Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

7-1-1993

ATUTORIAL ON LISP OBJECT-ORIENTED
PROGRAMMING FOR BLACKBOARD
COMPUTATION (SOLVING THE RADAR
TRACKING PROBLEM)

P R. Kersten

Naval Undersea Warfare Center Division

A. C.Kak
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Kersten, P. R. and Kak, A. C.,"A TUTORIAL ON LISP OBJECT-ORIENTED PROGRAMMING FOR BLACKBOARD
COMPUTATION (SOLVING THE RADAR TRACKING PROBLEM) " (1993). ECE Technical Reports. Paper 233.
http://docs.lib.purdue.edu/ecetr/233

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages

A TUTORIAL ON Lisp OBJECT-
ORIENTED PROGRAMMING FOR
BLACKBOARD COMPUTATION
(SOLVING THE RADAR
TRACKING PROBLEM)

TR-EE 93-24
JuLy 1993

~. G
<7 PURDUE UNIVERSITY
&

N

Ue U,

& % SCHOOL OF ELECTRICAL ENGINEERING
3

=Y

o>

WEST LAFAYETTE, INDIANA 47907-1285

A TUTORIAL ON LISPOBJECT-ORIENTED PROGRAMMING FOR
BLACKBOARD COMPUTATION

(SOLVING THE RADAR TRACKING PROBLEM)*

P. R Keasen
Code 2211
Nava Undersea Warfare Center Division
Newport, RI 02841-5047

A. C. Kak
Robot Vision Lab
1285 EE Building
Purdue University
W. Lafayette, IN 47907-1285

ABSTRACT

Thisexpositionisatutoria on how object-oriented programming (OOP) in Lisp can
be used for programming a blackboard. Since we have used Common Lisp and the Com-
mon Lisp Object System (CLOS), the exposition demonstrates how object classes and the
primary, before, and after methods associated with the classes can be used for this pur-
pose. The reader should note that the different approaches to object-oriented program-
ming share considerable similarity and, therefore, the exposition should be helpful to
even those who may not wish to use CLOS,

We have used the radar tracking problem as a 'medium’ for explaining the concepts
underlying blackboard programming. The blackboard database is constructed solely of
classes which act as data structures as well as method-bearing objects. Class instances
form the nodes and the levels of the blackboard. The methods associated with these
classes congtitute a distributed monitor and support the knowledge sourcesin modifying
the blackboard data. A rule-based planner is used to construct knowledge source activa-
tion records from the goas residing in the blackboard. These activation records are
enqueued in a cyclic queueing syssem. A scheduler cycles through the queues and
sel ectsknowl edge sourcesto fire.

-—
Approved for publicreease, distribution unlimited, by the Naval Under sea Warfare Center.

2 kersten/kak

TABLE OF CONTENTS
Page

TR 1 1100 1o ' o 3

2. The Representational Problem == CLIOScoccireerrnrereenneencnseesissenssssesssesessscssssssassssesssens 10
3. Representation of The ADSIractiON LEVE Su. e iemssessssssessssssssssssssssssss s ssssssssssssssssssssass 19
4 KNOWIEOGESOUICES......ceee e veeteeeieenieseaeaesaeeenceseee senestsssens st saessssesssassssssesssssssssssssssassssssass 27
5. The BlackDOard CONIOlceeeceeresemrassmrassnsassnsessnssssnssmsssmsssmssssnssssnsssssssmssssnssssnsassnsssnsssnsas 31
6. CONCIUSIONS.......coeueeeueeeerceeteeeaeietese e sese et se e sssssesssssessasasasseasassenessssssessbsatstsnsnsssnsssasassesasnases 43
7. ACKNOWIEAGMEN «...eeiereeeceetereeieeieeeteteseae et e e e sesessesesenemassensecstesossnsessassssssasasnsnsssasesesnsssasans 44
B REFEIENCES.....cveeeeeceereer ettt st et et srete s st seeeesenencneaescaeseseasses s ts s e s e e s s s s s as e s sase 45
APPENTIX A ... et eeeeeeeeeeeesstemseaaseeesestessesesantansatassessessessensessasansersensrasesensaseasssansanest 47

3 kersten/kak
1 INTRODUCTION

The blackboard (BB) approach to problem solving has been used in a number of
systems dealing with a diverse set of applications, which include speech understanding
[9], image understanding [1, 2, 14, 24], planning [15, 23], high-level signal processing
[8,25-27], distributed problem solving [22], and genera problem solving [6,7]. Usually,
a blackboard system consistsof three parts, a global database, knowledge sources (KS's)
and the control. The globa databaseis usudly referred to as the blackboard and is, in
most cases, the only means of communication between the KS’s. The KSs are pro-
cedures capable of modifying the objects on the blackboard and are the only entities that
are alowed to read or write on the blackboard. Control of the blackboard may be event
driven, goal driven, or expectation driven. Events are changes to the BB, such as the
arrival of data or modifications of data by one of the KSs. In an event driven BB, a
scheduler uses the events as the primary information source to schedule the KS’s for
invocation. A goal driven BB system, on the other hand, is a more refined computational
structure, which uses a composite mapping from the events to goals and then from goals
directly to KS activations or indirectly from goas to subgoals and then to KSs. This
refinement permitsa more sophisticated planning algorithm to choose the next KS activa:
tion. By using goals, one can bias the blackboard or generate other goals to fetch or gen-
erate other components of the solution [5]. Note that if goals are isomorphic to the
events, then a BB isessentially event driven.

As was eoquently pointed out by Nii [27], there is a great difference between
understanding the concept of a blackboard mode and its implementation. Implementa:
tionismadeall the moredifficult by the lack in the current literature of a suitable exposi-
tion on how to actually go about writing a computer program for a blackboard. A black-
board is a complex computational structure, not amenable to a quick description as an
agorithm. To program a blackboard, one must specify data structuresfor the items that
are posted on the blackboard, explicitly state the nature of interaction between the data
on the blackboard and the KS’s, clearly define how the high-level goals get decomposed
into lower-level goals during problem solving, etc. The purpose of this tutoria exposi-
tion is to rectify this deficiency in the literature, a least from the standpoint of helping
someone to get started with the task of programming a blackboard.

For this tutorial, we have used the radar tracking problem (RTP) to illustrate how
object-oriented programming (OOP) in Lisp can be used to establish the flow of control
required for blackboard-based problem solving. The RTP is defined as follows. Given
the radar returns, find the best partition of these returnsinto digoint time sequences that
represent the trgjectoriesof craft or any other moving body. For craft flyingin tight for-
mations, we will associate a single trgectory with each formation. Each trgectory,
whether associated with a single craft or a formation, will be called a track. Since craft

4 kersten/kak

may break away fi-om aformation, any singletrack can lead to multiple tracks. Shownin
Fig. 1is aflight of three craft. Originaly, their tight formation results in a single track.
But, as the flight progresses, one of the craft breaks away to the right and, then, we have
two tracks. The RTP problem then consists of assigning a radar return to one of the
existing tracks or alowing it to initiate a new track. This problem is not new and has
been solved with varying degrees of success and implemented in numerous systems. In
fact, a blackboard solution of the RTP may aready exist, although it is probably
proprietary. In fact, there is indication [8,27,30] that TRICERO has a radar tracker
embedded init.

On the basis of the criteria advanced by Nii [27], it can be rationalized that the RTP
problem is well suited to the blackboard approach. We will now provide thisrationaliza-
tion in the following paragraph; the blackboard-suitability criteria, as advanced by Nii,
will be expressed asitalicized phrases.

The radar returns vary widdy in quality. Returns may have high signal-to-noise
ratio (SNR) in uncluttered backgrounds but may also be noisy, cluttered, and wesak.
Obvioudly you design for the worst case that includes noisy and unreliable data. While
it is true that tracks can legitimately cross, merge, and split, noise and clutter can also
induce these as anomaliesin the actua tracks, in addition to, of course, causing the tracks
tofade (Fig. 2). Track formation in a noisy environment requires not only significant sig-
nal processing but, in general, also requires forward and backward reasoning at a syrn-
bolic level. For example, backward reasoning can verify a track by a hypothesize-and-
test scheme that may invoke procedures requiring higher spatial resolution and longer
signal integration times for hypothess verification. In other words, under noisy condi-
tions we may use coarse resolution and forward reasoning to form track hypotheses, and
then invoke backward reasoning to verify strongly-held hypotheses. So, thereis a need
to use multiple reasoning methods; combined forward and backward reasoning steps can
be easily embedded in a goal-driven blackboard. In addition to multiple reasoning
methods, the system must also reason simultaneoudly along multiple lines. For example,
when track splits occur, it may be desirable to watch and maintain several aternative
‘track solutions before modifying the track information. Multiple lines of reasoning, as
can be easily incorporatedin a blackboard system, can play a natural role in searching for
the optima. solution under these conditions. Itisgenerdly believed thesedaysthat track-
ing systemsof the future will be equipped with multi-sensor capability. Therefore, future
target tracking systemswill have to alow fusion of information from diverse sensors, not
to speak of the intelligence information that will also have to be integrated. With these
additional inputs, the solution space quickly becomes large and complex, necessitating
modularized computational structures, like blackboards, that are capable of handling a
variety of input data.

"S)oeI} 0M) FUaq NS Y} JYSII) 0) Aeme syBIIq Jyel1d Y} Jo auo ‘Apuanbasqns
g ")oer} J[FUlS B ULIO] pUB UONBULIOJ JYSN € Ul 918 JJetd 991} 3} ‘A[[eRiu] °‘SOyd9 pauinial
3} Juasa1daa S3[OI0 YL “IFRID JIYY JO JYSIJ B WO SWINJII Tepel Ik 219 umoys Tomgy

SLIH 40 LIS

"3pejJ 0} S}oeI} Y]} ISNEBD OS[E ULD ISIOU 0N ‘SHORI) [BNJOR Y} Ul SI[BUWIOUE SE ISIY} 0NpuUl OS[e ued
sopjel as1ou-o0}-reuds mof ‘ds pue 9F1oul ‘ss0I10 A[2eWRIFI] Ued S}OED) Jey) ang} S P o[ym g omgrd

o o
o% OO OO OOO
@ o o o o
@ 0 o) o 00
o® o (o]
) o o 0 o
8 % S o o) o
0 > 9 3 8 o°
'Y © o &0
o© Qo °
g, ©o o8
? Oo (=)
Oo (o]
Y %o (o] o O
%o (o] (o B o
o o 0 To) o ©
[0o o o) [} o
[o 0 o) oo W
o © ° M m o o g
o o o o
(o]
ADAIAN Javd DNISSOUD

LI'TdS

7 kersten/kak

In addition to using the above rationalization for justifying a blackboard-based solu-
tion to the RTP problem, one must also bear in mind the fact that the use of blackboards
can simplify software development. The blackboard system solves a problem subject to
the constraint that the processes, as represented by KS's, are independent enough o that
they interact only through the blackboard database. This independence amongst
processes has the advantage of alowing for independent development. There is, how-
ever, a price to be paid for maximally separating the KS's with respect to the BB data-
base -- overhead. For example, if there is no shared memory, the cost of data transfer
between the BB and KS's can be very high in terms of real time, not to mention software
design time. While for research and development this may be a small price to pay, in
real-time environments this may not be acceptable. Also, the opportunistic control made
possible by a blackboard architecture may beideal from a conceptual viewpoint and may
increase solution convergence, but, because opportunistic control is difficult to model
mathematically, it can lead to unpredictable behavior by a BB under circumstances not
taken into account during the test phase of the system. Yet, in spite of these drawbacks,
it is probably inevitable that BB systems will work their way into system designs of the
future.

Our radar tracking blackboard (RTBB), the subject of this tutorial exposition, is
constructed in CLOS (Common Lisp Object System) [13,18,20] with KS's written either
in Common Lisp [12,29,31] or in C. Theoverall organization of RTBB is shown in Fig.
3. The database part of RTBB consists of two panels, the data panel and the goal pand,
each containing three abstraction levels. Time-stamped radar returns reside in the form of
beam nodes at the lowest level of abstraction in the data panel, the hit level. Spatially
adjacent returns are grouped together into segments and reside as segment nodes at the
next level of data abstraction. Finally, segments are grouped into track-level nodesat the
highest level of abstraction in the data panel. A track-level data-panel nodeis capable of
representing a formation of craft; multiple formations will require multiple track-level
nodes. The data abstraction hierarchy is shown in greater detail in Fig. 4. On the goal
sidein Fig. 3, goal nodes at the hit level are ssimply requests to generate time-stamped
radar returns. Goals at the segment level are morevaried: there can be goal nodes that are
requests to assign incoming radar returnsto already existing segments, goalsto deal with
the problem of fading in radar returns, etc. Goals at the track level are also varied: goa
nodes may request that new segments be merged with existing tracks or be allowed to
form new tracks, or goal nodes may spawn sub-goalsto verify that the currently held seg-
mentsin atrack indeed belong to the track if the track is deemed to be a threat. The abil-
ity to decompose a goal into sub-goalsis a special benefit of a goal-driven BB. A rule-
based planner maps the goals into either sub-goals or knowledge source activation
records (KSAR’s). A KSAR issimply a record of the fact that a goal node isready with
the appropriate data for firing a KS. RTBB enqueues all the KSAR’s and the scheduler
then cycles through the queues and selects the KS's to fire. The main BB process runsin

GOAL PANEL DATA PANEL

L Distributed Monitor
TRACK
LEVEL
PLANNER
SEGMENT
LEVEL
HIT LEVEL
[
| L
o SCHEDULER / KSAR . PY
QUEUEING SYSTEM
KS N-1
KS N

Figure 3. Architectureof Radar Tracking Blackboard (RTBB).

0 O
O | o
]
TRACKS '»)
O (o)
o ()
D
SEGMENTS (1)
(o)
9
(o) D
O
(0]
- O
(@) 0]
O (o)
(o)
o0 0
DATA PANEL o) 0
O
0 @)

TRAJECTORIES

Figure 4. Shown here is the data abstraction hierarchy in greater detail. Hits that are spacially adjacent are grouped
into segments. And segments that are approximately co-directional and spatially adjacent are grouped into tracks.

10 kersten/kak

Lisp, and the KS's are either children of themain BB processor are threeded into the BB
processitself. The database, BB monitor, and the scheduler are all part of the main BB
process. All the processes run under the UNIX operating system. Each level and each
node on the BB is an instantiation d some object class. These class instantiations are
method-bearing data structures that are part of CLOS. The methods associated with BB
nodes act as local monitors, collectively forming a distributed BB monitor, or as scribes
for the KS’s in updating the BB information, or even asinformation agentsfor the rule-
based planner. After-methods written for the data nodestrigger after a nodeisatered and
report the changes to the goal BB. This implementation of the monitor using CLOS is
one of the moreinteresting aspectsof RTBB.

In the rest of this tutoria, we will start in Section 2 with a brief introduction to
CLOS. Aswe mentioned in the abstract, the different approachesto object-oriented pro-
gramming share considerable similarities, and, therefore, even a reader who does not use
CLOS should find this tutorial useful; such a reader may want to browse through Section
2 if only to become familiar with some of the main data structures used for RTBB. In
Section 3, we describe the different abstraction levels used in RTBB. Section 4 briefly
discusses the different KS’s used. Control flow and scheduling are presented in Section
5. Finaly, Section 6 contains the conclusions. We have a so included an appendix where
we have discussed four examplesof increasing complexity. After afirst pass through the
main body of this paper, we believe the reader would find it very helpful to go through
the examples in Appendix A for afuller comprehension of the various aspects of the
blackboard.

For those wishing to see the source codg, it isincluded in Appendix B of thisreport.
A journal paper based on thisreport appearsin [19].

2. THE REPRESENTATIONPROBLEM -- CLOS

The representation problem is central to problem solvingin general and the imple-
mentation of a chosen representation requires suitable data structures. In RTBB, to
represent the nodes at the different levels of the blackboard, we first define a generic
nodecalled node. The objectsobtained by instantiating a node W| be the simplest possi-
ble and probably not very useful dataentities. The more useful object classesthat would
represent the nodes on the threelevels of theright hand side of the blackboard shown in
Fig. 3 are then defined as subclassesof the generic object class node, as shownin Fig. 5.
The subclass corresponding to the beam level nodesiscalled bnode, the one correspond-
ing to the segment level nodessnode, and the one corresponding to the track level nodes
tnode. \With this hierarchical organization, those propertiesof al the nodesthat are com-
mon to all threelevelscan now be assigned to the generic node node and those properties

Figure 5. Organization of the node classes. The data abstractions
usedin RTBB are subclasses of the generic class node.

12 kersten/kak

that are unique to each of the three classesindividualy can be so declared. To see how
this can be done in CLOS, we now show how the generic class node is created by the
defclassmacro.

...
A A A RN N RN N NN NN NN NN N
-
5 ?

12 The is a generic class -- the class i s the superclass of all data classes.

A A A A N e e N N R N e NN NN

(defclass node ()
(
(level :initarg :level :accessor level)
(event-time :initarg -event-time :accessor event-time)

(:documentation "The node i s superclass of all data data classes")
)

This generic class has only two dots, levd and event-time. For data nodes, the vaue of
the level dot designates the level & which the nodes reside. The dot event-time is the
clock time, in the sense that will be defined in Section 4. For each of the dots, the sym-
bols :initarg and :accessor are cdled the dot options. The option declaration :initarg
:level dlows the dot leve to beinitidized with avadue a the moment an instanced the
class node is created and for the symbad :level to be usad as the key word. The option
declaration :accessor level makesit possible to read the vaue d this dot by the generic
function (level node-instance) and to change the vaue by the function cal (serf (level
node-instance) new-value). Smilarly for the dat optionsfor the dot event-time.

The subclasstnodeis now defined in the following manner:

77 The class tnode is for track level data nodes. This class corresponds
;37 to the highest data abstraction on RTBB.

A i v i B A e B B T A A A A Y A A A A N R R e N N e

(defclass tnode (node)
(

(checklyst :initarg :checklyst :initform nil :accessor checklyst)
(check :initarg :check :initfonn nil :accessor check)
(cpa-bracket :initarg :cpa-bracket :accessor cpa-bracket)
(threat :initarg :threat :initform nil :accessor threat)
(snode :initarg :snode :initform nil :accessor snode)
(last-velocity :initarg :last-velocity :accessor last-velocity)
(last-coord :initarg :last-coord :accessor last-coord)

)
(:documentation "The tnode class is for track level data nodes")
)

The argument node in the first line o this defclass macro asserts that the tnode class hes
node as its superclass, in accordance with Fig. 5. Because the class node is a superclass
of the class tnode, the latter inherits dl the dotsd the former, together with the reed and
write accessor functionsif any. We will explain in the next section the semantics o the
seven local dotsdefined explicitly for the dasstnode. What we wish to point out here is

13 kersten/kak

the new dot option :initform that appearsin four of theloca dots. Thisoption permits us
to give adefault initia vaue to adot, these being dl nil for the four dotscarrying this
option. Without the :initform option and an associated default value, thevalueof adotis
left unbound a the time an instanceof aclassis created, unlessthe :initarg option dlows
a vaue to be assgnad a that time If the vadlue of a dot for an object ingance is
unbounded, and if an attempt is made to read the vaues of such dots, CLOS will sgnd
an error.

An instance of a node & any level o the blackboard may be created by udng the
generic function make-instancein the following manner

(setq trackl (make-instance "tnode :event-time 2222 :threat 'true))

which would bind an instance o class tnode to the symbadl trackl. For this ingtance, the
vaue of the dot event-time would be set to 2222 and the vdue of the threat dot to true.
Note that this initidization of these two dot vaues would not have been possble if we
hed not used the :initarg option for the dotsevent-time and threat.

Besides the notion of object classes that can inherit characteristics from other
classes, the other mogst ggnificant notion in object oriented programming dedls with
endowing objects with behaviors by the use of methods. Since methods, defined for
oecific classes, can dso be inherited, CLOS provides whet are called generic functions
for controlling the flow of inheritance of methods. Before explaining more precisely the
purposedf generic functions, we would like to mention the following important facts: 1)
aprimary method defined for aclasswill be inherited by al its subclasses, 2) an inherited
primary method from a superclass may be adapted to better serve the needsof acdlass by
defining an after-method; and 3) a beforeemethod may be usad to carry out set-up work
for a primary method. Methods are invoked for execution by calls to a generic function.
By matching the parameter list in the generic function called with the parameter lists of
dl the methods, CLOS collects together al the gpplicable before, primary, and after
methods and sequences them appropriatdy for execution; thisisdone by wha iscdled a
generic digpatch procedure. When a sequence of before, primary, and after methodsis
executed in response to a generic function call, the vaue returned by the generic function
is the same as the vaue returned by the primary method; the before and after methods
can only produce side effects. In the event there are multiple primary methods available
for a given class owing to the existence of multiple superclasses, the generic digoatch
procedure invokes rules of precedence that sdect that procedure which corresponds to
the most specific superclass.

Since an after-method may be invoked automaticaly after initializing or dtering
critical dotsin anode, it is possble to have such specidized methods report the changes
to aqueue or another portion of the BB. In an event-driven BB the changes are reported
to an event queue and in a god-driven BB the changes are reported to elther abufferin a

14 kersten/kak

centralized monitor or directly to the goal side of the BB. Since RTBB is a goal-driven
blackboard, any changes in the data are reported directly to the goal panel of the BB by
after-methods associated with classes defining the data objects. One can think of these
after-methods as constituting a distributed monitor. The methods may also be visualized
as being part of the KS's or as a shared utility of these KS's for reporting changesin the
data. Thereader should note however that theredo exist alternativesfor designing moni-
tors. For example, polling techniques along with change bits or variables in the class
instantiations could be used to create a centralized monitor. Asanother alternative, KS's
themselves could report all the changes to a centralized monitor since KS's are the only
entities allowed to alter the blackboard.

The following defmethod is an example of an after-method which places anode in
the goal panel after the event-time slot has been given a value by a primary method. In
the definition of the after-method, the role of the method is declared by the qualifier key-
word :after. The primary method to which the defined method is an after-method
appears immediately before the keyword :after; in this case the primary method is (setf
event-time), which is the generic writer fugpgtion for altering the value of the slot event-
time. Note in particular the lambda list of this after-method: (new-sot-value (ele
tnode)). When this after-method isinvoked for execution, the first parameter, new-dot-
value, isinstantiated to the new value of the dlot event-time. [Recall, it is the change in
the value of this ot to whatever will be instantiated to new-dot-value that causes this
after-method to beinvokedin thefirst place] The second parameter in the lambdalist is
the symbol ele, short for element, which has a specialization constraint placed on it. This
specialization constraint, implied by the form (ele tnode), says that the parameter ele can
only be bound to an object of class tnode. In other words, the after-method is only
defined for track-level nodes on the blackboard. Asisevident from its definition, this

The reader who is dready somewhat familiar with RTBB may be puzzled by this defmethod
sinceit createsatrack level god nodefrom a changein thetrack level on thedata pand. Usudly,
atrack level god node will be created by the addition of a segment on thedata pand, the purpose
of thegoa being to either merge the segment with one of the existing tracksor to start a new track
with the segment. However, RTBB a0 needsfacilitiesfor creating track level goasdirectly from
changesin the tracks because o the need for verificaion and possiblesubgoding if the track isa
threat, meaning if the average velocity vector representing a track isaimed directly at the origin of
the coordinate systlem. The verification consists of making sure thet all the ssgmentsaresimilar in
the polynomia sense discussed in Section 4. When atrack fails veification, subgoals mugt be
cregted that check each segment againgt the average propertiesof the track, and if a segment is
found to betoo different,it must be released from thetrack and dlowed to participatein o initiate
a new trak The defmethod shown here could lead to the formation of KSAR’s tha could
gioduce these subgoals.

A lambda list is a list that specifies the names of the parameters of a function, sometimes
loosdy caled the arguments of a function. Strictly oesking, the arguments are what you provide
a function when you call it; you namethe parameters o afunction when you defineit [18).

15 kersten/kak

after-method first makes an instance of the class bbgoal and then deposits this god
instance at the track level (how precisdy that is done will be explained later). With
regard to the values given to the slots when an instance of bbgoal is created, the event-
tine dot takeson the value bound to the symbol new-slot-valuethat is the updated value
of the slot event-timein the tnode object bound to the symbol ele. The dot sourceis set
to the name of the tnode object that invoked the method. The slot purpose is set to
‘change to reflect that the goa was caused by changing the event-time value, in contrast
with, for example, a goa node that might be created by sub-goaing. The dlot initiating-
data-level takes the vaue 'track since the formation of the goa node was caused by a
change in adata node a the track level. The slot threat inheritsits value from the tnode
that caused the method to be invoked. The value of the dot snodeisalist of pointers to
the snodes that support thistrack node. Finaly, the dot durationis set to 'one-shot; this
causes only one attempt to be made for this goa node to be satisfied. The reader should
note that in the syntax of a defmethod, function calls such as (snode €le) are accessor
functions, in this case areader function that retrievesthe value of the dot snode from the
object bound to the symbol ele.

--
ll

;: This after-method automatically generates a goal node at the track
;; level whenever there is change in the value of the slot event-time
;; of a track-level data node (such goals are needed for the initiation
;; of the threat verification process).

--
ll

(defmethod (setf event-time) :after (new-slot-value (ele tncde))

(sendpushgoal

(make-instance ' bbgoal
zsource ele
‘purpose ‘ change
initiating-data-level 'track
revent-time new-slot-value
‘threat (threat ele)
:snode (snode ele)
:duration 'one-shot)

tracks)

The sendpushgoa macro used above is a procedure that pushes an instance of the class
bbgoal onto the track level of the goal pandl. In other words, this macro creates a new
track level goal node. The macroisdefined in the following manner:

--
ll

This macro pushes a goal object into the goal panel at the track level.
Note that left refersto the left side of the BB, the goal panel.

--
lll

(defmacro sendpushgoal (object level)
‘(setf (left ,level)
(push ,object (left ,level))))

S0 the set of godls on the track level of the goa BB is just a stack of these class

16

kersten/kak

instances. As mentioned before, this after-method is invoked after a change has been
made to the event-time dot of a track node on the data panel. This occurs whenever a
track node is updated. The message that triggers this change will look something like
(setf (event-time tnode_object) new-event-time)).

When only one or two methods are associated with each node type, it isa smple

matter to write one method for each dot. However, as the number of dots associated
with each node class on the blackboard increases, this becomes cumbersome. Seth
Hutchinson suggested using a macro to generate these automatically and actually wrote a
macr o that did thisusingflavors[17]. Thefollowing version isamodified version of that
macr o designed for agoa driven BB using CLOS.

1 (defmacro newclass

2 (class goal-level slot-1list monitor-list super-list &rest options)

3 (cons ‘progn ;3 progn runs the sequence of programs created by macro

4 (cons ;; cons commend program into the gigantic lisp program

5 * (defcl ass ;; first construct the defclass

6 ,class ;; class namne in the defclass macro

7 , super—-list ;: the list of inherited classes or mixing classes

8 , (do* ;: do loop to construct all the accessors and initforms

9

10 (wlyst slot-list (cdr wlyst)) ;; cdr down the slot-1list

11 (op (car wlyst) (car wlyst)) ;: op is the next slot to be done
12)(mylyst nil) ;: mylyst is list of slot options
13

14 ((null wlyst) (return mylyst)) ;3 return the slot-specifier list
15 (setg mylyst ;; construct each slot-option list
16 (cons ;s meke defining list for slot

17 *(,op -initarg , (keywordize op);; put "op" in keyword package
18 sinitform nil ;; default value for slot is nil
19 -accessor ,0p) ;; for read-write functions

20 mylyst})) -3 stuff this in the slot options
21 , @options) for options like documentation
22 (d?* ;s generate one after-method for each slot named in monitor |ist
23

24 {(worklyst monitor-list (cdr worklyst)) :: cdr dowvn monitor |list

25 (op (car worklyst) (car worklyst)) ;: choose next candidate

26 (mlyst nil) ;3 construct list of methods
27) ;3 return method |i st

28 ((nui® worklyst) (return mlyst)) ;s when monitor-list i s empty
29 (setc mlyst ;; construct list of defmethods
30 (cons * (defmethod ;; cons defmethod into list

31 (setf ,op) :after ;3 Mmake an after-method writer
32 (new-slot-value (ele ,class)) ;; construct lambda |i st

33 (sendpushgoal ;s make body of after method
34 (make-instance ‘bbgoal

35 :source ele

36 ‘purpose * change

37 linitiating-data-level (level ele)

38 :coord (coord ele)

39 > number (number ele)

40 revent-time (event-time ele)
41 :duration ’one-shot

42

43 ,goal-level)) ;: specify level to push goal on
44 mlyst) :: put methods into |ist

45 1))
In thismacro, :lass instance is created of type class with dot;: whose names are sup-

plied in thelist dot-list. When thismacro isinvoked, the parameter super-listisbound to
the list of superclasses of class. The first do loop, in lines 8 through 20, repeatedly

17 kersten/kak

executes the codein lines 17-19 and generatesdots o form (dot-name:initarg :slotname
sinitform nil :accessor slotname) for each dot name in the list bound to the parameter
dlot-list. Subsequent execution of the defclass in line 5 then creates the gppropriate class.
Thedo loop in lines 22 through 43 creates an after-method o the type shown previoudy
for each dot name in the list bound to the parameter monitor-list. Therefore, whenever
the value o each dot named in monitor-list is updated, a goad node is automeaticaly
created and deposited a the daralevel of the blackboard. The reader might notein partic-
ular that the newclass macro uses the macro keywordize, a procedure used to intern the
name bound to the symbol op into the keyword package. Here is an example of how
newclass iscalled:

--
ll

--
ll

(newclass snode tracks (

coord ; note this is a coordinate |ist
number ; number of points the the segment
cpa ; closet point of approach a vector
linear : (position velocity

tnode ; ptr to a track node

threat ; true or false -- updated by tnode

)
(number) (node)
)

This cal to newclass will create the subclass snode for ssgment level data nodes on the
blackboard (see Fig. 3) and will do so0 in such a manner that an after-method will be
automeatically generated for the dot number. This after-method will automatically deposit
a god node a the track level any time the vadue o the dot number for an snode is
changed. The call to newclass recognizes the fact that, in accordance with Fg. 5, the
class snodeis a subclass of the superclassnode. If we did not use the macro rewclass,
we would have to separately define the class snode by using defclass and then add expli-
citly thefollowing after-method:

(defmethod (setf number) :after (new-slot-value (ele snode))

(sendpushgoal

(make-instance ‘bbgoal
zsource ele
Ipurpose ’change
initiating-data-level ’segment
-coord (coord el e)
:number (number ele)
event-time (event-time ele)
zduration ’ one-shot)

tracks)

)

The newclass macro is an illudtration o the power o macros and the ease with which
onecan create an impressivearray of methods automeaticaly in aBB shell.

18 kersten/kak

So far in this section we have taked about object classesfor representing the nodes
a the different levels o the blackboard and about the methods associated with these
object classes. We will now focus on the representation o the levels themsaves. Each
leve of the blackboard isitsdlf an instance of the following class:

ll

lll

(defclass bblevel ()
(
(up :initarg :up :accessor up)
(left :initarg :left :accessor left)
(right :initarg :right :accessor right)
(down :initarg :down :accessor down)

(:documentation " The bblevel class i s used for constructing the bb levels.")
)

The vauesfor the dots, up and down, determine the level on the blackboard. For exam-
ple, the ssgment level in Fig. 3 would be creasted by making an ingance of the above
class by setting up to tracks, and down to hits. At each levd, dl the data nodes are stored
in aligt that isthe vaue o the dot right, and dl the god nodesin alist that isthe vaue
of the dot left. Thiscorresponds to the I€ft, right organization o the blackboard shown
in Hg. 3. For illugration, the following code fragment creates the segment leve o the
blackboard:

(setg segments
(make-instance 'bblevel :up tracks :down hits :left nil :right nil))

Thefact that we can storedl the data nodes a& eech levd in asingle ligt thet isthe vaue
o the right dot for that levdl proves very convenient if one is trying to goply the same
function to dl the nodesat that level. For example, if we want to gpply the samefunction
to dl the data nodes a the segment level, we can Smply mapcar the function to the list of
nodes retrieved via the (right segments) generic reeder call.

When dot vaues are dlowed to be listsin the manner explained above, such lists
may be used either as queuesor stacksfor the purpose o deciding which objects should
be processed first. Here, we use the word queue in a generic sense and associate with it
three components its arriva process, its queueing discipline and its service mechanism.
Thearriva processischaracterized by an interarriva-timedistributionfor items stored in
the queue. The service mechanismis composed of serversand the service timedistribu-
tion; note there can be multiple servers{e.g., processors) catering to aqueue. The queue-
ing discipline describes how an item is to be sdected from those in the queue. Items
arriving at a queue may be enqueued (stored) until serviced, or the items may be blocked
(discarded) if no server isfree a that time This mekesit possiblefor usto use the gen-
eric term gueue to mean ay queueing system such as a LI FO queue (stack), a FIFO
queue, or some prioritized queue. For an extensve discussion on queueing concepts, the
reader isreferred to [4].

19 kersten/kak
3. REPRESENTATIONOF THE ABSTRACTIONLEVELS

Asshown in Fg. 3, the RTBB condgtsaf two panes, each containing three abstrac-
tion levels. The lowes abdraction leve in the data pand conssts of bnodes for beam
nodes, aso cdled hit nodes* The bnodeclassis defined asfollows:

lll

;;;

(defcl ass bnode (node)

(coord :initarg :cooxd :accessor coord)

(number :initarg :number :accessor number)

)

:documentation "The node i s e lowes ata abstraction level on e .
d tat The beam d the | t dat bst t | | the bb.")

where coord isalist of coordinates (x,y,z) o atime-stamped radar return, which consst
of asat of echoesreceived during asnglescan o the entire seerch space. Thetime damp
of such asat of echoes becomes the vadue d event-time dot inherited from the superclass
node. The dot number containsthe actuad number of digtinct returnsin the set o echoes.
Another dot inherited from the superclassis level whose valueis set to hit for nodes of
bnode class. Such nodes are generated every nth cdlock cycle whereat present nisst to
eight.

We will now show an after-method, defined for the object class bnode, thet createsa
god every time a new &t of hits is recaived; in other words a god node is crested for
each new beam node. In comparison with the after-methodsshown in the preceding sec-
tion, the one shown bdow firg does some computation before creating the god node,
The god represented by the goad node seeks to assgn the new hitsin the beem node to
the existing segments, if possble, or to creaste new ssgments. The computation thet is
carried out before the cregtion of the god node determines the number of hitsin the
bnode. Hereis the after-method:

*

For this blackboard, hit nodes and beam nodes are treated the same. In practice, a beam of
informationis more primitivethan a hit since the latter isa timeintegrated sequence of beans.

20 kersten/kak

lll

1 This after-method first updates a slot of bnode and
;2 then creates a segnent |evel goal node.

llllllllllllllllllll AR N NN NN R RN RN NN N RN NN

1 (defnethod initialize-instance :after ({ele bnode) &key)
2 (wi th-accessors ((num nunber) (crd coord) (evt event-tine)) ele
3 (setf num (length crd))
4 (sendpushgoal
5 (make- i nstance bbgoal
6 :source ele
7 . pur pose ‘change
8 ;initiating-data-|evel ‘hit
9 :coord crd
10 . nunber num
11 cevent-tinme evt
12 sduration *one- shot
13)
14 segnent s) ;; the level on which the goal node will be deposited

15)

This after-method also demondtrates the use of the with-accessorsmacro in CLOS. From
a logical standpoint, it is convenient to think of the with-accessors macro as creating a
"handl€e" into each of the dots named for the object bound, in the case above, to the sym-
bol elein line 2. The slots named in line 2, are number, coord, and event-time and we
may think of the symbols nwm, crd, and evt as handlesinto these three dots, respectively.
Each handle may be used for either reading the value of adot or for writing anew value
into it. For example, the form (crd coord) will bind the value of the dot coord to the
symbol crd. Note that the call (setf num (Ilength crd)) will first calculate the length of the
list bound to crd and will subsequently write an updated value into the slot number of the
object bound to ele. The reader should have aready noted that the method defined above
IS an after-method to the initialize-instance method, which is native to CLOS. The
behavior of this method should become obvious from the fact that the make-instance
method has to call initialize-instance in order to create an instance from a class. There-
fore, the after-method defined above will be invoked every time an instance of class
bnode is created by a call of the form (make-instance 'bnode :coord coord) where the
argument coord is the list of hitswith the same time stamp. As the reader can tell from
line 5, the goal node created is an instance of class bbgoal introduced in the preceding
section.

Thedteration of the slot number in abnode by the above after-method may seem at
variance with the usua viewpoint that, in an ideal conceptualizationof a BB architecture,
only KS's should be allowed to alter information in the BB database. Actually, what has
been accomplished with the above method is not at a great variance from the ideal
because that aspect of the defmethod which updated the value of number could have been
incorporated in the KS that created the bnode in the first place. One can view this data
refinement aspect of methods either as constituting extensionsof the KS's or making the
KS's more distributed. One advantage of such methodsis that they smplify the coding
of interfaces between the BB process and the KSs. The god node dots in the after-

21 kersten/kak

method will bedefined when we discussgoa nodesin grester detail.

The next level of abstraction on the data panel is the snode, which standsfor seg-
ment nodes. Segments are defined for convenienceand represent a small number of hits
(afixed number chosen by the designer) that can be adequately modeled as linear seg-
ments. By fitting linear segments to the returns, we reduce the sensitivity of the system
to noise spikes. Segments that are approximately collinear are grouped together to form
tracks, more on tracks later. A track will not be started unless a segment i slonger than a
certain minimum number of points, usudly two. In addition, if the most recent hit in a
segment isolder than 10 time units, it isautomaticaly purged from the BB database. If a
track consistsof only one segment and that segment is purged due to the time recency
requirement, the track would also be purged. The definition of the segment node class
using the newclass macro was presented in the preceding section; we repeat the definition
herefor convenience:

--
ll

--
111

(newclass snode tracks (
coord ; list of time-sequenced hits

number ; number of points in the segment
cpa ; closet point of approach,

linear ; the pair (position velocity)

tnode ; ptr to the track node

threat ; true or false -— updated by tnode

, (number))(node)
When a segment object is created from this class, the dot coord contains a list of the
coordinates of the hits that constitute that particular segment. Note in particular that
whereas the smilarly named dot for bnodes contains a list of hits for the same time
stamp, the slot here has a time sequenced list of hits constituting a geometrical segment
in gpace. In other words, the coordinates in the dot coord are grouped on the basis of
spatia continuity, as opposed to the tempord continuity used in bnodes. The value of
the dot event-time, inherited from the superclass node, is the list of event-times
corresponding to the hitsin the dot coord. In order to clarify the access discipline used
for processing the lists in the slots coord and event-time, both lists are treated as stacks.
The value of the dot cpa is the closest point of approach if the segment were to be
extended al the way to the radar site, assumed to be located at the origin of the (x,y,z)
space. The valuefor the slot cpais caculated by an after-method using the position and
velocity information contained in the dot linear, the reference here being to the position
and velocity of the target computed from the two most recent hits in the ssgment. More
specifically, the value of the dot cpais the perpendicular distance from the origin to a
straight line that is an extension of the two most recent hits in the segment. The dot
threat is set to true if the value of cpa falls within a small region around the origin,

_____ —

22 kersten/kak

otherwiseit isfadse. The extent o this region is € times the last-coord [a dot for track
level nodes to be discussed later], the comparison threshold being dependent on the dis-
tance snce greater directional uncertainty goes with with more distant craft [this point
will be explaned further in under the discusson on the GETTRACK KS. While the
computation of the vaue for cpa occurs when a ssgment node isfirst created, determina
tion of whether threat is true or false does nat occur until a track level node is updated
with the segment.

The highest data abdirection consstsdf track nodes. As mentioned before, a track
node is a grouping o goproximately collinear ssgments. Two segments belong to the
sametrack if the following two conditions are satisfied: First, we must havecos™6 > 0.9,
where 8 is the angle between the velocity vectorsfor the two segments, the velocity vec-
tors being contained in the dot linear for the ssgment nodes; and, second, the faster of
the two craft mug be able to reach the other in one unit time. The second condition is
meade necessary by the fact we do not wish to group together segmentsfor aircraft flying
pardld trgectoriesthat are widdy separated. In generd, there will only be asingle track
nodefor asingleformation o aircraft, no metter how large the formation. OF coursg, if a
formation splits into two or more formations, the origind track would split into
correspondingly as many tracks. The track nodes are defined asfollows

--
lll

{defclass tnode (node)
{
(last-coord :initarg :last-coord :accessor |last-coord)
(last-velocity :initarg :last-velocity :accessor last-velocity)
(threat :initarg :threat :initform nil :accessor threat)
(snode :initarg :snode :initform nil :accessor snode)
(cpa-bracket :initarg :cpa-bracket :accessor cpa-bracket)
(check :initarg :check :initform nil :accessor check)
(checklyst :initarg :checklyst :-initform nil :accessor checklyst)
)

(:documentation "The tnode class represents objects at the track level.")
)

For the valuesd the dotsinherited from the superclassnode, thevaue o leved is st to
the symbol track for dl nodes d thisclass, and the vdue d event-timeis st to the time
gamp of the mogt recent hit in any o the segmentscondtituting the track. Now the dots
local to the class tnode: the dot shode contains a list of pointers to the segment leve
nodes supporting the track. The dots last-coord and last-velocity are the latest average
position and the velocity vector associated with the track; the averaging is performed by
taking amean of the position and velocity vectors associated with dl the segmentsin the
track. The vauedf the dot threat issat to t through an after-method by taking adigunc-
tion of the threat values of dl the ssgments in the track. The vaue of the dot cpa-
bracket isequd to the intervalsadong x and y, each interval a union d the cpa intervas
asociated with the ssgmentsin the track. If threat isset to "t", agod node is depogted

23 kersten/kak

at the track level whose job is to conduct a spline check of each segment in the track to
confirm that the grouping of segmentsis coherent, where coherence is measured by the
smilarity of polynomid coefficients associated with fitting splines to the segments; this
work is done by GETSPLINE KS If the grouping of the segments is found to be
coherent, the value of thedot check isset tot, and if not, itisset tofaill. Setting check to
fail causestheformation of another track-level goa node at the next update of the tnode,
this god node is recognized by the rule-based planner, which deposits a bunch of
subgoals for an aternative grouping o the segments, possbly into multiple tracks. The
vaue df the dot checklyst isthelist o modesthat nesd to be verified as part of the track.
Checklyst is nil unlesscheck has been st tofall.

The abgraction levelsfor god nodes are identicd to the abstraction levels for data
nodes, asshown in Fig. 3. Thefoundation of al god nodesis the following class:

(defclass goal ()
(

(initiating- data-level :initarg :initiating-data-level :accessor level)
(event-time :initarg :event-time :reader event-time)

(purpose :initarg :purpose :accessor purpose)

})

The dot initiating-data-level refers to the data pand levd that resulted in the formation
of thisgod node. The dot event-time hes different semantics depending on the god node
being created. For example, for a god node a the segment levd, the vaue of the dot
event-timeisthe time samp of the data pand bnode which triggered the formation of the
god node. On the other hand, if agod nodeisinitiated by an snode, then event-timeis
st toalist of time-stamps of the hits condtituting the snode. If atrack level god nodeis
initiated by atnode, then event-time i s st to asingle vdue, which isthe latest time-stamp
asociated with the track. The value of the dot purpose describes the purpose of the
god. For ssgment leve god nodes, the value of purpose is to change the existing sag-
ments by extending them with the new hits or to start new segments atogether. This
being represented by the symbol change.

We will now separately define what iscalled amixin class that will then be added to
the just defined goal classfor creeting a class of god nodes with the desired behavior.
The reason for defining a mixin cassis best explained with the hdp of a hypotheticd
class hierarchy shown in Fig. 6. Let's assume that mog of the behavior exhibited by
classes A and B will either be inherited from thelr respective superclasses or defined
localy a A and B. Let's further assumethat we want both A and B to exhibit some addi-
tional behavior that will be the same for these two classes. This can best be done by
defining a mixin class separady with this additiona behavior and mixing in this mixin
classat the time the classes A and B are defined. In addition to inheriting methods from
their superclasses, the dasses A and B will aso inherit methods defined for the mixin
class. Although, since the hierarchy of god node classesin RTBB is smple, we could
have avoided usng a mixin class & this time, we have nevertheess chosen to use it for

-
-
-
f’ /
f” y
’f’ /
- /
’f’ /
—” /
- /
/
7/
/
/
/
7/
/
/

/

Figure 6 Most of the behavior exhibited by class A and B will either be inherited from their respective
superclasses or defined locally at A and B. The use of the mixin class allows us to endow both A and
B with some additional but common behavior.

25 kersten/kak

two reasons. one, to make our code more extensble, and, two, to illustrate how a mixin
class can be used. We use the following mixin class

111

This mixin class is used for specializing the behavior of the
basic class of goal nodes.

lll

(defclass goal -attributes-mixin ()
(

(duration :initarg :duration :accessor duration)
(source :initarg :source :accessor source :documentation "generating node"))
(:documentation "This i s a goal-attribute-mixin for bbgoal class ")
)
Before explaining the semantics of the dots used here, we will go ahead and define a

more useful classof god nodesthat isactudly used in the god pand of the blackboard:

lll

All goal nodes, regardless of level, are instances of this class.

lll

(defclass bbgoal (goal-attributes-mixin goal) ;; mixing superclass

(coord :initarg :coord :accessor coord)

(number :initarg :number :accessor number)

(threat :initarg :threat :initform nil :accessor threat)
(snode :initarg :snode :initform nil :accessor snode)
(ksarptr :initarg :ksarptr :accessor ksarptr)

)

(:documentation "This i s a subclass of the generic class goal. *)
)

Asimplied by the definition, the class bbgoal derivesits behavior partly from the super-
class goal and patly from the mixin class goal-attributeemhin. e have dready
explained the semantics of the dotsdf the class goal. About the dots inherited from the
mixin class, the dot source pointsto the nodeon the data pand that resulted in aparticu-
lar god node For example, the creetion of a bnode isfollowed immediatdly by the crea
tion of a segment level god node whose purposeis to use the hitsin the bnodefor either
extending the existing segments or Sarting nev segments. In this case, the vaue of the
source dot in the god node will be theidentity of the bnode thet ingtigated the formation
of the goa node. For another example, if atrack level data is consdered to be a threat,
before the threat is accepted the mode is tested for gpatid grouping by gpplying some
tests to eech of the segmentsthat constitute the mode Thetesting of each segment iscar-
ried out by forming a separate subgoal for that segment. For such subgodss, the vaue of
thedot sourceis st to the identity of the mode that failed the grouping test.

The inherited dot duration has a very important role to play in the control of the
blackboard, afact that will become more obviousin Section 5. Thedot duration refersto
thelength o timethe god isalowed to stay on the blackboard. For example, aone-shot
duration means there is only one opportunity for the planner to test a node againg the
rules to see if it matches any of the antecedents; if the match fails, the god node is

26 kersten/kak

discarded. Mot god nodesare o one-shot type; for example, the god to update a mode
with new segmentsis of one-shot type. Only one KSAR for thisgod node, which con-
tains a pointer to the segment that should be used for updating, will ever be formed by
the rule-based planner. Thegod nodeis purged as soon asthe KSAR isformed. There-
fore, if this KSAR fails to satisfy the god node, the god node will nat be there to re-
attempt updating of the tnode with the same segment.

In addition to the one-shot type, RTBB dso contains a recurrent god node. A
recurrent goa node is disabled after it satisfies the antecedent of pecific rules, and then
isreenabled after aKSisfired from the subsequently generated KSAR. Recurrent goa
nodes are never removed from the blackboard. The jab o the recurrent god node that is
currently in RTBB is to first locate old segments, these are segments whose most recent
returns are between 3 and 10 time units old, and to attempt to join these ssgments with
more recent segments. Suppose the database a the ssgment level containsan shode com-
posed of the following hits (hly,......... hl) and let's say the time damp o hl; is7, d
hi, 8, and so on. Also, assume that there exists another snode made up of hits
(h2;,h2,,h23) where the time slamp o h2; is3. Then the job of the recurrent god node
will be to merge the two segments since the time slamp o h2; isso close to that o hl;.
The actua merging, carried out by the MERGE-SEGMENTSKS, will only take place if
the extenson o the h2 segment to the time instant corresponding to the beginning o the
hl ssgment iswithin an acceptablecircle.

About the dots that are defined locdly for the class bbgoal, the vdue o the dot
ksarprr is st to nil for one-shot gods, for the recurrent god, it is set to the internal iden-
tity of the KSAR that isgenerated by the god node. Whilethe ksarprr dot maintainsthis
vaue, the recurrent goad node isinhibited from launching another KSAR. (Theinstantia:
tion o ksarptr is reset to nil by the termination of the execution o the MERGE-
SEGMENT KS) For agod node a the segment leve, the vadue of the dot coord is set
to the list of coordinatesaf the hits that have to be assgned to segments When a track
level god node is launched by a mode, then coord is left uninstantiated. For ssgment
level god nodes, number is set to the number of hitsin the radar return thet are yet to be
assigned; for track level god nodes it isleft uningantiated. The ingtantiation for threat
takes place by mechanismsexplained earlier; bascdly thisvariableissat tot or nil or the
list of pointerscorresponding to the snodes that compose the track.

The god nodes a dl three levels are created by making instances of the bbgoal
class. Note the important distinction between the data and the god pands. While on the
data sde we have a separate class for each abdraction level, on the god sde a single
classis used, the reason being that the god nodes a dl the levels form together adata
basefor the rule-based planner and therefore their smilarity isaconvenience.

Given that the reader is now familiar with the organization of RTBB, the overdl
method for solution formation is restated, hopefully in a more precise manner. All the

27 kersten/kak

radar returns or hits generated on a scan of the search space are given the same time
gamp. The list of hits occurring in one scan is contained in a class instance on the hit
level of the data panel shown in Fig. 3. Arrival of a new list of hits triggers the distri-
buted monitor to place a goal node on the segment leve of the god pand. This goal
node represents a desire or a request to use the new list of hits to update existing seg-
ments. If no existing segment can be found to match a particular hit, a new segment is
started with the new hit.

The segment nodes on the data pand are supported by the hit nodes. The segment
nodes are, in turn, grouped into track nodes. To drive the segment nodes to a higher
abstraction level, that is to push segments into tracks, one needs to expressthis desire by
establishing goa nodes at the track level of the goal panel. These goals point to segment
nodes which need to either extend existing tracksor establish new tracks. Tracksare not
established from segments unless the segmentsare at least two pointslong (actualy any
length threshold may be chosen since this is a constant parameter). A track may be
thought of as a running segment that provides some buffering against spurious noise
resultingin false segment starts. However, atrack is more than an extended segment; it
may represent many segments so that if several craft arein tight formation, these craft
would be represented asone track, with the track being characterized by an average posi-
tion and velocity vector.

To process, say, atrack-level god for extending a track by a new segment, aKSAR
would be generated for the goa node at the track level. In this case, the KSAR genera-
tion is accomplished by the firing of arulein the rule-based planner. Thisrule requires
that the value of the initiating-data-level dot of the goa node be "segment”, that the goal
node have more than one data point, and that the value of the action dot be "change”. If
all these antecedent conditions are satisfied then the create-ksar function is called and a
KSAR iscreated to either extend a track by the segment or to use the segment for starting
a new track. Thefunction create-ksar uses the informationin the goal node to select the
correct classinstantiationfor the KSAR.

In general, agoa can only be satisfied by activating a KS via a KSAR. So a goa
node must activate a KS directly via an appropriate KSAR, or indirectly through
subgoals generated from the goa. The priority of the KSAR generated by a goa node
will determine its position within the KSAR queue, asfurther discussed in Section 5.

4. KNOWLEDGE SOURCES

There are six KS’s that are part of RTBB. Each KSis a specialist solving a smal
portion of the problem and each concentrateson a blackboard object. Thefollowingisa
list of these KS’s and a short descriptionof their purpose.

28 kersten/kak

HT GENERATION (GETBEAM)

This KSis written in C and simulatesthe trgjectoriesfor the various craft. Trajec-
tories are generated by using Bezier curvesin 3-gpace [10]. A Bezier curveis specified
by atrapezoid formed by four vectors, denoted by rg, ry, ro and r; in the following for-
mulain which r(t) representsthe position of an craft at normalized time u:

r(u)=(1-u)*ro+3u(1-u)?ry;+3u2(1-wry+u’ry

where it is assumed that time is normadized such that 0<u<1 for the entire flight of the
craft. Every nth clock cycle (currently n=8) a goa nodeis placed on the hit level of the
goal pane, thegoa being tofire the GETBEAM KS. A KSARisthen isformed directly
from this goa node by the rule-based planner. The scheduler uses the KSAR to invoke
the GETBEAM KS. For the case when asingle craft is being tracked, the KS will create
a bnode composed of r(u) and its associated time stamp and then deposit this bnode on
the hit level of the data panel. The step sizedf the trgjectory thus generated i s controlled
by the step size of u, which is stored as a constant within the C program. When more
than one trgjectory is desired for smulating the flight of a formation, a separate Bezier
curve must be specified by designating its 4x3 parameter matrix for each craft in the for-
mation, and upon each call the GETBEAM KS returns the coordinatesof al the craft in
theformation.

ASSIGNMENT (GETASSIGNMENT)

After aset of radar returnswith the same time stamp is recelved, one of the follow-
ing actions must be taken:

extend an existing Segment,
start a new segment,

merge two existing segments,
terminate an existing segment.

A OpN =

The GETASSIGNMENT KS handles the first two cases. Merging is done by a separate
KS and termination of atrophied segmentshandled directly by the rule-based planner.

The problem of assigning hits to .segmentsi s akin to the consstent labeling problem
in which one seeksto assign a set of labelsto a sat of objects, each object taking one and
only one label. Although, clearly, a metric is needed to compare hits against the seg-
ments -- the metric could be afunction of how far apart a hit isfrom asegment spatialy
and temporally -- assigning hits to segmentsis made complicated by the fact that after
one such assignment has been made, that segment is no longer available for the other
hits. Our current solution to this problem uses a branch and bound procedure (a specia
case of A* search [28]) implemented via a best-first search algorithm; see [16, 31] for

29 kersten/kak

implementation of best-first search. Further discussion on the complexitiesof the assign-
ment problem, also called the data association problem, can befound in [3].

TRACK FORMATION (GETTRACK)

This KS groups segments or linear fits by average trgectory. More precisdy, the
KS groups together segmentsthat are close in both coordinate and velocity space; such
groupsare then represented by "average" tragjectoriescalled tracks. "Close" in coordinate
space means within one time unit of travel for thefastest craft. That is, if the fastest air-
craft turned directly toward the other craft, the former would intersect the latter within
one time unit. The velocity vectorsare "close" if they are parallel or nearly so (ie., the
cosine of the angleisgreater than 0.9) Other conditions may be added to ensure that the
velocity vectors are more Smilar. This KS is written in Lisp and compiled, loaded and
saved using dumplisp.

ThisKS also evaluates the threat of atrack to the region near the origin by usng a
threat assessment algorithm. The two quantities needed for thisare the current position,
given inthe dot linear, and the value of the dot cpa. (Recal that these two dots ae
defined for the snode class and that a mode points to the snodes that form a track.) The
cpa, which standsfor “‘closest point of approach,” iscomputed by extending the velocity
vector of the aircraft and then computing the closest distance from the origin to this
extended vector. An error vector Err=e-(F-cpa) is formed, where e=0.1 in the current
implementation. The magnitudes of the x, y, and z components of the error vector,
| Erry I, 1Err,, |, and 1Err, I, are then used to define an uncertainty box centered at the
cpa point. If any of the coordinate axes passes through this uncertainty box, the craft is
considered to be a thredt.

SPLINE INTERPOLATION (GETSPLINE)

If the GETTRACK KS determinesthat a particular track does indeed pose a threat
to the origin, a verification of the **soundness’ of the track must be immediately carried
out, sinceit is possiblefor the average parametersassociated with atrack to giveriseto a
threat while the actua tragjectorieswithin the track are non-threatening or even diverging
away from the origin. The GETSPLINE KS does this verification by fitting a spline to
each of the trgectories within a track and comparing the tragjectorieson the basis of the
spline coefficients. This KS, written in C, is based on a spline routine in [10, 11] and
obtainsa polynomial expressionfor the track between sample points based on the coordi-
nates and time stamps held in the segment nodes.

Periodic verification of threatening tracks are triggered by the rule base control
which checks the last time the tnode for the track was spline checked, and initiates a
spline check every time thisinterval exceeds the recheck-period.

30 kersten/kak

MERGE SEGMENTS (MERGE-SEGMENTY)

This KS detects moderate length ggps in the trgectory data and then attempts to
extend the older segments to the gppropriate current segments, thus creating longer and
more established segments. Of course, if a segment staysfaded for along time (in the
current implementation, more than 10 clock units), the segment is eventudly removed
from the BB.

MERGE-SEGMENTSKS goesinto ection if the time a which a ssgment wes last
updated and the beginning time o another segment is greater than 3 clock unitsand less
than 10. For time separations of 3 or less, the GETASSIGNMENT KS is capable of
assgning hits to segments directly. If an older ssgment is digible for merging on the
basisof this time-window criterion, the older ssgment is extended in time and space ad
then its predicted pogtion is matched with the more recent segment to seeif merging can
be carried out successfully.

The MERGE-SEGMENTSKS is implemented within the BB processitsdlf sinceit
requires extensive access to the data nodes on the BB itsdf. (If shared memory were
available on the BB, one could implement the KS as a separate process) RTBB usesa
recurrent goal node, a the ssgment leve, to monitor and schedule the MERGE-
SEGMENTS KS, implying that a god to invoke this KS is placed permanently a the
ssgments level o the god pand. This god node is an instance of the class bbgod; in
thisinstance, the dot purposeis st to 'merge-segments, the duration to 'recurrent’, the
initiating-data-level to 'ssgment, and the ksarpzr to nil. When segmentssatisfy the rule
to activate the MERGE-SEGMENTSKS, aflag pointing to the generated KSAR isedta
blished in the god node. Aswasdated in Section 3, thisflag inhibitsany further activa-
tion of the KS until theend o the execution of the KS. Once the KS has been activated
and its execution completed, the flag is removed and the rule base can satidfy the god
again. In thismanner, the MERGE-SEGMENTSKS s run on acontinuing bassand a a
low priority. Example 4 in Appendix A demondrates how the merge-segments KS
works.

THE SEGMENT VERIFY KNOWLEDGE SOURCE (VERIFY)

This KS is used to verify tha a ssgment still maiches a particular track after the
GETSPLINE KS hasfailed, indicating that the ssgmentsare no longer consistent. Imple-
mented as a part of the main BB process, this KS merdy examines each segment com-
posing the current track to determine if it till satisfies the initia formation condition.
The manner in which thisis done is by subgoding. One subgoal is generated for each
segment nodein the track by the rule base, the subgoal being for the BB to verify that the
segment belongs to the track. If a ssgment fails the verification test, the pointer to the
segment from the track and the pointer to the track from the segment are removed. The

31 kersten/kak

segmentsthusrel eased can reform new tracksat alater time.

The test conditionsfor verifying whether a segment belongsto a track are the same
as those needed to form the tracks in the first place. During this verification period, the
GETSPLINE KS, which initially detected the improper grouping of segments, is
suspended. Thisisaccomplished by marking the track node check dot asfailed and hav-
ing the GETSPLINE KS check that condition beforethe KS can be fired.

This ends the introduction to the'variousKS's in the system. To put the KS’sin a
perspective, the GETBEAM KS drives the blackboard with radar return samples. The
GETASSIGNMENT KS maps these samples into linear approximations of trgectories
and the GETTRACK KS further groups these linear segments into tracks. The GETSP-
LI NE KS checks that the final trgjectory grouping makes sense, especidly if the average
parameters associated with it are such that the track is considered to be threatening. The
VER FY KSis used to break out tracksthat fail the GETSPLINE KS test; the segments
thusreleased are allowed to form tracks later. The twoKS’s, GETSPLINE and VERIFY
congtitute a backward type of reasoning. And lastly, the MERGE-SEGMENTS KS
attemptsto maintain track continuity acrossfadesin trgjectories.

5. BLACKBOARD CONTROL

Idedlly, the control of the blackboard should be opportunistic in nature, i.e., choose
the KS that advancesthe solution the most [32). However, whether or not control can be
exercised in an "optima” manner depends ultimately on the programmer who presum-
ably has an understanding of the application domain. In RTBB, data events are mapped
into goa nodes, which inturn ae mapped either into subgoals or KSAR's. The KSAR’s
are enqueued into a priority queueing system, the queuing discipline determining the
order in which the KSAR’s appear in their respective queues. The scheduler then cycles
through the KSAR gqueuesand selectsKS's tofire,

We will now describe various possible approaches to the representation and pro-
cessing of KSAR queues. Then, at theend of thissection, the current RTBB implementa
tion of the KSAR queueing system will be discussed. Idedly, the KSAR priorities
should be dynamically determined based on the threat a craft presents to the command
and control center presumed to be located a the origin of the coordinate system. For
dynamic prioritization, the planner must contain rules for assessing the relative severity
and immediacy of a threat. Furthermore, the scheduling of the threatening tnodes must
alow the other goa nodes in the system to be serviced often enough so that any future
threats would not be ignored. Evidently, designing a planner and scheduler for such
dynamic prioritizationis acomplex task and is not addressed in RTBB. We have chosen

32 kersten/kak

a smpler approach to KSAR prioritization that has the virtue of allowing for the main
BB process to activate KS computations while the main process attends to other chores.
Aswe will show later, our approach is an approximation to what may be thought of asa
desirable approach to KSAR prioritizationin which a separate KSAR queue is used for
each KS and then, as shown in Fig. 7, each KSAR queue is visited once in a cyclic
fashion, perhaps using aH FOaccessdiscipline.

Before describing the KSAR prioritization scheme actually used in RTBB, we
would like to mention that the rule-based planner for mapping goal nodesinto KSAR’sis
aforward chaining system. Hereisan exampleof arulefrom the planner:

--
rr

Rule 5 creates a KSAR for invoking the MERGE- SEGVENTS KS i f
appropriate conditions are satisfied by the goal node

--
rr

(setq rule5
‘(rule merge-segnments
(if
(and
(equal (purpose gnode) ' nerge- segnments)
nul | (ksarptr gnode)) ; no nerge-segnent ksar currently active
(setq rvarl (find-ol dest-segnent))
(setqg rvar3 (find-nost-recently-started-segment-with-length-gt-y 1))
(setq rvar2 (abs (- (car (event-time rvarl))
(car (last (event-tine rvar3))))))
(and (> rvar2 3) (<= rvar2 10)) : is the age within proper range
))
mr """ rule attenpts to patch fades in signal ---
(then

(progn ; this creates ksar and sets ksarptr to that ksar
(setf (ksarptr gnode) (create-segnent-merging-ksar gnode))

»y»

The goa node, gnode, will be an instance of classbbgoal defined earlier. Thisrule states
that:

I - the purposeof thegoal nodeis "merge-segments’

and there are noKSAR’s fired from thisrule

and the difference between the end time of a segment and the start time of another seg-
ment is between 3 and 10 time units,

THEN - create a K SAR to merge the two segments.

A condition for thisrule to fireis that the value of the slot ksarptr of the object gnode
must be nil. Thereforethisruleisdisabled by the (setf) statement in the consequent
of therule; thiscall to setf invokes the generic writer function and sets the value of the
ksarptr dot of the gnode object to the internal identity of the generated KSAR.

The aboverule creates a KSAR by a call to creat e-segnent - mer gi ng-ksar function
which simply first makes an instance of the KSAR class and then pushes this instance

KS1

KS3

KS4

o]

KSN

Figure 7. This figure depicts an ideal KSAR queueing system.

34 kersten/kak

into the KSAR queue. Thisfunction isfairly easy and is shown below:

2827257 8720272220257 777507572828 280 2070885728807 87 7080002480 0080 000202720200

}; This function creates the segnent nerging ksar

2202 ITTIITNNNINIITILNIN NN LI L LI PN II PP IIIE NI ISV IV ISV

(defun creat e- segnent - ner gi ng- ksar (gnode)
{sendksarpush
(make- i nstance ‘ksar

cpriority 1
-ksar-id *merging
:postboot ‘(nerge- segnents)
-command ’nerge- segnents
:cycle clock

:context gnode

ksarqg)

Thefollowingisan exampleof a KSAR created by acall to the abovefunction.

;3 An example KSAR that seeksto invoke MERGE-SEGMENTSKS

$#<ksar R #x6269fe>
is an instance of class #<clos:standard-class ksar @ #x567bce>:

prel yst <unbound>

pr eboot <unbound>
anslyst <unbound>

ar gl yst <unbound>
conmand ner ge- segnent s
messenger <unbound>
channel ni

nodeptr <unbound>
postboot (mer ge- segnent s)
cont ext #<bbgoal € #x577eee>
cycle 72

ksar-id mer gi ng
priority 1

This KSAR isconstructed by making an instanceof the following class, together with the
mixin class ks-protocol-mixin whose purpose should become clear when we discussdis-
tributed KSAR’s.

35 kersten/kak

lll

;; Whn the conditions on the blackboard are right for firing a
;; KS that fact is stored in a knowledge source activation
:; record (KSAR). Defined here i s the class for making KR objects.

(defclass ksar (ks-protocol-mixin)
(
(priority -initarg :priority :accessor priority)
(ksar -id :initarg :ksar-id :accessor ksar-id)
(cycle :initarg :cycle :accessor cycle)
(context :initarg :context :accessor context)
(postboot :initarg :postboot :accessor postboot)
(nodeptr :initarg :nodeptr :-accessor nodeptr)
(channel :initarg :channel :initform nil :accessor channel)
(messenger :initarg :Mmessenger :accessor messenger)

)
(:documentation " The knowledge source activations records ")
)

In the above KSAR classdefinition, the ot priority needs some explaining. We said ear-
lier that ideally a separate KSAR queue should be created for each KS. Although thisis
our goal, it has not been fully achieved yet. At this time in RTBB, we have separate
KSAR queuesfor only the GETBEAM and the GETASSIGNMENT KSs. The queuefor
the GETBEAM KS is caled beam-queue and the one for the GETASSIGNMENT KS
segment-queue. For reasonsthat will be explained shortly, the KSAR's corresponding to
the GETBEAM and GETASSIGNMENT KS's are said to be of distributed type. All the
other KSAR's will be said to be of atomic type. All the atomic KSAR's are enqueued
separately; this queue is called the atomic-queue. While the beam-queue and the
segment-queueare HFO, as they should be, it would be unreasonabl eto impose the same
gueueing discipline on the atomicqueue. The value of the dot priority reflectsthe prior-
ity that should be accorded to the KSAR shown in the atomicqueue. Theksar-iddot is
used to enqueue the goal nodein the proper KS queue.

Thedot cycleisset totheclock time at which the KSAR was created. The dot con-
text is set to the pertinent aspectsof the context at the time of KSAR creation. The value
of this dot can be as simple as just the internal identity of the bbgoa that caused the
creation of the KSAR; or, in other cases, can also include information such as the latest
time associated with an snode, the number of hits of which the snode is composed, etc.
The dot nodeprr is set to the internal identity of the goa node that gave rise to the
KSAR. The other dotsin the above KSAR will be explained after we define more pre-
cisely what we mean by adistributed KSAR.

When a KSAR of the type shown above (see #<ksar @ #x6269fe>) is selected and
its corresponding KS executes, the control resides with the KS until such time when the
execution of the KSisover. In other words, the main BB process simply waits for the
KS to finish up before focusing on any other activity. KSAR’s that hand over control to
their respective KS's are defined to be of type atomic. In RTBB, atomic KSAR's have
been used for most of the KSs. One advantage of an atomic KSAR is that because it

36 kersten/kak

allows the KS to wrest control away from the main BB process, it implicitly freezes the
context. In other words, since the information on the BB can not be atered during the
execution of the KS, no intermediate incorrect information can be returned by the KS.
Clearly, if the information on the BB was allowed to change during the execution of the
KS, itisentirely possible that what isreturned by the KS may not be relevant to the new
state of the BB.

One mgjor disadvantage of an atomic KSAR isthat it does not permit exploitation
of parallelism that isinherent to problem solving with blackboards. Aswe mentioned in
the Introduction, one main attraction of using the BB paradigm is that the KS's, if they
represent independent modules of domain knowledge, should lend themselves to parallel
invocation. Although from the standpoint of enhancing performance, parallel execution
of KS's ishighly desirable, the reader beware, however. Parallel execution also demands
that attention be paid to the elimination of interference between the KS's, in the sense
that one K S should not destroy the conditions that must exist on the BB for the results
returned by another KS to be relevant. Researchers have proposed methods for dealing
with these difficulties; the methods consist of either locking regions of the BB database
or tagging different nodes with the identities of the KS's that need them [21]. Thereis
also the opinion that one should not bother with the overhead associated with region
locking or data tagging, and should simply let the BB resolve on its own any inconsisten-
ciesthat might arise due to interference between the KS's.

In addition to atomic KSAR's, in RTBB we also have another type of KSAR's that
permits parallel invocation of two of the KS's; we call the latter type distributed
KSAR's. The KS's that can be invoked via distributed KSAR's are GETBEAM and
GETASSIGNMENT. An instance of a distributed KSAR is made from the same class
that is used for an atomic KSAR. A most important characteristic of a distributed KSAR
isthat it allows the BB database to interact with the KS on a polling basis.

The KS corresponding to a distributed KSAR isexecuted in three stages. The first
stage sends a command to the KS containing all the information needed to execute the
KS. Theformat isjust alist which represents a function call with all the information as
arguments. The KS then just eval's the list. The second stage occurs when the system
first polls the KS port to seeif the KSisfinished. Note that this polling cannot be accom-
plished by pressing into service a regular read function, such as the Common Lisp read,
since such a function would simply wait for the data to appear or do something
unpredictable, but that is not what we want. What we wished was that we be able to poll
the KS every few clock cycles, check for whether or not the KS had returned the results,
then read the results if available. In the absence of any results from the KS, we wanted
the system to move on to other tasks and to return to the KS at a later time. Hence, the
use of the Common Lisp function listen for implementing a non-blocking read which
takes the K S results and stores them in the KSAR. The third stage occurs when the BB

37 kersten/kak

takes the answer returned from the KS and modifies the BB accordingly. Between the
stages, the BB isactively working on other partsof the problem. Theresult isa speed up
duetothe parallel processing carried out by the system.

An example of adistributed KSAR which seeks to invoke the GETASSIGNMENT

K Sfollows.

#<ksar @ #x66dcee> is an instance of class #<clos:standard-class ksar @ #x567bce>:
prelyst ((#<snode & #x583aa6> #<snode & #x583ab6> #<snode @ #x583acé>)
((3 97.68385 2.682486 0.0) (2 1.47 98.4704 0.0)
(3 97.68385 2.1825 0.0)) ((4 96.8832 2.88 0.0)
(4 96.8832 3.379968 0.0)) ((96.8832 2.88 0.0)
(96.8832 3.379968 0.0)) 4)

preboot (pre-assign- hits)
anslyst nil
arglyst (* ((397.68385 2.682486 0.0) (2 1.47 98.4704 0.0)

(3 97.68385 2.1825 0.0)) '((4 96.8832 2.88 0.0)
(4 96.8832 3.379968 0.0)))

command getassignment

messenger #<messenger @ #x577dle>

channel 1

nodeptr #<bbgoal @ #x659796>

postboot (post-assign- hits)

context ((event—timenil) (number #<bbgoal @ #x65979€>) (coord 4))
cycle 36

ksar-id segment

priority 1

This KSAR iscreated by making an instance of the ksar class shown earlier. The mixin
class ks-protocol-mixin that isa part of the KSAR class definition is presented below:

L A A NN NN NN NN NN NN NN EENEREENNNNN NN NN

am
rs

32 This is a mixin class called ks-protocol-mixin

R N N N NN N NN

(defclass ks-protocol-mixin ()

(

(command :initarg :command :accessor command)
(arglyst :initarg :arglyst :accessor arglyst)
(anslyst :initarg :anslyst :accessor anslyst)
(preboot :initarg :preboot :accessor preboot)
(prelyst :initarg :prelyst :accessor prelyst)
)

(:documentation "This is a mixing-class")
)

Aswill beevident from the following definitions of the slots, the mixin classisonly use-
ful for a distributed KSAR. Since all KSAR instances use the mixin, the reader might
wonder why use the mixin class ks-protocol-mixin at al; after all, the slots in the mixin
could have been incorporated in the definition of the ksar class. The reader should note
that even when a mixin is always used for defining objects, its separate definition allows
the definitions of objects to be expanded incrementaly as the software is being
developed. Also, one can take advantage of the fact that mixin associated methods will
beinvoked in a certain order depending upon the order of appearance of mixins, etc.

We will now explain the nature of the slots in the above distributed KSAR. We
have already explained the nature of the slots from priarity through nodeptr in connec-
tion with atomic KSAR’s. W e will now define the other slots. The slot channel takeson a

38 kersten/kak

vaue from the st (2, 1, -1, 0}. When thevadue is 1 (flow of information outward), the
KSAR isin thefirg phase, meaning that it is ready to send a command to the KS that
would initiate the execution of the KS; the commeand itsdlf is taken off the dot command
and itsargumentsfrom arglyst. After thecommand istranamitted to the KS the vaue of
channd is set to -1 (flow of information inward), which isasgnd to the BB processthat
it should start polling the KS port for new results usng non-blocking read. After the
results are read off the KS port, they are deposited in the KSAR a anslyst and a that
time the value o channd ischanged to 0. The vaue0 (information staysin the BB pro-
cess) for channel causes the function that is a postboot, in this case the function is post-
assgn-hits, to take the resultsout o the KSAR and depodt them a the gppropriate place
in the BB database, a which time the KSAR ceasestoexist. It isobviousthat channd is
being used for sequencing in the correct order the initiation, execution, and results-
reporting phases of KS operation. In the above KSAR example, the dot arglyst dready
has avaue, so KSAR processing can beginin phase L While in some cases avauefor
arglyst can easlly be generated a the time the KSAR isformed by the planner -- thisis
the case when aKSAR isformed for invoking GETBEAM snce thearglyst hereisnil --
in other cases, some computationd effort may have to be expended for constructing the
arguments. In the latter cases, arglystis synthesized by adding yet another phase to the
three phases we have dready mentioned. This additiond stageis specified by the setting
the vaue of channd to 2. When the scheduler seesthis vaue, it puts out a function call
which constructs the arguments, the function call being hdd in the dot preboot. In the
above example, the value of arglyst was generated by acal to the function (pre-assign-
hits) during the phase when channd was st to 2. Thepreboot function, in this case pre-
assgn-hits, not only synthesizes arguments for the function cdl to the KS but also puts
together, for diagnostic purposes, alist of dl the BB database items that were used for
the arguments. The databaseitems used are stored in the dot prelyst.

A note of explanation isin order for the exact nature df arguments under arglyst in
the above example. The function pre-assgn-hitsexaminesall the snodesin the BB datar
base and yanks out of each shode the most recent hit. Thislist of these most recent hitsis
the first of the two arguments in the dot arglyst, the time-stamp corregponding to this
argument is 2 or 3. The second argument under arglyst, corresponding to time-stamp 4, is
the list of hit nodesthat mug either be assgned to the segments, or dlowed to form new
segments. The GETASSIGNMENT KS then tries to assign each new hit to a segment
based on the spatid and tempord closenessdf the hit to the most recent entry in the seg-
ment.

The actud activation of a KS for both the atomic and distributed KSAR’s, is car-
ried out by sending a write command to a class which acts as an Input/Output (1/O)
handler for the BB. The write commagd is synthesized by the following method thet is
defined for the ks-protocol-mixinclass.

x. . . .
Note that this method iS neither an after-method nor a befare: mehod. The method thet is$oAN
hereisaprimary meahod that isinvadked by cdling the ganaic fundion *write-ks’ with an ogjed,

39 kersten/kak

L e A A A A B A N N A A N A A N NN NN]
..

:: This method writes to the input port of the KS which i s the
*7 same as one of the output ports of the BB process.

R A A A N A N N N N NN NN NN NN

(defmethod write-ks ((ele ks-protocol-mixin))
(with-accessors
((com command) (alyst arglyst) (mess messenger)) ele

(format (write-port ; get output port name from messenger object
(messenger ele) ; get messenger name from variable
) ""a"%" (cons com alyst)) ; form function call
(setf (channel ele) -1) ; change state of ksar to read

))

Essentidly it isacomplex format slatement which finds the correct input port to the KS
(which is the same as an output port of the BB process), condructs the command
sequencefrom the dot command and arglyst in the KSAR and sends the command to the
port. Before exiting, the method also changes the state of the KSAR channdl to reflect
thet the command has bean sent to sart KS execution and that the KSAR is now reedy to
poll for an answer usng the non-blocking reed.

We have not yet explained the purpose of the dot messenger in the distributed
KSAR example we showed previoudy (see #<ksar @ #x66dcee>). To underdand the
functiondf this dot, note that we nead to associate with each KS an I/O handler contain-
ing information such as the identity of the input and the output ports associated with the
KS I/O handlersare created by making ingances of the messenger class shown beow.

...
L A A A NN N N N N N NN N N N N NN NN NN NN NN

:: This i s the class messenger. Instances of this class are the 1/0
;3 handlers associated with the Ks’s.

R A A N N N NN NN NN NN NN NN NN NN

(defclass messenger ()

(

(write-port :initarg :write-port :accessor write-port)
(write-fd :initarg :write-fd :accessor write-fd)
(read-port :initarg :read-port :accessor read-port)
(read-fd :initarg :read-fd :accessor read-fd)

(pid :initarg :pid :accessor pid)

(:documentation "The messenger class allows us to establish 1/0 with KSs "}
)

Thevdues o the dotswrite-port and read-port are set to internaly generated symbolic
names that designate the two ports. Since they are both set to the same bidirectiond
dream, the read-port and the write-port are redlly the samein Allegro Common Lisp thet
we have used for this project. For example, for the GETBEAM KS thisisdone usng a
run-shell-commandasfollows:

thet will bebound to the parameter ele and that must be of class ks-protocol-mixin.

40 kersten/kak

(defun openports ()
(multiple-value-setq (beam error-beam beam-id)
(run-shell-command " path"” :wait nil
:input :Stream :output :Stream
ierror-output :stream))
)
The ingantiation of the globa variable beam is then assgned to both the write-port and
the read-portsdots o the message object. The function call (openports) produces a bi-
directiona stream with

beam set to #<excl::bidirectiocnal-terminal-stream @ #x7bb96e>
error-beam set to #<excl::input-terminal-stream @ #x7bcbbé>
and beam-id set to 18476, the UNl X process i d

The dots write-fd, read-fd and pid are not being usad in this verson of the blackboard.
The dot messenger in the distributed KSAR shown previoudy isingantiated to the iden-

tity of that instance of the messenger class that is associated with the KS that the KSAR
seekstoinvoke.

We Wl now address the subject of how the KSAR's are queued in the current
implementation of RTBB. As mentioned before, to maximize the potentid for pardld
implementationsdf the KS’s the sysem should congtruct separate KSAR queuesfor each
KS. However, the current implementation has separate queues for only the GETBEAM
and GETASSIGNMENT KS’s, cdled beam-queue and segment-queue, respectively; al
the other KSAR's are enqueued into a single queue cdled the atomic-queue (Fg. 8).
Each KSAR queue is stored in the gppropriate dot of an object that is an instance of the
following bbksarq class.

BN NN N m M Em L EEm L EEE NN L EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN LN

53 This class is used for creating ksar queues. The different slots
;;- Of the singular object that is made from this class are used for
storing different ksar queues.

R A A B B B B A LA A A A A A A A A A Y A A N A A A N | A A A A A AV A A B A A A A A A A A o A v Y

(defclass bk iarqg ()
(
(number :initarg :number :initform ‘() :accessor number)
(mask :initarg :mask :initform ’ (11 1) :accessor mask)
(atomic-queue :initarg -atomic-queue :initform ‘() -accessor atomic-queue)
(beam-queue -initarg -beam-queue :initform ’ (} :-accessor beam-queue)
(segment—queue :initarg :segment—queue :initform ‘() :accessor segment-queue)
(track-queue :initarg :track-queue :initform ’ () :accessor track-queue)
(spline-queue :initarg :spline-queue :initform ‘() :accessor spline-queue)
(merge-queue :initarg :merge-queue :initform ‘() :accessor merge-queue)

)

(:documentation "Only one object, called ksarq, is made from this class. ")

The dot number isset to thetotd number of ksar's hdd in dl thequeues. Note that mask
represents the status of the KSAR's that are currently a the head of the queues. Theligt
that isthe vaue df nmask has astatus entry for each of the distributed-K SAR queues, ad
the interpretation to be given to each entry in the list is the same as tha given to the
vauesfor the dot channd in adigributed KSAR. In the defclass, theinitia mask vaues
have been st to 1 for the head K3AR’s in both the beam-queue and the segment-queue,

ATOMIC-QUEUE

SEGMENT-QUEUE

Figure 8. This is the actual KSAR queueing system currently employed in RTBB.

42 kersten/kak

meaning that if any KSAR's are found at the heads of the respective queues, they arein
stage 1. Recall that the channd vaue of 1 corresponds to the write stage in which com-
mands are written out to the KS’s.

A gngleinstanceof the above classis made and the resulting object is called ksarg.
The dot atomic-queue of thisobject, initialy anull list, isset tothe list of al the aiomic
KSAR's, the dot beam-queueto thelist of dl thedistributed KSAR's that seek to invoke
the GETBEAM KS and, findly, the dot ssgment-queueto the list of dl the distributed
KSAR's that seek to invoke the GETASSIGNMENT KS The track, spline, and merge
queues are not used a this time, but are incdluded in the definition for anticipated exten-
sond thesystem.

The RTBB scheduler cycles through the three queues. It looks a the heed KSAR in
each queue and services it in a manner that depends on whether the KSAR is in the
aomic-queue or in one of the other queues. The macro mepoptart is the utility usad in
conjunction with the mapcar function for popping the head KSAR's off each non-empty
KSAR queue. Beforeinvoking mcpoptart, alist of the names of the non-empty queuesis
congructed by examining the variousdotsaf the object ksarg. Via the mapping function
mapcar, the macro mcpoptart is then goplied to this list, the result being the heed
KSAR's in the various queues.

(defn(lalcro mcpoptart (gname) ;5 gname bound to the name of KRR queue
*(lete

((com (fdefinition ,gname)) :; com is reader of queue gname

(comset (fdefinition (concatenate 'list (list *setf ,gname))))

;; comset i s writer of the same gname
(xx (funcall com ,'ksarq)) ;; xx isall the KSAR's in the queue
(y (cdr xx)) ;; yisthe tail of the queue
(z (car xx})) ;: z isthe head of the queue
(funcall comset y ,’ksarq) z)) ;; the tail remains and head i s returned

For the atomic-queue the KS is threeded into the BB process before vigting the other
queues. On the other hand, for the beam-queue and segment-queue the KS activation is
executed in stages as described earlier so that the BB does not wait for the KS to finish
executing.

Thefollowing isan exampleof bbksarq during execution.

‘#<bbksarqg () #x56c386> is an instance of class #<clos:standard-class bbksarq @ #x56d8fe>:

mer ge-queue nil

spline-queue nil

track-queue nil

segment-queue nil

beam-queue (#<ksar @ #x7b69%ee>)

atomic-queue (#<ksar @ #x7bl38e> #<ksar @ #x7b3lae>)
mask (1-1nil)

number 3

Here thefirg itemin thelist that is the value of the dot mask represents the status of the
aomic queue (in the case shown here, the value is s&t to 1, a meaningless number for
aomic queues); the second item, pertaining to the beam queue, is set to -1 and means
that the KS is ready to reed; and, finally, the third item is s&t to nil sSnce the segment
queue is empty. The dot number is set to the totad number of KSAR's hdd in the

43 kersten/kak

gueueing system and is automatically updated after every change by an after-method. As
mentioned previously, the track, spl i ne and merge queues are not being used at thistime.

We will now comment on how the clock is used in the system. Each cycle of the
scheduler consists of going through all the three queues. Each cycle of the scheduler is
followed by an invocation of the planner, which mapsall the previously unattended goals
into either KSAR’s or sub-goals. One cycle of the scheduler followed by oneinvocation
of the planner constitutes one control cycle, and one control cycle constitutes one clock
unit. When the BB process is first started, the main control loop first deposits a goal at
the hit level; this goal for generating new hitsisplaced at the hit level every eighth clock
unit. The scheduler now looks at all the queues, finding all of them empty except the
beum-queue. The scheduler then examines the beam-queue, where it finds a KSAR gen-
erated by the planner from the hit-level goal. It services this KSAR according toitsstage
status value as stored in the nask slot of ksarq. Finaly, the scheduler looks at the
segment-queue, Which it finds in the initialization stage. The process then repeats, as
depicted in Fig. 8.

The main control loop that alternately runs the planner and the scheduler is shown
below:

This i s the main control loop for driving RTBB

(defun cloop ()

(catch ‘cloop ;; throw-catch combination used to break out at right time
(do () s: put into infinite loop

(0)

(go-for-it) ;; limits cycles, throws control back for loop breakout
(clock-update) ;; update the clock variable and place a goal at the

;; hit level every eighth clock unit.

(planner) ;; this mgps the goals into KSAR’s; it calls planner
(scheduler) ;; run the scheduler which cycles through the three

;5 KR queues held by the object ksarq
)

6. CONCLUSIONS

We hope we succeeded in conveying to the reader a sense of how Lisp object-
oriented programming can be used for constructing a blackboard. In practically al the
literature we have gone through, we have not encountered much discussion on the pro-
gramming aspects of a blackboard. We hope this report has rectified that deficiency to
some extent.

44 kersten/kak

Evidently, our blackboard was meant more as a learning and training exercise.
Therefore, our efforts should be judged |essfrom the standpoint of whether we succeeded
in designing a system that could actually be used for controlling a radar system and more
from the standpoint of whether we succeeded in reducing the problem to manageable
proportions, without trivializing it, and whether we succeeded in € ucidating adequately
theimportant detailsof our implementation.

RTBB is an evolving program and many aspects of it could be further refined. For
example, one of future goalsis to implement a separate queue for each KS; that would
enhance a parallel or multi-processor implementation of RTBB. We would aso like all
the KSAR’s to be of distributed type, which would make it necessary that we somehow
"split" those KS’s that are currently processed via atomic KSAR’s into pre, write, read,
and post phases. The RTBB rule-based planner is rudimentary at this point. A much
more knowledgeabl e planner could be created to better focusthe control.

As was mentioned in the previous section, a clock unit in RTBB consists of the
scheduler taking one pass through all the queues and oneinvocation of the planner. This
definition of a clock unit makes the programming easy, but it does make the exercise
somewhat artificial. If the blackboard hed to run by areal clock, provisionswould have
to be made to buffer the radar returns; the BB could then take the hits out of the buffer
whenever it was allowed to attend to that task by the scheduler. Real time implementa-
tion of RTBB remainsafuture goa.

7. Acknowledgment

Seth Hutchinson's expertise in AI programming was invaluable and our many dis-
cussions with him about design decisions provided a sounding board which resulted in a
much better product. We also owe thanks to Ann Silva, Computer Scientist at the Naval
Undersea Warfare Center Division, for reading the manuscript carefully and providing us
with valuablefeedback.

8. REFERENCES

[1] K. M. Andress and A. C. Kak, ""Evidence Accumulation and Flow of Control in
a Hierarchical Spatial Reasoning System,” A7 Magazi ne, Vol. 9, No. 2, 1988, pp
75-94.

45 kersten/kak

[2] K. M. Andress and A. C. Kak, The PSEIKI report -- Version 3, Evidence Accu-
mulation and Flow of Control in a Hierarchical Spatial Reasoning System,
Technical Report TR-EE 89-35, School of Electrical Engineering, Purdue
University, November 1989.

[3] Y. Bar-Shadom and T. E. Fortmann, Tracking and Data Association, Academic
Press, 1987.

[4] R B. Cooper, Introductionto Queueing Theory, Second Edition, North Holland,
1981.

[51 D. D. Corkill, A Framework for Organizational Self-Design in Distributed
Problem Solving Networks, PhD Thesis, U of Mass, Feb 1983.

[6] D. D. Corkill, et d., GBB: A Generic Blackboard Development System, AAAI
Conference, 1986, Philadel phia

[7] I.D. Craig, The Ariadne-1 Blackboard System, The Computer Journal, VVol. 29,
No. 3, 1986, pp. 235-240.

[8] R Englemore and T. Morgen, Eds., Blackboard System, Addison-Wedey,
1988.

[91 L. D. Eman, F. HayesRoth, V. R Lesser, and D. R Reddy, **The Hearsay-11
Speech Understanding System: Integrating Knowledge to Resolve Uncertainty,”
ACM Computing Surveys, pp. 213-253, 1980.

[10] I. Faux and M. Pratt, Computational Geometry for Design and Manufacture,
EllisHorwood Limited, 1979.

[11] G. Forsythe, M. Mdcolm and C. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, Inc., 1977.

[12] Allego CL User Guide,Version4.1 beta Franz Inc., Aug 1991.

[13] Gabriel, R P, White, JL., and Bobrow, D. G., CLOS: Integrating Object-

Oriented and Functional Programming, Communicationsof the ACM, Vd 34,
N0 9, Sept. 91., pp 29-38.

[14] A. R Hanson and E. M. Riseman, VISONS A Computer System for Interpret-
ing Scenes. Computer Vison Systems, Hanson and Riseman eds,, Academic
Press, NY, 1978.

[15] B. Hayes-Roth, ""A Blackboard Architecture for Control," Artificial Intelli-
gence, 26, 1985, pp. 251-321.

[16] F. S. Hillier and G. J Lieberman, Introduction to Operations Research,
Holden-Day,1980, Chapter 18.

[17] S. Hutchinson, Persona Communication, Summer 87.

46 kersten/kak

[18] Keene, Sonya E., Object-Oriented Programming in Common Lisp, A
Programmer’'s Guide to CLOS, Addison Wedley, 1989.

[19]1 P. R Kersten and A. C. Kak, A Tutorial on Using Lisp Object-Oriented Pro-
gramming for Blackboard Computation (Solving the Radar Tracking Problem),
International Journal of Intelligent Systems, John-Wiley & Sons, Inc.,, Val. 8,
1993.

[20] Lawless, JA. and Miller, MM. Understanding CLOS The Common Lisp Object
System Digital Press, 1991.

[21] V. Lesser and R Fenndll, ** Paralldlism in Artificial Intelligence Problem Solv-
ing: A Case Study of Hearsay I," |[EEE Trans. on Computers, Vol. C-26, No. 2,
Feb. 77, pp 98-143.

[22] V. Lesser and D. Corkill, ** Functionally Accurate, Cooperative, Distributed Sys-
tems," |EEE Transactions on Systems, Man, & Cybernetics, Vol SMC-11, No.
1, Jan. 1981., pp81-96.

[23] V. Lesser and E. Durfee, Incremental Planning in a Blackboard-based Problem
Solver, AAAI - 86, Philadelphia.

[24] M. Nagao and T. Matsuyama, A Sructural Analysis of Complex Aerial Photo-
graphs, Plenum Press, New Y ork, 1980.

[25] H. P. Nii et d., Sgnal-to-Symbol Transformation: HASPISAP Case Sudy, The
AT Magazine, Spring 1982, pp 23 - 35.

[26] H. P. Nii, ""Blackboard Systems: The Blackboard Modd of Problem Solving
and the Evolution of Blackboard Architectures," AT Magazine, Summer, 1986,
pp 38-53.

[27] H. P. Nii, "*Blackboard Systems. Blackboard Application Systems, Blackboard
Systems from a Knowledge Engineering Perspective," Al Magazine, August
1986, pp 82-106.

[28] N. J Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co, Palo
Alto, CA., 1980.

[29] Sinclair, K.H., and Moon, D. A., The Philosophy of LISP, Communicationsof
the ACM, Vol 34, N0 9, Sept. 91., pp 49-57.

[30]1 M. A. Williams, Distributed, Cooperating Expert Systems for Sgnal Under-
standing, In Proceedings of Seminar on Al Applications to Battlefield, 3.4-1 to
3.4-6, 1985.

[31] P. H. Winston and B. K. P. Horn, LISP, Second Edition, Addison-Wed ey, 1984.

[32] R Worden, Blackboard Systems, in Computer Assisted Decision Making Edited
by G. Mitra, North Holland, 1986, pp. 95-106.

kersten/kak

APPENDIX A

We will now present four examples to illustrate the working of RTBB. These
examples, at increasing levelsof difficulty, start with the case of a single track formed by
asingle craft in the first example; progress to two stable tracks formed by three separate
craft in the second example; further progress to the case whereinitially three craft form a
single track, but eventually form only two tracks as one craft breaks away; and, finally,
deal with the problem of fading tracksin the last example.

Example 1

In this example, there is a single craft. Most of the class instances are expanded out to
illustrate the&tails involved at each step.

The first example illustrates the BB solution formation for a single trgjectory. The
data which drives the trgjectory is based on Bezier’s curve. For this curve the trapezoid
which defines the space curve is given by the four points indicated in Fig. 9. Note that
the origin isone of the points S0 the trajectory Wil go through the origin. The origin in
these examplesis a special point, in the sense that it represent not only the origin of the
coordinate system but also the center of the air space around a hypothetical airport. The
starting point of the single trgjectory is(100,0,0).

The data nodes on the hit level (the bnodes) are initiated by periodically placing a
goa node on the hit level of the goa panel. The goa node causes the generation of a
KSAR which causes the hit generation KS GETBEAM to fire. Recall from the BB Con-
trol section that this KSAR isof distributed type athough no preboot function is neces-
sary since thefunction call issosimple. The KSARis:

#<ksar (@ #x7cl90e>
is an instance of class #<clos:standard-class ksar 0 #x782556>:

prelyst <unbound>
preboot <unbound>
anslyst nil
arglyst nil
command fire
messenger #<messenger € #x79734e>
channel 1

nodeptr <unbound>
postboot (getbeam)
context none
cycle 1

ksar-id newhit
priority 2

The postboot is the C coded GETBEAM K S and itsonly command is atrigger "fire’. The
KSAR causes the formation of a data node to be placed on the hit level of the data panel.

100
%
80
70 -

60 -

40 4

Y—DISTANCE

30 7 DEFINING TRAPEZOID

100

FIGURE 9. Single trajectory generated via Bezier's curve with every tenth
point shown. Defining trapezoid shown with curve.

49 kersten/kak

The data node looksas follows:

#<bnode @ #x64feae>
is an instance of class #<clos:standard-class bnode @ #x622116>:
event-tine 0

| evel hit
nunber 1
coord ((100.0 0.0 0.0))

Note the return count isgiven by number and it occurs at event-time 0 at the coordinates
coord at level hit.

The placement of this hit node on the data panel causes the placement of thefollow-

ing goal nodeon the segment level of the goal panel:

#<bbgoal @ #x65c736>
is an instance of class #<clos:standard-class bbgoal @ #x6220ce>:

purpose change

event -ti me 0
initiating-data-1evel hi t

source #<bnode @ #x64feae>
duration one- shot

ksarptr <unbound>

snode nil

t hr eat nil

nunber 1

coord ((100.0 0.0 0.0))

Thisgoal represents the desire to match this data to the nearest segments. The duration
of the goal node is one-shot, i.e., the ruler-based planner gets only one pass to satisfy it,
and after that the goal node is removed from the goa panel. The slot source contains a
pointer to the data node responsible for the creation of the goal node by the dismbuted
monitor.

The rule-based planner uses the segment-level goal node to generate a KSAR for
matching the hit data to a nearest segment, if there is one. Otherwise, it creates a new
segment. The KSAR for this KS is dismbuted with a separate preboot function which
forms the argumentsfor the knowledge source. The postboot function posts the results of
the command to the KS. The command slot holds the main KS call function. Again, the
ksar-id generally describes the driving activity, in this case segment formation. The gen-
erated KSARis:

#<ksar @ #x6751fe>
is an instance of class #<clos:standard-class ksar € #x6220e6>:
prel yst ni |

preboot (pre-assign-hits)
anslyst nil

ar gl yst ni |

comrand getassi gnnent

messenger #<messenger @ #x62559%e>
channel 2

nodept r #<bbgoal @ #x65c736>
postboot (post-assign-hits)

cont ext ((event-tine nil) (nunber #<bbgoal @ #x65c736>) (coord 0))
cycle 5

ksar-id segnent

priority 1

The GETASSIGNMENT KS which isfired by this KSAR results in the creation of the
following segment-level data node:

50 kersten/kak

#<snode & #x6842ee>
is an instance of class #<clos:standard-class snode 8 #x62209e>:

event-time (0)

level segment

coord ((100.0 0.0 0.0))
number 1

cpa nil

linear nil

tnode nil

threat nil

Mogt of the dotsareinitidly nil since the ssgment is nat long enough yet; however, the
dotsdo get filled in at alater time when the segment becomespart of atrack. Infact, at a
later time the snodelooksasfollows:

#<snode & #x61£616>
is an instance of class #<clos:standard-class snode @ #x56dd36>:

event-time (a0)

level segment

coord ((99.24255 0.7425 0.0) (100.0 0.0 0.0))

number

cpa 549 003643 49.990078 0)

linear (99.24255 0.7425 0. 0) (-0.7574463 0.7425 0.0))
tnode nil

threat nil

This segment data node, via an after-method from the distributed monitor, createsthe fol-
lowing track goa node which represents the desireto form a track from the segment:

#<bbgoal & #x68f526>
is an instance of class #<clos:standard-class bbgoal (#x56dd56>:

purpose change

event- time (1 0)

initiating—- data- level segment

source #<snode (@ #x61f616>

duration one-shot

ksarptr <unbound>

snode nil

threat nil

number 2

coord ((99.24255 0.7425 0.0) (100.0 0.0 0.0))

Note here that adata segment node was the source of this node and the coord isthe set of
two consecutive coordinates which are ussd to form the segment and the track. The
event-time dot storesthe sequenceaof timeswhich support the formation of the track.

Again, the rule-based creates from this track god node the following KSAR, whose
purposeisto form a track.

#<ksar ¢ #x780486>
is an instance of class #<clos:standard-class ksar @ #x567ade>:

prelyst <unbound>

preboot <unbound>

anslyst <unbound>

arglyst <unbound>

command assign-tracks
messenger <unbound>

channel 1

nodeptr ¥#<snode ¢ #x780b3e>
postboot (assign-tracks)
context ((event-timenil) (number #<snode @ #x780b3e>) (coord (10)))
cycle 17

ksar-id track

priority 0

51 kersten/kak

Note that thisKSAR isan atomic KSAR unlike the previousKSAR that assgned hits to
segments. The KS places the following track node on thedat a panel at the track level:

#<tnode @ #x7953ce>

is an instance of cl ass #<clos:standard-class tnode @ #x56dd46>:
event -ti me (1)

| evel track

| ast - coord 99. 24255 0.7425 0.0)

| ast-velocity -0.7574463 0.7425 0.0)

snode (#<snode @ #x780b3e>)

t hr eat ni

cpa- br acket ((43.97975 54.027534) (45.065323 54.91484))
check ni |

checkl yst nil

The dat a node slot event-time containsonly the current time. Slots last-coord and last-
velocity correspondingly store the position and the velocity. The shode contains alist of
pointers to the segments that form the logical support for the tracks and the members of
the formation. The confidence region which is called cpa-bracket causes the threat dot
to be flagged "t" if it includes the origin. For the node above, the track does not appear as
athresat -- yet!

The above nodes are the initial formation of the solution track. The solution track
structureis a tree with the base of the tree being the track node and the branches being
the segments nodes. In this example there is only one branch, so the solution treeis very
smple. The track coordinate history contained in the tree expands as the track growsin
length. Asan example, consider a segment nodeat a il later time

#<snode @ #x583a8e>
is an instance of cl ass #<clos:standard-class snode @ #x56dd36>:
event-tine (43210)

| evel segnment
coord ((96.8832 2.88 0.0) (97.683846 2.1825 0.0)
(98.4704 1.47 0.0) (99.24255 0.7425 0.0) (100.0 0.0 0.0})
nunber 5
cpa 43,2293 49.62189 0.0)
|'i near 5(96.8832 2.88 0.0) (-0.8006439 0.6975002 0.0))
t node #<tnode @ #x77e006>
t hr eat ni |

The cpa has been caculated and the linear dot contains the current position and velocity
so that the segment can be extended forward. The threat has been evaluated and the
track node which this segment node supportsis stored in the dot tnode.

After the segment information has been extended to more than fourteen points, the
list is truncated by dropping the oldest hits. Thisis accomplished with an after-method
so that after say 20 time units, the snode takes on the following appearance:

52 kersten/kak

#<snode @ #x583a8e>
is an instance of class #<clos:standard-class snode g #x56dd36>:
event-time (20 19 18 17 16 15 14 13 12 11 10 9 8 7)
level segment
coord ((82.4 12.0 0.0) (83.385445 11.5425 0.0) (84.3616 11.07 0.0)
(85.328156 10.5825 0.0) (86.2848 10.08 0.0)
(87.23125 9.5625 0.0) (88.1672 9.03 0.0)
(89.092354 8.4825 0.0) (90.0064 7.92 0.0)
(90.90905 7.3425 0.0) (91.8 6.75 0.0)
(92.678955 6.1425 0.0) (93.5456 5.52 0.0))

number 13

cpa 519.194233 41.343826 0.0)

linear (82.4 12.0 0.0) (-0.9854431 0.45750046 0.0))
tnode #<tnode @ #x5851d6>

thr eat nil

In the above snode, the maximum lengths of the coord and event-time lotsare now only
of length fourteen asfixed by a global variable. The truncation length may be set to any
fixed value but this threshold is not totally independent of the other parameters. For
example, a track may only be generated when the segment length exceeds another fixed
parameter. Certainly the truncation length must exceed this minimum length needed to
initiate a track, otherwise data will truncated as soon asit i s placed on the segment level.

The general sequenceof KScallsisoutlined in Fig. 10. Here the order of KScalls
is numbered to ¢ sh data nodes to higher levels of abstraction. The order is not exact
since severa data nodes must be advanced to form a track -- but the general order
required to push data through to support a track solution is outlined. The first KS,
corresponding to the transition 1 marked in the figure, is the hit generation KS (GET-
BEAM); the second KS, corresponding to the transition marked 2, is the GETASSIG-
MENT KS; and the third KS is the track formation KS (GETTRACK). Methodsfrom the
distributed monitor generate the goal nodes from the data nodes. The simple construction
illustrated is essentialy data driven with goa nodes being isomorphically mapped to
KS’s. Thisexample illustrates the operation of a goal driven BB emulating a datadriven
BB.

Example 2

In this example there are three separate craft being observed. Three craft generate
returns, but only two tracks solutions are formed. This example illustratesthe track for-

mation process, especially the grouping of segmentsinto tracks.

Fig. 11 showsaplot of the threetrgectories. Two of these trgjectoriesare very close
and logically form a track. The other trgjectory forms a separate track by itself. The plots
of Fig. 11 are mirrored in the data structures on the blackboard panels. Since a tree
represents a track, onetree will represent two trajectories and the other will represent a
single trgjectory.

919y paui[ino sy A10309fex) 9[FUIS B 10j UOIBULIO] oI} Y], QT 3mgrd

SLNINDO3S

9941 uonnjos yoeu ._.\

SYMOVHL

1dNVd vivd T13INVd VOO

100

<— FIRSTTRACK

40 -

Y - DISTANCE

20 -

0 ' T 20 40 ' ' 60 80
X - DISTANCE

FIGURE 11. Trajectories for three separate craft with two tracks indicated.

100

55 kersten/kak

Fig. 12 graphicaly traces the formation of the solution trees on the blackboard.
Notice the similarity with the formation of a single track. The overall crisscrossingof the
solution path on the blackboard panels from lower levelsof abstraction to higher levelsis
due to the data driven nature of the problem. The presence of the three distinct trgjec-
toriesin the data causes theformation of threedistinct nodes at the track level of the goal
pandl. Each goal representsthe desire to use the segment data node as support for atrack
node. By support is meant the segment node supportsthe hypothess that the track node
should contain that segment as part of the group that makes up the track.

Letslooksat some of the data nodeson the BB after the tracks are established. The
two tracksarerepresented by the following two modes:

#<tnode @ #x584f46>

is an instance of class #<clos:standard-class tnode 8 #x56dc76>:
event-time (5)

level track

last-coord (96.07798 3.905423 0.0)

last- velocity (-0.8144531 0.6824701 0.0)

snode (#<snode @ #x5838a6> #<snode £ #x583886>)
threat nil

cpa- bracket ((36.18531 54.252422) (44.9477 55.14532))
check nil

checklyst nil

#<tnode @ #x584f56>
is an instance of class #<clos:standard-class tnode @ #x56dc76>:
event—time (5)

level track

last-coord (3.6225002 96.125755 0.0)

last- velocity (0.6824999 -0.8144531 0.0)

snode (#<snode € #x583896>)

threat nil

cpa- bracket ((44.80412 54.91484) (35.91684 54 .027534))
check nil

checkly st nil

Note #<tnode @ #x584f46> is the second track in Figs. 11 and 12 with two support-
ing segment nodes. The dot snode contains segment nodes instances that form the
branches of the solution tree and the logical support for the track hypothesis. The other
track node #<tnode @ #x584f56> has only one pointer which smply means only one
branch and one supporting segment node. Neither track is presently a threat to theorigin,
although the trgjectory plot indicates that thiswill not be truein the future.

The snodes contain parent pointersto the which track they support. The snodesare;

#<snode & #x583886>
is an instance of class #<clos:standard-class snode @ #x56dc66>:
event-time (543210
level segment
coord ((96.06875 4.062438 0.0) (96.8832 3.379968 0.0)
(97.683846 2.682486 0.0) (98.4704 1.969996 0.0)
(99.24255 1.242499 0.0) (100.0 0.5 0.0))

6

number

cpa 241.62926 49.679947 0.0g

linear (96.06875 4.062438 0.0) (-0.8144531 0.6824701 0.0))
tnode #<tnode R #x584f46>

threat nil

GOAL PANEL DATA PANEL

TRACKS

Track
Solution
Trees

SEGMENTS

Houre 12.

Thenodeson the BB far the 3-trajectory, 2-track example. Noate the two solution trees.

57 kersten/kak

#<snode ¢ #x583896>
is an instance of class #<clos:standard-class snode @ #x56dc66>:
event-time (54321 0)
level segment
coord ((3.5625 96.06875 0.0) (2.88 96.8832 0.0)
(2.1825 97.683846 0.0) (1.47 98.4704 0.0)
(0.7425 99.24255 0.0) (0.0 100.0 0.0))
6

number

cpa 549 38652 41.385197 0.0)

linear (3.5625 96.06875 0.0) (0.6824999 -0.8144531 0.0})
tnode #<tnode € #x584£56>

threat nil

#<snode € #x5838a6>
is an instance of class #<clos:standard-class snode & #x56dc66>:
event-time (543210)
level segment
coord ((96.06875 3.5625 0.0) (96.8832 2.88 0.0)
(97.683846 2.1825 0.0) (98.4704 1.47 0.0)
(99.24255 0.7425 0.0) (100.0 0.0 0.0))

number 6

cpa é41 385197 49.38652 0)

linear (96.06875 3.5625 0. O) (-0.8144531 0.6824999 0.0))
tnode #<tnode € #x584f46>

threat nil

At amuch later time both tracks are classified as threats. In fact a time 41 the track

nodes look asfollows:

#<tnode ¢ #x584f46>
is an instance of class #<clos:standard-class tnode & #x56dc76>:
event-time 41)

level track

last- coord (60.09016 18.42884 0.0)

last- velocity (-1.1114502 0.14003944 0.0)

snode (#<snode & #x5838a6> #<snode @ #x583886>)
threat t

cpa- bracket ((-2.437229 54.252422) (25.053728 55.14532))
check 36

checklyst nil

#<tnode & #x584£56>
is an instance of class #<clos:standard-class tnode & #x56dc76>:
event-time (40)

level track

last— coord (18.0 61.2 0.0)

last— velocity (0.15749931 -1.108448 0.0)

snode (#<snode € #x583896>)

threat t

cpa- bracket ((25.350838 54.91484) (-2.030042 54.027534))
check nil

checklyst nil

By now both tracks represent threats to the origin and 0 the threat dot holds the
flag for true. Note that the confidence region contained in cpa-bracket has one coordinate
which straddles the origin. Although this threat detection scheme is arbitrary and prob-
ably not asharp criterion, it doesillustrate the detection via the rule-based planner.

58 kersten/kak

Example 3

In this example there are three separate craft being observed. | nitially these three craft
form one track. Subsequently, one craft breaks away from the established track. This
example illustrates the detection o the break away and the subgoaling needed to estab-

lish two tracks.

Fig. 13 showsthree trgectoriesfor the three different craft generating radar returns.
All of these trgjectories areinitialy very close and form a single track. However, asthe
track evolvesin time, one of the segments supporting the track formation obvioudy
departs from the track itself. By departsis meant that if the track grouping were to be
reformed, two tracks instead of one track would be formed. A backchaining agorithm
fitting splines to tracksis designed to detect if the grouping of segmentsinto a track is
still logicaly valid.

One way to solve the problem of regrouping the tracksis smply to dissolve the
track node and keep the segment nodes on the data level after removing their parent
pointers to a track. The track formation agorithm would then pick up these "uncommit-
ted" segments and regroup the segmentsinto tracks. Thissolution is acceptable but not as
desirable as maintaining the track history and forming a new track from a subset of the
segments of the origina track. Thisis implemented by subgoaling - an important tech-
nique which alows knowledge sources to become more specialized in their competence
and makesit easier to incorporate more complex rel ationships between gods.

The nodes or solution tree should reflect the history of the trajectories. Indeed, Fig.
14 shows the correspondences between the physical trgjectories and data structures which
represent these trgjectories. First a tree will form on the blackboard which has only one
root - i.e. one trgjectory with three branches representing the three distinct craft. Once the
track is established and determined to be a threst, the track grouping will be checked via
the spline KS. When the track grouping is not verified by the spline KS, subgoals for
each segment are created and placed on the god segment level. Each god representsthe
desire to determine if that segment is in the same formation as the average track
representing the root of the track. If the segment does not satisfy the grouping criterion
against the track, it is oun off asa segment with no parent pointers. This means the BB
will establish this segment as a separate track. The following paragraphs will show the
state of the nodesin this sequenceof events.

0Ll

uoljewso) eyl wol g yeid >w>>wxw®hn sSMoys ‘gl thm_L
001l 06 08 0. 09 0§
1 L 1 " 1 2 1 M 1
o
SIXV-X

- OF
- 02

€L4dvH4D —x—ro - Ot

2ldvd) —o— o

I ldvdd —o0—
= Om
- 09
3
e
- 08
- 06
- ok
s

oLt

SIXV-A

GOAL PANEL DATA PANEL

Subgoaling m
ITrack 2
\ \ TRACKS

A___._—Track 1

SEGMENTS

Figure 14. Thisexampleillustrates the cancellation d the segment node support d the trackl hypothesis.
Subgoaling triggered by thefailure d the splinetest isillustrated in the goa panel.

61 kersten/kak

Initially, the track nodeformed from the three segmentsis

#<tnode & #x7d55ae>
is an instance of class #<clos:standard-class tnode &8 #x56daaé>:
event-time (1)

level track

last—coord (99.34056 99.531265 0.0)

last— velocity (-0.65943915 -0.8020681 0.0)

snode (#<snode R #x78104e> #<snode @ #x781036> #<snode R #x7810l1le>)
threat t

cpa- bracket ((-1.523449 21.468126) (-21.077364 3.9739904))

check nil

checklyst nil

Observe that there are three snodes or branches supporting thistrack. The three segments
supporting the trgjectory are given below. Note tha the track node pointers in these
nodes are really the parent pointersor the edges of the graph pointing to the root of the

tree which representsthe track.

#<snode € #x7810le>
is an instance of class #<clos:standard-class snode 2 #x56da96>:

event-time (1 0)

level segment

coord ((99.24255 100.03494 0.0) (100.0 101.0 0.0))

number 2

cpa 12.826523 -10.067154 0.0)

linear 2(99.24255 100.03494 0.0) (-0.7574463 -0.9650574 0.0))
tnode #<tnode (@ #x7dS55ae>

threat nil

#<snode ¢ #x781036>
is an instance of class #<clos:standard-class snode & #x56da96>:

event-time (10)

level segment

cwrd ((99.24255 99.09405 0.0) (100.0 100.0 0.0))

number 2

cpa 9.648041 -8.066505 0.0

linear 2(99.24255 99.09405 0.03 (-0.7574463 -0.90595245 0.0))
tnode #<tnode () #x7dS55ae>

threat nil

#<snode £ #x78104e>
is an instance of class #<clos:standard-class snode @ #x56da96>:

event-time (1 0)

level segment

coord ((99.536575 99.464806 0.0) (100.0 100.0 0.0}))

number 2

cpa 27.663826 -6.636101 0.0)

linear (99.536575 99.464806 0.0) (-0.46342468 -0.5351944 0.0))
tnode #<tnode (#x7d55ae>

threat nil

This solution tree structure is the initiad state of the track prior to the discovery tha the
trajectory isathreat and prior to thedeparturedf oneof the craft from the formation.

Almost immediately, at time 1, the track is determined to be a thregt to the origin
and the spline KS(GETSPLI NE) will now begi n to check to seeif the composition of the
track still makes sense. Thefollowing track nodeillustratesthe track node state just after
it has been determined it isathreat.

62 kersten/kak

#<tnode & #x7dSSae>
is an instance of class #<clos:standard-class tnode & #x56daaé>:
event- time (1)

level track

last-coord (99.34056 99.531265 0.0)

last- velocity (-0.65943915 -0.8020681 0.0)

snode (#<snode & #x78104e> #<snode & #x781036> #<snode @ #x7810le>)
threat t

cpa- bracket ((-1.523449 21.468126) (-21.077364 3.9739904))

check nil

checklyst nil

After the spline test detects the breek away of a track, it marks the track node check
variable asfailed. A failed spline test automaticaly disablesfurther spline tests for that
track until a track verification KS can be run. The rule-base planner will detect afaled
track in the god blackboard, and then generate a subgoal for each ssgment which sup-
portsthe track. Each god expressesthe desreto re-evaluate the track formation grouping
criterion of each segment againgt the averaged track. Thefollowing are the subgoals gen-
erated by therule base

#<bbgoal & #x7ccb7e>
is an instance of class #<clos:standard-class bbgoal ¢ #x56dabé>:

purpose verify-track

event-time (4)

initiating- data- level track

source #<tnode @ #x584e96>

duration one- shot

ksarptr <unbound>

snode #<snode @ #x583896>

threat nil

number <unbound>

coord ((96.767204 97.039505 0.0) (-0.8006439 -0.99399567 0.0))

#<bbgoal & #x7ccl8e>
is an instance of class #<clos:standard-class bbgoal @ #x56dabé>:

purpose verify-track

event—-time (4)

initiating- data-level track

source #<tnode @ #x584e96>

duration one- shot

ksarptr <unbound>

snode #<snode @ #x5838a6>

threat nil

number <unbound>

coord ((96.767204 97.039505 0.0} (-0.8006439 -0.99399567 0.0))

#<bbgoal & #x7cbSe6>
is an instance of class #<clos:standard-class bbgoal & #x56dabé>:

purpose verify-track

event- time (4)

initiating- data- level track

source #<tnode f #x584e96>

duration one- shot

ksarptr <unbound>

snode #<snode (0 #x58323e>

threat nil

number <unbound>

coord ((96.767204 97.039505 0.0) (-0.8006439 -0.99399567 0.0))

Each of these subgoals points to the parent track as the source and the supporting seg-
ment node as the snode. The KSAR generated from each of these subgoals will activate

63 kersten/kak

the VER FY KS ThisKSis part of the blackboard process - i.e. it is not spun off asa
separate process. If the segment is re-verified to be in the same track grouping , then
nothing is done, except to record the verification result by removing the nude from the
checklyst. If not, then the KS does three things. First KS removes the segment pointersin
the track node - i.e. the pointer to thissibling or branch of the tree. Then it removes the
parent pointer in the segment node or the pointer to theroot of the tree representing the
track. And lastly, it removes the pointer from the checklyst from the track node.

The snode that becomes orphaned by the VERIFY KSis the following segment
node.

#<snode R #x583896>

is an instance of class #<clos:standard-class snode @ #x56da96>:
event-tine (876543210

| evel segnent

coord ((95.57696 95.99027 0.0) (96.215935 96.45725 0.0)
(96.83128 96.9341 0.0) (97.42249 97.42075 0.0)
(97.98912 97.91718 0.0) (98.530655 98.42336 0.0)
598.4704 99. 05997 0.0) (99.24255 100.03494 0.0)

100.0 101.0 0.0))

9

nunber

cpa -12.452843 17.039467 0.0)

i near (95.57696 95.99027 0.0) '(-0.63897705 -0.46697998 0 0))
t node #<tnode (@ #x585fce>

t hr eat nil

After the blackboard detects the unmatched segment node, it constructs a distinct track
for this segment and the resulting solution consists of the two track nodes given below.
The first track node is the newly created node from the unmatched segment nude. The
second track nodeisthe old established track node which now containsonly two support-
ing segment nodes. The solution of the tracking problem is now two trees (and in general
aforest of trees) representing two separate tracks. The tnode corresponding to Track 1 of
Fig. 14is:

#<tnode @ #x585fce>
is an instance of class #<clos:standard-class tnode @ #x56daa6>:
event-tinme (8)

| evel track

| ast - coord (95.64931 95.96082 0.0)

| ast-velocity (-0.63897705 -0.46697998 0.0)

snode (#<snode () #x583896>)

t hr eat nil

CEa—bracket ((-23.255823 4.3589487) (-2.2320776 24.93455))
check nil

checkl yst ni |

The tnode corresponding to Track 2 of Fig. 14 is:

#<tnode @ #x585fbe>
is an instance of class #<clos:standard-class tnode @ #x56daaé>:

event -tine (8)

| evel track

| ast - coord (93. 55575 92.813065 0.0)

| ast-velocity (-0.8540497 -1.0287323 0.0)

SEOde (#<snode @ #x58323e> #<snode @ #x5838a6>)

t hreat t

c a—Eracket ((-27.750824 107.72498) (-21.077364 33.016785))
chec 5

checkl yst ni |

64 kersten/kak

Note that the dot check now has a integer vadue. Thisvalue is another way to st up a
periodic processin the blackboard. The antecedent of the rule that checksthe validity of
the track formation is considered verified if the track is a threat and if the check dot is
either nil or an integer. The integer is the last time the track was checked 0 that when
the current time exceeds the last time checked by recheck-interval,the antecedent is con-
sdered satisfied. Thusany threatening track isrechecked periodicaly.

Example4

In this example there are three craft, one o which has a signal which fades for a short
period. TN S example illustrateshow faded ?ments may be matched up with established
segments. It also Illustratesa different type of goal to activate the MERGE-SEGMENTS

KS

Recdl from the KS section, that the MERGE-SEGMENTS KS is activated by a
recurrent goa. Thismeans that once a KSAR has been created and scheduled, the god is
inhibited from creating another KSAR until the KS finishes its attempt to extend atro-
phied segments. In thisexamplethere arethree trgectoriesasillustrated in Fig. 15. Only

oned these trgjectoriesfades. Itssegment nodeis given by:

#<snode @ #x583ab6>
is an instance of class #<clos:standard-class snode @ #x56ddbe>:
event-time (21 0)

level segment

coord ((1.47 98.4704 0.0y (0.7425 99.24255 0.0) (0.0 100 0 0.0))
number 3

cpa $49.926693 47.039314 0.0)

linear (1.47 98.4704 0.0) (0.7275 -0.77215576 0.0))

tnode #<tnode @ #x780026>

threat nil

Thisistheinitia part of the trgjectory, which resultsin atrack node being formed. How-
ever, after the time 2 the trgjectory input fades resulting in a time gap for the input
values. The path does not return until the time 8. At this time the following segment node
isgenerated on the BB. Note that thisis now a new segment.

#<snode R #x620dee> is an instance of class #<clos:standard-class snode @ #x56ddbe>:
The following slots have : | NSTANCE allocation:

event-time (87)

level segment

coord ((5.52 93.5456 0.0) (4.8825 94.39965 0.0))
number 2

cpa %48.386578 36.11784 0.0&

linear (5.52 93.5456 0.0) (0.6374998 -0.8540497 0.0))
tnode #<tnode @ #x65£9d6>

threat nil

Both of the above segments point to separate track nodes. At this time, these tracks are
different since the second segment has not yet been determined to be an extenson of the
first one.

After the MERGE KS has run, the above segment is recognized as an extension of
the first segment. So the latest track and segment nodes are retained and the older

TRAJECTORY 1
—— TRAJECTORY?2

% —a— TRAJECTORY3
—a— TRAJECTORY3

70 -

60 -

Y—DISTANCE

40-

30 -

20-

10 -

o Y LS R T v T v 3 v 1 ' L] v T v
0 10 20 30 40 50 60 70 80 50 100

X—DISTANCE -

FIGURE 15. Merging of the two segments of a track is illustrated.

66 kersten/kak

segment isremoved from the BB and the sibling pointer from the older track to the oldest
segment node is deleted. If that is the only segment supporting that older track, then the
entire track is removed by removing the track node from the BB. The surviving track
node that was established for the reappearing track now represents both the current track

and the merged track. The track nodelookslike:

#<tnode @ #x65f£9dé6>

is an instance of class #<clos:standard-class tnode @ #x56ddce>:
event-time (8)

level track

last- coord (5.52 93.5456 0.0)

last- velocity (0.6374998 -0.8540497 0.0)

snode (#<snode 2 #x620dee>)

threat nil

cpa-bracket ((44.09992 52.673237) (30.375065 41.860615))
check nil

checklyst nil

So the old segment has been patched to the new track although the old segment data has
not been appended to the new track. No history of this older track has been included in
the current track since the segment nodesand hit nodes are removed from the BB as soon
as possible. However, a short history trail could be easily added to the track node.

67 kersten/kak

##
APPENDIX B

RTBB CODE

Some variable names in thislisting are different from those shown in the examples
in the text part of thisreport. Thisisprimerily aresult of an ungrade in the Allegro Com-
mon Lisp by Franz. Some of the dot names used by the code prior to the upgrade
became reserved words. An example is the dot values number which hed to be changed
to numbor. Another isthe word time which was changed to event-time. These are minor
changes. Thecode runson SUN SPARC Allegro CL 4.1 [SPAR; R1] (11/10/92 15:35).

Be advised though that it is essentid to disable the * print-pretty* option which
appearsto be thedefault on the previousverson. Thisisdone by the (setq * print-pretty*
nil), otherwise commands sent to the Knowledge Sources, compiled as separate execut-
abl e~will be truncated; the resulting errors can be very difficult to trace. This command
isembedded in the ggclass.cl file.

Its advisable to load the source files in a separate directory to avoid name conflicts
and thedestructiond smilarly named files usad by the RTBB. To build the four execut-
able Knowledge Sources one needsto:

1. csh makepath

This command will construct the executable caled path and this will then serve as
thedatadriver.

2 cshmakespline

Thiscommand will construct the executable caled spline and this will then serve as
the plineKS

3. Toconstruct the LISPexecutables, first usethe
(compile-file" nassign™)
(compile-file'testtrack.cl™)
commands when in the LISP environment -- this producers two fad files cdled
nassign fasl and testtrack.fasl. Now first load nassign. fasl into the LI1SP environ-
ment and then do a (dumplisp :name "test”) which will return a nil when finished.
Then do an (exit). Thisshould create a executablefilecdled test, which is aoout 12
megsin sze. Check it first before continuing.

68 kersten/kak

After you fire up LI S again, load tesrtrack fas! and follow that with a (dumplisp
:name track) which should return a nil, then do an (exit). This should generate
another 12 meg executablefile caled track.

The system is loaded by entering the LI & environment, and then doing a load o
the file bbc which downloads dl thefiles. A cloop command is usad to wetch the
sysdem run and fcloop alows you to dump the output into afile caled out. Make
sure that our is nat afileyou are usng for other purposes.

*****************end(ﬁremhne******************************

Next two files have nocommend linesinthem et dl. Thefilesare

the makepath and the makespline files- each of length twolines.

e ke 2 ke 36 ke ke 3 3 3 3k 3k e e 3k e 3 e e 3 3k 3k 3k 2l e ke ke 3k 3k 3k e 3k e Ak 3k 3 e e b e e Ak e Ak 3k 3k e A e Ak 3k Ak e A ek e e e ke sk dk

cc singlepath.c -lm

v a.out path

CC testspline.c -lm

v a.out pline
2k 2B 3k 3k 3¢ e S ke e ok e ok Sk e e e e e dk ok e 3 ke sk v ke ke Sk ke e ke Ak ke ke ok vk 2k e e ke ke e ke Sk ke s ¢ ke ke ke ok ¢ ¢ e e e Sk 3 e ke e ke K

/*

/ FILENAME |S singlepath.c
*

#include <stdio.h>

#include <strings.h>

static int bhum-0;

?’tcati c double scale=100e0;

each row of this matrix is a vector in space forming
a trapozoid associated with generating the bezier curves

" The orginal program for this was bezier.c i
/

static double r[4)([3]) = { (100, O, O },
{75, 25, 0},
{25, 25, 0},
{o, 0,01}

main ()

{

int i,c, j,ntracks=1;

double coord[3]};

char line[80], *s;

char *gets():

setlinebuf (stdout);

s="(fire)";

for(i=0; (i < 250) && (strcmp(gets(line),s) == 0);i++)
{

printf (" ((%d) ",ntracks);
7)*rintf ("%d ",bnum) ;

Could insert as maty or possibly a random number of calls
to track generation programs.
/

printf ("("):

beamone (coord, r);

printf (" (%¥1f %1f $1f)",coord[0] coord(l],coord([2]);
printf (*))0);

/* advance step */
bnum++t:

/®

Note that setlinebuf avoids using the fflush program to
initiate emptying of the line buffer to the coorperating lisp
program.

Scf/lush (stdout);

}
}

int beamone (coord, r)
double coord([3];
double r[4][3];

int i;

double wu,v;

double *rzero, *rone, *rtwo, *rthree;
double pow () ;

[* Initialize the vectors for Bezier’s curve. */
rzero = r[0];

rone = r[l1];

rtwo = r[2];

rthree = r[3];

/*

for (i=0; i<3 ; i++)
{

kersten/kak

70 kersten/kak

printf ("the vector printed is %e O, rzero[i]);
printf { "the vector printed i s %e O, ronefi]):
printf { "the vector printed is %e 0, rtwo[i]}):
printf { "the vector printed is %$e O, rthree[i]);
./

u = bnum/scale;
vV = 1l.e0 - U
/e
if (u < 0.e0 Jju > 1.e0)
printf { " parameter of space curve out of range %e0,u);
else
printf (" value if uis %eOvalue bnum is %dO, u, bnum);

for(i=0; i < 3 ; i++)
{

coord[i] = 0.e0;

/*

printf (" the value of coord[i] before update $e0,coord[i]);
printf (" the power term is %e0,pow (v,3.e0));

printf (" the rzerol[i] term i s %e0,rzero[i]):

p;intf (" product pow and rzero i s %e0,pow (v, 3.e0) *rzero[i]) ;
[]

coord[i] += pow(v,3.e0)® (rzero[i]);

printf (" the value of coord[i] is %d %e0,i,coord[i]); */
coord[i}] += pow{(u,3.e0)*rthree(i]:
coord[i] += 3*u*pow (v,2.e0) *rone[i];
coord[i} += 3*v*pow (U,2.e0) *rtwo[i];
/* printf (" the value of i and coord is $d %e 0,i,coord[i]); */
}

return (0);
}

71 kersten/kak

Z\
>
<
m
(0)
>
v
)
(2
«Q
5

(setq *print-pretty* nil) 3; Oct 92 to eliminate mismatch from old version

R A A A A NN A N N BV NV A A A A A A

;:'; An upper value which is the global value needed in branch and bound.

(defvar upper 1000) ; global variable for least upper bound
(defvar upath nil) ; path corresponding to upper

A A i i i i i B e B e e Y A A B A N N N N A A A A A A A A A A e A e e e e e N]

s1r This functions tears apart an a-list to get the value or the path.

2P T LT ITI NN NI TN L PN I DI N TI LA LNV TS E L LI LN NF LIPS IS I

(defun getvalue (lyst) (cadr (assoc 'value lyst)}))
(defun getpath (lyst) (cadr (assoc ’path lyst)))

" E N E N E N E N EEE
N A A N N NN NN NN N NN NN N

-’ .II’ -I
123 This are test matrices to work on the branch-and-bound
12 or the best-first search

...
R A A N A N A A A A A A N N N N NN N NN NN NN

(setq rl ’{(1) (2) (3) (4) (5)))

(setg 12 ' ((5) (3) (1)))

(setq r3 ' ((1100 3 4) (13 100 4) (12 98 4)))
(setq r4 “((0 100 1 2) (0 2 99 3)))

(setq test5by4 ' ((9 5 4 5)

...
N RN NN N NN N NN NN NN NN RN NN N

- This function is for accessing an element of the array.

A A A A A A A A N B A A A A N A R A A A B A A A N N N N N NN NN RN N

(defun getelement (i j matrix) (nth 3 (nth i matrix)))

A N A N N N NN N N NN

333 This function gets the minimum element of the first column of the matrix.

A A N N NN RN NN RN NN NN NN NN NN

(defun min-col-element (matrix) (apply #’min (mapcar #‘car matrix)))

P A A A A B A O A A A A A N AN Y R A A A A A A A A A A R A e A i A O O Y B A A A A B A O

:;: This function gets the minimum element of the ith column.

...
A A A i i e e A A A A A A A A A R A A A A A N N NN

(defun min-ith-col-element (i matrix)
(apply #’min
(mapcar ; this returns the ith column
#' (lambda (x) (nthi x)) ; asalist
matrix)

72

.....................................

kersten/kak

..................................

;33 Function closerp i s then just the minimum of the two

fi; values obtained from the a-lists.

2 PP TP IIIIIIIIIIIITI I IIIII P TIIEN PP PP PN P NP I TIPS PP TSNS

(defun closerp (a b) (< (getvalue a)

T
LA A 2 BN AR A AN B BN Y AN N N N 4 I NN NN NN NN NN RN
.

: Function g

T T

A A A A A A NN NN NN NN

(defun min-col (path col matrix)
{do
(
{vmin 1000)
(test (length matrix) (A-test))
(k 0 (1+ k))
)
((zerop test) (return vmin))
(setq x (getelement k col matrix)})
{cond
((member k path))

-l II"lll{llII"IIIIIIII'IIIIIIIIII I_I
ts min of column col excluding rows in path from matrix.
il

" E N N E NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
P A A A A N N NN NN NN NN NN NN NN NN

(getvalue b)))

is in excluded row - ignore

((>= x vmin)) ; is not less of equal - ignore

(t (setq vmin x))
1))

~
~
~

(defun £ (path matrix)
(do

if less, then record minimum

A A A A N N R NN RN NN EEE NN NN NN AN NN
:s: Function finds the f value of the best- first search procedure.
;33 Note that it works with the reverse path since the bestfirst

;35 procedure uses the reverse path in its procedure.

®5 5

R A A A A A A N NN A N N N N NN NN NN NN

(worklyst (reverse path) (cdr worklyst))

(k 0 (1+ k))
(sum O

)
(count (length (car matrix)) (1- count))

((zerop count) (return sum)) ; returns best est lower than actual

(cond

(worklyst ; trace down the know path so far
(setq sum (+ (getelement (car worklyst) k matrix)

um)

})
(t (setqg sum (+ sum : look for min excluding rows chosen
(min-col path k matrix))))

A N N N NN NN RN NN RN RN R RN RN EEEEEEE R RN

r 5z

;:; Fvalue returns a feasible path choosing the minimum
;:; element in each column excluding those rows not

555 choosen first. Path returned is in reverse order.

~
~
~

(defun fvalue (matrix)
(do (

(col 0 (1+col))
(value 0) sinitialize value
(path nil) ; initialize path
;7 FIRST CHANGE
(test (length (car matrix))) s
)

..................................
A A A A N N N N N N NN N]

test now uses number of cols

73 kersten/kak

((equal col test) s when column number = max row number - stop
(setq upper value upath path)
(return (list value path))) ; returns value and path

; find min value and index for next element in path

(setg x (min-col-index path (length path) matrix))

; update value for minimum

(setq value (+ value (cadr x))) ; add min value of col

; update the path - path in reverse order

(setq path (cons (car x) path)) ; cons index of row

)

...
R N N N N NN NN NN

77

sz This function returns
1. the minimum value of column col
in the array called matrix but over the row
elements NOI in path
AN
2. the index of the element
e.g. (index vmin).

NEuE Ep Na SaumuR
NEuE Ep Na NaumuR

...
NN NN N N N N N N NN NN NN NN N NN

~
~
~

(defun min-col-index (path col matrix)
(do

(

(vmin 1000) ; bind a initial value to vmin

(test (length matrix) (l1- test)) ; path length based on rows

(k 0 (1+ k)) :; search down column, k row index

)

((zerop test) (return (list index vmin)))

(setq x (getelement k col matrix))

z; find minimum, x test element

(cond
((member k path)) ; if element is on path row, don’t look here
((>= x vmin)) ; if value exceeds current min, ignore
(t (setq vmin x index k)) ; if better value, update index and vmin

A A N N N A N]

st with 0’1 ... a1’
Function i s needed to form the complement of a set.

...
I RN NN NN N NN RN

(defun numset (n)
(numsetl (- n 1) nil)) ; call with n-1 to initialize recursion

(defun numsetl (n lyst)

(cond
((<nO0) lyst) ; nless than O, set to nil
(t
(consn (numsetl (- n 1) lyst)))
)
)

RN N e e N N NN N N N N

Expand2 gives the children of a node given the present path.

It uses the path to the node as a set, complements it using

the difference and this then returns the children of the node.

To generalize this | think the length must be changed to

length of the matrix which i s the number of rows or the number of hits.
5, Presently rows >= cols or the thing won't work.

A A A A A A A A A A A A A A A A N N N NN NN NN

LI
LIRS

(defun expand2 (path matrix)
(mapcar #' (lambda (child) (cons child path))

74 kersten/kak

: (our-set-difference
(set—difference
(numset (length matrix))
path ; this is the row set already used in the path

N NN N RN N N R RN NN NN

;;; Expandl gives the f value for the path and constructs
;:; the association list.

R A A A A N N N N N NN NN NN NN

(defun expandl (path matrix)
(feasible path matrix) - extends partial path and lowers upper bdd
(list ; this constructs the association list for the best first
(list 'value (f path matrix)) ; first the value and then
(list 'path path) : the path
)

L A A A A A e e el A A A Y NV A T RV AV RV AV AV AV N NV AV N NV A N N N O I R R A A B R A B A B B A A i B)

;77 Expand just applies expandl and 2 to all the children,
;55 fathoms those paths which have a lower bound exceeding known
;;; feasible paths. Same as pruning subtrees from best-first.

R RN NN NN R NN RN NN NN

(defun expand (path matrix)
(remove-if ; removes paths which exceed upper bound
#’ (lambda (x) (>= (getvalue x) upper)) - this is same a fathom
(mapcar #’ (lambda (x) (expandl x matrix)) ; in the B and B
(expand2 path matrix)))

(defun my-filter (test element)
if test nil (listelement))

R E N RN RN N NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
I NN N

’
sion of replace since
|

gle list whereas the other

IR e e e e e N e N N N N N NN NN

(defun my-remove-if (func lyst)

(apply #’ append ; remove element by replacing by nil
(mapcar #'my-filter (mapcar func lyst) ; then appending out
lyst)
)
)

A A A N N N A A A A N N N N N NN N NN NN NN NN

:; Given a partial path, this function extends it
to a feasible solution and that solution then i s used
to lower the least upper bound if it is smaller.

R R A A R NN NN N R NN NN RN N N R RN R R NN RN RN NN

RS

(defun feasible (path matrix)
(do

(
(worklyst (reverse path) (cdr worklyst))
{(k 0 (1+ k))
(newlyst path)
(sum 0)
(count (length (car matrix)) {l1- count))
)

75 kersten/kak

((zerop count) ; update upper if return value smaller than upper
(if (< sum upper) (setq upper um upath newlyst) nil)
(return (list sum newlyst})))

(cond
(worklyst ; follow the partial path until it ends

(setq aum (+ (getelement (car worklyst) k matrix)
aum)))
(t : extend partial path
(setq x (min-col-index newlyst (length newlyst) matrix))
(setq sum (+ sum (cadr x}))
(setq newlyst (cons (car x) newlyst))})

)
R R R L R L R R R R R R Ny N N NN R R
::; This is the in routine —-- first the initialization and then
::: the call tothe recursive version of best first search.
; 7 7 7 ; 'I .I .I -I 'I .l .I -I 'l .I.I -I 'I .I .I .I 'I .l .I.I'l .l.I.I'I.lll.l'lllll.l'l.l.I.I'I.I.I.I'I.lll.l'l.lll.l'l.I.I.I'I.I.I.l-l.lll.l-llI.l.l-lll

(defun best (matrix)
(fvalue matrix) ; this initializes the upper bound to feasible value
(setq queue (expand nil matrix)}
(sort queue ‘closerp)
(bestl queue matrix)

7%

AR B A B I B B B i B i B B i R i) ',':':',':':': e e e e e e e e e
:::r This is the recursive version of the solution.

133 Queue i s the ordered queue which is used to choose the next

»:r child for expansion.

a4 a

(defun bestl (queue matrix)
(cond
((null queue) (list upper (reverse upath)))
(t
(bestl (sort (append (expand (getpath (car queue)) matrix)
(cdr queue)}

’
closerp)
matrix)

, 22
L A A A A A A A A A A A A N N N N N N N N N N N N NN N NN NN NN NNy
17 Square is just a utility for the metric.
IIllIIIIIIIIIIlllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllllll
7%

(defun square (x) (* X x))

e
;33 Recursive version returns the euclidian distance
R R N R N R N N R R NN NN NN NN NN NN
5:;
(defun euclid (coordl coord2)
(sgrt (euclidl coordl coord2))
1is
A A R R R AR A R S R R R A A S R A AR L L R A A S R R R AR SR R R A A A SRR A R A SRR R AR A S
135 This is the recursive part of euclid
L Actually thiswill work for n dimensions.
rrzy

(defun euclidl (coordl coord2)
(cond
((null coordl) 0} ; initialize as zero at bottom of recursion

76 kersten/kak

(t
(+ (square (- (car coordl) (car coord2))) ; keep adding
(euclidl (cdr coordl) (cdr cooxrd2))

R NN NN NN NN NN NN E NN

This takes two vectors and constructs the outer product.
lystl > 1lyst2 means |lystl forms the rows and lyst2 the

forms the columns. The (i,) element of the matrix

is lystl(i)*1lyst2 (j) and "*" operation

represents the distance between the two position vectors.
In application, rows are hits and cols are segments.

The children of the best first search are then segments.

TR IR
“EuEus suwm
SENuEuE svE

Suun ~n
~mum g
SpuE ooy

A A N NN NN NN N NN NN NN NN NN

IR
MR
IR

(defun form-matrix (lystl lyst2)
(do ; thisisthe first do loop cdring down the first lyst
(
(rlist lystl (cdr rlist))

(form nil)
(form2 nil)
(row (length lystl) (- row)) ; outer loop counter
)
((zerop row)
HH (format t "~% matrix is "% ~a ~“% " form)

(return form))
(setg form2 (do : this is the second do loop cdring down lyst2
(

(clist 1yst2 (cdr clist))
(form2 nil)
(col (length 1yst2) (d- col)) ;NOTE CHANGE

((zerop ceol) (return form2))
(setqg form2 (append form2 ; calculates dist for each col
(list (euclid ;stuff in list using append
(car rlist)

(car clist))))))
)
(setq form (append form (list form2)))))

R A N R N NN NN NN NN NN

11l This is the interface function to the KSAR called getassignment
rri; returning a list of the optimum assignment. Best
HHHH returns the value of the minimum path.

L A R O e N NN

(defun getassignment (lystl lyst2)
;o (let ()

;7 (lystl (read))

;5 (lyst2 (read))

; gets the assignment coord
; gets the hit coordinates

’ I)
(cadr (best (form-matrix lystl lyst2))))

...
A A R N N N A A A A A A A A A A A A A N N A i A

7133 For a read-evaluate-write loop so that one can
»73% drive the functions in this process.

L A A R e A R A A A R A N A A A A N O A N R

'(’defun rewl)
(do () (nil)
(format t "~a~%" (eval (read)))))

R A A A N N NN NN RN RN NN NN NN NN,

r rzs
the read-evaluate-write loop.

kersten/kak

77

This i s commented out for debugging purposes.

LIS
-

L1

of nassign file

siaaasaend

78 kersten/kak

/*
*/

HLENAME IS testspline.c

#define MAXPIS 4
[)

#define DEBUG 1
°/

#define MAXCALL 100

#include <stdio.h>

#include <strings.h>

#include <math. h>

static double h[MAXPTYS, diag[MAXPTS ,d[MAXPTS] , b[MAXPTS] , c[MAXPT]:
static double delta[MAXPTS], al pha[MAXPTS] ,beta [MAXPTY, sigma[MAXPT] ;
static double rhs[MAXPTS];

main ()

{

int i, j, n=MAXPTS;

int nbound;

double x[MAXPTS] ,y [MAXPTY, z [MAXPTY, s [MAXPTY , t [MAXPTS] ;
double u, scale,pow(),espline();

char *sptr ,line[l180],workstring([180]};

;setlinebuf (stdout);

[*
The coefficients b(i),ec(i),d(i) i=0,1,...,n-2 for each
of the segments to yield the curve

f(s) = y (i)t b(i) (s-sCi) + c(i)(s-s(i))**2 + d(i) (s-s(i))**3
*/
for (nbound=0; nbound < MAXCALL;nbound++)
{ .
7Ptr = gets(line);

position sptr at first coord */
for(;*sptr == ’/ (’ | *sptr == ')’ || *sptr == ' ‘;sptr++);

for(i=0;*sptr I= ')}’ ;sptr++,i++)
workstring[i] = *sptr;
workstring([i] = ' '

sscanf (workstring, "$1f $1f %1f %1£f", &t[3],&t[(2],ht[1],&t[O]);
printf (" (%e %e %e %e)0,t[3],t[2],t[1],t[0]);

sptr = gets(line);

for(j=0; j<MAXPTS; j++)

/* position sptr at first coord */
for(;*sptr == ' (' || *sptr == ‘)’ || *sptr == ' ’/;sptr++);
for(i=0;*sptr = ')’ ;sptr++,i++)
workstring[i] = *sptr;
workstring[i] = / ‘/;
sscanf (workstring, "%lf %1f %1f", &x(jl,&y[j]l,&z{3]):
}

for(3=0; J<MAXPTS; j++)
printf (" (%e %e %e %e)0,t[3]),x[]),y[i]l,z[3]):

/~k
for (i=0; i < (MAXPTS-D) ; i++)

{
printf (* y and s are given by %e %e 0,y[i],t[i]);

79

*/

spline(n,t,x,b,c,d);
printparaneters(x,b,c, d);

spline(n,t,y,b,c,d);
pri nt parameters(y, b, c, d);

spline(n,t, 2,b,¢,d);
printparaneters(z,b, c, d);

/* end condition goes here */
?iintf ("()0);
for(;u 1= ~-1;)

{

printf (" ENTER a value of u, u = -1 stops |oop 0);

scanf ("%e",&u);

printf (" the spline value is %e0,espline(n,u,t,y, b ¢c,d));
y

}

}

int spline(n,s,y, b c,d)
int n;
double s(1,y[1,bl],c[],.d[];

}* Cal cul ate tridiagonal elenents. */
doubl e tempoO, templ, temp2;

doubl e pow () ;

int i ; !
[* Initialize all the variables uséd in this function. */
for (i=0; 1 < n ; i++) :

{

b[i]=0.e0; c[i]=0.e0; d[i]=0.e0;

diag[i]=0.e0; h[i]=0.e0; delta(i]=b.eo; rhs[i]=0.e0;
:;1I phalil=0.e0; beta[i]=0.e0; sigma[i]=0.e0;

h[0] = s[1]-s[0]; diag[0] = -h[O}} i=0;
delta(i] = y[i+1]-y[i]); i

iifdef DEBUG
printf ("i is %d h is %e delta is ke 0,i, h[i],delta[i]):
#endif

for (i=1; i< n=-1 : i++)

{
h({i]) = s[i+1]~-s[i];
diag[i] = 2* (h[i]+h[i-1]);

deltal[i] = yli+1]-y[i] s
rhs[ig l deYt;{i%-gglla[i-l];

#ifdef DEBUG
printf("i is ¥d his %e 0,i, hii]):

kersten/kak

printf ("diagis %e delta is %e rhs is %e0,diag[i], delta(i],rhs[i]):

#endif

}
diag([n~1] = h[n-2];

[* The rhs derivative

put in error trap here

*

/* Construct the first and last vector elements of the rhs.

temp0 = (delta[l]-delta[0])/ (s[2]1-s[0]):
templ = (delta[2]-delta[l]l)/(s[3]-s[1]):
temp2 = (templ - tempO)/(s[3]-s[0]);
rhs[0] = h[O]*h[0] *temp2;

/* Do the last element of rhs vector. */

tempO = (delta[n-3]-deltaln-4]) / (sln-2]-s[n-4])
templ = (delta[n-2])-delta(n-3])/(s[n-1}-s[n-3])
temp2 = (templ - temp0)/(s[n-1]-s[n-4]) ;
rhs[n-1]= -pow (h[n~-2],2.e0) *temp2;

/* Nowv compute the alphas. */

alpha[0]= -h[0]; i=0;

tifdef DEBUG

printf (" i is %d and alpha is %e 0,i ,alphali]);

#endif

for{i=1l; i< n-1 ;i++)

{

alpha[i] = 2* (h[i-1]+h[i]) - pow{(h[i-1],2.e0)/alpha([i-1];
$#ifdef DEBUG

printf (" i is %d and alpha is %e0,i,alphalil);
#endif

}

alphaln-11 = -h[n-2] - h[n-2]*h[n-2]/alpha[n-2];
i=n-1;

tifdef DEBUG

printf {" i is %d and alpha is %e0,i,alpha[i]);
$endif

/* Now compute the betas. */

beta[0) = rhs[0]; i=0;

tifdef DEBUG

printf (" 1 is %d and beta is %e0,i,betal[i]);
#endif

for{i=1; i < n-1 ; i++)
{

*/

beta[i] = (deltali]-deltali-1]) - h[i-1]*beta[i-1]/alphali~1];

tifdef DEBUG

printf (" i is %d and beta is %e0,i,betal[i]);
¥endif

}

i=n-1;

beta[n-1] = rhs[n-1] - h[n-2]*betal[n-2]/alphal[n-2];
¥ifdef DEBUG

printf (" i is ¥d and beta is %e0,i,betalil]);

#endif

/* Compute sigmas. */

i=n-1;

sigmaln-1] = beta[n-1]/alpha[n-1];

#ifdef DEBUG

printf (* i is %d and sigma is %e 0,i,sigmaf{i)};
#endif

for{i=n-2; i>= 0 ; i--)

kersten/kak

81 kersten/kak

{
sigma[i] = (betali] - h[i]*sigma[i+1]) /alpha(i]:

#ifdef DEBUG

printf (" i is %8d and sigma is %e 0,i ,sigmali]):
#endif

}

[* Compute coefficient. */
for(i=0; i< n-1 ; i++)

{

b[i] = (y[i+1) - y[i])/h[i] - h[i]* (sigma[i+l] t 2.eO*sigmaf(il) :
c[i] = 3*sigmal[i];

<}i[i] = (sigma[i+l] - sigma[i])/h[i]);

double
espline{n,u,t,y,b,c,d)

int n;

double u;

<{iouble tll,y[]l.bl[]l,c[],dl]:

double temp, dx;
int i;
/*
for(i—-0; i < n ; i++4)
E/rintf (" input values to evaluate for i andy %d %e 0,1i,¥y[i]);

for(i=0; !(u>=t(i] && u<t[i+l]) 66 i<4 ; i++):

/*

fk)ri ntf (" the interval evaluate spline found is %d 0,1i);
/

if (1 == 4)

{
printf (" u is being used for prediction 0);
i=3; bl[i]l=b[i-1]; c[i]=0; d[i]=0;
}

[* calculate change from t[i] and then use Horners rule. */

dx = u - t[i];
tﬁmp = y[i] + dx*(b[i] t dx*(c[i] *+ dx*d[i]));

Q;intf(" the value of u and spine poly is %e %e 0, u , temp);
return (temp);

int printparameters (a,b, c, d)

double a[],bl[1,cl].,d[]):

{

int i;

for (i=0; i < (MAXPTS-D) ; i++)
printf (" (%dse %e %e %e)0, i,a[i],blil,c[i],d[i]):
}

ker gen/kak

82

MBI 5o ottt s

innnaanstile

THIS FILE

N

A A A A

NN NN NN

This function evaluates the threat via confidence

.
’
.

see if intervals split origin

vector difference between cpa and r
error in estimation fixed at epsilon

idence interval

dx))

>
.
’
|

)
)
n

)
r
o

)
for x conf

(car cpa) (car edr))

Oct 92 to eliminate mismatch between versions

testtrack.cl

form y confidence interval

(cadr cpa) (cadr edr))

[A A A A A A A A A A A Y A A A A A A A N N N]
>

and records the confidence interval.

’ ’
n O.

0
4

<))
(threat (or (minusp (apply #'*

<))

(dy (sort (list
(minusp {(apply #’'°® dy)}))))

(car cpa) (car edr)))
(cadr cpa) (cadr edr)))
(format t "~a~%"

inter
xr)
(+

(_
(_

(dr (vector-difference cpa r
(+

(edr (scale-vector epsilon d

(dx (sort (list

(cpa xcpa)

(r

(let*
(

(setq *print-pretty* nil)
(defun gettrack (xcpa Xxr)

for pair of confidence intervals

(list dx dy))

(format t "~a~%" threat)

(list (list dx dy) threat)

))

(cdr v))))
(cdr v))))

(car v))

true if origin in confidence region
(car v))

(car u)
(vector-difference (cdr u)

(cons (+ (car u)
(vector-sum (cdr u)

(cons (-

((null w) nil)

((null v) nil)
(t
(t

(cond
)
(cond

)

(defun vector-difference (u v)

(defun vector-sum (u v)

Function scales a vector.

-~

is process.

LA A A A A A A A A A A A A Y AT A A A A

(* alpha x)) v))

or a read-evaluate-writ
rive the functionsin t

(defun scale-vector (alpha v}
{(mapcar #’ (lambda (x)

83 kersten/kak

(defun rew ()
(do O (nil)
(format t "~a~%" (eval (read)))))

79
: ; ; ; .l .l .l .l .l.l .I .l.l.l.l.l.l.l.l.l.l.l.l.l.’.’.I.I.I.I.I.I.I.l. I.I. I. I- I. ; I. l. I. l. : ; ; ; .l .l .l .I .l .l .I .I .l.l.l.l.l.l.l.l.l.l.l-l-l-l-l-l 4
5333 Initialize the read evaluate wite | oop.
3333 This is commented out for debuggi ng purposes.
l. ; ; ; ; ; .I 7 7 .l : .l .l .l .l.l.l.l.l.l.l .l.l.I.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.I.I.I.’.’.l.l.l.l.l.l. l.l.l.l. l. I. I. I. l. 7 7 l. ; ; ; 7 7 7 ; .I ’
32
(rewl)
55
53
313rissssisirisssiiiiiiieiziend of testtrack.cl; ;i i3:503530750035303533535335038

kersten/kak

84

filename i s bbc --

(1Y

.
’
|

the compil
is the compilation of nassign

path* i s the compilation of path generation

spline* is the compilation of testspline

test*

" E E E N E N E N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
L A A A A A A A N N N NN N N NN NN NN NN

N

))

(defun loadm (lyst)
(load var)}))

.cl
(loadm lyst)

ggsetops.cl
ggutil.cl
ggmacro.cl
ggclass.cl
ggksar. cl
ggnode.c |
ggplan.cl
ggports.cl
ggrule.cl
ggrloop.cl
ggmess.c |
ggmerge. cl
gginit.cl

Vil
(dolist (var lyst)

o

(setq lyst

85 kersten/kak

srrzzrrrrzrsrrrrrrviEile name;;s; i

»7 THIS FILE IS ggsetops.cl

s file LT R T P R R R

; ; ; ; .I ; .l .l .I -l .l .l .I .I .I.I-I .I.l-l .I .I.I .I .I s I.I.I.I.I.I-'.'.I.I-I.I.I-I.I.I.I-I.l.l-l.I.I.I-I.I.I-I.I.I.I-l.l.l-l.l.l r 2 I.I-I.I ,
5= Our-union is the Winston set function on page 34 of Winston's book
PRI IiINIINININNIIININIIINIILIIIINPLIIIINNNSST

(defun our—-union (x y)
(cond ((null x) y)
((member (car x) y) (our-union (cdr x) y))
(t (cons (car x) (our-union (cdr x} ¥}))))

A A A A A A A A A A A RN NN N NN NN NN NN RN NN NN ENENENN]
53 Our-intersection is the Winston set function page 344.

s
A A A N A A A N N N N N NN R NN NN NN NN NN RN NN NN

(defun our-intersection (x y)
(cond ((null x) nil)
((member (car x) y)
(cons (car x) (our-intersection (cdr x)} y)))
(t (our-intersection (cdr x) y)})))

L A A A A A A A A N A A A A A A A N N N N N N NN NN NN NN NN NN R NN NN NN NN
;3 Our-set-differenceis the Winston set function page 344.
LA AN A AN AN AN AN A A A A A N A A A A A A N NN N N NN NN NN N EEE RN NN

(defun our-set-difference (inout) ; in the larger set
(cond ((null in) nil)
((member (car in) out) (our-set-difference (cdr in) out))
(t (cons (car in) (our-set-difference (cdr in) out)))))

W m m E E N EE S EE =N EEEEEEEEEEEEEEEEEEEEEEEEEEEE NS EEEEEEEEEEEEEEEE
A A A A A A A A N N A N NN NN N N NN]

s ’ .I
set determines i f two sets are equal.
-I .I

® E E E E E E N E S E EEEE EEEEEE EEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEE
A A A A A A A A A A A A A N Y N A A A N A A A A Y B A Y I A A Y Y A A Y N N]

W
5
o D -

(defun samesetp (a b) (and (our-subsetp a b) (our-subsetp b a)))

(defun our-subsetp (a b)
(cond ((null a) t)
((member (car a) b) (our-subsetp (cdr a) b))
(t nil)))

N A R R R R R R R R R R RN R R R S R R R R R R R R R R R R R R R S R R R R R R R R R R R R R R Y
»2 This function fills the list with n-1 ... n and

;7 is needed to form the complement of a set.

I. ; ; ; ; ; ; ; : 7 : 7 .I .l .l -l .l .l .I -I .I.I .I-I .I .I .I.I .I .I.I.I -I .I.I.I-I.I.I.'-'.'.I.'-I.I.I.I-I.l.I.I.I.I.I.I.I-I.I.I.I-III.I.I-I.I.I.I-l.l

(defun numset (n)
(numsetl (- n 1) nil)) ; call with n-1 to initialize recursion

(defun numsetl (n lyst)
(cond
((< n0) lyst) ; n less than 0, set to nil
(t
(cons n (numsetl (- n 1) lyst)))
)
)

kersten/kak

86

srrvierrsifile names;ssii it

e
’

L T T T T T

HIS FILES IS ggutil.cl
firle

This function returns the vector magnitude.

" E E E N E N E NN E N EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
RN NN NN NN NN NN]

™

(defun vector-magnitude (vector)

(sgrt (vector-magnitudel vector)})

(defun vector-magnitudel (vector)

(cond

((null vector) 0)

(t

(vector-magnitudel (cdr vector))))

(+ (expt (car vector) 2)

"= mEEEEEEEEEEEEEEEEEEE A
PN N IV I RV AV B A A S A A Y A A Y BN)

(cond
{ (zerop mag) vector)

(let ((mag (vector-magnitude vector)))
(t

(defun find-unit-vector (vector)

(/ (float x) mag))

(mapcar #’ (lambda (x)

vector)))

D
A A I B e A A]

Y

(* alpha %)) v))

(defun scale-vector (alpha v)
(mapcar #’ (lambda (x)

vectors.

" s EEEEEEEEEEEEEEEEEEEE R
P A 2 B A A I A A A A MY A A A I AV R A

(1S W
wg

L1

Y
O =
LEY "
N
w O ug
D e
T
[N @ NLIN
LN TN
wQon
1N LI
LS
O n
0O =
(1N LIN
NOREN
e C =
PENIFRFIN
1N (1N
w0 o
s O e
ISR SrTN
R BT
LTy
s @ as
s ae
a~ -
o O o
QO
s — as
s e
w O
w o
[N I
LT
s [N
R/ N
s a~
wE
N
(18 .
(18 [1N
[1N N
LI
LIS

((null u) 0)

(t

(defun dot-product (u v)
(cond

(+

(car v))

(car u)
(dot- product (edr u) (cdr v))

)

(*
))

two vectors.
;

((null v}y nil)

(t

(defun vector-difference (u v)
(cond

(car u) (car v))

(cons (-

(cdr v})))

(vector-difference (cdr u)

87 kersten/kak

R NN NN NN NN NN NN RN EEEEE NN

- This function returns the vector sum of two vectors.

A A N N NN N NN NN NN R RN

(defun vector-sum (u v)
(cond
((null w) nil)
(t
(cons (+ (car u) (car v))
(vector-sum (cdr u) (cdr v))))

R N RN RN NN N N A NN NN NN N NN

7 This function returns the velocity from the distance vector.

2272V EPIIEIIIIIIIIII TIPS I PPV s P2 S PSSP IL IS NL I NI LT NI

(defun find-velocity (vector deltat)
(mapcar ¥’ (lambda (x) (/ (float x) deltat))
vector))

O A A A N N N N N N N NN NN]

: This function returns the cpa fromthe position vector.
: This function finds the minimum distance from the origin
: to the projected path and returns the vector of that distance.

...
L O N N A A R N A NN NN NN NN N NN NN NN NN

(defun find-cpa (coord time)
(let* (
(r (car coord))
(u (vector-difference (car coord)
(nth (4- prediction-threshold) coord)))
(v (find-unit-vector u))
(scale (- (dot-product r v)})
(vtemp (scale-vector scale v)))
(vector-sum r vtemp)))

A A A A A A A A A A N N NN NN NN

i This function returns the cpa from the position vector.

L A A A A A A A A A A A A N N N N NN NN

(defun find-linear—-model (coordtime)

(format t "»**»xxx ENTHRED HND-LINEARMODHE. *****")

(format t " coord is ~a~%" coord)

(format t " time is ~a~%" time)

(let* ((r (car coord))
(u (vector-difference
(car coord) (nth (1- prediction-threshold) coord)))

(dt (- (car time) (nth (1- prediction-threshold) time)))
(v (find-velocity u dt))

)
(format t "dist vec r is ~a~% " I)
(format t "vec diff U is ~a~% " u)
(format t "dt time diff is ~a~% “ dt)
(format t "v velocity is ~a~% " V)
(listr v)

)
;;(break "-3% ABOJT TO EXIT LINEAR MOXTH. ~%")
)

A N A A A A A A A A A A N A A A A N I I A A A N R I A A A A A A A R

s This function returns the average and vector average.

A A R A A A A A A A A A A A A A A A e A A A A e A e A R e e e e A A A NN N

(defun average (lyst)

88 kersten/kak

(let* (
(asum (apply '+ lyst))
(len (length lyst))

(3 asum len)))

(defun convex-average (alpha x y)
(+ (* alpha x)
(* (- 1.e0 alpha) y)
))

(defun vector-average (lyst)

(do*

(
(scale (/+ 1.e0 (length lyst)))
(vlyst (mapcar #’ (lambda (X)) (scale-vector scale X)) lyst))
(worklyst vliyst (edr worklyst))
(element (car worklyst) (car worklyst))
(result (car vlyst) (vector-sum result element))

)
({zerop (1- (length worklyst))) (return result))
»)

(defun convex-vector-average (alpha X y)
(vector-sum (scale-vector alpha x)
(scale-vector (- 1.e0 alpha) y)
)

R RN NN NN NN N A A A A A A A Y A A Y A A A A R N

1 This function returns the range of the intervals.

L A A A A A A A A A A A A A A A A A R

(defun union-intervals (lyst)
(format t "Inside UNION-INTERVALS input lyst is ~a~% " lyst)

let (

((low (apply ‘min (mapcar 'car lyst)))
(high (apply 'max (mapcar ‘cadr lyst)))
)

(list low high)))

L A A A N NN N N A RN EE AN N N NN NN NN NN NN NN
rr This function returns the cosine between two vectors
LR AR A AN AN A S A A A A A A A A A A A A A A N N N NN NN RN N

(defun vector-angle-cosine (u v)
(dot- product
(find-unit-vector u)
(find-unit-vector v)
))

R R R R R RN RN N RN S S AR N NN R A AR AR
e his function finds the absolute difference between two numbers.

(defun absolute-difference (x y)
(abs (- x y}))

R A R R R R e e e e A R R R AR R R R R R
s This function finds the sum of the absolute diff between two
;s vectors using the above function.

RN RN

(defun vector- absolute-difference (u v)
(apply '+
(mapcar 'absolute-difference
u v)))

...
A A A N A A A A A A A A A A N A N N N RN NN

IR R N N NN N NN Ny

(defun gauss (x)
(let ((const (/ 1.eO (sgrt 3.141592653589793))))

(* const (exp (- (* x x})))))

22 P2 22T I ITILII LI NI I PP ISP II TSI PP P I I I LSO NIL T IIIT T

;5 CDF -- exponential function given nmean, returns l-exp{-x/m).

--
2722227322022 2202708300080 0880008588087 880 0888888777700 8888080087008

(def un exp-cdf (x nmean)
(- 1.e0 (exp (- (/ (float x) nean)))))

kersten/kak

90 kersten/kak

s file LILE= T LS

' Fileis ggmacro.cl.

;3 This a file of macros and &unctionsused in the BB.

r7 Most of the routines act as accessors and modifiers for the
i3 oObjects on the BB,

-

priiiiiiiiciiiiiziiiiifile name;sssnnnnnnnnnnnnng

~
~
.~
~
~
~
~
~,
~
~
~
~
.~
~e
-
~
~
.
~
“~
~
~e
~
~
~
“~
“~
~
~
~
~
~
.~
~
.~
~
~
-~
“~
~
~
~
“~
.
.
~
~
.~
~
~
.~
~
~
~
~
~e
~
~
~
~
~
~
~
s
.
~
~
.

This macro pushs objects from the queue instance variable
of the objects acting like queues -- e.g. ksarq.

L
SENu g g uENe N

W E N NN E N EE
NN RN NN NN NN NN RN RN

-
-~
.
Y

(defmacro mypush (object stack)
‘(cons ,object ,stack))

PR " e NN
i i i e A A N A A A A N N N N

;
; Macro push-value-onto-node-at-attribute which
; pushes value on the variable attribute of object node.

TR R " EE e E N EEEEEEEEEEEEEE
NN A N N R A A A P N

~
~
-
~
-

wa SE o Sm v

.
.
‘.
o
o
.
.
~
~
<
~
~
~
~

(defmacro push-value-onto-node-at-attribute (value node attribute)
*(with-accessors ((x ,attribute)) ,node
(setf x (cons ,value x })))

R R A R R N S N NN R R N R R R
;> This macro pushes a goal object onto the goal BB at said level
;2 Note efersto the LHS of the BB which is the goal BB

o E o E E N E N R N E N E NN E N E N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
i A e e N N N N e e e N N N N A A N

~
~
~
~
.

(defmacro sendpushgoal (object level)
‘V(setf (left ,level)
(mypush ,object (left ,level)))}

R A S A A A AR N S R AL LA S
;* This macro pushes an object onto the pgqueue queue

;; This macro has to be rewritten

;3 since set-queue triggers a method which inserts the

13 Object in the proper queue.

R L S L A A R e A N N N N N N N N N N N

~
Q.

efmacro sendksarpush (object pqueue)
* (set-queue ,pqueue ,0bject))

" E N E N N E N RN EEE RN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
L A A A e A N A N N N N NN RN NN

an object at said level to the data BB.
he RHS of the BB and the accessor method.

.. " EEEEEEEEEEEEEEEEEEEE
s P A A A A A N N N Y Y]

SE o SE N s v
~ Sm N Sg S

(defmacro sendpushlevel (object level)
‘' (setf (right ,level)
{mypush ,object (right ,level))))

N R R o R R R by F NN
;3 This removes the | ast member of a queue on the data BB.

;¢ Right method referes to the data side of the BB

R R e e e e

(defmacro fifodeq
*(setf (right ,
(reverse (

eue (level)
evel)
dr (reverse (right ,level))))))

0O —C

A A R R R R S A R AR S S R SR S R PR A A AR SRR S R RS LSS AL S A RS AR RS LA R A A
;» This function is an ordering function

91 kersten/kak

;3 Porder stands for priority order function used in the sort function
; to order the ksar’s.

--
O A N N N N N NN N N N N NN NN RN NN NN

(defun porder (kx ky)
(<= (priority kx)
(priority ky)

)

--
O N N N N N NN NN NN NN N NN NN NN NN NN

;: Macro get-nodes returns a list of all the data objects on
;;: the level namedf -- levels are hits, segments, or tracks.

--
N A N N N NN N N N NN NN NN NN

(defmacro get-nodes (level)
*(right ,level))

--
R A N N N NN R NN NN NN RN NENEEENEEEE NN NN NN NN NN N

3+ This is a display function which shows the KRR entries in
;7 in the various sub-queues.

--
N N NN N N NN NN NN NN

(defun showq ()
5 (format t " ENTER QUBJESto DIFHAY -~3")
5 (format t " e for eventq, w for workq and k for ksar queue ~%")
; (format t " place these in a lyst ~%")
f%gmgt t " % ========= BEGIN QUEUES ========== CLOCK is ~“a ====="%" clock)
le}
((wlyst * (atomic-queue beam-queue segment-queue) (cdr wlyst))
(plyst (car wlyst) (car wlyst))
(var ksarq)

((null wlyst)
(format t " ========= END QUEUES ========== CLOCK is ~a ====="%" clock)
)
(format t " ****kxxxx*x%x*% "z FkFxkkkxkkkkxFirxxkxkxxx-gn plyst)
(format t " ® -a~%" (funcall plyst var))
»

R RN NN NN NN N NN NN NN NN NN NN NN NN NN NN RN NN

;s This function expands the KSAR’s in the subqueues of the KRR queue.

L A e A A N N N NN NN NN

(defun expandq ()
(dolist
(var (cons 'atomic-queue KSQUBUES)
(fcrrnat t "'%***********'a*queue expansion*************" var)
(dolist (ele (funcall var ksarq))
(describe ele))))

L A A A N N N N N NN NN RN NN NN

;= This a display function to display the levels of the blackboard.

--
A N N NN NN NN NN RN

(defun showl ()

(format t "*3% ======== SIART (F 3B LEVHS ======== CLOCK is'a ====== ~%" clock)
(do*

(worklyst level-lyst (cdr worklyst)) ; level-lyst global setq in

(var (car worklyst) (car worklyst)) ; in ggoalbb.cl

(varl ' (tracks segments hits) (cdr varl)) ; labels for levels

((null worklyst)

format t " ========= H\D OF BB LEVELS ==== QQOXK is ~a ======x=== "3%~%" clock))
(f‘;‘:mt t " - - -~ ~a data—————————————————— " (car varl?)

format t " ~a~%" (right
(fcm(lat £ " m———ee i_____(__g___vaf;) goal——————mmmmmmmm e “%" (car varl))

92 kersten/kak

(format t " ~a~%" (left var))

})
L L L T T T T LR RN LR
;- This display function expands the objects on a |evel. .
5+ Expandl expands t he DATA side and expandg expands GOAL side

...

R A A A A A N A N N N N N NNy

(def un expandl (level)
(dolist
§var (right level))
descri be var)))

(defun expandg (I evel)
(dolist
(var (left level))
(describe var)))

R R N A A R R R R R R R RN
5= This macro renmpves a GOAL object specified by x from

17 level y

7 .

R RN RN A A A NN N A A]

(dezracro renove- goal - x-from |l evel -y (node | evel)
Ay et*

((tenp (left ,level)) ;copy goal list

(tlyst (delete ,node tenmp))) : delete node fromtenp Iist

(setf (left ,level) tlyst)

(;ornat t "% GOAL NODEa has been renoved fromlevel ~a" ,node ,level)
)

R A A A A A A N N A R N R A N R NN

Macro renoves a A node specified by x from
y

" um . " EE o EE N EEEEEEEEEEE AN
N N N N N A A

~
~u
~u
~
~
~
~
~u
.~
~
~
~
~
.~
~
~
.
~u
~u
A\
AT
~u
A
Al
~

~

~

macr o renove- data- x-from | evel -y (node | evel)

((temp (right ,level)) ;copy goal list

tlyst (delete ,node tenp))) ; delete node fromtenp Ilist

setf (right ,level) tlyst)

format t "~% DATA NODEa has been renmoved from | evel ~-a" ,node ,|level)
)

-~

..
IR R RN NN NN NN

sz This function gets the coord associated with the segnents
sz and in addition, inserts the tinme coordinate as well to
sz include the time paraneter in the matching process.

R A A N N N NN N N NN NN R NN NN,

(defun get-segnments-coord-with-tine ()
(mapcar
4’ (l ambda (x)
(cons
(car (event-tine x))
(car (coord x))))
(get - nodes segnents)
)

--
N A A A N N N NN NN

;: This function gets the coord associated with
;: specified by y (a list of segnment nodes)
;> and in addition puts in the time coordinate as well to
;7 include the time parameter in the matching process.

--
L A A A N N A I I I 2 v A A A A B N B O B B 2 2 O O O O B O B

(defun get-segments-coord-w th-tine-for-nodes-y (y)
(format t "~% input to get-segnments is ~a " vy)
(mapcar
#(lanmb& (%)

93 kersten/kak

(cons
(car (event-time x))
(car (coord x))})

--
2 22T IV E TN I I TN PN I NI IIIN SN SIS I III LI NI I I II TIPS LI I I IE N IR I NI I

73 This function gets the coords from the oldest hits object.

--
R RN NN NN NN NN NN NN EEEEENE NN AN NN NN NN NN NN

(defun get-hits-coord ()
(coord (car (last (right hits))}))

--
N N N NN NN N R NN N NN RN E NN NN

;3 This function gets the time from the oldest hits object.

--
A A A N N N N N N NN NN NEE NN NN NEN

(defun get-hits-time ()
(event-time (car (last (right hits)})))

--
L R R O B O B N N I A A I A N A R AN A A A A A A A A A A A A R A A A e

53 This function gets the coord and time for last object of hits level.

--
R A A A A A A A A N N N N NN NN

(defun get-hits-coord-with-time ()
(mapcar #’ (lambda(x) (cons (get-hits-time) x}}
(get-hits-coord)))

--
L R A A A A A A A A A A A A A A A A A A N N A A A A N N]

;; This function gets the number of objects enqueued on the
;; data blackboard at the specified level.

--
L A R A N N N N N N NN NN NN NN NN NN NN

(defun get—-number-on-level (level)
(length (right level)))

O A A A A A N N NN NN N NN NN NN NN NN

;; This macro invokes the ACCESSOR function for all the data track
;: objectsin the list tracklyst.

;+ The get-track-x-intervalsfunction returns the cpa bracket

;; estimated from the tracks. The get-track-y-intervals is the

;s corresponding function for the y-axis.

A e A A A A N N N N N N N Y A Y B O B B Y N I A A A B A A

(defmacro get-track (operation tracklyst)
‘(mapcar #’ (lambda (x) (,operation x)) ,tracklyst))

(defun get-track-x-intervals (trklyst)
(mapcar #’ (lambda (x) (car (cpa-bracket x))) trklyst))

(defun get-track-y-intervals (trklyst)
(mapcar #’ (lambda (X) (cadr (cpa-bracket x))} trklyst))

O R R A A A NN NN NN NN RN NN NN NN NN NN

;7 This function removes a list of objects from the track level.

L A I A A A A A N I I A A A A R A R A O N N N R N R A A O A A N A I N N O A N N Y N N]

(d?:‘jun remove-nodes-from-level (level tnodelyst)
0*

(

(twork tnodelyst (cdr twork)) ; cdr down the nodelyst

(tn (car tnodelyst) (car twork)) ; this is the head of lyst
(lyst (right level)) ; this all the nodes on the level

((null twork) (setf (right level) lyst))
(setg lyst (removetn lyst)) ; remove the unwanted nodes one-by-one
))

...
A N N N NN NN NN NN NN RN RN

94 kersten/kak

--
A A A A e e N N N NN NN NN RN NN NN

(defun first—-n-elements (n lyst)
(if (< (length lyst) n)
(format t " ERROR attempting take too many elements in lyst ~%")
nil)
(do*
(

(index n (A- index))
(outlyst nil (cons (nth index lyst) outlyst))

)
((zerop index) (return outlyst))}))

A A A A A A A A A A A N NN NN NN N NN N NN

et-recent-segments gives the segments which are within
"recent-time" i.e. < oldage -- which is a global variable
Becareful, time is now a system function associated with L

W oE N N E NN EEEEE NN EE
RN N A N N N Y A N A N A A N N]

ISP
(defun get-recent-segments (etime)
(do*
(
(slyst (reverse (right segments)) (cdr slyst))
(clyst (reverse (get-segnents-coord-with-time) (cdr clyst))
(newlyst nil)

)

((null slyst) (return newlyst))

(if (>= (- etime (caar clyst)) oldage) ; oldage global set at 3
nil
(setq newlyst (cons (car slyst) newlyst))
1))

R E E E N R E RN E N EE N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
LA A A A A A A A A N N RN N N NN NN NN NN NN N

This function finds the latest data point and returns the
ta point (hit or segment).

A A A A A e o N Y A N Y O B O B AV R A Y A A A MY Y A A N N N]

3
@D
(o]
=
—
>
Q
=3
o
Q

(defun find-time-of-last-data- point ()
;: look at the segment and the hits data bb level
;; find the maximum point
;; if both are empty or either one return value of zero
(let*
{(hlyst (right hits))
(hmlyst (mapcar #‘ (lambda (x)} (event-timex)) hlyst))
(slyst (right segments))
(smlyst (mapcar #’ (lambda (x) (car (event-timex))) slyst))
(testlyst (append hmlyst smlyst)))
(if testlyst (apply 'max testlyst) 0)))

E L 27 007 2075 82808808200 7800000800 0080080080000 0000008008000 0000000000078

;5 This function finds the oldest or (min clock time) of

s: a segment entry.

R N NN R N N N NN NN NN NN NN NENE

(defun find-oldest-segment ()

;; look at the segments on the data bb

;; find the minimum clock time of latest data point

;3 return the node to test for atrophied data segments
{do* (

(slyst (right segments) (cdr slyst))

(node nil)

(smlyst (mapcar #' (lambda (x)

(car (event-timex))) slyst)
{cdr smlyst))
(work (car smlyst)))
((null slyst) (return node)) ; returns nil if no segments

95 kersten/kak

(cond
((< (car smyst) work)
(setqg work (car smlyst)) ; update current m ninmum
(sgelf.;; node (car slyst))) ; update node corresponding to mn
(t ni
IR

22 52 2202 22222222222 P8P PPIPPPIPIPIPIIPIIII PP IIIIIIIIIIII IS

;» This selector copies fromlevel y those data nodes that satisfy f.

PP PP IIIIIIIIIIII NI LTI PP PIIIIIIIIIIIIII IS ISP NI PN IIILL NI

(defun copy- dat a- nodes- at - | evel -y-sati sfying-predicate-f (y f)
(do (
(tenp (reverse (right y)) (cdr tenmp))
(y-tenmp nil)
)

((null tenp) (return y-tenp))
(if (funcall f (car tenp))

(setg y-tenmp (cons (car tenp) y-tenp))
)

PP PP IIIII I I LI LI NP NI P NI PPN NI LNV I PPN I

$* This macro gets the goal lyst to be processed by the forward
;3 based chaining system

55 Note it can renove all the goals which have only one shot at
H getting processed.

PN AN AN AN AN AN AN AR A A A A A A A R R N N NN RN NN EE NN NN NN NN NN RN NN
(def macro get-goal s-fromlevel -x-of -duration-y (level lifespan)
"(let*

(temp (left ,level))
(keep (renmove-if
#’(lambda (x) (equal (duration x) ’,lifespan))

tenp))
)
(setf (left ,level) keep)
temp
))

--
R N N N N NN NN NN RN NN

;3 This macro queue-flavor-onto-node-at-attribute

;7 pushes the object into the object called node using the

;; accessor called attribute.

57 Note that the object is nerged with the existing list of objects
13 using the forder function to order the list. This is for pushing
;7 Kksars into a priority queue.

--
R A N N N N N NN

~
~

(defrmacro queue-flavor-onto-node-at-attribute (object node attribute)
*(with-accessors ((x ,attribute)) ,node

(format t "~% the x variable will return ~a " x)

(setf x (nmerge "list (list ,object) x *forder)

)
:: Forder is the function V\/ﬂi’Ch orders the objects or ksars.
$; Order the queue with lower value priority first, highest value
;; priority last. o o
;7 Note that with equal priority, they should be FIFOw thin the
;;opriority.

(defun forder (x y)
(<= (priority x) (priority y))) :; changed 2 jan 92
57 (< (priority x) (priority y)))

96 kersten/kak

--
N N N NN NN NN NN NN NN NN NN NN NN

hi;s acro pops object off the queue at node. Returns popped object.

" E N EEN
RN NN NN NN NN NN NN

(defmacro pop- fl avor - at - node- at - queue (node gname)
‘(format t "Inside pop-flavor- at-node- at - queue ~a 'a' ,node ,q)
‘(\Evlith—accessors ({q ,gname)) ,node
et* (
(y (cdr q))
(z (car q)))
(setf q y) 2}))

--
IR NN NN NN NN NN NN NN NN NN

;7 This macro is only good with interperative debugging. It fails
;5 for some reason when it is used with mapcar.

--
N NN NN NN NN NN NN NN]

(defmacro poptart (node gname)
* (with-accessors ((X ,gname)) ,node
(let* ((y (edr x)) (z (car x)))
(setf x y) 2)))

:: This macro i s good with
;5 OQname must be quoted.

--
A A A e A A A A A A A A A A A N A A I A A A A A A A A A A A N N N N N A A N

(defmacro mcpoptart (node gname) ;; nt stands for mapcar
\ et*
(;; this gets the fn def of accessor
(com (fdefinition ,gname)) ;; comset is fn of (setf accessor)
(comset (fdefinition (concatenate ‘list (list ‘setf ,gname))))

(xx (funcall com ,node)) ;; xx is all the queue entries
(y (cdr xx)) ;; y isthe rest of the stack below top
(z (car xx))) ;; z isthe top of the stack
(funcall comset y ,node) z)) ;; this sets the function to what is left

IIIIII_"IIIII'IIIIIIIIIIIIIIIII_IIIIII’IIIIIIIIIIIIIII_IIIIIIIIIII{II
;3 This function truncates a list to length n removing the entries from
:: theend of the list.

--
A A A A A A A N N RN NN R NN R NN E NN ENENEEE NN

(defun truncate— lyst (lyst n)
(cond
((null lyst) lyst)
((<= (lengthlyst) n) lyst)
(t (shorten—to—nlyst n)
)

--
IR RN e e N NN N A

;3 This function shortens the lyst to length n provided that list is
;s long enough. The previous function checks this.

..
N A NN N N RN NN

(defun shorten—to—n (lyst n)
(reverse
(nthcdr (- (length lyst) n)
(reverse lyst)
;)

97 kersten/kak

ass.cl file -- for the A.Cs definitions.
efinitions are contained in this file.

<
2
o=
QD
0
2]
o+

(defvar clock 0)

(defvar prediction-threshold 2)

(defvar group-threshold 5)

(defvar ggoal nil)

(defvar rvarl 0)

(defvar rvar2z 0)

(defvar rvar3 0)

(defvar window—scale 3)

(defvar pi 3.141592653589793)

(defvar cloop-count 0)

(defvar cloop-display t)

(defvar junkheap nil)

(defvar oldage 3)

(defvar recheck-interval 5)

(defvar max-segment-length 13)

(defvar KSQUEUES (list 'beam-queue ‘segment-queue

;5 'track-queue 'spline-queue 'merge-queue
»)

(setq *print-pretty* nil) ;; to remove mismatch with old version Oct R

: This is a mixin object called ks-protocol-mixin.
; The mixin contains the functions and arguments to fire the
5 KS’s in phases.

...
A N N N N A A N N NN NN A N N NN NN NN NN

~
~

(defclass ks-protocol-mixin ()

(

(command :initarg :command -accessor command)
(arglyst :initarg :arglyst :accessor arglyst)
(anslyst :initarg :anslyst :accessor anslyst)
(preboot :initarg :preboot :accessor preboot)
(prelyst :initarg :prelyst :accessor prelyst)
)

(:documentation "This is a mixin-class")

:: This method writes to the output port.
3 The method constructs the call to the output port from the
5; slots in the ks-protocol-mixin mixin class.

...
A N N NN N N NN N NN NN NN NN N N

~
~
~

(defmethod write-ks ((ele ks-protocol-mixin))
(with-accessors
((com command) (alyst arglyst) (mess messenger)) ele
(format t 'GMMAND sent to ks "a~%" (cons com alyst))

;3 (break " before-write-getassignment command executed above ~%")
(format (write-port ; get output port name from messenger object
(messenger ele) ; get messenger name from variable

) ""a"%" (cons com alyst)) ; form function call
(setf (channel ele) -1) ; change state of ksar to read

...
N N RN NN

98 kersten/kak

The Knowledge Source Activation Records are the control structures,
which are used to store the requirement that a knowledge source
isto be run. These form the elements of the priority queueing
system needed to run the BB.

Spul ce Nl UTu

SENL S wI NIV

A A N N N N NS NN NN NN NN NN NN NN NN NN NN

~
~
~

(defclass ksar (ks-protocol-mixin)
(
(priority :initarg :priority taccessor priority)
(ksar-id :initarg :ksar—-id :accessor ksar-id)
(cycle :initarg :cycle :accessor cycle)
(context :initarg :context :accessor context)
Epostboot tinitarg :postboot :accessor postboot)
nodeptr tinitarg -nodeptr -accessor nodeptr)
(channel :initarg :channel :initform nil :accessor channel)
(messenger :initarg :messenger :accessor messenger)

(:documentation " The knowledge source activiations records ")

;11 This is the event class -~ actually it is a queueing system
;55 with several subqueues. The variable numbor represents the
533 total number in all the subqueues and the mask represents
553 the state of each of the subqueues.

A N NN N NN NN NN NN

~
~
~

(defclass bbksarqg ()
(

(numbor :initarg :numbor :-initform ’ () :accessor numbor)

(mask :initarg :mask :initform ‘(11 1 1 1) :accessor mask)

(atomic-queue :initarg :atomic-queue :initform ’ () :accessor atomic-queue)
(beam-queue :initarg :-beam-queue :initform ' () :-accessor beam-queue)
(segment-queue :initarg :segment-queue :initform ' () :taccessor segment-queue)
(track-queue :-initarg :track-queue :initform " () :-accessor track-queue)
(spline-queue :initarg :spline-queue :initform ’ () :accessor spline-queue)
(merge—-queue :initarg :merge-queue :initform ’ () :accessor merge-queue)

)
(:documentation " This is the class of the ksar queue")

..

A A A A A A A R RN N NN NN NN NN

Defmethod for constructing the parallel queues.

The set-queue method is definitely terminology | eft over from
flavors. It takes a ksar and enqueues it in the proper subqueue
of the ksar-queue. Each of these queues is a priority queue

so that they are enqueued according to a priority queueing

i discipline contained in the function queue-flavor...

Ma EE NpuRuENE GRS
SENMpuRuRuRu.

..

L A A N N N A NN NN

~
~

(defme*thod set-queue ((ele bbksarq) (value ksar))
(let

(

(temp value)

(test (ksar-id temp))
)

“% " temp

(format t * inside method temp ~a
t “a "% " test

(format t " inside method tes
(cond
((equal test ’newhit)

is
is

99 kersten/kak

(queue-flavor-onto-node—-at-attribute temp ele beam-queue))
((equal test ’segment)
(queue-flavor-onto-node-at-attribute temp ele segment—queue))
(t
(queue-flavor-onto~node-at-attribute temp ele atomic—-queue))

;; This defmethod recalculates the slot numbor and updates the bbksarg.
;; Note this runs before each access of the slot numbor so that it

;; automatically updates the queue length information before each

;; access of that information.

..

A RN N NN NN NN NN NN

(defmethod numbor :before ((ele bbksarqg))
(format t " % ~————- ENTERED DEFMETHOD BEFORE NUMBER KSARQ —-—----— ")
(format t "~% Total numbor in queue prior to set ~a ~%"
(slot-value ele ‘numbor))
23 (setf (slot-value ele ‘numbor)
(setf (numbor ele)
(apply ’+ (mapcar #’ (lambda (x) (length (funcall x ele)))
(cons ’atomic—queue KSQUEUES))))
(format t "~ % —-————- EXITING DEFMETHOD EVENT --~---- ")
(format t "% Total numbor in queue has been set to ~a ~%"
(slot-value ele ’‘numbor))

..

2 227 7902059009989 F5 9999959270000 2024889022208 9 9000002202028 0 089097027807

(defmethod mask :before ((ele bbksarqg))
(format t "~--- ENTERED defmethod MASK which is “% —---")
(format t " The ksarg is ~%")
;; (describe ele)
(let (
(xxx (format t "~% atomic—queue is ~a~%" (slot-~value ele ‘atomic-queue}))
(yvyy (format t "~% beam—queue is ~“a~%" (slot-value ele ’'beam-queue)))
(temp
(mapcar #’ (lambda (x) ;; gets channel status
(i1f (null x) nil (slot-value (car x) ‘channel)))
(mapcar #’ (lambda (y) (slot-value ele y)) ;get lists
(cons ’atomic—queue KSQUEUES))
)}):; limit mask size for now

(setf (mask ele) temp) ;; set the value of the bask
(format t " Mask ele before exiting before method ~a~%" temp)
(format t "-———- EXITING DEFMETHOD before mask --—---—- T%")

..

P22 2P I IT I IITIIIIIIIIL NI I IS II NI NI I NPT IS IEI NI ISP NI LTI II IS NI NS

;; This puts a keyword into the keyworkd package so it can be used
;; with an object.

A A A A A N NN N NN NN

(defmacro keywordize (sym) ‘(intern (symbol-name ,sym) *keyword-package*})
(defmacro my-keywordize (sym) ‘(intern ,sym *keyword-package*))

R A A A A A A A N N N NN R N NN NN RN

100 kersten/kak

;s This is a superclass containing general information used as mixin class.

(defclass goal ()

((initiating- data- level :initarg :initiating-data-level :accessor level)
(event-time :initarg :event-time :reader event-time)
(purpose :initarg :purpose :accessor purpose)))

;: This is a superclass containing general information used as mixin class.

(defclass goal - attributes-mixin ()
((duration :initarg :duration :accessor duration)

(source :initarg :source :accessor source :documentation " generating node"))
(:documentation "This is a goal-attribute-mixin for bbgoal class "}

)

;7 Thisis the main goal class with its mixin superclass.

(defclass bbgoal (goal-attributes—-mixin goal)
(
(coord :initarg :coord :accessor coord)
(numbor :initarg :numbor :-accessor numbor)
(threat :initarg :threat :initform nil :accessor threat)
(snode :initarg :snode :initform nil :accessor snode)
(ksarptr :initarg :ksarptr :accessor ksarptr)
)
(:documentation " This is a local data in the goal object ")

;2 This is the class object which makes up the levels of the

;s blackboard hierarchy. Goals are to the left and data to the right.

;; The slot "up" is for high abstraction, "down” for lower data abstraction.
R N N RS R R R R R R SN L R R R R S R RN NN R R RN S

(defclass bblevel ()
(
(up :initarg :up :accessor up)
(left :initarg :left :accessor left)
(right zinitarg :right :accessor right)
(down :initarg :down :accessor down)
)
(:documentation " The bblevel constructs the levels of the bb")

llllllll’lllllIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)IIIIII ’ r e v ’
77 Node is basic node -- the class is superclass to all data nodes.
LR A A A AR A A A A A A A A A A A A A A A A N N N R RN

(defclass node ()
(
(level :initarg :level :accessor level)
(event-time :initarg :event-time :accessor event-time)
)
(:documentation "The node is superclass to all the data nodes")

IIIIIIIIIIIIIIIIIIIIIIlllllllllllll'IIIIIIIIIIIIIIIIIIIllllIIIIII"I
;7 Bnode is for beam node -- the object holding info at the hit level.
IIlllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIllllI”I"’I”""”’l’l"l’

(defclass bnode (node)

(coord :initarg :coord :accessor coord)

(numbor :initarg :numbor :accessor numbor)

)

(:documentation "The beam node is first level data panel object ")
)

101 kersten/kak

L -

;5 Defmethod which updates the slot numbor and generates a goal to update.
HH

N

W EER
A A A R N NN EE N NN NN NN NN

(defmethod initialize-instance :after ((elebnode) &key)
;: (break " At init bnode to push goal on segment goal level -%")

(format t " '%Entered bnode after initial to put goal in segment level-%")
(with-accessors ((hum numbor) (crd coord) (evt event-time)) ele

(setf num (length crd))

(sendpushgoal
(make-instance *bbgoal
:source ele
‘purpose * change
‘initiating- data-level "hit
-coord crd
:numbor num

revent -time evt
:duration ’one-shot

)
segments)

P2 2T E I TIII I TIIPPLE N IIIIIPIIIII I IIPIIIEIEY

:' Unnode is partial beam node -- for the unmatched part

A R N N NN NN RR RN
(defclass unnode (node)

(

(coord :initarg :coord :accessor coord)

(numbor :initarg :numbor :accessor numbor)

)
(:documentation "The beam node is first level data panel object ")
)

(defmethod initialize-instance :after ((ele unnode) &key)
(format t " '%Entered the initial queue'%'%")

(format t " ~“%message tO eventq here ~%~%")

(setf (numbor ele) (length (coord ele)))

(sendpushgoal
(make-instance '‘bbgoal
:source ele
‘purpose ’unmatched
‘initiating- data-level 'hit
zcoord (coord ele)
:numbor (numbor ele)

event-time (event-timeele)
duration ‘one-shot
)

segments)

--
LR N O N NN NN N RN N NN NN NN NN NN NN N RN RN RN,

;7 Tnode = track node -- the class object holding info at the track level.

--
A N N NN NN NN

(defclass tnode (node)

(

(checklyst :initarg :checklyst :initform nil :accessor checklyst)
(check :-initarg :check :initform nil :accessor check)
(cpa-bracket :initarg :cpa-bracket :accessor cpa-bracket)

(threat :initarg :threat :initform nil :accessor threat)

(snode :initarg :snode :initform nil :accessor snode)
(last-velocity :initarg :last-velocity :accessor last-velocity)
(last-coord :initarg :last-coord :accessor last-coord)

(:documentation "The tnode is class object on track level of data panel")

102 kersten/kak

_|s
3.
0
a
Q
3
e
=y
o)
a
C
]
Q
)
)
-
>
o
0)
=]
S)
o)
9)
]
Q
J
)
e)
=4
>
)
-
,
)
3)
Q
o
<
o

--
R A A A A A N N N N NN NN N NN NN NN

(defmethod (setf threat) :after (new-slot-value (ele tnode))
(mapcar #’ (lambda (x) (setf (threat x) new-slot-value)) (snode ele)))

...
llllIIIIIIIIII”IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllll

:1 This defmethod generates a goal node on the track level.

...
P LV IT NI III PPN SN NI II LI PN LIIIIIIIEEL NI I II PN I P)NV Vs

(defmethod (setf event-time) :after (new-slot-value (ele tnode))
(format t "Entered the defmethod ~%")
(sendpushgoal

(make-instance * bbgoal

:source ele

:purpose ‘change

linitiating-data-level 'track

revent-time new-slot-value ;s (event-time ele)
:threat (threat ele)

:snode (snode ele)

:duration 'one-shot)

tracks)

--
R A A N N N N N NN NN NN NN N NN NN

;2 This defmethod activates the spline check after tracks have been
;: broken off from the main track.

--
O A A A A A A A A A A A A A A A A A N A A N NN NN NN

(defmethod (setf checklyst) :after (new-slot-value (ele tnode))
(format t "Inside defmethod of tnode to reset GHEXKLYST ~%")
;3 (format t " checklyst is “a~%" (slot-valueele 'checklyst))
(format t " checklyst i s "a~%" new-slot-value)
(if (null new-slot-value) ;; if all paths have been checked and modified
(remove-nodes-from-level tracks (list ele))
nil)) ;; otherwise dont reactivate spline tests

--
R R A A A A A N N N N NN NN N N N NN RN e

5 This macro newclass generates a class and the appropriate after-

; methods forming a distributed monitor for the blackboard database.

; Class is the class name.

; Datalevel is the level the after-method must push the class node into.
; Slot-list isthe list of slots to be included In the class.

! Monitor-list is the slots that when changed, are to generate goal nodes.
;5 Super-list is the list of inherited superclasses.

..
A A A A A A A A A N A A A N N N NN

~
~

(defmacro newclass
(class datalevel slot-1list monitor-list super-list &rest options)
(cons 'progn s: progn runs the sequence of programs created ny macro
(cons ;: cons command program into the gigantic |lisp program
'(defclass ;; first list form to construct is the defclass
,class ;; class name in the defclass macro
,super-list ;; the list of inherited classes or mixin classes

, (do* do loop to construct all the accessors and initforms
(

(wlyst slot-1list (cdr wlyst)) :; cdr dowvn the slot-list
(op (car wlyst) (car wlyst)) s opis the next slot to be done

(mylyst nil) :: mylyst is list of slot-specifiers
;: when slot-list i s exmpty then
((null wlyst) (return mylyst)) ;s return the slot-specifier list

(setq mylyst ;s construct each slot-specifier

103 kersten/kak

(cons ;3 cons the slot name and initarg
*(,op :initarg , (keywordize op) ;; to meke op ":op" Op isS put in
tinitform nil : keyword package, put default nil

taccessor ,0p) ;; make accessor function same as op
mylyst))) ;; stuff this in the slot-specifiers
,@options) ;; other options like documentation could be include
(do* ;; generate one method for each triggering report

cdr dovmn monitor list
choose next candidate

(worklyst monitor-list (cdr worklyst))
(op (car worklyst) (car worklyst))

(mlyst nil) ;5 construct list of methods
) ;53 return method li st
((null worklyst) (return mlyst)) ;: when monitor-list i s empty
(setq mlyst ;s construct list of defmethods
(cons * (defmethod ;s cons defmethod into list
(setf ,op) :after ;; make an after method writer
(new-slot-value (ele ,class)) ;3 construct lambda li st
(sendpushgoal ;s make body of after method
(make-instance 'bbgoal ;; make-instance and push
:source ele ;s initialize each value

:purpose ‘change

initiating-data-level (level ele)
Y :variable ’,op

:coord (coord ele)

:numbor (numbor ele)

‘event-time (event-time ele)

:duration ’one-shot

)
,datalevel)} ;5 specify level to push goal on
mlyst) ;; put methods into list

A R AR AR AR A AR SR RS A S A S A A S A A A A AL SRS AL ST ALY
;: Snode is for segment node -- the object class holding info at the
s: segment level

--
A A A A N RN N N N N N A N A N B O Y Y A Y N I A A I N A A)

(newclass snode tracks (
coord ; notethis is a coordinate list
numbor ; number of points the the segment

cpa ; closet point of approach a vector
linear ; (position velocity)
tnode ; ptr to a track node
threat ; true or false - updated by tnode

)
(numbor) (node)

L A A A A A A A A A A A N N A A A N A N A A A A B B B A A A A A A A A A N A Y]

;s This defmethod updates the attribute numbor.

A A N NN NN NN NN NN NN NN NN NN NN

(defmethod initialize-instance .:after ((ele snode) &key)
(with-accessors ((num numbor) (lin linear) (c cpa) (evt event-time)
(cxd coord)) ele
(setf (numbor ele) (length (coord ele)))
(format t " the numbor is ~a ~%" num)
(fczrma(tj t " the prediction threshold is ~a ~%" prediction-threshold)
con
({(< num prediction-threshold))
(t
(format t " Started to calculated cpa and linear ~%")
(setf ¢ (find-cpa crd evt))
(setf lin (find-linear-model crd evt))
)

104 kersten/kak

)

(format t * ABOUT TO EXIT DAVEIHCD TO SET LINEAR 0)
(describe ele)

))

so updates the cpa and linear slots.

(defmethod (setf coord) :after (value (ele snode})
(with-accessors ((num numbor) (lin linear) (c cpa) (evt event-time)
(cxd coord)) ele
(cond
((> (length crd) max-segment-length)
(setqg crd (truncate |yst crd max-segment-length))
(setq evt (truncate_lyst evt max-segment-length)))
(t nil))
(setg num (length crd))
(format t " the numbor is'a ~%" num)

(format t " the prediction threshold is 'a ~%" prediction-threshold)
(cond

((< num prediction-threshold))

(t

(format t " Started to calculated cpa and linear ~%")
(setf ¢ (find-cpacrd evt))

(setf lin (find-linear-model crd evt}))

)

)

format t * ABQUT TO EXIT DAVETHOD TO SET LINEAR 0)
describe el e)

(setq hits
(make-instance 'bblevel
:down nil
left nil
right nil))

rr

(setq segments
(make-instance ‘bblevel
:down ni l
left nil
right nil))

o e s
7

(setqg tracks
(make-instance ' bblevel

up nil
left nil
:right nil
)

e Link the blackboard levels hits <-> segments <-> tracks.

--
A A A A N A R A N O A A A]

(setf (down tracks) segments) : links top level to bottom level
(setf (up segments) tracks) ; links bottom level to top level
(setf (down segments) hits) : links top level to bottom level

kersten/kak

setf (up hits) segments) :; links bottom level to top level
setq level-lyst (list tracks segments hits))

IR A A A A N N R RN RN NN RN RN EEEEEEE NN
- . H H H H

s Initialize an instance of the ksar queue.

A A NN NN NN ENENNEEEEE NN NN

(setq ksarq (make-instance 'bbksarq))
(setq queue-lyst (list ksarq))

End of ggclass.cl file.

M E E N E N E NS E N EEE
LA A A A A A A A A NN RN RN R E NN RN ER]

E Npue N
" Npue N

.
-
-
o
)
N

106 kersten/kak

’
il
ssss5s53s555ss9ss9f€ile-name; ;757030333322 73032237355053333333323333337

" s s s EEEEEEEEEEEEEEE R) BN ENE]
LA A A A A A A Y Y Y A A N A N N N |

.
22 27022 0 0 2220727870200

~
.~
~
“
-
.~
~
.~
.~
.~
~n
.~
~
=
=
n
Y
\.

failed so the formation should

o
@
(@)
I
8
=
e
—
>
D
—
=
Q
(¢}
~
>
&

e uE SE SE S
SE ua SE e owe

" E N NN E NN EEESE
IR NN NN NN NN AN NN NN NN

(defun cr eat e- subgoal s-to- break-track (trnode)}
(let
(

(snode (snode trnode))

(pos (last- coord trnode))

(time (event-time trnode))
(velocity (last-velocity trnode))

(dolist (var snode)
(sendpushgoal
(make-instance 'bbgoal

:source trnode
:purpose ‘verify-track
sinitiating-data-level ‘track
event-time time
icoord (list pos velocity)
:duration ‘one-shot
:snode var

tracks)
(setf (checklyst trnode) (snode trnode))
)

Gt se e e aaanaas teassesesaecrasanaan e ccasesesecstraneas
2 222 22 7 88 87T IIII IR ELININNNINEIN NN TN
;3 Create ksar to verify track test

LA A A A A A A A A AR A A N N N RN NN NN NN NN]

(d((eflun create-verify-track-ksar (trnode segnode coords)
et

(

(tnode trnode) ;; | don't know why | created this var
(pos (car coords))

(vel (cadr coords))

(snode segnode) ;; | don't khow why | created this var

(sendksarpush
(make-instance ’ksar
ipriority ©
:ksar-id 'verify-track
:postboot " (verify)
:command 'verify ;:s changed 21 Jan 92
-nodeptr trnode
:cycle clock
:context (list tnode snode)

-

at checks the segment path against the
ng the angle and the distance between

SeouE spuE v

" E N EEE RN EEEEEEEEEEEEEEEEE
LA A A A A A A A A N N N]

o
“
“
I
“
\-
o
o
o
o
o
o
o
-
o
,-
o
o
o
N
o
o
e
Y
o
N
)
-
-
o
o

107 kersten/kak

(defun verify (ksarptr)
(let*
(
(trknode (nth 0 (context ksarptr)))
(segnode (nth 1 (context ksarptr)))
(tvec (last-coordtrknode))
(tvel (last-velocity trknode))
(ttime (car (event-time trknode)))
(svec (car (coord segnode)))
(stime (car (event-time segnode)))
(dstime (- (car (event-time segnode))
(cadr (event-time segnode)}))
(dsvec (vector-difference (car (coord segnode))
(cadr (coord segnode))))
(svel (scale-vector
(/ 1.0 dstime) dsvec))
(lystl (listtvec tvel ttime))
(lyst2 (list svec svel stime))
)
55 (format outverify "~a~s%" *(verify ’,lyst ’/,1yst2))
(format t "~% |INSI DE VER FY | NSI DE VERI FY | NSI DE VERI FY ~%")
(format t " the STIME is'a and TTIME is ~a ~%" stime ttime)
(format t " the svec is'a and tvec is'a “%" svec tvec)
(format t " the svel is'a and tvel is'a ~%" svel tvel)
(cond
((ksverify lystl 1yst2)
(format t " the snode is ~a is REMAIN PART tnode is ~a ~%" segnode trknode)
nil) ; if the tracks are paired correctly
(t ;; if track should be broken - rip out segments
(format t " the snode is 'a is RIPPED from tnode is 'a -%" segnode trknode)
setf (tnode segnode) nil) ;; removes pointer to track-node
setf (snode trknode
(remove segnode (snode trknode))) ;:; remove ptr to snode
(setf (checklyst trknode) ;; forces an and of children:
(remove segnode (checklyst trknode)))

})
(format t "% END VERI FY END VERI FY END VERI FY ~%")
)

...
IR RN NN e NN EE NN

;3 Returns true only if the paths craft are within one unit time travel
;; and the cosine of the angle between the velocity vectors > 0.9

...
AN R NN NN

(defun ksverify (lystl lyst2)

(I et*

(
(tvec (nth 0 lystl))
(tvel (nth 1 lystl))
(ttime (nth 2 lystl)
(svec (nth 0 1lyst2))
(svel (nth 1 1lyst2))
(stime (nth 2 lyst2))
(tmax (max ttime stime))
(tnewvec (vector-sum tvec (scale-vector (- tmax ttime) tvel)))
(snewvec (vector-sum svec (scale-vector (- tmax stime) svel)))
(deldist (vector-magnitude (vector-difference tnewvec snewvec)))
(maxvel (max (vector-magnitude svel) (vector-magnitude tvel)))
(cosangle (vector-angle-cosine svel tvel))
)

(format t " =% INSIDE KS VERI FY |INSIDE KS VERIFY | NSIDE KS VER FY ~%")
(format t " dist end points'a , max dis in 1 unit ~a~%" deldist maxvel)
(format t " cosangle between velocity vectors 'a ~%" cosangle)

(and

(> maxvel deldist)

(> cosangle 0.9))))

)

108 kersten/kak

A A N NN NN NN NN RN NN NN

535 The lyst argument consists of the following terns :

53 0. bbnode id which goes into the trigger node variable.

s+ 1 The ks which is to be invoked.

55 2 The type of node or level it cane from

5= 3 Entry identifies the entities that follow

;55 4. List of the values of the variable designed by 3

55 5 Nunmber of entities or length of queue of entities.

;31 6. Tine stanp.

53 This function constructs the ksar and pushes it into the ksar—-queue

N NN N N NN NN NN NN NN

~
~
~

(defun creat e- updat e- segnent s- ksar (| yst)

; (break "ENTERED CREATE- UPDATE- KSAR ~%")

(sendksarpush

(make- i nstance ’ksar
cpriority 1
tksar-id 'segnent
:postboot ’(post-assign-hits)
:nodeptr (car (last lyst))
:cycle clock
:context (list

(list "event-time (nth 6 lyst))
(list ‘numbor (nth 5 lyst))
(list *cooxrd (nth 4 lyst)))

: channel 2

:command ' get assi gnnent
targlyst ' ()
tanslyst ‘()

. messenger assi gnnsg
:preboot ’‘(pre-assign-hits)
:prelyst ‘ ()
)

NN N NN N NN NN NN

functlon creat e- check-track- ksar whi ch checks if the track
threat and, if so, marks the object accordingly

(defun create-check-track-ksar (lyst)
(sendksar push
(nake—lnstance ‘ksar
tpriority o
tksar-id 'spline
:postboot ‘(assign-threat)
:conmand ' assi gn-t hreat ;; changed 21 Jan 92
:nodeptr (car (last lyst))
:cycle clock
context (Ilist
(l'ist ’snodes (nth 4 lyst))
(list "event-time (nth 2 lyst))
(list *tnode (nth 5 lyst)))
:channel 1

rrt s s st st s s s AU AN 2NN N 2N B A 2 A A A B A A A A v A B i o A o v

Functi on create-update-tracks- ksar pushes a goal onto goa "BB
t o update the track

Thi s causes information to percolate up from

t he supporting segnents. ~—

A A A A A A A A A A A A N N N NN NN NN NN

TR TR TR
IR TR

~
~
~

(defun create-update-tracks-ksar (lyst)

109 kersten/kak

;;(break "xxxxx BREAK - JUST ENTEHRED UFDATE-TRACKSKSAR ***xx* =g

(sendksarpush
(make-instance ' ksar
lpriority 0

tksar-id ‘'track
:postboot ' (assign-tracks)
:command 'assign-tracks ;: changed 21 Jan 92
inodeptr (car (last lyst))
:cycle clock
:context (list
(list'event-time (nth 6 lyst))
(list 'numbor (nth 5 lyst))
(list ‘coord (nth 4 lyst)))
:channel 1

IR N NN NN RNy

;s Create-newhit-ksar function creates a goal to get another

zs
s; set of radar returns.

A A A A A A A A N A A N A A A A A A A A A N N A N N A A A A N A A A A N AN A A AN

(defun create-newhit-ksar (lyst)

(sendksarpush
(make-instance ’ksar
lpriority 2

:ksar-id ‘’newhit
:postboot ' (getbeam)
:cycle clock
:context ‘none
:channel 1

command 'fire
targlyst ‘()
tanslyst nil
:messenger beammsg

R R A A N N A A I N N A A A A A N A N NN NN N NN

This function creates all the different type of ksars.
Note that this argument |yst can be extended considerably to aid
in the mapping process for |later expansion.

R R A A A A A A A A A A N R N N A A A A A A A N N N NN NN NN

~
N
~

(defun create- ksar (lyst)
(format t "just entered create-ksar ~%")
(format t " the ksar lyst upon entry to create-ksar is ~a~%" lyst)
;(; (greak "Just entered the create- ksar and argument of call given above ~%")
con
(
(equal (nth 0 lyst) ’newhit)
; (format t "about to create a newhit ksar ~%")
(create- newhit-ksar lyst))
((equal (nth 0 lyst) ’change)
; (format t "about to create a change ksar ~%")
(cond
((equal (nth 1 lyst) 'hit)
(creat e-updat e- segnment s- ksar lyst))
((equal (nth 1 lyst) ’segment)
(create-update-tracks-ksar lyst))
((equal (nth 1 lyst) ‘'track)
(create-check-track-ksar lyst))
(t
(format t "++++++++ BRROR - UNKNOWN CHANCE KSAR TYFE +++++++++7%"))

3}
(t
(format t "++++++++ BRROR - UNKNOWN KSAR TYFE +++++++++"%"))

110 kersten/kak

»)
R R R R TRV T S N R N R R R R R R AR R A A DAY
;5 This function gets the assignments of data to segnents
53 when given two lists of coordinates by passing the problem
::

R NN NN N NN NN NN NN NN NN

~
~
~

defun getassignment (lystl 1lyst2)

(break "**xxx BREAK - JUST ENTERED GETASSI GNVENT #***xx%x ~gu})
ormat t "read assign ~a~%" (read assign))

note this is read the pronpt of rewl supplied by franz

(format t "COWMVAND SENT ~a“~%" ' (getassignment ‘,lystl ’,6lyst2))
(format assign "~a~%" *(getassignment ‘,lystl ‘,lyst2})
ss(format assign "~a~%" ‘(getassignment))
format assign "~a~%" |ystl)
s:(format assign "~a~%" lyst2)
; (read assign) ; reads the answer a list like (0 2 1) to conpareto (0 1 2)
)

R R R N N S R R R R R R A R R A A A S R
;53 This function assigns the incomng hits to existing segnents

--
N R R N NN NN NN NN NN NN

Note that in using KS getassignment, the first argunent is the row
;; of the distance array and the second is the colums of the distance
;: Two cases: 1. Mre segments than hits =-- segnments are rows
s 2. More hits than segnents -- hits nake up rows

R A A A A N NN NN NN N N N NN RN NN NN NN

(defun assign-hits (ksarptr)

(cond
((zerop (get-nunber-on-1|evel segnents))
(cond ¢(; if there are no segnents - initialize one for each hit

(> (get-nunber-on-1evel hits))
(dolist (var (get-hits-coord))
(sendpushl evel (make-instance ‘snode
:l evel ‘segnent
tcoord (list var)
cevent-time (list (get-hits-tine)))
segnents))
(fifodequeue hits))
(t (format t "ERROR in the nodes on the hit level")}))
(t (cond ((zerop (get-nunber-on-1level hits))
format t "ERROR in the nodes on the hit level"))
(t (let* ;otherwise match hits to the segments by using bé&b algorithm

(time (get-hits-tinme))
; test statenent to renpve updates t o segnents ol der than 3
;; time units
(snodel yst (get-recent-segnments tine))
(lystl (get-segments-coord-w th-tinme-for-nodes- snodel yst))
(lyst2 (get-hits-coord-with-time)) ; forms list of (t xvy z)
(lyst3 (get-hits-coord)) ;forms list (xy z)
(tenp
(if (>= (length lystl) (length lyst2))
(getassi gnment lystl 1lyst2)
(getassi gnnent 1lyst2 |ystl)
)

format t *~% +++++++ order of getassignnent +++clock isa +++" clock)
format t "% the lystl isa " lystl)
format t *~% the order infointenmp isa " tenp)
setq junkheap (list ‘lystl lystl "tenp tenp
*lyst2 lyst2 ' snodel yst snodel yst))

(updat e- segnment - coord- and-tinetenp snodel yst |ystl 1lyst3 tinme)

:* here is where one nust take the set difference fromthe new data
;; points in order to insert a goal which accounts for unnatched

111 kersten/kak

;; data

(if (< (length lystl) (length 1yst2))
(create-goal -for-unmatched- hit-&a temp lyst2)
nil)

(fifodequeue hits)))))))

E PP P INTPIIPP PN NI PP PIIIIP PPN PN PPN PP P IT I N LI LI PLIITIPIILPPIPIIE Y

:: Function gettrack interfaces with the KS == writes command to gettrack

;3 KS giving the cpa and the position to the KS and the KS returns the
;; confidence interval and assessment of the threat.

...

R A N N NN N NN NN

(defun gettrack (cpa vector)
33 (read track)
(format t "WIRACK TRAK TRACK TRACK TRAK TRAXK "% ")
(format t "~a~s" *(gettrack ,cpa ,vector))
(format t "~%TTTTTTTTTTTTITTITTITTTTTTTTTTTTTTTTTTTTTTTTTTTTT ™ %")
;; (break "** Here i s the place to check for prompt **") ;; changed 30 Dec 91
(format track "-a-s" * (gettrack ",cpa ’,vector))
(format outtrack "~a~%" ’ (gettrack))
(format outtrack "~a~%" cpa)
(format outtrack "~a~%" vector)
(progl (list (read track) (read track)) (read track))
(read track)

his function puts in the precondition material to freeze the context
and hold the information in the KSAR

--
R A N N N N NN NN NN RN

_|~

(defun pre-assign-hits (ksarptr)

(cond
((zerop (get-number-on-level segments))
(cond (; if there are no segments - initialize one for each hit

(> (get-number-on-level hits))
(dolist (var (get-hits-coord))
(sendpushlevel (make-instance ’ snode
:level ’segment
tcoord (list var)
event-time (list (get-hits-time)))
segments))
(fifodequeue hits)
(poptart ksarq segment-queue))
(t (format t "BRRCR in the nodes on the hit level"))))

(t (cond ((zerop (get-number-on-level hits))
(format t "BRROR in the nodes on the hit level™))
(t (let* ;otherwise match hits to segments by b&b algorithm
(

(time (get-hits-time))
;: test statement to remove updates to segments older than 3
;» time units
(snodelyst (get-recent-segmentstime))
(lystl (get-segments-coord-w th-tine-for-nodes-ysnodelyst))
(lyst2 (get-hits-coord-with-tine)) ; forms list of (t x y z)
(lyst3 (get-hits-coord)) ;forms list (x y z)
(temp (if (>= (length lystl) (length lyst2))
)‘ (’,lystl 7,1lyst2) (', 1lyst2 ’,lystl)))
(format t "Inside pre-assignment function - arglyst is ~a~%" temp)
(setf (arglyst ksarptr) temp)

112 kersten/kak

(setf (prelyst ksarptr)
(list snodelyst lystl lyst2 lyst3 time))

IRRR D]

--
RN RN N N N N NN NN N NN NN NN NN RN NN

:-'- This is the post condition for assign-hits which will be fired from the
;" normal postboot slot of the KAR with arglyst.

--
R A A A N N NN NN R NN NN NN NNy

(defun post-assign-hits (ksarptr)
(format t "~% ***x*xxx*xx%x*x ENTERED POST-ASSGN-HITS **xx*xxsxxkxxkrk=g")

(let*
(

(temp (anslyst ksarptr))
(lyst (prelyst ksarptr))
(snodelyst (nth 0 lyst))
(lystl (nth 1 lyst))
(lyst2 (nth 2 lyst))
(lyst3 (nth 3 lyst))
(time (nth 4 lyst))

)

(format t "~% +++++++ order of getassignment +++clock i s ~a +++" clock)
(format t "~% FOST ASSGN FOST ASIGN
POST ASIGN clock is ~a +++" clock)

(format t *"% the snodelyst is 'a " snodelyst)

(format t "% the lystl is ~a "™ lystl)

(format t "% the lyst2 is ~a " lyst2)

(foraat t "% the lyst3 is'a " lyst3)

(fornat t "“% thetimeis'a " time)

(format t "*% the order info in temp is “a " temp)

(setqg junkheap (list ‘lystl lystl 'temp temp
‘lyst2 lyst2 ‘snodelyst snodelyst))

Mo %o N4 Ne Ve Ny e Ne N
LI PR R T TR

(updat e- segnent - coor d- and- ti netemp snodelyst lystl lyst3 time)

here is where we must take the set difference from the new data
points inorder to insert a goal which accourts for unmatched
data

(if (< (lengthlystl) (length lyst2))
(create-goal -for-unmatched-hit-data temp lyst2)
nil)

(r .fodequeue hits)
}

--
A A A A A A N N N N N NN NN NN

33 This function interfaces with the spline KS written in C.

--
AR A A A A A N A A A N]

(defun getspline (snodeptr)
;3 (dribble "outpour™)
(format t "~% **kxkkkkkkkrxx ENTERED GETSPLINE ***kkkkkkk& —gm)
(let*
(
(lystt (event-time snodeptr)) :: this gets time list
(lystl (coord snodeptr)) ;: this gets coord list
(lystt (first—-n-elements 4 Iysttz) 55 ?et last 4 time pts
:: (xx (format t "lystt is ~a~%" lystt)
(lystl (first—n-elements 4 lystl)) :; get last 4 pos pts
- (xx (format t "lystl is ~a~s$" lystl))

; (break "~% about to send the first list ~%")
H (format t "~a~%" lystt)

(format spline "~a~%" lystt) :; send ks time instances

;- (break "~% about to receive the first list back from spline~™%")
(format t "~a~%" (read spline))

e

113 kersten/kak

(break "~% about to send the second |ist “%")
(format t "second list is ~a~%" |lystl)
(format spline "~a~%" lystl) ;; send ks pos. instances
(break "~-% about to rev the second |ist from spline process ~%")
(do (
(work (read spline) (read spline)) ;:; read coefficients
(lyst nil (conswork lyst)) :; continue reading coef x y z
)
((null work) (return
(cddddr (reverselyst)))) :: reverse to get in order
)
(break "~% about to exit getspline ~%")
(dribble)
)

--
A A A A A A N NN NN NN NN NN NN NN

’

’

This function compares two spline representations.

--
RN RN NN NN NN NN N NN NN NN NN NN NN NNNNNENNNN

(defun compare-spline-models (sptrone sptrtwo)

~p wmunm

(format t " IN COMPARESLINEEMODH.S ~a~a~% " sptrone sptrtwo)

3 (break "=xxxxxxx COMPARESALINEMODELS ****xxx%% =)

(lete

this gets the spline representation

(lystone (getspline sptrone))
for both nodes

(lysttwo (getspline sptrtwo))

(format t ""% ~%")
(format t " SPLINE SPLINE SPLINE SPLINE SPLINE SPLINE “%")
(format t "first set of coefficientsis "% ~a ~“%" lystone)
(format t "second set of coefficientsis ~% ~a ~%" lysttwo)
(dist (apply *+ ; this just sums the abs diff of coef for alltimes
(mapcar 'vector-absolute-difference
lystone lysttwo))))
(format t " BRRCR between pairs is 'a@% * dist)
(format t " Group threshold is ~“a~% " group-threshold)
(format t "-% B\ND SPLINE B\ND SALINE BND SPLINE BEND SPLINE ~%*)
(format t " 3"
dist

R A A A A A A A A N N N NN N NN NN RN NN NN

his function creates a segment for an unmatched hit.
It does no checking since it has already been confirmed that
there are no matching segments.

--
R NN NN RN NN NN NN NN N NE NN NN NN

(defun creat e- unmat ched- hi t - ksar (bnodeptr)

(let*

(

(coordinates (coord bnodeptr)) : copy the coords

(time (event-time bnodeptr)) ; remove time part of the coordinate

(numbor (length coordinates))

(sendpushlevel (make-instance ' snode
:level ’segment
:coord coordinates
:numbor numbor
revent-time (listtime))
segments)
(remove-data-x-from-level-y bnodeptr hits)
»)

’IIII_IIIIIII_IIIIIIIIIIIIIIIIIII_IIIIIIII!IIIIIIIII”III"IIIIIIIIII
7 This function grabs a sample information from the KRR
after getbeam KS has been run.

A N NN NN NN NN NN N N NN

114 kersten/kak

(defun getbeam (ksarptr)
535 (format beam " (fire)~s")

(let* (

(temp (anslyst ksarptr)) : read in the answer |ist
(count (nth 0 temp)) ; first entry of the list
(timestamp (nth 1 temp)) :; second timestamp of list
{coord (nth 2 temp)) ; third entry of list
(xnode (make-instance 'bnode :coord coord

:level 'hit :numbor count :event-time timestamp)))

(format t "Entered getbeam and coord is ~a~%" coord)
{(format t "About t o enter drawtrack ~%")

55 (break

Ne w4 we Ny Ne Ne N N
Ne Mo Ne N5 Ve Mg N v

(cond
(count
i (format t
HY (format t
3 (format t
HH (format t

)
{mapcar #‘ (lambda (x) (drawtrack (* window—scale (car %))

(* window—scale (cadr x)))) coord)

Enter the data point in the data file for plotting

{dolist (ele coord)
(format outdata "'a

a ”
(nth ¢ ele)
(nth 1 ele)))

(format outdata ""%")

" count is ~a~% " count)

" timestamp is 'd% " timestamp)
" coord is ~a "% " coord)

" beam node is ~a "% " xnode)

(setf (right hits)
(cons xnode (right hits))))

& nil)))

115 kersten/kak

sasnaaassfile L2 L T R R R R R R R R R R RN R RRE
5 File is ggnode.cl .
prrrreTRrsrITsTIIvTiTITIi £ile namesinnnnnnnnnnnnnn

--
IR NN e e e NN N A N A N N NN N N

sz This function puts a true or false in those nodes that

i: are threats and have more than one segment associated with tnode.

--
NN N R N N N NN N NN NN NN NN NN NNENE NN NN NN

(defun assign-threat (ksarptr)
(let*
((nodelyst (cadar (context ksarptr))) ; get seg set list
(testlyst (find-closest-set nodelyst)) : find spline fit set
(test (samesetp nodelyst testlyst)) ; compare track lists

)

(format t "~% ASIGN THREAT ASIIGN THREAT ASIGN THREAT ~%")

(format t "Original set from context is ~a~%" nodelyst)

(format t "Test verified set from splines is 'a%" testlyst)

(format t " Result of sameset predicate ~a~% " test)

(format t " —— e T&")

(setf (check (nodeptr ksarptr))
;; (if test (car (event-time (nodeptr ksarptr))) "failed) changed 12 Oct 92

(if test (car (event-time (nodeptr ksarptr))) ‘failed) ;;changeback 25 Oct 92
1 (if test t 'failed) ;: changed back 25 Oct 92

})) ; set check

N N N NN N N N RN N NN

; Updat e- segnent - coord- and-time function is the goal bb version of
update-segment-coord and it handles both cases when

. # segments >= § hits

. ¥ segments < # hits.

t also assigns the coordinates to the proper segments after

he assignment problem has been solved and stores the solution
n

1
2
1
t
in the permutation vector.

SENT NN NN NN
Sa NI NI NI N NN

--
LA A A A A A A A A A N N N e A A A A A A N A A A A A N N NN R NN NN

~
~

(defun updat e- segnent - coord- and-ti ne (order snodelyst segcoord hitcoord time)
(cond
((>= (length segcoord) (length hitcoord)) ;more segs than hits
(do*

(nlyst order (cdr nlyst)) ; permutation of segments
(flyst snodelyst) ; flavor lyst of segments
(clyst hitcoord (cdr clyst)) : coordinate lyst

)

{(null nlyst)

(format t "~% Segments are updated, TIME IS ~a “ clock))
(let

(
(snode (nth (car nlyst) flyst))
(value (car clyst))

;; time for the attribute must be event-time now prk 29 Dec 91
(push-value-onto-node-at-attribute time snode event-time)
(setf (coord snode)

(mypush value (coord snode)})

;; update the time and then the coord values of snode

HE A o more hits than segments

(nlyst order (cdr nlyst)) ; permutation of hits
(flyst snodelyst (cdr flyst))

(clyst hitcoord)

)

um wm
~u Na wE

~u

)

) " e s s EE e
A A N N N N N N NN

This function generates a hit goal to account

116 kersten/kak

((null nlyst)
(format t "-% Segments are updated, TIME IS 'a " clock))

(let
{

value (nth (car nlyst) clyst))
snode (car flyst))

update the time and then the coord values of snode
must replace attribute time with event-time prk Dec 29, 1991
(push-value-onto- node-at-attribute time snode event-time)
(setf (coord snode)
(mypush value (coord snode)))
)

)

= N
AL A A A A A A N

for those

R R s s s s EEEEEEEEEESE =
A A A A I Y I I N T

data points that are not matched to the current segments.

Lystx is list of coordinates with time in the original data hit

and intset i s the assignment of segments to data.
This function should only be applied when there are more hits
then current segments to match to the hits.

Numset generates integer set (n-1,n-2,...,0) for input n.

~
~

]

L A A A A RN N A NN NN RN EEN

(defun create-goal -for-unmatched-hit-data (intset lystx)
(forr,pat t ""% intset and lyst2 "% “a "% ~a" intset lystx)

(I
{

et

(nset (set-difference (numset (length lystx)} intset))

(time (caar lystx)) ; copy time from one coord
(number (length nset)) ; number of coord's unmatched
(wlyst (mapcar 'cdr lystx)) : removes the time from all coord

(lyst nil) initialize the lyst
)
;s note the sort is used keep the order of the wlyst
;: unaltered
(dolist (var (sort nset ’'>) lyst)
(setg lyst (cons (nth var wlyst) lyst)))
(sendpushlevel ;pushes node onto data side
(make-instance ' unnode
level “unmatched
:coord lyst
snumbor number
:event —time time
) hits)
)
Creates-new-track-node is a function which generates the track node

from the segment node when there i s no tracks on the track level.

’ s

R N N N NNy

(defun create-new-track-node (segnode)
(format t "***xx*> ENTEHR CREATENBA-TRACK-NCDE ****xxx%xx~g")
(break "Time to switch to dribble ~s")

(I
{

et®

(temp (gettrack (cpa segnode) (car (linear segnode))))
(if (null temp) (format t "~% null sequence returned from gettrack™%)
(format t "~% gettrac returns NON NUL SEQUENCE%% "))
(format t "gettrack returns ~a-%" temp)
(intervals (car temp))
(format t "intervalsis ~a~%" intervals)
(threat (cadr temp))
(format t "threat is “a~%" threat)
(trknode
(make-instance ’‘tnode
:level 'track

117 kersten/kak

;event-tine (list (car (event-tine segnode)))
-snode (list segnode)
:cpa-bracket intervals
:threat threat
:last-coord (car (linear segnode))
:last-velocity (cadr (linear segnode))
)
)

)

(format t "gettrack returns ~a~%" temp)

format t "intervals is ~a~%" intervals)

format t "threat is ~a~%" threat)

(setf (tnode segnode) trknode) ; establish forward ptr

;: changed 15 Feb 92 added back in on Cct 92

53 (setf (threat segnode) threat) ; establish threat contribution
(setf (threat segnode) threat) ; establish threat contribution
(format t " About to Push a Node on the Track File ~%")
(sendpushl evel trknode tracks)
))

L A A A A A N N NN NN NN N N NN N NN N NN N NN NN N RN

s; Assign-tracks is the postboot t 0 t he know edge source which refines
;; the segnment into a new or established track.

A N N N N N N N NN NN NN NN NN NN NN NN]

(defun assign-tracks (ksarptr)
22 first if there are no tracks - create the one for one with
;; the segments so far
(cond
((zerop (get-nunber-on-1Ievel tracks))
(cond

((plusp (get - nunber-on-1|evel segnents))

(mapcar |' create-new track-node (right segnents))
(nmerge-tracks))

(t

(format t "ERROR no segnent to construct tracks ~%"))))

TR

:- if the segnent already associated with track node

((tnode (nodeptr ksarptr))
(updat e-track ksarptr)
(format t "Updated TRACK NODE ~% "))

segment node is not associated with track node - so it
the tracks will have to be reforned

Se NI NINE
NI NTuE

~e

((copy-data-nodes-at-level-y-satisfying-predicate-f
segnents |' (lanbda (x) (nul'l (tnode x))))
(format t "~% KSAR CREATI NG NODE fol | ows: *)
(describe ksarptr) s(*break t 'l ook)
(mapcar #‘create-new track-node ;put these on the blackboard
(copy- dat a- nodes- at - | evel - y- sati sfyi ng- predicate-f
segments #’(lanbda (x) (null (tnode x})))))
(merge-tracks))
(t (format t "~% ERROR - Fallen through inside assign-tracks"))))

L A A A A A N A A A N A A N A N N N N N N NN NN NN NN NN NN NN NN NN
;s Find-formation function detects when two tracks are "cl ose”

;: to each other. "Cdose" is definedto nmean traversing al nost parallel
;; tracks and traversing within tine unit of distances using the max

s speed of both craft.

L A N N R NN NN NN NN R NN N]

118 kersten/kak

(defun find-formation (tnodel tnode2)
(let*
(
(posl (last-coordtnodel)) ;pos of the first track
(pos2 (last-coordtnode2)) ;pos of the second track
(vell (last-velocitytnodel)) ;vel of the first track
(vel2 (last-velocity tnode2)) ;vel of the second track
(magl (vector-magnitude vell)) ; meg of velocity 1
(mag2 (vector-magnitude vel2)) ;: meg of velocity 2
(mag (max magl mag2))
(dp (vector—-magnitude (vector-difference posl pos2)}))
(cosangle (vector-angle-cosine posl pos2))
)

; is the angle between tracks small 2?2
(format t -3 INSIDE AND-FORMATION INSIDE ANDFORMATION ~%")
(format t " distance is'a and the meg of velocity is'a ~%" dp mag)
(format t " cosine angleis'a % " cosangle)

(cond

((and (> cosangle 0.9) ;; if angle small enough

(> mag dp)) t) :; and the distance is within 1 unit of travel
(t nil) ;; otherwise do not associate this pair
)

R RN NN N NN NN NN NN NN NN

; Find-nearby-tracks function returns a list of nearby tracks
; to the given craft from the list of other craft.
: Note that a given craft always i s a nearby track of itself.

--
A A N NN NN N N NN

(defun find-nearby-tracks (ele |lyst)
(cond

((nulllyst) (list ele)) ;5 return element of lyst is empty
(t

(consele ;;include itself
(mapcan ;:;:; test each track in against lyst to see if it is
#’ (lambda (x) (if (find-formation ele x) ; it i s close enough
(listx) nil))
lyst)))))

R N NN NN NN RN NN NN NN NN

;s The following function returns a list of subsets of nearby tracks.
;s The function creates sets of tracks using the function
s find-nearby-tracks to construct sets.

L A A A A A e e e A A N R N N NN N N

(defun find-track-subsets ()
; (format t "~% ENTEHRED find-track-subsets -%")
(do*
(
(tlyst (right tracks) : gets all the tracks
(our-set-differencetlyst (car endlyst))) ;remove ones matched
(tindex (car tlyst) (car tlyst)) : start with first one and find ones

(endlyst nil (if tindex ; in the same equivalence class
(cons (find-nearby-trackstindex (ecdr tlyst)) endlyst)
endlyst))

)
((null tlyst) (return endlyst)))) ;endlyst isalist of lists
; each list is the egivalence class

...

RN R NN NN NN NN

;7 The function make-merged-nodes merges tracks

;; and replaces the track objects with the newly grouped or
;; associated set of tracks.

...
A R N NN NN NN NN

(defun make-merged-nodes (tsets)
(format t "ENTERING MAKEMBRGEDNCDES -======--- %M

;s (break "Inside make-merged-nodes about to construct another tnode ~%")
(format t "The set of tsetsis'a ~"%" tsets)

119 kersten/kak

(do*
((ttwork tsets (edr ttwork))
(twork (car ttwork) (car ttwork)))
((null twork) (format t "MERGED TRAGK NODE CREATEDY%Y))
(format t "% the set of sets is tsets = ~a ~%" tsets)
Eflormat t "% the set of nodes being merged is 'a ~%" twork)
et
(
(temp
(make-instance ‘tnode
:level rtrack
event-time (list
(average :; get-track event-time 31 Dec 1991
(mapcar 'car (get-track event-time twork))}))
:snode
(apply 'append (get-track snode twork))
cpa-bracket (list
(union-intervals
(get-track-x-intervalstwork))
(union-intervals
(get-track-y-intervalstwork))

:threat (cond
((format t "~a~%" (get-track threat twork))
(null (get-track threat twork)) nil)
(t (eval (cons ’or
(get-track threat twork)))))
:threat (apply 'or (get-track threat twork))
:last-velocity (vector-average
(get-track last-velocity twork))
:last-coord (vector-average
(get-track last-coord twork))

)))
;; (mapcar #’ (lambda (x) (setf (tnode (car (snode x)}) temp)) twork)
;; going to do all the snode pointers, 6 Jan 92 ,replaced by following
(format t " ------- NEW NOE GREATHD exan new node ------= T%")
(format t "clock is ="'a -%" clock)
(format t " twork is given by ~a~s" twork)
(format t " temp i s given by ~a~%" temp)
(describe temp)

(dolist (elyst (snode temp))
(format t " Setting the parent pointers for snode = ~a ~“%" elyst)
(format t "Parent pointer = 'a ~%" twork)
(setf (tnode elyst) temp)
;; (format t "Check what pointers are there in snode ~%")
;; (describe elyst)
)

;; end replacement

33 (break "INSIDE MAKEMERID NIES before removal of old tracks ~%")
(remove-nodes-from-level tracks twork) ; remove tracks grouped
(sendpushlevel temp tracks) ; replace with new group
)))

...
N NN N N NN NN

;s Merge-tracks function is the top-level track formation program
;53 that first groups the segments into formations and then
;5 replaces the track objects with the consolidated tracks.

(defun merge-tracks ()
(let*
((tsets (find-track-subsets)));creates the groups
;s (break "Here is where to evaluate tsets")
(format t "+++++ INSIDE merge-tracks +++++++++ ~%")
(format t " tsets are ~a~%" tsets)
. (mapcar #’ (lambda(x) (describe x)) (car tesets))
(make-merged-nodes tsets) ;Creates an equivalence node
(format t "TRACKS MERGED ~%")
))

120 kersten/kak

;: The update-track function updates the tracks from the segment nodes
:: and allows the updated information to percolate up the hierarchy.

L A N N N N NN NN NN

(defun update-track (ksarptr)

(defun get-velocity (pl) (cadr p
(defun get-position (pl)

(lete

(
(snodeptr (nodeptr ksarptr))
(tnodeptr (tnode snodeptr))
(lyst (linear snodeptr))

gets the snode class for ksar
get the tnode class from snode
reads in the linear model

(segp (get-position lyst)) ; tears out the position info fm linear
(segv (get-velocity lyst)) ; tears out the velocity info fm linear
(trkpos (last-coord tnodeptr)) ; get track position from track node

(trkvel (last-velocity tnodeptr)) ;obtain track velocity fm trk node
(dt (- (car (event-time snodeptr))

(car (event-time tnodeptr))

}) ;determine the time difference between snode and tnode
(n (length (snode tnodeptr))) : number of snodes in a track
(sl (- 1.e0 (/ 1.e0 n))) ; convex weight 1/number in tracks
(newtime (car (event-time snodeptr))) ; want the latest time on track
(temp (gettrack (cpa snodeptr) ; want the threat and intervals

(car (linear snodeptr))})

(intervals (car temp)) ;;tears out the interval information
(newthreat (cadr temp)) ;;tears out the threat information
(txint (get-track-x-intervals (list tnodeptr))) ;get snode x-interval
(tyint (get-track-y-intervals (listtnodeptr))) ;get snode y-interval
(txint (cons (car intervals) txint)) ; collect the x intervals
(tyint (cons (cadr intervals) tyint)) ; collect they intervals

(if (minusp dt)
(format t "% HRROR INSIDE UFPDATETRACK TIME DIFF IS NEG "))
(format t "~% Inside update-track ")
(format t "% segp and trkpos are ~a ~a " segp trkpos)
(format t "% length nis'a and sl is ~a " n sl)
(format t "% dt is ~a and trkvel is ~a " dt trkvel)
(cond
((zerop dt) (setf (last-coordtnodeptr) ; just average positions
(convex-vector-average sl trkpos segp)))
(t
(setf (last-coord tnodeptr) ; just average updated positions
(convex-vector-average sl segp
(vector-sum trkpos (scale-vector dt trkvel))))
(setf (last-velocity tnodeptr) segv)))

(setf (event-time tnodeptr) (list newtime)) ; update the time

(setf (cpa-bracket tnodeptr) ; update the cpa intervals
(list (union-intervals txint)
(union-intervalstyint)))

(setf (threat tnodeptr) ; update the threat accessment
(eval (cons 'or
(li st newthreat
(car
(mapcar |' (lambda (x) (threat x))
(our-set-difference
(snode tnodeptr)
(list snodeptr))
.)))

1))
car pl))

A A A A A N N RN RN NN R R

Find-closest-pairs function returns the tracks that are close enough
to be grouped with the segment represented by snode.

121 kersten/kak

..

RN RN N N NN NN NN NN

(defun find-closest- pairs (snode lyst) ;assumes snode in lyst
éformat t " in find-closest-pairs of ~a in set 'a% - - " snode lyst)

do*
;compare to others in group

(iC
(worklyst (our-set-difference lyst (list snode))

(cdr worklyst)) ; do it one at time
(xxx (format t "~% DIFFERENCE set (should exclude snode) is ~a~%" worklyst))

(dlyst nil) ; cummulate those tracks are close enough in dlyst
)

((null worklyst) (return dlyst)) ; returns lyst with snode included

(format t "CLOSEST PAIRS for snode 'a and first ele in worklyst ~a ~%"
snode (car worklyst))
(if (< (compare-spline-models snode (car worklyst)) group-threshold)
(sletq dlyst (cons (car worklyst) dlyst))
nil)
(format t " the dlyst as it builds ~a~%" dlyst)

))

R N N NN N N NN NN NN NN

;2 The function find-closest-set returns the group check of the tracks.

N N NN N N N N

(defun find-closest-set (lyst) ; returns the lyst of grouped tracks
(format t " --- inside - find-closest-set of the list ~-a~% ----" lyst)
(let ((ulystnil)) ; initialize union lyst as nil

(dolist (elelyst ulyst)

(setq ulyst (our-union (find-closest-pairsele lyst) ulyst))
(format t " Solution as it builds up, ele is single track -%")
(format t " ele lyst and ulyst are ~a~% ~a~% ~a~% " ele |lyst ulyst)

IR

................................

122 kersten/kak

m E N E NN RN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
I NN NN NN NN A NN]

separates the if and then parts then
t d if true evaluates the then part.

A N NN NN N N NN NN NN NN NN NN NN NN

-
-
o
-~
N
)
N

g

(defun runrule (node rule)
, (format t "~"% entered runrule —-———————- "
; (format t "% node value is 'a " node)
33 (format t "~% ruleis'a " rule)
(setq*ggoal node) ;; need global variable to construct code via subst
(let
(
(ifs (subst 'ggoal 'gnode (car(cdaddr rule))))
(thens (subst 'ggoal 'gnode (cadr(cadddr rule))))
)

=
’
=
’

(format t "~% node i s mw 'a -~%" node)

s (format t "~s ifsisrmow 'a ~3%" ifs)
I (format t “~3% eval of ifsis'a ~“%" (eval ifs))
3 (cond
s ((eval ifs)
1 (format t "% thensis rov 'a " thens)
3 (format t "% eval of thensis'a " (eval thens)))
i (t (format t "~% NO QOALS SATISFY RULE ~"%")))
(if (eval ifs)
(progn (eval thens) t)
nil)
»)
O his i s the start of monitor.
;7 It just determines which nodes will be placed
:; back on the blackboard.

A NN NN NN NN NN NN NN RN NN

(defun mini-monitor (gnode)

(let

((tvalue (duration gnode)))

(cond
((equal tvalue 'one-shot)
(renove-goal - x-from | evel -y gnode level))
((equal tvalue 'continuous) nil)
(t nil)
)

»)

--
R A R NN N NN N N NN NN NN

;** Try-all-rules function tries all the rules on each
733 given node which is input to the procedure.

--
A A N N N NN R NN NN NN

(defun try-all-rules (node)
(do
((rules-to-try rules (cdr rules-to-try))
(record nil)) ; suppose to hold all rule fired on this node
((null rules-to-try)
format t "“%####% fini try-all-rules ")
format t » applied -=- 'a —-- ###4" record)

)

(cond

((runrule node (car rules-to-try)) ; try each rule
(setq record (cons (cadar rules-to-try) record)))
{(t nil)

)

123 kersten/kak

--
IR RN NN NN NN NN NN NN

535 Gven a "lyst" of goal nodes, try each rule on each
513 of these nodes.

£ 2722 PIIITIIIPIIPIIII NI PP NPT LTS PPN I N IT I P I

(defun map-the-goals (lyst level)
 (format t "-~% just entered nmap-the-goals, lyst is a =~%" |yst)
(do*

(
(Wyst lyst (cdr wyst))
(node (car wyst) (car wyst))

((null wyst)
(format 't “-~% *** {inished mapping goals to ksars *** -gw)
(format t w~g ****x* clock is nowa ***x*x*x =g» c| ock)

(try-all-rul es node)

1 02 2777027728777 787282287 F S II I IIIIIIIET IS I IS T2

33 Plan-goals gets the goals and maps them into KSAR’s.

R e e e NN NN

Edef un plan-goals ()
do*

(
(I'lyst level-lyst (cdr Ilyst))

(goal | yst

?get -goal s-from | evel -x-of -duration-y(car |lyst) one-shot)
(if Ilyst

(get - goal s-from | evel - x-of -duration-y (car |lyst) one-shot)

))

)

(gnull Ilyst))

(format t "-s goallyst is before map ~a " goallyst)
(format t ""% [lyst is before map ~a * |lyst)

(cond
(goal | yst : (mapcar ' descri be goallyst)
(format t "~% to enter map-the-goals - lyst - ~a ~%" goal |l yst)

: note this is going through the rule list by Ievel
(map- t he- goal s goallyst (car |lyst)))
(t nil))))

124 kergen/kak

I =T 1 1
;7 File is ggports.cl
e it wl b < NAME; ;3 550770 iii 200000030 iiiisiiiiiiziiziiiiig
N N N S N A N)
ad— header may not be needed depending on header in LISP.
ader off of lisp so that you can communicate with

UEIRIKIRL
UKIRIRIRD
PPy
8@
o
n |
~ 0
-5
~
%3]

~ —
- -

(defun read-header (stream)
(dotimes (i 2) (read-line stream))
(read stream))

; ; ; ; : .I .I .I 'l .l.l.l .I .’ .’ .’ .l.' .I .I.’.'.I.I'I.l.l.'.'.'.I.I.l.'.lll.’.’.’.l'lll.l.l.I.I.I.I.I.IIIII.I.'II.I'I.I.I.I.I. I. I. ’. I. A'. l. I. I. I.
333 This function opens an in port called inbeam for the path

131 process which represents the beam generation program. The out

333 port is outbeam.

I. ; ; ; ’ ; .’ .I .I .I .I -I .I .I -I .I .I -I .I .I -I-III-I-I.I.I-I.I.I-I.l.l-l-l.l-I-I.I.I-I.I.l-l.’.I-’-I.’-I-l.I.l-l.l.l.l.I.I.I.l. I.I-I. l. I- I. I. I- l.

(defun openports ()
(multiple-value-setq (beam error-beam beam-id)
(run-shell-command "path" :wait nil
:input :stream :output :stream
:error-output :stream))
;5 (read-header beam)
)

R

now open ports to keep this process active

Nl

(openports)

M m E E EE E N R E N E N E SN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
NN NN NN NN NN RN NN NN NN NN E RN

ns two-way assignment ports for the executable

=
L=
n
yo)
-9

EE E N E N E N R E N NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
LA A A A A A A A A A A A A A N A A Y A A A N A N Y N]

édefun open-assignment-ports ()
multiple-value-setq (assign error-assign assign-id)
(run-shell-command "test" :wait nil
:input :stream :output :stream
rerror-output :stream))
)

LRSS

open-assignment- ports)

L A A A A A B A A A B A B A A A A A A O N AN Y N B Y O Y A A S A A A Y A A A A Y A N N B A Y A A A A A N A
;s This function opens track ports
L A A A A A A A A A A A A N R NN N NN NN NN NN NN NN NN NN r s

(defun open-track-ports ()
(multiple-value-setq (track error-track track-id)
(run-shell-command " track™ :wait nil
input :-stream :output :stream
serror-output :stream))
;5 (read-header track)

)

.~

'('open— track- ports)

125

(defun opensplineports ()
(multiple-value-setq (splineerror-spline spline-id)
(run-shell-command "spline” :wait nil
:input :stream :output :stream
;error-output :stream))
53 (read-header spline)
)

~n

opensplineports)

.
’

NE e, NE

.
’

kersten/kak

L A A A A A A N N N N NN NN NN NN NN NN NNy
;: This function opens ports for spline fucntion
LA A A A A A A N A RN RN

126 kersten/kak

-
o

]

B

8
N
N
N
:
N
N
.
.
N
N
N
N
N
-
.
N
N
N
:
N
N
.
N
N
.
N
:
.
N
.
N
N
N
.
N
N
N
N
N
.
N
N
N
.
N

...

RN E NN RN NN EEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEEEEEE NN
A A A A A A A A A N NN RN N N NN NN NN NN NN NN e rv e

b _ tialization for a recurrent goal. A recurrent goal is a
»r goal which, when satisfied, generates a ksar and then is disabled from
’:

.
’

_|
=)
2]
0]
—
e

generating anymore ksar' s until the KS i s activated. Such a goal is
enabled even if a KS fails for some reason. This goal creation
;3 is for rule5.

--
R N N N NN N NN RN R R N N

~

(sendpushgoal
(make-instance 'bbgoal
‘purpose ’merge-segments
linitiating- data-level 'segments
ksarptr nil
:duration ‘recurrent
)
segments)

;; This file contains the rules.
;s These rules use bbgoal class objects as facts
:: in the antecedents.

(setq rule0d
" (rule clocked-data-arrival
(if

(equal (purpose gnode) ‘clock))
;37777 then place data node on the hit data ---
(then
{progn
(create- ksar
(list ‘newhit ‘add 'hit ’unknown ‘unknown clock))
(format t "~% $$$3$ (AQOXK RULE HRED QaOXK IS 'a $$$$$ " clock))

1))
(setq rulel
* (rule create-segments-from-hits
(if
(and

(equal (level gnode) 'hit) ; is goal a hit node

5 s (null (right segments)) : no segments
(equal (purpose gnode) '‘change) ; is it for change
))

;7777 then assign hit update to the segments ---

(then
(progn (create-ksar ; thisis call to create a KAR

(list '‘change 'hit (coord gnode)
(numbor gnode) (event-time gnode) gnode))
(format t " ~%$5$$$$$111 rule assign hits that arrived fired 111$$s$$$")

3)))

i Ruleto process unmatched hits.

.
’

(setq rulela
’ (rul e process-unmatched- hits
(if
(and
(equal (purpose gnode) 'unmatched) ; is purpose unmatched

127 kersten/kak

(setq rvarl (source gnode)) ; what is hit node
))
e TTTTTTTT for now just renove these two nodes ----
(then
(progn
(create-unnmat ched- hit-ksar rvarl) ; note ksars created directly
renove- goal - x- from | evel -y gnode segnents)
format t " ~%$$5$$ rule rempves UNMATCHED nodes fired $$$$$$")
)
)))

..
rs

(setq rule2
'(rulﬁ fpline—check-of—tracks
i
(and
(equal (level gnode) ‘track)
(equal (threat gnode) t)
(or
nul | (check (source gnode)))
i f (numberp (check (source gnode)))
(> (- (car (event-time gnode)) (check (source gnode)))
recheck-interva

)
nil)
)

(and (> (length (snode gnode)) 1)
(>= (apply ‘min
(mapcar
#’ (1l anbda (y) (numbor y))
(snode gnode)
)Yy 4))))

(progn
55 Esetf (check (source gnode)) (car (event-time gnode))) ;; added
creat e- ksar
(l'ist 'change 'track (event-tine gnode)
threat gnode) (snode gnode)
source gnode)))
mat t *~%$$$$S this is spline-check-of-tracks $$$$ss")

i This rule gener ates t he subgoals needed to check tracks

(setq rule2a
*(rul e spline-check-fail ed-generate-subgoal s
(if
(and
(equal (1evel gnode) 'track)
Eequal Ethreat gnode) t)

equal (check (source gnode)) ‘failed)))
1y mmm—me generate subgoals *:srrsrrrssieiiaaaaas
(then

(progn

creat e- subgoal s-t o- break-track (source gnode))
format t "~% 2A 2a 2a 2a 2a 2a 2a 2a 2a FIRED ™)
(format t "-% $$$$ rul e spline-check-fail ed==> generate subgoals $$$5")

)
M)

(setq rule3

128 kersten/kak

’ (rule create-tracks-from-segments
(if
(and
(equal (level gnode) 'segment)
(> (numbor gnode) 1) ; are the number pts in a segment > 1
(equal (purpose gnode) ‘change)
»)
53~~~ construct the tracks from the segments ----
(then
(progn
(create- ksar
(list ‘change ' segment (coord gnode)
(numbor gnode) (event-time gnode)
(source gnode)))
(format t "%RULE 33333 just executed rule 3, create tracks RLE 3333")
) (b)reak vegxxxkx STOFFED RALE THREE FROM FIRING ****x~g")
))

~n
-~

rule 4 purges old objects from the goal B2

(setq rule4
"(rul e purge-old-segment-nodes
(if
(and
(equal (purpose gnode) 'purge-segments) ; is it a purge node
(setq rvarl (find-oldest-segment))
(> (abs (- (car (event-time rvarl))
(find-time-of - last- data- point)

))
10):; 10 is age afterwhich is purged from the |list

;; ——--deletethe goal node and its supporting data---
(then
{(progn
; 1s the number of snodes supporting track <= 1
(if (and (tnode rvarl)
(<= (length (snode (tnode rvarl))) 1))
; then delete both track and segment nodes
(progn (setq rvar2 (tnode rvarl))
(remove- dat a- x-from | evel -y rvar2 tracks)
(renmove- data- x-from | evel -y rvarl segments)) nil)
(format t ""%$$$$$$ rule purge-old-segment-nodes fired $$$$$")

1))

--
R NN SN NN NN NN NNN N

5 Rule 5 is to merge-segments when the appropriate conditions exits.

--
2772272207820 7 00772 I I IR II TP I P I TIPS LSS E PRSI IS

(setq ruleb
* (rul e merge-segments
(if
(and
(equal (purpose gnode) 'merge-segments) ; is it a purge node
énull (ksarptr gnode)).; no extend segment ksar active
setq rvarl (find-oldest-segment))
(setq rvar3 (find-nost-recently-started-segnent-with-length-gt-y 1))
(setq rvar2 (abs (- (car (event-timervarl))
(car (last (event-time rvar3))))))

(and (> rvar2 3) (<= rvar2 10)) : is age of proper range
)

33~ rule attempts to patch fades in signal ---
(th
then
rogn ; this creates ksar and sets ksarptr to that ksar
prog p
;i (break "INSIDE RULE 5 - attemp to extend old segments ~%")

(setf (ksarptr gnode) (create-segnent-mnerging-ksar gnode))
(format t "% 5555555 QQOK ~a 55555555555555555555 " clock)

129 kersten/kak

(format t "~%88S rule 5-——- merge-segments == fired $$$55")
)

This rule verifies the track composition

(setq rule6
* (rule verify-track-composition
(if
(and
(equal (level gnode) 'track)
)(equal (purpose gnode) ‘verify-track)
)
o ToTTTTTTTTTTTTT rule verify track composition ---------
(then
{(progn
(create-verify-track-ksar (source gnode)
(snode gnode)
(coord gnode))
(format t "~% 6666 RULEG verify-track-composition fired RULES 6666 ~%")
;s (break "~ % ***x%* STOPPED RULE Sl X - verify—track-comp - FROM AIRING *****~%")
¥)
))

© we

N v
N e e
~ o
e Nt
s
-
c
0]
0
~
0}
-+
H
[
[a]
1]
o
[
o
[
H
c
[
o
—
|
-
<
0]
N
H
c
[
o
[\
w
-
=3
0]
w
=
c
(0]
N
-
=3
(0]
a
H
[
(=}
(14
o

130 kersten/kak

o
m=
Zo
M
03
Q-
H.o.
[S
o...
Q::
o -
5o
[

.......... i RN R N N R R N R RN]
Illlllllllflle ie-10 I I I S D I S NV N B S S S N S N

:- This function is used to update the global variable called clock
: and to

; 1. push a clock goal into the goal BB

; 2. push periodic goals into the goal BB.

NN NN N A A A A N A N N N NN R]

~
~

(defun clock-update ()

(cond
{(zerop (mod clock 8)) 5: was 4 is now 8 should be reset
(sendpushgoal s push a clock goal onto BB

(make-instance ’bbgoal
:purpose ’clock
Zinitiating-data-level ‘hit
:duration ’one-shot)
hits)
(sendpushgoal ;3 push a purge-segment goal onto BB
(make-instance ’'bbgoal
purpose ’purge-segments
initiating-data-level "hit
:duration ’one-shot)
hits)
)
{t))
(setqg clock (1+clock))
)

R RN NN NN NN NN NN NN NN NN NN RN NN NN

;s The function goon steps through the control loop. It is used
;53 primarily for debugging purposes.

R A N N RN NN NN NN NN NN NN NN

(defun goon ()
(format t "Do you wish to go on ? ~%")
(format t "Answer nil for no, and anything else for yes ~%")
(cond
{(null (read)) (reset))
{t t))

..

R A NN RN NN N RN NN

This the bootstrap function which constructs commands contained
in the KSAR s for invoking the KS’s.

There are two separate procedures used for the KSAR's depending
on whether they are in an atom queue or any other queue.

KSAR s from the atom queue invoke the KS and then wait for the
response.

In contrast, KSAR s from the beam-queue and segment-queue execute

NE NN T Ne e S
NE NN N Sy Ne S

;; the KR is three phases.

e 1. Write the command to the KS Channel state = 1.

M 2. Read the command to the KS Channel state = -1.

H 3. Post the KS results onto BB. Channel state = 0.

- 4. Preconditions must be calculated Channel state = 2.

;s The four possibilities are handled in four separate sections.

..
A A A A A A A A NN RN NN NN NN NN,

(defun bootstrap ()
(cond
((equal (numbor ksarq) 0)
(format t "~% ****xx*x ENTEHRED BOOISIRAP - EMPTY KSAR QUBLE ****~%")
(format t "number in ksarq is'a - first test of ksarq contents ~%"
{numbor ksarq))

131 kersten/kak

nil)
(t (format t "~% ****x**x ENTHRED BOOISIRAP - KSARQ QUHJE HAS ENTRIES ****~g")
(cond ((> (length (atomic-queue ksarq)) 0) ; if atom not empty
(format t "~% ATOM-QUBRLE IS NOT BVFIY - EXEQUTE COMMAND ~%")
(let* (; pull ksar out of queue

(temp (poptart ksarg atomic-queue))
(xxx (format t "9AFTER poptart, KSAR is~%"temp))
;35 (ctemp (car (postboot temp))) : pull command out of postboot
(ctemp (command temp)) ;; changed 21 Jan 92 boot fm commeand
(ctemp *(,ctemp ’',temp)) ; insert arg of ksarq ptr
)
(format t "+++~% BOOTSTRAHNG COMMAND 'a COMMAND FIRING +++~%" ctemp)
(eval ctemp) ; this fires the command held i n postboot
(format t " B3O COMMAND GCOMRETE -- continuing on~% ")
))
(t (format t "Number of Entries in Garbage Queue< 0 ~%"))
)

now finish off ksars which need only to put data on bb
channel is = 0

NsNENIvE
‘RN

(format t "TEST IF MAK = 0, FROCESS RESJLTS AND RJT DATA ON BB -%")
(cond ; take care of the reads, are any mask elements = 0
((and (> (numbor ksarqg) O)
(eval (cons 'or (mapcar #' (lambda (x) (if (equal x 0) t nil))
(cdr (mask ksarqg))))))
(format t "SOME MAK HBVENTS = O, at the |l et statement-%")
(let*(
- (xxx (break "break-at-finish—-work'%))
(mtemp (edr (mask ksarq)))
;: at this point mtemp will be the mask
;: the zero values correspond finishing ksars
(ntemp (mapcan #’ (lambda (x y) (if (equal x 0) (listy) nil))
memp KSQUBUES)) ; this a list of KS’s to read
(xxx (format t "mask is'a and ksqueues are 'a -%" mtemp ntemp))
(ftemp (mapcar
5 #’ (lambda (x) (pop-flavor-at-node-at-queue ksarq x))
7} inserted 25 Dec 91 to try to fix this problem
#’ (lambda (x) (mcpoptart ksarqg x))
ntemp)) ;; thisis a list of instances
(xxx (format t "instances is ~a ~“%" ftemp }))
(btemp (mapcar #’ (lambda (x) (car (postboot x))) ftemp))
(xxx (format t "command is “"a and flavor is ~a “%" btemp ftemp))
(rtemp (mapcar #’list btemp ftemp)) ; list of functions to fire
)
(format t " MAK is ~a and KSQUBUESwith MASK=0 is ~a~%" mtemp ntemp)
(format t " COMMAND is 'a and HAVCR with MASK=0 is ~a~%" btemp ftemp)
;; (break "Just before firing the functions in bootstrap ")
(mapcar #’ (lambda (x y) (funcall x y)) btemp ftemp)
;; (mapcar #’eval rtemp)
)) ; this fires all the functions
(t
(format t "~%$NO MAK HBEVIENTS ARE ZHRO ~%"))
)

now take care of reads when channel is -1

AR Y]

N
’
>
’

(format t "TEST IF MAK = -1 ==> READ KS -%")
(cond ; take care of the reads, are any mask elements = -1?
{(eval (cons 'or (mapcar #’ (lambda (x) (if (equal x -1) t nil))
(cdr (mask ksarq)))))
(format t "SOME MAK HE = -1 ==> START READ KS -3%")
(let*(
(ktemp (poll-reads KSSOURCES)) ;ktemp is read ready ports
(xxx (format t " ktemp = ~a ~%" ktemp))

132 kersten/kak

(mtemp
{(mapcar #' (lambda (x y) (* x (if (nully) 0 ¥)))
ktemp (cdr (mask ksarq))))
(zxx (format t "™ mtemp = 'a ~%" mtemp))
;3 at this point mtemp will have 0,1,-1 and the -1 correspond
;: to those ks's that need to be read from
(rtemp (mapcan #’ (lambda (x y) (if (equal x -1) (listy) nil))
mtemp KSQURJES)); this a list of KSs to read
} 33 mow read each of these KSs and place result in
(format t * READY PFORTS are 'a NEHD TO READS is "a and KSs TO 2D is'a ~%"
ktemp mtemp rtemp)
(format t " the call (funcall 'a 'a) ~%" rtemp ksarq)
;s (break "Break - inside bootstrap about to read-ks %")
(mapcar #’' (lambda (x) (read-ks
(car (funcall x ksarq)) ;:; new Jan 90
)) rtemp)
;s (break "Break - inside bootstrap just attempted to read-ks $")
)):; message flavor
(t
(format t NO MAX ELE = -1, NO KSs READY TO READ ~“%")))

sz mow take care of the writes -- put this code in later
»; channel is 1

v

(format t "TEST MAK = 1 ==> WRITES TO KSS, mask ele of 1 -%")
(cond ; take care of the writes, are any mask elements = 1?
((eval (cons'or (mapcar #’ (lambda (x) (if (equal x 1) t nil))
(cdr (mask ksarq)))))
(format t "SOME MAK = 1, START WRTE SFEQUENCE “%")

;; (break " about to bootstrap-write-ks~%")
*

let” (
13 (ﬂ(temp (poll-writes KSSOURCES) :ktemp is write ready ports
y: (ktemp (mapcar #’ (lambda (x) 1) KSSOURCES)

(mtemp

(mapcar #’ (lambda(x) (if (equal x 1) 1 0))
(cdr (mask ksarq))))
(xxx (format t "mtemp after testing the (mask ksarq) ~a~%" mtemp))
;; at this point mtemp will have 0.1. -1 and the 1 correspond
;5 to those ks's that need to be written to
(rtemp (mapcan #' (lambda (x y) (if (equal x 1) (list y¥) nil))
mtemp KSQUBUES)); this a list of KSs to read
(xxx (format t "rtemp contains matches between writes and queues ~a~%" rtemp))
) ::; now read each of these KSs and place result in
(format t "~% ***x COMMAND **** |s (-a'a) ~%" mtemp rtemp)
(mapcar ¥’ (lambda (x) (write-ks
(car (funcall x ksarq)) :: Jan 90
)) rtemp)
)} 3; message flavor
(t
(format t "NO KSs HAVE MAK = 1 ** NO WRTE GIMMVANCS “%")))

;s now use the preboot to establish the precondtions and
;; freeze the local context
;5 Channel is 2

(format t "TEST MAK = 2, ==> ESTABLISH PRECONDITIONS -~%")
(cond ; take care of the reads, are any mask elements = 0
((and (> (numbor ksarq) 0)
(eval (cons 'or (mapcar #’ (lambda (x) (if (equal x 2) t nil))
(edr (mask ksarq))))))
gflorrp(at t 'SOVE MAK B BVIENTS = 2, NOW FREEZE CONTEXT ~%")
et
(mtemp (cdr (mask ksarq)))

133 kersten/kak

;2 at this point mtemp will be the mask
:: the zero values correspond finishing ksars
(ntemp (mapcan #’ (lambda (x y) (if (equal x 2) (listy) nil))
mtemp KSQUBUES)) ; this alist of KS’s to read
(xxx (format t "mask is'a and KS RAVCRS is 'a ~%" mtemp ntemp))
(ftemp (mapcar #’ (lambda (x) (car
(funcall x ksarq))) :: Aug 90
ntemp)) ; thisis a list of flavor instances
X (xxx (format t "ftemp is'a ~%" ftemp))
(btemp (mapcar #' (lambda (x) (car (preboot x}))) ftemp))
(xxx (format t "preboot command is 'a and flavor ~a “%" btemp ftemp))
(rtemp (mapcar 'list btemp ftemp))) ; list of functions to fire
(format t "I9K is'a, KS FREEZABLE is 'a ~"%" mtemp ntemp)
(format t "¥HAVOR is -a, COMMAND is'a ~%" ftemp btemp)
(format t "'%LISP EXFRESION i s “a~%" rtemp)
;: (break "bootstrap-fire-pre-assign-hits-before-mar ~%")
(mapcar #’ (lambda (x y) (funcall x y)) btemp ftemp)
HH (mapcar 'eval rtemp) ; this fires all the functions
3 (*break t 'bootstrap-fire-pre-assign-hits)
(mapcar #’ (lambda(x) (setf (channel x) 1)) ftemp)

)
(t (format t " MA NO 2, NO FRECONDITIONS TO EXEQUTE ~%")))

)

...
R A A B A A A A A A A A A A A A A A A A N A A A A A A A A A A A A A A R A A N A A N O

353 The function cloop -- for control loop and it
33 is the man loop for driving the BB.

A N N N N NN N NN

(defun cloop ()
(catch ‘cloop ;; throw-catch combo used to break out at right time
(do ()(;put into infinite loop
Q)
(format t "QA.OK UPATE -- TIME IS ~a -- CLOCK UPDATE-9%'clock)
(go-for-it)
(clock-update) ; update the clock variable and place on event q

(cond

(cloop-display ; if global variable set for display then
(showq) ;; print out the ksar queueing system

(expandqg) :; expand out the entries in the ksar queueing system
(showl) ;s expand out the levels in the blackboard

(expandl tracks) (expandl segments) (expandl hits)

;s (expandg tracks) (expandg segments) (expandg hits)
) s;display queues and levels
(t nil))

; (goon) ; wait for signal to continue
; (go-for-it)

(format t "You about to mgp events to ksars, the ksarq is follows ~%")
(plan-goals) ; this maps the goals into ksars; it calls planner

(format t "%BEFORE BOOTSIRAP KSARQUEUE EXFAND ~%")
(expandq) ;s write out the queueing system in gory detail

(bootstrap) ;:; fire off the next sequence of ksars

(format t "~$AFTER BOOTSIRAP KSARQUBUEEXPAND *)
(expandq) 53 write out the queueing system in gory detail

(showq) (showl) ;; display queues and levels

; (goon)

134 kersten/kak

O A A A A A A N N N O A N R N N N N N N NN NN NN NN NN NN NN NN

;3 Function go-for-it allows you to set the number of loops you want.
;1 |t breaks out of the cloop by throwing to the catch function
33 in the cloop function.

--
A N R NN NN NN NN NN NN NN

(defun go-for-it ()
;; (format t "% cloop-count is at top 'a " cloop-count)
(cond
((plusp cloop-count) (setq cloop-—count (1- cloop-count))
(format t "~% cloop-count reduced by 1, it is mow 'a " cloop-count)
t)
((<= cloop-count 0)
(format t "~% Current Clock is'a . Hw mawy control loop steps do
you want? Zero means STOP. N means N steps. " clock)
(format t "-% Enter number NOV and hit return 1!)
(let ((reply nil)
(answer (read)))
e §format t " Answer you entered ~a ~“%" answer)
cond
((and (numberp answer) (plusp answer)})
(setq cloop-count (1- answer))
(format t "-% Db you want queues and levels displayed????")
(setq cloop-display (y-or-n-p)))
(t (throw 'cloop (format t "BROKE QJI of ACOCP - AOXK = 'a' clock)))

)))
(format t "-% cloop-count it is at bottom ~a " cloop-count)

55
))
l. ; ; ; ; ; .l .l .I .I .I .I.I .I.I .I .I.I .I.l.l.lll.l.I.I.I.I.I.I.I.I.I.I.I.I.I.I.l.l.I.I.I.l.l.’.l.l.l.l.l. I.I. I. I. I- I.I. I. I. I- I. I. I. : I- I. I. l. I. ’
;= The function my-redirect i s used redirect the screen io to
:: the file out.
13 The companion function my-direct resets the stream io to the screen.
4
17 Written for use
;; at home where baud rate of transmission does not allow program
;7 to run as fast. Good for tracing bugs, like the function dribble but
;3 without the writing to the screen.
R R A S N R A N N R R R R R N R

(defun my-redirect ()
(setq myoutfile (open "out"
:direction :io
:if-exists :append
:i f —does-not-exist :create
)
;: now reset the std io files
(setq savestdio *standard-output*)
(setq ®*standard-output* myoutfile)
)

(defun my-direct ()
s now, reset the std ig files to orginal setting

(setq *standard—output savestdio)
(close myoutfile)

N N N NN NN NN NN NN NN

This function expandall expands the levels and the
queues to get a snapshot of the state of the system.

R RN e e e e N N N N NN N NN NN]

(defun expandall ()
(format t * % First expand the LEVH.S to see the data BB ~%")

(showl)
(expandl tracks)

135 kersten/kak

(expandl segments)

(format t " "% FHOND expand the QUBJESto see the data BB “%")
(expandg tracks)

(expandg segments)

(format t " ~% THIRD expand the QUHJES to see the data BB ~%")
(showqg)

(expandq)

)
s R R R R R R R R L L Eh E
;* This is the main loop for driving the BB for fil e output
;3 This is the redirected fil e output form of the cloop.

(defun fcloop ()
(catch "fcloop
(my-redirect) ;; redirect the output to file out

(do () ;put into infinite loop
O
(format t "AOXK UPATE -- TIME IS 'a -- CLOCK UPDATE-%" clock)

(file-go-for-it)
(clock—-update) ; update the clock variable and place on event q

(cond
(cloop-display ; if global variable set for display then
(showqg)
(expandqg)
(showl)
(expandl tracks) (expandl segments) (expandl hits)
(expandg tracks) (expandg segments) (expandg hits)
} ;display queues and levels
(t nil))

; (goon) _: wait for signal to continue
s (file-go-for-it)

(format t "You about to mapped the events, the ksarq is follows ~%")
(plan-goals) ; this maps the goals into ksars; it calls planner

(format t "%BEFORE BOOTSIRAP KSARQUELE EXFAND ~%")
(expandqg) (describe ksarq)

(bootstrap)

(format t "AFTER BOOTSIRAP KSARQUELE EXFAND ~%")
(expandq)

(showqg) (showl) ; display queues and levels

; (goon)
M)

A A A A A A A A A A A A A A A A R A R A A A A A A A A A A N R R N N

;: Function file-go-for-it allows you to set the number of loops you want.

--
A A A A N N N N N N N N N NN NN NN N NN N NN N NN

(defun file-go-for-it ()
(let ((e *error-output*))
;; (format e "~% cloop-count is at top 'a " cloop-count)
(cond
((plusp cloop-count) (setq cloop-count (1- cloop-count))
- (format e "~% cloop-count reduced by 1, it is nov ~a " cloop-count)
t)
((<= cloop-count 0)
(format e ""% Current Clock is “a . Hw mawy control loop steps do
you want? Zero means STOP. N means N steps. " clock)

136 kersten/kak

(format e "~% Enter number NON and hit return 11 ")
(let ((reply nil)
(answer (read)))
ir Eforrgat e " Answer you entered ~a ~%" answer)
con
((and (numberp answer) (plusp answer))
gsetq cloop-count (1- answer))
format e "~% Db you want queues and levels displayed????")
(setq cloop-display (y-or-n-p)))
(t (throw 'fcloop
(progn
(format e "BROKE OUT of CMOP - CLOCK = 'a' clock)
(my-direct)) ::; return the stream to standard io
))

)))
;35 (format e "~% cloop-count it is at bottom 'a " cloop-count)
M)

kersten/kak

137
NaME; | s siiasiiariarirariraririris

" s s EEEEEEEEEEEEEEEEEEE A
A A A A A A A Y A N A A A N A)

This is file ggmess.cl, the file which establishes the

communication classes.

(

snsnfile

(defclass messenger ()

accessor write-port)

accessor write-fd)

itarg :write-port :

ini

(write-port

write-fd

(write-fd :initarg
(read-port

¢

accessor read-port)

accessor read

‘read-port
‘read-fd
pid :accessor pid)

initarg

read-fd :initarg
pid :initarg

—fd)

" E e s EEEEEEEEEEw
P rrrr st s sty

" E EE E N EEEEEEEEEEEEEEEEEEEEEE

A A B A A B A A A Y A A A AN Y A Y A A N
" E E E E E NN RN E N EEEEEEEEEEEEEEEEEEEEEE
AN NN N NN

beam and assignment messengers.

*stop-to-test-read)
return 1 if data at port, else 0

t

el se,

(if (listen port) 1 0)

describe ele)
*break (> clock 8)

E

(mtemp (mMessenger ele))

(format t "~% READKS READKS RADKS RADKS READKS READKS “%")

(format t "INSDE DEHAVEIHID READKS clock is "a "% " clock)
(format t "The message received back from ks is ~“a~%" temp)

(setf (anslyst ele) temp)

(setf (channel ele) 0)

)

(format t "The address of messenger was ~a~%" mtemp)

(xxx (format t "messenger i s "a and port i s “a %" manp ptemp))
(format t "The port read was ~a~%" ptemp)

(temp (read ptemp))

(ptemp (read-port mtemp))
)

(let* (

(:documentation "The messenger class contains the 1/0 to KS ")
nil if nothing;

(force-output port)

(defmethod read-ks ((ele ks-protocol-mixin))

(setq beammsg (make-instance 'messenger))
(setq assignmsg (make-instance ‘messenger))

(defun readp (port)

" m mEEEEEEEEEEEEEEEEEEEEE
A A A AN I AN AN AV N A AV N A A A A A A AV]

..
s

which are ready to read.

138 kersten/kak

(defun poll-reads (kslyst)
(mapcar I'readl:) ; check to see which ports are ready to read
(mapcar |' (lambda(x) (read-port x)) kslyst))}

R R R R R N S A N A R R R A L S M SRR I
1 unction poll-writes polls KS’s to see which are ready to receive.

(defun poll-writes (kslyst)
(mapcar |l'readp ; check to see which ports are ready to write

(mapcar #’' (lambda(x} (write-port x)) kslyst)))

L R R KRR LR KRR R L R R RPN
- efine slots for messenger objects ports.

(setf (write-port beammsg) beam)

(setf (read-port beammsg) beam)

(setf (write-port assignmsg) assign)

(setf (read-port assignmsg) assign)
(defvar KSOURCES (|1 st beammsg assignmsg))

~a v

’
-
s

139 kersten/kak

~
~
~
~
-y
~
-y
~
~
-y
-y
-y
~
~
~
~
-y
~r
-y
~
~
~
~
[a]
P
[
o
g

This file is ggmerge.cl.

Na v v N
IR R

......................... :
I'llllIIIIIIIIIIIIII""Iflle narm)1l1l1l111111l7111111111111111111111717

L N N N N N N N A A A A N A A A N A N A A A N N N N NN NN NN NN
.

7 This function nerges segnents.

S s xR B B m % mmom oo s s s s s s s s s s s s s s s s s = s s s s s m s s s m R s R R R R E R s s EaaaaaEasasaus
L A A A B A A B A A A A A A N N A A A A A N N A N N N N N NN]

(

(W yst (find-segment-pair))
(sl (car wlyst))

(s2 (cadr wlyst))

(value (car (last wWyst)))
)

finds best pair of segnents to extend
first segment

second segnent

val ue of the cost

L (break "~% INSIDE nerge-segnents for extending atrophied paths ~%")
(mer ge- segnent - x-to- segnent-y sl s2) ; change t he nodes
(setf (ksarptr (context ksarnode)) nil) ; reset goal node
))

N A A A N N N N NN NN NN NN NN

;: This function nmerges two segnents which have been deternmined to be

;; the sane. It needs to renmove the track that is associated with segment
sl if it is only supported by sl. |If nore than one

segment support the track hypothesis, then the snode nust be renpved
fromthe support list. Al these cases are included under the conds

::; Statenent.

--
R A A A A A A B A Y A A A A A A A A B A A A A A A A A N i A A A i A A A A A i o e A e

NI se N
NN N

(defun nerge-segnent - x-to-segnment-y (sl s2)
(format t "ENTERED nerge- segnent - x-to-segnent-y ~%")
(setf (numbor s2)
(1+ (- (car (event-tine s2))
car (last (event-tine sl))))))
(format t "% New numbor iS ~a~%" (numbor s2))
(let*

xxx (format t ™ The tnode is now ~a~%" tl))

(snodelyst (if tl (snode tl) nil))

(xxx (format t * snode lyst that tnode points to is ~a~%" snodel yst))
)

{tl gtnode s1))

(cond
((nul'l €1)) ; if thereis no track established just renove sl
((and t1 (equal (length snodelyst) 1)) ; if only one supporting
(format t ™ tnode has only one snode - renobve both ~%")
(renove-data-x-fromlevel-ytl tracks)) ;snode, renmove track node
(renove- goal - x-from level -y t1 tracks)) ; changed 5 Jan 92
((and t1 (> (length snodelyst) 1)) : if nore than 1 snode supports
(format t " tnode >1 snode support - renpve only snode ~%")
(setf (snode tl) (remove sl snodelyst))) ; remove pointer fmtl
(t
(format t "-% and ERROR in | ogic inside merge-segnents in gksar ™)
»)
(remove-data- x-fromlevel -y sl segments)))

A A A A A B A B B e A B A A A B B A R A B I R A A A N N A A A A A N O

52 This function creates the segment merging ksar

O N N N N NN NN NN RN

(defun create-segnent - ner gi ng- ksar (gnode)
(sendksar push
(make- i nstance ‘ksar
cpriority 1
:ksar-id *nerging

140 kersten/kak

:postboot ' (merge-segments)

:command 'merge-segments ;; added 21 Sep R
:cycle clock

:context gnode

ksarq)
)

I.;;.I.l_.llllllll'lllll_llII'I.I.I'; :;:;.'I.I.I"”””l”l'll-l'l.lllll'l.:
; This function finds the equivalence class which contai
;; element in the larger given set minus the element itse

;; In some texts this would be given by [a]-a.

R N NN NN N NN NN NN RN RN NN NN NN

" e E R E
rer s

the first

.
’

=

(defun equivalence-class-of-a-minus-a (alyst rab rba)
(do
;compare to others in group
(worklyst (our-set-differencelyst (list a))
(cdr worklyst)) ; do it one at time
(dlyst nil) ; accumulate the member of equivalence class
)

("(null worklyst) (return dlyst)) ; return [a]-a
(if (and (rab a (car worklyst)) ;relation of Rab
(rba a (car worklyst))) ; relation of Rba
(s](.atq dlyst (cons (car worklyst) dlyst))
nil })))

A A A N NN N N N A A A Y N A N N O

Finds just the RAT matches i e reflexive, antisymmetric and transitive

W om N E N W oEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
A A A NN

;compare to others in grou

(worklyst (our-set-difference lyst (list a))

(cdr worklyst)) ; do it one at time

(dlyst nil) ; accumulate the possible candidates of forward merging

((null worklyst) (returndlyst)) ; return [a]-a

55 (if (raba (car worklyst)) ; altered 4 Jan R

(if (funcall rab a (car worklyst)) ;relation of Rab, possible link
(sletq dlyst (cons (car worklyst) dlyst)) ; record if true
nil)))

...

A RN R N NN RN NN NN RN NN

:; Predicate to check proper ordering of sequence time.

A A R R A A A A A A A A A N A A A

(defun time-ordering (snodel sncde2)
(let
((tl (event-time snodel)) ; time sequence of snodel
(t2 (event-time snode2)) ; time sequence of snode2
)

(or (< (car tl) (car (last t2))) ; proper forward order
(> (car (last tl)) (car t2)) ; proper backward order
»

A A A N N N N N N NN NN NN NN

;- Predicate to check if sequence i s properly forward ordered.

L A A A A A N NN NN

(defun forward-time-ordering (snodel snode2)
let
((tl (event-time snodel)) ; time sequence of nodel

141 kersten/kak

(t2 (event-time snode2)) ; time sequence of node2
)
(< (car t1) (car (last t2))))) ; proper forward time ordering

R A A A A A A A A A N N N N N N NN NN RN

:: Computes the cost of extending a path forward over the time gap
;7 to the possible merging candidate.

--
R A A A N A A A N N N N N NN NN RN

(defun cost (sl s2) ; from sl to s2 where these are segment nodes
(lete(
(deltat (- (car (last (event-time s2))) (car (event-time sl))))
(model (linear sl)) (estimate (vector-sum (car model)
(scale-vector deltat (cadr model))))
(dx (vector-difference (car (last (coord s2))) estimate))
(d (vector-magnitude dx))
(mean (/ (vector-magnitude (cadr (linear sl1))) 2.e0))
(prob (exp-cdf d mean))
(cprob (- 1.e0 prob)))

(format t "~% time difference is'a " deltat)

(format t "% modd is given by 'a " model)

(format t "~% estimate of new position is 'a " estimate)

(format t "~% actual position is "a " (car (last (coord s2))))
(format t "~% vector difference of these |last two values is 'a " dx)
(format t "-% magnitude of this differenceis'a " d)

(format t "“% the mean value is “a " mean)

(format t "% the probability of being <= this 'a " prob)

(format t "“% the probabilitiy of > 'a " (- 1.e0 prob))

(cond ; temp criterion, if 1/cprob > 3 then eliminate
((< cprob 0.33333333e0) 101.e0)
(t (+ deltat (/ (- 1.eO prob)))))))

s This function finds the best pair'of eligible segments for merging.
;: Note the problem may not be commutative.
;3; That is, It matters which pair is extended first.

..
R A N N NN RN

(defun find-segment-pair ()
(do* (
(slyst (right segments) (cdr slyst)) ; original segment |lyst
(olyst (sort slyst #’ (lambda (x y) (< (car (event-time x))
(car (event-timey))))))
(sl (car olyst) (car olyst)) ; first trial candidate
(clyst nil nil) ; candidate |list
(dlyst nil nil) ; distance |list corresponding to the segment sl
(answer nil)) ;answer from internal loop passed to outer loop
((or answer (not sl)) answer)
(setq clyst (find-forward-candidates sl slyst ‘forward-time-ordering))
Esetq dlyst (mapcar #' (lambda (x) (cost sl x)) clyst))
do ((cwlyst clyst (cdr cwlyst)) list of candidate segments
(dwlyst dlyst (cdr dwlyst)) ; list of distance value
(bestseg (car clyst)) ; the segment with lowest dist
(bestvalue (car dlyst))) ; the distance
((null cwlyst) ; out of candidate to share
(setq answer (if (< bestvalue 100.e0)
(list sl bestseg bestvalue) nil)))
(cond ((< (car dwlyst) bestvalue) ; less than current minimum
(setq bestvalue (car dwlyst)) ; if so reset minimum
(setq bestseg (car cwlyst))) ; also reset the segment flavor
(tnil)))) : end of if statment - returns answer i s not nil

R A N N NN N NN

- his function finds the start time of the most recently initiated
1 segment.

..
N N N NN NN NN NN AN A N N O

142 kersten/kak

(defun find-Ilatest-segnment-start-time ()
(let*
({slyst (right segnents))
(tlyst (mapcar
#’ (1l anmbda (x)
(car (last (event-time x)))) slyst))
)
(apply ‘max tlyst)))

P A A e A N N N NN N N NN NN

53 This function finds the object representing
;3 the nost recently started segnent.

--
A R e e e N e e e e e e e e e e e N N

(d?{un*find—nnst—recently—started—segnent 0
et
((slyst Eright segments))
(tlyst (if slyst (mapcar
#’(lanbda (x)
(car (last (event-tinme x)))) slyst) nil))
2tnax Eapply "max tlyst))
smax (if slyst
s (ny-renove-if changed to bel ow 4 Jan 92
(renove-if
#/(lambda (x) (< (car (last (event-tine x))) tmax)) slyst} nil))

(if smax (car smax) nil)))

N N N NN NN N NN NN RN

sz This function finds the nost recently started
; segnment with length greater than vy.

--
A e R NN

(defun*find—nDst—recentIy—started—segnent-mjth—Iength—gt—y (y)
| et
(((slyst (right segments))
(tlyst (if slyst (mapcar
(lanbda (x)
(car (last (event-tine x)))) slyst) nil))
(tmax (apply 'max tlyst))
(smax (if slyst
s:(ny-renove-if changed t o bel ow 4 Jan 92
(renove-if
¢/ (lanbda (x) (< (car (last (event-tine x))) tmax)) slyst) nil))
(ymax (if smax
s:(my-renove-if-not changed t o bel ow 4 Jan 92
(renmove-if-not
#’(lanmbda (x) (> (length (event-tine x)) y)) smax)))

(if ymax (car ynmax) nil))}

kersten/kak

143

RN
R NN RN NN R R N R RN R RN A A A A A A

LEN

(read-header assign)
(read-header track)

	Purdue University
	Purdue e-Pubs
	7-1-1993

	A TUTORIAL ON LISP OBJECT-ORIENTED PROGRAMMING FOR BLACKBOARD COMPUTATION (SOLVING THE RADAR TRACKING PROBLEM)
	P. R. Kersten
	A. C. Kak

