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ABSTRACT 

The PNS module is discussed as the building block for the synthesis of parallel, self- 
organizing, hierarchical, neural networks (PSHNN). The PNS consists of a prerejector 
(P-unit), a neural network (N-unit) and a statistical analysis unit (S-unit). The last two 
units together are also referred to as the NS unit. The P- and NS-units are fractile in 
nature, meaning that each such unit may itself consist of a number of parallel PNS 
modules. Through a mechanism of statistical acceptance or rejection of input vectors for 
classification, the sample space is divided into a number of subspaces. The input vectors 
belonging to each subspace are classified by a dedicated set of PNS modules. This 
strategy results in considerably higher accuracy of classification and better generalization 
as compared to previous neural network models. If the delta rule network is used to 
generate the N-unit, each subspace approximates a linearly separable space. In this 
sense, the total system becomes similar to a piecewise linear model. 



1. INTRODUCTION 

Parallel, self-organizing, hierarchical neural networks (PSHNN's) with quantized outputs 
were introduced in [I] and [2]. PSHNN's with continuous outputs were discussed in [3] 
and [4]. The PSHNN involves a self-organizing number of stages, similar to a multilayer 
network. Each stage can be a particular neural network, to be referred to as the stage 
neural network (SNN). Unlike a multilayer network, each SNN is essentially 
independent of the other SNN's in the sense that each SNN does not receive its input 
directly from the previous SNN. At the output of each SNN, there is an error detection 
scheme. If an input vector is rejected, it goes through a nonlinear transformation before 
being fed to the next SNN. 

The motivation for this architecture evolves from the consideration that most errors occur 
due to input signals to be classified which are linearly nonseparable or which are close to 
boundaries between classes. At the output of each stage, such signals are detected by a 
scheme and rejected. Then the rejected signals are passed through a nonlinear 
transformation so that they are convened into other vectors which are more easily 
classified by the succeeding stage. 

Learning with the PSHNN is similar to learning with a multilayer network, except that 
error detection is carried out at the output of each SNN, and the procedure is stopped 
without further propagation into the succeeding SNN's if no errors are detected. Testing 
(recall) with the PSHNN can be done in parallel with all the SNN's simultaneously rather 
than each SNN waiting for data from the previous SNN. 

In this paper, we propose and discuss the PNS module as the building block for the 
synthesis of PSHNN's. The PNS consists of a prerejector (P-unit), a neural network (N- 
unit), and a statistical analysis unit (S-unit). In some cases, we will refer to the 
combination of N-and S-units as NS-unit. In the PSHNN networks discussed in this 
paper, the P-units have replaced the input nonlinearities even though the input 
nonlinearities can still be used. 

The concept of the PNS module has evolved as a result of analyzing the major reasons 
for errors in classification problems. The major reasons for errors can be considered to 
be the following: 

1. Patterns which are very close to the class boundaries are usually difficult to 
differentiate. 

2. The classification problem may be extremely nonlinear. 

3. A particular class may be undersampled such that the number of training samples 
for that class are too few, as compared to the other classes. Figure 1 a) visualizes 
such a scenario with Class 1 as compared to Class 2. 



4. A particular class may be geometrically small in a certain region of the sample 
space such that the number of samples belonging to that class from that region is 
too few. This is visualized in Figure 1 b). 

The PSHNN consisting of a number of self-organizing PNS modules is synthesized to 
minimize rnisclassification errors due to the reasons outlined above. 

The paper consists of five sections. Section 2 describes the creation of the PNS modules. 
to generate the PSHNN. Section 3 describes the statistical technique to generate the S- 
unit. Section 4 discusses the comparative results of simulations. Conclusions are given 
in Section 5. 



2. THE CREATION OF THE PNS MODULES 

The block diagram for a PNS module is shown in Figure 2. The N-unit can be any type 
of neural network, but is chosen as a delta rule network with output nonlinearity [5] in 
this paper. 

The procedure for the creation of the PNS modules is shown in the flow charts of Figures 
3 and 4. Initially, the total network consists of a single N-unit. It has as many input 
neurons as the length of an input pattern, and as many output neurons as the number of 
classes. The number of input and output neurons may also be chosen differently, 
depending on how the input patterns, and the classes are represented. The N-unit is 
trained by using the present training set. After the N-unit converges, the S-unit is 
created. The S-unit is a parallel statistical classifier which performs bit-level three-class 
Bayesian analysis on the output bits of the N-unit. It is discussed in detail in Section 3. 
One result of this analysis is the generation of the probabilities P!, k=1,2, - . . M, M 
being the number of classes. P: signifies the probability of detecting an input pattern 
belonging to class k correctly. If this probability is equal to or smaller than a small 
threshold 6, the input vectors belonging to that class are rejected before they are input to 
the N-unit. In other words, if P: < 6, the corresponding class is either geometrically 
small or undersarnpled, or has highly nonlinear boundaries such that the present network 
can not learn it. 

The rejection of such classes before they are fed to the N-unit is achieved by the creation 
of the P-unit. It is a two-class classifier trained to reject the input patterns belonging to 
the classes initially detennined by the S-unit. In this way, the P-unit divides the sample 
space into two regions, allowing the N-unit to be trained with patterns belonging to the 
classes which are easier to classify. 

If a P-unit is created, the N-unit is retrained with the remaining classes accepted by the 
P-unit. Afterwards, the process discussed above is repeated. The S-unit is also 
regenerated. It may again reject some classes. Then, another P-unit is created to reject 
these classes. This results in a recursive procedure. 

If there are no more classes rejected by the S-unit, a PNS module is generated . The 
input patterns rejected by it are fed to the next PNS module. 

The complicating factor in the discussion above is that there may be more than one P- 
unit generated. Each P-unit is a two-class classifier. Depending on the difficulty of the 
two-class classification problem, the P-unit may itself consist of a number of PNS 
modules. The same is true with the NS-unit. The flow diagrams of the procedure for the 
generation of the P-unit and the NS-unit are shown in Figure 4. A particular example is 
shown in Figure 5, which shows the PNS modules generated for the 10-class Colorado 
problem discussed in detail in Section 4. In the first stage, the P-unit required 3 PNS 
modules and 1 NS module to reach desired performance. Similarly, the NS-unit has 



actually developed into one PNS and one NS module. In this sense, the P- and the NS- 
units are like fractals. 

In addition to deciding which classes should be rejected, the S-unit also generates certain 
other thresholds for the acceptance or the rejection of an input pattern, as discussed in 
Section 3. Thus, the input pattern may be rejected by the P-unit or the S-unit. The 
rejected vectors become input to the next stage of PNS modules. This process of creating 
stages continues until all (or a desired percentage of) the training vectors are correctly 
classified. For example, in the Colorado problem discussed in Section 4, two stages were 
required, as seen in Figure 5. 

The recursive nature of the algorithm becomes evident when a P-unit and a NS unit is to 
be created. Either unit starts as a single NS structure and builds up further, if necessary, 
into several parallel. PNS modules. In order to create a new P- or NS unit, it is necessary 
to generate the particular training data for its learning, as shown in Figure 4. 

Figure 4 shows the procedures which create the P- and the NS units. Before the creation 
of the P-unit the appropriate input-output training set has to be created. The input 
training set is simply the set presented to the PNS module which is being created. The 

r i  
corresponding desired output set is created by entering the vector 1 0 for all the 1 1  
patterns which should be accepted by the P-unit and the vector 10 1 1  for all the patterns 

L 
which should be rejected by the unit. Before the creation of the ~d unit , a new input- 
output training set for this unit must also be created. The input set contains patterns from 
the original training set which are not rejected by the P-unit, and the desired output set is 
the collection of the corresponding desired output vectors from the original desired set. 

If no more P-unit is needed, the main program branches up to train the next stage of PNS 
modules, as shown in Figure 3. To do so, the program gathers all the rejected data fiom 
the first stage. If there are no more rejected data or their number is less than a preset 
threshold, the algorithm terminates. 

In brief, The total network begins as a single PNS module and grows during training in a 
way similar to fractal growth. P- and the NS units may themselves create PNS modules. 
If the delta rule network is used to generate the N-units, the net result will be the 
separation of nonlinear classes into regions which are linearly separable. This separation 
continues until the resulting PNS network can approximate the nonlinear class 
boundaries using a piecewise linear model accurately. This procedure is similar to 
modeling of a nonlinear system by a collection of piecewise linear systems. This topic is 
further discussed in Section 4. 



3. THE STATISTICAL TECHNIQUE FOR THE CREATION OF THE 
S-UNIT 

The S-unit is schematically shown in Figure 6. It consists of bit classifiers for every 
output bit of the N-unit. These classifiers are three class Bayesian classifiers which 
classify the output bit into one, zero, or reject classes. In addition, the S-unit generates 
P'f's among other a priori probabilities, which are used to determine whether to create a 
P-unit, and if so, which classes are to be rejected by the P-unit. 

In the strict rejection scheme, an input vector is rejected if any one of the output bits that 
is generated by the N-unit is rejected by the S-unit. This strategy could be relaxed by 
introducing a Vector Rejector (VR) network after the S-unit. The VR network would be 
trained to reject or to accept an input vector based on the certainty of the classification of 
all the bits. In the experiments reported in Section 4, we used the strict method of 
bitwise rejection without the VR network. 

If the input vector is not rejected, it is classified into one of the possible classes. If 
rejected, it is sent to the next module for classification. 

The statistical analysis technique for the creation of the S-unit is described below: 

Bitwise rejection: Bitwise rejection is performed by the bitwise classifiers. Each 
bitwise classifier is a three class Maximum A Posteriori (MAP) Detector [6]. 

For the output bit k with the output value z of the N-unit, three hypotheses are possible: 

H o  = Bit k should be classified as zero. 
H  1 = Bit k should be classified as one. 
H ,  = Bit k should be rejected. 

Figure 7 visualizes an example of the types of input vectors which results in bit rejection. 
The patterns near the class boundaries cause bit rejection and are rejected by the S-unit. 

The following notation will be used: 

fk(z I H i )  = probability density function of the output value of bit k given that Hi is 
true. 

C$ = cost of deciding hypothesis Hi is true when actually H, was true. 

pf = p k ( ~ i )  = a priori probability for bit k that hypothesis Hi is true. 

P k ( ~ i  1 z )  = probability of hypothesis Hi being true for bit k, given the output value z. 



The a posteriori probability, Pk(Hi I z), can be computed from fk(z I Hi) using Bayes rule: 

Suppose that we observe a particular z on output bit k and decide it belongs to hypothesis 
Hi. If the true classification is Hi, the expected loss associated with choosing Hi is 

Thus, the expected loss for choosing Ho given output value z at bit k is 

The expected loss for choosing H 1 given output value z at bit k is 

and the expected loss for choosing H, given output value z at bit k is 

An expected loss is called a risk, and R k ( ~ i  1 z) is known as the conditional risk. For a 
particular output z, we can minimize the expected loss by selecting the hypothesis that 
minimizes the conditional risk. This can be shown as follows: 

Let us define a decision function Ck(z) which chooses a hypothesis for output value z at 
output bit k. The overall risk R is the expected loss associated with a given decision rule. 
Since R k ( ~ i  1 z) is the conditional risk associated with choosing Hi, and since the 
decision rule specifies the hypothesis chosen, the overall risk is given by 

where dz is signifies a d-space volume element, and the integral extends over the entire 
feature space. Clearly, if ck(z) is chosen so that R (ck(z) 1 z) is as small as possible for 
every z, then the overall risk will be minimized. This justifies the following statement of 
the Bayes decision rule: To minimize the overall risk, we compute the conditional risk 



and select Hi for which R '(Hi 1 z) is minimum. 

Thus, for the output value z at every bit k, we define the following decision rule which 
has minimum risk: 

if R ~ ( H O I Z ) < R ~ ( H ~  lz) & R ~ ( H O I Z ) < R ~ ( H ~ I Z )  choose H O  

~ ~ R ~ ( H ~ I Z ) < R ~ ( H ~ ~ Z ) &  R ~ ( H ~ I Z ) < R ~ ( H , I Z )   choose^^ (8) 

otherwise choose Hr 

This decision rule indicates that there are three tests to be performed as follows: 

TEST 1 : 

The first test is between Ho and H 1 : 

Using (3) and (4) and letting C$ = Cfl = C; = 0, which is the common assumption in 
most classification problems, we get 

~ s s u m i n ~  fk(z) # 0, we can multiply both sides byfi(z) and get 



Using Bayes rule (1) and assuming P: # 0, Eq. (12) becomes 

Choosing C 10 = C ol and C 1 ,  = C and Cr 0 = Cr 1 leads to the following: 

TEST 2: 

The second test is between H and Hr : 

Using (3) and (5) and letting Coo = C ,  = 0, we get 

Using Bayes rule (1) and the applying the same conditions as in test 1, we obtain 



TEST 3 

The third test is between H, and H 1 : 

With the same assumptions as in the previous two tests and the same operations, test 3 
results in 

k k  > 
c t f  "(2 I HrlP! - C r  l f  ( z  I H 1 )P: < (c! 0 - c : o  l f k ( z  I H o ) p k  (22) 

H 1 

For simplicity, let us define the following three functions: 

Then, the decision rule (8) becomes 



ifr:(z) & r$(z) < 0  choose^^ 
i f r : ( z )zo  & ~ : ( Z ) < O  chooseHl 

otherwise choose H, 

The decision rule (26) corresponds to determining decision thresholds as follows: 

For test I ,  set ~ f ( z )  = 0, and use (23) to find 

Then, the interval t = 0 , 1 is divided into two subintervals, t fO  = I 
, 1 inwhichH1 istrue. ~ ~ i s t r u e , a n d t f ~ =  lZh ] 

In the same manner, we compute zk, and z f l ,  from test 2 and 3, using (24) and (25), 
respectively. Although, in theory, it is possible for each test to divide the interval t into 
several subintervals, in practice, in all our experiments, t is divided only into 2 intervals 
by each test (ie. ri(z),  r$(z), and ~ g ( z )  have only one root). Figure 8 shows a typical 
outcome of the three tests in which 

It is also possible that the order in (28) does not hold. 

The decision strategy governed by (26) corresponds to a voting strategy among the three 
tests. For output value z, when two of the three tests are in agreement, that decision is 
accepted. If no tests agree, the decision is reject, and that bit is rejected. For example, 

the order shown in Figure 8, if the output value of bit k falls in the interval 

, that bit is classified as zero. If the output value falls in 

classified as one, and finally, if it is in [ zk , zfl], that bit is rejected. 

In order to evaluate , I'f and rf, we need to compute the conditional probability 
density functions fk(z I Hi) as well as all the a priori probabilities P;,  required in (23), 
(24), and (25). 

Estimation of the Conditional Density Functions ( fk(z I Hi) ): There are two general 
approaches to density estimation, parametric and nonparametric. If we can assume a 
density function which can be characterized by a set of parameters, we can design a 
classifier which uses estimates of these parameters to estimate the probability density 
function. Unfortunately, it is often difficult to assume a parametric form for the density 
function. 



There are two popular nonpararnemc estimation techniques: the Parzen density 
estimation and the k-nearest neighbor density estimation (kNN) [7]. They are 
fundamentally similar, but exhibit some different statistical properties. The kNN 
approach can be interpreted as the Parzen approach with a uniform kernel function whose 
size is adjusted automatically, depending on the location. We decided to use the Parzen 
approach since instead of a uniform kernel, a Gaussian dismbution function can be used, 
which gives smoother estimation. The Parzen approach uses the following equation to 
estimate the density function: 

Where ~ ( z  - zi) is the kernel with the mean of zi, zi's are the data samples, and n is the 
total number of samples. The following normal kernel function was used in our 
experiments: 

A 

For every bit k, we use the following procedure to estimate fk(z I Ho): 

Consider the training set R = 1 , X2 , . . . , XN with N data samples. 

1. Find the set nk of data samples in R which have a desired output value of zero for P 7 
bitk: n$=f i  , X ~ , - . . , X M ~  withMosamples. i 

2. Find the subset R$ of for which the actual output value at bit k is less than 0.5 

rzk c 0.5): nb = 1, Z:CO.~}= k1 . x2 , . . . , xro 

3. For the set a $ ,  we build a corresponding output set Z$ which contains all the 
input samples of a$: 

4. Form a normal kernel around each Z;E s$: 



where ai is a normalization constant given by 

The constant ai compensates for the fact that z can only be between 0 and 1. 

A 

5. Use ( 2 9 )  to estimate f k ( z  I Ho) :  

A A 

The above procedure is the same for f k ( z  I H I )  and f k( z  IH,) except for steps 1 and 2. 
For f k ( z  ( H I ) ,  steps 1 and 2  are as follows: 

1. Find the set Q k  of data samples in Q which have a desired output value of 1 for bit r 1 
k Q ' , = f l  .x2 .. ... XM, withMl samples. 1 

2. Find the subset of R$ for which the actual output value at bit k is greater than 

A 

  or f k ( z  \ H,) ,  step 1 is not performed and step 2  is as follows: 

2. Find the subset of Qk for which the actual output value at bit k is greater than 0.5 and 
find the subset of R: for which the actual output value at bit k is less than 0.5. Take the 
union of the two subsets to get R!,: 



r 0 ,  r 1, rr satisfy 

Estimation o f  the a priori probabilities p f :  The estimation of the a priori probabilities 
is much simpler and can be computed by the following simple equations: 

Cost o f  error ( ~ $ 1 :  Though it is possible to have different cost criteria for different bits, 
we decided to have one criterion for all bits. Then, c&, simplifies to Cij .  In addition, the 
following logical assumptions were used: 

1. Cii = 0 (The cost of guessing the correct hypothesis is zero). 

2. Cro = C, 1 (The costs of rejecting an output when it should have been classified as 
0 or 1, are the same). 

3. Cor = C 1 ,  (The costs of choosing H o  or H1 when Hr should have been chosen 
are equal). 

4. Col = C l o  (The cost of choosing H o  when H 1  was true and the cost of choosing 
H 1  when H 0 was true are equal). 

5. Cro = C, 1 < Cor = C 1 ,  (The consequence of classifying H o  or H 1  as H,  is less 
severe than classifying H,  as H o  or H 1 ) .  

6. Col = C l o  w Cor = C 1 ,  > Cro = Crl (The consequence of classifying H o  as H 1  
or reverse is much higher than any other error). 

Section 4 describes some of the experimental values which were selected for these error 
penalties. 

Using the above a posteriori and a priori estimates in (23), (24), and (25), we can 
estimate I':(z), I'$(z), and I'!(z). Using these estimates in (26), we can decide on one of 
the three hypotheses H o ,  H 1, or H,. For example, Figure 9 shows the boundaries created 
between the three hypotheses by the first NS-unit in the 10-class Colorado problem. 

This procedure is performed for every output bit. The decision for every bit is then sent 
to the vector rejector which in turn decides whether to reject that sample and send it to 
the next stage or accept it and send it to the classifier for classification. 

Remarks: 

It can be shown [2] that the output values of a network based on least-squares error 



minimization, such as the delta rule neural network, can be interpreted as the estimation 
of the conditional pdf f (Hi JX), where X is the input pattern. Therefore, one can perform 
density estimation by such a network, which can be chosen as a PNS network. Then, the 
total network consists only of PNS modules. 



4. COMPUTER SIMULATIONS 

PSHNN networks generated with PNS modules were tested with the lOclass Colorado 
remote sensing data, and the results were compared to those obtained with other 
networks. The Colorado data set was described in [I]. It contains 1188 training patterns 
and 831 testing patterns. Each pattern is a vector of seven components and belongs to 
one of ten possible classes. Table 1 shows the number of training and testing patterns in 
each class. 

The PNS modules of the designed PSHNN are shown in Figure 5, as discussed before. In 
constructing the network, the error cost values were experimentally chosen as 
f 1 

Cro=Crl  = 2 ,  C o r = C l r = 8 ,  Col = C l o = 1 0  or 

CrO = Cr 1 = 1 , Car = C 1, = 2 , Col = Clo = 5 The results of the two cases were 
J 

similar. We observed that the first criterion made the reject region to grow slightly, and 
the zero and the one regions to shrink slightly . The system seemed to be very robust and 
insensitive with respect to the numeric values of the error penalties as long as the 
following order was applied: 

The classification performance of the new network was compared to backpropagation 
networks [5] and PSCNN networks[8]. The sample results of 3-layer backpropagation 
networks with 90, 100, 110 hidden units are shown in Table 2. The best performance 
was observed with the network with 100 hidden neurons at an accuracy of 55.72%. The 
networks were trained until no improvement in accuracy was observed with further 
training. This was achieved after the number of iterations indicated in Table 2. 

The sample results of PSCNN networks with 7 and 9 modules (SNN's) are shown in 
Table 3. These two networks were also trained until no further improvement in accuracy 
was observed. This happened for both networks after 200 training sweeps. 

Sample runs with the same data set were also done by other independent researchers [I.]. 
In no case, correct classification percentage was above 60%. It is also important to 
mention here that none of the networks learned any of the classes 2,3, 8,9, and 10. 

The performance of the new network with the PNS modules is shown in Table 4. The 
correct classification performance was 73.16%. This performance improvement is 
mainly due to the separation of hard to learn classes (classes 2, 3, 8,9, 10) from the rest 
of the classes in the first stage. This separation causes the simplification of the problem 
space and results in improvement of the classification accuracy for both the "easy" and 
the "hard" to learn classes. 



The P-unit of the first stage (Figure 5) allows classes 1, 4, 5, and 7 to be learned by the 
NS-unit of the first stage, separately from the other classes. These classes are relatively 
easy to learn, resulting in testing classification accuracy of 98.97%, 73.85%, 82.01 %, and 
60.00%, respectively. 

By not having the other four classes with much larger training sample sets, the second 
stage to learn the remaining classes. The NS-unit of the second stage further breaks 
down the problem space into simpler subspaces in terns of PNS modules. The testing 
performance of the second stage on classes 2, 3, 6, 8, 9, and 10 are 62.5%, 73.81%, 
67.02%, 45.45%, 0.00%, 48.72%, and 73.16%, which improves the overall performance 
of the network considerably. 

Figure 10 shows the division of classes among the PNS modules of the network. The P- 
unit of the first stage rejects classes 2, 3, 6, 8, 9, and 10, and accepts data belonging to 
classes 1,4,5, and 7. Data belonging to classes 1,4,5, and 7 are sent to the N-unit of the 
first stage for classification. There are two modules in this unit, one PNS module and one 
NS module. The P-unit of the PNS module rejects classes 4, and 5. The other two 
(classes 1, and 7) are sent to the N-unit for classification. Hence, the NS module is 
responsible for the classification of classes 4, and 5 and with a correct classification 
performance of 73.81%, and 82.01% respectively it was considered satisfactory and no 
P-unit was necessary. 

In the second stage, the P-unit rejects class 9 data and accepts the rest. Classes 2,3,6, 8, 
and 10 are sent to the NS-unit of this stage for classification. The NS-unit consists of 
four PNS modules and one NS module. The first PNS is responsible for classes 6, and 
10. The P-unit of this module rejects classes 2, 3, and 8. The S-unit of the same module 
also rejects some data belonging to class 10 due to the uncertainty of classification. 
Therefore, the data set sent to the second module contains classes 2, 3, 8, and 10. The 
second PNS is responsible for classes 2, and 8, and rejects classes 3, and 10 using its P- 
unit. The S-unit of this module also rejects some data belonging to both classes 2, and 8. 
Thus resulting in a data set for the third PNS which contains all four classes 2, 3, 8, and 
10. The third PNS is only responsible for the 3rd class and rejects the rest and since its 
N-unit performed its task satisfactorily, the S-unit did not reject any patterns to the next 
PNS. Classes 2, 8, and 10 are sent to the fourth module which in turn is responsible for 
data belonging to classes 2, and 10, and rejects data belonging to class 8. The last PNS 
(NS module) classifies the remaining data belonging to class 8. 

As discussed in Section 2, the learning procedure divides the problem space into linearly 
separable spaces, based on the learnability of the classes by the present N-unit. Referring 
to Figure 8, this can be shown as follows: 

In the previous section, we showed how to compute two rejection boundaries for every 
bit. In Figure 8, these rejection boundaries are marked as 18 and z l l .  Assuming the N- 
unit is a single stage delta rule network with sigrnoidal output nonlinearity, the output 
value of the kth neuron is computed by 



Where, n; is the number of input neurons, xi is the value at the i th  input neuron, and cob 

is the weight connecting the i th  input neuron to the kth output neuron. Using (38), the 
equation describing the boundary imposed by the S-unit at bit k between the zero and the 
reject regions is 

The above equation can be written as: 

This is a linear equation and describes a hyperplane in the ni-dimensional space. The 
same argument of linearity can be used for the boundary between the reject and the one 
regions. 

From the above discussion, the following important result follows: The network divides 
the problem space into linearly separable regions, as in a piecewise linear model. The 
reject regions also impose additional boundaries to separate the "hard" to classify 
patterns from the "easy" to classify patterns. These additional boundaries are also linear 
due to the fact that all networks used in this paper (in the P- and the N-units) were single 
stage delta rule networks. Each PNS module contributes to the task of approximating the 
class boundaries by building a linear piece of the overall model. 

As another example of this process, Figure 11 shows the network created for the XOR 
problem and the boundaries generated. Figure 11 a) shows the network itself. It has two 
stages in which the second stage simply classifies everything passed on to it as class zero. 
In Figure 11 b) the boundaries which were created by the P-unit of the first stage are 
shown. Since this unit is built as a NS-unit, it created two boundaries between which a 
classification is rejected by its S-unit. If the pattern falls below these boundaries, the P- 
unit classifies it as reject and sends it to the next stage where it is classified as zero. If the 
pattern is above these boundaries, it is passed on to the NS-unit of the first stage which in 
turn creates its own set of boundaries. If the pattern falls below these boundaries, it is 
classified as one. If it falls between these boundaries, classifkation is rejected; and if it 
falls above the boundaries, it is classified as zero. This results in the division of the 
sample space as shown in Figure 11 b). 



Notice that there are two types of rejected data by the P-unit of the first stage: data 
definitely rejected by the P-unit and data rejected by its S-unit. Data rejected by the P- 
unit are data which are sent to the next stage. Data rejected by the S-unit are data whose 
classifications are uncertain and it is not certain whether to send them to the next stage or 
to send them to the following N-unit of the same stage. Normally both types are sent to 
the next stage and that stage is trained to handle both types. In the XOR problem, 
however, the network did not encounter data of the latter type and since the first type 
should all be classified as zero, no PNS modules were built for the second stage. 

It is important to mention that, by using other types of networks instead of the single 
stage delta rule network, or by using different types of neurons, the piecewise linear 
model could become a piecewise nonlinear model. For example, the results obtained 
with the use of quadratic neurons in the XOR problem is shown in Figure 12. The only 
difference here is that, the input values are squared before inputting to the output neuron. 
The kth output neuron has an output given by 

The equation of the boundaries is given by 

This may result in a hyperbolic, or an elliptic boundary as shown in Figures 12 b) and c). 
In this case, only one stage is generated to correctly classify the XOR problem, with no 
P-unit and the N-unit is a 2-1 unit as in Figure 5 a). 

We also have experimented with two stage backpropagation networks replacing the 
single stage networks. The resulting network created a piecewise nonlinear 
approximation of the true boundaries. The change in the model had very little effect in 
the overall accuracy of the system, leading us to believe that the total network consisting 
of PNS modules based on the delta rule is very effective in overall classification accuracy 
while remaining relatively computationally inexpensive. 



CONCLUSIONS 

The PNS modules as basic building blocks for the synthesis of PSHNN's result in high 
classification accuracy, as compared to previous neural network models such as 
backpropagation and previous versions of PSHNN' s 

The effectiveness of the PNS module is due to the collaboration of the P- and S-units to 
reject input vectors as well as classes which are hard to classify, and allowing the N-units 
to achieve high performance of classification. The rejected vectors are handled by 
succeeding PNS modules. 

The P- and NS-units are fractile in nature, meaning that each such unit may itself consist 
of a number of parallel PNS modules. 

The S-unit has been designed as a statistical Bayesian analyzer. It can also be designed 
by using PNS modules to do same type of statistical analysis. Then, the total network 
consists of a number of parallel PNS modules. Initially, the network consists of a single 
N-unit. It grows to its final configuration by self-organization. 

When each P- and N-unit is implemented by a delta rule network, the sample space is 
divided into regions which are linearly separable. This is similar to the approximation of 
a nonlinear system by a piecewise linear model. 

It is clear that the basic strategy discussed in this paper can be further developed and 
modified for further improvement in performance. 
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Table 1. The Number of Training and Testing Patterns in the 
10-Class Colorado Problem. 

Training 

Testing 

class 1 

408  

195 

class 3 

4 5  

4 2  

class 2 

88 

2 4  

class 4 

75 

6 5  

class 5 

105 

139 

class 6 

126 

188 

class 9 

2 5  

2 5  

class 10 

6 0  

3 9  

class 7 

224 

7 0  

class 8 

3 2  

4 4  



Table 2. The Results of BP Networks in the 10-Class 
Colorado Problem. 

1 0 0  hidden neurons 
after 500 sweeps 

1 1 0  hidden neurons 
after 1000 sweeps 

90 hidden neurons 
after 700 sweeps 



Table 3 The Results of Two PSCNN Networks for the 10-Class 
Colorado Problem. 

9 module PSCNN 
after200 sweeps 

7 module PSCNN 
after200 sweeps 

I correct I incorrect 

dass 10 38 

d~ 1 
class2 
d m 3  

188 

2 
0 

7 

22 
62 



Table 4 The Results of Two PSHNN using PNS Modules for the 
10-Class Colorado Problem. 
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class 3 

.I I 
I I I 
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class 2 

Figure 1. (a) An Example of an Undersampled Class (Class 1)  
(b) An Example of a Geometrically Small Class (Class 3). 



Rejected data 

Figure 2. The Block Diagram of a PNS Module. 
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(ready to be classified) 
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create the first N-unit 

train the N-unit a 
create the S-unit & 

analyze the output values + 
I 

no llect data rejected by the 
S- and the P-unit@), if an 

analyze the output values P 
Figure. 3. Flow Chart for Learning of a PNS Module. 



return 0 

aeate the training input-output 
set for the new N-unit 

using the aocepted data by 

6 begin 

return 

Figure 4. (a) The recursive procedure to create a N-unit. 
@) The recursive procedure to create a P-unit. 
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Figure 5. The PNS Modules in the PSHNN Designed for the 10-Class 
Colorado Problem. 
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Figure 6. The S-unit of a PNS Module. 
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All the data 
belonging to 
this class are- 
rejected by 
the P-unit. 

Data in this region are classified 
to the reject class, the class of 
data which should be rejected. 
This rejection is performed 
by the S-unit. 

Figure 7. An Example of Data Types which The P- and 
S-units Reject. 
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Figure 8. Sample Rejection Boundaries. 



bit 2 1 zero reject 

Zor= 0.337 
z = 1.0 
r l  

bit 3 

bit 5 lern 
reject one 

Z =  0.268 57 0.50 ~ Or 

zero reject 
Z = 0.428 
Or 

bit 4 zero reject one 
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Z = 0.265 Zrl= 0.608 
Or 

bit 6 

bit 7 

zero reiect , 
z= 0.50 
Or 

I zero reiect one 
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bit 8 

Z = 1.0 
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bit 9 

Figure 9. The Rejection Boundaries for the First NS-unit 
created for the 10-Class Colorado Problem. 

zero reject 
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bit 10 

z = 1.0 
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Z= 0.233 
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Figure 10. The Class Divisions Generated during Training for 
the 10-Class Colorado Problem. 
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(b) 
Figure 1 1. a) The Network for the XOR Problem, 

b) The Accept and the Reject Regions Showing how the System Operates as 
a Piecewise Linear Model. 



A stage 1 

Figure 12. a) A Second Order Polynomial Network for the XOR Problem, 
b) and c) Possible Accept and Reject Regions. 
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