway, which can significantly limit the throughput of the WMN clients in accessing the Internet.

In this paper, we present MeshCache, a transparent caching system for WMNs that exploits the locality

in client Internet-bound traffic to mitigate the bottleneck effect at the gateway, thereby improving client

perceived performance. MeshCache leverages the fact that a WMN typically spans a small geographic

area and hence mesh routers are easily over-provisioned with CPU, memory, and disk storage, and

extends the individual wireless mesh routers in a WMN with built-in content caching functionality. It

then performs cooperative caching among the wireless mesh routers.

We explore two architecture designs for MeshCache: (1) caching at every client access mesh router

upon file download, and (2) caching at each mesh router along the route the Internet traffic travels,

which requires breaking a single end-to-end transport connection into multiple single-hop transport

connections along the route. We also leverage the abundant research results from cooperative web

caching in the Internet in designing cache selection protocols for efficiently locating caches containing

data objects for these two architectures. We further compare these two MeshCache designs with caching

at the gateway router only.

Through extensive simulations and evaluations using a prototype implementation on a testbed, we find

that MeshCache can significantly improve the performance of client nodes in WMNs. In particular, our

experiments with a Squid-based MeshCache implementation deployed on the MAP mesh network testbed

with 15 routers show that compared to caching at the gateway only, the MeshCache architecture with

hop-by-hop caching reduces the load at the gateway by 38%, improves the average client throughput by

170%, and increases the number of transfers that achieve a throughput greater than 1 Mbps by a factor

of 3.

Keywords: Wireless mesh networks, cooperative caching, system design and implementation, cross-

layering, Internet access, multi-hop wireless networks
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1 Introduction

Wireless mesh networks are characterized by mesh routers connected by wireless links to each other

and to a few gateway nodes. Recently, the deployment and use of WMNs has increased significantly

and several cities have planned and/or deployed WMNs ([42, 48, 47, 41, 44, 46]). Thus, improving

WMN performance will have a direct impact on a growing population of users. The most significant

application of such networks is to provide broadband Internet access to static or mobile hosts in areas

where wired infrastructure is difficult or economically infeasible to deploy. Since all Internet-bound

traffic flows through one or a limited few gateway nodes, it can cause significant congestion around the

gateway.

Previous studies have shown that significant locality exists in Internet accesses from a given population

of clients. Web caching has been proposed and extensively studied to exploit such locality in reducing

the Internet traffic and the client-perceived access latency. We anticipate that similar locality will exist

in the Internet-bound traffic in WMNs once they become widely deployed. Furthermore, since a WMN

typically spans a small geographic area and provides the Internet connectivity to a small community

or organization, the locality in the Internet accesses of WMN clients is likely to be enhanced due to

common community interests. In this paper, we exploit such locality among the client Internet-bound

traffic in a WMN and explore content caching to mitigate the congestion bottleneck at the gateway nodes

of a WMN.

One way of exploiting locality in client Internet accesses in a WMN is to have the client nodes in the

WMN form a peer-to-peer network and perform cooperative caching directly with each other [17, 39].

However, we argue that this approach has several disadvantages: (1) It does not leverage the available

infrastructure in a WMN, i.e. the mesh routers; (2) It faces deployment challenges as it is non-transparent

to clients and requires clients to contribute resources; (3) It requires the cooperative caching protocols

to deal with churn and mobility of clients; (4) It requires the content to be fetched from client nodes

which will typically have bandwidth bottlenecks1; (5) It needs to deal with security and privacy issues

in the presence of malicious clients. To avoid these disadvantages, in this paper, we focus on transparent

1Typical deployments of WMNs envision using possibly multi-radio links with high bandwidth 802.11a (up to 54 Mbps)

between mesh routers while using a single 802.11b link between a mesh router and its clients (up to 11 Mbps).
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cooperative caching at the mesh routers.

In this paper, we propose MeshCache, a transparent cooperative caching system that exploits locality

in Internet-bound traffic in a WMN to mitigate the gateway bottleneck effect. Unlike transparent web

caching in the Internet where a web cache is attached to the gateway of an organization, MeshCache

leverages the fact that a WMN typically spans a small geographic area and hence mesh routers are easily

over-provisioned with CPU, memory, and disk storage, and extends the individual wireless mesh routers

a WMN with built-in content caching functionality. It then performs cooperative caching among the

wireless mesh routers.

Cooperative caching among mesh routers allows clients to fetch cached data from routers within the

WMN. This spreads the load in the network and hence alleviates the congestion around the gateway. In

addition, cooperative caching among mesh routers in a WMN has two other performance benefits: (1)

Cooperative caching allows clients to potentially obtain content from nodes closer (in network hops)

than the gateway. This improves the client throughput since the throughput falls rapidly with the in-

creased hop count in multi-hop wireless networks. Further, such local communication improves the

capacity of WMNs as they scale in size [24]. (2) When there are multiple cached copies of the requested

content in the network, cooperative caching enables clients to choose the best cached copy based on high

throughput link-quality routing metrics (e.g. [8]), thereby further improving client throughput.

In this paper, we explore two architectural design choices for MeshCache (A2 and A3 below), and

compare it to a third one (A1), which is similar to a typical way that web cache is deployed in the

Internet:

• A1: A web proxy cache is connected to the WMN gateway node similar to how a web cache is

attached to a gateway router in the Internet. This proxy cache transparently hijacks clients’ content

requests to exploit the locality within the client population of a WMN.

• A2: Each mesh router acts as a cache using expandable storage devices. When a client issues a

request for a data object, its access mesh router transparently hijacks the request and searches for

the object in its local cache. On a hit, the object is simply served from the access mesh router. On

a miss, the access mesh router searches for a cached copy of the data object in other mesh routers
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including the gateway. If a copy is found, the access mesh router fetches the copy, otherwise it

obtains the object from the origin server via a proxy cache at the gateway (as in A1).

• A3: In addition to A2, when the data object is fetched either from a gateway or another mesh router

along a multi-hop route, the object is cached at each mesh router along the route. This increases the

availability of the data object for future requests without explicit replication. To enable such hop-

by-hop caching, we use per-hop transport that breaks a single end-to-end transport connection,

e.g. S to D using route S-A-B-D, into multiple single-hop transport connections along the route,

e.g. S-A, A-B, B-D, and pipelines data over these sub-connections. This enables the data object

to be cached at A and B in addition to S.

The architectures A2 and A3 require a cache selection protocol to locate a cached copy of content

and/or choose among multiple cached copies. To this end, we design and compare three cache selection

protocols for MeshCache. Our designs leverage the abundant research results from cooperative web

caching in the Internet.

We vigorously evaluate the performance of MeshCache using simulations and testbed experiments.

Our evaluation results shows that A3 (cooperative caching with hop-by-hop caching) outperforms the

other architectures in reducing the gateway load and improving the client throughput, irrespective of

the cache selection protocol used. Additionally, we found that the per-hop transport for hop-by-hop

caching in A3 provides increased content availability without adversely affecting transport throughput

or network overhead compared to end-to-end transport. Further, for the best performing architecture A3,

we found that the cache selection based on broadcast-based limited TTL flooding is the best strategy

to alleviate the gateway bottleneck and obtain throughput improvement. Particularly, our simulations

showed that: (1) A2 increased client throughput by up to 50% and reduced gateway load by up to 35%

compared to A1, (2) A3 increased throughput by up to 52% and reduced gateway load by up to 66%

compared to A2, and (3) the best cache selection strategy for A3 is based on limited TTL flooding

and provides a reduction in gateway load by up to 20% compared to a strategy with no search delay

or overhead. Our smaller scale testbed experiments also show that MeshCache can improve the overall

throughput and reduce the network load significantly. Specifically, measurement results from a deployed
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implementation of MeshCache on the 15-router MAP mesh network testbed [27] show that the number

of transfers that achieve a throughput greater than 1 Mbps is increased from 20% in A1 to 60% in A3

while the load at the gateway is reduced by 38% in A3 compared to A1.

The contributions of this paper are summarized as follows: (1) We propose to alleviate the bottleneck

at the WMN gateway that commonly arises in WMNs by exploiting locality in client Internet accesses.

(2) We present a practical cooperative caching system, MeshCache, and explore the design space of

the MeshCache architecture and the associated cache selection protocols via extensive simulations. (3)

We design and implement the MeshCache system by modifying an open source caching proxy, Squid,

developed for the Internet, and demonstrate the benefit of MeshCache using an implementation deployed

over a mesh network testbed of 15 mesh routers.

The remainder of the paper is structured as follows. Section 2 presents a feasibility study of Mesh-

Cache by analyzing the potential locality in WMN traffic. Section 3 presents various architectural design

choices for MeshCache and Section 4 presents various cache selection algorithms for MeshCache. Sec-

tion 5 presents our simulation methodology and Section 6 presents detailed simulation results comparing

different MeshCache architectures and cache selection algorithms. Section 7 presents the system design

and implementation of MeshCache in a WMN testbed and Section 8 presents the measurement results

from the testbed. Finally, Section 9 discusses related work and Section 10 concludes the paper.

2 Motivation

In this section, we motivate the cooperative caching approach of MeshCache by assessing the extent

of locality in the Internet traffic expected to be carried by a WMN.

It has been shown that Internet access traffic has substantial locality [6], i.e., multiple users are likely

to request some common data objects from the Internet. Since WMNs primarily carry Internet bound

traffic, significant locality is also expected to exist in the traffic of a WMN. Further, since a WMN

typically spans a small geographic area and hence provides Internet connectivities of a close community,

the locality in the access patterns of these end-users is likely to be enhanced due to common community

interests. However, the extent of locality in the traffic is dependent on the size of the client population. A

fundamental question that determines the potential performance benefits of MeshCache is whether there
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Figure 1: Study of locality in small client populations.

exists significant locality in Internet-bound traffic in a WMN, given the small client population served

by each gateway router.

While no measurement study has been performed specifically for Internet-bound client traffic in

WMNs, we can approximate the client population served by a gateway node of a WMN with that seen

by the gateway proxy cache of a small organization. For such an approximation, we analyzed real web

proxy traces collected in the week of October 19, 2005 by www.ircache.net. The collective trace

of 1 day’s traffic from 10 proxies contains 2.7 million requests originating from 1151 unique clients to

81,289 servers. The number of clients and requests in each proxy’s trace are depicted in Figures 1(a)

and 1(b), respectively. The number of clients in each trace ranges from 80-160 nodes which is a potential

target size for a WMN with a single gateway. For example, a recent work [13] shows that 114 users can

potentially be supported with a 21 mesh router WMN.

We studied the locality and working set size of the cacheable content in each trace2. The locality in the

2Similar to in [17], we consider requests with SSL and dynamic content as not cacheable and always resulting a miss. We

also limit the maximum size of any single cacheable object to 16MB similar to many deployed web caching systems.
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access patterns of such a small set of clients is encouraging as the average hit rate is around 37% with a

maximum of 46% (Figure 1(c)). This suggests that a significant fraction of requests can be fetched from

peer mesh routers if caching is enabled. The hit rate also tends to increase with the client population. We

note these observed hit rates are consistent with other studies ([17, 37]) on web caching using different

proxy traces for client populations of similar sizes. To study how the client population affects the hit

rate, we combined all the traces into one trace and simulated different client population sizes ranging

from 50 to 500. For each population size k, we selected all the requests from k randomly chosen clients

and ran a simulation to find the hit rate and the working set size. For each k, we tried 25 random trials to

find average behavior. The results in Figure 1(e) show that the hit rate increases gradually from 35% to

45% as the client population grows from 50 to 500. In summary, there is significant locality to exploit

in smaller client populations such as those in WMNs.

Another property of the Internet access traffic which determines the feasibility of caching is the work-

ing set size of the traffic. Figure 1(d) shows the working set of a day’s worth of traffic to be 1.3 GB on

average with a maximum of 2.6 GB. We also measured the working set size as a function of the client

population. Figure 1(f) shows that as the client population grows from 50 to 500, the working set size

grows from 500 MB to 5.2 GB for a day’s worth of traffic.

All of the above results use Internet web proxy users to model WMN clients. We expect the locality

of WMN clients to be potentially higher since a WMN is typically deployed in a smaller geographic

area to serve a close community of clients with similar interests. For example, WMN clients in an office

building or in a student housing complex are likely to have higher locality than a set of random web

clients. However, we do not model this effect and the results in this section provide a lower bound on

performance.

3 MeshCache Architecture

Before discussing the architectural design choices for MeshCache, we present our basic network

model. With out loss of generality, this paper assumes that MeshCache is deployed in a WMN similar to

RoofNet [42], consisting of single-channel, single-interface 802.11 mesh routers with omnidirectional

antennas and sparsely deployed gateways for Internet access. The gateways are not widely deployed due
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Figure 2: MeshCache architecture.

to cost and uplink constraints. A similar architecture can also be used for corporate networks to replace

wired access-point-based WLAN systems [13]. Figure 2(a) depicts a typical network setup.

Such a WMN provides Internet access as follows: Each client’s packets are first received by the

client’s access mesh routers, i.e., a mesh router the client’s interface is associated with (e.g., MR 1

and MR 6 are access mesh routers for their clients). These mesh routers then forward the packets to the

gateway mesh router (GMR) using other mesh routers. The GMR provides Internet connectivity through

a high bandwidth wired/WiMax interface. The gateway may perform other functions such as IP address

assignment or NAT. All the MRs use a routing protocol (e.g. AODV) with metrics such as ETX to find

routes to each other and to the gateway. We assume that clients use TCP at the transport layer as it is

widely used for Internet access. Further, we assume that the WMN employs a 802.11 MAC layer. As

shown in Figure 2(b), the MeshCache system is implemented over this underlying WMN by a user-level

MeshCache daemon.

3.1 Architectural Design Choices

We now discuss the architectural design choices for MeshCache that differ in where caching is per-

formed to exploit locality and the implications of such choices.

Architecture 1 (A1) In A1, a caching proxy is connected to the WMN gateway node similar to how

a web cache is attached to a gateway router of an organization in the Internet. Client requests are

transparently hijacked at the GMR and redirected to the caching proxy. As the results in Section 2
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Mesh Router Device Processor Speed Memory Storage

MeshCube 400Mhz 64MB USB expandable

LocustWorld MeshBox 500Mhz 128MB USB expandable

Soekris net4801 266Mhz 128MB USB expandable

Netgear WGT634U 200Mhz 32MB USB expandable

iBox Slim Mini-ITX PC 533Mhz up to 1GB USB expandable

Metrix Mark II 233Mhz 64MB USB expandable

Table 1: Mesh router hardware specifications popular in WMNs.

showed, the hit rates in the attached caching proxy are expected to be in the range of 30-40%, resulting

in significant bandwidth savings between the GMR and the origin server. The requests with hits in the

caching proxy could also have higher TCP throughput as they will not be affected by TCP’s inefficiencies

in traversing wireless-wired links [38]. However, the bottleneck at the gateway still remains since the

medium access load around the gateway is not reduced in this architecture.

Architecture 2 (A2) A key observation in WMNs is that a WMN typically spans a small geographic

area and hence mesh routers are easily over-provisioned with CPU, memory, and disk storage, and the

MRs themselves can be potentially leveraged to cache content and provide further performance improve-

ments. A survey of hardware specifications (Table 1) of some popular choices for implementing MR

devices shows that these devices already have adequate processing power to implement a caching proxy.

Unlike high-end web proxies and routers which service thousands of connections simultaneously, the

smaller scale of a WMN reduces the computational load on the MRs and makes implementing a caching

proxy on each of them computationally feasible. In addition, all of the devices can be expanded to in-

clude USB flash drives (which can store 4-8 GB currently) and some can even use USB hard drives with

capacities of up to 20 GB. The small form factor and declining cost of the USB flash drives makes them

a suitable candidate for addressing the storage needs of proxy cache. Moreover, Section 2 shows that

the working set of a small client population is small enough to be accommodated by these USB devices.

Cooperative caching at all the MRs further reduces the individual cache sizes required to accommodate

the working set.

To exploit the above observation to enhance MeshCache’s performance, in architecture A2, each MR
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performs caching in addition to routing. When a client requests content, its request is transparently

hijacked by the client’s access MR and the content is searched for in the access MR’s cache. On a local

hit, the content is simply served from the access MR. However, on a local miss the access MR searches

for a cached copy of the content in other MRs (including GMR). If a copy is found, the access MR

fetches the copy, locally caches the content and returns it to the client. Otherwise, the access MR fetches

the content from the origin server via a proxy cache at the gateway (as in A2), locally caches the content,

and returns it to the client.

Architecture 3 (A3) Architecture A3 builds on A2 and pushes the cooperative caching technique to

the extreme. Note that when content is fetched either from the origin server (via GMR) or another

mesh router along a multi-hop route, the MRs along the path over which data flows can also cache the

data. This increases the availability of content for future requests without explicit replication. Increased

availability of data improves the cache hit rate and reduces the path length of future requests.

Ideally, this increased availability of cached content can be achieved without extra overhead if each

node along the path can snoop network layer packets to assemble an entire file. However, this is difficult

to achieve in practice because: (1) Routing paths may fluctuate during a transfer and the bytes of a file

may travel different paths. (2) Routing paths in forward and reverse directions may be different in many

cases, e.g., due to unidirectional links. We found this to commonly occur in our testbed (Section 8). (3)

Even if all bytes of a file pass through each MR in a path during its download, it is difficult to decipher

the transport and application protocol states to assemble the packets into the application file.

To enable hop-by-hop caching, we resort to per-hop transport. Per-hop transport breaks a single end-

to-end transport connection, for example, from S to D using route S-A-B-D, into multiple single-hop

transport connections along the route, e.g., S-A, A-B, B-D, and pipelines data on these sub-connections.

This allows the data object to be cached at A and B in addition to S while it flows through the route. Thus,

content is transferred over an N -hop path through N pipelined transport connections, resulting in the

file being cached at each intermediate node in its entirety. This per-hop transport mechanism essentially

fixes the route for the duration of a file transfer in order to cache it along the path. We argue that this is

viable since most content requests (i.e. HTTP) are small in size, and hence the underlying routing path is
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unlikely to deteriorate in the time the route is fixed. Note that per-hop transport precludes unidirectional

links from being used for transferring content since a bidirectional TCP handshake is required at each

hop. In summary, A3 is similar in operation to A2, except that when the access MR fetches a data object,

the object is cached at every hop along the route by using per-hop transport.

While A3 maximizes the opportunities for caching among the wireless mesh routers, the per-hop

transport requires data packets to traverse up the TCP/IP stack at every hop which incurs extra overhead

and delay compared to the end-to-end transport. We study these issues thoroughly in Section 6.1.

An important component in both architecture designs A2 and A3 is an efficient cache selection pro-

tocol to locate a cached copy of the content. We next discuss the design choices of a cache selection

protocol.

4 Cache Selection Protocols

The design of cache selection protocols has been widely studied in the context of Internet web caching

systems. Thus, we first provide a brief background of the approaches used in the Internet and draw

inspiration from them in designing cooperative cache selection protocols for WMNs.

4.1 Cooperative Caching in the Internet

Several previous works have proposed cooperative cache selection protocols for the Internet. The

works in [9, 7] introduced hierarchy-based selection, i.e., using a hierarchy of caches that resolve

MISSES from lower levels of the hierarchy until the root is reached which fetches content from the

origin server. Another technique of reactive query-based selection is exemplified by ICP [35] which

on a MISS, queries its peer caches for the content item and chooses one of them to forward the re-

quest to. To remove the delay and processing overhead of query-based selection, hash-based selection

(e.g. CARP [34]) has been proposed in which on a MISS, a cache fetches the content item from a

cache selected by hashing the content item’s URI (Uniform Resource Identifier). Finally, in proactive

dissemination-based selection [14, 31], caches proactively distribute summarized information about

their cached content items (using Bloom filters) to each other to remove the delay penalty from queries.

However, the solutions proposed for cooperative cache selection in the Internet domain are not di-
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rectly applicable to MeshCache for the following reasons: (1) They do not optimize the network over-

head in terms of the number of packets in the system which is important in WMNs. (2) They fail to

incorporate advantages possible from the broadcast nature of wireless communication. (3) Since the

mesh router itself is a cache in a WMN, unique cross-layer approaches can be designed to improve the

cache-selection schemes (e.g. consulting the underlying routing protocol to choose from multiple cached

copies based on routing metrics such as ETX [8]). Solutions developed in the Internet can only exploit

the caches themselves and not the routers in between to perform cache-selection decisions. Thus, they

are restricted to using application-specific metrics such as end-to-end latency.

In the next section, we explore the design space of cooperative cache selection protocols for the

MeshCache system. The design for these cache selection protocols is inspired by their counterparts in the

Internet, but have been adapted to operate efficiently in the wireless environment. All the protocols are

implemented at the application layer to allow them to be useful for a multitude of WMN architectures.

For example, they should be able to operate on top of source routing as well as hop-by-hop routing

protocols. Additionally, they should operate over and be able to exploit protocols implemented with

new routing metrics or multi-channel multi-radio devices [11, 29]. They should also be operable with

any new transport protocol that may be invented for WMNs. At the same time, these protocols should

leverage the information exposed by the underlying layers using a cross-layer approach to enhance their

performance. To satisfy both these requirements, MeshCache adopts a loose coupling principle whereby

MeshCache cache selection protocols interact with underlying layers via a set of predetermined APIs.

This enables portability to any underlying layer that provides the APIs as well as performance benefit

arising from the interaction with lower layers.

4.2 Cache Selection Protocols for Architecture A2

The cache selection protocol in MeshCache should select a suitable MR for each content item, and

retrieve the content from the chosen MR. In the following, we present a set of design choices for the

cache selection protocol.
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4.2.1 Tree-based Hierarchy Cache Selection Protocol (THCP)

This is a basic scheme in which the access MR simply routes the content request to the GMR (gateway)

in case of a local miss. The access MR selects the current best gateway3 by querying the routing protocol

(through an API BestGateway()) and forwards the request to the corresponding GMR. This is a two-level

hierarchy-based cache selection approach with the GMRs being the parent caches for other MRs. We do

not perform gateway selection at the application layer in any cache selection protocol because the routing

protocol has more fine-grained information about the best gateway, through probing of link metrics such

as loss rates [8], latency [1] or complex metrics that take into account link bandwidths and loss rates in

the presence of multiple radios and multiple channels [12].

Following the selection of a GMR, an end-to-end transport connection is established to the selected

GMR via a multi-hop network layer path and the content transferred.

4.2.2 Broadcast Cache Selection Protocol (BCP)

While THCP does not cause search overhead or search delay, it can only exploit local hits at each access

MR and hits at the selected GMR, and not at the caches of other MRs in the vicinity. In contrast,

the broadcast-flooding search based protocol (BCP) can locate content items in other MR nodes. In

this protocol, on a local miss, the access MR first queries the routing protocol for the hop-count k to

the closest gateway (through an API BestGatewayHopCount()). The access MR then initiates a UDP

broadcast of a content locate message with a TTL of k + 2 and a locally unique sequence number. This

message is rebroadcasted at most to k + 2 hops with each node rebroadcasting the message exactly once

based on the sequence number. The reasons for selecting k + 2 hops are: (1) It is not useful to select a

node much further away than the gateway since the throughput in a multi-hop wireless network decreases

significantly as the hop length increases. In such cases, it is better to route to the gateway instead. (2)

We choose 2 hops beyond k because it is possible that MR nodes a few extra hops away may be better

than the gateway, e.g., if the routing paths to them have better link quality. Each node that has a hit in

its local cache for the content item replies with a content found message. The access MR then queries

its routing protocol to find a node with the best path metric from among those that had hits (through an

3There may be multiple gateways advertising Internet connectivity in a WMN.
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API BestNode(< nodeIP list >) and selects the MR returned by the API to fetch the content. Note that

if all nodes with hits have a worse routing metric than the gateway or no other nodes have a cached copy

of the content, the gateway itself is chosen (same as THCP). The data is once again transferred over a

multi-hop network layer path.

BCP draws its inspiration from the ICP protocol for the Internet. However, there are some important

differences in the operation of the two protocols. First, BCP exploits wireless multicast advantage

(WMA), i.e. the ability to deliver multiple query packets with a single transmission [36]. Second, the

scope of the BCP queries is limited by exploiting the proximity of the gateway. Both these differences

reduce the overhead and the delay of BCP compared to ICP. Thus we take an approach of loose-coupling

between the two layers: Search at the application layer and determine the best cache by querying an API

that can be provided by any routing protocol with a few modifications.

4.2.3 Geographic Hash Cache Selection Protocol (GHCP)

In GHCP, on a local miss, the access MR uses a well-known hash function to hash the content item’s

URL and maps it to a MR whose nodeID (hash of IP) is numerically closest to the hash of the URL4. The

request is then forwarded to the hashed MR with the expectation that a hit will occur since all requests

for that particular URL are redirected to the hashed MR. If the hashed MR has a miss, it uses THCP to

fetch the content.

Unlike Internet hash-based cache selection protocols, GHCP controls the proximity of MRs to which

the content items are hashed. The hash is not done globally by considering all the MRs in the WMN

(in which case the path lengths to the hashed MR could increase dramatically). Instead, the entire area

is divided geographically into virtual squares (grids), and each node hashes the URL by considering

only other MRs contained in its own virtual grid. Further, if the hashed MR is still determined (by

querying the routing protocol) to be worse in routing metrics than the best gateway, the request is simply

redirected to the best gateway. Note that this scoped hashing requires knowledge of the global virtual

grid boundaries and locations of the MRs to determine the MRs in each node’s virtual grid. In a static

WMN network, locations of mesh routers and grid boundaries can be encoded during deployment. We

4This is consistent hashing, same as that used in DHTs in the Internet.
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use this one-time encoding method in our testbed. Other deployed testbeds such as RoofNet [42] also

maintain the GPS coordinates of their MRs.

4.3 Cache Selection Protocols for Architecture A3

The difference between the architectures A2 and A3 is that when content flows back to the access

MR in A3, it is cached at nodes along the way. This caching is enabled by per-hop transport. Per-hop

transport naturally forms a chained (hierarchical) organization of the caches along the way which can be

leveraged to further optimize the cache selection protocols in A3. Both THCP and GHCP benefit from

this optimization by searching for the request data object in this chain of caches in addition to the caches

selected by their cache selection algorithms. The cache selection protocols for A3 are described below.

4.3.1 Per-Hop Tree-based Hierarchy Cache-Selection Protocol (PH-THCP)

PH-THCP is an optimization of THCP when architecture A3 is used. In this scheme, the access MR,

on a local miss, selects a best gateway G as before and then finds the next hop node for G by querying

the routing protocol (through the API GetNextHopForNode(G)) and establishes a transport connection

to that next hop node. For example, in Figure 3 MR 4 has a miss in its local cache and consequently

contacts MR 2. MR 2 repeats this process and on a miss forwards the request to the next hop towards G.

If any intermediate node has a hit, it sends the content back to MR 4 and does not search further. Each

node on the path then automatically caches the content as it is downloaded through hop-by-hop transport

connections. Subsequently, when MR 1 has a miss and contacts MR 2, a hit occurs due to hop-by-hop

caching and the content is fetched directly from MR 2.

4.3.2 Per-Hop Broadcast Cache-Selection Protocol (PH-BCP)

PH-BCP is a per-hop variant of the BCP protocol for architecture A3. In this scheme, the method to

select the MR with the requested content is same as in BCP. The only difference is that the content is

transferred via per-hop transport from the selected MR. Also, if no hits occur or the metrics for all the

hits are worse than the gateway, the access MR reverts to using PH-THCP to forward the request to the

gateway. For example, in Figure 3, MR 7 has a miss in its local cache and no hits from the broadcast
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Figure 3: Design choices for cache selection protocols.

search. It then uses PH-THCP to fetch the content from the gateway through MR 6. Subsequently, when

MR 1 performs a broadcast search for the same content item, it receives a hit from MR 6 from where

it receives the content, again with per-hop caching. Thus, MR 1 achieves better performance due to

broadcast search and hop-by-hop caching compared to using end-to-end transport over the default path

of 1-2-3-GW (shown with dotted line). PH-BCP has a delay penalty associated with it, but can be better

at spreading load, as the content may be fetched from a node not on the path towards the gateway.

4.3.3 Per-Hop Geographic Hash Cache Selection Protocol (PH-GHCP)

PH-GHCP is a per-hop variant of the GHCP protocol for architecture A3. In this scheme, the access

MR upon a local miss hashes the URL of the content item to a MR in its virtual grid (say B), similar to

in GHCP. If B is closer than GMR, it then finds the next hop node towards B by querying the routing

protocol (through the API GetNextHopForNode(< nodeIP >)) and the request is forwarded in a hop-

by-hop fashion to B. If an intermediate node has the content, it does not forward the request further and

replies to the access MR. Note that it is possible B itself does not have the content, e.g., if this is the first

request for a content item. In this case, B reverts to PH-THCP to retrieve the content from the gateway

and forward it to the access MR. For example, in Figure 3, MR 7 hashes the URL to MR 6 which on a

miss fetches the content from the gateway. Subsequently, MR 1 also needs to retrieve the same content

item and thus hashes the URL to node 6 from which the content item is retrieved in a hop-by-hop fashion

improving performance from its default route of 1-2-3-GW. Note that although PH-GHCP has no query
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delay, it can cause detours in routing paths without any benefit for unpopular content items since they

result in a miss at the hashed MR.

Finally, we argue that the approach of proactive dissemination from the Internet is not suitable for

WMNs (both A2 and A3) as proactive message exchange can cause high overhead. In fact, reactive

routing protocols such as DSR and AODV are preferred in mobile ad hoc networks for the same reason.

Note that in all protocols, we implement the routing protocol API to only provide next hop nodes that

are connected bi-directionally. In the absence of this feature, hop-by-hop transport connections cannot

be established.

5 Methodology

In the next section, we examine the feasibility of per-hop transport by comparing it to end-to-end

transport, and compare the A1, A2 and A3 MeshCache architectures and the associated cache-selection

protocols through detailed simulations. We describe our methodology for those experiments in this

section.

We use the Glomosim simulator [40] to evaluate MeshCache. Glomosim has been widely used to

study multi-hop wireless networks.

Network Model We simulate a static mesh network of 50 mesh routers placed randomly in an area of

1000m x 1000m. Each node is assumed to have 1 interface equipped with an omnidirectional antenna.

All the sources communicate with the gateway node to simulate an Internet access pattern. The two-ray

path loss propagation model is used. We also evaluate the performance under fading (Rayleigh) and

lossy conditions.

Client Behavior Model Each mesh router aggregates queries from 5 clients. For each individual

client, a successive request arrives after the current request has been served. However, the mesh router

may service requests from different clients concurrently. The file request model is similar to previous

caching studies [39]. The file request pattern of each client is based on the Zipf-like distribution that

has been found to model web traces. The value of the Zipf parameter θ was chosen to be 0.8 based on

measurements on web traces and similar to in previous significant studies in this area [39]. Similar to
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in [39], we used a request pattern in which nearby nodes have similar, although not the same request

popularity distribution. The user browsing behavior is simulated using the model developed in [25]. This

model also allows us to simulate the size of HTTP items retrieved, number of items per “Web page”, and

think time (the time elapsed between successive web page downloads from each user). We assume that

25 mesh routers have active clients.

Content Model We assume a set of 1000 files with file sizes between 1 and 100 KB from which each

client makes a request based on the Zipf distribution. Similar to in [39], content items have a TTL of

5000 secs. The mesh router cache size is set to 2 MB due to the working set size and length of the

experiment. Note that a production system will use much larger caches using expandable flash storage

and main memory. Finally, we use the LRU cache replacement policy used in the extended Squid [45]

caching proxy evaluated in our testbed evaluation in Section 8.

Routing, Transport and MAC We currently use TCP as the reliable transport protocol in our study

since it is widely used and available as a standard part of operating systems. The routing protocol

used is AODV, same as that used in our testbed evaluation in Section 8. We used IEEE 802.11b as

the MAC/PHY layer which was verified to produce close to theoretically maximum throughput [18].

All simulation results were averaged over multiple random scenarios and each simulation modeled a

one-hour period of client activity.

Metrics The metrics used in our evaluation are: (1) Network load: The total number of packets trans-

mitted by the network layer for a single transfer. This accounts for all control as well as data packets.

The network load is averaged across all the transfers initiated in the network. Thus, the network load is

expressed as packets transmitted per file download. (2) Throughput: Throughput of any transfer is the

ratio of the size of the transfer to the time taken to complete the transfer. (3) Average aggregate through-

put (AAT): Aggregate throughput is the ratio of the total number of bytes downloaded by a single client

to the total time spent by that client downloading those bytes. AAT is the average of the aggregate

throughput of all the clients. (4) Hit rate: A cache hit occurs in the MeshCache system when a client has

a hit in its access mesh router’s cache. We refer to this as a local hit. Local hit could be due to another
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client connected to the same access MR requesting the same object. Another possibility is that when

per-hop transport is enabled, an MR is an intermediate hop for a transfer to a different MR and hence

has cached the content item. Now, when the intermediate MR’s client requests the same object, a cache

hit occurs. We log the latter type of cache hits and refer to them as ph-local hits. Both local and ph-local

hits result in the content being fetched directly from the access MR without any communication with

peer MRs or the gateway. A cache hit also occurs when an access MR obtains the content item from its

peer MRs instead of the gateway. We refer to this as a remote hit. Once again, remote hits could be due

to locality in the access pattern of two routers or due to per-hop transport. We log all remote hits.

6 Performance Evaluation of MeshCache Architectures

In this section, we first evaluate the feasibility of architecture A3 by studying the performance of

per-hop transport mechanism with respect to the download size, hop length and wireless environment.

6.1 Impact of Per-Hop Transport

Per-hop transport is an elegant method to achieve hop-by-hop caching in A3. However, it is essential to

understand the impact of such a per-hop mechanism on the throughput and the overhead of the transport

connection. Note that per-hop transport requires establishing and growing multiple TCP connections

and may require application layer data buffering due to the mismatch between upstream and downstream

throughput. However, in order to conserve memory at the intermediate hops, this study uses the default

16K in-kernel socket buffers for each TCP connection and a constant application-level buffer of 8K. We

first evaluate the impact of the number of hops on the per-hop transport connection.

6.1.1 Performance with Varying Path Length

In this experiment, we take a chain of nodes of increasing path length and compare the throughput and

the network load incurred in the presence of per-hop transport versus direct end-to-end transport. The

inter-node distance in the chain is set to 200m. We vary the path length from a single hop to up to 9

hops. The choice of the maximum path length of 9 is based on observations in [5] on the path lengths in

large scale WMN deployments.
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Figure 4: Performance of per-hop transport with varying path length.

Figure 4 demonstrates that the throughput obtained by per-hop transport is similar to that on a direct

end-to-end transport connection across all values of the path length. Similarly, the network load on both

kinds of transport connections are identical. Thus, using per-hop architecture does not adversely impact

the throughput or the incurred network load of a transport connection and hence hop-by-hop caching

is a viable design choice for the A3 MeshCache architecture. Further, in the presence of fading, which

results in errors or loss of packets, the per-hop architecture has slightly better throughput than the direct

transport connection.

The improvement from per-hop transport is explained as follows: Consider a chain of nodes A-B-C-D

where A is the source and D is the destination. Suppose a packet is lost on the link C-D. In case of direct

TCP connection, A will be notified when the packet is dropped on the link C-D and A will retransmit

the packet. On the other hand when per-hop transport is employed, the packet loss on link C-D will

be recovered by the TCP connection C-D. Thus, compared to the direct case, in per-hop transport, the

detection of packet loss and the corresponding recovery is localized (between C-D) and does not affect

the remaining TCP sub-connections. Also, the TCP window grows back faster after a loss on C-D than

on the direct connection since the ACKs travel a single hop. Further, per-hop transport does not increase

the number of packets transmitted. For example, in the direct connection, an ACK packet travels 3 hops

from D to A while in per-hop transport 3 separate ACK packets are transmitted, one on each one hop

sub-connection.

6.1.2 Performance with Varying Loss Rates

We now study the behavior of the two transport connections by varying the loss experienced by the links

at each hop. Such loss of packets could be due to fading, congestion, interference, etc. We impose a
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Figure 5: Performance of per-hop transport as packet loss rate is varied.

loss rate at the radio layer. The loss rate is varied between 5% to 30% based on the observations in [5]

that such loss rates are highly probable even on routes selected by link-quality routing protocols. Note

that not all loss events at the radio layer translate to loss events at the transport layer since the MAC

protocol already makes an attempt to recover from losses by retransmitting packets. Each link has a loss

rate randomly chosen between 0 to the value on the X-axis in Figure 5 which depicts the performance of

the per-hop and direct transport connections as the loss rate is varied. The per-hop transport connection

outperforms the direct transport connection across all the values of the loss rate for both the 6-hop and

the 4-hop chain. Also, the network load in the per-hop connection is slightly lower than that of the direct

connection. This can be attributed to the quick localized detection and recovery from loss events in the

per-hop transport connection.

6.1.3 Performance with Varying Download Size

Finally, we study the impact of the size of the file download on the transport connections by fixing the

path length to be 4 hops and the loss rate at 10%. Figure 6 illustrates that as the download size increases,

the per-hop connections outperform the direct connections by an increasing margin. This is because, as

the download size increases, the duration of the connection increases, thereby increasing the number of

chances presented to perform quick detection and recovery from loss. Similarly, the network load in the

per-hop connection is lower than that of the direct connection.

In summary, we conclude that the per-hop transport required to support hop-by-hop caching in ar-

chitecture A3 does not adversely affect performance in comparison to end-to-end transport. In fact,

the throughput of per-hop transport is better than end-to-end transport under fading channels with lossy

links. Since these conditions are typically true in wireless networks, we expect per-hop transport to
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Figure 6: Performance of per-hop transport with varying transfer sizes.

Scenario 1 Scenario 2 Scenario 3

Gateway Mesh Router

Figure 7: Three different scenarios used for comparison of cache selection schemes.

generally perform better than or comparable to end-to-end transport, thereby improving caching without

a performance penalty. Note that the above simulations capture the delay of traversing up and down

the TCP/IP stack when simulating per-hop transport. Hence, the performance benefit of per-hop trans-

port holds despite this overhead. The performance benefit of per-hop transport is also confirmed by the

experimental measurements in our testbed (Section 8).

6.2 Comparison Study of MeshCache Architectures

This section presents the performance comparison of the three MeshCache architectures, A1, A2 and

A3, using different cache selection protocols.

6.2.1 THCP Performance

We compare the performance of A2 and A3 using the THCP protocol. THCP represents architecture

A2 while PH-THCP represents A3. We also include the results from A1 which is referred to as Default.

For this experiment, we consider three different placements (Figure 7) for the gateway node where each

scenario presents a different topological balance. The comparison between Default, THCP and PH-

THCP is presented in Table 2.
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Metric AAT (Kbps) Gateway load (KB) Network load (Packets/file)

Scheme Default THCP PH-THCP Default THCP PH-THCP Default THCP PH-THCP

S1 1382.8 1479.2 1715.1 60,727 52,579 41,530 144.4 124.1 114.6

S2 467.5 561.9 853.3 60,224 52,140 17,680 279.9 242.6 171.8

S3 1312.2 1509.6 1612.7 58,128 50,215 41,011 145.8 126.4 117.4

Table 2: Performance of the architectures under THCP scheme.
In Scenario 1, using THCP and PH-THCP, the gateway serves 13.4% and 31.6% lesser bytes respec-

tively compared to Default. The reduction in gateway load is accompanied by an increase in AAT by

7% and 24% for THCP and PH-THCP, respectively when compared to Default. Also, PH-THCP has a

gateway load reduction of 21% and increase in AAT by 16% with respect to THCP. THCP improves its

performance when compared to Default by exploiting the local hits (hit rate of 14.4%) at each access

MR. These hits are served directly by the access MR to the client and the client experiences higher

throughput. In fact, the reduction in the gateway load is very close to the hit rate. PH-THCP, in addition

to exploiting local hits at access MR as in THCP, has a ph-local hit rate of 4% and a remote hit rate of

13.6% due to hop-by-hop caching. Thus, all the hits (a total hit rate of 32%) in PH-THCP avoid the

gateway resulting in a corresponding reduction in gateway load when compared to Default.

Similarly, the gateway load reduces by 13.4% and 70.6% in Scenario 2 and by 13.6% and 29.4% in

Scenario 3 for THCP and PH-THCP respectively. Note that these reductions correspond to the total

hit rate observed in these experiments. Also, since THCP exploits only local hits, its hit rate and hence

reduction in gateway load remain similar across all scenarios. However, the placement of gateway affects

the extent of ph-local and remote hits in PH-THCP. For instance, the reduction for PH-THCP in Scenario

2 is larger compared to that in Scenarios 1 and 3. This is due to the imbalance in the topology of Scenario

2. The imbalance causes the gateway to be accessible from only a few nodes and thus all the content

obtained from the gateway is concentrated in these nodes. When other nodes request the same content,

the content is more readily located in these nodes and hence results in an improved hit rate for PH-THCP.

The imbalance in Scenario 2 also causes the routes from some nodes to the gateway to be much

longer than other nodes. Thus, when such nodes experience a reduction in path length due to PH-THCP

as compared to THCP, there is a significant gain in AAT (82% compared to Default and 51% compared to
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Figure 8: Performance tuning of BCP configuration parameter.

THCP). In contrast, in Scenarios 1 and 3, the path lengths between nodes and the gateway are typically

smaller. Thus most nodes already achieve good throughput that cannot be drastically improved from

per-hop transport. A reduction in network load is also observed in both THCP and PH-THCP across all

scenarios.

6.2.2 BCP Performance

In this section, we investigate the performance of the MeshCache architectures using the BCP scheme.

Tuning BCP The throughput improvement possible from BCP is critically affected by the search

timeout (ST) period, the amount of time a node is willing to search for a file before contacting the

gateway node. Too large a value of ST can reduce the average throughput of downloading a file. On the

other hand, too small a value of ST will result in low hit rates since a node may not be able to locate the

file in a short period of time.

To obtain a suitable value of ST for BCP, we measured its performance by varying ST in Scenario 1

setup. Figure 8(a) demonstrates that the throughput of BCP initially increases as ST increases. This is

because waiting for an adequate duration to obtain replies will enable BCP to fetch the content item from

nodes other than the gateway. This leads to shorter hop count and lower congestion, thus improving the

throughput. Increasing ST further reduces the throughput because: (1) The additional wait time does

not discover any new candidates for downloading a file. At the same time the additional wait duration

increases the download time, effectively reducing the download throughput, specially for small web

content. (2) Even though the additional ST may yield a better choice of node, the longer ST more than

offsets the resulting gain and hence the throughput reduces. The results show that a ST of 25 ms is the
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Metric AAT (Kbps) Gateway load (KB)) Network load (Packets/file)

Scheme Default BCP PH-BCP Default BCP PH-BCP Default BCP PH-BCP

S1 1382.8 1656.2 1705.5 60,727 38,761 32,597 144.5 110.0 107.3

S2 467.5 713.7 940.5 60,224 39,684 17,680 279.9 198.1 159.5

S3 1312.2 1546.9 1623.8 58,128 39,613 33,719 145.8 114.1 110.8

Table 3: Performance of the architectures under BCP scheme.
optimum value for BCP with respect to the throughput obtained.

Also, the network load is the lowest at ST = 25ms. Note that the network load is higher for small

values of ST as the results from TTL based flooding are not used and thus transfers are performed from

the gateway. Similarly, as ST increases, the hit rate increases since more nodes are discovered by waiting

longer till ST = 50ms. Since the throughput is optimal at ST = 25ms, in the remainder of this paper,

we set the search timeout of BCP and all its variants to be 25 ms.

BCP vs PH-BCP Here, BCP represents architecture A2 while PH-BCP represents A3. We also include

the results from A1 which is referred to as Default. The results are presented in Table 3. In Scenario

1, the gateway serves 36% and 46% lesser bytes using BCP and PH-BCP, respectively, compared to

Default. An increase in AAT by 20% for BCP and 23% for PH-BCP when compared to Default is also

observed. Also, PH-BCP has a gateway load reduction of 16% and increase in AAT by 3% with respect

to BCP.

BCP improves its performance when compared to Default by exploiting the local hits (hit rate of

14.4%) at each access MR as well as the remote hits from near-by MRs (hit rate of 23%). These hits

are served by MRs with higher throughput than the gateway, resulting in an increase in AAT by 20%.

In fact, the reduction in the gateway load in BCP is similar to its total hit rate (38%). PH-BCP further

improves the availability of content and hence the hit rate (ph-local hit rate of 4% and remote hit rate of

28%) due to hop-by-hop caching. Thus, all the hits (total hit rate of 47%) in PH-BCP avoid the gateway

resulting in a corresponding reduction in gateway load when compared to Default.

Further, the gateway load reduces by 34% and 70% in Scenario 2 and by 32% and 42% in Scenario

3 for BCP and PH-BCP respectively. Note that BCP’s hit rate and hence reduction in gateway load

remain similar across all scenarios since the availability of content is independent of the position of the
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Metric AAT (Kbps) Gateway load (KB) Packets per file

Scheme PH-THCP PH-BCP PH-GHCP PH-THCP PH-BCP PH-GHCP PH-THCP PH-BCP PH-GHCP

S1 1715.1 1705.5 1545.6 41,530 32,597 39,275 114.6 107.3 127.4

S2 853.3 940.5 567.4 17,680 17,680 17,812 171.8 159.5 193.6

S3 1612.7 1623.8 1478.2 41,011 33,719 37,462 117.4 110.8 131.3

Table 4: Performance of per-hop cache selection protocols.

gateway in A2. However, the placement of gateway affects the extent of ph-local and remote hits in

PH-BCP similar to in PH-THCP. This enhanced locality in Scenario 2 also results in 101% higher AAT

in PH-BCP compared to Default. Also, unlike in THCP, when a cache miss occurs at the access MR,

BCP looks for other MRs that have requested the same content item, resulting in remote hit rate. This

also explains why the gain of PH-BCP over BCP is smaller than that of PH-TCP over THCP.

Similarly, we also found that PH-GHCP benefits from per-hop transport connections and outperforms

GHCP which in turn outperforms the Default scenario. Therefore, we conclude that architecture A3 out-

performs architecture A2 irrespective of the cache selection algorithm used. Further, both architectures

A3 and A2 outperform A1. Next, we evaluate which cache selection algorithm should be used for the

best architecture A3.

6.3 Comparison of Cache Selection Protocols

In this section, we compare all the cache selection protocols for architecture A3. The simulation set up

is similar to the previous sections. Table 4 depicts the performance of the three per-hop cache selection

protocols.

PH-BCP imposes lower load at the gateway than PH-THCP and PH-GHCP. For example, in Scenarios

1 and 3, it incurs 21.5% and 17.8% lower load in bytes than PH-THCP respectively, and 17% and 10%

lower load in bytes than PH-GHCP respectively. This is because while PH-BCP chooses nodes anywhere

in the network that improve its performance, PH-THCP restricts itself to nodes only en route to the

gateway and thus suffers from load imbalance. PH-GHCP’s higher gateway load can be attributed to the

following: Although we use a localized hash function, a detour always occurs when using PH-GHCP.

Unlike in PH-BCP where the detour is only taken when a hit is assured, PH-GHCP has many detours that
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Figure 9: Performance comparison of A3 and A1. PH-BCP is used for cache selection.

result in misses. This is due to the heavy tail of the request popularity distribution. Unpopular content

is typically universally unpopular [37]. Thus a significant number of requests take a detour followed by

a miss, resulting in contacting the gateway and hence higher gateway load. Interestingly, in the scenario

with severe imbalance (Scenario 2), all three schemes exhibit similar load at the gateway. In this case,

since the gateway is placed in a corner, all the files obtained from the gateway will also be cached around

the gateway due to hop-by-hop caching. Hence, any request that is already served by the gateway can

be obtained enroute to the gateway before reaching the gateway itself. Hence, PH-THCP and PH-GHCP

have similar gateway load as in PH-BCP.

Further, the results show that for all scenarios considered, PH-BCP provides the best throughput

performance. PH-BCP also has the lowest network load across all three scenarios. Even in Scenario

2, although the gateway load is similar, the AAT of PH-THCP and PH-GHCP is lower than that of

PH-BCP. This is because PH-BCP spreads more load away from the gateway when compared to the

other two schemes. In summary, PH-GHCP achieves lower throughput than PH-THCP and PH-BCP

from taking detours. While PH-THCP incurs no search delay or search overhead, PH-BCP can alleviate

congestion better by sending requests anywhere in the network and achieves better throughput and lower

network and gateway load. We conclude PH-BCP is the best cache selection protocol in A3.

6.4 Summary

In summary, our extensive simulations have demonstrated that per-hop transport is a viable mecha-

nism to enable hop-by-hop caching in A3. Architecture A3 using PH-BCP outperforms A2 by increasing

the client AAT by up to 100% and reducing gateway load by up to 70%. In fact, Figure 9(a) demon-

strates the CDF of per file throughput in A3 and A1 for the three scenarios. The CDF confirms the gain

27



in throughput observed in A3 when compared to A1. For instance, in Scenario 2, while in A1 approxi-

mately 20% of the file downloads achieve throughput higher than 1 Mbps, in A3 50% of file downloads

achieve throughput greater than 1 Mbps.

Note, however, that these results are dependent on the locality in the access pattern of the clients. As

seen from the simulation parameters, the Zipf parameter used in the above study is 0.8 and is based on

previous studies of caching in wireless networks [39] and measurements from web traces [6]. To study

the effect of varying locality on the MeshCache performance, we vary the Zipf parameter from 0.2 to 15.

As seen in Figures 9(b)and (c), as the Zipf parameter is increased, the percentage increase in AAT in A3

vs. A1 goes up and so does the percentage reduction in gateway load. Similar to the observations above,

the gain is highest in Scenario 2 due to its significant topological imbalance. Specifically, the work in [6]

studied web request traces from a fixed group of users and found that the Zipf parameter varied between

0.64 to 0.83. For this range of Zipf parameter values, MeshCache exhibits significant improvement in

throughput and reduction in gateway load.

To validate the performance and usability of MeshCache, we implemented and deployed MeshCache

on our wireless mesh network testbed [27] and evaluated it extensively.

7 MeshCache Implementation

In this section, we describe the implementation of the MeshCache system. As discussed in Section 3,

the MeshCache system is implemented by a user-level daemon (MeshCacheD). The potential functions

of MeshCacheD are: (1) Transparently hijack web requests initiated at the clients and serve these re-

quests from either its own cached content in case of a hit or from the caches of appropriate parent caches

in case of a miss. (2) Locate the appropriate parent cache to fetch the data in case of a cache miss. (3)

When data is fetched, enable hop-by-hop transport of the data to facilitate caching at every hop. (4)

Cache the content fetched for any client and maintain its freshness. We leverage Squid [45], an open

source proxy cache software developed for Internet web caching, to implement the MeshCacheD. The

MeshCacheD consists of three modules: (1) The MSquid module (MSM) is responsible for transparently

hijacking client requests and serving them from its cache or the appropriate parent cache, caching and

5The larger the value of Zipf parameter, the higher the locality.
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Figure 10: MeshCache Implementation.

validating fetched data, and performing hop-by-hop transport. Squid software is modified to obtain the

MSM. We disabled Squid’s cache selection protocols and instead interfaced it with an implementation

of our cache selection protocols. Further, we exploited Squid’s functionality to deal with a hierarchy of

caches to perform hop-by-hop caching. (2) The Cache Selection module (CSM) implements the cache

selection protocols as described in Section 4 to locate a suitable parent cache given a URI. The CSM is

also responsible for enabling hop-by-hop caching via the MSM. To enable both the above functions, the

CSM exports FindParentCache(givenURI) interface to the MSM and also interacts with the underlying

routing protocol via the Cross-Layer module (CLM). (3) The CLM is responsible for communicating

with the underlying routing protocol to obtain information and export this information via known APIs

to the other modules in MeshCacheD. Our current prototype implements these APIs as functions calls

that operate on routing table information continuously updated to the /proc virtual file system by the

routing protocol in the OS kernel. The virtual file system provides a shared memory interface between

MeshCacheD CLM and the underlying routing protocol in the kernel. The information shared contains

the current best next hops for known destinations, path metric to a destination node (e.g. accumulated

ETX of all links) and the best known gateway with path metric. The CLM exports the following APIs on

behalf of the routing protocol to other MeshCache modules: BestGateway(), BestGatewayHopCount(),

BestNode(< nodeIP list >) and GetNextHopForNode(< nodeIP >).

In the following sections, we describe how the MeshCacheD implements architecture A2 using THCP

and A3 using PH-THCP and PH-BCP. A2 is implemented to obtain a comparison point.

29



7.1 THCP Implementation

Each mesh router runs the MeshCacheD. Referring to Figure 10, THCP works as follows: (1) A client

in the WMN generates a web request for a URI X . This web request could be initiated by unmodified

applications like web browsers, wget, etc. (2) The request for X is routed through the access mesh

router (AMR) for this client. (3) At AMR, the client request is transparently hijacked by the MSM. The

hijacking is enabled by specifying the ports to be hijacked via iptables, capturing the packets using the

standard Linux Netfilter [43], and queuing them up for MeshCache processing using libipq. (4) The

MSM now captures all further communication from this client. This enables the MSM to parse the

client request to locate the data item requested. (5) The MSM now checks for X in its cache. If there is

a cache hit, X is served to the client from the AMR cache. (6) In case of a cache miss, the MSM issues

a FindParentCache(X) call to the CSM. (7) Since THCP does not exploit cached objects at other mesh

routers, the CSM simply returns the best gateway obtained from the CLM. (8) Upon returning from the

FindParentCache() call, the MSM now contacts the gateway to fetch X . (9) The gateway either serves

the file from its cache or retrieves it from the origin server. The data is now returned to the AMR that

serves the data back to the requesting client. (10) AMR also caches X in its cache and maintains its

freshness information for future requests.

7.2 PH-THCP Implementation

Referring to Figure 10, the PH-THCP scheme works as follows: (1) Steps 1 through 6 for the PH-

THCP scheme are identical to that in the THCP scheme described above. (7) To implement PH-THCP,

the CSM extracts the origin server’s IP address (SIP ) from the URI. It then issues a GetNextHopForN-

ode(SIP) call to the CLM. (8) The CLM communicates with the routing protocol to obtain the best next

hop for SIP based on the metric currently employed by the routing protocol. If the SIP is an IP address

outside of the current WMN, all the messages to the SIP need to be routed via the gateway (GMR).

Thus, essentially, the next hop returned to the CSM in this case will be the best next hop for GMR. (9)

When the CSM receives the best next hop for SIP, say MR 1, it returns it as the best parent cache to the

MSM. (10) The MSM now contacts the MSM at MR 1 requesting X . Note that the choice of MR 1 is

not made after ensuring that MR 1 has X . (11) Thus, when the MSM at MR 1 receives the request for
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X , it may have a cache hit or a miss. In the event of hit, X is returned to AMR, which in turn serves

the data to the client and also caches X for future use. (12) In case of a miss, MR 1 repeats the process

from steps 6-11 described above. Let us assume that the next hop for SIP from MR 1 is MR 2. If MR

2 has a cache hit, the data will now be served from MR 2 to MR 1, which caches the data and further

serves it to AMR, which once again caches the data and serves it to the client requesting X . Thus, the

CSM exploits Squid’s behavior when contacting parent caches to perform hop-by-hop caching. (13) In

case of a miss at MR 2, the process repeats itself until the request is received by the gateway itself. (14)

The gateway then either serves the file from its cache or retrieves it from the origin server and returns it

to the client, and each router along the way caches the file.

7.3 PH-BCP Implementation

Referring to Figure 10, the PH-BCP scheme works as follows: (1) Steps 1 through 6 for the PH-BCP

scheme are identical to that in the THCP scheme described above. (7) The CSM maintains a one-to-one

mapping between a URI and the corresponding IP address of the mesh router that has a cached copy

of the content. This mapping is maintained with a refresh timeout. (8) When the CSM receives the

FindParentCache(X) call, it consults its mapping table to determine if a corresponding IP address is

found. (9) When the CSM finds no such mapping, it begins the PH-BCP cache selection protocol. For

example, when AMR receives the request for X for the first time and experiences a cache miss, its

corresponding CSM will also fail to locate a mapping for X . (10) To implement PH-BCP, the CSM

extracts the data item X from the URI. It then sends a UDP content locate message to the broadcast IP

address with a TTL equal to the hop count from AMR to GMR plus 2. The hop count is obtained by

calling the BestGatewayHopCount() CLM function. (11) Any mesh router receiving the content locate

message checks its cache to see if it contains X . In case of a hit, the mesh router unicasts a content found

message back to AMR. All mesh routers also rebroadcast the content locate message to their neighbors

until the TTL is decremented to zero. (12) AMR collects all the content found messages received in a

time period of timeout seconds. It then picks the mesh router that maximizes the throughput out of all

routers with a cache hit. Let us denote this node as FIP . Note that if AMR does not obtain any content

found messages, it picks GMR as the node containing X . (13) It then calls GetNextHopForNode(FIP)
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and obtains the next hop for FIP , say MR 1. It returns MR 1 to the MSM. (14) The CSM also makes a

note of mapping between X and FIP in its mapping table. It also send a setup message to MR 1 with

the mapping information. (15) When MR 1 receives the setup message, it finds the best next hop for

FIP and forwards the message to that mesh router. It also makes a note of this mapping in its mapping

table. This process is repeated till it reaches a node such that the next hop for a message reaching FIP

is FIP itself. (16) Now, the MSM of AMR contacts the MSM of MR 1 for X . MR 1 gets a cache miss

and hence contacts its CSM. The CSM will now find a mapping for X created by the setup message sent

by AMR. It then gets the best next hop for FIP and returns it to the MSM. (17) This process continues

till FIP is contacted and a cache hit is obtained. FIP then transfers X which is pipelined till the client.

Effectively, all the intermediary mesh routers cache the content thereby enabling hop-by-hop caching.

(18) When X is not found in the WMN, the request reaches GMR and GMR contacts the origin server.

8 MeshCache Performance

In this section, we evaluate the performance of MeshCache over a deployed wireless mesh network

testbed.

8.1 Testbed Setup

Our testbed, MAP (Mesh@Purdue [27]), consists of 15 wireless mesh routers (small form factor

desktops) spread out over the second floor of two adjoining academic buildings (MSEE and EE). For

the experiments in this paper, each mesh router is equipped with a single wireless card. 9 nodes in the

MSEE building are equipped with Atheros 5212 based 802.11a/b/g cards while 6 nodes in the adjoining

EE building are equipped Senao Engenius 2511 802.11b wireless card. We configured the entire network

to operate in 802.11b mode. Each radio is attached to a 2dBi rubber duck omnidirectional antenna with a

low loss pigtail to provide flexibility in antenna placement. Each mesh router runs Linux kernel 2.4.20-

8 and the open-source hostap and madwifi drivers are used to enable the wireless cards. IP addresses

are statically assigned. The wireless cards we use can support a wide range of power settings (up to

200mW). We used them in their default operational mode.

Figure 11 shows the layout of nodes in our testbed. The testbed deployment environment is not
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Figure 11: Deployment of the MAP testbed used for MeshCache evaluation.

wireless friendly, having floor-to-ceiling office walls instead of cubicles as well as some laboratories with

structures that limit the propagation of wireless signals. Apart from structural impediments, interference

exists in our deployment from other 802.11b networks (the Purdue Airlink network). We used channel

11 of 802.11b to operate our network since it was the band furthest away from those being already used

in the deployment environment. In summary, the environment is highly variable and many different

paths exist between nodes.

The routing protocol used in the testbed is MAP-DV, which we implemented through modifications to

the kernel AODV routing protocol implementation [20] to incorporate proactive gateway discovery [10],

the ETX metric [8] and the interface to the CLM. We used netperf measurements to confirm that MAP-

DV provides better throughput than vanilla AODV.

We compare the performance of the three MeshCache architectures using our testbed. Architecture

A1 is again referred to as Default. Architecture A2 is represented by THCP while both PH-THCP and

PH-BCP are included for architecture A3. We choose a deployment where MR 7 is the gateway node

with access to the Internet while 10 out of the remaining 14 nodes are chosen as traffic sources. Each

source is driven by a synthetic web trace obtained similar to in the simulation. Also, the cache size

in each mesh router is set to 2 MB due to the working set size and length of the experiment. Each

experiment consists of clients making requests from the trace through an unmodified wget client for a

period of 1 hour. The experiments were repeated once every day for one week and the results averaged.

Throughput per file transfer is used as the metric for this study.

33



8.2 Performance Results

We first performed measurements to quantify the interactions between per-hop transport and the un-

derlying routing protocol. Specifically, we want to measure whether fixing of routes in per-hop transport

leads to poor adaptation to network conditions by not allowing route changes for the duration of a trans-

fer. We measured if route changes occurred in an interval of 30 secs6 between nodes 5, 1 and 7 using

a ping with the record route option every second over a period of 12 hours. We found that for node 5,

routes remained the same for 92% of the intervals while 99% of the intervals resulted in same routes in

the case of node 1. This shows that it is unlikely that fixing routes in per-hop transport for an interval of

30 seconds will result in poor link adaptation. The time scales of route changes are longer than the time

a route is fixed in MeshCache (i.e. the time to download a typical content item).

We now describe our throughput performance evaluation experiment. In this experiment, the nodes

generating traffic can be separated into nodes that are one hop away and those that are more than one

hop away from the gateway for ease of explanation. Thus, MRs 2, 3, 4, 9, 10 and 15 are one hop away

from MR 7 while MRs 1, 5, 8 and 12 are more than a hop away from the gateway.

The performance of the MRs that are one hop away is depicted in Figure 12. For each MR, the

throughputs obtained per file transfer are sorted and plotted. Due to lack of space, the performance of 4

such nodes is depicted. When THCP scheme is employed, each MR benefits from the locality in its own

access pattern, i.e., when the MR receives a request for a content item that it has fetched in the past and

hence cached, the MR can serve the request from the cache and thus obtain a significant improvement

in its throughput. For example, for node 15, compared to the default scheme, 20 transfers benefit from

caching at the access MR itself. Note that the throughput for a cache hit is very high (about 50 Mbps)

and hence is not depicted in the graph. Similar benefit is observed in all the nodes when THCP is

employed. For the one-hop nodes, performance using PH-THCP is largely similar to using THCP since

when they do not have a local hit, they have to traverse only one hop irrespective of the cache-selection

algorithm. However, the one-hop nodes can benefit from PH-THCP when any MR whose route to the

gateway passes through them requests for an object that they will request in the future. In this case,

when the node whose route passes through them fetches the object from the gateway, the object will

6A sample download time for content.
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Figure 12: Download performance of individual mesh routers one hop away. MR 7 is the gateway.

be cached at this node. Node 15 shows the presence of gain from PH-THCP as it exploits the locality

in the traffic pattern of itself and its neighbors. An additional 10 transfers benefit from PH-THCP as

compared to THCP in node 15. Similar benefit is also observed in the other nodes. Thus, with PH-

THCP, some transfers that take one hop to be served can now be served from the cache on the MR itself.

The performance of PH-BCP is expected to be similar to that of PH-THCP for the one-hop nodes since

PH-BCP cannot further reduce the number of hops required to serve the content to less than one. This

effect is observed in nodes 3, 4 and 10. Interestingly, node 15 shows significant benefit when using

PH-BCP across all transfers. This is because compared to nodes 10 or 3, the connection of node 15

to gateway 7 passes through several walls, resulting in increased attenuation of the signal and hence

reduced throughput. PH-BCP enables MR 15 to choose other potential candidates for a content item

(say 4, 9 or 10) which provide much higher throughput than the one hop to the gateway. Note that MR

4 does not experience any further improvement with PH-BCP as it is unable to locate a better candidate

to obtain the file from.

The performance of the MRs that are more than one hop away is depicted in Figure 13. Similar to in

the 1-hop case, the performance of the MRs using THCP is better than the default case. Once again, the

nodes exploit the locality in their own access pattern. For example, THCP improves the performance of

20 transfers in MR 5. Further, PH-THCP has the potential of reducing the number of hops required to

obtain a content item up to 1, thereby improving the throughput. Note that similarly as in the one-hop

case, these nodes will benefit when the nodes whose routes pass through them request for files that will

be requested by these nodes in the future. This effect is observed in all the nodes that are two hops

away. For example, MR 5 improves the performance of 10 transfers using PH-THCP. Finally, using

PH-BCP further improves the performance of these nodes. For example, nodes 12 and 8 benefit from

using PH-BCP by obtaining content from MRs like 4, 15 or 9 instead of the gateway 7. Also, PH-BCP
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Figure 13: Individual download performance of mesh routers more than one hop away. MR 7 is the gateway.
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Figure 14: Overall download performance of mesh routers.

enables searching all the nodes in the vicinity of a mesh router instead of only those that are en route

to the gateway as in PH-THCP. Note that MRs 1 and 5 do not obtain further benefit from PH-BCP

as they have limited number of neighbors (nodes 2 or 3 for MR 1, node 10 for MR 5). One among

the potential neighbors is already considered by PH-THCP and hence PH-BCP does not have different

potential candidates to obtain additional benefit.

The performance of the network using the MeshCache system is summarized in Figure 14(a) using a

CDF of the total transfers in the network. In summary, in the absence of caching in the network, only

20% of the transfers have a throughput greater than 1 Mbps. When a simple scheme like THCP is used,

40% of the transfers have a throughput greater than 1 Mbps. PH-THCP results in 50% of the transfers

having a throughput greater than 1 Mbps. Finally, using PH-BCP results in almost 60% of the total

transfers across all the nodes having a throughput larger than 1 Mbps. Figure 14(b) also shows that the

average load per node as well as the gateway load is reduced by using MeshCache. PH-BCP reduces

gateway load the most out of all the schemes.
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9 Related Work

Wireless mesh networks Many design issues of WMNs have been recently studied [19, 11, 30, 29,

3, 23, 5] and many companies are offering products for deploying WMNs [26, 4]. However, research

in WMNs has primarily focused on new routing protocols, improving medium access, as well as new

designs for physical layer technology. To the best of our knowledge, no previous work specifically

explores incorporating content caching to improve the performance of WMNs.

Caching in wireless networks Content caching has been previously proposed for improving perfor-

mance in mobile ad-hoc networks [32, 39, 15, 16]. However, MeshCache is different from these previ-

ous approaches since it is designed for static wireless mesh networks and aims to provide a transparent

infrastructure-based solution to exploiting locality. In addition, MeshCache is a complete system design

that incorporates cross-layer communication to enable transparent caching. Previous work has primarily

focused on simulations, neglecting the practical considerations in deploying a caching infrastructure.

For example, previous work assumes that files can be easily stored as they pass through the routing layer

whereas this is not possible without a per-hop transport architecture or major modifications to client

applications and network layers of all mesh routers.

Transport protocol enhancements There have been numerous enhancements to TCP and even to-

tally new transport protocols proposed for mobile wireless ad hoc networks. In this paper, we evaluated

MeshCache using the widely used TCP protocol. However, MeshCache is an application layer system

that will work with any enhanced transport protocol as well. The per-hop transport technique used in

MeshCache should benefit any new transport protocol by providing them with quick congestion de-

tection and response as well as quick error recovery. The technique of splitting an end-to-end TCP

connection into multiple ones (Split TCP) has been previously proposed to improve throughput and fair-

ness in mobile wireless ad hoc networks [21]. However Split TCP is designed to deal with mobility

and only splits the connections at a few intermediate nodes. MeshCache splits each hop of the transport

connection to enable caching. Split TCP connections also naturally arise in overlay networks in the

Internet [22, 28, 33, 2]. However, the overlay split TCP is fundamentally different from the per-hop
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transport in MeshCache since in the Internet, the original end-to-end path may be totally different from

the overlay split transport path. In this case, the overlay path can be better or worse than the end-to-end

path. In MeshCache, the per-hop and end-to-end transport session both operate over the exact same

underlying network path. Thus, the per-hop transport in MeshCache cannot worsen the network path

used. Packet retransmissions in MeshCache also take place from the closest possible point in the path

unlike in overlay networks where the per-hop connections span multiple Internet routers.

10 Conclusions

In this paper, we proposed the MeshCache system for exploiting the locality in client request patterns

in a wireless mesh network. The MeshCache system alleviates the congestion bottleneck that commonly

exists at the gateway node in WMNs while providing better client throughput by enabling content down-

loads from closer high-throughput mesh routers. MeshCache is loosely coupled with the underlying

transport and routing protocols to maximize deployability and exploit cross-layer information aware-

ness. Through simulation and testbed experiments with a deployed implementation, the hop-by-hop

caching mechanism coupled with PH-BCP cache selection in MeshCache was shown to be an effective

technique to improve WMN performance.

We are currently working on exploiting the MeshCache content cache for current and future applica-

tions in WMNs. For example, a community file sharing service could simply query this content cache

in peer routers for high throughput content download. Further innovations such as chunk-based parallel

download and new WMN services such as downloadable movies and music can also leverage the content

cache for improved load balancing and throughput for clients. Finally, the content cache can be extended

for delivering large software patches required by many users by allowing such specialized content to be

selectively cached despite their large sizes. We also plan to conduct measurement studies to further

understand the locality in live WMN traffic as we extend our testbed to cover student dormitories.
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