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ABSTRACT

Composite linear and quadratic systems produce three-wave coupling when
stimulated by random-phase input sinusoids. Due to the non-linearity of the system
the output frequenciesare arithmetically related to the input. Using third order cumu-
lant statistics and their associated bispectrum, techniques are devised based on phase-
insensitive matrix structures for detection and frequency estimation of coupling fre-
guencies. The separation of the third order cumulant series into symmetric and
skew-symmetric portions allows us to exploit their characteristic eigendecompositions
for frequency estimation. After symmetrization, biphases can be easily extracted as
coefficientsof the cumulant sequence. Using a generalized eigenvector representation,
we can relate symmetric and skew-symmetric bases by a subspace rotation agorithm.
Biphases can be estimated directly from generalized eigenvalues of the matrix pencil
formed by symmetric and skew-symmetric matrices. The dimensionality of our
matrices can be reduced through the use of cumulant projections which yield aslice of
the bispectrum. The Radon transform procedure is related to bispectral processing
through an isotropic radial slice Volterra filter. The compact third order Kronecker
product matrix formulation and agorithmsfor coupling frequency estimation can aso
be converted for use in biphase estimation. Simulations showing the performance of
the above procedures are also presented for both synthetic and biomedical time series.
These include the detection and estimation of specific frequencies exhibiting non-
linearities in electroencephal ographic(EEG) data.
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CHAPTER 1
INTRODUCTION

"Thequestion of linearity of a systemis dependent on the level of hierarchy
considered.”

1.1 Natural and Man-Made Occurrences of Three-Wave Coupling

Three-wave coupling occurs in a composte linear and quadratic system. Two
random phase input sinusoids become phase-locked to a third snusoid which is gen-
erated in a non-linear system. In three wave coupling or other kinds of wave-wave
interactions, energy is transferred from one or more sinusoidsto surn and difference
sinusoids whose frequencies and phasesare arithmetically related to the input frequen-
ciesand phases. Examplesof three-wave coupling in both natura and man-meade sys-
tems abound. Severa case studiesfollow beow.

For many systemssuch as plasmain afusion reactor's (tokamak) edge or shoal-
ing ocean waves, harmonic generation is referred to as turbulence [1-3]. To describe
the changesin the dynamic frequency content of many physical systems, we can rely
on theinterpretation by Dr. Edward J. Powers, Jr. of the University of Texasat Audtin.
Refemng to fluids and plasma under certain conditions he reates, "In such media,
departuresfrom thermodynamic equilibrium..can act as asource of energy for various
unstable modes or waves. Initialy the unstable modes grow in alinear fashion, then,
a sufficiently large amplitudes, begin to non-linearly interact. As a result of this
interaction, energy is transferred from the mogt unstable modesto new sum and differ-
ence frequencies, wavesor modes. For thisreason, non-linear wave interactions con-
gtitute an important mechanism whereby energy is redistributed from the mogt

i P. Nunez, The Electric Fields o the Brain, Oxford. New York, 1981, p. 301



unstable modesto damped waves. This processisoften called energy cascading. The
final result of the energy cascading process is turbulence which is manifested by
fluctuationsof therelevant physica parametersin both space and time.” [4].

System physiologists modd neurd systems, especiadly sensory transducers,
which are responsiblefor energy conversion. Sound and light, as well asother stimuli
Impinge upon appropriate receptors and are converted into electrical energy that can
be interpreted by higher centers in our nervous Systems. Input and output energy
gpectra cannot be related by a smple linear system modd that furnishes gain and
phase shift dteration. A monochromatic light input to a visua receptor yields output
a the input frequency plus a double frequency term. Thisisillustrated in Fig. 1.1
below where the output of acell from the retina contains both single and phase-locked
doublefrequency terms[5].

In man-made sensory systems such as radar, the backscatter from certain materi-
as such as semi-conductors with non-linear |-V characteristics has new frequency
componentsas well [3]. The synthesisof sum-and-differencefrequency components
in the backscatter is explained by a non-linear radar cross-section. Both the received
and transmitted signa spectra are related by coupled linear and quadratic transfer
functionsinherent in their respective cross-sections and antenna gain characteristics.
Walton and Jouny discuss and demonstrate the use of methods for multipath and mul-
tiple reflections off of objects from radar [6]. Due to multiple reflections an object
may appear to be further away from a radar, because of longer time delays before
being received. However, multiple reflections are smply phase-locked and delayed
versionsof the primary reflection. It isdesirable to have methods to discriminate mul-
tiple from smple reflections.

An off-shore tethered oil platform isimpacted by the sea waves. The input, sea
wave, and the surge response of the platform can best be modded by linear and qua
dratic coupled system responses.  Quadratic wave drift and linear wave excitation
schemes provide the best 'fit' between input and output models based on coherence
studies[4].

Other cases of wave-wave interactions gppear in optical systems. Optical scien-
tists experiment with solitons. These are "light pulses so stable they do not spread in
an optica fiber even after thousands of kilometers..." [7]. Optical fibers have to be
selected so that the trade-offs between disperson and non-linearity are baanced.
Modding the action of the optical fiber on the soliton requires the use of a scheme to
capture phase shift and harmonic generation together.

As a find example, consder the electroencephalogram (EEG). The generation
of the EEG is not well understood. Asan unobtrusive measurement of brain function,
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the mechanism of EEG generation is not a primary concern to neurologists. Instead
the EEG problem is a pattern recognition problem to aid neurologists in their diag-
nosisof patients. The quiescent brain is often characterized by large alpha wave con-
tent in the region between 8-13 Hz. Often alpha is defined as a complex wave with
coupling with other frequencies at sub- and supra-harmonic levels. Alphais not a
pure sinusoid by any stretch of the imagination. Some individuals show more cou-
pling to other harmonics than others. In the active brain when alpha blocking or
desynchronization occurs, the coupling among frequenciesislost. Though couplingis
lost and the alpha wave disappears, some harmonic energy persists. Through experi-
mentation it is desirable to discern why some individuals exhibit coupling and other
do not. Sensitive measures to correlate EEG and arousal state are sought. Develop-
ment of measures to analyze coupling and the shape of the coupled waveforms ischal-
lenging because of the non-stationary character of the EEG.

The measurement and detection of three-wave coupling is the problem con-
fronted in this dissertation. Sometimes the detection of three-wave coupling isa prel-
iminary step along the way to non-linear system identification. Often, sinusoids are
used as a probe stimulus to detect non-linearitiesin a system. More often than not, the
presence of non-linearities helps usto differentiate states of a system.

Higher order spectra and correlations such as the bispectrum and the third order
cumulant provide information about three wave coupling. The cross-bispectrum pro-
vides information about quadratic interactions between input and output sequences.
The auto-bispectrum shows phase locking among components within a single time
series. Both preserve phase and can aid in the signal reconstruction problem when no
phase information is available from ordinary second order power spectra and auto-
correlation. The higher order spectra are also immune to additive Gaussian noise.
Often, non-Gaussian signals are immersed in Gaussian noise so that the signal detec-
tion by way of the bispectrum avoids performance deterioration by contaminating
noise. In addition non-Gaussian random processes require correlation information
beyond the second order for a completely adequate description of their statistics.

In this thesis several high performance methods for detection of quadratic phase
coupling among sinusoids immersed in additive Gaussian and non-Gaussian noise are
designed. These methods work directly with the third order cumulant sequence. They
furnish information about coupling frequencies and the relative phase shift among
constituent sinusoids. These phase shifts relate directly to waveform dispersion and
generate shape information.

These methods are then applied to the EEG or brain wave time: series recorded
from the scalps of human subjects. A key goa in this research is to use these



algorithms with real or naturally occurring data. The EEG is often considered to be
strictly Gaussian with limited nonlinearities or frequency couplings. As the third
order cumulant sequence isinsensitive to Gaussian noise, the algorithms should easily
detect the presence of coupled sinusoids and estimate the coupling frequencies.

1.2 Three-Wave Coupling, the Bispectrum and System Theory

Higher order spectra have a role in the description of systems generating non-
linear output from random input data. Consider alinear time-invariant(LTl ), Hy (o),
with purerandom phase sinusoidal input,

x(n) = 3 Amexpl j(@0nn + ¢m)] (L.1)
m

where w,, are individual frequencies with their associated amplitudes A, and phases
O0m. We may assume that the phases are randomly distributed over the interval
[0, 2®]. Then the output of this system, y, (n) is merely a phase shifted, amplified ver-
sion of the input signal. Specifically there are no interactions among the individual
frequency components upon output

yL(n) =3, Hy (0m)Amexp[ j(0nn+om)] (1.2)

yL(n) =3 Bpexp[ j(@ni+0m + Op)] (1.3)

where 0, =arg{ HL(®) } + ¢, and B, = |HL(®y)|An. Though the phases and
amplitudes have been altered upon output, the phase characteristic still possesses a
random character. Individual phase termsdo not enter into any deterministic relation
with one another. So in the linear case the spectral powers at two different frequen-
ciesare independent of one another.

On the other hand if the same collection of random phase sinusoids is passed
through a higher order system, such as a quadratic system, no longer do the phases
retain a totally random character asin Fig. 1.2. In thisfigure the higher order system
function, Ho(®;, @,), otherwise known as the 2nd order Volterra frequency domain
kernel, imposes a specified structure among the sinusoids. Here the subscript " Q
signifiesquadratic. The quadratic system portion of the coupled system output, yg(n)
is:



> Amezp {j(wmi""ém)] ‘

@nm + Yol

HQ(W}:,C&.’[)

Figure 1.2  Coupled linear and quadratic sysem functions and thar output time
Fries



yo(m) =3, (XX Ho(ax, an)Ayexpl j(axn +9,)] Ajexpl j(on+d)] ).  (1.4)
m k1l
At this point we note that contributionsto each frequency vaue w,, depend on
the drength of quadratic system function at each frequency pair (k, ) such that
k+1=m Freguency components sum together to create new components at new fre-
guencies through the interactive effect. New frequency terms synthesized from this
action are caled the coupled frequencies. For higher order Volterra frequency terms
strength of the couplings are among three, four, etc. frequency components. The out-
put can be written in theform
yo() = YT QuAkAjexpj((ay + apn + o + ¢1 +Ya)l ). (1.5)
m k1

The coefficient, Qy, is the quadratic amplitude coefficient and determines strength of

the generated harmonicsi$, 8] and

Qu = |Hok,D| ta =arg{ Hok,1)} (1.6)

In the three wave coupling scenario, we need to consider that the linear and qua-
dratic systems are coupled together. Examining how phase coupled harmonic genera-
tion occurs, suppose two Sinusoids

x(n) = Agcos(wy + oy ) + Ajcos(ay + ) 1.7

areinput to this coupled linear/quadratic system. To exhibit three wave or quadratic
phase coupling for real signds, the output of a system with linear and 2nd order non-
linear kernds, y(n), has three snusoids,

y(n) = Bycos(ty + 0y) + Bicos(ay + 6;) + Bp,cos(wy, + Oy,) (1.8)

The firgt two sinusoidsrepresent the linear system output. The third sinusoid is newly
generated from the quadratic system function at a single frequency pair combination.
Once again amplitude is determined by the amplitude of the system kernel Hq (k,1),
ie. By ="2|Hg(k,1)|AgA;. Thefrequency and phasedof the quadratic or synthesized
frequency component is related to the input sinusoids frequencies and phasesin the
following manner when three wave coupling occurs:

Oy =00+ (1.9)

Om = 0 + Y~Ya. (1.10)

Hereyy is aconstant linear offset which may be zero. Though the linear system out-
put has random phases (the first two sinusoids), thereis a third sinusoid present in the
output whose phase is aresult of a quadratic interaction between thefirst two. Here



we have acase of three wave coupling. Frequencies and phasesare said to be related
in an arithmetic fashion so that the third sinusoid’s arguments may be the difference
of the first two as wdl astheir sum. Asaresult of the non-linear response the phases
become coupled and there is a deterministic relationship among phase components.
The cubic kernel determinesthe intensity of the coupling among four frequencies, for
example.

The detection of the phase coupling in the output time series cannot achieved
using the power spectrum as this statistic is insengtive to phase relationships among
snusoids. Another quantity known as the bispectrum is able to detect coupling. The
bispectrum By, (01, ,), atwo dimensional function of frequency, exhibitsa peak in
its region of support a the point (w;,®,) when there is phase coupling among the
members of the corresponding frequency triad. The bispectrum is the 2-D Fourier
transformof the third order autocorrelation or cumulant of the time series, R(k,1),

Byyy(w1,2)= 3 3 RekDexp(—jlok+wyD)}. (1.11)

k:—ocl:—oo
For areal-valued zero mean dtationary time series, the third order cumulant is defined
by the expectation of adoubly time lagged triple product,
R(k,1) = E(y(m)y(nt+k)y(n+l)}. (1.12)

Asin the case of the power spectra density there is afrequency domain definition of
the bispectrum [2, 9].

Byyy (01,0) = E{Y(®;) Y(w,) Y* (@;+0,)} (1.13)

where

Y@= Y y(n)exp(-jon). (1.14)
N=—cc
This is implemented by means of Fourier transforming segments of a time series,
forming al triple productsfor each segment and then averaging across all segmentsas
discussed in chapter 2. This averaged triple product is called the biperiodogram.
Note that the frequency decomposition of the third moment of a zero mean random
processis exhibited by the bispectrum.

Contrast the bispectrum with the definition of the power spectrum, P(w). Thisis
defined as the Fourier transform of the autocorre ation function, R(k) or



P)= Y R(m)exp(~jwm). (1.15)
M=—co :
For astationary time series, y(t), R(m) is the expectation over time of the second order
lagged product, i.e. E{y(t)y(t+m)} where y(t) has zero mean. An aternate definition
of the power spectrum isthefollowing

P(®) = E{Y(0)Y" ()} (1.16)

where Y(w) representsthe Fourier transform of the time seriesin question. The power
spectrum is said to express the frequency diversity in the second order moment of a
time series, i.e. E{y2(1).

Unlike the power spectrum, the bispectrumisa complex vaued quantity and has
aphase term. Kim, Beall et d. define the biphase as sum of the congtituent phases,

H01,02) = ¢(@1) + $(02) — ¢(3) (1.17)

when @3 = @; + @, [2]. This relationship is the same as the relative phase offset of
the output sinusoids from the coupled linear and quadratic system. The quadratic
phase coupling phenomenon discussed above where the biphase is zero is the mos
cited case in the literature. If ¢(w3) is coupled to the other two random phase fre-
quency componentssuch that thereis awaysa constant offset, either negative or pos-
tive, between the sum ¢(w,;) + d(w;) and ¢(ws), then we say that there is a non-zero
biphase. An example of a system with non-zero biphase is the squarer with delay T,
ie. y(n)= xz(n—T). When this occurs, the quadratic kernd has the following
representation, He (e, ) = exp[—j(oy + @)] [13]. When no such phase shift occurs,
then we have asimple squarer, y(n) = x*(n) with Ho(wy, ) = 1.

We note that the frequency decomposition of the third moment for a zero mean
random processis exhibited by the bispectrum. So summing across the entire bispec-
tral domain gives us the third order moment, E{x3(n)}, of arandom process. Thisis
analogous to the summed power spectrum revealing total power. By default when we
refer to the bispectrum, we meen the autobispectrum, B(w;, ;) = Byyy(®1,0,) as
above. A critical quantity involved in ascertaining the degree of coupling between
input and output time series is the cross-bispectrum, Byyy (w;,@;). This entity is
defined as By (@1,@7)=E{X(®;)X(m,)Y" (0;+0;)}. Details about the relevance of
the cross-bispectrum appear later in this manuscript under consideration for system
identification.

Anocther quantity called the squared bicoherence, bic?(w;,w,) or smply the
bicoherence is the normalized bispectra measurement. The bispectral magnitude is
normaized by the power spectral values a the respective frequency triad,



((D] ,0)2,0)3).

|B(w;, ;)2
bic2(ay, ;) = (1.18)
©192)= Hon PP
At this point it is worthwhile to examine another important property of the third
order cumulant and the bispectrum: the immunity of these measures to additive Gaus-
sian noise. This property can be best examined by focusing on the definition of the

cumulant alittle more closely.

1.3 Properties of Higher Order Cumulants

Considering a random variable (r.v.) X with characteristic function, ¢,(w), if all
the moments up to order k exist, then the k-th order cumulant, v&, also existsand is
defined as the k-th order coefficient in the Taylor series expansion of ¢, (w):

o0 EPURN 4
Ing, () = InE (&) = 3" 3 U= (1.19)
k!
£=0
Note if we have a Gaussian r.v. with mean p and variance, o2, then
—jw—oz%z
Ox()=e : (1.20)

We note that after taking logarithms and comparing with the equations above, it is
clearly seen that the Gaussian distribution has all cumulantsequal to zerofork > 2.

We may expand the expression Taylor series for the cumulants about zero [21],
for a collection of random variables for the kth-dimensional case, x isak-dimensional
vector. Then for all orders up to and including the nth order, we have

VitV

g (@)= ¥ I — ol o (1.21)
Vi+ - 4v<n vi: Vk
wherecd™ ™) denotes the cumulants of the random variables, x*, . - . ,xpx.

Typically in random process theory we only examine the case where each ran
dom variable is held to a power of unity, ie. vi=vo="".w=1. Now we let
e Wag(xy, - -+ ,x,). Theexpansion of the equation for the k-dimensional cumu-
lant depends on combinatorial results. Given the numbers (1,2,...k), suppose they are
partitioned in a number of ways where ng, represents the number of groups in a



partition p. If gP represents the i-th group of the p-th partition, the k-th order joint
cumulant is defined as

cxg, X)) =Y (1) (ngp—D! E{[Ix;} - - B{ [T x4} (1.22)
p iegf iegh,
Giannakis mentions that the cumulants are useful measures of joint statistical depen-
dency among a collection of r.v.’s [10]. For second order cumulantsthe possible par-
titionsof (1,2) are {(1,2)} and {(1),(2)}, so that p=2 and ng;=1 and ng,r=2. As for
group membership, g1={x;,x,}; g?={x; } and finaly,
gi=(x,). Therefore,

c(x1,x2) =E{x1x2} - E{x1 JE{x2}. (1.23)

For the case where x;=x,=x, then in the case of the third order cumulant, i.e. k = 3,
the possible partitions of (1,2,3) are { ( 1, 2, 3) }, {(1),(2,3)}, {(2),(1,3)}, {(3),(1,2)}
and {(1),(2),(3)}; sothat ng1 =1, ngr=ng3=ng4=2, ngs=3. Thisyields

c(x1,X2,X3) = E{xX2x3} + E{x1 JE{x2X3} (1.24)

+E{x3}E{x)x2} + E{x2}E{x2x3} + 2E{x; JE{x; }JE{x3}.

For a zero mean random process all terms except for the first disappear. Then for a
zero-mean stationary random process, the second, c(m), and third order cumulants,
c(k,]), arerespectively,

c(m) = E{x(n)x(n+m)} (1.25)

and
c(k,l) = E{x(n)x(n+k)x(n+l)}. (1.26)
Some important propertiesof the cumulants are detailed in Giannakis[10]. Of
particular interest to usis the fact that if collectionsof random variables are indepen-

dent of one anther, then the cumulant of their sum will be the sum of their cumulants.
If x1,..,xy andyy, . .,yn aeindependent, then

c(X1+y1, * s XptYn) =c(Xy, **  Xp) + (Y1, 0\ Yn) (1.27)
The symmetry propertiesof thethird order cumulantsare well known [8].
R(k,I) =R(,k) = R(-L,k-1) (128)
= R(k-1,-1) = R(-k,I-k) = R(I—k,—k)

Thisrelation partitions the two-dimensional region of support for the two lagged vari-
ablesinto six equivalent wedges. Asit turnsout we need only know the cumulantsin
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the infinite wedge bounded by thelinesk=0, k=I and k,1 2 0.

As a consequence of the symmetry property of the cumulants we can show that
the bispectrum, B(w;,,) also observesitsown set of equivalencies

B(wy,m,) = B(a,,m;) = B(w;,—0;—;) (1.29)

= B(—w; =02, ®3) = B(—02,—0;—) = B(—0; —,—0).
Then for red time seriesthere.is an additiona symmetry property
B(w;,0;) = B* (—@,—y) (1.30)

These symmetry properties creaste a set of 12 equivalent sectorsin the discrete bispec-
tral domain. The frequency doman of the discrete bispectrum is shown in Fig. 1.3
Coupled with thefact that the bispectrum is aso doubly periodic, i.e.,

B(w;,m,) = B(w; +27, 0,+27), (1.31)

the bispectrum of red time seriesis completely described by its valuesin a triangular
region bounded by @,20, ;>w,, and o; T w,<r. Thistriangular region is shown as
sector 1 on Fig. 1.3. These sectors are gppropriately known as subharmonic sectors
where @; and @, add to form a coupled sinusoid & a frequency greater than each
separately. Other sectors 3-6 are gppropriately caled supraharmonic sectors.

1.4 Identification, Higher Order Spectra Analysisand VdterraWiener Theory

A digtinguishing feature o the linear systemsiis the fact that the principle o
superpogtion holds. A classical application of higher order spectra andysis is the
identification of non-linear systems. Theinput and output of a non-linear sysem may
be represented in termsof contributionsfrom individua responsesd 'linear, quadratic,
cubic, etc. subsystems. Asfirgt formulated by Volterrain the early part of the twen
tieth century, the total system response, y(t), may be decompaosed into separate exci-
tationsof n-th order kernels by the common input(s). In this manner we see thet for a
single output, y(t), we engender thefollowing Volterra series multiple convol ution:

y(®) =ko * [ ky (t)x(t=1) dr (1.32)
0



+ .[ .[ ko (T1, T2)x (-7 )x(1-12) dT1dT;
00

000000

+ Ijjkg, (11,72, T3)x(t—T1 )x(t—12)x(t—13) dt;dTadtz + - - -
000

where kg,k;(11),k2(%1,72,13) are cdled the kernds of the sysem. The firs order
term is the convolution integra for a linear system [5]. The time doman kernds
presented here are the inverse Fourier transforms of the frequency domain Volterra
kernesin (1.2) and (1.4). In generd for an nth order Volterra expanson we have a
seriesof integralsto represent the output y a timet.

yO= ([ [kl t)x@-1) -+ xt-t)dyy - dt,)  (133)
=0 —eo  —oo

Typicaly, the Volterraseriesis thought of as a generdization of a Taylor series
of afunction of multiple arguments. The generdization involves the use of function-
ds rather than single arguments as in the Taylor series. The Volterra seriesis con
Sdered a functional representation of a system. This functiona representation relies
on the use of severd functions defined over a interval of time usuadly —< to some
given time t. The inputs are functionsof time, i.e. Some x(t) and by anaogy to the
Taylor series, they replace the powers of multiple variables xT*,x3,x¥ found in the
Taylor seriesexpansion. Coefficientsof the Taylor series are analogousto the kernds
of the Volterra series. Indeed the functiona representation of the Volterra series uses
integralsto find theindividua contributions of each kernd in the series.

Although the Volterra series functiona representation is adequate for system
descriptionin most cases, i.e. where the functional isandytic, it isnot atrivia task to
isolate responsesof linear, quadratic, cubic, etc. terms to arrive & individual kernds.
Kernd calculation is tantamount to system identification and isthe god of researchon
severd fronts [3-5,9,11-14]. One o the vay first endeavors to exploit the use of
higher order spectra in its anadyssof system kernels was the work of Leo Tick in the
early 1960's [20]. Given a Volterraexpanson in the frequency domain for the output
Y(fm)

Y(®r) = Hy (05)X(0n) (1.34)
+ ¥ ¥ Ho(ox, o) X(ay) X(ax)
k 1

we might use the higher order cross-correlation functions to extract the kerne when
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Gaussian noise is used as an input. Then multiplying (1.36) by X*(w,,) and taking
expectations gives

E[X" (@0m) Y(m)] = Hy (0m)E[ | X(@) 2] (1.35)
+X, Ho(k, DE[X” ()X (00 ) X (03))]
k1
where k+l=m. Then multiplying (1.36) by X*(wi)X'(mj), after taking expectation the

result is;
EIX (@)X (@)Y ()] = HL (0m)EIX (@)X (o)X (0] (1.36)

+ X Ho(ay, o)E[Xs(0;)X " (00;)X(ex )X ()]
k1

where i+j=k+l=m.

Using the fact that the Gaussian input is a symmetric function and has no odd
order moments and the fact that E[w; wowswy) = E[w;wa] T E[waw3]+ E[wsw,] for
wy, that is Gaussian distributed, we can then arrive at the linear and quadratic transfer
functions under question thusly:

E[X " (@)Y (0)]
Hi (0,) = (1.37)
- E[ | X(@m) |2]
* WY ! X
Hoy (@, 01) = E[X" (@)X 0;) Y(0+0)] (138)

2E[ | X(;) |21 E[1X(0)]2]°

Over a half a century after Volterra, Norbert Wiener was able to synthesize a
new set of kernel functions[15]. Under expectation with Gaussian input, each kernel
generates a response which isorthogonal to all the other kernels used to represent a
given system. The system containsa hierarchy of orthogonal functionals with respect
to a Gaussian input. The functional of the zeroth order (average response),
Go[hg;x(t)], isthe constant term hy. The traditional linear transfer function forms the
first order kernel. Then the response functional, G [hy;x(t)], is

Gi[hy;;x(M)] = j h; (D)x(t—t)dt (1.39)
0

The second order kernel and its functional depend upon the input power spectral
density, P, and



Gafhz;x(®)] = [ [ha(11,12)x(t — T)X(t — T)dT drz —P [ ho(t,11)dty. (1.40)
00 0

Generaly, thefunctiona seriescan be written,

YO = 3 Gulh¥m(y, « -+ T X(), U<t (1.41)
m=0

The functionals are constructed so that the expected value of the product of any
two equals zero. For systems lacking a kernd above the second order one, the Vol-
terra kernels and Wiener kernels are identical. Leo Tick's method aso relies on
decorrelating responsesfrom linear and quadratic kernels by using a Gaussian inpuit.
There are formulae to relate Wiener and Volterra kernels for al orders. The key in
synthesisof a system representation is to generate stimuli and corresponding kernels
that yield acompleteset of orthogonal functionals.

The orthogonality condition for the Wiener kernels ensuresthat we have the best
representation of the system function in the mean square error sense a each succes-
sve order in identification. The mean square error between the measured system
response, y(t), and the true system response, y(t), is minimal. This could be termed
the completeness property of the Wiener system. The Wiener series aso gives the
best representation with respect to that Gaussian noise.

Wiener used an expansion in terms of a family of Laguerre functions as ortho-
normal basis aong with afunctional representation in terms of Hermite polynomid to
characterize his system. His students, Lee and Schetzen (1965) devised the cross-
correlation procedure to decouple linear, quadratic, cubic, etc. functiona representa-
tions. It isa.nalogoué to the Gram-Schmidt processfor generating an orthogona vec-
tor basis in linear algebra. Now the inner product is correlation under expectation.
The scheme is shown in the figure on the following page. We can present the fre-
quency verson since that is easier to implement than strictly time domain versions.
Thereisasavingsredlized in the computational load [S]. Using the frequency domain
scheme we can easily see exactly where the cross-bispectrum comesinto play. (see
Figs 14-15)

0. Find the average value hg and subtract it from y(t), call thisdifference yg(t)
1. Compute Y () and X(w) viathe FFT

2. Form the product Y(®)X (®) whichis the cross-spectrum, @, (o)

3

Using the spectral density of the while noise input find hy(t) by the product,
(1/P)¢yy (1) after taking the FFT of @y (w).
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Figure 1.5 Frequency Domain Scheme for Finding Wiener Kernels in the
Frequency Domain From Marmarelis [5]



4. Takethe transform of h; (1) to find Hy (®), the linear transfer function of the sys-
tem

5. UseHp(w) tofind the the linear output Yy (®w) by the product X(w)Hp ().
6. Subtract thelinear responsefrom the total response, Y(@)-Y (0)=Y(®)

7. Cross-correlate X(w) with the nonlinear output to get transfer function of qua
dratic system, namely

Ho (@,,0,) = 5[1,7X(m1 YX(2)Y1 (@) + ) (1.42)

8. Thentheresidual quadratic response can beformed thudy
Yq(w;,0;) = Ho (o, 0;)X(0; )X () (143

Thisformulais actudly the cross-bispectrum normalized by the squared spectral den-
gty of the input. Other stimuli have been used to generate kernds. True Gaussian
white noise is a practical impossibility. Other pseudo-Gaussan white noise signals
have been devised to mimic Gaussian noise. Error anaysis has been accomplished
and detailed in Marmarelisand Marmarelis[5].

1.5 Brief History of Non-Linear Applicationsof the Bispectrum

Many of the semina contributionsto the early bispectral theory are reviewed by
David Brillinger [16]. Thisisaugmented by a genera outlineof non-linear stochastic
system theory and bispectra which appears in the timeline from Table 1.1.
Brillinger’s interestsin higher order spectral analysis arosein part from his professor,
John Tukey who coined the terms bi-, tri and poly-spectra and rigoroudy considered
higher moments of time series spectra[17]. Many important early works from Bril-
linger consdered higher order spectra important for understanding deviations from
Gaussianity as wdl as linearity. Glancing at the conventional power spectrum, he
mentions that the spectra can broken down into eemental constituent time series
through the use of high order spectra. This related directly to the specia property of
independence of time series and their higher order spectra [18] This was critical for
the property of noiseimmunity. Brillinger, along with Van Ness, was responsible for
the key statistical properties of higher order spectra[18, 19]. The ideas of cumulant
spectrafor non-stationary processes wasintroduced by Brillinger aswell.



Table 1.1 TimeLinefor Non-Linear Applications of the Bispectrum

|dentification

Deve opment Discoverer & Date
Spectral Representation of Higher Order Tukey (1958)
Moments Considered

Orthogond Functional Approach to System Wiener (1958)
Identification

Quadratic Cross-Correlation & System Tick (1961)

Quadretic Non-linearities Explored

Hasselman, et al. (1963)

Formal Characterizationof Higher Order
Spectral Properties

Brillinger (1965) & Van Ness (1966)

Cross-Corrdation Approach to | dentifying
Wiener Kernds

Lee & Schetzen (1965)

Formal Extension of FFT Anaysisto
Bispectral Methods

Huber, etdl. (1971)

Analysisaof Physiological SystemsPublished

Marmarelis& Marmarelis(1978)

Testsfor Gaussanity and Linearity

SubbaRao & Gabr (1980) &

Vaue Decomposition

Hinich (1982)
Parametric Bispectrum Estimation Raghuveer & Nikias (1985)
Shoaling Ocean Wavesand Asymmetry Elgar & Guza (1985)
Quadratic Contributions to Coherency and Kim & Powers(1988)
Kernel Computation for General Inputs
Third Order Cumulant Matrix & Singular Swindlehurst & Kailath (1989)
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Wiener considered the problem of non-linear system identification by extending
the concept of Volterrakernels through the use of orthogona functionals[15]. In this
manner unique representations for coupled linear, quadratic, cubic, etc. systems can
be derived that are uncorreated for certain stimuli, particularly white noise inputs. As
discussed above in Section 1.4, higher than second order Volterra kernels are not
mutually uncorrdlated. Tick discovered important cross-correlation theorems for
higher order spectrawhich lead directly to the identification of quadratic systems ker-
nelsor transfer functions[20].

Hasselman et d. wasone of thefirgt investigatorsto apply the bispectrum to red
time series [21]. He applied the autobispectrum to ocean waves. Hasselman et al.
related higher order spectral results to fundamental non-linear equations of fluid
dynamics and made higher order spectral analysisa practica consideration. Later his
work was expanded by Steve Elgar and R T. Guza at the Scripps Oceanographic
Institute [22]. Elgar considered non-linear behavior in water waves at shalower
depths than Hasselman et d. He found that stationary segments could be obtained
without sacrificing dtatistical stability. He charted the progression of coupling fre-
quencies with depth. Elgar also looked at exactly how the shapes of waves change
with depth and the accompanying a changein biphase of dominant wave frequencies.

The consideration of fluctuationsof plasma density associated with energy cas-
cading and turbulence in the edge regions of a tokamak reactor has been a topic of
consderable interest [2]. Kim and Powers have extended the kerne method of
identification by relaxing the assumption that the input to a composite linear and qua-
dratic system sequence must be Gaussian white noise. Non-Gaussan inputs may aso
be used in his closed form solution involving the solution of two systemsof coupled
equations. They aso devised a method for calculating the contribution to total coher-
ence of the quadratic portion of acomposite system [13].

Much of the work in applying Volterra methods of identification to neural sys
tems as well as a generalized survey of Volterra/Wiener methods have been accom-
plished by the Marmarelis brothers [S]. The sdlection of appropriate alternate white
noise input sources have been discussed by the authors. These aid in the laboratory
synthesis of pseudo-white noise sources from binary digital generators. Different
sources of error introduced from the kernel method are also characterized. These
authors also consider the characterization of weskly non-linear systems [11]. They
authors have devised specialized schemes for each level of identification of the neu-
ronswithin the retinaof theeye.

Subba Rap and Gabr as well as Hinich have devised dtatistical tests for the
hypothesesof Gaussianity and linearity of a time series under study [23,24]. The test



for Gaussianity considersthe null hypothesis:
Ho: B(oy;,00) = 0 for al oy, ;. (1.44)

If the null hypothesisis accepted a given sgnificance leve, a, then we may sy that
the time series under considerationis Gaussian with confidencelevel 1-a. For thetest
of Subba Rao and Gabr arestricted region of the bispectrum is selected where the esti-
mates obey a complex norma distribution. A specified grid of samples are sdlected.
A data vector is filled with samples from the grid. The mean vector, ﬁ and covari-
ance matrix, A, are calculated. The complex verson of the multivariate Hotellings
T? test is utilized. SubbaRao’s and Gabr’s test alowsfor adjustment of a correlation
window. Now frequency points selected beyond a particular separation distance are
assumed to be uncorredlated. The longer the data vector, the finer the separation
between frequency points. In the case of the Hinich test the independence of samples
of the skewnesses (bicoherences) is assumed. For a Gaussan time series the asymp-
totic distribution of the sum of dl data pointsin domain of bicoherencesis sad to be
chi-squared distributed with 2N degrees of freedom. Here N is the number of points
over the entire bispectra domain.

A time series may be linear whether or not the seriesis consdered Gaussian. A
second null hypothesisis proposed
H; : bic(;, ;) isconstant for all w;, o (1.45)

If thisisthe case, the time seriesis said to be linear. The reasoning, behind that test
follows. If alinear system, H(w), isexcited by an i.i.d. noise source;, then the output
spectral dengity for the time seriesis

_o 2
SL(@)= 2 |H()| (1.46)
for dl . The bispectra dengity is
3
BL(®) = —b— H(wyH(@)H" (@+y) (1.47)
(2m)

Inserting these expressionsfor the linear system power spectral dendity and bispectra
density into the equation for the bicoherence, the result gives

3
bic(w;, ;) = — fordl, | (1.48
ic(w;, ;) Py J )

Another multivariate Hotellings T2 is used in the data analysis for Subba Reo. For
Hinich’s test of linearity the distribution of data pointsin a non-linear time series
bispectrum is assumed to follow a non-central chi-squared distribution with 2N



degreesof freedom. The non-centrality parameter is determined from the scaled sam-
ple mean of the estimated bicoherences. The empirica distribution function of
bicoherence estimates is compared to the predicted non-centra chi-squared distribu-
tion for testsof linearity (seesect. 6.9).

No description of the major discoveries of non-linear applications of by the
bispectrum is complete without detailing several of the parametric methods for cou-
pling frequency estimation. In 1985 Raghuveer and Nikias published an autoregres-
sive scheme for estimating coupling frequencies [25]. This publication together with
contributionsfrom other researchersin HOS was pivotal in launching the recent surge
of interest in this field. Likewise in 1989 Swindlehurst and Kailath developed an
eigenstructure approach to the estimation of three wave coupling using the third order
cumulant matrix [26].
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CHAPTER 2
ALGORITHMSFOR THREE WAVE COUPLING
DETECTION AND ESTIMATION

"However it should be emphasized that most of our knowledge of nonlinear
wave phenomena (real wavesin nature, not mathematical abstractions) has
come about as an extension of the linear picture.”

2.1 Introduction

In chapter 2 we provide background material on the bispectrum and model-
based measurement of three-wave coupling, particularly the linear autoregressive or
AR method of Raghuveer and Nikias[1]. This method starts by estimating the third
order cumulants and then solving a set of linear prediction equations based on asingle
I-D cumulant slicefor the autoregressivecoefficients. After parametrizing the system
function, the frequency mple product isformed over al the frequenciesin the bispec-
tral principle domain. In section 2.4 we show through smulation that the AR method
does not provide sharp bispectral pesks a low SNR and instead shows ridges aong
certain axes. Hereit is suggested to use afull 2-D section of the cumulantsfor non-
linear processes.

Swindlehurst and Kailath use an eigenstructure method [2]. Their mple correla
tion matrix is built by averaging a signal-mple Kronecker product over several seg-
ments of a time series. The singular value decomposition (SVD) o this matrix and
the employment of a noise subspace frequency estimator such as the MUSIC (MUIti-
ple SIgnal Classification)agorithm yield coupling frequency estimates [3]. Their
method relies on the additive noise being Gaussan. Asymptoticaly the effects of

T P. Nunez, The Electric Fields o the Brain. Oxford, New York, 1981, p. 346



Gaussan noise disgppear. Noise effects ae minimized. However, the triple
Kronecker product method as stated in [2] cannot accommodate white noise with a
non-zero third order moment. As bispectrad andysisistypicaly used to Sudy the out-
put of nonlinear systems, it is expected to handle the resulting non-Gaussian noise
output.

Although each of these methods provides modd-based proceduresfor detecting
three-wave coupling, both ignore the biphase component inherent to the definition of
the bispectrum. The biphase measures the temporal dispersion of the third (sum or
difference) frequency component relative to the two other members of the snusoid
triad. Tempora dispersion quantifiesthe relative phase difference among frequencies
of a phase-locked sinusoida triad. Second and higher order Volterra systems with
memory have nonlinear phase responses accounting for dispersion. First, here is a
review of conventional or nonparametric methodsfor calculating the bispectrum.

2.2 The FFT-Based Bispectrum -- Direct and Indirect Methods

The indirect method of estimating the bispectrum is described by Brillinger and
Rosenblatt & Van Nessand recapitulated by Nikias & Raghuveer [4-6]. This method
approximatesthe third order cumulant sequence and the resulting bispectrumin (1.12)
and (1.13), respectfully. For discrete cases with afinite number of pointsin the series,

the procedure to yidd an estimate of the third order cumulant sequence, R(k,1), for
datalength N isasfollowsassuming that { x (1), X (2), ... , x(N) ) isour data set:

1 Segment thedatainto K recordsof M sampleseach, i.e. N=KM.
2. Subtract the average of each record.

3. If (xk),k=0,1,---,M-1) isthedataset in each segmenti=1, 2, ..., K, we
obtain an estimate of the third order sequence

i 2. . . .
P, = ild— 3 xOx®@Hox® @) @.1)
n=s,
where
i=1,2, -+ K,

s; = max(0, -m. —n) and s, = min(M—1, M~1-m, M—1--n).

In order to form the estimate of the third order cumulant sequence, we must aver-
age over al K sections,
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R(k,1) = %E Dk, 1). 2.2)
i=1

At this point the bispectrum can be estimated using the discrete Fourier transform for
two dimensiona data such asa 2-D FFT agorithm over arectangular region of sup-
port with dimensions (2L+1) x (2L+1). Nikias calls this estimate the indirect esti-
mate, ﬁn'q(o)l , @), O

A L L .
Bn(og,anp)= Y ¥ Rk W(k,Dexp{—j(w,m+ w,n)} (2.3)
m— n=1L
where W(k,]) is an appropriate window function for smoothing and variance reduction
[6]. The properties of these windows and listing of suitable windows appear in the
monograph by Subba Rao and Gabr [7]. Naturdly, by utilizing the symmetry proper-
tiesof the bispectrum agood ded of the computationa load is reduced.
The 1-D FFT was utilized in the calculation of the bispectrum by Huber et al

[8]. Ther scheme isconsidered to be the biperiodogram and is anadogous to the use
of the periodogram for estimation of the power spectrum. This method has been called
the direct method. This method utilizes the segmentation of a record with N data
points into K separate records of M points each. The FFT of each record is taken
after gppropriate windowing by awindow w(n)

. N-1
X (@)=Y, x®(n)w(n)exp(jon) (2.4)
M

where X® i s the Fourier transform of theith record, x®, of the datasequence, x(n).
For each record the triple product
67 (1, 09) = XO () XV(Q) XO(ey + ) 2.5)
isformed. We find the triple products over the region that spansfrom 0 <w,<w; and

0<m, + wy<r radians in accordance with the symmetry relations described above.
The triple products are averaged over severd recordsfor variance reduction for sup-

posedly stationary sequencesto formthedirect estimate, ﬁp(ml ),
~ K i .
Bp= =3 b @1, 2.6)
i=1
This method is known asthe direct method sinceit utilizes the data sequencedirectly.
Frequency domain smoothing and complex demodulation are other methods thet
can be utilized for the estimation procedure. Brillinger notes that the expectation of
the triple product as caculated by averaging separate biperiodograms does indeed



converge to the Fourier transform of third order cumulant sequence [9] (theorem 4.3).

Huber et d. reiterate the work of Van Ness and mention that the bispectrum is
asymptotically normaly distributed as well as unbiased for both direct and indirect
estimates [8, 10]. For alarge number of data records and points per record, the vari-
ance of the real portion of the bispectrum equals that of the imaginary portion. The
varianceof red and imaginary partsof the direct estimator areequa. The variance of
each portion is proportional to the power a the frequencies of the snusoidd triad.
The proportionality factor, C, depends on the amount of smoothing, Spectra
bandwidth, A, the number of records and the tota length of the datarecord

var{ReBpy(;,,)} = var{ImBpy (@, ;) 2.7)

= CP(w) P(;) P(a)

where w; =, + ®; and P(,) is the power spectral dendity at the frequency . The
bicoherenceis more often used as a statistical measure of coupling, becauseit iseasier
to employ. The bicoherence measures the degree of coupling among a frequency tri-
ple. Toreiterate, the bicoherence relates what fraction of the total power among afre-
quency triad is actudly involved in coupling. A bicoherence of unity indicates that
the dl of the sinusoida power a the threefrequenciesisinvolved in coupling.

The statisticsof bicoherence are wdl documented and provide a means of com-
paring the vdidity of bispectrd measurements. Often, the statistics are described for
the magnitude squared bicoherence, bic%(my,ax), though both bic(ey,w,), and
bic?(ay,,) arefound throughout the literature. A purely Gaussian process has a true
bicoherence of zero for dl frequenciesin the bispectra domain. The distribution for
bicoherence values from a sample of a Gaussian process are asymptoticaly chi-
sguared distributed with two degreesof freedom [111. Hence, itsdistributionis pro-
portional to an exponentia distribution. The expected vaue of the bicoherence esti-
mator for a Gaussian process is equd to the proportionality constant, C, from the
expressionfor the variancedf the bispectrd estimator.

For larger expected values of bic? the distribution varies. First of all, the bias,
BIAS|[bic], is

BIAS[bic] = [—2—] (1=bic?)? (2.8)
dof
where dof is the degrees of freedom. In (2.8) dof = 2B, T where T is the total record

length in time and B, is the effective bandwidth of one record, 1/T, [12]. The vari-
ance, or
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a i0)2
VAR[bic] = {M] (1-bic?)>. 2.9)
dof
Thedistribution of bic2 is non-central chi-squared with the degrees of freedom depen-
dent on the taper window used, the number of records used and the total number of
datapoints. The non-central chi-squared distribution can be approximated by an og?
distribution given by
D .
bic? . (bic?) 2 e iR

£2 (25 (2.10)
* 29 1)

04

The mean and variance of an alpha chi-squared distribution are crv and 2a2v, respec-
tively. Thevaluesof aandV areasfollows:

_ E[bic%] , = (dof(bi c?)
v 2(1- bic2)3 -
Thereisalso a normal approximation to the non-central x-distribution [11].

a (2.11a-b)

2.3 Autoregressive Modeling of Three Wave Coupling

The renewed interest in the bispectrum in the 1980’s resulted in part from the
contributions of Raghuveer and Nikias [1, 6, 13-15]. They developed an autoregres-
sive model using the third order cumulants. Assuming that the system under analysis
can be written in theform

x(n) = i a; x(n—i) + w(n) 2.12)
i=1

where p is the order of the system and w(n) is white noise with non-zero third order
moment, i.e. E{w(n)?) =B. Thea,i=1, -, p are the autoregressive coefficients of
the process. Whiteness of the noise is provided by the fact that
E{w(n)w(n—k)w(n-1)} =0 for al k,10 . Using the fact that x(n) is independent of
W(n) we can now multiply the equation above by x(n-k) x(n-1) and take expectations
giving



R(—k, —I}+3" aR(i—k,i—1) = B3(m, n) (2.13)
i=1

They begin by setting a matrix
[ RO0)  RLD ... Rep) |
R(-1,-1) R(0,0) ... R(p-1,p-1)
R= (2.14)
R(-p,—p) R(-p+1,—p+1) . . . R(0,0)

Thisformsa matrix-based solution by constructing a Toeplitz arrangement of the third
order cumulants dlong adiagona dice in the cumulant doman where

Ra =B,

a=[la;ap ..- ap]T and B=[B 0. .- 0]. The standard transfer response isfound by the
following parametrization

1

H(w) = .
[l + Zaiexp(—jo)i)]

(2.15)
i=1

The triple product is formed as shown in (2.16) to form the biperiodogram from AR
parameters

B(0;, ) = BH(@; )H(w)H (00 +02) (2.16)

Now Raghuveer also applies this structure to quadratically phase coupled
snusoids in third order white noise. He clams that the parametrization of the
transfer function, H(w) above, provides sinusoidal frequency information just asin the
second order case. Assuming we adlow the poles of our system function to move to
the unit circle in the case above, then we gpproach an extremely narrow band process
approximating a sine wave. For quadraticaly coupled sinusoids, sx AR polynomid
roots approximate a sinusoidal triple, two roots per term of the snusoidd triad. This
method known as the Third Order Recursion method (TOR) aso has a short data ver-
son described in [15] which is known as Congtrained Third Order Mean (CTOM).
Both TOR and CTOM methods have an anti-causal or backwards modd as well.



2.4 Shortcomingsd the AutoregressiveBispectrum for Three-Wave Coupling

Shortly after Raghuveer's work on the autoregressive bispectrum, Giannakis for-
malized the ARMA non-minimum phase system identification problem[16, 17]. Gian-
nakis goa was to calculate the phase character of rationa linear time invariant
modes. Asan end result he obtained equationsrelating second order amplitude sensi-
tive statistics to the phase sendtive statistics of the third order. He began with the
reduced order third order cumulant, c(m), for k=l=m for some linear process y(n) with
non-Gaussian noise input, w(n) and impulse response, h(i). Once again the input
noise has third order moment, (3.

R(k,1) = c(m) = E{y(n)y?(n+m)) (2.17)
= B S h(i)h?(i+m)
i=0

Thisdatais the cumulant information dong adiagona dice in the cumulant domain.
If we take the z-transform of ¢(m), Giannakisshowed that

CD=B ¥ [3 h@hG+m)z™ =y§HZ () (2.18)
m=-oo =0
and
Hyz)= ¥ h(m)z™ =H(z) * Hz) 2.19)
m=0

where * standsfor complex convolution and z = exp(j).

Fortunately, we can make use of symmetry relations of the bispectrum to find
that the Fourier transform of ¢(m), C(w) is

C@) = 5= [B-0,)do

Thisshowsthat C(w) isareduced order spectrum called the 1 1/2-D bispectrum. Tak-
ing cumulants aong the diagona dice is equivaent to projectionsin the bispectra
domain. This procedure will prove to be the bass or dua o this thess contribution
of taking cumulant projections to find dice information in the bifrequency domain.
Furthermore, Giannakis used this 1 112-D bispectrum to relate phase-sendtive third
order statistics to amplitude sensitive second order dtatistics in this fashion. We can
relate input noise power w? to the output spectrum, S(w) in thisfashion,
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S(z)= 6*H(z HH(2). (2.20)
We can combine (2.20) and (2.18) to yidd

H;(z) P(z) = % H(z) C(z) (2.21)

where P(z) is the power spectral density. It can be seen that the 1 1/2-D spectrum is
convenient for identifying the phase character of linear systems. It is obvious that
there would be adifferent form of the bispectra projectionsfor the output of acompo-
site or coupled linear/quadratic system. Still it isimportant to redize that the 1 1/2-D
bispectrum describesonly areduced-order, linearized bispectrum. Thisdoes not yield
afull 2-D description of the bispectra domain.

Simulations presented by An et d. assessng the performance of AR-based
bispectral methods for quadratically phase coupled sinusoids show that an improve-
ment in performance may be obtained when the basc scheme is modified to include
more information than the one-dimensiona diagona cumulant dice. [18]. An &t 4.
apply least squares methods to an over-determined set of equations to incorporate
additiona information from off-diagonal dices. This approach yields better subse-
guent estimates of the coupling frequencies. Thework of An et a. supports theclam
that the 1 1/2-D bigpectrum does not provide full representation of the bispectrum
derived from a nonlinear process.

In low SNIR cases, AR estimates of the biperiodogram for three-wave coupling
display marked ridge effects as the following shows. In Fig. 2.1 the AR-based bispec-
tra are shown for an 8192 point series consisting of quadraticaly coupled unit ampli-
tude sinusoids at f; =.34, f, =.1, and f; =f; T f, =.44 Hz Initially, no noise is
added. Figs. 2.1 and 2.2 show bispectrafor a mode order of 8 for this noiseess time
series with biphases of 0° and 60°, respectively. Usng the same series, Gaussian
noise of unit variance is haf-wave rectified and added to the signal component. The
signa-to-noiseratiois4.77 dB. Herethe sgna power istota power of al 3 members
of the sinusoidd triad. The caseswith biphasesequa to 0° and 60° are shownin Figs.
2.3 and 2.4, respectively. The 0° biphase plot shows an accurate estimate of the cou-
pling frequencies whereas the 60° biphase case does not indicate the correct fre-
guency. Only when the mode order is increased to 12 do both 0° and 60° biphase
simulations show the correct frequency estimate as shown in Figs. 25 and 2.6. How-
ever, it is observed that the AR method of calculating discrete bispectra yidds three
ridges extending from the pesk. These ridges ae the effect of' the use o the
biperiodogram formed from the product of paramemzed transfer functionsto display
the frequency information. As defined in (2.4)-(2.6), the biperiodograrn is a mple
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Added Exponentially-Distributed Noise, Var=1; Order=8; Biphase =

Figure 2.3  Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids:
0 degrees

Added Exponentially-Distributed Noise; Order=8; Biphase = 60

Figure 24  Raghuveer and Nikias AR Modeing of Phase-Coupled Sinusoids:
degrees



o

Raghuveer and Nikiass AR Modding of Phase-Coupled Sinusoids:

Added Exponentially-Distributed Noise, Var=1; Order=12; Biphase

0 degrees
178 596
119 064
59 3321
0 000040

4
0 DDOOC "/%

220 B62
147 241 4
73 6203

Added Exponentially-Distributed Noise; Order=12; Biphase = 60

Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids:
degrees

Figure 2.5

Figure 2.6



product and thefirst two factors, H(w, ) and H(w,) are each functionsof only one axis.
Accordingly, one ridge runs paralld to the w, axis dong the w; =2xr(.34) line. The
other ridgerunsaong the w; =2x(.1) line (see Figs. 25 and 2.6). The diagond ridge
intersects each frequency axis a a frequency value equal to the w; +wy =2r(.44).
Thus, each ridge presumably corresponds to each of the three constituent transfer
functions or factors o the triple product. The point where the ridges coincide gives
the pesk or point of multiple maxima response.

Also the phase of a sinusoid cannot be accurately represented by an autoregres-
sive modd. A 2nd order recursive model of a sSinusoid does not contain any starting
phase information [19]. Stoica and Nehoral point out that linear prediction can accu-
rately modd sinusoidsat high signal-to-noiseratios. However, a low SNRs there are
severe bias problems that may arisein unconstrained modeling of sinusoidswith poly-
nomid roots on the unit circle. In the Raghuveer/Nikias model, the sixth order AR
polynomial representing all three coupled sinusoids is a symmetric polynomid. This
modd is phase neutral [20].

With regard to phase sendtivity for AR modes in the case of sinusoidal
processesin Gaussan noise, we can show that the same AR coefficients hold for both
causal (backward) and anti-causal (forward) prediction cases. We can start with the
definition of forward and backward modds Consider a backward prediction AR
modd of order p+| for a time series containing a single triad of quadratically phase
coupled sinusoids with added Gaussian noise. Using third order cumulants, we have:

p+l
R(=k,-1) = 3] ap ; R(~=k+i,—1+i) (2.22)

=1

wherethe ay, ; are the backward AR coefficientsfor aprocess. Assume that the effects
of Gaussian noise are negligible and can be safely ignored. A complimentary forward
modd of order p+l could aso be constructed where the ag; are the backward AR
coefficientsfor a process:

p+l
Rk, =Y ag; R(k—i,1-). (2.23)

1=1

As we shdl seein chapter 3, the third order cumulant sequence for a single triad of
real quadratically phase coupled snusoids contains three pairs of two dimensiona
sinusoids. Each pair of terms with the same frequency arguments requires two AR
coefficientsfor atotd of 6 AR coefficients. Consider the following backward linear
prediction equation relating different points of a single member cosine term of the
third order cumulant sequence for quadratically phase coupled sinusoids with an arbi-
trary phase angley and AR coefficientsag ; and ag 2:
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cos(Aq (—k—1) + Ay (=1-1) +Y) = ap, 1cos(=A k — A1 + ) (2.24)

+ ap 2C0s(A1 (—k+1) + Ao (—1+1) + ).

Using another equation with any choice of garting lags, K and 1 indexed in asimilar
fashion, we can solvefor a, ; and ay, ; and find that

ap,1 = 2cos(Ay TAy) (2.25)

ap,2 = -1.
Likewisein the backward equation for sinusoids
cos(Ay (k+1) + Ay (1+1) +Y) = ag jcos(M k T A1) (2.26)

tag ycos(Ay (k—1) T A, (1-1) T ).

Now we see that in fact ag; =ap,; and ag; = ap, 5 S0 the AR coefficientsdo not confer
any phase sengtivity. Since the forward and backward moddls are dike in the case of
phase-coupled sinusoids, we can writefor a (p-tl) x (p-tl) dimensoned cumulant dice
matrix for generalized AR coefficients, a; =ag; = ap, ;.

Ra=-r" (2.27a)

RTa=-r" (2.27b)

whererf =[R(x1,£1) RE2,12) . .- R(ir(p+1),i(p+1))]T. Also the third order corre-
lation matrix R appears in (2.13). The vector of generdized AK coefficients is
a=[a;ap --. apﬂ]T. We have indicated the dimension of matrices and vector by
the subscriptsin parentheses.

Since bath models are equivaent, we might try to construct a composite model
combining both forward and backward lagged cumulants. This is the symmetric
modd employing symmetric cumulants.

B(R+RT )a=12(* +1) (2.28)

In terms of symmetrized cumulants where Rsym=%@R+RT) ad
rsym = 2@t T r):

Rsyma = rsym. (2.29)

For any given k,1 we can write an single constituent equation containing the sym-
metrized cumulants
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12{R(k,]) + R(-k,-])} = 1/2% a; {R(k—i, I-1)+R(—k+i,—1+i)} . (2.30)

i=1
or in amore compact rendition,

Sk = a Skt H+) @.31)

i=1
where S(k,1) = Ya(R(k,+R(-k,-1)).

At the same time we can generate a skew-symmetricverson o the linear predic-
tion equationsregardless of phase relationship expressed by the cumulants

12(R-RT)a, =12¢* - 1). (2.32)

This forms an equivalent skew- or conjugate symmetric modd with the same
coefficientsas the symmetric modd for dl biphasesin alinear prediction context.

Rsgwa = rsgw (2.33)

12{R(k,]) — R(—k,-])} = 1/2{: a; {R(k—i,1-1)-R(~k+,—1+i)} (2.34)
=1

Ak, = E a; A(k+,1+i) (2.35)

i=1

The following plots illustrate the usefulness of usng symmetric and skew-
symmetric cumulantsfor modding quadratic phase coupling for high sgna-to-noise
ratio time series. Unit amplitude phase-coupled snusoidsat ®; =2n(.34), @, =2xn(.1)
and w3 = 2n(.44) without added noise comprise a time series. Symmetric and skew-
symmetric cumulant sequences are formed from the cumulants taken from dividing
the time seriesinto &4 recordsdf 128 (N = 8192) each. Autoregressvemodding from
these cumulant sequence yield satisfactory coupling frequency estimates as can be
seen in Figs. 27 and 2.8. Once noiseis added, however, it can be seen that the cou-
pling frequency estimates based on AR modding of skew-symmetric cumulants are
congderably better than those calculated from the symmetric cumulants. The noise
component adversaly effects the symmetric cumulants.

A better representation of the snusoidal information may come from a direct
eigenstructure gpproach. Recently, these modds have become commonplace for
sinusoidal frequency estimation in both spectra analysis and array processing [3].
The motivation for constructing an eigenstructure mode is twofold. First, the eigen-
structure approach is modd based. The inspiration for the eigengtructure method is
that certain eigenvectors of the signal-only correlation matrix gpan the same vector
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subspace as the constituent complex exponential signals. We can view the third order
cumulant sequence as composed of sums of complex exponentials.

Second, we would like our eigenstructure model to represent more fully the
extent of the 2-D cumulant sequence. i.e. it isdesired to expand the region of con-
sideration beyond that of a simple slice or group of sliceswhich is traditionally associ-
ated with linear modeling. The Volterra kernel that represents quadratic interactions
is truly a function of two time (frequency) variables. Our bispectral estimator could
avoid parametrization of the transfer function, H(w), along a single cumulant slice.
An average of triple products of H(m)’s yields a biperiodogram. Brillinger shows that
the bi- or tri-periodogram does in fact converge, albeit slowly, to the direct estimate,
the 2-D or 3-D Fourier transform, respectively [9]. We would like to bypass the cal-
culation of the linear transfer function and go directly to ascertaining the frequencies
of the coupled sinusoids.

Thirdly, and perhaps most importantly, we would like our model to contain
information on phase. It is only fitting that the bispectrum contain relative phase
information about the sinusoids. The biphase information is a critical component of
coupling frequency estimation. In order to discover how an eigenstructure method
can be used for biphase estimation, a short overview of eigenanalysis-based spectral
estimation via the MUSI C algorithm isrequired.

2.5 Generalities of the Eigenstructure Method

MUSIC (MUltiple SIgnal Classification) isavery popular spectral analysis tech-
nique that requires the estimation of the autocorrelation matrix of a random process
assumed to be composed of a known number of complex sinusoidal signalsimmersed
in white noise [3]. The key toimproved performance of these methodsis thedivision
of information in'the autocorrelation matrix into two vector subspaces, the signal sub-
space and the orthogonal (or noise) subspace. They also provide high resolution esti-
mates of the sinusoidal frequencies in conventional spectral estimation. The dimen-
sionality of the signal subspace is determined by the number of assumed complex
sinusoids immersed in the noise sequence in question. Eigenanalysis allows for remo-
val of extraneous noise contributions for a much higher signal to noiseratio in the ulti-
mate calculation of the frequencies of the embedded sinusoids. The success in sub-
space approaches for power spectral density estimation have motivated research in
applying them to the bispectrum and the investigation of non-linear interactions
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among harmonic componentsof atime series. Giannakis and Swami & Mendel have
utilized rank reduction techniques on higher order dtatistics for robust system
identification. [16,21].

A random process consisting of M unit amplitude, real sinusoidsof radian fre-
guency, u; , i=1,2..M, of random phase in white noise has a standard autocorrelation
function, R(k)

M
R(k) = 1/2Y cos(;KT) + p;8(k) (2.36)
i=1

where p; is the noise variance and 8¢k) is the Kronecker delta. The (pxl) x (p+1)
autocorrelation matrix, where p > 2M, can subsequently be expressed as the sum of
corresponding signal and noi se autocorrel ation matrices.

R, =S,+W,,. (2.37)
The signa matrix can be written in terms of a sum of rank one outer products. The
outer productsare of theform

Pi *
—[5; @sH +s] @sT] (2.38)
2

‘Mz

...
I
P

S, =

where
s =[1 e—j(q e—j2mi cen e—j(P—l)(Di I
1
and P; is the power in the ith sSinusoid. The signa mamx has a completely Vander-
monde structure.

Likewise the noise mamx W, = pI where p is the added white noise. Here S,
and W, are the signal and noise autocorrelation matrices, respectively. The signal
matrix will have the e gendecomposition

S, = Pfxi[vi @ v (2.39)
i=1

where A; denotes the ith eigenvalue and v;, the respective eigenvector and
M A ... Aoum. Itisclear that of the (p+1) eigenvalues of the signal matrix, SP,
there are M non-zero eigenvalues. The corresponding M eigenvectors known as the
principal eigenvectorswill span the same subspace asthe M real sinusoids comprising
the signal portion of the time series. It can be shown that the signal mamx will have
exactly 2M non-zero eigenvalues. The eigenvalue/eigenvector decompostion of the
of Ry, is



Rp = 2%1}% [v; @ vl +Pw Pilvi @vH (2.40)
i=1 i=1
The remaining p+1-2M eigenvectors of the signa matrix span the noise subspace.
The spectral estimator makes use of the orthogonality between both subspaces. The
noise subspace eigenvectorswill be orthogonal to any vectorsspanning the signa sub-
space, e.g. the sine waves comprising the signal. This property is exploited by the
noise subspace estimator known as the MUSIC agorithm. The frequency estimatoris
1

P(f) = 2.41
® etl(@) N, e(w) @4D

wheree(®)=[1dM .-, ei®*DenjT ong
No= 3 vi@vH (2.42)

i=2M+1
constitutesthe "noise" or orthogonal complement subspace.

2.6 TheTriple Kronecker Product Estimate

Swindlehurst and Kailath exploit the structure of the second order cumulant
matrix, i.e. the autocorrelation matrix

R, =E{x @ x!) (2.43)

wherex isthesigna, EsplusGaussian noise, n vectors[2]. E isan m x d matrix con-
taining the d complex exponentia vectorsin a Vandermonde form. Then disthetotal
number of complex exponentia spresent whether or not every one of themisinvolved
in the coupling. The svector containsamplitudes and associated phasesfor the group
of snusoids. They build a third order cumulant matrix from the triple Kronecker pro-
duct in similar fashion

R; =E{x®@xQ@xH) (2.44)
If thesignal vector x has m elements, then R3 isan m2xm dimensioned matrix.

The rank of R is dependent on whether or not phase coupling does occur.  For
each group of coupled sinusoids, Swindlehurst and Kailath claim that the asymptotic
rank of R3 isequal to 2d’ whered’ is the number of red sinusoidsinvolved in cou-
pling. They use a singular value decomposition of Rs, i.e. R3 = UZVH. They parti-
tion U into signal and noise subspaces according to the sizeof the singular values,

S



45

U=[u; u; - up?] (2.45)

=[Us | Uyl
where Uy and U, represent the signa and noise component singular vectors. The
span(R3) = span(U). We find that the span(Uy) is orthogonal to the span(U,). They
use an appropriatefrequency estimator 1ior the coupling frequency pairsor doublefre-
guency termsaof the bispectrum, caled Bp,.
1

e;z U, Ul ey,
where ey, = e(0y) @ e(®,) * e(w,) @ e(wy) and

e(@)=[1&* ** ... GimDalr (2.47)
Likewise the right singular vectors yield frequencies of single sinusoidsinvolved in
coupling in a 1-D formulation using the following estimator.

1

e(@)" VoV e(w)
where V,, are the noise subspace right sngular vectors.

Bp(wy,w,) = (2.46)

Bs(@y) = (2.48)

2.7 Symmetric and Skew-Symmetric Sequences and Time Reversibility

One of the key conditions that needs to be satisfied in order to do the eigen-
decomposition of the third order cumulant mamx is that the mamx be Hermitian.
Hermitian matrices have rea eigenvalues. Also for nonrepetitive eigenval ues, respec-
tive elgenvectors are orthogonal. One of the properties lacking in third order spectral
analysisis the fact that higher order cumulant sequences lack the symmetry property
that characterizes second order statistics, i.e. in general R(k,l) does not equal R(-k,-1)
or positive lagged sequences do not necessarily equal negative lagged ones. This
symmetry property insuresthat our second order cumulant sequences are aways sym-
metric and therefore can be decomposed spectraly. When positive (forward) statistics
do not equal negative (backward) statistics, we say that our series is not time-
reversible. Thefact that a non-zero bispectrum displays the time reversible character
isadirect result of fact that it bears phase information. The third order autocorrela-
tion matrix as it appears in the Nikias and Raghuveer AR formulation is not Hermi-
tian. Here are some further comments about the reversibility of random processes.



A time series (X) that is strict sense stationary can be considered to be time
reversible (second order) if for every nand every ty,t,, .. . ,t,, €ach collectionof ran-
dom variables

{X(tl )’ X(t2)’ e X(tn)} and {X(—tl)’ X(_t2)’ T, X(_tn)]
have the same joint density. Becauseof stationarity we can state that
{X(m+ty), X(m+tp), - -+ X(mrtty)}and (X(m-t; ), X(m—tp), - -, X(m—t,)}

have the same density functions. Typically we smply say that the joint density for
forward time lagsis equal to the joint density for backward time lags. Johnson and
Rao mention that all Gaussian signals are time-reversible as the joint amplitude den-
sity for a Gaussian signal is dependent only on second order statistics [22]. The auto-
correlation function as well as the covariance matrix ae symmetric quantities.
ARMA processes stimulated by Gaussian noise turn out to be time reversible quanti-
ties[23].

For non-time-reversible signals phase information is not present. Simple rever-
sal of the time axisdoes not reveal any statistical differencesthat might reveal a phase
character to thedata. As mentioned before all second order statistics because of their
symmetric nature do not reveal phaseinformation. Many spectral analysis agorithms
assume that forward and backward prediction errors are equal. Gaussian processes
are the only certain cases where such an assumption can be made with any degree of
certainty.

We may divide the third order cumulant sequence into two separate portions
called the symmetric, S(k,1), and anti-symmetric, A(k,1), cumulantsin thisfashion

S(k1) = - [R(k,l) + R(—k,—l)] (2.49)
2

Akl =L [R(k, - R(—k,—l)] 2.50)
3

Rk,1) = S(k,1) + Ak, 1). @.51)

As a conseguence of thisdivision we might differentiate the real and imaginary por-
tionsof the bispectrum by their respective cumulant sequences, S(k,1) and A(k,1) [24].

Re{B(w;,0,)} = DFT{S(k,1)} (2.52)
Im{B(w,;,0,)} = DFT{A(m,n)} (2.53)

There are also cumulative measures of magnitude in the real and imaginary parts of
the bispectrum. The skewness, Sy, and asymmetry, A,, of the time series are
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analogousto thetotal power of second order statistics.

- ~ 3n

S = 2T RelBlwa) 2] 2.54)
[ ] 3R

Ay = E? Im{B(wk,ml)} / [0.2] (2.55)

where we sum over m and nin entire bispectral domain for each entity. Both quanti-
tiesS and A are normalized by the total time series power ¢;. They are analo-
gous to the cumulative measure of power in second order statistics.

With regard to signals, the real and imaginary parts of the bispectrum have spe-
cial meaning in reference to signal shape. If the bispectrum of a signal has non-zero
skewness, it issaid to display asymmetry with regard to a horizontal axis. The signa
that isrepresented by the solid line in Fig. 2.11 displays non-zero skewnessand is not
balanced above and below the y=0 line. Reciprocal events do not occur above and
below this axis of vertical symmetry/asymmetry. Conversely, if a signal shows zero
skewness and non-zero asymmetry, then the signal is said to show asymmetry with
regard to a vertical axis. The dashed signal in that figure is a prime. example of this
signal type. A vertical line drawn normal to the x-axis at x=0 is the asymmetric
fold-over point for the waveform. Now events that occur below the y=0 symmetry
line also occur above it. The bispectrum could be a useful tool for shape recognition
of asignal in avery noisy environment with additive Gaussian noise.

The connection between the real and imaginary parts of the bispectrum and the
biphase followsdirectly. A signa with an entirely real bispectrum hasa zero biphase
throughout for all frequency couplings. By analogy to Fourier theory for determinis-
tic signals, we expect the cumulant series to be an even function of the two arguments.
Consider the six term expression for the bispectrum of quadratically coupled
sinusoids. With zero biphase, the cumulants are purely symmetric with
R(k,1)=R(-k,1) and are cosinusoids with zero phase angles. The solid line plot on Fig.
2.11 shows a triad of quadratically coupled sinusoids with zero biphase. The fre-
guency of one of the sinusoids is w=2x(.05). The second has & =2xn(.1). Likewise
a non-zero biphase indicates the imaginary portion of the bispectrum is also non-zero.
A full 90 degrees means R(m,n) = -R(-m,-n) and we have a state of full asymmetry.
The same frequencies are involved in the couplings for the dashed line, but this time
the biphase is90 degrees.

There are severa applications where measurements of biphase actually helps
characterize system properties. The presence of a non-zero biphase in a triad of
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Figure 211 Symmetric and asymmetric signal shapes, Solid line: Symmetric
Signal, Biphase=0° -- Zero Vertical Asymmetry, Non-Zero Horizontal
Skewness; Dotted line: Asymmetric Signal, Biphase=90° -- Non-Zero
Vertical Asymmetry, Zero Horizontal Skewness
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coupled sinusoids indicates the lack of tempora isotropy. An isotropic medium, for
instance, is uniform with regard to change in time direction, t——t, or it is called
time-reversible. Wave shapeisintimately connected with time reversibility. Matsuda
and Kuo find that water waves affected by surface winds change their shapes [25].
Waveforms tilted forward and backward by wind exhibit changes in their biphase.
They regard changes in temporal asymmetry as related to changesin spatia asym-
metry such aschanging water depth. Elgar snows that as waves shod the biphaseisa
dynamic quantity dependent on both progressionsof depth [26].

To illustrate how a non-zero biphase arises, consider the fact that the Volterra
kernels have memory aong two time lag indices to account for deviationsfrom addi-
tive superposition throughout the responseinterval. If y(t) = x?(t—1) for instance, then
Ha(fy,£,) = e 7°0*%) \We note that a phase factor has been is added to the generated
second harmonic from such a transfer response. The phaseis proportiona to the mag-
nitude of the coupled frequenciesinput to the system.
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CHAPTER 3
2-D SKEW-MUSIC: A SINUSOIDAL PARAMETRIZATION
FOR THREE-WAVE COUPLING

3.1 Introduction

Since we employ higher order statistics in particular for their phase-senditive
properties, it is therefore appropriate that parametric methods completely utilize al of
the phase information provided by the triple correlations. The central concern of this
thesis is therefore the development of parametric modeling of three-wave coupling
frequenciesthat includes the key feature of accurate biphase estimation as well asfull
2-D representation. In addition we desire to insure that we are truly modeing
sinusoids, so our constituent signal correlation matrix isformed from exponential vec-
tors. In this work an eigenstructure approach to estimating triad frequencies and
accompanying biphaseis taken. These quantitiesare determined by symmetrizing the
phase-senditive third order cumulants. Phase is extracted as estimable amplitude
coefficientsof the symmetric and skew-symmetric cumulant sequences.

As a result of cumulant symmetrization, symmetric and skew-symmetric

matrices then can be easly utilized for coupling frequency determination through
standard subspace decomposition techniques.

3.2 2-D SKEW-MUSIC: Derivation and Properties

Consider the time series x(n) consisting of one triad of quadratically coupled
sinusoidsin non-Gaussian white noise with non-zero third moment noise w(n). ¢; and
¢, are random variables and uniformly distributed between 0 and 2r. Once agan
Y, ) isaconstant phase offset.



x(n) = Acos[w;n + ¢;] + Acos[w,n+¢; ] 3.1

+ Acos[(®) + W2)n + 1 + 02 + Y, W)]+w(n)

Without loss of generality let y=y(w;,®,). The third order cumulant seguence,
R(k,1), for x(n) is

3
Rk, = AT{cos(mlanzl—'y) + cos(my k+w;1-y) 3.2)

+ cos(®; k—m31-Y) + cos(—w3 k+w, 1-y)

+ cos(( k—31-Y) + cos(—m3 k+my1-y) } + Bd(k,1)

where ; isthefrequency of the jthindividual sinusoid. B isthe magnitude of the third
moment of the non-Gaussian white noise. With zero biphase, the cumulants are
purely symmetric with R(k,1)=R(-k,-1) and are cosinusoids with zero phase angles.
A biphase of 90 degrees translates into R(k,1)=—R(-k,—1) giving rise to a state of full
asymmetry as mentioned in chapter 2.

Consider dividing the third order cumulant sequence into its symmetric, S(k,l),
and anti-symmetric, A(k,1), components as

1
Sk, = 5 [R(k, D+ R(—k,—l)] (3.3)
— 1 — — -—
Ak, = 5 [R(k, ) - R(-k, l)] (34)
Rk,D) = S(k,1) + Ak, D) (3.5)

It isdesired to determine the structure of S(k,l) and A(k,l) assuming that the original
time seriesconsistsof N setsof quadratically coupled sinusoidsin white noise. These
6N term cumulant sequences can be viewed as the in-phase and quadrature com-
ponents of the sequence in (3.2) when generalized for the caseof N arbitrary triads. It
isassumed here that each triad hasdistinct coupling frequencies.

N
S(k,1) =Y cos¥; { cos (0 k+opp 1)+ . . . +cos(—mzk—wpp]) } (3.6)
i=1
N . . .
Al =X siny; { sin (@pk+oylH - - - +sin(-oysk+onl) ) (3.7

i=1

The biphases have become amplitude coefficients. Note that we can now build a
block matrix which may be expressed as a sum of complex exponential terms. This
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matrix is suitable for the application of MUSIC or other signal subspace algorithms.
Focusing at this time only on the symmetric cumulant sequence, a Toeplitz block-
Toeplitz matrix, S, isconstructed. Sisd xd and d=mn. Here mis the block dimen-
sion and n isthe number of blocks. The blocksare arranged as

[ S(0) Sy ... S(n—l)-

S1) SO ...Snh-2)
S= ’ | ) ' (3.8)
S(—r.1+1) S(—r.1+2) .. S(-O)

where each constituent block entry, S(i), is a m x m Toeplitz matrix constructed from
the symmetric third order cumulantsas,

SG,0)  SG1) ... SGm1)]
SG,-1)  SG,0 ... S@i,m=2)

S() = ‘ ‘ ‘ . (3.9)
SG,-m+1) SG,-m+2) . . . SG0) |

Given the form of the symmetric cumulantsin (3.6), S may be decomposed as
S=EP,EF +B 1L (3.10)
Since the cumulants contain N real sinusoidal triads, E has a Vandermonde structure
containing 12N complex sinusoidal columns,
E=[ e(0,01) : e(-01,—012) * *." : e(@n2,—0n3) © €(—0ng,@n3) | (3.11)

where each block vector, e(wy,w;;) is the Kronecker product of two complex
exponential vectorsas

e(W;k, 0;;) = e(Wik) @ e(w;;) (3.12)

where® isthe Kronecker product and



1
exp(jay;)
e((oij) = (3.13)

exp(jo; (m—1))

The matrix Py in (3.10) isa 12N x 12N diagonal matrix containing the biphase
amplitudes, py,;; =(cosy;)/2. Thefirst twelve diagonal terms of the Py matrix belong
toonetriad, i.e. they are all equal to py; = (cos¥;)/2, the second twelve diagonal terms
belong to the next triad and soforth. (3.8) may be expressed as

S= EN:py_ii {Zk [e® (i, ;) €T (0, @) + e(mikvmij)eH(wikvmij)]}+ BL. (3.14)
i=] it
Note that S is both symmetric and Toeplitz and the conventional 2-D MUSIC ago-
rithm can now be applied. Since EP.,EH is not full rank, the dimension of the signal
subspace is 12N and the noise subspace is represented by (d-12N) noise eigenvectors.
Thus the spectral decomposition of S may be expanded as

12N d

S=Y MW+Bvivil+ 3 Bwvil (3.15)

i=1 i=12N+1
Wecan estimate § asthe size of the smallest eigenvalue of S. Note that S is not neces-
sarily positive semi-definite as p may be negative depending on the direction of the
skewness.

S described by (3.10) is symmetric, but not positive-definite since the noise may
be characterized by a negative third order moment. Hence, the smallest eigenvalue
may be negative. The signal-only component is composed of the outer products of
complex exponential vectors and is thus characterized by all positive eigenvalues.
Partitioning the subspaces involves assigning the largest 12N eigenval ues to the signal
subspace and the remaining eigenval ues to the noise subspace.

In complementary fashion, we may construct a skew-symmetric block Toeplitz
matrix A with the skew-symmetric cumulant sequence, A(k,1), the same way S iscon-
structed from S(k,1) in (3.6). Likewise A can be decomposed as

A=EQE". (3.16)
Similar to Cy, Sy is a 12N x 12N diagonal matrix with diagonal elements of the form



sinY;
Qy,ii = 2 (3.17)
The anti-symmetric cumulants, Ak, 1), possessodd symmetry being composed of sne
terms so that A is skew-symmetric, ie. A" =—A. Similar to (3.14), A may be
expressed as

N .
A=Y qui {): [e” (i, ) eT(mik,(Dij)_e(mik,wij)eﬂ(mik,wij)]}. (3.18)
i=1 ik

In accordance with the definition of skew-symmetry, the man diagona
(R(0,0)-R(0,0)) is zero, i.e., it isnoisefree

A spectral decomposition of A is possble. The eigenvectors of a skew-
symmetric matrix are mutudly orthogona and the corresponding eigenvaues are
purdy imaginary. The orthogonal subspace for A is characterized by dl zero eigen-
vaues. A suitable partitioning of the subspaces involves associating eigenvectors
belonging to the smalest nagni tude eigenvalues with the orthogonal complement
subspace.

Frequency estimatesfor snusoidd triads are found by exploiting the orthogona -
ity between constituent signals and noise subspace eigenvectors. A 2-D MUSIC spec-
trum is congtructed as

1

Brus (01,02) = (3.19)
e eH (), ;) We(w, o)
where W is congtructed from the noise subspace elgenvectors as
d
W= Y wvf (3.20)

k=12N+1

The congtituent frequenciesof coupled frequency triad may be determined by search-
ing Byys (@ ,0,) for pesks over the range of alowablefrequency combinations. In the
case o a dngle quadraticaly coupled triad, there ae pesks a
(001,0,), (0;,0), (®,—m,—,), €C. in accordance with the symmetry properties of
the bispectrum. This redundancy motivate the use of dices of the bigpectrum as will
be discussed in the next section. Either S or A may be employed to construct
Bus(01,0,). Typicaly,if the time seriesis known to be asymmetric, then A should
be usad to determine the coupling frequencies and vice versa for the symmetric time
series. For a practical implementation the estimates of coupling frequencies may be
derived from the matrix whaose matrix-2 normis the largest. Once the frequency esti-
mates are determined, E can be constructed and P, subsequently estimated as
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P, =E"E)'EH(S - BDEETE) . (3.21)

Qy may be estimated in a smilar fashion by replacing (S— M) by A in (3.21) to find
the amplitudes py;; asdefined in (3.10-3.14). Sinceour time seriesis of finite length,
both Py and Qy are not diagonal though diagona elements would be used for the
biphase estimates. Given the biphase coefficients py; and qy;;, biphases may be
determined viaaratio of amplitudesasy; = arctan(qy;i/py,;)- This hybridized MUSIC
scheme isreferred to as SKEW-MUSIC.

3.3 Smulationsof 2-D SKEW-MUSIC

Monte Carlo simulations were conducted to assess the performance of the vari-
ous algorithms developed in thissection. It wasdesired to test the agorithms herein to
check the efficacy of the 2-D SKEW-MUSIC agorithm in estimating quadratic cou-
pling frequencies.

For the Monte Carlo smulations, testing of 2-D SKEW-MUSIC involved syn-
thesizing 8,192 point sequences containing quadratically phase-coupled sinusoids with
additive noise generated from an exponentia distribution. Each tria was composed
of sixty-four 128-point segments. Each segment consists of two unity amplitude
sinusoids with random starting phases a frequencies f; =0.34 and f, =0.1 Hz,
respectively and a third sinusoid of the same amplitude phase-locked with a constant
phase offset determined by the biphase. The biphases ranged from 0 through 90
degreesin 15 degree increments.

The added exponentia noise is adjusted to give signa-to-noise ratios (SNR) of
14.77, 4.77 and 1.76 dB for each complete set of biphasetrials. The noise was skewed
positively or negatively by changing the polarity of the added noise. A representative
trial requires estimating the cumulants for each epoch then averaging the cumulants
over al 64 epochs. A 16x 16 block matrix with a block-Toeplitz structure described
in (38) and (3.9) is formed for both symmetric and skew-symmetric cumulant
sequences.  Eigenvector/eigenvalue decompositions are performed for each matrix.
Ideally, there are 12 eigenvectors spanning the signal subspace with the remaining 4
eigenvectors spanning the orthogonal .complement or noise subspace. For noise with
negative third order moment, the symmetric matrix is no longer positive definite, as
this additive noise negatively biases the signa eigenvalues. Vaues of the 2-D
SKEW-MUSIC function defined in (3.19) are computed over the non-redundant



autobispectral triangle, i.e. over (fy,f;) satisfying 0.f; <0.5 Hz, 0<f, <025 Hz
and f; + £, 10.5 Hz. Both argumentsaf the compound exponentia frequency kernd
in (3.19) were incremented in 0.01 Hz. steps. The frequency estimates are those two
frequencies where (3.19) is a maximum. Representative plots of the 2-D SKEW-
MUSIC frequency bispectra are displayed in Figs. 3.1 - 3.6 for different biphases
using a SNR of 14.77 dB and 20 x20 matrix. In each of these plots the noise used is
Gaussian generated from the single precison IMSL subroutine, RRNOR. InFigs. 31
& 3.2 atime series of 8192 data points containing a single quadratically phase cou-
pled sinusoid with a biphase of 0° isandyzed. In Fig. 31 the bigpectrum generated
from the symmetric cumulants is displayed. Fig. 3.2 shows the bispectrum resulting
from modeing asymmetric time series with a skew-symmetric cumulant sequence.

Figs. 3.3 and 3.4 show resultsfor atime series containing atriad with a biphase
of 30°. Improvement in the skew-symmetric cumulant results is noted in the case
where the biphase has been increased. Satisfactory results for both symmetric and
skew-symmetric cumulant sequences are noted in Figs. 3.5 and 3.6 where a biphase of
60° isused.

The length of the sequence is shortened to 4096 data points as the SNR using
Gaussian noiseisincreased to 24 dB with a 25x25 matrix. Figs. 3.7 and 3.8 show the
results for a biphase of 30 degrees usng symmetric and skew-symmetric cumulants,
respectively. In each case the peaks appear in the correct location of (fy,f2) = (.34,.1).
The biphase changesto 60° and we see equally good performancefor both symmetric
and skew-symmetric cumulant sequences. These peaksare shown in Figs. 3.9 & 3.10.
For these low noise casesit iscritical to note that the amplitude of the peaksis larger
than the high noise cases observed.

Some smulations with non-Gaussian noise show that the algorithms perform
very wdl under particularly low signal-to-noise ratios. White exponentiad noise
(skewness=3/2) noise is added to a single triad of quadratically phase coupled
sinusoids so that the SNR=4.77 dB. Two different biphase values, 15° and 75°, are
employed. Once again symmetric and skew-symmetric cumulant matrices provide
estimatesdepicted in Figs. 3.11-3.14. Ascan be seen from these smulations poor per-
formance is seen in the case of coupling with low biphase usng frequency estimates
from the skew-symmetric cumulants. The same is true for the 75° case usng sym-
metric cumulants.

One hundred Monte Carlo trials were conducted for each biphase, noise leve
and noise polarity. Sample meansfor each frequency for an SNR of 4.77 dB are listed
in Table 3.1. As the biphase increases from 0° to 90°, the accuracy of the estimates
derived from the symmetric matrix decreases. Symmetric matrix frequency estimates
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= 75°; SNR=4.77 dB; Exponentially Distributed Noise; N=8192; Peak

Figure 3.13 2-D SKEW-MUSIC Bigpectrum from Symmetric Cumulants; Biphase
at (.18,.12) Hz
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deteriorate maximally for a biphase of 90°. Conversdly, it is expected that the fre-
guency estimatesfrom the skew-symmetric matrix will be more accurate for the large
biphase case and poorest in the case where the biphaseisclose to zero. Interestingly,
for this matrix size frequency estimates obtained in the 9%0° biphase case with the
skew-symmetric matrix exhibit a sgnificant bias. The symmetric matrix frequency
estimates do not exhibit a similar bias for a biphaseof 0°. This provided motivation
to increase the block size and, hence, the matrix dimension for better accuracy. The
computer experiments were rerun employing 20x20 matrices composed of 4x5
blocks and a 25 x 25 matrices composed of 5x 5 blocks. Greatly improved resultscan
be noted in Tables 3.2 and 3.3 for both of these cases.

This agorithm provides the user with an estimate of the central third order
moment of the additive noise or the unnormalized skewness. For the exponentia dis-
tribution, the parameter 1/A determines the mean, h, and the central third moment,
2)3. To achieve the previously stated-SNRs, 6 was set equal to either 0.2235, 0.7071
or 1.0. The averageof the 4 smallest eigenvalues of the 16 x 16 symmetric cumulant
matrix provides an estimate of the third moment. Sample means of the noise skew-
ness were computed for 100 runs using various combinations of biphasein positively
and negatively skewed noise. We used the 16 x 16 cumulant matrix for the estimates
listed in Table 3.4. It can easily be seen that the accuracy of noise estimatesincreases
for lower SNR. Also there is a noticeable variation of noise estimates for different
biphases.

Table 3.5 shows performance of 2-D SKEW-MUSIC as a function of the
bicoherencelevel. The bicoherence level variesfrom 0.1 to 1.0 by varying the power
of uncoupled sinusoids. The power of sinusoids with independent phase at the same
frequencies as members of the triad is varied in accordance with the desired level of
bicoherence. The biphase for al of these trials was 45°. 100 trials at each level of
bicoherence were performed. Means and standard deviationsfrom f; frequency esti-
mates from both symmetric and skew-symmetric cumulant matrices are listed.
Interestingly, thereis very little trend developed for the bicoherence variation. At this
SNR, 21.77 dB, there is little change in performance of the agorithm until the
bicoherenceisless than 0.1. In fact, thereis no clear trend in bias and variance of the
estimates for most middle values of coupling fraction. Many more data records to
average arerequired for stable values to be established.




Table 3.1 Table of 2-D SKEW-MUSIC Estimates of Coupling Frequenciesfrom
16 x 16 Symmemc and Skew-Symmemc Mamces;, 100 Trias per

Biphase Vdue
Phase Coupled Sinusoid Frequency Estimate
Positively Skewed Noise - SNR =4.77 dB
16 x16 Matrix Dimension
Matrix Form
Biphase Symmetric Skew-Symmetric
Truef1=0.34 | Truef2=0.1 | Truefl=0.34 | Truef2=0.1

f1 2 fl 2
0° 3363 .1016 2046 1399
15° 3384 .1008 2855 1281
30° 3368 .0998 2892 1264
45° 3317 .1035 3021 1294
60° 3261 .1030 .2984 1301
75° 3237 .1043 .3052 1347
90° 2502 ,1150 2936 .1340

Table32 Tabledof 2-D SKEW-MUSIC Estimates of Coupling Frequenciesfrom
20 x 20 Symmemc and Skew-Syrnrnemc Mamces, 100 Triads per

Biphase Vdue
Phase Coupled Sinusoid Frequency Estimate
Positively Skewed Noise- SNR = 4.77 dB
20x 20 Matrix Dimension
Matrix Form
Biphase Symmetric Skew-Symmetric
Truef1=0.34 | Truef2=0.1 | Truefl=0.34 | Truef2=0.1

f1 £2 f1 £2 |
0° 3398 0969 2698 01104 |
15° .3484 .0930 3418 0988
30° 3457 .0941 3404 0972
45° .3396 0977 .3409 0975
60° .3399 .0957 3422 .0939
75° .3378 ,1001 3411 0965
90° 2539 ,1137 .3455 0968




Table 3.3 Table of 2-D SKEW-MUSIC Estimates of Coupling Frequencies from
25 x 25 Symmetric and Skew-Symmetric Matrices, 100 Trids per

Biphase Vdue
Phase Coupled Sinusoid Frequency Estimate
Positively Skewed Noise- SNR = 4.77 dB
25x 25 Matrix Dimension
Mairix Form
Biphase Symmetric Skew-Symmetric
Truefl=0.34 | Truef2=0.1 | Truefl=0.34 | Truef2=0.1

f1 2 f1 2
0° 3354 0964 2639 .1024
15° .3379 .0961 3255 0973
30° 3335 .0961 .3380 0952
45° 3381 .0957 3309 0951
60° 3338 .0954 3318 1010
75° .3376 .0970 3362 0987
90° 2508 .1061 3286 0968

Table34 Noise Third Order Moment Estimates

Third Moment Noise Estimates
Positively & Negatively Skewed Noise
Signal-to-Noise
Biphase NR=14.77dB INR=477dB NR=1.76dB
True= True= True= True= True= True=
0.0223 | -0.0223 | 0.7071 | -0.07071 20 -20
0} 0393 -.0054 .6825 -.6914 19061 | -1.97% |
15° .0388 -.0060 .6816 -.6921 19051 | -1.9808
30° 0367 -.0080 .6789 -.6948 19017 | -1.9844
45° .0330 -0114 .6745 -.6993 1.8958 | -1.9909
60° .0393 -.0160 .6682 -.7059 18867 | -2.0014
75° 006 -.0219 .6584 -7162 1.870 -2.0215
90° 007 -.0480 .5884 -.7920 1.7583 | -2.1490




Table 35 Performance of 2-D SKEW-MUSIC Algorithm: Coupling Frequency
Estimate Accuracy vs. Bicoherences from 25 x :25 Third Order
Cumulant Matrix; 100 Trials per Bicoherence Vaue Accuracy (Means
and Std. Devs)) of f; estimate shown; True Vaue: f; =0.34

Coupled Sinusoid Frequency EstimatevsBic:
Symmetricand Skew-SymmetricCumulant Matrices
Exponentially Distributed White Noise - SNR = 21.77 dB
25 x 25 Matrix Dimension;

Matrix Type
Bicoherence Symmetric Skew-Symmetric
Mean | Std. Devs. [ Mean | Sid. Devs.

0.02 3045 1052 | 3307 1
0.05 .3039 .0933 3424 0739
0.1 3173 .083 326 0742
0.2 3329 .0696 3327 0582
0.3 3255 0731 3336 0607
0.4 .3396 .0666 3328 0632
0.5 3219 .0747 3257 0662
0.6 3264 .0630 3283 0664
0.7 3271 .0658 3336 0561
0.8 3298 .0688 3354 0562
0.9 3319 .0684 3332 062
1.0 3379 0755 3366 06618




CHAPTER 4
THE 1-D BISPECTRUM

4.1 Introduction

Estimation of coupling frequencies can aso take place on dices of the bigpec-
trum. Projections in the cumulant domain generate dices in the bispectra domain
through the Fourier-dice theorem. Utilizing symmetry relations within the full extent
of the bispectrd domain, we begin with sx 2-D sinusoids which constitute the cumu-
lant sequence for a single phase coupled sinusoid triad. Through projections, certain
cumulant components become decoupled. Then through the decoupling process, a
single 1-D sinusoid is extracted from the 2-D sinusoids dong a dice of the bispec-
trum. The method based on this principle is presented herein. The techniques of
using cumulant projections provide ample contrast to the methods of Raghuveer and
Nikias mentioned in chapter 2. We mode adice of the bispectrum whereas they use
the cumulants to describe projectionsaof the bispectrum.

The cumulant projections preserve the phase-senditive statistics. Thus, SKEW-
MUSIC can be applied in the 1-D case as well. One of the extensions of SKEW-
MUSIC is known as SKEW-ESPRIT. This dgorithm exploits the fact that eigenvec-
tors from the symmetric cumulant matrix can be converted to their complementary
skew-symmetric form by a Smple rotation. A generdized eigenvector (GEV) solu-
tion as implemented by the ESPRIT classof agorithms accomplishesthis basisrota:
tion. The biphases are directly related to the generalized eigenvalues (GE) as we
show below.

Onedf the keysin the implementation of the ESPRIT agorithmis the reduction
of singular and rectangular matrix formsto full rank squareforms. The PRO-ESPRIT
algorithm of Zoltowski and Stavrinides is explained as wdll. In the smulations we
employ this technique for accurate biphase estimation.



4.2 Motivating the Fourier-Slice Bispectrum

Non-linear system analysis is a computationally intensive enterprise requiring
large systems of equations [1-3]. In asystem identification context the number of out-
put frequency combinations possible is a geometric function of the number of input
frequencies. Authors such as Victor et. d. make use of this fact in their system
identification scheme called the sum-of-sinusoids method [4]. Here a group of sx or
eight sinusoids with virtually random phasesis input to a nonlinear system. The out-
put time series of a quadratic system is so rich in frequency diversity that the entire
Volterra kernel or quadratic transfer function can be characterized with a limited
number of input sSinusoids.  Sinusoids with incommensuratefrequency values can act
as an effective substitute for Gaussian noise inputs usualy used to characterize com-
posite linear and nonlinear systems. Several occasions warrant only observation of
sections of the bispectrum or cross-bispectrum. We may be interested in only cou-
plings involving specific frequency ratios. Sdf-self couplings are smple frequency
doublings such that w; =2wm,. Ratios of frequency couplings are defined by dope
lines in the bispectral domain. The dope lines are radial dices defined on a polar
region of support.

Accessto radia sectionsof membersof aFourier transform pair is made through
the use of the Radon transform. Here projections (summations) are computed in the
bicorrelation (cumulant) domain that are orthogona to a projection axis a an angle 8
with respect to one of thelag axes. The Fourier transformaf a given projectionyields
adlicein the bispectral domain [5, 6]. The orientation of the dicein the complemen-
tary domain is specified by the projection axis angle, 8. The advantage of using pro-
jections is ultimately a reduction in dimensiondlity. As the two frequency variables
specifying a coupling are related by a smpleratio, our modding problem becomes a
function of one variable only. By taking projections norma to the appropriate axis,
smple two dimensional sinusoids are decoupled in the sense that each becomes a
function of onefrequency argument instead of two [7].

Cumulant projections are not unknown to the higher order spectra analysiscom-
munity. Alshebeili and Cetin use projectionsorthogonal to the w; = w, axisfor phase
reconstructions[8]. Marmarelisand Marmarelis use projections to gather information
about the relative size of the second order Volterra kernd [2]. A dice of the second
order kerndl is a Voltera filter that selectively pairs input frequencies of particular
ratios, i.e., a harmonic Volterra filter. Giannakis and Delopoulos employ cumulant
projections to arrive at second order time series statistics by projecting cumulants
orthogonal to one of the lag axes [9]. Likewise, Nikias and Bessios use an adaptation



of the biperiodogram to find the bigpectrum dong polar rasters [ 10].

Applying Radon transform theory to the bispectrum, one consderation is to find
the form of the projected cumulantsin the case of three wave coupling. At first the
cumulants are in the form df (3.2). The Radon transform for the discrete form cumu-

lantsis an gpproximation to the derivation discussed in the Appendix as
K L

Re(m)= 3 3 we(k,DR(k]) 4.1)
k=K 1=-L

where Rg(m) is the projected cumulant sequence at an angle of 8 radians with respect
to the k-lag axis. Here wg(k,1) is the weighting factor determined by some geometri-
cal consderations based upon a given interpolation rule. For instance, consder a
square cell centered around each cumulant value at (k,1). The coefficient wg(k,1) may
reflect a weighting based on length of intersection of a projection axis & dope
a=tan8 with acdl centered & (k,1I). When l=0k, wg(k,1) is a maximum or smply
unity. Given that thisisadiscreteformulation, there will be leakage terms that do not
belong to the dice of the bigpectrum corresponding to the angle 8. Secondly, an inter-
polation technique is needed to carefully caculate projections for a discrete sysem.
This involves interpolating from rectangular to polar coordinates. Severd candidate
schemes are presented in [11]. In addition, trandforming to the discrete domain, the
bandwidth of the hexagona bispectral domain is effectively grester or less than n for
certain projection angles where n is the bandwidth of the time series. The sampling
rate must therefore beincreased to include this domain with the maximum V2 & extent
in the Radon transform domain.

In contrast to AR modding of three-wave coupling as mentioned in chapter 2,
our method uses cumulant sequences indexed by one variable only after projections
are made which restrict the complementary bispectrd region to a one dimensiond
dice. A one dimensond parametrization of the cumulants as in [12] limits the
representation in the bispectral domain to a single dimengon. This method attempts to
utilize a one dimensiond representation of nonlinear processesin order to generate a
full 2-D bispectra representation. The AR modding method is founded on the
reduced dimension bispectra techniques known as the 1 1/2-D bispectrum discussed
in chapter 2. This procedure is used in representing linear processes and as we have
seen may not adequately describe the complete two dimensiona bispectrum. A full
2-D extent of the cumulants may be required for satisfactory description of nonlinear
processes unless the projections are made redtricting the bifrequency domain to a
dice.



4.3 The ESPRIT agorithm: The Generalized Eigenvalue Approach

The ESPRIT agorithm devised by Roy and Kailath has been used in spectra
analysis and direction-of-amval (DOA) [13, 14]. One method of dealing with singular
forms of the ESPRIT matrix pencil is the PRO-ESPRIT agorithm devised by Zol-
towski and Stavrinides and our explanation of this agorithm followstheir derivation
for the general case when dealing with singular and rectangular matrix pencils [14].
We must now build the ESPRIT matrix pencil from the block data matrices X and Y
where we have D sourcesimpinging on 2M sensors. M sensors belong to the X array.
Each of the M remaining sensors belonging to the Y array is displaced by a specified
distance and direction from its complement in the X array. We assume that we are
observing the noisaess case and that the recelved data matricesfor N snapshots result-
ingindataX and Y which have N columns.

X =[x(1),x(2), - -+ ,x(N)] (4.2)

Y =[y(1),y(2), - - -, y(\N)] 4.3)

where x(i) and y(i) are the ith sngpshot vectorseach of length M belonging to X and
Y, respectively. With D wavefronts arriving a the sensors we can rewrite (4.2) and
(4.3) as

D
X =Y ajs] = AS 4.4)

i=1

D
Y=7 ®;asf = A®S. (4.5)
i=1
A contains D DOA vectors, a(w;). The displacement or scaing factor, @y, that
creates the phase difference between arriving wavefronts in the X and the Y data
matricesis

®; = exp(j 2%3 ). (4.6)

We note that @ isa unitary diagona matrix. The bassof the ESPRIT agorithmis that
we might combine (4.4) and (4.5)

D
Y-AX =Y (@; -1 ajs]. @.7
1
Solving for the set of generalized eigenvalues, {®;;, .., ®pp), of thismatrix pencil
yields bearing angle estimates contained in d;;.




In developing PRO-ESPRIT, Zoltowski and Stavrinides mention that in an array
processing context the data matrices X and Y have some evident redundancies [14].
They mention, "1) X and Y have the same D-dimensional column space, range{A}
which is typicaly referred to in the literature as the 'signd  subspace...” In addition to
this, however, we also note that each matrix has the same row space, range(S”}, aD-
dimensional subspace of N-dimensiona space. This space spanned by the D (com-
plex) time seriesvectors, s;, i=1, ... ,D. ..wewill hererefer to it as the 'source sub-
space’[14]." Exploiting these redundancies, our god is to reduce the singular MxN
data matrix pencil "to an 'equivalent’ square DxD matrix pencil having the same D
nonzero generalized eigenvalues as the original matrix pencil [14]." We accomplish
this a the core rotations level by smultaneous subspace rotations First, examine the
singular value decomposition of the data matrices, X and Y. Here

D

L X=3 0,u, @ vy = UPEDVDH “8)
W =1
D

——\/1— Y=Y oyuy, @ v, =UPERVH (4.9)
N i=1

where the superscript D belonging to a matrix refers to the rank of the respective
matrix. We include left ( UP) and right ( V) singular vectors that are associated
with nonzeroGEs. We can write the resultant matrix pencil as

7%(3( -AX) = UDZPVPH _uPzDyDH (4.10)
N

=UPQ,zPQY vPH ) uPzPVPH

=UP ( Q,zPQ¥ - AxD)vDH

where the unitary matrix Q, isthe invariant subspace rotation matrix relating the left
singular vectorsof X to thoseof Y as

Q. =UUP Q,=VvIHvD (4.11a-b)

Here an analogous rotation matrix, Q,, exists for the right singular vectors of X and
Y. Zoltowski and Stavrinides mention that GEVs of the DxD core rotations matrix
pencil, {QuZPQ,. =) are the D nonzero GEVs of the MxN singular pencil

(WANN)Yp, (NN)Xp).
The god of the PRO-ESPRIT schemeis to convert singular or rectangular forms

to areduced sguare core rotationsmatrices to find the DOAs. In our case we shall find
that the PRO-ESPRIT algorithm is used to find the biphases by constructing a matrix



75

pencil from symmetric and skew-symmetric projected cumulants and finding the gen-
erdized eigenvaues. Later in chapter 5 we can use the PRO-ESPRIT agorithm to
find biphases for a 2-D matrix form, the third order cumulant matrix of Swindlehurst
and Kailath [15].

4.4 Symmetric and Skew-Symmetric Subspaces- A Rotational Invariance Approach

Consgder the decompostion of the gpproximate projected cumulants, Rg (m), into
symmetric and skew-symmetric portions, Sg(m) and Ag(m), bdow. The Radon
transform preserves phase. Following Appendix A.1 and section 4.1, in the case of a
singletriad the projection angle 8 isequd to tan(w,/w; ) we have

S (m) = 1/2(Rg(m) T Re(-m)) = cos(y) cos(wm) t B3(m) (4.12)

Ag(m) = 1/2(Rg(m) — Rg(—m)) = sin(y)sin(wm) (4.13)

where the polar frequency = w,cos® t w,sind. Here we observe the one dimen-
sond verson of symmetrization. Once again the biphase angle 6 has been extracted
as the trigonometric coefficients of the snusoidal cumulants. Instead of one triad
assume that there are atotal of k snusoida triads that fall along a particular dice of
the bispectrum a a radia angle of 6 radians. Symmetric and skew-symmetric pro-
jected cumulantsmay be expressed as

k
Se(m) =¥ cos ; (cos w;m) T BS(m) 4.14)
=1
k
Ag(m)=Y siny; (Snw;m). (4.15)

=1
Suppose each sequence is now written in vector form where the projected cumulant's
lag indexes the dements &  sp=[Se(0) Se(1) --. Se(p-DIT ad
ag = [Ag(0) Ag(1) -.- Ae(p—l)]T. After converting the snusoids to their equivaent
complex exponentia form, the two respective vectors may be expressed as

s = E p’y + Bd(m) 4.16)

ag=E] q’Y 4.17)

wherethe amplitude coefficient vectorsare given by



p’y =[ cosy; cosy; - - . COSY €OS ¥ I (4.18)
and

q'.,:[sinylsinyl-..sinyksinyk]T (4.19)

The reduced dimension 2k x 2k Vandermonde matrix, E, is composed of individual
complex exponential columnsas

E=[e@):e(w1): e e@;): ... el : ewy) ] (4.20)
where the 2k x 1 element vector of complex exponentials, e(w;), isdefined as

e(w;) = % [1 exp( w;) exp(2w;) -.. exp( (2k—1) ay) ]T (4.22)

and e(w_) =e"(®,). The 2k x 2k diagonal matrix, J, which contains the rotational
constants or phase shifts, isdefined as

J=diag{]1_1$]1 U j!j!_j’]' (422)
Jisthe 90 degree phase shift matrix which effectively shifts complex exponentials by
positive or negative /2 radiansin accordance with the sign of the respective column

inE. Inthis case J convertscomplementary column pairs of E from cosine functions
to sine functions.

This construction is used to form the Toeplitz symmetric and skew-symmetric
projected cumulant matrices, S¢ and Ag, respectively. The projected third order
cumulant matrix filled with symmetric cumulants, Sg is both symmetric and Toeplitz
and written as

[S6(0)  Se(1) ... Se(n)
Se(=1) S ... Sg(n-1)

Se= : ) ) ) (4.23)
_Se(—n) Se(—n+1) . . . Se(0) ]

Asstated earlier for the 2-D cumulant case, it is possible to decompose Sg
So =E P’y EM + I (4.24)

where P’y =diag{ p'} is a 2k x2k dimensioned matrix. Likewise Ag may be
expressed as



Ag=EQ’ JEH (4.25)
and analogous to the preceding equation, Q’y = diag{ ' }.

Note that S and A are both of full rank equal to p=2k. The range space for each
matrix is the same. The only difference between the two is that the eigenvectors
representing the constituent bases are rotated from Sto A. Therotation isexploited in
forming the matrix pencil

S- KA=E(Py—xS,J)EH (4.26)
Therank decreases by one, i.e. p =2k — 1, when K satisfies,
(Pt} =5*'x (qyi)- (4.27)
In thiscase
2i {Py,ii)
Zrlye o 2P0 = cot 4.28
! {Gy,i} b (4.28)

where {py;} and {qy;} are the ith diagonal elements of P, and Q,, respectively.

i+1 1 . . . .
Here k = > or k:E depending on the position of the biphase argument y; in Py or

A,. Furthermore, the biphases, v;, 111 I k, are obtainable since the elements of the
@ matrix are known, through

arccot[ x {(j2*1} ] =, (4.29)

Thus, K is ageneralized eigenvalue (GE) of the matrix pencil (S, A ). Working
with this matrix pencil the biphases are found without the knowledge of the consti-
tuent frequencies. Each GE.is the ratio of corresponding symmetric and skew-
symmetric biphase gain factors multiplied by the corresponding phase shift factor ;.
Therefore smply knowing the GEs enables one to find all the biphases of quadrati-
cally coupled sinusoids lying along a particular projection angle. Knowledge of the
coupling frequencies is not required.

45 Simulations of 1-D SKEW-MUSIC

Simulations demonstrating the efficacy of the Fourier-Slice bispectrum exten-
sions to SKEW-MUSIC are presented next. For the purpose of generating cumulant
projections, cumulants were estimated over a hexagonal grid whose maximum extent



is£30 cumulant lags along any lag axis. In thiscontext, projections are taken normal
to the 45° axis and provide information about the f; = f; frequency axisof the bispec-
trum. For these simulations each trial consists of a sinusoid triad where f; =f; =.05
Hz and f3 =0.1 Hz with varying biphases.

Asin the case of 2-D SKEW-MUSIC the noise from an exponential distribution
necessary to generate a SNR of 4.77 dB was used. The noise was white. Thereduced
order bispectrum hasa spacing or sampling rate for a given slice dependent on the size
of the bispectral hexagon bandwidth relative to the maximal \/2_ n bandwidth of the
polar raster. Suitable full coverage of the cumulant domain yields cumulant projec-
tions as illustrated in Figs. 4.1 - 4.8 for biphases of 15°, 45°, 60° and 75°, respec-
tively. Note that the changing biphase is evident in the relative sizes of the sym-
metric and skew-symmetric cumulants provided in the graphs. Also as the symmetric
projected cumulants begin to decrease in amplitude, the noise peak becomes more
prominent. These estimates were taken from the eigenvectors belonging to the noise
subspace of the 6 x 6 matrices filled according to (4.21)-(4.23). For the slice selected
there is one real sinusoid so that the appropriate signal subspace dimension is two.
The plots indicating coupling frequencies for the two lower biphase cases were gen-
erated using symmetric cumulants. The skew-symmetric cumulants were used to gen-
erate the frequency plot of the higher biphase case.

Monte Carlo simulations of the biphase estimation algorithms, |-D SKEW-
MUSIC and SKEW-ESPRIT, wererun. In each case the biphasesof acoupled pair of
sinusoids along the f; =f, main diagonal of the bispectral domain were checked.
Four different biphase are used in this simulation set: 15°, 45°, 60°, and 75°. The
noise level was enough for a4.77 dB SNR. 100 trials were run at each biphase value.
The bicoherence level is 1.0. We fill two 10x10 matrices from the projected sym-
metric and skew-Symmetric sequences.

Assume that we only have a single real sinusoid that isisolated by the procedure
of taking cumulant projections at a 45 degree angle. Using this information wereduce
this singular matrix to a 2x2 core rotations level matrix pencil with the procedure of
PRO-ESPRIT applied with rotation matrices Q, and Q,. Theeigenvalues of the core
rotations matrix pencil yield the biphases as described earlier. The results of these
simulations for the |-D SKEW-ESPRIT algorithm are shown in Table 41. Likewise
the [-D SKEW-MUSIC agorithm is tested for biphase estimation as well. Starting
with the 10 x 10 matrices described above, biphases are found using a |-D version of
(3.21). For this simulation knowledge of the coupling frequencies are needed. The
coupling frequencies as described above are placed in the algorithm
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Table 4.1 Biphase Estimates Using SKEW-MUSC and SKEW-ESPRIT Using
Fourier-Slice Bispectrum along f1=f2 Projection Axis

Biphase Estimates Using Fourier-Slice Bispectrum
Positively Skewed Noise - SNR =4.77 dB

Algorithm

Biphase SKEW-MUSIC SKEW-ESPRIT
sdev(y) Y sdev(%z

I3° 159347 | 1.4414 | 151 I.

45° 46.569 .| 1.222 45.04 1.065

60° 61.1859 | 1.2832 | 59.18 1.101

75° 75.1635 | 1.2976 | 74.46 1.15
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CHAPTERS
BIPHASE ESTIMATION AND
THE TRIPLE KRONECKER PRODUCT MATRIX

5.1 Introduction

In this section we generalize the third order moment matrix method of
Swindlehurst and Kailath for biphase estimation [1]. Starting at the signal level with
the use of the triple Kronecker product, we are able to redefine the third order
Kronecker product matrix in terms of forward and backward signal vectors. Matrices
consisting of symmetric and skew-symmetric cumulants can be be built from the for-
ward and backward third order Kronecker product matrices. Either of these rectangu-
lar matrices can be used for coupling frequency determination. Reduction of the rec-
tangular matrix pencil of symmetric and skew-symmetric matrices to an equivalent
square form allows the biphases to once again be estimated from the GEs.

5.2 Derivation

The agorithm of Swindlehurst and Kailath utilizes the triple Kronecker product
of signal vectors to form a triple correlation matrix R3. A novel feature of this
method is that it isformed directly from the actual signal vectors instead of starting
with the cumulants. A conventional rendering of the triple Kronecker product matrix
has been mentioned in chapter 2. Toreiterate we see that

R;=E{x®x®x")} (5.1

where
x=[xmx@mt1) -.. x(@rm-1) T (5.2)

isthe data vector. We can decompose the matrix in (53) asan m? x m block matrix



[ R3(0)
Rj3(1)

Rs=| - | (5.3)

R3(m-1)

Conseguently, each m x m block R3(i) is built from the cumulants as

R(,0) RGD ... RGm-1)
RG-1,-1) R(@(-1,0) . . . RG-1,m-2)
R@Gi-m+1,-m+1) R(i-m+1,—m+2) . . . R(@i-m+1,0)

The use of the singular value decomposition (SVD) of Ra together with the
appropriate signal subspace algorithm generates estimates of the coupling frequencies
from a nonlinear process. This method also utilizes the full 2-D cumulant domain
when estimating frequencies involved in quadratic phase coupling. Unfortunately,
this algorithm also assumes that constituent sinusoidal triads all have zero biphase. It
would be advantageous to adapt this method to insure that the biphases can be
estimated along with coupling frequencies.

Additionally, R is arectangular m? x m matrix. The third order moment term,
R(0,0), does not lie along the main diagonal as in the SKEW-MUSIC symrnemc
mamx described in chapter 3. Since the additive white noisein the Swindlehurst and
Kailath formulation is Gaussian, asymptotically this component does not augment the
R(0,0) term. For non-Gaussian additive white noise the R(0,0) term would also con-
tain a noise component which would perturb the SVD. We seek to eliminate the
R(0,0) term while insuring that we can estimate the biphases of constituent coupled
sinusoids from our time series. In this fashion the methods of SKEW-MUSIC and
SKEW-ESPRIT can be generalized for rectangular matrices. Ultimately, a method
such as PRO-ESPRIT is applied to the singular form Rj3 in the estimation of the
biphases [2].

First, however, let usestimate biphasesand coupling frequencies in the case con-
sidered by the Swindlehurst and Kailath, that of quadratrically phase coupled
sinusoids with added Gaussian noise. The vector x iscomposed of a signal, Es, plus
an added Gaussian noise component vector, n, so that x = Est n. Assuming that the




time series x(t) contains only phase-coupled sinusoids and Gaussian noise, E is a
matrix of complex exponential columns. Hered isthe number of sinusoidsin the time
series irrespective of quadratic phase coupling. The general structure of E islike that
of (4.20)-(4.21). However, this time there are 2d columns each of length m. Each
sinusoid has an amplitude and phase as well. These are contained in the Svector also
of length 24

s _ [ Aleﬁ((’)l) Ale_j‘b((’)l) - Adej‘p(md) Ade—j¢((0a) ]T (55)

Following [1] in the case of quadratically phase coupled sinusoids in Gaussian noise
the expectation in (5.1) becomes

R; =E{(Es+n)® (Es+n) @ (Es+n)H} (5.6)

=E{Es®@Es@s'E"}

d d d _
=Y T T AAA () ® e() @ el ()] E{/O* ¥aee)y
i=l k=l 1=

When there is quadratic phase coupling present for real x(t), the terms under the
expectation become the biphase angle, namely ¢'*. If there are N triads in the time
series x(t), each having a biphase ¥;, the triple Kronecker product representation, Rj
can be written in complex exponential form including biphases of component com-
plex exponential vectors using the conventions of [1] as

N . .
Ry =Y AnApAp{eMenze (@p) + e Meqze (@) (5.7
i=1

+ eepszel () + € Meyze ()

+eMepgzell(an) + e Mepze” ().
In this context e(wy)=[1 exp(my) . - * exp((m—1)wy)]T and the compound complex
exponential vector formed from the sum of double Kronecker productsis
e = e(0j) @ e(w;) + e(w;) & e(wyy) (5.8)

for general e(w;) and e(w;), and k, 1=1, 2, 3 refers to the member number of theith
triad. Also a bar over one (or both) of the subscriptsfor e, in (5.7) indicates that the
conjugate has been taken of one (or both) of the constituent vectors. If it isdesired to
make third order cumulant matrices filled with symmetric or skew-symmetric cumu-
lants, forward and backward vectors, xg and xg, need to be defined



xp = [x(n) x(n+1) x(n+2) - - - x(n+m—-1)]T (5.9)

xg = [x(n) x(n—1) x(n=2) - -+ x(n-m+1)]T (5.10)
We can write R;ppr and Riggp as
Rippr =E(xp @ xp @xF'}  Rippp =E(xp @ x5 @xh ) (5.11a-b
Rsprr hastheformof (5.3)-(5.4) whereas Rsgpg can be written as

N . .
Ripes = Y AinApAi (e ezel (@) + e Mepaet () (5.12)
i=1
+eMegeT (@) + e Megsel ()
+eMemel (@) + ¢ Memet ()]

Changesin directionality from forward to backward vectors only conjugate frequency
terms and leave resulting biphase factors with the same sign. We can then write the
symmetric, S3, and skew-symmetric, Az, matrices usng forward-backward triple
Kronecker products

S3=1/2[ Rspgp + R3pg | A3 =1/2[ Rsppr - R3ppp . (5.13a-b)

The general formulation of S5 for multiple triads specificaly involves the product of
left and right complex exponential Vandermondemamces as

S; =EL PER. (5.14)

Assuming that there are N distinctive setsof phase-coupled sinusoids, Ey, isa m? xD
mamx containing columns of the compound complex exponential vectors, ey, €7
etc. and.D =6N. Eg contains the smple complex exponentia vectors of the form
e(t3) e(m3), etc. Thismamx ismxD. Findly, P, isaD x D diagonal mamx with
termsof theform A; Ay As cosy;.

In acomplementary rendition, A; can be written as
A3 =ELQIER. (5.15)

As before, Q contains terms such as A; A Aj siny dong its diagond. J is a unitary
mamx with alternating phase shifts of +90 degrees. Singular vaue decompositions of
either S;3 or A3 can be accomplished for coupling frequency estimation usng the
appropriate estimator asoutlined in [1].

To egtimate the biphases we again exploit the property of common row and
column spaces by first writing arectangular mamx pencil {S3,A3),




S; — kA3 =Ep (P - xQJ)Ef (5.16)

As before when xj“™* = coty;, the rank of the matrix pencil decreases by one from D
to D-1. Theset {coty;,coty,, . - . ,cotyy) are the GEs of the rectangular matrix pencil
{S3,A3}. To estimate the GEs and hence the biphases, we must reduce the rectangu-
lar pencil to an "equivaent” DxD square pencil {S;p,Asp) having the same nonzero
GEs as (5.16). Once again the techniques of PRO-ESPRIT give us the appropriate
sguare pencil based upon the non-zero singular values and corresponding left and
right singular vectors of both S3 and Az [1]. This method of finding coupling frequen-
cies and respective biphaseswill be termed SKEW-PRO-ESPRIT.

In the case of additive white non-Gaussian noise it is desired to eliminate the
R(0,0) term from the third order cumulant matrix. To prevent the term R(0,0) from
occurring anywhere in (5.13) we need to eliminate all triple correlations with terms
having identical time lags, i.e., terms such as E{x(i)x(i)x(i)} cannot appear. Thiscon-
dition can be prevented by the use of mixed forward-backward Kronecker products
and time-delay signal vectors. The appropriate aternate definitions of triple
Kronecker product matrices are given below. Recall that the time series x(t) is real-
valued,

2i+]

Rsprp- = E{xp @ xp @ x}_) Rippr: =E(xp @ xp @ xE,.}  (5.17a-b)
where the time-shift signal vector, xg, =[x(n+1)x(n+2) --. x(n+m)]T and
xp_ = [x(n—1) x(n=2) ... x(n—m)]". Consequently, we can construct matrices filled
with symmetric and skew-symmetric cumulants from R3gpg-and R3ppr; as

S3» = 1/2[R3prp- + R3gpr+] Az = 1/22[R3ppp- —R3pppi].  (5.18a-b)

At this juncture SKEW-PRO-ESPRIT can be performed to find coupling frequencies
and biphases in the manner described earlier. Aswe will seein the smulations sec-
tion, the modified Swindlehurst and Kailath method allows for accurate biphase esti-
mation in either Gaussian or non-Gaussian distributed noise.

5.3 Comparing the Structure of the 2-D SKEW-MUSIC Matrix
and the Triple Kronecker Product Matrix

Examining the structure of the matrix used in 2-D SKEW MUSIC we notice that
it does feature Kronecker products of the compound exponential vectors, that is the
double Kronecker product generated from the Kronecker product of exponential



vectors. Redtating (3.14) from chapter 111, we see that the S matrix used for 2-D
SKEW MUSICiswritten as

N
S=Y pyi {2 [e” (e, ;) €T (oo, @0;) + e(wik,mij)e“(wik,wij)]}+ BI (5.19)
i=1 ik
wheree; isan exponential vector

ex = [ 1 exp(my) expay) .-. exp(moy) ]t

and e(wy, ;) = e @ €;; which is a 2nd order Kronecker product. The coefficient

cosY; . L
Pyii = ( ZY) contains biphases. Likewise A can be decomposed as

i=1

A= E Gy {Zk [e" (o, ;) €T (o, @55) — e(mik’mij)eH(mikamij)]} (5.20)
. i

Here again we indicate that the coefficient qy,; = (sin¥;)/2j contains biphases. In
each case we can write the matricesin terms of Smple Kronecker products:
N *
S=3 pyi X {6 @ ex]” @ e @ ey (5.21)
i=1 ik
He;; @ €] @ [e;; @ ey 1)
In much the same fashion A aso has aclear Kronecker product rendition:

N
A=2 Qi Zl;. {[e; @ exl’ 8le;; Seyl” (5.22)
i=1 J,

—e;; @ €] @ [e; @ e M)
The matrices from 2D SKEW-MUSIC can in fact be constructed from sums of 4th
order Kronecker products of exponential vectors. Third order cumulant terms

corresponding to product terms comprise the matrix entries. The only difference
between the matricesis the coefficientsof Kronecker products.

The third order cumulant matrix of Swindlehurst and Kailath does not have
R(0,0) diagond terms. Being arectangular matrix 83 and As, the noise terms cannot
be isolated nor can either of these matrices be termed symmetric or skew-symmetric.
The 2D SKEW-MUSIC matrices, Sand A, are norma matrices with noise third order
moment contributions lying along the main diagona. The symmetric or skew-
symmetric structure is once again evident when we glance a the structures of the
matrix decompositions in (3.10) and (3.11). The structure of the matrices for 2-D



SKEW-MUSIC could also used for biphase determination in much the same manner
described in thischapter or earlier in chapter 3.

There have been severa agorithms using higher order statistics for array pro-
cessing and harmonic retrieval applications using 4th order statistics[3,4]. Though
our matrix has a 4th order structure, we do not fill the matrix with 4th order statistics
as those harmonic retrieval agorithms require. Our 4th order products are generated
from purely exponentia vectors. The other algorithms begin with products of signal
vectors. Likewise the cumulantsin the 2-D SKEW MUSIC matrices are indexed by
only two time lag indices, not three as would be the case for fourth order cumulants.
It would be interesting to compare the structure of our matrix with that generated from
atrue 4th order signal Kronecker product for three-wave coupled sinusoids.

5.4 Simulations

The standard Swindlehurst and Kailath third order cumulant matrix technique is
tested initialy [1]. This method features unsymmetrized cumulants. In their smula-
tions these authors did not vary the biphase, but used a reference biphase of zero
degrees. We performed smulations with a variety of phase shifts among the
sinusoidal componentsin Figs. 5.1 - 5.6 and found that the algorithm performed well
for nonzero biphase arguments. Figs. 55 and 5.6 are especidly interesting as they
show that the algorithm gives satisfactory resultsfor theimaginary biphase of 90°.

Also Swindlehurst and Kailath used a block data procedure to build their third
order cumulants matrix. We first calculate the cumulants separately within records
that are 128 data points long. After 32 (N=4096) such segments we average the
cumulants and load our matrix as outlined in (5.1)-(5.5). The agorithm was tested
with both Gaussian and non-Gaussian (exponentialy distributed noise). In all smula
tionsin this section a 16x10 matrix was used and theleft singular vectors belonging to
the six largest singular values were used in theseruns. The compound Kronecker pro-
duct frequency kernel and bispectra estimator in (2.46) were used to find thelocation
in the bispectral domain where coupling occurs.

Monte Carlo simulationsof the method outlined in [1] were run over a range of
bicoherence levels in the same manner asin Table 3.6. The bicoherence values soan
from 0.02 to 1.0. The number of data points used in these smulationsis 4096. In
Table 5.1 theresultsof those smulations are reported for both Gaussian and exponen-
tialy distributed noise. Theresultsfor both noisedistributionsare similar. In fact, for
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severa bicoherence vaues the non-Gaussian noise does remarkably well and exceeds
performance levels for Gaussian noise. Thisoccurs in spite of the fact that this algo-
rithm is especially designed to handle only added noise that is Gaussian-distributed. It
is believed that over such short data lengths the Gaussian character of the added noise
is irrevelant. Asymptotic effects do not come into play with only 32 segments of
length 128.

Unlike the case of 2D SKEW-MUSIC as presented in chapter 2, there is clear
trend line due to the fact that the bicoherence or fraction of power in coupled
sinusoids is lowered. Obvioudy the effects of the bicoherence are marked and
improvement is noted as the bicoherence increases. The variance decreases by most
66%in moving from the lowest bicoherenceto unity. Whet is remarkable is the fact
that the Swindlehurst and Kailath agorithm performs so much better that the 2D
SKEW-MUSIC dgorithm in these tests. Examining the standard deviation a a
bicoherence of 0.1, it is noted that the best performance using 2D SKEW-MUSIC and
non-Gaussian additive noise was 0.0838 In the third order cumulants matrix method
the standard deviation had a value of 0.048. Using the third order cumulant matrix
provided a 42% improvement in standard deviation. This difference less pronounced
a a bicoherence level of 10 Here performance was amost 31% better for the triple
Kronecker product method. Lower bias aso characterized the triple Kronecker pro-
duct method at al levelsof bicoherence.

Moving on to the modified Swvindlehust algorithm, Monte Carlo smulations
were run to determine the accuracy of biphase estimation through the divison of the
cumulantsinto.symmetric and skew-symmetric portions. The cumulants were formed
from 8192 data point long segments containing a single triad of phase coupled
sinusoids. Separate sessionsaf 100 trialseach were run with biphasesof 15°, 45° and
60°. Noiselevels were maintained a 4.77 dB for all sessions.

Symmetric and skew-symmetric cumulants were placed in the 16 x 1083 and A3
matrices, respectively asin (5.18a-b). Aspart of the modificationto the classical third
order cumulant mamx method, the R(0,0) term was deleted as described above. The
matrix pencil, { S3, Az}, formsthe starting point for SKEW-PRO-ESPRIT, the rendi-
tion of the PRO-ESPRIT agorithm for biphase determination directly from the third
order cumulant sequence. Separate singular vaue decompostions are performed for
each matrix. Qu and Q, are formed from the left and right sngular vectors
corresponding to the 6 largest singular values of the each matrix. Thus applying Qy
and Q, reduced the matrix pencil, { S3, A3}, to the the required core rotations square
matrix pencil asin (4.10). This6 x 6 matrix pencil yidd 6 GEs. These GEs are sub-
sequently averaged. The inverse ten function yieldsthe biphases.




As can be seen from Tables 5.2 and 5.3 accurate biphase estimates are possible
using the PRO-ESPRIT algorithm on 2-D cumulant data. Both exponentialy and
Gaussian distributed noises are added to create SNRs of 11.76, 4.77 and 1.76 dB in
Separate trial sessions. The data length is 8192 points with 64 segments of 128 points
used throughout. Naturally, as the noise power isincreased the variance of the esti-
mates increases. Gaussian noise seems to generate higher biphase variances than does
the exponentially distrbuted added noise. Exponential noise has higher bias values
when the SNR is low at 1.77 dB; otherwise non-Gaussian noise does not cause results
to deteriorate at all. This may be a fortunate result of removing the noise bearing
term, R(0,0), from Aj.

In Figures 5.7-5.12 plots of coupling frequency estimates are shown for several
combinations of biphase, noise, and cumulant type using the matrices from SKEW-
PRO-ESPRIT. Accurate estimates of the true coupling frequencies, f; =.34 and
f, =.1, are noted. The only exceptions among this collection are for the symmetric
cumulant matrix, Ss, for both Gaussian and non-Gaussian noise.



Table 5.1 Performance of Sandard Swindlehurs and Kailath Algorithm:
Coupling Frequency Estimate Accuracy vs. Bicoherences from 16 x 10
Third Order Cumulant Matrix; 100 Trials per Bicoherence Value
Accuracy (Means and Variances) of f; estimate shown; True Value
f, =0.34

Coupled Sinusoid Frequency Estimate vs Bic: Gaussian & |
Exponentially Distributed White Noise - SNR = 21.76 dB
16 x 10 Matrix Dimension;

Noise Distribution
Bicoherence Gaussian Exponential
Mean Std.Dev. Mean Std.Dev.

0.02 . 096 3521 .0924
0.05 3512 .0859 .3543 .0663
0.1 3411 0523 .3451 .048
0.2 .339 0519 3335 .0522
03 3427 .0409 3428 .0404
0.4 3437 0393 3402 0382
0.5 3415 .0378 .3408 .0375
0.6 3389 .0381 3382 .038
0.7 3404 0364 .3408 .0375
0.8 3413 0367 3402 .0349
0.9 .3428 0379 .3403 0348
1.0 .3398 0355 .34 .037




Biphase Estimates Using Modified Third Order Cumulant Matrix;

Table 5.2
Gaussian Noise-- N=8192; Varying Both Biphase and SNR
Biphase EstimatesUsing
Modified Third Order Cumulant Matrix
Gaussian Noise -- N=8192
True Signal-to-Noise
Ratio
Biphase SNR =11.77dB SNR =4.77 dB SNR =1.76 dB
Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
— 15° | 15.0992 | .5248 | 150641 | 1.7962 | 152613 | 1.7043 |
45° 45.0659 4929 45.1117 1.0992 45.0714 1.6191
60° 60.0480 4822 60.0466 1.0738 59.9196 1.5733
Table 5.3 Biphase Estimates Using Modified Third Order Cumulant Matrix;
Exponentially Distributed Noise-- N=8192; Varying Both Biphase and
SNR
BiphaseEstimatesUsing
Modified Third Order Cumulant Matrix
Exponentially Distributed Noise -- N=8192
True Signal-to-Noise
Ratio
Biphase SNR =11.77dB SNR =4.77 dB SNR =1.76 dB
Mean | Std.Dev. | Mean | StdDev. | Mean | Std.Dev.
15° 14.9680 5140 14.6393 0821 13.0205 | 1.3027
45° 449401 4681 44,0284 9786 42.0101 1.3742
60° 59.9330 4542 58.7489 . .9962 56.2813 1.4568




Figure 5.7

SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and
Kailath agorithm; Symmetric Cumualants; Biphase = 0°; SNR =
4.77 dB; Gaussian Noise; N=4096; Peak at (.34,.1) Hz

Figure 5.8

SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and
Kailath algorithm; Skew-Symmetric Cumulants; Biphase = 0°; SNR
=4.77 dB; Gaussian Noise; N=4096; Peak at (.37,.13) Hz
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CHAPTER 6
THE EEG AND THREE-WAVE COUPLING

"In fact, the EEG researcher should remain especialy wary of mathematics
in search of an application. (One should not ask what EEG can do for
mathematics, but rather what mathematics can do for EEG)" f

6.1 Introduction

The time series used for testing the algorithms developed in chapters 3,4 and 5is
the el ectroencephalogramor the EEG. Typicaly the EEG is recorded off the scalp of
the human head and reflects the underlying activity of neuronsaof the cerebral cortex.
Disc electrodes about 1 cm. wide are placed over an area of the bran and they record
the surnmated activity of neurons lying directly underneath the scalp placement area
To alesser extent other cells distant from the conducting € ectrode al so influence the
signa measured. These neurons have ther distant effects felt through the conducting
medium. Cardiac electrical effects and circulatory blood flow as wel as other con-
taminants, such as the electrooculogram (EOG) and other muscular artifacts, dso
influencethefina EEG output signal recorded.

The EEG actualy measures three kinds of cerebral function. The first is parox-
ysmal activity which is characterized by spikes and sharp waves. K complexes and
vertex transentsin deep are other examples of paroxysmad activity. Spiky parox-
ysmd activity is not well suited to spectral andyss sincethe energy is spread over the
entire spectrum. Evoked activity such as the sensory event-related potentid in
response to exogenous stimuli is typicaly time limited and is andyzed in the time
domain.

T P.Nunez, The Electric Fields of the Brain, Oxford, New York, 1981, p. 214



The non-paroxysma background EEG activity occurs spontaneoudy in the
awake adult human. The processes recorded off the scalp are called EEG rhythmsand
are studied by the use of the power spectrum or spectral density. Using the power
gpectrum, the primary unit of analysisis the frequency band. Different rhythms such
asaphaor beta rhythm occupy specific frequency ranges. All spectral parametersare
defined within bandwidths. These include power in a band, pesk frequency, pesk
intensity, peak haf power bandwidth among others.

The use of the bispectrum asa meansof understanding EEG background activity
challenges the notions of observing EEG within the band window. The question of
interrelationships among frequency bands forces the researcher to perhaps look out-
sdeof thiswindow for the tota view of EEG activity. Isactivity in higher frequency
bands independent or smply harmonicsaof lower frequency components? Correlated
high frequency activity enables the scientist to narrow his/her fidd of view as these
oscillations yield no new information. Can the specid property of Gaussan noise
immunity ad the EEG researcher to uncover new details about the rhythms? Evi-
dence is cited from a number of sources in this chapter to help promote usng the
bispectrum, in general, and the high resolution parametric bispectrum, in particular,
for EEG andysis.

6.2 Spectral Congderations and Problem Statement

The Electroencepha ogramor EEG is a time series recovered typicdly from the
scap which reflects underlying brain activity. The EEG is the spatia average of the
synchronized or coherent activity of neurons belonging to the cerebral cortex. Strong
or sdlient coherencies among large groups of neurons create pronounced rhythmsin
the EEG spectrum. Voltage ranges are between £50 puV for most references on the
upper portion of the head. Frequency ranges of interest for the EEG range from 0 to
about 100Hz. The typicd frequency range of interest for the norma waking adult is
between 0 to about 40 Hz. The frequency range for EEG is divided into bands as
shownin Table6.1.

Predominant activity occursin the dpha band between 8 and 13 Hz. Thedpha
band is the most pronounced. It aso displays the most dynamic activity that can be
easlly traced to the presence or absence of direct sensory stimulation. When thereis
no direct sensory stimulation of any variety, most importantly thelack of visua stimu-
lation, the dpha wave appears most prominently in the EEG record as very nearly



Table6.1 Mgor Divisonsof the EEG Spectrum to 23 Hz

EEGBandsand their Spectral Regions
Ddta 1-3Hz
Theta 4-7Hz
Alpha 8-13Hz
Betal 13-18Hz
Betall 18-23Hz

snusoidal in shape. The dpharhythm is said to dominate as the single most notice-
able feature of the EEG spectrum. Shortly after sensory stimulation commences, the
apha wave disappears into the background leaving higher frequency phenomena in
the norma waking adult to prevall. Opening the eyes in tota darkness causes the
apharhythm to fade only partially. It then regppears momenterily.

The processof the fading apha rhythm when sensory stimulation occursis usu-
dly referred to as apha blocking or adpha desynchronization. Typicaly, it occurs
bilaterally. The frequency is said to vary by as much as 1 Hz. in normd subjects. It
can rise to about 2 Hz faster than its stable rhythm immediately after eye closure --
this is called the squeek phenomenon. Mog subjects concentrate their mean apha
rhythm between 9-10 Hz. There are usudly smdl differences in meen frequency
between the hemispheres of the brain with only the largest concentration of apha
power occurring in the right hemisphere. This degree of alpha power variation is
dependent on type of responding pattern that a subject exhibits. Mogt typicd is the
responsiveor R type apha. There are certain responderswho display P or persstent
type apha activity that diminishesonly temporarily during the open eyes condition.
There is the M or minima response for subjects who show little or no predominant
aphasignal. Their EEG records are much flatter than either Por R type subjects. In
fact, except for peaksin the betaregion, their EEG spectra have no distinctivefeatures
during waking.

Alphatendsto occur mainly in the posterior portion of the head. On the Interna
tiona 10-20 scheme for eectrode source positions this would tend to be strongly in
the electrodes of the occipital and parieta lobes, i.e. the 01, 02, P3 and P4 elec-
trodes. The generalized pogtioning of al maor electrodes on the human heed is
shown in Fig. 6.1. Interestingly, beta concentration gppears more pronounced on



frontal or centra (C3 or C4) podtions. Beta is normal, waking rhythm of the adult
human. It does not respond to sensory input. 1t can gppear to be more pronounced
during periods where the organism is carefully attending or "highly alert and focusing
hisattention on atarget [1]."

The apha rhythm derived from occipital originsexhibitsacharacteristic "waxing
and waning." Some authors mention that the visud record of the apha rhythm indi-
cates that it is both amplitude and phase modulated [3]. A glance & a sample 1
second interval of EEG recorded from the O 1 electrode showsthat that thereisindeed
a portion that is amplitude modulated. This section of datais shown in Fig. 6.2. The
phase modulation is more gpparent from data taken near the end of the segment. In
the power spectrum (Fig. 6.3) for this short section of data, it isclear that a peak in the
neighborhood of 10.5-11 Hz dominates. It is difficult to decide if much smaller "sde-
bands' are seen in the deltaregion and in the betar11 bands.

Another section of data taken from a more anterior derivation (P3) recorded
simultanwudly shows an entirely different harmonic structure. Now components in
the betar11 band and the delta bands are more pronounced and a wider bandwidth is
noticeable at this scaling. The dpha wave is reduced in strength. The beta-II band
could easily be thought of as a harmonicof the dpha wave. These are shown in Figs.
64 and 6.5.

In these short term series, we pad drict attention to peaks while ignoring accom-
panying noise by reviewing candidate EEG segments and choosing distinctively
noise-free segments. We should now turn to along duration (32 second) segment of
EEG data from two subjects P3 electrode derivations. A generdized modd for the
spectrum of spontanecusEEG activity was presented by Dumermuth and Molinari [4].
Thismodd is composed of three spectrd portions: 1) aflat, white noise portion; 2.) a
pink noise portion that begins with a pesk near the low end of the delta frequency
band with a characteristic decreasing dope and DC intercept; 3.) the colored noise
portion which comprises power in specific peaks, namely the dpha and beta pesks. A
sample spectrum containing these three components is shown in Figure 6.6. The
white noise portion is considered to be an artifact asit can be ongoing noise generated
from extra-cortical or exogenoussources. It can aso represent instrumenta noise. In
the casesof paroxysmal activity it may represent epileptiform spikesof short duration.
The pink noise portion has a cortica origin and is thought of as an "underlying,
unstructured EEG component which is a naturd feature of empirical data and often
called amorphousor arhythmic activity" [4].

The remaining part of the spectrumisthe peaksat the dpha and beta band. The
nature of these pesks and ther interreationship is of key interest to the EEG
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researcher. Questions about their harmonic character immediately become gpparent.
The prominent peek at beta-II is approximately twice the frequency of the correspond-
ing apha pesk.

The nature of the noiseis critical to understanding the peaks themsalves Suppose
the white and pink noises are Gaussian and the signal as represented by the spectral
peaksis non-Gaussan. Bispectra anaysisisoneto ad in enhancing the pesks. Once
the noise components have been removed the peaks themsalves remain. The question
about the nature of the peaks till pergdts. If the pesks are Imply narrowband Gaus-
San noise as considered by Dick and Vaughn, the bispectrum should not detect their
presence [5]. If, on the other hand, the peaks alone represent the only non-Gaussian
portion of the spectrum, bispectral analysis should isolate the peaksif they happen to
be quadratically phase-coupled.

Isolating the peaks from the various noise components is performed in severd
sudies. Naturaly, the dope and intercept of the pink noise spectrum can be calcu-
lated and this portion of the spectrum smply subtracted out to reved the peeks, if the
beta peak is not submerged in noise [4]. Other studies have focused on enhancing the
EEG gspectrum by extracting the white noise component to isolate key peeks.
Yarman-Vura, Onaral and Cetin [6] assume that the raw spontaneous EEG signd,
y(n), can be represented by an embedded signa x(n) contaminated by additive white
noise w(n) as y(n) = x(n) + w(n). It is assumed that the additive white originates from
a number of non-cortical sources. The actua EEG signa x(n) can be modeled as an
AR process. Rav EEG measurements may be represented by the ARMA modd
Yaman-Vurd et al. develop a procedure whereby they enhance the measured EEG
time series by inversefiltering usng the MA modd [6]. The additive white noise com-
ponent is removed leaving EEG pesks a dpha and beta locations that are more pro-
nounced.

6.3Bigpectra Studies

The landmark sudy of the EEG and the bispectrum was the work of Huber et al.
{7, 8]. Not only was this study an effective application of the bispectrum to naturd
sgnals, but [7] laid out the statistics and formal agorithmic details of the biperido-
gram for the signal processng community in 1971. As evidence supporting the use of
the bispectrum, they pointed out the following: 1.) the assumption of stationarity was
obviated for long records; 2)) the Gaussanity assumption is also violated for records




exceeding four seconds in length; 3.) there was commonly phase-locking found in
paroxysma and non-paroxysma EEG samples. They suspected that there might be
important phase relationsamong different components.

Huber et d. averaged data corresponding to 80 seconds of EEG [7]. They found
peaks in the bispectral frequency ranges corresponding to second and third harmonics
of the alpha band. This indicates that the predominant activity was sighted between
alpha and its 20 Hz component in beta-II as wdl among apha, beta-II and the 30-Hz
component in betalll. These studies focus on deviations from Gaussanity.
Significant peaks and their confidence intervals are measured with respect to the cen-
tral %2-distribution. P-valuesaslow as 10716 reflected dim probabilitiesof respective
peaks originating from a Gaussian time series.

Ning and Bronzino have conducted studiesdealing with the study of EEG in the
hippocampus during various vigilance stetes as well as deep states[9]. During REM
(rapid eye movement) deep there is increased theta-theta coupling for harmonic apha
components. They are able to differentiate different states by summing all bispectra
values in a manner akin to constructing the third order moment of the process. Their
summeation is thought to be an index for deviation from Gaussanity. It does not, how-
ever, take into consideration relative power values of individual time series.

Another Ning and Bronzino study focused on the cross-bispectrum from two dif-
ferent regions of the hippocampus of the adult rat [10]. There are once again indica
tions of significant theta region coupling to apha frequenciesduring generation of the
apha

A key study by Bamett et d. studied the bispectrum in human adults in bath
waking and deeping[11]. In afully dert state, the most significant bifrequency pesks
werefound at approximately (10 Hz, 10 Hz). About one half of total of eight subjects
had high apha activity. It was primarily these subjects which hed the significant
bispectra values. These authors do not describe how they arrive a the measure of
dgnificance in their observations. The authors consider the fact that a large propor-
tion of the beta activity can consdered harmonically dependent on apha amounts.
There were particularly strong bispectra patterns revealed during deep.

Whitton et al. look at the hereditary influences on the bispectrum [12]. Since
there is a strong genetic basis to apha wave parameters, these authors decided to test
if this hypothesiscould be extended to apha harmonics. Using the bispectral test of
collinearity, they discovered that monozygotic twins exhibited a highly coincident

bi spectrum.




6.4 Alpha-Beta Interrelationsin the EEG

Evidence about the harmonic nature of the beta response comes from the work of
Shirninke [13]. Eye opening diminished both alpha and beta responses while closure
increased the amplitude of both. It was proposed that beta could be both the second
and third harmonic of the alpha rhythms. Beta may underly the alpha activity which
becomes synchronized to the beta. Regardless, apha and beta were thought to ori-
ginate from the same source.

Gaarder and Speck explained that a certain percentage of the population have
coupled apha and beta reactions [14]. Both peaks seem to dominate. One peak was
always twice the frequency of thefirst. Alphawassaid tooccur whenever every other
beta cycle was suppressed. Desynchronization was said to occur when the individual
wasinvolved in some cognitive task.

True indication of the correlations between alpha and beta came in the study by
Johnson et al. [15]. These scientists tested both waking and sleeping subjects to check
band power interrelationships. Among awake adults exhibiting high alpha only beta
band power shows significant (p < .01) correlation. Dumermuth and Molinari present
several examples of EEG with harmonic beta components [16]. These arelisted in the
Table6.2

Table 6.2 Activities with Harmonic Beta Components; Adapted from [16].

Activities with Harmonic Beta Components

Mu Rhythm
Frontal Theta or AlphaActivity
14+6/sec positive spikes
Psychomotor variant

Photic Driving

Monophasic Sleep Spindlesin Babies

Spiky, i.e. monophasic alpharhythm

They also classify severa forms of beta activity in clinical and normal controls.
The divisions include narrow, broadband and harmonic forms of beta activity. Most
common however is the mixed beta. Often independent and harmonic generators of




beta activity superimposeand the bispectrumis needed to separate the components.

The mu rhythm aso known as the 'rhythme rolandique en arceau’ appears in
some adults[17]. It hasadigtinctive (9% 2 Hz) and stable characteristic shape which
insuresvery strong second harmonic response. The reactivity of the mu rhythmisdis
cussed in the work by Pfurtscheller and Aranibar on cerebra ischemia [18). The
simultaneous reactivity of power in both adpha and beta bands can be monitored by
the "event related desynchronization' procedure useful in clinical practices. Average
power in severa epochs of EEG background activity prior to and after motor activa
tion or sensory stimulation is often used to detect a variety of clinical conditions. An
asymmetrical desynchronization is often useful in detecting ipsilateral ischemic
attacks.

Studies of lateral asymmetry have shown that the beta-l1 band has particularly
low interhemispheric coherence. Only in the frontal lobe does this rhythm exhibit
significant coherence between hemispheres. At the same time frontal apha showsthe
same level of sgnificant bilatera correlations [19]. There have been several studies
where the beta wave has been determined to be influenced by cognitive factors,
whereas the dpha rhythm is generdly thought to be chiefly influenced by generalized
sensory inputs arousa and concomitant attention levels. The landmark study by Ray
and Cole [20] was successful in determining that dpha and beta power levels have
Sseparate determinants that interact in the appropriate experimenta contexts. Alpha
wave power discriminates cognitive tasks dependent on external environmenta
involvement called the intake/rejection factor. EEG beta rhythm responses can dif-
ferentiate types of cognitive tasks, i.e. verba and mathematica task by asymmetry of
response. Since apha and beta interact there is some simultaneousincrease in both
apha and beta along the cognitive (analytic/spatial) dimension. Davidson et d. dso
look at the correlation between alpha and beta powersin a sudy of lateralization of
gpectral powers in psychometrically-matched cognitive processing [21]. They cha-
lenged the conventional view that dpha and beta powers should be reciprocaly
related. Beta band processng was aso shown to exhibit postive corrdation with
alphaband power for avariety of tasks and electrode references.

Photic flicker or photic driving creates interesting EEG frequency patterns.
Photic flicker has its own specia pattern or shape like paroxysma activity yet is typi-
caly analyzed completdy in the spectrd domain as non-paroxysmd activity. Typi-
cally, an electronic stroboscope delivering short duration flashes from 1 to 100 per
second. A frequency following response that is occipital in origin with a characteris-
tic shape emergesin responseto the flashes. The main component of the responseisa
positive-wave response with a latency of 70-90 msin reaction to isolated flashes. As



the flash frequency isincreased, individual discharges merge to form a spiky rhythm
that lacks a sinusoidal character, but has higher harmonics present. The rhythm
increases through the subjects natura apha rhythm frequency and then decreases.
Amplitude decreases as well. The harmonic content of the flicker response increases
as one moves away from the occipita regions aong with a less pronounced ampli-
tude. Subharmonics dominate in parietal and tempora areas whereas in the anterior
supraharmonicsare commonplace [17].

Mundy-Castl€'s studies point to definite associations between apha and beta fre-
guenciesin light of the photic evoked response that can be created containing apha
and its second and thud harmonics [22]. A strong reaction was observed between
beta and the second and/or thud harmonic of the stimulation frequency. It was dso
pointed out there were more occasionsd followingin the betaregion. Those subjects
with high (>10.3 Hz) mean aphafrequency had much more following by the second
and third harmonic components of the thisrhythm. Observationsshowed thet it might
be better to look a the harmonic components of the driving response which depend to
adegree upon the functiona state of the brain and the stimulusintendity [23]. These
harmonics seem to be one of the main indicatorsof leve of excitation of cortical neu-
rons. Those subjects with high beta activity or who have a tendency for high fre-
quency aphaactivity are much morelikely to exhibit this higher harmonic response.

Nunez describes some of the reasons why beta wave scap recordingsare so lack-
ing in power [24]. Interestingly, some believe that the scalp, cerebrospinal fluid (CSF)
and skull act asalow passfilter to eiminate high frequency portionsof the EEG spec-
trum. It has been shown that betaactivity up to 30 Hz actudly isthe dominant rhythm
in recordings from the depth recordings from the frontal lobe [24]. Immediatdly it
might be seen that the scalp and skull selectively attenuate betafrequencies. However,
there is no evidence from physiology and physics that would dictate that intervening
brain tissueand CSF would act as alow passfilter. Using pairsof sinusoida subdural
current sources over arange of frequencies, Nunez explainsthat the tissue does not act
as a low passfilter. The most likely explanation for the attenuation of the beta fre-
guency componentsis that the signa is not spatially coherent over large surface areas.
This would indicate thet that the comparatively large surface area of the disc electrode
would fail to capture coherent signa energy in the betaregion. The content of EEG at
higher frequencies has been shown to be dependent on location as well. Nunez and
his colleagues have shown that there is a 4:1 amplitude ratio for cortex-to-scalp
recordingsin the beta frequency range for centrd derivations. That ratio is only 2:1
for frontal locations. Outside of the beta frequency range (15 to 25 Hz) thet ratio is
much closer to unity at al recording sites.



6.5 Coupling and Synchronization I:
Lossof PhaseInformationin
Narrowband Gaussan Modesof Alpha Rhythms

Severa schemes have gppeared modeing the apha through complex demodula
tion which involves heterodyning the apha band to base band and then low passfilter-
ing. Ultimately, capturing the apha band energy in the envelope requires removing
phase information in the alpha band. Likewise, the beta band is not considered & all
as thefocusremains on the portion of the frequency band transferred to baseband.

A dominant moded .for the alpha wave has been the narrowband Gaussan noise
modd for the EEG which was proposed by Dick and Vaughn [S]. The modd for the
apha rhythm in this scenario includes an envelope which is Rayleigh-distributed and
a uniformly distributed phase. The experimental scheme involves constructing an
analog circuit device for the complex demodulation of the apha wave which was
accomplished on an analog computer. The authors compared the dpha wave ampli-
tude distribution to the normaized Gaussian density function. Likewise, after com-
plex demodulation, they compared the distribution of envel ope amplitudes to the Ray-
leigh distribution. The power spectrum of narrowband Gaussian noise was compared
to standardized apha spectra to discover smilarities as well. The authors discovered
that the power spectrado not match accurately, becauseof the existenceof band com-
ponents outside of the alpha band, particularly a higher frequencies. They admitted
that the filtering operation involved in the complex demodulation process resultsin a
lossaf information.

Onereview of the different methods of extraction of instantaneous envelope ad
phase was the work of Ktonas and Pgpp [25]. They use the complex demodulation
technique to study. the a-spindlesoccurring during deep which are believed to be trig-
gered by subcortical thalamic centers. The a-spindles have an average frequency of
about 14 Hz. They occur in short 1-2 second bursts and have an frequency deviation
averageof about 2 Hz which isdiscovered through zero crossing techniques.

A classic sudy testing the ideas of aniplitude modulation and coupling for EEG
alpha wave modeling was the study of Okyereet d. [3]. Here phase is actudly con-
Sdered part of the mode to account for some of the frequency modulation of the
dpharhythm. A fluctuation in centra frequency is noteworthy as Dick and Vaughan
mention that thisfrequency is dways changing thus making complex demodulation a
difficult procedure to implement [3]. The waxing and waning of the apha rhythms
was thought to be highly correlated with the measure of average cerebral metabolism
as reveded in the quantity of blood flow through the brain. This sudy tested the




relationship between modulation parameters of the dpha wave and the regiond cere-
brd blood flow (rCBF). A composite amplitude and frequency modulation signa
model is suggested.

-

t
£(t) = Ac[1 +kymy (t)] cos |2nft+ 2mks [ my(t) dt (6.1)
0

where A, is a constant, f; is the frequency of the unmodulated carrier wave, ks is the
frequency modulation index. Also note that ky, is the amplitude modulation index.
The modulating signals for the AM and AVl processes, are m; (t) and my(t), respec-
tively. Schemesfor the measurement of the amplitude and the frequency modulation
indices were devised. Amplitude modulation index showed significant corration
with rTCBF. The authors speculate that the driving mechanisms for the amplitude
modulation might be related to neurd activity in the cerebral cortex.

6.6 Coupling and Synchronization II:
Augmenting the Oscillatory Modd of Alpha Generation

We have seen that the idea of three-wave coupling involves the synchronization
of harmonicaly related components. The higher order spectrum looks at frequency
componentsthat are phaselocked to sub- or supra-harmonics. Interestingly, it is often
noted that coupled oscillations among various neurd units on a broad-based network
level create strong rhythms or peaksin the spectral record. What do the two versons
of couplings have in common? Does the physiologica coupling refer only to coupling
a the single given frequency? Does the physiology point to multiple frequency cou-
plings? A glance at the literature gives many tentative answers.

The theories of coupled oscillators account for much of the waveike properties
of the EEG. It isimportant to redlize that the EEG isa spatid average of the underly-
ing activity of as many as 100 million neurons that are "shadowed" by an eectrode.
As the sensor or EEG electrode is primarily integrative, the widespread tempora and
gpatia character of the EEG isdue to coordinated activity of large groupsof neurons.
Much of thecortica rhythmicity isactuadly said to resdein salient coherencies. Cou-
plings for the neurophysiologist refer to interactions among severd neurons. Strong
rhythmsare said to be generated when groups of neuronsdl oscillate at the same fre-
gquency. Steriade et d. consider coupling from two points of view. The firg is the
tuning characteristic of individual neurons. They also podulate that properties of



large groups of neurons acting in unified, holistic fashion are responsible for the
rhythms[26]: " Synchronization is a state in which two or more oscillators display the
same freguency because of some forms of co-interaction. There is no necessity in
deciding between two parts of the aternative, whether the intrinsic properties of sin-
gle neurons are essentia for the genesis of brain waves with different frequenciesor
whether such rhythms basicaly emerge from synaptic interactionsin large neurond
pools. Both these factorsshould be eclectically considered. [26]"

The very ideaof couplingin time and frequency has a strong physiologica bass
asMacVicar and Dudek report on actual pyramidal cellsin therat hippocampuswhich
exhibit coupling in their response[27]. Electrotonic couplings from interconnected
neurons areindicated by the presence of fast pre-potential s(FPPs) in neighboring neu-
rons. These FPPs provide definitive evidence of neurond synchronization. These
authors reason that the electrotonic coupled networks are reverberating circuits that
could sustain strong coordinated rhythms.

Modds such as these prove to be even' more complicated when oscillations of
severa groups of cells are synchronized by outside pacemakers. These pacemakers
convey a dominant frequency thet is thalamic in origin to groupsof single cells. As
Steriade et d. [26] mention, "In the intact brain, however, the intrinsic properties of
single cells are subject to controlling influences from synchronizing pacemakers or
driving forces within given neurona'networks that unite single cells. Indeed, the
notion of EEG synchronization supposes the coactivation of a large number of neu
rons, the summed synaptic events of which become sufficiently large to be recorded
with gross e ectrodes within the brain or over the scap. Therole of synaptic networks
in the genesis of vaious EEG rhythms is emphasized by frequency differences
between variousoscillations..” [26].

The thalamocortical feedback network theory was proposed in aclassic sudy by
Lopes da Silvaet d. in 1974 and updated in severd recent studies|[1,26,28,29]. A
generd review of the mode and the means with which it generates time dependencies
in the EEG isreviewed in Nunez [24]. The thalamocortical modd is used to build the
oscillatory dpha rhythm from component neurons through basically two different
typesof neurons, the thalamocortical relay cells (TRC) and the interneurons(IN). The
inhibitory or negative feedback mode depends on a strength of couplings between
TRC and IN neurons. If either coupling coefficient isvery large, it indicatesthat there
isstrong input or feedback of TRC neuronsto IN neuronsand vice versa

Nunez discusses severd reasons why this mode should be expanded to include
multiple frequencies of oscillation. The preferred frequency of oscillation is depen-
dent on the rise time and duration of the inhibitory post-synaptic potentials (IPSPs),
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excitatory (EPSPs) and feedback gains. For instance, pyramida cells in the cerebrd
cortex are thought to have much shorter PSPs than discussed in the Lopes da Silva
modd. These will produce higher frequency oscillations.

The modd also assumes that the potentias are derived from afairly large popu-
lation of neurons. Nunez discusses the fact that the space average theory focusesonly
on macroelectrode potentials which provide a linearized verson of underlying
proceses. Actudly more detailed approaches may be required for some brain
processes. Obviating the space average gpproach involves looking a smaller units of
anayss wherein the linearity assumption is no longer an assumption. To recover
information on harmonic betawill requireadifferent level of analysis.

6.7 Key Studiesof Gaussianity of the EEG

A key component in the study of the relationship of coupling among neurd units
and the statistical propertiesof the EEG was the work of Rafael Elul from 1969 [30].
Elul looked upon the EEG as being the random fluctuations of largely asynchronous
neurons. At times dow wave and large amplitude activity would occur that was indi-
cative of coordination among those neurd elements. He called this synchronous
activity coupling. When large groups of neurons acted synchronoudy, the EEG
features would better reflect underlying activity on a cellular level. Complete asyn-
chrony of activity of the EEG generators was assumed to reflect underlying Gaussian-
ity. Synchronous activity established nonlinearities. The nonlinear relationships
among generators caused a change in the amplitude distribution function of the gen-
erators. The EEG was not merdy noise, but actudly contained afixed signal portion
evident during non-Gauss an episodes.

Elul’s ideas about recruitment of interactions among neurons manifest in the
EEG were tested in a cognitivetask study. During a menta task when more couplings
were hypothesized to occur, the time series was said to become non-Gaussian. He
tested this hypothesis by having subjects perform a mathematical computation while
their EEG was recorded. The short segmentsof the EEG that were tested were severa
4 second segments. The chi-squared goodness of fit test was applied to each segment.
During basdline activity, 64 percent of the segments passed the test of Gaussanity,
i.e., the null hypothesis was accepted. Under testing of the subjects during perfor-
mance of a mathematical problem, only 32 percent of the short ssgments proved to be
Gaussian.




A follow-up study to the work of Elul was McEwen and Anderson's exhaustive
study of EEG during different levels of anesthesa[31]. In an attempt to provide red
time monitoring of anesthetic level during surgery these authorschose varying lengths
of EEG data recorded while under the influence of two type of genera anesthetic as
well as during basdline activity. They employed the one sample Kolmogorov-
Smirnov (K-S) test for Gaussanity and the two-sample K-S test for wide-sense sta-
tionarity. They mention that the K-S test is truly the more powerful test when com-
pared to the 2 goodness-of-fit test. To eliminate the influence of sample dependen-
cies among the data points, they chose to use a variety of length-compensated sam-
pling rates. They reasoned that shorter sampling interval time series turnsout to have
greater correlation among the data samples. Certainly for the Gaussianity hypothesis
to be satisfied, the EEG should be sampled at a rate only dightly higher then the
Nyquist rate. The significant differencein K-S test results was reveded in that many
more data segments of length 4 seconds or shorter were deemed Gaussian than in the
Elul sudy. They found varying degreesof Gaussanity and stationarity through al the
electrode derivations. For instance, on average only about 8 percent of the data seg-
ments 32 secondsin length or longer turned out to be Gaussian. For any given length
of data, stationarity is more likely to be satisfied than Gaussianity. Interestingly, they
discovered that a 32-second long section of data is perhaps the best compromise
balancing tradeoffsfor stationarity and transient reduction.

6.8 TheHinich Testsfor Gaussanity and Linearity

The %2-Goodness of fit test used by Elul and the Kolmogorov-Smirnov test used
by McEwen and Anderson rely on the assumption of independent data samplesfor dl
the tests[30, 311.

As described in chapter 1, Hinich has derived testsfor Gaussianity and linearity
based on the statistics of the biperiodogram and its corresponding bicoherence. These
tests are described in detail in [32]. The test for Gaussianity relies upon the sampled
distribution of a properly scaled bicoherenceestimator X, n Where

Xin,n = (N/M2)” [Py ()P ()P (m+0)] B, (m.n). (6.2)

Here N is the total data record length, M is the block or segment length. (Data and
segment length are related to the degrees of freedom (dof) for untapered records as
related in chapter 2 for the bias and variance of the bicoherence estimator. Recdl that
dof =2B,T. Inthiscontext, T =NAT and B, = 1/(MAT). AT isthe samplinginterval.)



Since X isdigtributedas complex norma random variable with unit variance and
non-zero mean, 2| Xp g |, is chi-squared with 2 degrees of freedom and non-centrdity
parameter

| By (m,n) |

_ 2
Ao = 2N/M P, (m)P, (n)P, (m+n) -

6.3)

It is assumed that the X, , are independent random variables. It turns out that the
statistic
G=2 ¥ |Xmnl? (6.4)
(m,n)aL
is distributed as x3p(A). Here L represents domain of bispectral data points. P is the
total number of pointsin L.

The Hinich test for Gaussanity poses the following null hypothesis usng the
asymptotic variance-covariance matrix for the bispectra estimates. When the time
series x(n) is Gaussian, B(®,,0,)=0. We rgect the null hypothesis at level of
sgnificancea, if G > to, Wwherea= Pr(x3F(0) > to).

The test for linearity relies on the fact that in genera the sample distribution of
of 2|1 Xm.n |2 isapproximately %3 \mny Where Ay, isgiven by (6.3). Asmentioned in
chapter 2 the test for linearity relies on the fact that asymptotically the bicoherenceis
constant across all bifrequencies for linear processes. The Hinich test of linearity
involves a robust nonparametric test of disperson. The sample distribution of
2| Xm.n | is compared to the estimated distribution of x3(A) where & is a consistent
estimator of A. Let R be the sample interquartile range of 2|Xm‘n|2 for al the
bicoherences in the nonredundant sample bispectra doman. The hypothess of
linearity is rgjected when R is ggnificantly larger or smaller than the interquartile
range of x3(A). In practice the estimate A is the meen of the quantities 2| X, | for
al mand n.

6.9 Justificationfor Parametric Modding of Alpha Coupling

With the gtatisticsof the bispectrum well understood through the work of Hinich
in higher order spectra, there is the question of why we would need to do parametric
modeling of EEG wave coupling. Is there any information that we would gain by the
use of model-based estimation of three-wave coupling? We need to consder the vari-
ous reasons to warrant the use of modeling techniquesdescribed herein.



These parametric techniques are considered to be high resolution procedures for
second order datistics. They should be able to resolve closaly spaced pesks in a
highly accurate fashion. The problems of leakage and extensive windowing of finite
length sequences would be eliminated. The resolution issueis acritical one since the
leakage issue is exaggerated in two-dimensions for the biperiodogram estimator.
Since the bispectral estimator has a high variance in the first place, the leakage effects
only compound the highly fluctuating results. The resolution effects are even an obs
tacle for the autoregressive estimator. As detailed in chapter 2, the autoregressive
bispectral estimator has difficulty producing sharp peaksin the presence of significant
amountsof added noise. For low SNR cases the eigenstructure based procedures pro-
vide more well defined pesks.

More importantly however to active researchers in EEG and new-science are
the phenomenological concerns. There are fundamenta structural reasons necessitat-
ing snusoidal modeling. Both the dpha and beta rhythms are truly wide-band
processes. Compare the bandwidth of dpha wave to tota bandwidth of the relevant
portionsaof the EEG spectrum. Nunez mentions that the pesk power histogram of the
apha rhythm gives one the opportunity to define a total of three distinct apha fre-
guencies within the range of 85 to 13 Hz [24]. First of dl, there is the lowest fre-
gquency making a contribution to the total power. The peak frequency exhibits the
most power. There is dso the highest peak within the bandwidth. All of these are
identifiable components of EEG analysis within a single band using low resolution
gpectral measures! The dpha rhythm cannot necessarily be considered a narrow band
process. For al subjectsin non-paroxysmal EEG studies, the EEG dpha rhythm is
not stationary, but tendsto fluctuate over the course of most studies[24].

Severa studies point to multiple generators for apha frequencies. Walter et d.
point to the fact that there are two independent generatorsfunctioningin the same fre-
quency band. They aso suggest that there were wider than usud Sidebands of the
aphawave a 2 to 5 Hz separation from the main frequency [33].

Although it is possible that many sdebands of apha and beta waves are phase-
locked, it is not likely considering certain bandwidth consideration. A key study in
understanding spectral bandwidth of EEG is the work of Wennberg and Zetterberg
[34]. They define and classify key spectrd parametersof the EEG and detail therda
tionships among frequency bands. Although it is possble that many frequencies may
be involved in coupling, it is likely that coupling involves narrow frequency ranges
within the dpha and beta band. Critica evidence was presented by these authors
focusing on which portions of the apha and beta bands are actually involved in cou-
pling. Beta is assumed to be a supraharmonic as delta is consdered to be a
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subharmonicof the theta wave.

Additiona evidence can stem from different types of adpha responses that are
exhibited by human subjects. P-type dpha respondersshow persistent alpha presence
even during the eyes open condition. In these cases we have to include those that
show a double-peaked dpha. Double-pesked dpha subjects display one pesk beong
9.0-9.5 Hz and one peek above this boundary. 'During the eyes open condition the
upper pesk disappears while the lower pesk remains. We can see in certain subjects
that the apha-alpha coupling remains during the eyes open condition often with the
lower peak. It remainsto be seen which of the two peaks remain coupled to high fre-
quency betall rhythms. Inouye et a. discuss the notion of endogenous and exo-
genous generatorsor sources of the apha rhythms [35]. Posterior (parietal and occipi-
tal) sources exhibit strong endogenous components with high frequency ( > 9.5 Hz)
apharhythms. On the other hand, anterior derivation provide dpha activity from low
frequency exogenous generatorsfrom 8 to 9.5 Hz. Since we are examining primarily
posterior electrode Sites, it may turn out that high frequency apha components are the
critical spectral regions af coupling with the beta-1l band.

More evidence comes from the comments mede by Gasser et d. in their study of
EEG parameter stability [36]. They mention that bandwidth is totaly reliant on the
degree of synchronization or coupling among the neurons. A narrow bandwidth typi-
cally means more synchronization among eements. It is therefore reasonable to
believe that sustainable coupling among individual frequencies would require even
tighter restrictionson bandwidth. In the case of self-sdlf coupling an alpha bandwidth
of 64 When trandated to a frequency band oneoctave higher becomes o = 20, We
know from Wennberg and Zetterberg [34] that dpha and beta bandwidths do not
observethisreation. It is reasonableto assume that only a narrow portion of the apha
band is actually involved in coupling.

As we shdl see one of the most important reasons for applying snusoida
parametrization to EEG three-wave coupling is the form of cumulants. Since our
methods are correlation-based, the form of these time domain entitiesiscritical in our
assessment. The projected cumulants for the EEG segments. as seen in the next
chapter, are taken normd to the 45° main diagonal of the cumulant domain. They are
snusoidal in shape. As Barnett e ad. mention the most prominent pesk occursin the
apharalpha coupling region near the (10, 10) Hz bifrequency point [11]. In chapter 4
and in the Appendix we saw that the projected cumulants for a three-wave coupling
process are 1-D snusoids. This exciting fact alone ensures that sinusoidal modeling
of EEG three-wave coupling offersinteresting research possihilities.
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CHAPTER 7
EEG SMULATIONS

"Thefina objectivein asigna processing scenario is to processafinite set
of data (either single-sensor or multiple sensor) and extract important infor-
mation which is "hidden" in the data. Thisis usudly achieved by combin-
ing the development of mathematical formulations which resch a certain
level of estimation performance with their agorithmic implementation
(either in softwareor hardware) and their application to real data." T

7.1 Introduction

Different algorithms introduced in this thess and in other scholarly works are
tested with electroencephal ographic (EEG) data for the detection and estimation of
three-wave coupling. At first, conventional methodsincluding the biperiodogram and
the Hinich tests for Gaussianity and Linearity are used to furnish a description of the
data. These methods are then used to establish criteriafor the sdlection of candidate
time seriesfor testing with parametric algorithms. Three eigenstructure methods are
used for testing the EEG data. They are the 2-D SKEW-MUSIC method described in
chapter 3, the stlandard Swindlehurst and Kailath method introduced in [1] and the
SKEW-PRO-ESPRIT method discussed in chapter 5. We chose not to make ay
definitive claims of accuracy rankings of these methods. Our god isonly to establish
that the all methods are likely to provide coupling frequency estimates that are local-
ized within appropriate sectors of the bispectrum udng a low mode order. 1-D
methods are also shown to provide reasonable estimates of frequency interactions as
well. The right singular vectors belonging to symmetric and skew-symmetric third

¥ C.L.Nikias & M R Raghuveer, Bispectral Estimation: A Digital Signal Processing Framework,
Proc. |EEE, val. 75, July 1987, p. 869



order cumulant matrices give individual coupling frequency estimates. The 1-D
MUSIC bispectra from cumulant projections are also examined for biphase estima-
tion.

We desire to apply each method to EEG time series displaying predominantly
alpha-alpha coupling. In the non-redundant sector of the bispectrum this is the fre-
guency support region of 8 1f; 113 Hz and 8<f; <f; Hz. We can anticipate the
need for low model order based on the fact that substantial power is concentrated in
the alpha band. Also the proportion of alpha power actually involved in coupling is
relatively strong in thisregion. Thisisindicated by the skewness at each point in the
bispectrum [2].

7.2 Materials and Methods

Seven subjects participated in an experiment to establish appropriate features for
detection of lateral asymmetry during cognitive tasks in a previous study at Purdue
University [3]. The tasks used to generate lateral asymmetries were letter completion,
multiplication (mathematical), 3-D object rotation, number visualization and baseline.
Each task was completed under two separate states of eye closure in the origina
study, eyes open and eyes closed. The time series selected for bispectral processing
belonged only to EEG generated during baseline and eyes closed conditions. We
wished to maximize the appearance of alpha wave coupling around the 10Hz - 10Hz
region without necessarily producing pronounced alpha band power asymmetries.

For each subject the EEG was recorded during five nonconsecutive 10 second
segments. All occurred within a 3 minute time interval. The EEG was recorded dur-
ing this period from electrode sites, C3, C4, P3, P4,01 and 0 2 according to the Inter-
national 10-20 electrode location system [4]. One eyeblink (EOG) channel was also
recorded simultaneously. Each 10 second data sequence was sampled at 250 Hz after
passing through alinear phase filter with low pass cutoff of 100 Hz and high pass cut-
off of 0.1 Hz from a Grass 7P511J amplifiers. In an earlier study, [S], the time delay
associated with the Grass amplifiers was verified. These amplifiers have a constant
time delay of 2.7 msec over the frequency band of interest. After the data was sam-
pled, the five separate segments of data were combined to form a 50 second data set.
Artifact rejection was accomplished by examining the EOG channel for V,>50uV
over a 10 msec window. If that threshold was exceeded, the corresponding EEG
channel data segments were rejected. Preprocessing of data also included low pass



filtering by FIR filter, decimation-in-time by afactor of 2 and trend removal to yield
thirty-two seconds of data. Each one second block length of 125 pts was augmented
with zeros to make total block length equal 128 points The cumulants as well as
periodograms and biperiodograms were calculated from 32 blocks of data (N=4096).
Periodogram data was tapered with a 10% taper window. The subjects were divided
into a high and low alpha groups. This division was based on the height of the aver-
age parietal aphaspectral peak. There were4 members of the high alpha group and 3
in the low group.

7.3 Qualifying the Datafor Inclusion
in the Test Data Sample Set

Before testing the data sets available, a set of criteria was adopted to select can-

didate setsfor the application of the variety of eigenstructure and autoregressive algo-
rithms. Skewnesses and their statistics were also calculated according to [2]. These
included the estimated significance of each peak based upon the estimated parent non-
central x? distribution. Statistics of Gaussianity and linearity were calculated for all
seven subjects and are presented in Tables 6.1-6.3. Examining the statistics for Gaus-
sianity wefind all of the EEG time series are highly non-Gaussian with a high degree
of variability in the Z-scoresfor al the electrode sites. Part of the reason for this stems
from the fact that our estimator or %2 statistic does not approximate a consistent one.
The equation M =N relates data segment length, M, to total data length, N. Con-
sistency is approached when c¢>2. Our data segment length was chosen to balance
competing desires to achieve high resolution while adhering to the stationarity guide-
lines provided by McEwen and Anderson [6].
The interquartile range data reveal that the empirical distribution closely matches the
estimate of the parent noncentral %2 distribution. Only when moving to theinterdecile
data (Table 7.3) does the quantile match between sample distribution and estimated
parent begin to deviate slightly. It would appear that the tails of the empirical distri-
bution are dlightly truncated. Actual statements of linearity would have to be made by
closer examination of individual time seriesdata. Table 7.4 shows the large variation
in the estimated noncentrality parameter.

For examining individual peaks and their skewness, it was decided to divide the
relevant section of the EEG bispectral domain into coupling regions based on their
antecedent bands in the power spectrum. The EEG hyperbands are illustrated in Fig.



Table 7.1 Z-Scores for Level of Gaussianity based on Hinich Test: Based on
Normal Approximation tox2; dof =2048

EEG Time Series
Z-Scoresfor Leve of Gaussanity
N=4096; (128x32); 7 Subjects
Derivation Mean <. D.
Centrd 12.42 599
Parieta 12.322 461
Occipita 10.42 6.36

7.1. Thisgrid becomesour chief unit of analysis. It servesto first determine the area
in the EEG bispectrum with the most significant pesks. Later it provides a convenient
map for describing accuracy of 2-D bispectra pesk placement.

For al electrode derivation and all 7 subjects, the alpha-alpha coupling region
has by far the largest average number of significant peaks (p < .01). For the P3 site
the average number of peaks at or above thislevel is 1.14, i.e. greater than unity. For
the P4 electrode it is over 2, namely 2.43. The alpha-apha sector has 22 bifrequency
pointsin it. The entire bigpectral domain has 1024 individual points. So the alpha-
alpha hyperband represents just over 2% of the total number of points. There were
two other occasions when different regions had a greater average number of
sgnificant peaks than the apha self-coupling region. The alpha-beta-| sector hed
more peaks in the P3 derivation. The theta-beta II hyperband had more peaksin the
0 1 derivation. Both of these sectors are larger in area than the a pha-alpha sector.

Since the few significant nonlinearities are concentrated within one sector, we
expect that we need low modd order to faithfully capture the coupling frequency
information. To insure that there are few competitor peaksin the bispectrum the fol-
lowing procedure wasfollowed in selecting candidatetime seriesfor testing: After the
biperiodogram and associated statistics for each time series were run, the largest 10
bispectral peaks were isolated. These 10 peaks were inspected to check for member
peaks in the al pha-alphacoupling region as well as the theta-theta coupling region. If
there were peaks present in those regions, their skewnesses were checked to see if
they were sgnificant (p < .01). If al other peaks among the top ten were not
significant, that EEG time series was declared acandidate to be tested. Out of the 14
possibletime seriesat each of three bilateral derivations, 10 parietal, 8 occipital and 6
central time series met these criteria.



Table 7.2

Table7.3

Table7.4

Interquartile Ranges for Level of Linearity based on Hinich Test:
Based On Estimates for Noncentrdity Parameter, Bilatera Electrode
Derivations

EEG Time Series
Interquartile Ranges
N=4096; (128x32); 7 Subjects

Derivation | Mean | &. D.
Centra 0.508 | 0.0222
Parietd 0.505 | 0.025

Occipita 0.51 0.0251

Interdecile Ranges for Level of Linearity based on Hinich Test: Basd
On Edimates for Noncentrdity Parameter; Bilaterd Electrode
Derivations

EEG Time Series
Interdecile Ranges
N=4096; (128x32); 7 Subjects

Derivation

Mean

. D.

Centrd
Parietal
Occipitd

0.816
0.816
0.8207

0.0187
0.0268
0.259

Estimates of Noncentrdity Parameter: Hinich Test for Nonlinearity

EEG Time Series
Noncentrdity Parameter Estimates
N=4096; (128x32); 7 Subjects
Derivation Meen . D.
Centrd 0.784 | 0.377
Parietd 0.898 | 0.5055
Occipitd 0.859 | 0.5793




The chosen parietd bigpectral pesks had 5 biphases aove 45 degrees and 5
bedow. The average biphase was 43.355 degrees. The occipitd was aso evenly
divided with an average biphase d 36.168 degrees. The central electrode had 5
biphases greater than 45 degrees and 1 less than 45 degreesfor an average biphase of
6233. The occipita and centra derivations al belonged to the high apha group.
There were two parietal derivationsin the low aphagroup.

7.4 Algorithm Specifications

After selecting the time series, the dgorithms selected for tesing are: 1) 2-D
SKEW-MUSIC; 2.)) the classcd triple Kronecker product method o Swindlehurst
and Kailath [1]; 3.) the method which includes adaptations to the triple Kronecker
product method for symmetric and skew-symmetric cumulants and remova of the
R(0,0) term from the matrix (SKEW-PRO-ESPRIT); 4.) the autoregressive gpproach
of Raghuveer and Nikias [7]. The 2-D SKEW-MUSIC equations, (3.8)-(3.10) and
(3.16)-(3.18), represent the symmetric and skew-symmetric cumulant matrices,
respectively. For this method matrix dimensonsd 25 x 25and 30 x 30 were chosen.
Signal subspace dimensions o 6, 12, 18 and 24 were usad when applicable. The
smdlest dimenson represents pesks adong the man diagonad o the bispectrum.
These are sdf couplings and represent a phase-locked f;, =f, dyad. The largest
dimension is usd for 2 sets of triads assuming that f; # f, for each triad. Coupling
frequencies were estimated using (3.19) with noise eigenvectors from both symmetric
and skew-symmetric matrices.

For the triple Kronecker matrix techniques, (5.3) was utilized with matrix dimen-
sons of 16 x 10, 25x 10 and 36 x 15. Here signd subspace dimensonsdf 6, 8, 10
and 12 were candidate szes. Usng SKEW-PRO-ESPRIT both (5.18a) and (5.18b)
were used and filled with symmetric and skew-symmetric cumulants, respectively.
Thedimensonsd the SKEW-PRO-ESPRIT meatrices used were the same as the triple
Kronecker product matrices. For both methods the SVD of al matrices weas taken.
The left singular values furnished 2-D hifrequency estimates using (2.46). Alsoin the
caseof I-D frequency estimates, the right singular vectorsof both the symmetric and
skew-symmetric cumulant matrices are utilized. Only 16x 10 and 25 x 10 matrix
dimensionsare used for this estimation procedure. Single coupling frequencies are
estimated usng (2.48).
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Findly, the AR method is used for coupling frequency estimation with (2.14)-
(2.16). These equations are used with symmetric, skew-symmetric and unsym-
metrized cumulants. Square matrices with AR modd ordersaf 4, 6, 8, 10 and 12 were
employed.

Frequency resolution for the parametric methods was maintained a the same
fo =0.98 Hz as used for the standard biperiodogram. Once bifrequency estimates
have been generated, the estimates were sorted according to magnitude. If the largest
peek on the 2-D hyperband grid fell within the same hyperband as the selected
biperiodogram peak vaue, then a hit was recorded. The number of hits are counted
for each matrix Sze and signa subspace dimenson. A hit rate is computed by divid-
ing the number of hits for a given derivation, matrix dimension, modd order and
cumulant type by the number of sample time series a that derivation. Those matrix
Sizes possessing the greatest number of hits are shown in the Appendix in convenient
bar graph hit rate profiles.

A hit rate profile is aso computed for the 1-D SKEW-PRO-ESPRIT coupling
frequency estimates. For each 1-D hispectrum constructed from the right singular
vectors, a hit was registered when the two largest peaks gppeared in the appropriate
bands corresponding to the biperiodogram peak. Only sdf couplings were reported.
A hit rate was computed for these as well.

We aso tested the 1-D SKEW-MUSIC and SKEW-ESPRIT agorithmsfor cou-
pling frequency and biphase accuracy. Projected cumulantswere madefor al 42 time
series belonging to the subjects. The projections were made along a 45° projection
axis. A rectangular window of length 21 was used. This supplied 10 forward and 10
backward lags each plus a zero lag term. For each projected cumulant lag value,
twenty one 2-D cumulants were summed.

To arrive a frequency estimates 10 x 10 matrices were constructed according to
(4.23)-(4.24) and (4.25). Eigenvector/eigenvalue decompositions were done for both
symmetric and skew-symmetric projected cumulant matrices. Signa subspace dimen-
sonsaf 2 and 4 were utilized for frequency estimates. These dimensionswere utilized
under the assumption that only one or two decoupled sinusoids would appear dong
the central bispectral dice typicdly in the dphadpha or theta-theta coupling fre-
guency scenarios.

For biphase estimation the same matrices were utilized. The implementation of
the SKEW-PRO-ESPRIT entailed reducing each of the matrices down to 2x 2 or
4 x 4 core rotations level matrices as in (4.10). The generalized eigenvaues of the
reduced order matrices contain the biphases asin (4.29).



7.5 Results

Some sample 3-D plotsfor bifrequency estimation are shown in Figs. 7.2-7.13.
In Fig. 7.1 the biperiodogram for a P4 derivation is shown. Severd estimates for
three different parametric methods are shown in accompanying plots. In the 2-D
SKEW-MUSIC estimate the modd order of 18 insuresthat we have two main diago-
nal peaks that correspond to the biperiodograrn pesk exactly. Model order 8 in the tri-
ple Kronecker product method also corresponds to two main diagona pesks. Low
model order is achieved for the skew-symmetric cumulants in the case of SKEW-
PRO-ESPRIT.

Viewing the second set of bispectrad plots (Figs. 7.6-7.9), we note there are
severa deta-apha peaks that are located near the DC axis of the biperiodograrn.
Subject 7's P3 derivation is used for this seriesof bispectra. These competitor pesks
do not have as large a bicoherence value as the main aphaapha pesks do. Each of
the three eigenstructure methods provides accurate estimates of coupling frequencies
with low modd order. Only in the case of 2-D SKEW-MUSIC does the signd sub-
space require afull complement of eigenvectorsfor two sdf coupling pesks. As can
be seen on that plot there are two pesks visibleaong the main diagondl.

In Figs. 7.10-7.11 we see the bigpectra for another parietal time series. A large
modd order (24) in a 30 x 30 2-D SKEW-MUSIC matrix with skew-symmetric cumu-
lants provides an exact estimate of the coupling frequency aong the main bispectra
diagonal. Fig. 7.12 shows a large central (C3) biperiodogram pesk aong with much
delta band diffuse coupling. A distinctive triple Kronecker peak in Fig. 7.13 models
that peak closdly. Thistimeamodd order of 12is used.

Turning now to the hit rate profiles in the Appendix (Fig. A.1-A.12) we see a
variety of performancelevels. For the parietal sites, 2-D SKEW-MUSIC has its best
performance a a model order of 18 with an average hit rate above 0.5. Though sym-
metric and skew-symmetric biphases are evenly represented, the most hits are gen-
erated with the skew-symmetric cumulants. Symmetric cumulant hitsincreaseto ther
peek a mode order 12 and then decrease again. It is important to redlize that 2-D
SKEW-MUSIC has fewer distinct modd orders to modd the coupling frequencies.
Many o its middle vadue modd orders may indicate better performance than indivi-
dua modd orders of other methods.

The AR method shows alower average hit rate profile for parietas. Perhaps the
AR method is more model order specific and lessredundant. The best performanceis
seen for a modd order of 6 or one triad. That preferred order selection is aso seen
for the SKEW-PRO-ESPRIT. Here symmetric and skew-symmetric cumulants are




136

Figure7.2 Biperiodogram: S1; P4 Derivation; Peak at (10.74,10.74) Hz

Figure 7.3  2-D SKEW-MUSIC: S1; P4 Derivation; 30 x 30 mamx, Skew-
Symmetric Cums, Signal Subspace Dim: 18; Peak at (10.74,10.74) Hz
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Figure 7.5 ~ SKEW-PRO-ESPRIT: S1; P4 Derivation; 16 x 10 mamx, Skew-
Symmemc Cums, Signal Subspace Dim: 6; Peak at (8.79,8.79) Ht
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Figure7.6 Biperiodogram: S7; P3 Derivation; Peak at (8.79,8.79) Ht
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Figure 7.7 2-D SKEW-MUSIC: S7; P3 Derivation; 25 x 25 matrix, Skew-
Symmetric Cums, Signal Subspace Dim: 12; Peak at (9.77,9.77) H



5 010 -

3 3‘{0J

(x10h

1 670 1

geea J

Figure7.8  S&K Triple Kron. Method: S7; P3 Derivation; 25 x 10 matrix, Signal
Subspace Dim: 8; Peak at (10.74,10.74) Hz
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Figure 7.9 SKEW-PRO-ESPRIT: S7; P3 Derivation; 16 x 10 mamx, Skew-
Symmemc Cums, Signal Subspace Dim: 6; Peak at (8.79,9.76) Hz
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Figure7.10 Biperiodogram: S6; P4 Derivation; Peak at (7.81,7.81) Hz

Figure 7.11 2-D SKEW-MUSIC: S$6; P4 Derivation; 30 x 30 matrix, Skew-
Symmetric Cums, Signal Subspace Dim: 24; Peak at (7.81,7.81) Hz
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Figure 7.13

SKEW-PRO-ESPRIT: S7; 0 2 Derivation; 16 x 10 matrix, Symrnemc
Cums, Signal Subspace Dim: 6; Peak a (7.81,11.72) Hz




evenly represented in thedifferent modd orders.

For the centra derivationsthe hit rates are low for dl four methods. Only in the
case of the triple Kronecker product method are hit rates sizable. Once again the pre-
ferred modd order is 8. Also al the symmetrizable methods show best hit rates for
the skew-symmetriccumulants.

All modding schemes show their best results for the occipital recording Stes.
Several mode orders provide hit rate probabilitieswel above 50%. It is particularly
interesting to note that here, higher modd orders are favored for 2-D SKEW-MUSIC
and SKEW-PRO-ESPRIT. 2-D SKEW-MUSIC 4till has best hit rate results for the
skew-symmetric cumulants. Clearly the occipital sites deliver the best AR results.
The triple Kronecker product favors sgnd subspaces of dimension 8 while recording
its best hit ratesfor other modd orders.

The 1-D coupling frequency estimates from the right singular vectors have
representative hit rate profilesin the Appendix (A.13-A.15) aswdll. In these casesthe
hit rates from both 16 x 10 and 25 x10 size matrices were averaged together. For al
derivations the modd with largest hit rates was modd order 8. Two representative
1-D coupling frequency plots are shown from two subjects, Ss1 & 7, in Fig. 7.14 and
7.15. The mode order 6 provides us with enough information to judge that
alpha=alpha sdlf couplingis present in the bispectra domain.

The remaining eight figuresin this chapter (Figs. 7.16-7.23) depict results from
the 1-D SKEW-MUSIC and SKEW-ESPRIT agorithms. Plots of the symmetric and
skew-symmetric cumulants for each derivation are given. The projections closdy
resemble single 1-D snusoids. Along with each set of cumulant projectionsis the
measured biphase from the 1-D SKEW-ESPRIT matrix pencil. The FH' biphase is
the biphase derived from the biperiodogram. This cited FFI' biphase may beong to
either the pesk on the dice with the largest bispectrd magnitude or the largest
bicoherence. Thissame convention appliesfor 1-D frequency information below.

Below each correlation-domain plot is the frequency information from 1-D
SKEW-MUSIC. The same signd subspace dimension used to generate biphase infor-
mation also generates the SKEW-MUSIC frequency information. Tables in the
Appendix (Tables A.lI-A.2) lig dl 42 EEG time series and their deviations from
biperiodogram generated frequency estimates. A table with average deviationsfor dl
electrode sites appears below. Slightly better performance is noted for the signal sub-
gpace dimension of 4. Table A.3 in the Appendix shows 22 of the closest 42 biphase
estimates from 1-D SKEW-ESPRIT. Each of these estimates are within £15° of their
respective conventiona biperiodogram estimate. In Table 7.6 the summary statistics
for these estimates are listed according to derivation.



Table 7.5

Table7.6
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Summary Statisticsfor 1-D SKEW-MUSICEEG Coupling Frequency

Estimates

Statisticsfor 1-D SKEW-MUSIC
Coupling Frequency Deviationsfrom
FFT Estimates: EEG Data

Mode Order

Site 2

4

Mean | St.D. Mean St.D

Centra 1.05 .892
Occipita 1.12 | 2.023

Parietal 161 | 1822 | 167 | 2147

A7 783
84 | 1.79

Summary Statistics 1-D SKEW-ESPRIT EEG Biphase Estimates

Statisticsfor 1-D SKEW-ESPRIT
Biphase Deviationsfrom
FFT Estimates: EEG Datafrom
22 "Closest" Derivations

_ Statistics
Site
Mean St.D.
Parietal (N=9) 4.49 3.0615
Centra (N=7) 5.193 | 3.3709
Occipital (N=6) | 6.148 | 3.83
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Figure 7.14  1-D Coupling Frequency Esimates: S1 P3 Derivation; 16 x 10 matrix
using Symmetric Cumulants; Signal Subspace Dim: 6
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Figure 7.15 1-D Coupling Frequency Estimates: S7 P4 Derivation; 16 x 10 matrix
using Symmetric Cumulants, Signal Subspace Dim: 6



Figure 7.16 Projected Cumulants from S6: C3 Derivation; Solid: Symmetric;
Dotted: Skew-Symmemc; ESPRIT Biphase: 50.06; FFT Biphase:

59.73
30
20 -
A
m
p
10 4
ol /
I | | I I I
0 10 20 30 40 50 60

Frequency (in Hz)

Figure 7.17 |1-D SKEW-MUSIC Bispectrum from S6: C3 Derivation from Skew-
Symmemc Projected Cumulants; Signal Subspace: 2, SKEW-MUSIC
Peak Freq.: 7.81 H; FFT Peak: 7.81 Ht
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Figure 7.18 Projected Cumulants from S7: 02 Derivation; Solid: Symmetric;
Dotted: Skew-Symmetric; ESPRIT Biphase: 22.02; FFT Biphase:
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Figure 7.19 1-D SKEW-MUSIC Bispectrum from S7: 02 Derivation from
Symmetric Projected Cumulants, Signal Subspace: 2; SKEW-MUSIC
Peak Freq.: 10.74Hz; FFT Peak: 9.77 Hz




Figure 7.20 Projected Cumulants from S3: P3 Derivation; Solid: Symmetric;
Dotted: Skew-Symmetric, ESPRIT Biphase: 71.04; FFT Biphase:
66.57
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Figure 7.21  1-D SKEW-MUSIC Bispectrum from S3: P3 Derivation from Skew-
Symmetric Projected Cumulants; Signal Subspace: 4; SKEW-MUSIC
Peak Freq.: 2.93 Hz; FFT Peak: 4.88 Hz



Figure 7.22 Projected Cumulants from S4: C4 Derivation; Solid: Symmetric;
Dotted: Skew-Symmetric, ESPRIT Biphase: 23.82; FFT Biphase:
234
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Figure 7.23 1-D SKEW-MUSIC Bispectrum from S4: C4 Derivation from
Symmetric Projected Cumulants Signal Subspace: 2, SKEW-MUSIC
Peak Freq.: 9.77Hz; FFT Peak: 8.79Hz
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CHAPTER 8
DISCUSSION

8.1 EEG Signal Processing Issuesand Insights

Simulations using EEG time series from on-going, background activity have
shown that each of four parametric algorithms can be used for satisfactory representa-
tion of three-wave coupling. This coupling belongs to a non-Gaussian but generally
linear time series. Sinceit islinear, the couplings are few and restricted in extent over
the bifrequency domain. Pronounced peaks localized to a 10 Hz self coupling region
can befairly readily captured with low model orders.

Proof of the economy in representation comes from a number of EEG simula
tions. Extending the idea of the band to quadratic systems, we note that the major
concentration of spectral power in the EEG alpha band is accompanied in the bispec-
trum by the greatest number of peaks with high skewness in the alpha-alpha hyper-
band. All of the algorithms have a great probability of placing bispectral maxima in
this region which coversjust over 2% of the entire grid. Model ordersranging from 1
self-coupled dyad to 2 full triads uncovered peaks in this region of nonlinearities.
Some of the algorithms were shown to have a certain degree of redundancy as severa
models belonging to the same scheme placed peaksin the alpha-al pharegion.

These methods work well with short data lengths as well. The original work by
Huber et a. [1] used EEG data segments that were 80 secondsin length. Thisismore
than double the length used in this study! These methods, particularly the triple
Kronecker product approaches, are sensitive enough to display sharp coupling fre-
quency peaks. At the same time it is assumed that alpha-alpha coupling is a stable
process which is active during the entire time that alpha synchronization takes place.
Given that the EEG is not considered particularly stationary, the fact that these
methods work with short data lengths is an extra dividend. Previous studies of EEG
spectral parameter stationarity [2, 3] point to the fact that the alpha wave is a spectral
"island" of stability in an otherwise stormy sea of waves. However, because of cou-
pling, a good deal of beta band power will have appreciable inter-trial constancy.



Since this alpha self-coupling is so readily detected with these parametric methods,
the alpha coupling must be a stable phenomenon which isnot so easily averaged out.

The apha rhythm may be comprised of many components. An extremely nar-
rowband of the alpharhythmiscoupled with beta frequencies. Y et as the al pha band
is particularly wide (see sect. 6.8 and [4]), another portion is definitely linear and
uncoupled with other frequency bands. It may be worthwhile to talk about more than
one alpha rhythm. Low resolution methods such as conventional FFT-based tech-
nigues and the autoregressive procedure may mask these attributes of the alpha
rhythm.

Though earlier we noted the deficiencies of the autoregressive model, it does per-
form quite well in simulations. Asalinear "approximation” to three-wave coupling, it
reveals coupling in a few select circumstances. Its hit rate profile for the occipital
derivations is quite high. Perhaps for well-defined situations where less computation-
ally intensive algorithms are required, narrowband AR modeling may suffice.

The high performance of the AR algorithm in the occipital regionsis noteworthy
in another respect. Typically, occipital derivations are not known for high concentra-
tions of beta band frequencies. Their frequency content is typically purely sinusoidal
with some low frequency modulation. This would berevealed in closely spaced alpha
sidebands. This envelope is extracted in complex demodulation and narrowband
Gaussian noise contexts. Our studies reveal quite a sizable proportion of coupling
with second harmonic frequencies. Perhaps our methods work so proficiently for
occipital sites, because there is so much less interference from uncorrelated beta fre-
guency power. The greatest quantity of uncoupled betaisto be found in more anterior
electrode locations.

When the 2-D methods are augmented with certain 1-D analogs, more model
order information can be verified. These 1-D methods spotlight the rhythms belonging
only to the power spectrum and those with dual membership in both the PSD and
bispectrum. The use of the Swindlehurst and Kailath SVD formulation often shows
two peaks corresponding to apha and beta-11 waves. Dyadic coupling between alpha
and beta-11 is the major feature of the EEG bispectrum. These are the key sinusoids
involved in coupling.

Likewise 1-D SKEW-MUSIC is a convenient method to filter the bispectrum to
highlight specific harmonic relations. Domain restrictions help to capture weak
alpha-alpha coupling for those subjects without prominent bispectral features. 1-D
SKEW-MUSIC is much like a microscope. Though it narrows the field of vision, it
brings to light many obscured bispectral attributes. One of the key issues discussed in
the Dumermuth et a. articles [5] and section 6.8 was the extremely narrow bands



involved in quadratic phase coupling. Taking narrow slices of the bispectrum pro-
vides an instrument for inspecting the fine details used by the brain for synchronous
activity across frequency ranges. All of these eigenstructure methods furnish low
model order responses.

Achieving high resolution, we can begin to examine the phase relationships
between alpha and beta waves. Phaseis more easily visualized as the delay between
1-D signals 0 it is natural to view the dispersive component of the EEG signals by
examining cumulant projections. Several cases of EEG time series provided ample
evidence that 1-D SKEW-ESPRIT can accurately estimate the phase difference
between alpha and beta-11.

At theend of section 6.8 we discussed the fact that the cumulant projections pro-
vided the best reason for utilizing eigenstructure approaches for EEG quadratic phase
coupling. In our brief survey of projected cumulants in chapter VII, all of the pro-
jected cumulants had a distinctively sinusoidal character. In fact simply measuring
the peaks of symmetric and skew-symmetric projected cumulants and forming their
ratio, would yield accurate biphases. Here 1-D methods uncover necessary informa-
tion about cumulant form that lend support for the use of sinusoidal parametrization.

8.2 Conclusions and Future Research Suggestions

This study developed new tools for the investigation of harmonic phenomenain
stochastic systems. As phaseis a signature trait of nonlinear interactions, it wascriti-
cal that these tools provided accommodations for phase measurements. Phase sensi-
tivity is also a distinguishing characteristic of the bispectrum. Autoregressive
approaches to bispectral modeling lacked phase measurement facilities. Nonlinear
interactions require a 2-D representation as inter-frequency modulations are generated
from different frequencies beating together to form new harmonics.

A sinusoidal parametrization best represents modulation processes. Phase can be
easily integrated in an eigenstructure-based scheme. Two-dimensional methods were
created to be higher order forms of the MUSIC agorithm [6]. Third and fourth order
Kronecker product matrices were formed from symmetrized cumulants. Phases were
decoupled during symmetrization which provided a basis for their estimation as
amplitude coefficients of the sinusoidal 2-D cumulant sequence. Multidimensional
versions of the ESPRIT algorithm allowed the user to estimate these dispersion rela-
tions without accompanying frequency information. This approach relied on the



Procrustes rotation [7] to furnish reduced dimension full rank square matrix pencils.
The generaized eigenvaues containing the biphases were estimated from the core
rotations level matrices.

One-dimensiond versons o the eigenvector methods supplied new information
about the form of the cumulantsand coupling frequencies over a restricted domain or
diced the bispectrum. In cases where specific harmonic relations need to be under-
stood, the 1-D SKEW-MUSI C dgorithm providesthesedetails[8, 9].

All of these dgorithms were tested with EEG data exhibiting strong dpha wave
coupling. Parametric methods are useful in cases with restricted coupling domains so
that low moded orders may be used. Testing EEG time series showed that the apha
sf coupling domain provides highly significant coupling peaks in the bispectrum.
Coupling frequencies and biphases may be extracted from 1-D methods. These I-D
methods provide therationalefor sinusoida modding of EEG coupling [10, 11].

Future research may includefaster algorithms for computation of the cumulants.
Schemes may be provided to speed up the calculation of the cumulant projections.
Algorithms neaed to be devised for identification of systems aong a bispectra dice.
The concept of quadratic and Volterrafiltering is dedt with in this thesis. For weskly
nonlinear systems adaptive Volterra filtering within a frequency dice may be dl that
is needed for improved system identification performance. Multichannel agorithms
might al so be devised.

In the brain wave relm extensive new studiescould look at phase coupling from
cerebra surface or depth recordings. These methods could also be agpplied to
thalamocortical relays to check if coupling originates within pacemakers that drive or
extinguish the alpha rhythm. Experiments could be performed at this juncture to vary
the spectra beta power independently of adpha. The object would be to discover if
inter-band coupling deteriorates under those conditions. Also it would be interesting
to see if the classical Lopes da Silva oscillatory mode of the apha rhythm could be
altered ever so dightly to incorporate higher harmonics[12].
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Appendix A: The Form of Projected Cumulantsfor Quadratically
Phase Coupled Sinusoids

Here we show the form projected cumulants of a time series containing quadrati-
cally phase coupled snusoids plus noise. Consider an arbitrary continuous third order
cumulant series, C(t,v), for asingle triad of quadratically phase coupled snusoidsin
non-Gaussian and its 2-D Fourier transform, B(w,,,). It isdesired to isolate the pro-
jected cumulants corresponding to a radid dice o the 2-D bigpectrum
B(wxcos9,wsind) a angle 6 with respect to the t axis. In this context o is the radid
frequency. Assume a bispectral pesk for the triad lies dong this 1-D radid dice a&
Bg(w) = B(mxos8,msinG) . To compute the Radon transform, the cumulants are
parametrized so that the axes are rotated by 0, i.e., new axest and v through the uni-
tary transformations

7="1cos0 T vsin® (A1)

v = —15in6 + vcos0 (A2)

Taking the Radon transform involves subgtituting the inverse of the parametrization
above to our cumulant function and then forming the projections, Co(), along lines
normdl to the new axis, 1, i.e., parald to v. The expression for the triad of quadrati-
caly coupled sinusoids in third order white noise is parametrized by using theinverse
unitary transformation. The cosine terms are expressed in terms of their congtituent
complex exponential factors and terms in T and v are collected together for each real
snusoid as 2-D snusoids are eadly factored. The subsequent integration yields the
following sat of projected cumulants for the case of a single quadratically coupled
sinusoidal triad:

Co(7) = cos[(®; cos 8 F w, 5N 6)T — 7] 8(0; SN 6 — yc0SH) (A3)
+ cos[(®w,cos 6 + w; SN 9)% —v] d(w,sin 6 — ®; cos B)
+ cos[(w;c0S 6 — @, SN )T — 7] 5(w35in 8+ w,cos 6)
+ cos[(w,cos 6 — w3 sin 9)% —v] 8(w,sin 8 + w3 cos 0)
+ cos[((23c058 — ;SN 8)T — 1] 8(w35in 6 + ; cos 0)
+ cos[(®;c0S 8 — @; SN B)T — ¥] 8(w; SN 6 + w3cos 0) + B 8(7)

The presence of a Kronecker delta function multiplying eech term in the pro-
jected cumulants indicates that there is a reduction from Sx terms to one term per




triad on certain slices after taking projections. For the dlice within the non-redundant
sector of the autobispectrum, that is, between 0 <0 I w/4, we pick the projection axis
angle 0 to satisfy w;Sine— wycosd =0 so that d(w;sine - w,cosB)=1. The last five
sinusoidal terms of (A3) vanishleaving only

Co(T) = cos[® T~y] + B3(t)  for0 < @ <n/4 (Ad)

where @ = m;cos0 * w,sind is the equivalent radia frequency. In this context we
have shown projected cumulants for a time series with a single triad of sinusoids
reduce to one 1-D sinusoid from six 2-D sinusoids. Thisisfor projections normal to
an angle 0 for apeak at Sg(w).



Appendix B: Simulation Results

Table Al EEG Coupling Frequency Estimates: 1-D SKEW-MUSIC: Ss:1-3

EEG COW A
1-D SKEW-MUSIC: Subjects: 1-3
Modd Order
S#  Electrode 2 4
SYM/SKW | Deviation | SYM/SKW | Devidtion |

1 P3 SKW 00 BOTH 00 |
1 P4 BOTH 976 BOTH 976
1 C3 SYM 976 SYM 0.0

1 C4 SYM 976 SYM 976
1 01 SYM 00 SKW 0.0

1 02 SYM 00 SKW 0.0

2 P3 SYM 196 SYM 0.976
2 P4 SYM 5.86 SYM 5.86
2 C3 SYM 976 SYM Q0

2 C4 SYM 976 SYM 976
2 01 SYM 00 SKW 00

2 02 SYM 00 SKwW Qo0

3 P3 SKW Q0 BOTH 1.96
3 P4 BOTH 976 BOTH 976
3 C3 SYM 976 SYM 0.0

3 C4 SYM 976 SYM 976
3 01 SYM 0.0 SKW 0.0

3 02 SYM 0.0 SKW 0.0




TableA2 EEG Coupling Frequency Estimates. 1-D SKEW-MUSIC: Ss. 4-7
1-D SKEW-MUSIC: Subjects: 4-7
Modd Order
S#  Electrode 2 4
- SYM/SKW [ Deviation | SYM/SKW | Deviation
[ 4 ] P3 SYW 19 SYM 97
4 P4 KXW 4.887 XKW 6.836
4 C3 SYM 1.96 SYM 0.976
4 c4 SYM 976 SYM 976
4 01 SYM 1.95 SYM 0.976
4 02 SYM 7815 SYM 6.839
5 P3 KXW 0.0 KXW 0.0
5 P4 KXW 293 XKW 293
5 C3 SYM 00 KXW 0.0
5 @73 SYM 293 SYM 293
5 01 SYM 0.976 SYM 0.976
5 02 KXW 0.976 KXW 0.976
6 P3 SYM 0.976 SYM 0.0
6 P4 SYM 976 SYM 976
6 C3 KXW 0.0 SYM 0.976
6 @73 KXW 0.0 SYM 976
6 01 BOTH 0.976 KXW 0.0
6 02 SYM 0.976 KXW 0.0
7 P3 SYM 0.0 SYM 1.956
7 P4 SYM 976 SYM 976
7 C3 SYM 1.956 SYM 0.0
7 4 SYM 1.956 SYM 976
7 01 SYM 0.976 XKW 0.976
7 02 SYM 0.976 KXW 0976
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Table A.3 Low Error Estimates of Biphases for EEG data from 1-D SKEW-

ESPRIT
EEG Biphase Estimates Using
1-D SKEW-ESPRIT
Subject | Electrode | Order FFT- SKEW.- ESPRIT Deviation
Estimate Estimate

1 P3 2 66.244 60.117 6.127
1 P4 2 82.82 80.717 2.103
1 C3 2 38.935 45.434 -6.499
1 C4 4 5.369 4.066 1.303
2 01 2 24911 29.266 -4.355
2 C3 4 46.716 41.686 5.03
3 P3 4 66.57 71.04 -4.47
3 P4 2 73.782 61.968 11.815
3 02 2 41.347 34.348 6.999
4 P4 4 72.377 68.509 3.868
4 C3 2 .147 1.092 -0.945
4 C4 2 23.402 23.823 0.421
4 02 4 73.979 67.302 6.667
6 P3 4 4.307 6.393 -2.632
6 P4 2 14.639 18.01 -3.371
6 C3 2 59.729 50.058 9.671
6 01 2 74.624 61.813 12.811
6 02 2 58.846 51.246 7.6

7 P3 4 19.335 17.645 1.69
7 P4 4 20.069 24.423 -4.354
7 C3 2 61.987 53.294 8.693
7 02 4 23.282 22.025 1.257
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FigureA.2  Parietal Hit Rate Profile: Autoregressive Method
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Figure A.3  Parietal Hit Rate Profile: SKEW-PRO-ESPRIT: 36x15 Matrix Dimen-
sion
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Figure A.4  Parietal Hit Rate Profile for Triple Kronecker Product Method: 36x15
Matrix Dimension
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Figure A.5  Central Hit Rate Profilefor 2-D SKEW MUSIC: 30x30 Matrix Dimen-
sion
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FigureA.6  Central Hit Rate Profile: Autoregressive Method
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Figure A.7  Centra Hit Rate Profile: SKEW-PRO-ESPRIT: 16x10 Matrix Dimen-
sion
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Figure A.8  Central Hit Rate Profilefor Triple Kronecker Product Method: 25x10
Matrix Dimension
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FigureA.10 Occipital Hit Rate Profile: Autoregressive M ethod
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Figure A.ll Occipital Hit Rate Profilee SKEW-PRO-ESPRIT: 16x10 Matrix
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FigureA.12 Occipital Hit Rate Profilefor Triple Kronecker Product Method: 36x15
Matrix Dimension
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Figure A.13 Parietal Hit Rate Profile Results from SKEW-PRO-ESPRIT Right
Singular Vectors: 16x10and 25x10 Matrix Dimensions
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Figure A.14 Central Hit Rate Profile Results from SKEW-PRO-ESPRIT Right
Singular Vectors: 16x10and 25x10 Matrix Dimensions
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Figure A15 Occipital Hit Rate Profile: Results from SKEW-PRO-ESPRIT Right
Singular Vectors: 16x10 and 25x10 NArix Dimensions
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