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ABSTRACT

The PNS module is discussed as the building block for the synthesis of parallel, self-
organizing, hierarchica, neura networks (PSHNN). The PNS consists of a prerejector
(P-unit), a neura network (N-unit) and a statistical analysis unit (S-unit). The last two
units together are aso referred to as the NS unit. The P- and NS-units are fractile in
nature, meaning that each such unit may itsdf condst of a number of pardld PNS
modules. Through a mechanism of statistical acceptance or rgjection of input vectors for
classfication, the sample space isdivided into a number of subspaces. The input vectors
belonging to each subspace are classfied by a dedicated set of PNS modules. This
strategy resultsin considerably higher accuracy of classfication and better generdization
as compared to previous neurd network modeds. If the delta rule network is used to
generate the N-unit, each subspace gpproximates a linearly separable space. In this
sense, the total system becomes similar to a piecewiselinear moddl.



1. INTRODUCTION

Paralld, self-organizing, hierarchical neura networks (PSHNN’s) with quantized outputs
wereintroduced in [1] and [2]. PSHNN's with continuousoutputs were discussed in [3]
and [4]. The PSHNN involvesa salf-organizing number of stages, smilar to a multilayer
network. Each stage can be a particular neura network, to be referred to as the stage
neurd network (SNN). Unlike a multilayer network, each SNN is essentidly
independent of the other SNN’s in the sense that eech SNN does nat receive its input
directly from the previous SNN. At the output of each SN, there is an error detection
scheme. If an input vector is regected, it goes through a nonlinear transformation before
being fed to the next SNIN.

The motivation for this architecture evolvesfrom the consideration that most errors occur
due to input signals to be classified which arelinearly nonseparable or which are close to
boundaries between classes. At the output of each stage, such signals are detected by a
scheme and rgected. Then the rgected sgnds are passed through a nonlinear
transformation so that they are convened into other vectors which are more essly
classified by the succeeding stage.

Learning with the PSHNN is similar to learning with a multilayer network, except that
error detection is carried out a the output of eech SNIN, and the procedure is stopped
without further propagation into the succeeding SNN’s if no errors are detected. Testing
(recall) with the PSHNN can be donein pardld with al the SNN’s smultaneoudly rather
than each SNIN waiting for data from the previous SNN.

In this paper, we propose and discuss the PNS module as the building block for the
synthesisof PSHNN’s. The PNS consistsdf a prerejector (P-unit), a neurd network (N-
unit), and a datistical anayss unit (S-unit). In some cases, we will refer to the
combination of N-and S-units as NSunit. In the PSHNN networks discussed in this
paper, the P-units have replaced the input nonlinearities even though the input
nonlinearitiescan still be used.

The concept of the PNS module has evolved as a result of analyzing the mgor reasons
for errorsin classfication problems. The mgor reasons for errors can be considered to
be the following:

1. Patterns which are very close to the class boundaries are usudly difficult to
differentiate.

The classification problem may be extremely nonlinear.

A particular class may be undersampled such that the number of training samples
for that class are too few, as compared to the other classes. Figure 1 a) visuaizes
such a scenario with Class 1 ascompared to Class 2.



4. A paticular class may be geometrically smdl in a certain region of the sample
pace such that the number of samples belonging to that class from thet region is
toofew. Thisisvisualizedin Figurelb).

The PSHNN consisting of a number of self-organizing PNS modulesis synthesized to
minimize rnisclassfication errorsdue to the reasons outlined above.

The paper conssts of five sections. Section 2 describes the creation of the PNS modules.
to generate the PSHNN. Section 3 describes the Satistical technique to generate the S-
unit. Section 4 discussesthe comparative resultsof smulations. Conclusions are given
in Section 5.



2. THECREATION OF THEPNSMODULES

The block diagram for a PNS module is shown in Figure 2. The N-unit can be any type
of neural network, but is chosen as a delta rule network with output nonlinearity [S] in

this paper.

The procedurefor the creation of the PNS modulesis shown in the flow charts of Figures
3 ad 4. Initially, the total network condists of a single N-unit. It has as many input
neurons as the length of an input pattern, and as many output neurons as the number of
classes. The number of input and output neurons may also be chosen differently,
depending on how the input patterns, and the classes are represented. The N-unit is
traned by usng the present training set. After the N-unit converges, the S-unit is
created. The S-unit isa pardld datistical classfier which performs bit-level three-class
Bayesian analysis on the output bits of the N-unit. It isdiscussed in detail in Section 3.
One result of this analysis is the generation of the probabilities P%, k=1,2, ..M, M
being the number of classes. P% signifies the probability of detecting an input pattern
bdonging to class k correctly. If this probability is equa to or smdler than a smadl
threshold 6, the input vectors belonging to thet class are rgjected before they are input to
the N-unit. In other words, if P¥ <6, the corresponding class is either geometricaly
smdl or undersarnpled, or has highly nonlinear boundaries such that the present network
can not learn it.

The rgjection of such classes before they arefed to the N-unit is achieved by the creation
of the P-unit. It is a two-classclassifier trained to rgject the input patterns belonging to
the classesinitialy determined by the S-unit. In this way, the P-unit divides the sample
pace into two regions, alowing the N-unit to be trained with patterns belonging to the
classeswhich are easier to classify.

If aP-unit is created, the N-unit is retrained with the remaining classes accepted by the
P-unit. Afterwards, the process discussed above is repested. The Sunit is dso
regenerated. It may agan rgect some classes. Then, another P-unit is created to regject
these classes. Thisresultsin arecursive procedure.

If thereare no more classes rgected by the S-unit, a PNS module is generated . The
input patternsreected by it arefed to the next PNS module.

The complicating factor in the discussion above is that there may be more than one P-
unit generated. Each P-unit is a two-classclassfier. Depending on the difficulty of the
two-class classfication problem, the P-unit may itsdf consst of a number of PNS
modules. The sameis true with the NS-unit. The flow diagramsof the procedurefor the
generation of the P-unit and the NS-unit are shown in Figure4. A particular example is
shown in Figure 5, which shows the PNS modules generated for the 10-class Colorado
problem discussed in detail in Section 4. In the first stage, the P-unit required 3 PNS
modules and 1 NS module to reach desired performance. Similarly, the NS-unit has



actuadly developed into one PNS and one NS module. In this sense, the P- and the NS
unitsare likefractals.

In addition to deciding which classes should be rgjected, the S-unit aso generates certain
other thresholds for the acceptance or the rgection of an input pattern, as discussed in
Section 3. Thus, the input pattern may be rgected by the P-unit or the Sunit. The
rejected vectors become input to the next stageof PNS modules. This processd creeting
stages continues until all (or a desired percentage of) the training vectors are correctly
classified. For example, in the Colorado problem discussed in Section 4, two stages were
required, as seen in Figure 5.

The recursive nature of the algorithm becomes evident when a P-unit and a NS unit isto
be creeted. Either unit starts as asingle NS structure and builds up further, if necessary,
into severd parallel.PNS modules. In order to create anew P- or NS unit, it is necessary
to generate the particular training datafor itslearning, as shown in Figure 4.

Figure4 shows the procedures which cregate the P- and the NS units. Before the creation
of the P-unit the appropriate input-output training st hes to be created. The input
training set is Imply the st presented to the PNS module which is being created. The

corresponding desired output et is created by entering the vector [10} for al the

patterns which should be accepted by the P-unit and the vector [0 IS] for dl the patterns

which should be rgected by the unit. Before the creation of the NS unit , anaw input-
output training set for thisunit must also be created. The input st contains patternsfrom
the original training set which are not rgected by the P-unit, and the desired output et is
the collection of the corresponding desired output vectorsfrom the original desired set.

If no more P-unit is needed, the main program branches up to train the next stage of PNS
modules, as shown in Figure 3. To do so, the program gathersdl the rgjected data from
the first Sage. If there are no more regected data or their number is less than a preset
threshold, the dgorithm terminates.

In brief, The totd network beginsas a single PNS module and grows during training in a
way similar to fractal growth. P- and the NS units may themsalves create PNS modules.
If the delta rule network is used to generate the N-units, the net result will be the
separation of nonlinear classesinto regions which are linearly separable. This separation
continues until the resulting PNS network can approximate the nonlinear class
boundaries using a piecewise linear modd accuratdly. This procedure is smilar to
modeling of a nonlinear system by acollection of piecewise linear systems. Thistopicis
further discussed in Section 4.



%._THE STATISTICAL TECHNIQUE FOR THE CREATION OF THE
UNIT

The S-unit is schematicaly shown in Figure 6. It conssts of hit classfiers for every
output bit of the N-unit. These clasdfiers are three class Bayesan classfiers which
classfy the output bit into one, zero, or regect classes. In addition, the S-unit generates
P*%’s among other a priori probabilities, which are used to determine whether to create a
P-unit, and if S0, which classesare to be rgjected by the P-unit.

In the strict rglection scheme, an input vector is rgected if any one of the output bits that
is generated by the N-unit is rgjected by the S-unit. This Srategy could be relaxed by
introducinga Vector Regjector (VR) network after the S-unit. The VR network would be
trained to regject or to accept an input vector basad on the certainty of the classification of
al the bits. In the experiments reported in Section 4, we usad the strict method of
bitwise rgjection without the VR network.

If the input vector is not rgected, it is cassfied into one of the possble classes. If
regjected, it is sent to the next module for classification.

The gtatistical analys's techniquefor the creation of the S-unit is described below:

Bitwise regjection: Bitwise reection is performed by the bitwise classifiers. Each
bitwise classifierisathreeclass Maximum A Posteriori (MAP) Detector [6].

For the output bit k with the output value z of the N-unit, three hypothesesare possible:
= Bit k should be classified as zero.

H; = Bit k should be classified as one.

= Bit k should be rejected.

Figure 7 visualizesan example o the typesdf input vectors which resultsin bit rgection.
The patterns near the class boundariescause hit rejection and are rgected by the S-unit.

Thefollowing notation will be used:

fk(z|H;) = probability densty function of the output value of bit k given that H; is
true.

CY = costof deciding hypothesisH; istrue when actudly H, wastrue.
p¥ = p*k,) = apriori probability for bit k that hypothesisH; is true.

Pk(H;1z) = probability of hypothesisH; being truefor bit k, given the output value z.



The a posteriori probability, PrH; | Z), can be computed from f*(z | H;) using Bayesrule:

X \H;) p*H;)

@

Suppose that we observe a particular zon output bit k and decide it belongs to hypothesis
H;. If thetrueclassficationis H;, the expected |loss associated with choosing H; is

P¥H;|z)=

(1)

RYH;12)=YC¥ P*(H;|z) i, jef0,1,r). @
J

Thus, the expected lossfor choosing H given output value z a bit kis
R (Holz)=CloP (Hol2)+ CbP*(H | 2) + CEP*(H, | 2). ©)
The expected lossfor choosingH ; given output value z at bit kis
R*(H112)=CloP*(Hol2) + CHP (H 1 12) + C},P*(H, | 2), @
and the expected lossfor choosing H, given output valuez a bit kis

RYH, 12)=CkP¥(Hy|2) + CE PHH | 2) + CLPYH, | 2) )

An expected loss is cdled arisk, and R*(H;|z) is known as the conditional risk. For a
particular output z, we can minimize the expected loss by sdlecting the hypothesis that
minimizes the conditiona risk. Thiscan be shown asfollows.

Let us define a decision function £*(z) which chooses a hypothesis for output vaue z a
output bit k. Theoverall risk R is the expected |oss associated with agiven decisonrule.
Since R*(H;|z) is the conditiona risk associated with choosing H;, and since the
decision rule specifiesthe hypothesis chosen, the overal risk is given by

R=[RC) | 2) ff)dz Q)

where dz is sgnifies a d-space volume element, and the integral extends over the entire
feature space. Clearly, if tk(z) is chosen so that R (C%(2) | z) is as small as possiblefor
every z, then the overall risk will be minimized. This judtifies thefollowing statement of
the Bayesdecison rule: To minimize the overall risk, we compute the conditional risk



RYH;12)=3Ck PXH;|2) i, je{0,1,r} 0
J

and sdlect H; for which R¥(H; | z) is minimum.

Thus, for the output value z a every hit k, we define the following decision rule which
has minimum risk:

if R¥(Holz) <R*(H12) & R¥(Hy|z) < R*H,|2) choose H g

tk(z) =1 if R¥H|z) <R*(Hglz) & R*(H,1z) <R*H,|z) choose H, (8
otherwise choose H,

Thisdecison ruleindicatesthat there are three tests to be performed asfollows:
TEST 1:
Thefirg testisbetween Hg and H ; :

H,

RYHolz) . R¥H,|z2) ©
< 1
Hy

Using (3) and (4) and letting C§, = C¥, =% =0, which is the common assumption in
most classification problems, we get

H,
>
CEPYH  |2)+ CEP*(H, |2) _ ChP*Hol2)+Ct P H,|2), (10)
Hq
H,
ChP*(H\ 12) - ChoP*(Hol2) . (Ch —Ch) PEH,|2). an
Hq

Assumingf¥(z) # 0, we can multiply both sides by f¥(z) and get
Hl

CEPEH |2)f*@)-ChP*(Ho | f @) . (Ch-CEIP*H, IDf'@). (2
Hq
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Using Bayesrule (1) and assuming P¥ # 0, Eq. (12) becomes
H,
ChLF4 @ |HPAH )~Chof* G IHQPX(Ho) . (Ch~Ch)f*z |H)P*@H,) (13).
Hy
ChoosingC 10 =C¢; andC,, =Cy¢, and C,o = C,, leadstothefollowing:

H,
f*z\Hy) > Cy P*Hy)

) (14)
fAz|Hp) < Co PH))
Hy
H,
>
pt Yz IH) . p§ f@IHo). (15)
Hy
TEST 2:
The second test isbetween Hy and H, -
H,
k > ok
RXHolz) . R*H,|2) (16)
Hy
Using (3) and (5) and letting C g9 = C,» =0, we get
Hr
CEPY(H, |2)+ CEPYEH,\2) . CoP(Holz)+CE P H, 12). a7
Hy

Using Bayesrule(1) and the applying the same conditionsasin test 1, weobtain

o
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H,
>
C6 P (H 1 | ) GHCE P H, |2)f*(2) . CRoP*Ho | @HCE PH(H  12)f*(2) (18),
H,
H,
>
Ch.f5(z |H)P H,-CFof*(z IHOP*(Ho) _ (CE—Chf*z |1H )P H ) (19),
Hy
H,
>
C§.f*( |Ho)pf — Crof*(z |1Ho)pb _ (CF1 - CE)f*(z | HyypY 20)
HO
TEST 3
Thethird test isbetween H, and H ;:
H,
k > pk
RYHilz) _ R¥H,|2) @
H,y

With the same assumptions as in the previous two tests and the same operations, test 3
resultsin

H,

>
. (CFo - Cho)t |Ho)PE 22)
Hy

For simplicity, let usdefinethe following three functions:

CL ¥ |H,)pk - C¥ X |H )P

T¥@)=p% Xz |H\) - pk G |Ho) @3)
T%(z) = Ck f*(z |H,)p* - CFofk(z |Ho)pk + (CE — CE Y |H )PE 24)
T4(z) = C4. 5z | H)p¥ — C, f5(z |H)PY +(CY% — Cro)f*(z |Ho)P @5)

Then, the decision rule (8) becomes
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if T§(2) & T(2) < 0 cpoose Hy
tk@)=<if T¥@z)>0 & T4(z) <0 choose H, (26)
otherwise choose H,

Thedecison rule (26) correspondsto determining decision thresholds asfollows:
For test /, set T%(z) = 0, and use (23) to find

2§, =15 (0). @n

k

Hgistrue, and %! = | z§; , 1] in which H { is true.

Then, the interval 1 = [[o , 1| isdivided into two subintervals, 150 = [0 , 251] in which
In the same manner, we compute z§, and z¥;, from test 2 and 3, using (24) and (25),
respectively. Although, in theory, it is possble for each tes to divide the interval 1 into
severa subintervals, in practice, in dl our experiments, 1 is divided only into 2 intervas
by each test (ie. T%(z), T4(z), and T%(z) have only one root). Figure 8 shows a typical
outcome of the three testsin which

0<zb <25 <2k <1 (28)
01 1

It isalso possible that the order in (28) does nat hold.

The decison drategy governed by (26) corresponds to a voting strategy among the three
tests. For output value z, when two of the three tedts are in agreement, that decision is
accepted. If no tests agree, the decision is rgect, and that bit is rgjected. For example,
assumini the order shown in Figure 8, if the output vaue of bit k fallsin the interval

, that bit is clasdfied as zero, If the output vaue falsin [zfl , 1], then it is

[O s zﬁ,
classfied asone, and findly, if itisin z§, | zfl], that bit isregected.

In order to evaluate T , I and ¥, we nead to compute the conditional probability
density functionsf¥(z |H;) as well as dl the a priori probabilities P¥, required in (23),
(24), and (25).

Estimation of the Conditional Density Functions(f"(z |H;)): Thereare two generd
approaches to dendty estimation, parametric and nonparametric. If we can assume a
dengity function which can be characterized by a set of parameters, we can design a
classfier which uses estimates of these parameters to estimate the probability density
function. Unfortunatdly, it is often difficult to assume a parametric form for the density
function.
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There are two popular nonparametric estimation techniques. the Parzen density
estimation and the k-nearest neighbor density estimation (kNN) [7]. They ae
fundamentally similar, but exhibit some different statistical properties. The kNN
approach can be interpreted as the Parzen approach with a uniform kernel function whose
size is adjusted automatically, depending on the location. We decided to use the Parzen
approach since instead of a uniform kernel, a Gaussian dismbution function can be used,
which gives smoother estimation. The Parzen approach uses the following equation to
estimate the density function:

f@="3 K -2). @9)

i=1

Where x(z - z;) is the kernel with the mean of z;, z;’s are the data samples, and n is the
total number of samples. The following norma kernel function was used in our
experiments:

z2

1 T 262

€ (30)
V2r o,

K(z)=

For every bit k, we use the following procedure to estimate f*(z | H ):

Consider the training set Q:{XI,X2,...,XN} with N data samples.

1. Find the set Qf of datasamplesin 7!2 which have adesired output value of zerofor
b|tk Q(k)z{xl ,X2,-,XM°} WlthMO Samplcs.

2. Find the subset Q& of Q& for which the actual output value at bit k isless than 0.5
¥ c0s5): Q= {X|z§<0.5 = {X1 X2, ..., X, } with ry samples.

3. For the set Q&, we build a corresponding output set £ which contains all the
output  values  for bit k for input samples of Qf:

E&: Z|X28960 = 21,22,,,_,,21,_0

4. Form anormal kernel around each z;e E&;:
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(Z-Zi)2
Q; T T2
XK(z —-2z)= ~—¢ 2] 30
VZTE O;
where a; isanormalization constant given by
QZTEO','
o; = G-z (32)
- 2
J'e 0 4
0
The constant a; compensatesfor thefact that z can only be between 0 and 1.
5. Use(29)to estimate f¥(z |Hg):
(z-2;)?
k 12 100 o T
MzlHp=—Y xz-2)=—% e 33)
o i=1 Yoo g 2ro;

The above procedure is the same for fX(z |H1) and fX(z |H,) except for steps 1 and 2.
For fk(z |H1), steps 1 and 2 are asfollows:

1 Find thes?t Q¥ of datasanplefin Q which have adesired output value of 1 for bit
k Q’é:{xl D CRRI XM,J\ with M | samples.

2. Find the subset Q¥%; of Q¥ for which the actual output value & bit k is greater than
0.5 (z* > 0.5):

Qlf] ={X|Z§>O.5}={X1 . €Y X,l}

For fﬁ(z |H,), step 1 isnot performed and step 2 isasfollows:
2. Find the subset of Q for which the actual output value at bit k is grester than 0.5 and

find the subset of Q¥ for which the actua output value a bit k islessthan 0.5. Take the
union of the two subsetsto get Q%,:

Qk = {xux.ens & z5>0.5) or (XeQf & z§<0.5)]>= {X 1, X2,..., X,,} (34)
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ro,ry,r, saisfy
ro+ry+r,=N (335)

Estimation of the a priori probabilities p¥: The estimation of the a priori probabilities
is much smpler and can be computed by thefollowing smple equations:

k k k

~k ro ~k ri ~k ry
Ph=— Pi,=— P, =— 6
°TN Y "N 36)

Cost of error (C ;): Thoughit is possble to have different cost criteriafor different bits,
we decided to ha/eonecrlterlon for dl bits. Then, Cf‘,, smplifiesto C;;. In addition,the
following logica assumptions were used:

1. C;=0 (Thecostof guessing thecorrect hypothesisis zero).
2. C,0=C,1 (Thecostsd rgecting an output when it should have been classified as
Oor 1, arethesame).

3. Cq¢ =C1 (Thecostsd choosing Hg or H; when H, should have been chosen
areequal).

4. Cop =C19 (Thecost of choosing Hg when H, wastrue and the cost of choosing
H{ when H ¢ wastrue areequal).

5. C=C,1 <Co=Cy, (Theconsequencedf classfying Hy or Hy as H, isless
severe than classifyingH, asHg or H ).

6. Coyu=Ci1ow Co,=C1y, >Cro=C,1 (Theconsequence of classifyingHg asH;
or reverseis much higher than any other error).

Section 4 describes some of the experimental values which were sdlected for these error
penalties.

Using the above a posterlorl and a priori etimates in (23), (24), and (25), we can
esimate ¥ (z), T4(z), and T (2). Using these estimates in (26), we can decide on one of
the three hypothesesH g, H 1, or H,. For example, Figure 9 shows the bounderiescrested
between the three hypotheses by thefirst NS-unit in the 10-class Colorado problem.

This procedure is performed for every output bit. The decison for every bit is then sent
to the vector regjector which in turn decides whether to rgect that sample and send it to
the next stage or accept it and send it to the classifier for classification.

Remarks:

It can be shown [2] that the output vaues of a network based on least-squares error
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minimization, such as the delta rule neural network, can be interpreted as the estimation
of the conditional pdff (H;|X), whereX istheinput pattern. Therefore, one can perform
density estimation by such a network, which can be chosen asa PNS network. Then, the
total network consistsonly of PNS modules.

o
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4. COMPUTER SIMULATIONS

PSHNN networks generated with PNS modules were tested with the 10-class Colorado
remote sensing data, and the results were compared to those obtained with other
networks. The Colorado data set wasdescribedin [1]. It contains 1188 training patterns
and 831 testing patterns. Each pattern is a vector of seven componentsand belongs to
oneof ten possibleclasses. Table 1 shows the number of training and testing patternsin
each class.

The PNS modules of the designed PSHNN are shown in Figure 5, as discussed before. In
constructing the network, the error cost values were experimentally chosen as

Cr0=C1=2,C0,=C1,=8,Cp1 =C1p=10 or

C=C1=1,Co=C1,=2,Cqn =C10=5]>. The results of the two cases were

smilar. We observed that the first criterion madé the rgject region to grow dightly, and
the zero and the oneregionsto shrink dightly . The system seemed to be very robust and
insengitive with respect to the numeric values of the error pendties as long as the
following order was applied:

C01=C10>C0r=C1r>Cr0=Crl 37

The classification performance of the new network was compared to backpropagation
networks [5] and PSCNN networks[8]. The sample results of 3-layer backpropagation
networks with 90, 100, 110 hidden units are shown in Table 2. The best performance
was observed with the network with 100 hidden neurons & an accuracy of 55.72%. The
networks were trained until no improvement in accuracy was observed with further
training. Thiswas achieved after the number of iterationsindicated in Table 2.

The sample results of PSCNN networks with 7 and 9 modules (SNN’s) are shown in
Table 3. These two networks were also trained until no further improvement in accuracy
was observed. This happened for both networks after 200 training sweeps.

Sample runs with the same data set were also done by other independent researchersil.].
In no case, correct classfication percentage was above 60%. It is aso important to
mention here that none of the networkslearned any of theclasses?2, 3, 8, 9, and 10.

The performance of the new network with the PNS modules is shown in Table4. The
correct classfication performance was 73.16%. This peformance improvement is
mainly due to the separation of hard to learn classes (classes 2, 3, 8, 9, 10) from the rest
of the classesin thefirst stage. This separation causes the smplification of the problem
space and resultsin improvement of the classification accuracy for both the "easy" and
the "hard" to learn classes.



-18 -

The P-unit of the first stage (Figure 5) dlowsclasses 1, 4, 5, and 7 to be learned by the
NS-unit of the first stage, separately from the other classes. These classes are relatively
easy to learn, resulting in testing classification accuracy of 98.97%, 73.85%, 82.01%, and
60.00%, respectively.

By not having the other four classes with much larger training sample sets, the second
stage to learn the remaining classes. The NS-unit of the second stage further breeks
down the problem space into smpler subspacesin terms of PNS modules. The testing
performance of the second stage on classes 2, 3, 6, 8, 9, and 10 are 62.5%, 73.81%,
67.02%, 45.45%, 0.00%, 48.72%, and 73.16%, which improves the overall performance
of the network considerably.

Figure 10 shows the divison of classes among the PNS modules of the network. The P-
unit of the first stage rgjects classes 2, 3, 6, 8, 9, and 10, and accepts data beonging to
classes1, 4, 5, and 7. Databdongingto classes], 4, 5, and 7 are sent to the N-unit of the
first sage for classification. There are two modulesin this unit, one PNS module and one
NS module. The P-unit of the PNS module rgects classes 4, and 5. The other two
(classes 1, and 7) are sent to the N-unit for classification. Hence, the NS module is
responsible for the classfication of classes 4, and 5 and with a correct classfication
performance of 73.81%, and 82.01% respectively it was consdered satisfactory and no

P-unit was necessary.

In the second stage, the P-unit rgjects class 9 data and acceptstherest. Classes2, 3, 6, 8,
and 10 are sent to the NS-unit of this stage for classfication. The NS-unit conssts of
four PNS modules and one NS module. The first PNS is responsible for classes 6, and
10. The P-unit of this modulergjectsclasses2, 3, and 8. The Sunit of the same module
aso rgects some data belonging to class 10 due to the uncertainty of classfication.
Therefore, the data set sent to the second module contains classes 2, 3, 8, and 10. The
second PNS is responsiblefor classes 2, and 8, and rgects classes 3, and 10 udng its P-
unit. The S-unit of this module aso rgects some data belonging to both classes 2, and 8.
Thus resulting in a data set for the third PNS which contains al four classes 2, 3, 8, and
10. The third PNS is only responsible for the 3™ class and rejects the rest and since its
N-unit performed its task satisfactorily, the S-unit did not rgect any patterns to the next
PNS. Classes 2, 8, and 10 are sent to the fourth module which in turn is responsible for
data belonging to classes 2, and 10, and regjects data belonging to class 8. The last PNS
(NS module) classfies the remaining data belonging to class 8.

Asdiscussed in Section 2, the learning procedure divides the problem space into linearly
separable spaces, based on the learnability of theclasses by the present N-unit. Referring
to Figure 8, thiscan be shown asfollows:

In the previous section, we showed how to compute two reection boundariesfor every
bit. In Figure 8, these rejection boundariesare marked as z§, and z%,. Assuming the N-
unit is a single stage delta rule network with sigrnoidal output nonlinearity, the output
vauedf thek’ neuron iscomputed by
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k 1
yi=—F— (38)
—z}imu
l+e ™

Where, ; is the number of input neurons, x; is the value a the it input neuron, and wy
is the weight connecting the it" input neuron to the kth output neuron. Using (38), the
eguation describing the boundary imposed by the S-unit a bit k between the zero and the
regject regionsis

—= z5,. (39)
—z}.-ﬂ)u
l+e ™
The above equation can bewritten as:
26,
inmu =In T— £ | 40)
i=0 Or

Thisis a linear equation and describes a hyperplane in the n;-dimensional space. The
same argument of linearity can be used for the boundary between the rgect and the one
regions.

From the above discussion, the following important result follows. The network divides
the problem space into linearly separable regions, as in a piecewise linear modd. The
rgect regions also impose additional boundaries to separate the "hard" to classfy
patterns from the "easy" to classify patterns. These additiona boundariesare dso linear
due to the fact that all networksusad in this paper (in the P- and the N-units) were single
stage ddtarule networks. Each PNS module contributesto the task of approximating the
class boundaries by building alinear piece of the overal modd.

As another example of this process, Figure 11 shows the network created for the XOR
problem and the boundaries generated. Figure 11 a) shows the network itself. It hastwo
stagesin which the second stage Smply classifies everything passed on to it as class zero.
In Figure 11 b) the boundaries which were created by the P-unit of the first stage are
shown. Since this unit is built asa NS-unit, it created two boundaries between which a
classfication is rgected by its S-unit. If the pattern falls bdow these boundaries, the P-
unit classifiesit as rgect and sendsit to the next sage whereit isclassifiedas zero. If the
pattern is above these boundaries, it is passed on to the NS-unit of the first stage which in
turn creates its own set of boundaries. If the pattern fals bdow these boundaries, it is
classfied asone. If it falls between these boundaries, classification is rgected; and if it
falls above the boundaries, it is classfied as zero. This results in the divison of the
sample space as shown in Figure 11 b).
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Notice that there are two types of rejected data by the P-unit of the first sager data
definitely rgjected by the P-unit and data rejected by its S-unit. Datareected by the P-
unit are data which are sent to the next stage. Datarejected by the S-unit are data whose
classificationsare uncertain and it is not certain whether to send them to the next stageor
to send them to the following N-unit of the same stage. Normally both typesare sent to
the next stage and that stage is trained to handle both types. In the XOR problem,
however, the network did not encounter data of the latter type and since the first type
should all be classified as zero, no PNS modules were built for the second stage.

It is important to mention that, by using other types of networks instead of the single
stage delta rule network, or by using different types of neurons, the piecewise linear
model could become a piecewise nonlinear model. For example, the results obtained
with the use of quadratic neuronsin the XOR problemis shown in Figure 12. The only
difference hereis that, the input values are squared beforeinputting to the output neuron.
The k** output neuron has an output given by

1
e ——a @1

[
—ZX.'Z(OH
1+e ™

The equation of the boundariesis given by

, k
M 2 Z0r
Y xioy = In — |- (42)
i=0 1 —2zg,

Thismay result in a hyperbolic, or an eliptic boundary as shown in Figures12 b) and c).
In this case, only one stage is generated to correctly classify the XOR problem, with no
P-unit and the N-unit isa2-1 unit asin Figure5 a).

We also have experimented with two stage backpropagation networks replacing the
sngle stage networks. The resulting network crested a piecewise nonlinear
approximation of the true boundaries. The change in the modd had very little effect in
the overall accuracy of the system, leading usto believe that the total network consisting
of PNS modules based on thedeltaruleis very effectivein overall classification accuracy
while remaining relatively computationally inexpensive.
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CONCLUSIONS

The PNS modules as basic building blocks for the synthesis of PSHNN's result in high
classification accuracy, as compared to previous neural network models such as
backpropagation and previous versions of PSHNN’s

The effectiveness of the PNS module is due to the collaboration of the P- and S-units to
reject input vectors as well as classes which are hard to classify, and allowing the N-units
to achieve high performance of classification. The rejected vectors are handled by
succeeding PNS modules.

The P- and NS-units are fractile in nature, meaning that each such unit may itself consist
of anumber of parallel PNS modules.

The S-unit has been designed as a statistical Bayesian analyzer. It can also be designed
by using PNS modules to do same type of statistical analysis. Then, the total network
consists of a number of parallel PNS modules. Initially, the network consists of a single
N-unit. It growstoitsfinal configuration by self-organization.

When each P- and N-unit is implemented by a delta rule network, the sample space is
divided into regions which are linearly separable. Thisissimilar to the approximation of
anonlinear system by a piecewise linear mode!.

It is clear that the basic strategy discussed in this paper can be further developed and
modified for further improvement in performance.
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Table 1. The Number of Training and Testing Patternsin the

10-Class Colorado Problem.
class 1 |class 2 |class 3 |class 4 [class 5 |class 6 |class 7 | class 8 |class 9 |class 10
Training 408 88 45 75 105 126 224 32 25 60
Testing 195 24 42 65 139 188 70 44 25 39




-925.

Table2. TheResultsof BP Networksin the 10-Class
ColoradoPraoblem.

100 hidden neurons
after 500 sweeps

110 hidden neurons
after 1000 sweeps

correct incorrect correct incorrect
classifications |classifications classifications [classifications
class 1 190 5 class 1 189 6
class 2 0 24 class 2 1 23
class 3 0 42 class 3 0 42
class 4 29 36 class 4 30 35
class 5 96 43 class 5 95 44
class 6 82 106 class 6 75 113
class 7 65 s class 7 66 4
class 8 (o) 44 class 8 (o) 44
class 9 0 25 class 9 0 25
class 10 1 38 class 10 0 38
total | 463=55.72% | 368=44.28% total | 456=54.87% | 374=45.01%
(a) ®)
90 hidden neurons
after 700 sweeps
correct incorrect
classifications [classifications
class 1 171 24
class 2 0 24
class 3 0 42
class 4 30 3s
class § 96 43
class 6 74 114
class 7 67 3
class 8 0 44
class 9 0 25
class 10 0 38
total 438=52.71% | 392=47.17%

©
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Table 3 The Resultsof Two PSCNN Networksfor the 10-Class

Colorado Problem.
9 modulePSCNN 7 modulePSCNN
after200 sweeps after 200sweeps
correct lncorrect correct incorrect
classifications|classifications classifications|classifications

class 1 192 3 class 1 188 7
class 2 ) 24 class 2 2 22
class 3 0 42 class3 0 42
class 4 29 36 class 4 30 as
class § 96 43 class § 95 44
class 6 86 100 class 6 84 104

class 7 65 5 class 7 66 4
class 8 (1] 44 class 8 0 44
class 9 0 25 class 9 0 25
class 10 1 38 class 10 0 38

total 471=56.68% | 43.32% total 465=55.96% | 366=44.04%
(a) (b)
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Table 4 The Resultsof TwoPSHNN using PNS Modulesfor the
10-Class Colorado Problem.

I % % %
| correct | wrong | rejected
class 1 193 2 0O '198.97| 1.03 0

correct | wrong |rejected

class 9 0 6 19 0 24.00 | 76.00
class 10 19 9+ 11 0 J8.72 51.28 0
overall | 608 | 202 | 21 | 73.16|24.31 | 253

accuracy

dass2 | 15 | 7+2 | 0 E 62.50 | 37.40 | 0
class3 | 31 11 | o 173812619 0
class4 | 48 | 17 | 0 17385|2615| 0
dass5 | 114 | 25 | o 8201|1799 o
class6 | 126 | 62 | 0 167.02(3298| o
class7 | 42 | 28 | o !e0.00[4000] o
cass8 | 20 [18+4| 2 145455000 | 455

|

|
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class 1

class 2

Y

(@)

class 1

(b)

Figure 1. (a) An Exampleof an Undersampled Class (Class 1)
(b) An Example of a Geometrically Small Class(Class 3).
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Figure.3. Flow Chart for Learning of a PNS Module.
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create and train
NS-unit

f create the training input-output
set for the new N-unit
using the accepted data by
the P-unit

(210
begin

return

(b)

Figure 4. (a) Therecursiveprocedureto create a N-unit.
(b) Therecursveprocedureto create a P-unit.
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zero. one
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Figure9. The Rejection Boundariesfor the First NS-unit

created for the 10-Class Colorado Problem.
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Figure 11. a) The Network for the XOR Problem,
b) The Accept and the Rgject Regions Showing how the System Operatesas
a PiecewiseLinear Modd.
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