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ABSTRACT 

Composite linear and quadratic systems produce three-wave coupling when 
stimulated by random-phase input sinusoids. Due to the non-linearity of the system 
the output frequencies are arithmetically related to the input. Using third order cumu- 
lant statistics and their associated bispectrum, techniques are devised based on phase- 
insensitive matrix structures for detection and frequency estimation of coupling fre- 
quencies. The separation of the third order cumulant series into symmetric and 
skew-symmetric portions allows us to exploit their characteristic eigendecompositions 
for frequency estimation. After symmetrization, biphases can be easily extracted as 
coefficients of the cumulant sequence. Using a generalized eigenvector representation, 
we can relate symmetric and skew-symmetric bases by a subspace rotation algorithm. 
Biphases can be estimated directly from generalized eigenvalues of the matrix pencil 
formed by symmetric and skew-symmetric matrices. The dimensionality of our 
matrices can be reduced through the use of cumulant projections which yield a slice of 
the bispectrum. The Radon transform procedure is related to bispectral processing 
through an isotropic radial slice Volterra filter. The compact third order Kronecker 
product matrix formulation and algorithms for coupling frequency estimation can also 
be converted for use in biphase estimation. Simulations showing the performance of 
the above procedures are also presented for both synthetic and biomedical time series. 
These include the detection and estimation of specific frequencies exhibiting non- 
linearities in electroencephalographic (EEG) data. 





Page 

CHAPTER 4 - THE 1-D BISPECTRUM 70 

4.1 Introduction 70 
4.2 Motivating the Fourier-Slice Bispectrum 7 1 
4.3 The ESPRIT Algorithm: The Generalized Eigenvalue Approach 7 3 
4.4 Symmetric and Skew-Symmetric Subspaces- 

A Rotational Invariance Approach 75 
4.5 Simulations of 1-D SKEW-MUSIC 77 
4.6 List of References 84 

CHAPTER 5 - BIPHASE ESTIMATION AND THE TRIPLE KRONECKER 
PRODUCT MATRIX 85 

5.1 Introduction 85 
5.2 Derivation 85 
5.3 Comparing the Structure of the 2-D SKEW-MUSIC Matrix and 

the Triple Kronecker Product Matrix 89 
5.4 Simulations 9 1 
5.5 List of References 102 

CHAPTER 6 - THE EEG AND THREE-WAVE COUPLING 103 

6.1 Introduction 
6.2 Spectral Considerations and Problem Statement 
6.3 Bispectral Studies 
6.4 Alpha-Beta Interrelations in the EEG 
6.5 Coupling and Synchronization I: 

Loss of Phase Information in Narrowband Gaussian 
Models of Alpha Rhythms 

6.6 Coupling and Synchronization 11: 
Augmenting the Oscillatory Model of Alpha Generation 

6.7 Key Studies of Gaussianity of the EEG 
6.8 The Hinich Tests for Gaussianity and Linearity 
6.9 Justification for Parametric Modeling of Alpha Coupling 
6.10 List of References 

CHAPTER 7 - EEG SIMULATIONS 1 27 

7.1 Introduction 
7.2 Materials and Methods 
7.3 Qualifying the Data for Inclusion in the Test Sample Set 
7.4 Algorithm Specifications 
7.5 Results 
7.6 List of References 



Page 

CHAPTER 8 - DISCUSSION 

8.1 EEG Signal Processing Issues and Insights 
8.2 Conclusions and Future Research Suggestions 
8.3 List of References 

APPENDICES 

Appendix A: The Form of Projected Cumulants for Quadratically 
Phase Coupled Sinusoids 

Appendix B: Simulation Results 





Table Page 

5.3 Biphase Estimates Using Modified Third Order Cumulant Matrix; 
Exponentially Distributed Noise-- N=8192; 
Varying Both Biphase and SNR .......................................................................... 98 

6.1 Major Divisions of the EEG Spectrum to 23 Hz ............................................... 105 

6.2 Activites with Harmonic Beta Components; Adapted from [15] ...................... 113 

7.1 2-Scores for Level of Gaussianity based on Hinich Test: 
Based on Normal Approximation to X2; dof = 2048 ........................................ 130 

7.2 Interquartile Ranges for Level of Linearity based on Hinich Test: 
Based On Estimates for Noncentrality Parameter; Bilateral 
Electrode Derivations .......... .......... ........ ........ ................................. ............... .... 13 1 

7.3 Interdecile Ranges for Level of Linearity based on Hinich Test: 
Based On Estimates for Noncentrality Parameter, Bilateral 
Electrode Derivations ...... ................ .. ........ .......... ............ ...... ........................... .. 13 1 

7.4 Estimates of Noncentrality Parameter: Hinich Test for Nonlinearity ............... 131 

7.5 Summary Statistics for 1-D SKEW-MUSIC EEG Coupling Frequency 
Estimates .......................................................................................................... 143 

7.6 Summary Statistics 1-D SKEW-ESPRIT EEG Biphase Estimates ................... 143 

Appendix 
Table 

A.l EEG Coupling Frequency Estimates: 1-D SKEW-MUSIC: Ss: 1-3 ................ 157 

A.2 EEG Coupling Frequency Estimates: 1-D SKEW-MUSIC: Ss: 4-'7 ................ 158 

A.3 Low Error Estimates of Biphases for EEG data from 1-D SKEW-.ESPRIT .... 159 



LIST OF FIGURES 

Figure Page 

1.1 Linear and Nonlinear Output from Retinal Horizantal Cell from 
Sinusoidal Input [5] ............................................................................................. ..3 

1.2 Coupled linear and quadratic system functions and their output 
time series .............................................................................................................. 6 

1.3 Domains of the Discrete Bispectrum Including Slices . . Demarcating Cntical Sectors ................................................................................ 12 

1.4 Time Domain (Correlative) Scheme for Finding Zeroth, First 
and Second Order Wiener Kernels from Mmarelis [5] ..................................... 15 

1.5 Frequency Domain Scheme for Finding Wiener Kernels from 
Marmarelis [5] ..................................................................................................... 18 

2.1 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
No Added Noise; Order=8; Biphase = 0 degrees ................................................. 34 

2.2 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
No Added Noise; Order=8; Biphase = 60 degrees ............................................... 34 

2.3 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise, Var=l; Order=8; 
Biphase = 0 degrees ............................................................................................ ..35 

2.4 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise; Order=8; 
Biphase = 60 degrees ............................................................................................ 35 

2.5 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise, Var=l; Order=12; 
Biphase = 0 degrees .............................................................................................. 36 



Figure Page 

2.6 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise; Order=12; 
Biphase = 60 degrees ............................................................................................ 36 

2.7 Autoregressive Modeling of Phase-Coupled Sinusoids; No Added Noise; 
....................................... Order=6; Symmetric Cumulants; Biphase=60 degrees 38 

2.8 Autoregressive Modeling of Phase-Coupled Sinusoids; No Added Noise; 
............................. Order=6; Skew-Symmetric Cumulants; Biphase=60 degrees 38 

2.9 Autoregressive Modeling of Phase-Coupled Sinusoids; Added Exponential 
............ Noise, Var=l .O; Order=6; Symmetric Cumulants; Biphase=60 degrees 39 

2.10 Autoregressive Modeling of Phase-Coupled Sinusoids; Added Exponential 
.................. Noise; Order=6 Skew-Symmetric Cumulants; Biphase=60 degrees 39 

2.1 1 Symmetric and asymmetric signal shapes; Solid line: Symmetric Signal, 
Biphase=Oo -- Zero Vertical Asymmetry, Non-Zero Horizontal 
Skewness; Dotted line: Asymmetic Signal, Biphase=90° -- 
Non-Zero Vertical Asymmetry, Zero Horizontal Skewness ............................... 48 

3.1 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; Biphase = 
0'; SNR=14.77 dB; Gaussian Noise; N=8 192; 

................................................................................................ Peak at (.34,.1) Hz 59 

3.2 2-D SKEW-MUSIC Bispectrum fiom Skew-Symmetric Cumulants; 
Biphase = 0'; SNR=14.77 dB; Gaussian Noise; N=8192; 
Peak at (.29,.2) Hz ................................................................................................ 59 

3.3 2-D SKEW-MUSIC Bispectrum fiom Symmemc Cumulants; 
Biphase = 30"; SNR=14.77 dB; Gaussian Noise; N=8192; 
Peak at (.34,. 1) Hz ............................................................................................... 60 

3.4 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 30'; SNR=14.77 dB; Gaussian Noise; N=8192; 
Peak at (.36,.08) Hz ............................................................................................. 60 

3.5 2-D SKEW-MUSIC Bispectrum fiom Symmetric Cumulants; 
Biphase = 60"; SNR=14.77 dB; Gaussian Noise; N=8192; 

............................................................................................... Peak at (.34,.1) Hz 61 

3.6 2-D SKEW-MUSIC Bispectrum fiom Skew-Symmetric Cumulants; 
Biphase = 60"; SNR=14.77 dB; Gaussian Noise; N=8192; 
Peak at (.34,.1) Hz ............................................................................................ ..61 



Figure Page 

3.7 2-D SKEW-MUSIC Bispectrum from Symmemc Cumulants; 
Biphase = 30'; SNR=24 dB; Gaussian Noise; N=4096; 
Peak at (.34,. 1) Hz ....... .. ............ .................. ...... .. .... ...... .. .. .. .. .. .. ...... ...... ........ ...... 62 

3.8 2-D SKEW-MUSIC Bispectrum from Skew-Symmemc Cumu1an.t~; 
Biphase = 30'; SNR=24 dB; Gaussian Noise; N=4096; 
Peak at (.34,.1) Hz ......................................................................................... ...... 62 

3.9 2-D SKEW-MUSIC Bispectrum from Symmemc Cumulants; 
Biphase = 60'; SNR=24 dB; Gaussian Noise; N=4096; 
Peak at (.34,. 1 1) Hz ... .. .... .. .. .... ...... .. .. .... .. .. .. .. ... . .. .... .. .... ...... .. .. ... . .. . , ...... ...... .... .. . -63 

3.10 2-D SKEW-MUSIC Bispectrum from Skew-Symmemc Cumula~lts; 
Biphase = 60'; SNR=24 dB; Gaussian Noise; N=4096; 
Peak at (.34,.11) Hz ............................................................................................ 63 

3.1 1 2-D SKEW-MUSIC Bispectrum from Symmemc Cumulants; 
Biphase = 15'; SNR=4.77 dB; Exponentially Dismbuted Noise; 
N=8 192; Peak at (.34,. 1) Hz ................................................................................ 64 

3.12 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 15'; SNR=4.77 dB; Gaussian Noise; N=8192; 
Peak at (.31,.1) Hz ............................................................................................... 64 

3.13 2-D SKEW-MUSIC Bispectrum from Symmemc Cumulants; 
Biphase = 75'; SNR=4.77 dB; Exponentially Dismbuted Noise; 
N=8192; Peak at (.18,.12) Hz .............................................................................. 65 

3.14 2-D SKEW-MUSIC Bispectrum from Skew-Symmemc Cumulants; 
Biphase = 75'; SNR=4.77 dB; Gaussian Noise; N=8192; 
Peak at (.34,. 1) Hz .............................................................................................. 65 

4.1 Projected Cumulants for Biphase of 15' 
(Along fl=f2 Axis) ........... ........ .................. .. ...... .............. ............ .... . . .... .. ...... .. ..... 79 

4.2 MUSIC spectrum from Projected Cumulants for Biphase of 15' ....................... 79 

4.3 Projected Cumulants for Biphase of 45' ............................................................. 80 

4.4 MUSIC spectrum from Projected Cumulants for Biphase of 45' ....................... 80 

4.5 Projected Cumulants for Biphase of 60' ............................................................. 81 

4.6 MUSIC spectrum from Projected Cumulants for Biphase of 60' ....................... 81 



Figure Page 

............................................................. 4.7 Projected Cumulants for Biphase of 75' 82 

...................... 4.8 MUSIC spectrum from Projected Cumulants for Biphase of 75' 82 

5.1 Standard Swindlehurst and Kailath algorithm; Biphase = OO; 
.......................... SNR = 4.77 dB; Gaussian Noise; N4096; Peak at (.35,.1) Hz 92 

5.2 Standard Swindlehurst and Kailath algorithm; Biphase = 0'; 
SNR = 4.77 dB; Exponentially Distributed Noise; N=4096; 
Peak at (.34,. 12) Hz ............................................................................................. 92 

5.3 Standard Swindlehurst and Kailath algorithm; Biphase = 30'; 
.......................... SNR = 4.77 dB; Gaussian Noise; N4096; Peak at (.34,. 1) Hz 93 

5.4 Standard Swindlehurst and Kailath algorithm; Biphase = 30°; 
SNR = 4.77 dB; Exponentially Distributed Noise; N=4096; ] 

............................................................................................. Peak at (.33,.11) Hz 93 

5.5 Standard Swindlehurst and Kailath algorithm; Biphase = 90°; 
.......................... SNR = 4.77 dB; Gaussian Noise; N=4096; Peak at (.35,.1) Hz 94 

5.6 Standard Swindlehurst and Kailath algorithm; Biphase = 90°; 
SNR = 4.77 dB; Exponentially Distributed Noise; N=4096; 

.............................................................................................. Peak at (.33,.13) Hz 94 

5.7 SKEW-PRO-ESPRIT adaptation of Swindlehurst and Kailath algorithm; 
Symmetric Cumualants; Biphase = 0'; SNR = 4.77 dB; 
Gaussian Noise; N=4096; Peak at (.34,.1) Hz ...................................................... 99 

5.8 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and Kailath 
algorithm; Skew-Symmetric Cumulants; Biphase = 0'; SNR = 
4.77 dB; Gaussian Noise; N=4096; Peak at (.37,. 13) Hz .................................... 99 

5.9 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and Kailath 
algorithm; Symmetric Cumualants; Biphase = 60'; SNR = 
4.77 dB; Gaussian Noise; N4096; Peak at (.35,.08) Hz .................................. 100 

5.10 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and Kailath 
algorithm; Skew-Symmetric Cumulants; Biphase = 60'; SNR = 

.................................... 4.77 dB; Gaussian Noise; N4096; Peak at (.34,. 1) Hz 100 

5.1 1 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and Kailath 
algorithm; Symmetric Cumualants; Biphase = 60'; SNR = 
4.77 dB; Exponentially Distributed Noise; N4096; Peak at (.35,.08) Hz. ...... 101 



Figure Page 

5.12 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and Kailath 
algorithm; Skew-Symmetric Cumulants; Biphase = 60'; SNR = 
4.77 dB; Exponentially Dismbuted Noise; N=4096; Peak at (.34..1) Hz ......... 101 

6.1 The International 10-20 system for positioning of electrodes [2] ..................... 107 

..................... 6.2 Segment of EEG Time Series Data from S 1 0 1  electrode; 1 sec 108 

6.3 Power Spectral Density from 0 1  Time Series Data .......................................... 108 

....................... 6.4 Segment of EEG Time Series Data from S1 P3 electrode; 1 sec 109 

6.5 Power Spectral Density from P3 Time Series Data ........................................... 109 

6.6 Long Term EEG Spectrum from Ss 1 & 3: Containing 
Critical EEG Spectral Constituents: 1 . ) White Noise "Floor"; 
2.) Pink Noise: l/f Type Noise Sloping Contour; 
3.) Peaks Which Are Colored or Narrowband Phenomenon .............................. 110 

.......................................... 7.1 EEG Band-Band Coupling Regions or Hyperbands 133 

7.2 Biperiodogram: S 1; P4 Derivation; Peak at (10.74.10.74) Hz ......................... 136 

7.3 2-D SKEW-MUSIC: S1; P4 Derivation; 30 x 30 matrix. Skew-Symmetric Cums. 
Signal Subspace Dim: 18; Peak at (10.74,10.74) Hz .......................................... 136 

7.4 S&K Triple Kron . Method: Sl;  P4 Derivation; 25 x 10 matrix. Signal 
........................................................ Subspace Dim:8; Peak at (9.77.10.74) Hz 137 

7.5 SKEW-PRO-ESPRIT: S1; P4 Derivation; 16 x 10 matrix. Skew-Symmetric 
................................... Cums. Signal Subspace Dim: 6; Peak at (8.79.8.79) Hz 137 

.............................. 7.6 Biperiodogram: S7; P3 Derivation; Peak at (8.79.8.79) Hz 138 

7.7 2-D SKEW-MUSIC: S7; P3 Derivation; 25 x 25 matrix. Skew-Symmetric 
Cums. Signal Subspace Dim: 12; Peak at (9.77.9.77) Hz ................................. 138 

7.8 S&K Triple Kron . Method: S7; P3 Derivation; 25 x 10 mamx. Signal 
...................................................... Subspace Dim:8; Peak at (10.74.10.74) Hz 139 

7.9 SKEW-PRO-ESPRIT: S7; P3 Derivation; 16 x 10 mamx. Skew-S ymmetric 
................................... Cums. Signal Subspace Dim: 6; Peak at (8.79.9.76) Hz 139 



Figure Page 

............................. 7.10 Biperiodogram: S6; P4 Derivation; Peak at (7.8 1,7.8 1) Hz 140 

7.11 2-D SKEW-MUSIC: S6; P4 Derivation; 30 x 30 matrix, Skew-Symmetric 
................................. Cums, Signal Subspace Dim: 24; Peak at (7.8 1,7.8 1) Hz 140 

............................ 7.12 Biperiodogram: S7; 0 2  Derivation; Peak at (9.77,8.79) Hz 141 

7.13 SKEW-PRO-ESPRIT: S7; 0 2  Derivation; 16 x 10 matrix, Symmetric Cums, 
Signal Subspace Dim: 6; Peak at (7.81,11.72) Hz ...................................... 14.1 

7.14 1-D Coupling Frequency Estimates: S1 P3 Derivation; 16 x 10 matrix 
..................................... using Symmetric Cumulants; Signal Subspace Dim: 6 144 

7.15 1-D Coupling Frequency Estimates: S7 P4 Derivation; 16 x 10 matrix 
using Symmetric Cumulants; Signal Subspace Dim: 6 ..................................... 144 

7.16 Projected Cumulants from S6: C3 Derivation; Solid: Symmetric.; 
Dotted: Skew-Symmetric; ESPRIT Biphase: 50.06; FFT Biphase: 59.73 ...... 145 

7.17 1-D SKEW-MUSIC Bispectrum from S6: C3 Derivation from Skew-Symmetric 
Projected Cumulants; Signal Subspace: 2; SKEW-MUSIC 
Peak Freq.: 7.81 Hz; FFT Peak: 7.81 Hz ............................................................ 145 

7.18 Projected Cumulants from S7: 0 2  Derivation; Solid: Symmetric; 
...... Dotted: Skew-S ymmetric; ESPRIT Biphase: 22.02; FFT Biphase: 23.28 146 

7.19 1-D SKEW-MUSIC Bispectrum from S7: 0 2  Derivation from Symmetric 
Projected Cumulants; Signal Subspace: 2; SKEW-MUSIC 
Peak Freq.: 10.74 Hz; FFT Peak: 9.77 Hz.. ...................................................... .I46 

7.20 Projected Cumulants from S3: P3 Derivation; Solid: Symmetric; 
Dotted: Skew-Symmetric; ESPRIT Biphase: 7 1.04; FFT Biphase: 66.57 ...... 147 

7.21 1-D SKEW-MUSIC Bispectrum from S3: P3 Derivation from Skew-Symmetric 
Projected Cumulants; Signal Subspace: 4; SKEW-MUSIC 
Peak Freq.: 2.93 Hz; FFT Peak: 4.88 Hz ........................................................... 147 

7.22 Projected Cumulants from S4: C4 Derivation; Solid: Symmetric; Dotted: 
..................... Skew-Symmetric; ESPRIT Biphase: 23.82; FFT Biphase: 23.4 148 

7.23 1-D SKEW-MUSIC Bispectrum from S4: C4 Derivation from Skew-Symmetric 
Projected Cumulants; Signal Subspace: 4; SKEW-MUSIC 
Peak Freq.: 9.77 Hz; FFT Peak: 8.79 Hz ........................................................... 148 



xiv 

Appendix 
Figure Page 

A.l Parietal Hit Rate Profile for 2-D SKEW MUSIC: 30x30 Matrix Ilimension ... 160 

............................................ A.2 Parietal Hit Rate Profile: Autoregressive Method 160 

A.3 Parietal Hit Rate Profile: SKEW-PRO-ESPRIT: 
................................................................................... 36x15 Matrix Dimension 161 

A.4 Parietal Hit Rate Profile for Triple Kronecker Product Method: 
................................................................................... 36x15 Matrix Dimension 16 1 

A.5 Central Hit Rate Profile for 2-D SKEW MUSIC: 
.................................................................................... 30x30 Matrix Dimension 162 

A.6 Central Hit Rate Profile: Autoregressive Method .............................................. 162 

A.7 Central Hit Rate Profile: SKEW-PRO-ESPRIT: 
.................................................................................. 16x10 Matrix Dimension. 163 

A.8 Central Hit Rate Profile for Triple Kronecker Product Method: 
.................................................................................... 25x10 Matrix Dimension 163 

A.9 Occipital Hit Rate Profile for 2-D SKEW MUSIC: 
30x30 Matrix Dimension ................................................................................... 164 

......................................... A.10 Occipital Hit Rate Profile: Autoregressive Method 164 

A. 1 1 Occipital Hit Rate Profile: SKEW-PRO-ESPRIT: 
.................................................................................. 16x 10 Matrix Dimension. 165 

A.12 Occipital Hit Rate Profile for Triple Kronecker Product Method: 
................................................................................... 36x15 Matrix Dimension 165 

A. 13 Parietal Hit Rate Profile: Results from SKEW-PRO-ESPRIT Right Singular 
................................................. Vectors: 16x 10 and 25x10 Matrix Dimensions 166 

A.14 Central Hit Rate Profile: Results from SKEW-PRO-ESPRIT Right Singular 
................................................. Vectors: 16x10 and 25x10 Matrix Dimensions 166 

A.15 Occipital Hit Rate Profile: Results from SKEW-PRO-ESPRIT Right 
.................................. Singular Vectors: 16x 10 and 25x 10 Matrix Dimensions 167 





CHAPTER 1 
INTRODUCTION 

"The question of linearity of a system is dependent on the level of hierarchy 
considered." "r 

1.1 Natural and Man-Made Occurrences of Three-Wave Coupling 

Three-wave coupling occurs in a composite linear and quadratic system. Two 
random phase input sinusoids become phase-locked to a third sinusoid which is gen- 
erated in a non-linear system. In three wave coupling or other kinds of wave-wave 
interactions, energy is transferred from one or more sinusoids to surn and difference 
sinusoids whose frequencies and phases are arithmetically related to the input frequen- 
cies and phases. Examples of three-wave coupling in both natural and man-made sys- 
tems abound. Several case studies follow below. 

For many systems such as plasma in a fusion reactor's (tokamak) edge or shoal- 
ing ocean waves, harmonic generation is referred to as turbulence [I-31. To describe 
the changes in the dynamic frequency content of many physical systems, we can rely 
on the interpretation by Dr. Edward J. Powers, Jr. of the University of Texas at Austin. 
Refemng to fluids and plasma under certain conditions he relates, "In such media, 
departures from thermodynamic equilibrium ... can act as a source of energy for various 
unstable modes or waves. Initially the unstable modes grow in a linear fashion, then, 
at sufficiently large amplitudes, begin to non-linearly interact. As a result of this 
interaction, energy is transferred from the most unstable modes to newr sum and differ- 
ence frequencies, waves or modes. For this reason, non-linear wave interactions con- 
stitute an important mechanism whereby energy is redistributed from the most 

P. Nunez, The Electric Fie ld  of the Brain, Oxford. New York, 1981, p. 301 



unstable modes to damped waves. This process is often called energy cascading. The 
h a 1  result of the energy cascading process is turbulence which is manifested by 
fluctuations of the relevant physical parameters in both space and time." [4]. 

System physiologists model neural systems, especially sensory transducers, 
which are responsible for energy conversion. Sound and light, as well as other stimuli 
impinge upon appropriate receptors and are converted into electrical energy that can 
be interpreted by higher centers in our'nervous systems. Input and output energy 
spectra cannot be related by a simple linear system model that furnishes gain and 
phase shift alteration. A monochromatic light input to a visual receptor yields output 
at the input frequency plus a double frequency term. This is illustrated in Fig. 1.1 
below where the output of a cell from the retina contains both single and phase-locked 
double frequency terms [5]. 

In man-made sensory systems such as radar, the backscatter from certain materi- 
als such as semi-conductors with non-linear I-V characteristics has new frequency 
components as well [3]. The synthesis of sum-and-difference frequency components 
in the backscatter is explained by a non-linear radar cross-section. Both the received 
and transmitted signal spectra are related by coupled linear and quadratic transfer 
functions inherent in their respective cross-sections and antenna gain characteristics. 
Walton and Jouny discuss and demonstrate the use of methods for multipath and mul- 
tiple reflections off of objects from radar [6]. Due to multiple reflections an object 
may appear to be further away from a radar, because of longer time delays before 
being received. However, multiple reflections are simply phase-locked and delayed 
versions of the primary reflection. It is desirable to have methods to discriminate mul- 
tiple from simple reflections. 

An off-shore tethered oil platform is impacted by the sea waves. The input, sea 
wave, and the surge response of the platform can best be modeled by linear and qua- 
dratic coupled system responses. Quadratic wave drift and linear wave excitation 
schemes provide the best 'fit' between input and output models based on coherence 
studies [4]. 

Other cases of wave-wave interactions appear in optical systems. Optical scien- 
tists experiment with solitons. These are "light pulses so stable they do not spread in 
an optical fiber even after thousands of kilomete rs..." [7]. Optical fibers have to be 
selected so that the trade-offs between dispersion and non-linearity are balanced. 
Modeling the action of the optical fiber on the soliton requires the use of a scheme to 
capture phase shift and harmonic generation together. 

As a final example, consider the electroencephalogram (EEG). The generation 
of the EEG is not well understood. As an unobtrusive measurement of brain function, 



BIPOLAR 
H-CELLS 

KERNEL- PREDICTED RESPONSES 

, Ih21 NONLINEAR COMPONENT 

Figure 1.1 Linear and Nonlinear Output from Retinal Horizorital Cell from 
Sinusoidal Input [5] 



the mechanism of EEG generation is not a primary concern to neurologists. Instead 
the EEG problem is a pattern recognition problem to aid neurologists in their diag- 
nosis of patients. The quiescent brain is often characterized by large alpha wave con- 
tent in the region between 8-13 Hz. Often alpha is defined as a complex wave with 
coupling with other frequencies at sub- and supra-harmonic levels. Alpha is not a 
pure sinusoid by any stretch of the imagination. Some individuals show more cou- 
pling to other harmonics than others. In the active brain when alpha blocking or 
desynchronization occurs, the coupling among frequencies is lost. Though coupling is 
lost and the alpha wave disappears, some harmonic energy persists. Through experi- 
mentation it is desirable to discern why some individuals exhibit coupling and other 
do not. Sensitive measures to correlate EEG and arousal state are sought. Develop- 
ment of measures to analyze coupling and the shape of the coupled wiweforms is chal- 
lenging because of the non-stationary character of the EEG. 

The measurement and detection of three-wave coupling is the problem con- 
fronted in this dissertation. Sometimes the detection of three-wave coupling is a prel- 
iminary step along the way to non-linear system identification. Often, sinusoids are 
used as a probe stimulus to detect non-linearities in a system. More often than not, the 
presence of non-linearities helps us to differentiate states of a system. 

Higher order spectra and correlations such as the bispectrum and the third order 
cumulant provide information about three wave coupling. The cross-bispectrum pro- 
vides information about quadratic interactions between input and output sequences. 
The auto-bispectrum shows phase locking among components within a single time 
series. Both preserve phase and can aid in the signal reconstruction problem when no 
phase information is available from ordinary second order power spectra and auto- 
correlation. The higher order spectra are also immune to additive Gaussian noise. 
Often, non-Gaussian signals are immersed in Gaussian noise so that the signal detec- 
tion by way of the bispectrum avoids performance deterioration b,y contaminating 
noise. In addition non-Gaussian random processes require correlation information 
beyond the second order for a completely adequate description of their statistics. 

In this thesis several high performance methods for detection of quadratic phase 
coupling among sinusoids immersed in additive Gaussian and non-Gaussian noise are 
designed. These methods work directly with the third order cumulant sequence. They 
furnish information about coupling frequencies and the relative phase shift among 
constituent sinusoids. These phase shifts relate directly to waveform dispersion and 
generate shape information. 

These methods are then applied to the EEG or brain wave time: series recorded 
from the scalps of human subjects. A key goal in this research is to use these 



algorithms with real or naturally occumng data. The EEG is often considered to be 
strictly Gaussian with limited nonlinearities or frequency couplings. As the third 
order cumulant sequence is insensitive to Gaussian noise, the algorithms should easily 
detect the presence of coupled sinusoids and estimate the coupling frequencies. 

1.2 Three-Wave Coupling, the Bispectrum and System Theory 

Higher order spectra have a role in the description of systems generating non- 
linear output from random input data. Consider a linear time-invariant (LTI), HL(m), 
with pure random phase sinusoidal input, 

x(n) = C Amexp[ j(%n + @,)I (1.1) 
m 

where o, are individual frequencies with their associated amplitudes A, and phases 
Q,. We may assume that the phases are randomly distributed over the interval 
[O, 2x1. Then the output of this system, yL(n) is merely a phase shifted, amplified ver- 
sion of the input signal. Specifically there are no interactions among the individual 
frequency components upon output 

where 8, = arg ( HL(a) } + Qm and B, = I HL(am) I A,. Though the phases and 
amplitudes have been altered upon output, the phase characteristic still possesses a 
random character. Individual phase terms do not enter into any deterministic relation 
with one another. So in the linear case the spectral powers at two different frequen- 
cies are independent of one another. 

On the other hand if the same collection of random phase sinusoids is passed 
through a higher order system, such as a quadratic system, no longer do the phases 
retain a totally random character as in Fig. 1.2. In this figure the higher order system 
function, H Q ( ~ ~ , W ) ,  otherwise known as the 2nd order Volterra frequency domain 
kernel, imposes a specified structure among the sinusoids. Here the subscript " Q  
signifies quadratic. The quadratic system portion of the coupled system output, yQ(n) 
is: 



Figure 1.2 Coupled linear and quadratic system functions and their output time 
series 



At this point we note that contributions to each frequency value om depend on 
the strength of quadratic system function at each frequency pair (k, 1) such that 
k + 1 = m. Frequency components sum together to create new components at new fre- 
quencies through the interactive effect. New frequency terms synthesized from this 
action are called the coupled frequencies. For higher order Volterra frequency terms 
strength of the couplings are among three, four, etc. frequency components. The out- 
put can be written in the form 

The coefficient, Qd, is the quadratic amplitude coefficient and determines strength of 
the generated harmonics [5,8] and 

In the three wave coupling scenario, we need to consider that the linear and qua- 
dratic systems are coupled together. Examining how phase coupled harmonic genera- 
tion occurs, suppose two sinusoids 

are input to this coupled linearfquadratic system. To exhibit three wave or quadratic 
phase coupling for real signals, the output of a system with linear and 2nd order non- 
linear kernels, y(n), has three sinusoids, 

The first two sinusoids represent the linear system output. The third sinusoid is newly 
generated from the quadratic system function at a single frequency pair combination. 
Once again amplitude is determined by the amplitude of the system kernel HQ(k,l), 
i.e. B, = Y2 1 HQ(k, 1) 1 AkAl. The frequency and phase of the quadratic or synthesized 
frequency component is related to the input sinusoids' frequencies and phases in the 
following manner when three wave coupling occurs: 

Here & is a constant linear offset which may be zero. Though the linear system out- 
put has random phases (the first two sinusoids), there is a third sinusoid present in the 
output whose phase is a result of a quadratic interaction between the first two. Here 



we have a case of three wave coupling. Frequencies and phases are said to be related 
in an arithmetic fashion so that the third sinusoid's arguments may be the difference 
of the first two as well as their sum. As a result of the non-linear response the phases 
become coupled and there is a deterministic relationship among phase components. 
The cubic kernel determines the intensity of the coupling among four frequencies, for 
example. 

The detection of the phase coupling in the output time series cannot achieved 
using the power spectrum as this statistic is insensitive to phase relationships among 
sinusoids. Another quantity known as the bispectrum is able to detect coupling. The 
bispectrum Byyy (01, w ) ,  a two dimensional function of frequency, exhibits a peak in 
its region of support at the point ( o l , m )  when there is phase coupling among the 
members of the corresponding frequency triad. The bispectrum is the 2-D Fourier 
transform of the third order autocorrelation or cumulant of the time series, R(k,l), 

For a real-valued zero mean stationary time series, the third order cumulant is defined 
by the expectation of a doubly time lagged triple product, 

As in the case of the power spectral density there is a frequency domain definition of 
the bispectrum [2,9]. 

where 

This is implemented by means of Fourier transforming segments of a time series, 
forming all triple products for each segment and then averaging across all segments as 
discussed in chapter 2. This averaged triple product is called the biperiodogram. 
Note that the frequency decomposition of the third moment of a zero mean random 
process is exhibited by the bispectrum. 

Contrast the bispectrum with the definition of the power spectrum, P(o). This is 
defined as the Fourier transform of the autocorrelation function, R(k) or 



For a stationary time series, y(t), R(m) is the expectation over time of the second order 
lagged product, i.e. E(y(t)y(t+m)) where y(t) has zero mean. An alternate definition 
of the power spectrum is the following 

where Y(o) represents the Fourier transform of the time series in question. The power 
spectrum is said to express the frequency diversity in the second order moment of a 
time series, i.e. ~ ( ~ ~ ( t ) ) .  

Unlike the power spectrum, the bispectrum is a complex valued quantity and has 
a phase term. Kim, Beall et al. define the biphase as sum of the constituent phases, 

when q = ol + 02 [2]. This relationship is the same as the relative phase offset of 
the output sinusoids from the coupled linear and quadratic system. The quadratic 
phase coupling phenomenon discussed above where the biphase is zero is the most 
cited case in the literature. If @ ( q )  is coupled to the other two random phase fre- 
quency components such that there is always a constant offset, either negative or posi- 
tive, between the sum @(ol) + @ ( q )  and @ ( q ) ,  then we say that there is a non-zero 
biphase. An example of a system with non-zero biphase is the squarer with delay T, 
i.e. y(n) = x2(n-T). When this occurs, the quadratic kernel has the following 
representation, HQ(%,q) = exp[-j(% + q ) ]  [13]. When no such phase shift occurs, 
then we have a simple squarer, y(n) = x2(n) with HQ(%,q) = 1. 

We note that the frequency decomposition of the third moment for a zero mean 
random process is exhibited by the bispectrum. So summing across the entire bispec- 
tral domain gives us the third order moment, E(x3(n)), of a random process. This is 
analogous to the summed power spectrum revealing total power. By default when we 
refer to the bispectrum, we mean the autobispectrum, B(ol,%) e Byyy(01,02) as 
above. A critical quantity involved in ascertaining the degree of coupling between 
input and output time series is the cross-bispectrum, Bxxy(01,02),. This entity is 
defined as B,,,(ol , w ) = ~ ( ~ ( o l ) ~ ( o z ) ~ *  (01+02)). Details about the relevance of 
the cross-bispectrum appear later in this manuscript under consideration for system 
identification. 

Another quantity called the squared bicoherence, bic2(01,02) or simply the 
bicoherence is the normalized bispectral measurement. The bispectral magnitude is 
normalized by the power spectral values at the respective frequency triad, 



2 bic ( a l ,  m )  = 
I ~ ( o l ? m )  1 

P(w1) P ( m  )P(w 

At this point it is worthwhile to examine another important property of the third 
order cumulant and the bispectrum: the immunity of these measures t:o additive Gaus- 
sian noise. This property can be best examined by focusing on the definition of the 
cumulant a little more closely. 

1.3 Properties of Higher Order Cumulants 

Considering a random variable (r.v.) x with characteristic function, @,(a), if all 
the moments up to order k exist, then the k-th order cumulant, yi, also exists and is 
defined as the k-th order coefficient in the Taylor series expansion of @,(a): 

" ( i ~ > k  1nQx (w) = lnE {dm' ) = x - 
k=O k ! 

Note if we have a Gaussian r.v. with mean p and variance, 4, then 

We note that after taking logarithms and comparing with the equations above, it is 
clearly seen that the Gaussian distribution has all cumulants equal to zero fork > 2. 

We may expand the expression Taylor series for the cumulants about zero [21], 
for a collection of random variables for the kth-dimensional case, x is a k-dimensional 
vector. Then for all orders up to and including the nth order, we have 

( ~ 1 ,  ' ' .vk) where c~ V k  denotes the cumulants of the random variables, xV' , . . ,xk . 
Typically in random process theory we only examine the case where each ran- 

dom variable is held to a power of unity, i.e. vl=v2= - - . vk=l. NOW we let 
(vl* - * . .vk)- 

C z x ( x l ,  ,xk). The expansion of the equation for the k-dimensional cumu- 
lant depends on combinatorial results. Given the numbers (1,2, ... k), suppose they are 
partitioned in a number of ways where ngp represents the number of groups in a 



partition p. If gp represents the i-th group of the p-th partition, the k-th order joint 
cumulant is defined as 

Giannakis mentions that the cumulants are useful measures of joint statistical depen- 
dency among a collection of r.v.'s [lo]. For second order cumulants the possible par- 
titions of (1,2) are {(1,2)] and {(1),(2)], so that p=2 and ngl=l and ng2=2. As for 
group membership, g;={xl ,x2]; &={xl ] and finally, 
g$={x2]. Therefore, 

For the case where xl=x2=x, then in the case of the third order cumulant, i.e. k = 3, 
the possible partitions of (1,2,3) are { ( 1,2, 3 I, {(1),(2,3)1, {(2),(1,3)1, { (3),(1,2)1 
and {(1),(2),(3)]; so that ngl =1, ng2=ng3=ng4=2, ngs=3. This yields 

For a zero mean random process all terms except for the first disappear. Then for a 
zero-mean stationary random process, the second, c(m), and third order cumulants, 
c(k,l), are respectively, 

c(m) = E{x(n)x(n+m)] (1.25) 

and 

Some important properties of the cumulants are detailed in Giannakis [lo]. Of 
particular interest to us is the fact that if collections of random variables are indepen- 
dent of one anther, then the cumulant of their sum will be the sum of their cumulants. 
If xl , . . ,xn and yl , . . , yn are independent, then 

The symmetry properties of the third order cumulants are well known [8]. 

R(k,l) = R(1,k) = R(-1,k-1) (1 -28) 

This relation partitions the two-dimensional region of support for the two lagged vari- 
ables into six equivalent wedges. As it turns out we need only know the cumulants in 



Region 1: B ( G ~ ,  w?) 

Region 2: B(G?,S)  
Region 3: B ( - q  -c2, q) 
Region 4: B ( q ,  - W ~ - - C ~ )  

Region 5: B(ul ,  - U ~ - L ~ ~ )  

Region 6: B(-wl -c;':,c;l) 

Figure 1.3 Domains of the Discrete Bispectrum Including Slices Demarcating 
Critical Sectors 



the infinite wedge bounded by the lines k=O, k=l and k,l2 0. 

As a consequence of the symmetry property of the cumulants we can show that 
the bispectrum, B(ol , w) also observes its own set of equivalencies 

B(ol,%) = B ( ~ , o l )  = B(ol,+l-%) (1.29) 

Then for real time series there.is an additional symmetry property 

B ( ~ , Q )  = ~*(-al,-%) (1.30) 

These symmetry properties create a set of 12 equivalent sectors in the discrete bispec- 
tral domain. The frequency domain of the discrete bispectrum is shown in Fig. 1.3. 
Coupled with the fact that the bispectnun is also doubly periodic, i.e., 

the bispectrum of real time series is completely described by its values in a triangular 
region bounded by ~ 2 0 ,  0 1 2 w ,  and ol + ~ l x .  This triangular region is shown as 
sector 1 on Fig. 1.3. These sectors are appropriately known as subhmonic sectors 
where ol and w add to form a coupled sinusoid at a frequency greater than each 
separately. Other sectors 3-6 are appropriately called supraharmonic sectors. 

1.4 Identification, Higher Order Spectral Analysis and Vol terra-Wiener Theory 

A distinguishing feature of the linear systems is the fact that the principle of 
superposition holds. A classical application of higher order spectral analysis is the 
identification of non-linear systems. The input and output of a non-linear system may 
be represented in terms of contributions from individual responses of 'linear, quadratic, 
cubic, etc. subsystems. As first formulated by Volterra in the early part of the twen- 
tieth century, the total system response, y(t), may be decomposed into separate exci- 
tations of n-th order kernels by the common input(s). In this manner we see that for a 
single output, y(t), we engender the following Volterra series multiple convolution: 

00 

y(t) = + kl (r)x(t-r) dr (1.32) 
0 



where h , k 1  ( T ~ ) , ~ ~ ( T ~  , ~ 2 , ~ 3 )  are called the kernels of the system. The first order 
term is the convolution integral for a linear system [S]. The time domain kernels 
presented here are the inverse Fourier transforms of the frequency domain Volterra 
kernels in (1.2) and (1.4). In general for an nth order Volterra expansion we have a 
series of integrals to represent the output y at time t. 

Typically, the Volterra series is thought of as a generalization of a Taylor series 
of a function of multiple arguments. The generalization involves the use of function- 
als rather than single arguments as in the Taylor series. The Volterra series is con- 
sidered a functional representation of a system. This functional representation relies 
on the use of several functions defined over a interval of time usually - to some 
given time t. The inputs are functions of time, i.e. some x(t) and by analogy to the 
Taylor series, they replace the powers of multiple variables xy,xq.,x$ found in the 
Taylor series expansion. Coefficients of the Taylor series are analogous to the kernels 
of the Volterra series. Indeed the functional representation of the Volterra series uses 
integrals to find the individual contributions of each kernel in the series. 

Although the Volterra series functional representation is adequate for system 
description in most cases, i.e. where the functional is analytic, it is not a trivial task to 
isolate responses of linear, quadratic, cubic, etc. terms to arrive at individual kernels. 
Kernel calculation is tantamount to system identification and is the goal of research on 
several fronts [3-5,9,11-141. One of the very first endeavors to exploit the use of 
higher order spectra in its analysis of system kernels was the work of Leo Tick in the 
early 1960's [20]. Given a Volterra expansion in the frequency domain for the output 

Y(fm) 

we might use the higher order cross-correlation functions to extract the kernel when 
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Figure 1.4 Time Domain (Correlative) Scheme for Finding Zeroth, First and 
Second Order Wiener Kernels from Marmarelis [5] 



Gaussian noise is  used as an input. Then multiplying (1.36) by x*(w,,,) and taking 
expectations gives 

where k+l=m. Then multiplying (1.36) by X* ( y ) ~ * ( y  ), after taking expectation the 
result is: 

where i+j=k+l=m. 

Using the fact that the Gaussian input is a symmetric function and has no odd 
order moments and the fact that E[wl ~ 2 ~ 3  W ~ I  = E[wl w2] + E[w2w3] + E[w3w4] for 
w, that is Gaussian distributed, we can then arrive at the linear and quadratic transfer 
functions under question thusly: 

Over a half a century after Volterra, Norbert Wiener was able to synthesize a 
new set of kernel functions [15]. Under expectation with Gaussian input, each kernel 
generates a response which is orthogonal to all the other kernels used to represent a 
given system. The system contains a hierarchy of orthogonal functionals with respect 
to a Gaussian input. The functional of the zeroth order (average response), 
Go[ho;x(t:)], is the constant term ho. The traditional linear transfer function forms the 
first order kernel. Then the response functional, Gl [hl ;x(t)], is 

The second order kernel and its functional depend upon the input power spectral 
density, P, and 



Generally, the functional series can be written, 

The functionals are constructed so that the expected value of the product of any 
two equals zero. For systems lacking a kernel above the second order one, the Vol- 
terra kernels and Wiener kernels are identical. Leo Tick's method also relies on 
decorrelating responses from linear and quadratic kernels by using a Gaussian input. 
There are formulae to relate Wiener and Volterra kernels for all orders. The key in 
synthesis of a system representation is to generate stimuli and corresponding kernels 
that yield a complete set of orthogonal functionals. 

The orthogonality condition for the Wiener kernels ensures that we have the best 
representation of the system function in the mean square error sense at each succes- 
sive order in identification. The mean square error between the measured system 

response, i(t), and the true system response, y(t), is minimal. This could be termed 
the completeness property of the Wiener system. The Wiener series also gives the 
best representation with respect to that Gaussian noise. 

Wiener used an expansion in terms of a family of Laguerre functions as ortho- 
normal basis along with a functional representation in terms of Hermite polynomial to 
characterize his system. His students, Lee and Schetzen (1965) devised the cross- 
correlation procedure to decouple linear, quadratic, cubic, etc. functional representa- 
tions. It is analogous to the Gram-Schmidt process for generating an orthogonal vec- 
tor basis in linear algebra. Now the inner product is correlation under expectation. 
The scheme is shown in the figure on the following page. We can present the fre- 
quency version since that is easier to implement than strictly time domain versions. 
There is a savings realized in the computational load [5]. Using the frequency domain 
scheme we can easily see exactly where the cross-bispectrum comes into play. (see 
Figs. 1.4- 1.5 ) 

0. Find the average value ho and subtract it from y(t), call this difference yo(t) 

1. Compute Yo (a) and X(o) via the FFT 

2. Form the product Y ( ~ ) x *  (o) which is the cross-spectrum, Ox, (o) 

3. Using the spectral density of the while noise input find hl (7) by the product, 
(l/P)@, (7) after taking the FFT of Ox, (o). 



Figure 1.5 Frequency Domain Scheme for Finding Wiener Kernels in the 
Frequency Domain From Marmarelis [5] 



4. Take the transform of hl (z) to find HL(o), the linear transfer furiction of the sys- 
tem 

5. Use HL(o) to find the the linear output YL(o) by the product X(o)HL(o). 

6. Subtract the linear response from the total response, Y(o )-YL(o)=Y1(o) 

7. Cross-correlate X(o) with the nonlinear output to get transfer function of qua- 
dratic system, namely 

8. Then the residual quadratic response can be formed thusly 

Y ~ ( 0 1 ~ 0 2 )  = H~(01,02)X(ol )x(02) (1.43) 

This formula is actually the cross-bispectrum normalized by the squared spectral den- 
sity of the input. Other stimuli have been used to generate kernels. True Gaussian 
white noise is a practical impossibility. Other pseudo-Gaussian white noise signals 
have been devised to mimic Gaussian noise. Error analysis has been accomplished 
and detailed in Marmarelis and Marmarelis [5]. 

1.5 Brief History of Non-Linear Applications of the Bispectrum 

Many of the seminal contributions to the early bispectral theory are reviewed by 
David Brillinger 1161. This is augmented by a general outline of non-linear stochastic 
system theory and bispectra which appears in the timeline from Table 1.1. 
Brillinger's interests in higher order spectral analysis arose in part from his professor, 
John Tukey who coined the terms bi-, tri and poly-spectra and rigorously considered 
higher moments of time series spectra [17]. Many important early works from Bril- 
linger considered higher order spectra important for understanding deviations from 
Gaussianity as well as linearity. Glancing at the conventional power spectrum, he 
mentions that the spectra can broken down into elemental constituent time series 
through the use of high order spectra. This related directly to the special property of 
independence of time series and their higher order spectra [18] This was critical for 
the property of noise immunity. Brillinger, along with Van Ness, was responsible for 
the key statistical properties of higher order spectra [18,19]. The itleas of cumulant 
spectra for non-stationary processes was introduced by Brillinger as well. 



Table 1.1 Time Line for Non-Linear Applications of the Bispectrum 

Development 

Spectral Representation of Higher Order 

Moments Considered 

Orthogonal Functional Approach to System 

Identification 

Quadratic Cross-Correlation & System 

Identification 

Quadratic Non-linearities Explored 

Formal Characterization of Higher Order 

Spectral Properties 

Cross-Correlation Approach to Identifying 

Wiener Kernels 

Formal Extension of FFT Analysis to 

Bispectral Methods 

Analysis of Physiological Systems Published 

Tests for Gaussianity and Linearity 

Parametric Bispectrum Estimation 

Shoaling Ocean Waves and Asymmetry 

Quadratic Contributions to Coherency and 

Kernel Computation for General Inputs 

Third Order Cumulant Matrix & Singular 

Value Decomposition 

Discoverer & Date 

Tukey (1958) 

Wiener (1958) 

Tick (1x1 )  

Hasselman, et al. (1%3) 

Brillinger (1x5) & Van Ness (1966) 

Lee & Schetzen (1965) 

Huber, et al. (1971) 

Marmarelis & Marmarelis (1978) 

Subba Rao & Gabr (1980) & 

Hinich (1982) 

Raghuveer & Nikias 

Elgar & Guza (1985) 

Kim & Powers (1988) 

Swindlehurst & 



Wiener considered the problem of non-linear system identification by extending 
the concept of Volterra kernels through the use of orthogonal functionals [15]. In this 
manner unique representations for coupled linear, quadratic, cubic, etc. systems can 
be derived that are uncorrelated for certain stimuli, particularly white noise inputs. As 
discussed above in Section 1.4, higher than second order Volterra kernels are not 
mutually uncorrelated. Tick discovered important cross-correlation theorems for 
higher order spectra which lead directly to the identification of quadratic systems' ker- 
nels or transfer functions 1201. 

Hasselman et al. was one of the first investigators to apply the bispectrum to real 
time series [21.]. He applied the autobispectrum to ocean waves. Hasselman et al. 
related higher order spectral results to fundamental non-linear equations of fluid 
dynamics and made higher order spectral analysis a practical consideration. Later his 
work was expanded by Steve Elgar and R. T. Guza at the Scripps Oceanographic 
Institute [22]. Elgar considered non-linear behavior in water waves at shallower 
depths than Hasselman et al. He found that stationary segments could be obtained 
without sacrificing statistical stability. He charted the progression of coupling fre- 
quencies with depth. Elgar also looked at exactly how the shapes of waves change 
with depth and the accompanying a change in biphase of dominant wave frequencies. 

The consideration of fluctuations of plasma density associated with energy cas- 
cading and turbulence in the edge regions of a tokarnak reactor has been a topic of 
considerable interest [2]. Kim and Powers have extended the kernel method of 
identification by relaxing the assumption that the input to a composite linear and qua- 
dratic system sequence must be Gaussian white noise. Non-Gaussian inputs may also 
be used in his closed form solution involving the solution of two systems of coupled 
equations. They also devised a method for calculating the contribution to total coher- 
ence of the quadratic portion of a composite system [13]. 

Much of the work in applying Volterra methods of identification to neural sys- 
tems as well as a generalized survey of Volterrfliener methods have been accom- 
plished by the Marmarelis brothers [5]. The selection of appropriate alternate white 
noise input sources have been discussed by the authors. These aid in the laboratory 
synthesis of pseudo-white noise sources from binary digital generators. Different 
sources of error introduced from the kernel method are also characterized. These 
authors also consider the characterization of weakly non-linear systems 11 11. They 
authors have devised specialized schemes for each level of identification of the neu- 
rons within the retina of the eye. 

Subba Rao and Gabr as well as Hinich have devised statistical tests for the 
hypotheses of Gaussianity and linearity of a time series under study [23,24]. The test 



for Gaussianity considers the null hypothesis: 

Ho: B(oi,oj) = 0 for all o;, oj. (1.44) 

If the null hypothesis is accepted at given significance level, a ,  then we may say that 
the time series under consideration is Gaussian with confidence level 1-a. For the test 
of Subba Rao and Gabr a restricted region of the bispectrum is selected where the esti- 
mates obey a complex normal distribution. A specified grid of samples are selected. 
A data vector is filled with samples from the grid. The mean vector, i and covari- 
ance matrix, A, are calculated. The complex version of the multivariate Hotellings 
T2 test is utilized. Subba Rao's and Gabr's test allows for adjustment of a correlation 
window. Now frequency points selected beyond a particular separation distance are 
assumed to be uncorrelated. The longer the data vector, the finer the separation 
between frequency points. In the case of the Hinich test the independence of samples 
of the skewnesses (bicoherences) is assumed. For a Gaussian time series the asymp- 
totic distribution of the sum of all data points in domain of bicoherences is said to be 
chi-s,quared distributed with 2N degrees of freedom. Here N is the number of points 
over the entire bispectral domain. 

A time series may be linear whether or not the series is considered Gaussian. A 
second null hypothesis is proposed 

H1:.bic(oi,oj) is constant for all oi,oj (1.45) 

If this is the case, the time series is said to be linear. The reasoning, behind that test 
follows. If a linear system, H(o), is excited by an i.i.d. noise source:, then the output 
spectral density for the time series is 

for all o. The bispectral density is 

Inserting these expressions for the linear system power spectral density and bispectral 
density into the equation for the bicoherence, the result gives 

for all i, j bic(oi,oj) = - 
2x02 

Another multivariate Hotellings T2 is used in the data analysis for Subba Rao. For 
Hinich's test of linearity the distribution of data points in a non-linear time series' 
bispectrum is assumed to follow a non-central chi-squared distri.bution with 2N 



degrees of freedom. The non-centrality parameter is determined from the scaled sam- 
ple mean of the estimated bicoherences. The empirical distribution function of 
bicoherence estimates is compared to the predicted non-central chi-squared distribu- 
tion for tests of linearity (see sect. 6.9). 

No description of the major discoveries of non-linear applications of by the 
bispectrum is complete without detailing several of the parametric methods for cou- 
pling frequency estimation. In 1985 Raghuveer and Nikias published an autoregres- 
sive scheme for estimating coupling frequencies [25]. This publication together with 
contributions from other researchers in HOS was pivotal in launching the recent surge 
of interest in this field. Likewise in 1989 Swindlehurst and Kailath developed an 
eigenstructure approach to the estimation of three wave coupling using the third order 
cumulant matrix [26]. 
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CHAPTER 2 
ALGORITHMS FOR THREE WAVE COUPLING 

DETECTION AND ESTIMATION 

"However it should be emphasized that most of our knowledge of nonlinear 
wave phenomena (real waves in nature, not mathematical abstractions) has 
come about as an extension of the linear picture." "r 

2.1 Introduction 

In chapter 2 we provide background material on the bispectrum and model- 
based measurement of three-wave coupling, particularly the linear autoregressive or 
AR method of Raghuveer and Nikias [I]. This method starts by estimating the third 
order cumulants and then solving a set of linear prediction equations based on a single 
l-D cumulant slice for the autoregressive coefficients. After parametrizing the system 
function, the frequency mple product is formed over all the frequencies in the bispec- 
tral principle domain. In section 2.4 we show through simulation that the AR method 
does not provide sharp bispectral peaks at low SNR and instead shows ridges along 
certain axes. Here it is suggested to use a full 2-D section of the cumulants for non- 
linear processes. 

Swindlehurst and Kailath use an eigenstructure method [2]. Their mple correla- 
tion mamx is built by averaging a signal-mple Kronecker product over several seg- 
ments of a time series. The singular value decomposition (SVD) of this matrix and 
the employment of a noise subspace frequency estimator such as the MUSIC (MUlti- 
ple SIgnal Classification) algorithm yield coupling frequency estimates [3]. Their 
method relies on the additive noise being Gaussian. Asymptotically the effects of 

' P. Nunez, The Electric Fieldr of the Brain. Oxford, New York, 1981, p. 346 



Gaussian noise disappear. Noise effects are minimized. However, the triple 
Kronecker product method as stated in [2] cannot accommodate white noise with a 
non-zero third order moment. As bispectral analysis is typically used to study the out- 
put of nonlinear systems, it is expected to handle the resulting non-Gaussian noise 
output. 

Although each of these methods provides model-based procedures for detecting 
three-wave coupling, both ignore the biphase component inherent to the definition of 
the bispectrum. The biphase measures the temporal dispersion of the third (sum or 
difference) frequency component relative to the two other members of the sinusoid 
triad. Temporal dispersion quantifies the relative phase difference among frequencies 
of a phase-locked sinusoidal triad. Second and higher order Volterra systems with 
memory have nonlinear phase responses accounting for dispersion. First, here is a 
review of conventional or nonparametric methods for calculating the bispectrum. 

2.2 The FFT-Based Bispectrum -- Direct and Indirect Met.hods 

The indirect method of estimating the bispectrum is described by Brillinger and 
Rosenblatt & Van Ness and recapitulated by Nikias & Raghuveer [4-61. This method 
approximates the third order cumulant sequence and the resulting bispectrum in (1.12) 
and (1.13), respectfully. For discrete cases with a finite number of points in the series, 

the procedure to yield an estimate of the third order cumulant sequence, @k,l), for 
data length N is as follows assuming that ( x (I), x (2), ... , x(N) ) is our data set: 

1. Segment the data into K records of M samples each, i.e. N=KM. 

2. Subtract the average of each record. 

3. If ( x("(k),k = O,1, ,M-1 ) is the data set in each segment i = 1, 2, ..., K, we 
obtain an estimate of the third order sequence 

where 

sl = max(0, -m. -n) and s;! = min(M-1, M-1-m, M-1--n). 

In order to form the estimate of the third order cumulant sequence, we must aver- 
age over all K sections, 



At this point the bispectrum can be estimated using the discrete Fourier transform for 
two dimensional data such as a 2-D F I T  algorithm over a rectangular region of sup- 
port with dimensions (2L+1) x (2L+1). Nikias calls this estimate the indirect esti- 

A 

mate, BIN(a1 3-), or 
A L L A  
 BIN(^^ ,021 = C C R(k,l) W(k,l)exp(-j(alm + wn))  (2.3) 

m-L n=L 

where W(k,l) is an appropriate window function for smoothing and variance reduction 
[6]. The properties of these windows and listing of suitable windows appear in the 
monograph by Subba Rao and Gabr [7]. Naturally, by utilizing the symmetry proper- 
ties of the bispectrum a good deal of the computational load is reduced. 

The 1-D FFT was utilized in the calculation of the bispectrum by Huber et a1 
[8]. Their scheme is considered to be the biperiodogram and is analogous to the use 
of the periodogram for estimation of the power spectrum. This method has been called 
the direct method. This method utilizes the segmentation of a record with N data 
points into K separate records of M points each. The FFT of each record is taken 
after appropriate windowing by a window w(n) 

N-1 
x(') (a) = x")(n)w (n)exp(ian) 

IF= 

where x(') is the Fourier transform of the ith record, x('), of the data sequence, x(n). 

For each record the triple product 

6(')(Ul, Q) = x(~) (a1 ) x(~) (Q) x(~)(w~ + Q) (2.5) 

is formed. We find the triple products over the region that spans from 0 -Q1 and 
Olco l  + ~ l n :  radians in accordance with the symmetry relations described above. 
The triple products are averaged over several records for variance reduction for sup- 

posedly stationary sequences to form the direct estimate, (al ,-), 

This method is known as the direct method since it utilizes the data sequence directly. 

Frequency domain smoothing and complex demodulation are other methods that 
can be utilized for the estimation procedure. Brillinger notes that the expectation of 
the triple product as calculated by averaging separate biperiodograms does indeed 



converge to the Fourier transform of third order cumulant sequence [9] (theorem 4.3). 

Huber et al. reiterate the work of Van Ness and mention that the bispectrum is 
asymptotically normally distributed as well as unbiased for both direct and indirect 
estimates [8,10]. For a large number of data records and points per record, the vari- 
ance of the real portion of the bispectrum equals that of the imaginary portion. The 
variance of real and imaginary parts of the direct estimator are equal. The variance of 
each portion is proportional to the power at the frequencies of the sinusoidal triad. 
The proportionality factor, C, depends on the amount of smoothing, spectral 
bandwidth, h, the number of records and the total length of the data record 

where 0-j = 02 + 0 1  and P(oi) is the power spectral density at the frequency q. The 
bicoherence is more often used as a statistical measure of coupling, because it is easier 
to employ. The bicoherence measures the degree of coupling among a frequency tri- 
ple. To reiterate, the bicoherence relates what fraction of the total power among a fre- 
quency triad is actually involved in coupling. A bicoherence of unlty indicates that 
the all of the sinusoidal power at the three frequencies is involved in coupling. 

The statistics of bicoherence are well documented and provide a means of com- 
paring the validity of bispectral measurements. Often, the statistics are described for 
the magnitude squared bicoherence, bic2 (a l ,  w ) ,  though both bic(ol , w ) ,  and 
bic2(01 , w )  are found throughout the literature. A purely Gaussian process has a true 
bicoherence of zero for all frequencies in the bispectral domain. The distribution for 
bicoherence values from a sample of a Gaussian process are asymptotically chi- 
squared distributed with two degrees of freedom [ l  ll. Hence, its distribution is pro- 
portional to an exponential distribution. The expected value of the bicoherence esti- 
mator for a Gaussian process is equal to the proportionality constant, C, from the 
expression for the variance of the bispectral estimator. 

For larger expected values of bic2 the distribution varies. First of all, the bias, 
BIAS[~;C], is 

where dof is the degrees of freedom. In (2.8) dof = 2B,T where T is the total record 
length in time and Be is the effective bandwidth of one record, l/T,! [12]. The vari- 
ance, or 



A 2 
The distribution of bic is non-central chi-squared with the degrees of freedom depen- 
dent on the taper window used, the number of records used and the total number of 
data points. The non-central chi-squared distribution can be approximated by an ax2 
distribution given by 

The mean and variance of an alpha chi-squared distribution are uv and 2a2v, respec- 
tively. The values of a and v are as follows: 

a= E[bic2] v = 
(dof(bic2)) 

v 2(1 - bic 2 ) 3 '  
(2.1 la-b) 

There is also a normal approximation to the non-central x2-distribution [l 11. 

2.3 Autoregressive Modeling of Three Wave Coupling 

The renewed interest in the bispectrum in the 1980's resulted in part from the 
contributions of Raghuveer and Nikias [I ,  6,13-151. They developed an autoregres- 
sive model using the third order cumulants. Assuming that the system under analysis 
can be written in the form 

where p is the order of the system and w(n) is white noise with non-zero third order 
moment, i.e. E{w(n13 ) = p. The a;, i = 1, - - , p are the autoregressive coefficients of 
the process. Whiteness of the noise is provided by the fact that 
E{w(n)w(n-k)w(n-1)) = 0 for all k,lrO . Using the fact that x(n) i:s independent of 
W(n) we can now multiply the equation above by x(n-k) x(n-1) and take expectations 
giving 



They begin by setting a matrix 

This forms a matrix-based solution by constructing a Toeplitz arrangement of the third 
order cumulants along a diagonal slice in the cumulant domain where 

a=[l al a2 . . %lT and &[P 0 . . 01. The standard transfer response is found by the 
following parametrization 

The triple product is formed as shown in (2.16) to form the biperiodogram from AR 
parameters 

Now Raghuveer also applies this structure to quadratically phase coupled 
sinusoids in third order white noise. He claims that the parametrization of the 
transfer function, H(o) above, provides sinusoidal frequency information just as in the 
second order case. Assuming we allow the poles of our system function to move to 
the unit circle in the case above, then we approach an extremely narrow band process 
approximating a sine wave. For quadratically coupled sinusoids, six AR polynomial 
roots approximate a sinusoidal triple, two roots per term of the sinusoidal triad. This 
method known as the Third Order Recursion method (TOR) also has a short data ver- 
sion described in [15] which is known as Constrained Third Order Mean (CTOM). 
Both TOR and CTOM methods have an anti-causal or backwards model as well. 



2.4 Shortcomings of the Autoregressive Bispectrum for Three-Wave Coupling 

Shortly after Raghuveer's work on the autoregressive bispectrum, Giannakis for- 
malized the ARMA non-minimum phase system identification problem[l6,17]. Gian- 
nakis' goal was to calculate the phase character of rational linear time invariant 
models. As an end result he obtained equations relating second order amplitude sensi- 
tive statistics to the phase sensitive statistics of the third order. He: began with the 
reduced order third order cumulant, c(m), for k=l=m for some linear process y(n) with 
non-Gaussian noise input, w(n) and impulse response, h(i). Once again the input 
noise has third order moment, P. 

This data is the cumulant information along a diagonal slice in the cumulant domain. 
If we take the z-transform of c(m), Giannakis showed that 

and 

where * stands for complex convolution and z = expuo). 

Fortunately, we can make use of symmetry relations of the bispectrum to find 
that the Fourier transform of c(m), C(o) is 

This shows that C(o) is a reduced order spectrum called the 1 112-D bispectrum. Tak- 
ing cumulants along the diagonal slice is equivalent to projections in the bispectral 
domain. This procedure will prove to be the basis or dual of this thesis' contribution 
of taking cumulant projections to find slice information in the bifrequency domain. 
Furthermore, Giannakis used this 1 112-D bispectrum to relate phase-sensitive third 
order statistics to amplitude sensitive second order statistics in this fashion. We can 
relate input noise power o2 to the output spectrum, S(o) in this fashion, 



S (z) = 02 ~ ( z - '  )H(z) . 

We can combine (2.20) and (2.18) to yield 

where P(z) is the power spectral density. It can be seen that the 1 1/2-D spectrum is 
convenient for identifying the phase character of linear systems. It is obvious that 
there would be a different form of the bispectral projections for the output of a compo- 
site or coupled lineadquadratic system. Still it is important to realize that the 1 1/2-D 
bispectrum describes only a reduced-order, linearized bispectrum. This does not yield 
a full 2-D description of the bispectral domain. 

Simulations presented by An et al. assessing the performance of AR-based 
bispectral methods for quadratically phase coupled sinusoids show that an improve- 
ment in performance may be obtained when the basic scheme is modified to include 
more information than the one-dimensional diagonal cumulant slice. [18]. An et al. 
apply least squares methods to an over-determined set of equations to incorporate 
additional information from off-diagonal slices. This approach yields better subse- 
quent estimates of the coupling frequencies. The work of An et al. supports the claim 
that the 1 112-D bispectrum does not provide full representation of the bispectrum 
derived from a nonlinear process. 

In low SNR cases, AR estimates of the biperiodogram for three-wave coupling 
display marked ridge effects as the following shows. In Fig. 2.1 the AR-based bispec- 
tra are shown for an 8192 point series consisting of quadratically coupled unit ampli- 
tude sinusoids at fl = .34, fi = .l ,  and f3 = fl + f2 = .44 Hz. Initially, no noise is 
added. Figs. 2.1 and 2.2 show bispectra for a model order of 8 for this noiseless time 
series with biphases of 0' and 60', respectively. Using the same series, Gaussian 
noise of unit variance is half-wave rectified and added to the signal component. The 
signal-to-noise ratio is 4.77 dB. Here the signal power is total power of all 3 members 
of the sinusoidal triad. The cases with biphases equal to 0' and 60' are shown in Figs. 
2.3 and 2.4, respectively. The 0' biphase plot shows an accurate estimate of the cou- 
pling frequencies whereas the 60' biphase case does not indicate the correct fre- 
quency. Only when the model order is increased to 12 do both 0' and 60' biphase 
simulations show the correct frequency estimate as shown in Figs. 2.5 and 2.6. How- 
ever, it is observed that the AR method of calculating discrete bispectra yields three 
ridges extending from the peak. These ridges are the effect of' the use of the 
biperiodogram formed from the product of paramemzed transfer functions to display 
the frequency information. As defined in (2.4)-(2.6), the biperiodograrn is a mple 



Figure 2.1 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: No 
Added Noise; Order=8; Biphase = 0 degrees 

Figure 2.2 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: No 
Added Noise; Order-8; Biphase = 60 degrees 



Figure 2.3 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise, Var=l; Order=8; Biphase = 
0 degrees 

Figure 2.4 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise; Order=8; Biphase = 60 
degrees 



Figure 2.5 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise, Var=l ; Order=12; Biphase = 
0 degrees 

Figure 2.6 Raghuveer and Nikias AR Modeling of Phase-Coupled Sinusoids: 
Added Exponentially-Distributed Noise; Order=12; Biphase = 60 
degrees 



product and the first two factors, H(ol) and H ( q )  are each functions of only one axis. 
Accordingly, one ridge runs parallel to the q axis along the ol = 2,~(.34) line. The 
other ridge runs along the q = 2n(.1) line (see Figs. 2.5 and 2.6). The diagonal ridge 
intersects each frequency axis at a frequency value equal to the or +02 = 2~(.44). 
Thus, each ridge presumably corresponds to each of the three collstituent transfer 
functions or factors of the triple product. The point where the ridges coincide gives 
the peak or point of multiple maximal response. 

Also the phase of a sinusoid cannot be accurately represented by an autoregres- 
sive model. A 2nd order recursive model of a sinusoid does not contain any starting 
phase information [19]. Stoica and Nehorai point out that linear prediction can accu- 
rately model sinusoids at high signal-to-noise ratios. However, at low SNRs there are 
severe bias problems that may arise in unconstrained modeling of sinusoids with poly- 
nomial mots on the unit circle. In the Raghuveer/Nikias model, the sixth order AR 
polynomial representing all three coupled sinusoids is a symmetric polynomial. This 
model is phase neutral [20]. 

With regard to phase sensitivity for AR models in the case of sinusoidal 
processes in Gaussian noise, we can show that the same AR coefficients hold for both 
causal (backward) and anti-causal (forward) prediction cases. We can start with the 
definition of forward and backward models. Consider a backward prediction AR 
model of order p+l for a time series containing a single triad of quadratically phase 
coupled sinusoids with added Gaussian noise. Using third order cumulants, we have: 

where the ab,i are the backward AR coefficients for a process. Assume that the effects 
of Gaussian noise are negligible and can be safely ignored. A complimentary forward 
model of order p+l could also be constructed where the af,; are the backward AR 
coefficients for a process: 

As we shall see in chapter 3, the third order cumulant sequence for a single triad of 
real quadratically phase coupled sinusoids contains three pairs of two dimensional 
sinusoids. Each pair of terms with the same frequency arguments requires two AR 
coefficients for a total of 6 AR coefficients. Consider the following backward linear 
prediction equation relating different points of a single member cosine term of the 
third order cumulant sequence for quadratically phase coupled sinusoids with an arbi- 
trary phase angle y and AR coefficients af, 1 and af-2: 



Figure 2.7 Autoregressive Modeling of Phase-Coupled Sinusoids; No Added 
Noise; Order=6; Symmetric Cumulants; Biphase=30 degrees 

Figure 2.8 Autoregressive Modeling of Phase-Coupled Sinusoids; No Added 
Noise; Order=6; Skew-Symmetric Cumulants; Biphase==30 degrees 



Figure 2.9 Autoregressive Modeling of Phase-Coupled Sinusoids; Added 
Exponential Noise, Var=l.O; Order=6; Symmetric Cumulants; 
Biphase=30 degrees 

Figure 2.10 Autoregressive Modeling of Phase-Coupled Sinusoids; Added 
Exponential Noise; Order=6; Skew-Symmetric Cumulants; Biphase=30 
degrees 



Using another equation with any choice of starting lags, k' and 1' indexed in a similar 
fashion, we can solve for ab, 1 and ab.2 and find that 

ab, 1 = 2cos(hl + h2) (2.25) 

Likewise in the backward equation for sinusoids 

cos(hl @+I) + h2(1+1) +y) = af, 1 cos(hl k + h21 + y) (2.26) 

+ a f , 2 ~ ~ ~ ( h l  (k-1) + h2(1-1) + y). 

Now we see that in fact af-1 = ab.1 and af,2 = a b , ~  so the AR coefficients do not confer 
any phase sensitivity. Since the forward and backward models are alike in the case of 
phase-coupled sinusoids, we can write for a (p-tl) x (p-tl) dimensioned cumulant slice 
matrix for generalized AR coefficients, ai = af,i = ab,i. 

Ra=-r -  (2.27a) 

R~ a = -r+ (2.27 b) 

where 8 = [R(+1,+1) R(k2,+2) . . - ~(+(p+l) ,+(~+l) ) ]~ .  Also the third order corre- 
lation matrix R appears in (2.13). The vector of generalized AK coefficients is 
a = [al a2 - - . ap1lT. We have indicated the dimension of matrices and vector by 
the subscripts in parentheses. 

Since both models are equivalent, we might try to construct a composite model 
combining both forward and backward lagged cumulants. This is the symmetric 
model employing symmetric cumulants. 

In terms of symmetrized cumulants where R S ~ = Y ~ ( R + R ~ )  and 
r s m  = %(r+ + r-): 

R s m a  = r s m .  (2.29) 

For any given k,l we can write an single constituent equation containing the sym- 
metrized cumulants 



or in a more compact rendition, 

where S(k, 1) = %(R(k, l)+R(-k,-1)). 

At the same time we can generate a skew-symmetric version of the linear predic- 
tion equations regardless of phase relationship expressed by the cumulants 

This forms an equivalent skew- or conjugate symmetric model with the same 
coefficients as the symmetric model for all biphases in a linear prediction context. 

The following plots illustrate the usefulness of using symmetric and skew- 
symmetric cumulants for modeling quadratic phase coupling for high signal-to-noise 
ratio time series. Unit amplitude phase-coupled sinusoids at ol = 27c(.34), = 27c(.l) 
and 03 = 27c(.44) without added noise comprise a time series. Symmetric and skew- 
symmetric cumulant sequences are formed ,from the cumulants taken from dividing 
the time series into 64 records of 128 (N = 8192) each. Autoregressive modeling from 
these cumulant sequence yield satisfactory coupling frequency estimates as can be 
seen in Figs. 2.7 and 2.8. Once noise is added, however, it can be seen that the cou- 
pling frequency estimates based on AR modeling of skew-symmetric cumulants are 
considerably better than those calculated from the symmetric cumulants. The noise 
component adversely effects the symmetric cumulants. 

A better representation of the sinusoidal information may come from a direct 
eigenstruc ture approach. Recently, these models have become commonplace for 
sinusoidal frequency estimation in both spectral analysis and array processing [3]. 
The motivation for constructing an eigenstructure model is twofold. First, the eigen- 
structure approach is model based. The inspiration for the eigenstructure method is 
that certain eigenvectors of the signal-only correlation matrix span the same vector 



subspace as the constituent complex exponential signals. We can view the third order 
cumulant sequence as composed of sums of complex exponentials. 

Second, we would like our eigenstructure model to represent more fully the 
extent of the 2-D cumulant sequence. i.e. it is desired to expand the region of con- 
sideration beyond that of a simple slice or group of slices which is traditionally associ- 
ated with linear modeling. The Volterra kernel that represents quadratic interactions 
is truly a function of two time (frequency) variables. Our bispectral estimator could 
avoid parametrization of the transfer function, H(o), along a single cumulant slice. 
An average of triple products of H(o)'s yields a biperiodogram. Brillinger shows that 
the bi- or.tri-periodogram does in fact converge, albeit slowly, to the direct estimate, 
the 2-D or 3-D Fourier transform, respectively [9]. We would like to bypass the cal- 
culation of the linear transfer function and go directly to ascertaining the frequencies 
of the coupled sinusoids. 

Thirdly, and perhaps most importantly, we would like our model to contain 
information on phase. It is only fitting that the bispectrum contain relative phase 
information about the sinusoids. The biphase information is a critical component of 
coupling frequency estimation. In order to discover how an eigenstructure method 
can be used for biphase estimation, a short overview of eigenanalysis-based spectral 
estimation via the MUSIC algorithm is required. 

2.5 Generalities of the Eigenstructure Method 

MUSIC (MUltiple SIgnal Classification) is a very popular spectral analysis tech- 
nique that requires the estimation of the autocorrelation matrix of a random process 
assumed to be composed of a known number of complex sinusoidal signals immersed 
in white noise [3]. The key to improved performance of these methods is the division 
of information in'the autocorrelation matrix into two vector subspaces, the signal sub- 
space and the orthogonal (or noise) subspace. They also provide high resolution esti- 
mates of the sinusoidal frequencies in conventional spectral estimation. The dimen- 
sionality of the signal subspace is determined by the number of assumed complex 
sinusoids immersed in the noise sequence in question. Eigenanalysis allows for remo- 
val of extraneous noise contributions for a much higher signal to noise ratio in the ulti- 
mate calculation of the frequencies of the embedded sinusoids. The success in sub- 
space approaches for power spectral density estimation have motivated research in 
applying them to the bispectrum and the investigation of non-linear interactions 



among harmonic components of a time series. Giannakis and Swami & Mendel have 
utilized rank reduction techniques on higher order statistics for robust system 
identification. [ 16,2 11. 

A random process consisting of M unit amplitude, real sinusoids of radian fre- 
quency, CI; , i=1,2 ... M, of random phase in white noise has a standard autocorrelation 
function, R(k) 

where p i  is the noise variance and 6(k) is the Kronecker delta. The (pxl) x (p+l) 
autocorrelation matrix, where p > 2M, can subsequently be expressed as the sum of 
corresponding signal and noise autocorrelation matrices: 

The signal matrix can be written in terms of a sum of rank one outer products. The 
outer products are of the form 

where 
,-1 e-jq ,-j2ui . . . e-~*lk IT 

Si = 

and Pi is the power in the ith sinusoid. The signal mamx has a completely Vander- 
monde structure. 

Likewise the noise mamx Wp = pI where p is the added white noise. Here SP 
and Wp are the signal and noise autocorrelation matrices, respectively. The signal 
matrix will have the eigendecomposition 

where denotes the ith eigenvalue and vi, the respective eigenvector and 
hl a2 I. . . h2M. It is cleai that of the (p+l) eigenvdues of the signal matrix, SP, 
there are M non-zero eigenvalues. The corresponding M eigenvectors known as the 
principal eigenvectors will span the same subspace as the M real sinusoids comprising 
the signal portion of the time series. It can be shown that the signal mamx will have 
exactly 2M non-zero eigenvalues. The eigenvalue/eigenvector decomposition of the 
of Rp is 



The remaining p+l-2M eigenvectors of the signal matrix span the noise subspace. 
The spectral estimator makes use of the orthogonality between both subspaces. The 
noise subspace eigenvectors will be orthogonal to any vectors spanning the signal sub- 
space, e.g. the sine waves comprising the signal. This property is exploited by the 
noise subspace estimator known as the MUSIC algorithm. The frequency estimator is 

where e(0 = [ l  dm - . d(*l)OnlT and 

constitutes the "noise" or orthogonal complement subspace. 

2.6 The Triple Kronecker Product Estimate 

Swindlehurst and Kailath exploit the structure of the second order cumulant 
matrix, i.e. the autocorrelation matrix 

where x is the signal, Es plus Gaussian noise, n vectors [2]. E is an m x d matrix con- 
taining the d complex exponential vectors in a Vandermonde form. Then d is the total 
number of complex exponentials present whether or not every one of them is involved 
in the coupling. The s vector contains amplitudes and associated phases for the group 
of sinusoids. They build a third order cumulant matrix from the triple Kronecker pro- 
duct in similar fashion 

If the signal vector x has m elements, then R3 is an m2xm dimensioned matrix. 

The rank of R3 is dependent on whether or not phase coupling does occur. For 
each group of coupled sinusoids, Swindlehurst and Kailath claim that the asymptotic 
rank of R3 is equal to 2d9 where d' is the number of real sinusoids involved in cou- 
pling. They use a singular value decomposition of R3, i.e. R3 = uWH. They parti- 
tion U into signal and noise subspaces according to the size of the singular values, 



where Us and Un represent the signal and noise component singular vectors. The 
span(R3) = span(Us). We find that the span(&) is orthogonal to the span(Un). They 
use an appropriate frequency estimator for the coupling frequency pairs or double fre- 
quency terms of the bispectrum, called hD. 

where eyz = e ( q )  63 e(oz) + e(oz) 63 e ( q )  and 

e(m. = [l 2" &*mi . . . ej(m-l)clli I T 

Likewise the right singular vectors yield frequencies of single sinusoids involved in 
coupling in a 1-D formulation using the following estimator. 

1 

where Vn are the noise subspace right singular vectors. 

2.7 Symmetric and Skew-Symmetric Sequences and Time Reversibility 

One of the key conditions that needs to be satisfied in order to do the eigen- 
decomposition of the third order cumulant mamx is that the mamx be Hermitian. 
Hermitian matrices have real eigenvalues. Also for nonrepetitive eigenvalues, respec- 
tive eigenvectors are orthogonal. One of the properties lacking in third order spectral 
analysis is the fact that higher order cumulant sequences lack the symmetry property 
that characterizes second order statistics, i.e. in general R(k,l) does not equal R(-k,-1) 
or positive lagged sequences do not necessarily equal negative lagged ones. This 
symmetry property insures that our second order cumulant sequences are always sym- 
metric and therefore can be decomposed spectrally. When positive (forward) statistics 
do not equal negative (backward) statistics, we say that our series is not time- 
reversible. The fact that a non-zero bispectrum displays the time reversible character 
is a direct result of fact that it bears phase information. The third order autocorrela- 
tion matrix as it appears in the Nikias and Raghuveer AR formulation is not Hermi- 
tian. Here are some further comments about the reversibility of random processes. 



A time series (X,) that is strict sense stationary can be considered to be time 
reversible (second order) if for every n and every tl ,t2, . . . , f ,  each collection of ran- 
dom variables 

have the same joint density. Because of stationarity we can state that 

have the same density functions. Typically we simply say that the joint density for 
forward time lags is equal to the joint density for backward time lags. Johnson and 
Rao mention that all Gaussian signals are time-reversible as the joint amplitude den- 
sity for a Gaussian signal is dependent only on second order statistics [22]. The auto- 
correlation function as well as the covariance matrix are symmetric quantities. 
ARMA processes stimulated by Gaussian noise turn out to be time reversible quanti- 
ties [23]. 

For non-time-reversible signals phase information is not present. Simple rever- 
sal of the time axis does not reveal any statistical differences that might reveal a phase 
character to the data. As mentioned before all second order statistics because of their 
symmetric nature do not reveal phase information. Many spectral analysis algorithms 
assume that forward and backward prediction errors are equal. Gaussian processes 
are the only certain cases where such an assumption can be made wi.th any degree of 
certainty. 

We may divide the third order cumulant sequence into two separate portions 
called the symmetric, S(k,l), and anti-symmetric, A(k,l), cumulants in this fashion 

As a consequence of this division we might differentiate the real and imaginary por- 
tions of the bispectrum by their respective cumulant sequences, S(k,l) and A(k,l) [24]. 

There are also cumulative measures of magnitude in the real and imaginary parts of 
the bispectrum. The skewness, St,,, and asymmetry, A,,, of the time series are 



analogous to the total power of second order statistics. 

where we sum over m and n in entire bispectral domain for each entity. Both quanti- 
ties S,, and A,, are normalized by the total time series power 02. They are analo- 
gous to the cumulative measure of power in second order statistics. 

With regard to signals, the real and imaginary parts of the bispectrum have spe- 
cial meaning in reference to signal shape. If the bispectrum of a signal has non-zero 
skewness, it is said to display asymmetry with regard to a horizontal axis. The signal 
that is represented by the solid line in Fig. 2.11 displays non-zero skewness and is not 
balanced above and below the y=O line. Reciprocal events do not occur above and 
below this axis of vertical symmetry/asymmetry. Conversely, if a signal shows zero 
skewness and non-zero asymmetry, then the signal is said to show asymmetry with 
regard to a vertical axis. The dashed signal in that figure is a prime. example of this 
signal type. A vertical line drawn normal to the x-axis at x=O is the asymmetric 
fold-over point for the waveform. Now events that occur below the y=O symmetry 
line also occur above it. The bispectrum could be a useful tool for shape recognition 
of a signal in a very noisy environment with additive Gaussian noise. 

The connection between the real and imaginary parts of the bispectrum and the 
biphase follows directly. A signal with an entirely real bispectrum has a zero biphase 
throughout for all frequency couplings. By analogy to Fourier theory for determinis- 
tic signals, we expect the cumulant series to be an even function of the two arguments. 
Consider the six term expression for the bispectrum of quadratically coupled 
sinusoids. With zero biphase, the cumulants are purely symmetric with 
R(k,l)=R(-k,l) and are cosinusoids with zero phase angles. The solid line plot on Fig. 
2.11 shows a triad of quadratically coupled sinusoids with zero biphase. The fre- 
quency of one of the sinusoids is o = 21c(.05). The second has o = 21c(.l). Likewise 
a non-zero biphase indicates the imaginary portion of the bispectrum is also non-zero. 
A full 90 degrees means R(m,n) = -R(-m,-n) and we have a state of full asymmetry. 
The same frequencies are involved in the couplings for the dashed h e ,  but this time 
the biphase is 90 degrees. 

There are several applications where measurements of biphase actually helps 
characterize system properties. The presence of a non-zero biphase in a triad of 



Symmetric and Asymmetric Signal Shapes 

secs. 

Figure 2.1 1 Symmetric and asymmetric signal shapes; Solid line: Symmetric 
Signal, Biphase=Oo -- Zero Vertical Asymmetry, Non-Zero Horizontal 
Skewness; Dotted line: Asymmetric Signal, Biphase=90° -- Non-Zero 
Vertical Asymmetry, Zero Horizontal Skewness 



coupled sinusoids indicates the lack of temporal isotropy. An isotropic medium, for 
instance, is uniform with regard to change in time direction, t+t, or it is called 
time-reversible. Wave shape is intimately connected with time reversibility. Matsuda 
and Kuo find that water waves affected by surface winds change their shapes [25]. 
Waveforms tilted forward and backward by wind exhibit changes in their biphase. 
They regard changes in temporal asymmetry as related to changes in spatial asym- 
metry such as changing water depth. Elgar shows that as waves shoal the biphase is a 
dynamic quantity dependent on both progressions of depth [26]. 

To illustrate how a non-zero biphase arises, consider the fact that the Volterra 
kernels have memory along two time lag indices to account for deviations from addi- 
tive superposition throughout the response interval. If y(t) = x2(t-1) for instance, then 

-j2n(fi +f2) 
H2(f1 ,f2) = e . We note that a phase factor has been is added to the generated 
second harmonic from such a transfer response. The phase is proportional to the mag- 
nitude of the coupled frequencies input to the system. 
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CHAPTER 3 
2-D S KEW-MUS IC: A SINUSOIDAL PARAMETRIZATION 

FOR THREE-WAVE COUPLING 

3.1 Introduction 

Since we employ higher order statistics in particular for their phase-sensitive 
properties, it is therefore appropriate that parametric methods completely utilize all of 
the phase information provided by the triple correlations. The central concern of this 
thesis is therefore the development of parametric modeling of three-wave coupling 
frequencies that includes the key feature of accurate biphase estimation as well as full 
2-D representation. In addition we desire to insure that we are truly modeling 
sinusoids, so our constituent signal correlation matrix is formed from exponential vec- 
tors. In this work an eigenstructure approach to estimating triad frequencies and 
accompanying biphase is taken. These quantities are determined by symmetrizing the 
phase-sensitive third order cumulants. Phase is extracted as estimable amplitude 
coefficients of the symmetric and skew-symmetric cumulant sequences. 

As a result of cumulant symmetrization, symmetric and skew-symmetric 
matrices then can be easily utilized for coupling frequency determination through 
standard subspace decomposition techniques. 

3.2 2-D SKEW-MUSIC: Derivation and Properties 

Consider the time series x(n) consisting of one triad of quadratically coupled 
sinusoids in non-Gaussian white noise with non-zero third moment noise w(n). Q1 and 
+2 are random variables and uniformly distributed between 0 and 2n. Once again 
*a1 ,w) is a constant phase offset. 



+ Acos[(o1 + m ) n  + 01 + 02 + Y(m1 ,m)l+w(n) 

Without loss of generality let y+ol  ,%). The third order cumulant sequence, 
R(k,l), for x(n) is 

where oj is the frequency of the jth individual sinusoid. P is the magnitude of the third 
moment of the non-Gaussian white noise. With zero biphase, the cumulants are 
purely symmetric with R(k,l)=R(-k,-1) and are cosinusoids with zero phase angles. 
A biphase of 90 degrees translates into R(k,l)=-R(-k,-1) giving rise to a state of full 
asymmetry as mentioned in chapter 2. 

Consider dividing the third order cumulant sequence into its symmetric, S(k,l), 
and anti-symmetric, A(k,l), components as 

It is desired to determine the structure of S(k,l) and A(k,l) assuming that the original 
time series consists of N sets of quadratically coupled sinusoids in white noise. These 
6N term cumulant sequences can be viewed as the in-phase and quadrature com- 
ponents of the sequence in (3.2) when generalized for the case of N arbitrary triads. It 
is assumed here that each triad has distinct coupling frequencies. 

N 
S(k, 1) = C cos yi { cos ( q l  k+q21)+ . . . +COS(-%~ k-01~1) } (3.6) 

N 
A(k,l) = sin yi { sin (oil k+w21)+ +sin(-% k+q21) } (3.7) 

i= 1 

The biphases have become amplitude coefficients. Note that we can now build a 
block matrix which may be expressed as a sum of complex exponential terms. This 



matrix is suitable for the application of MUSIC or other signal subspace algorithms. 
Focusing at this time only on the symmetric cumulant sequence, a. Toeplitz block- 
Toeplitz matrix, S, is constructed. S is d x d and d = mn. Here m is the block dimen- 
sion and n is the number of blocks. The blocks are arranged as 

where each constituent block entry, S(i), is a m x m Toeplitz matrix constructed from 
the symmetric third order cumulants as, 

Given the form of the symmetric cumulants in (3.6), S may be decomposed as 

s = E P , E ~ + ~ I .  (3.10) 

Since the cumulants contain N real sinusoidal triads, E has a Vandermonde structure 
containing 12N complex sinusoidal columns, 

= [ e(wll,w12) ! e(*ll,*12) ! . e(%2,*3) e(-%2,%3) ] (3.11) 

where each block vector, e(ok,oij) is the Kronecker product of two complex 
exponential vectors as 

e(ok, q j )  = e(o*) Q e(oij) 

where Q is the Kronecker product and 



The matrix Py in (3.10) is a 12N x 12N diagonal matrix containing the biphase 
amplitudes, b , i i  = ( c o s ~ ) / ~ .  The first twelve diagonal terms of the Py matrix belong 
to one triad, i.e. they are all equal to py,ii = (cosY;)~~, the second twelve diagonal terms 
belong to the next triad and so forth. (3.8) may be expressed as 

Note that S is both symmetric and Toeplitz and the conventional 2-D MUSIC algo- 
rithm can now be applied. Since EpyEH is not full rank, the dimension of the signal 
subspace is 12N and the noise subspace is represented by (d-12N) noise eigenvectors. 
Thus the spectral decomposition of S may be expanded as 

We can estimate p as the size of the smallest eigenvalue of S. Note that S is not neces- 
sarily positive semi-definite as P may be negative depending on the direction of the 
skewness. 

S described by (3.10) is symmetric, but not positive-definite since the noise may 
be characterized by a negative third order moment. Hence, the smallest eigenvalue 
may be negative. The signal-only component is composed of the outer products of 
complex exponential vectors and is thus characterized by all positive eigenvalues. 
Partitioning the subspaces involves assigning the largest 12N eigenvalues to the signal 
subspace and the remaining eigenvalues to the noise subspace. 

In complementary fashion, we may construct a skew-symmetric block Toeplitz 
matrix A with the skew-symmetric cumulant sequence, A(k,l), the sane way S is con- 
structed from S(k,l) in (3.6). Likewise A can be decomposed as 

Similar to Cy, Sy is a 12N x 12N diagonal matrix with diagonal elements of the form 



The anti-symmetric cumulants, A(k,l), possess odd symmetry being composed of sine 
terms so that A is skew-symmetric, i.e. =-A. Similar to (3.14), A may be 
expressed as 

In accordance with the definition of skew-symmetry, the main diagonal 
(R(0,O )-R(0,O)) is zero, i.e., it is noise free. 

A spectral decomposition of A is possible. The eigenvectors of a skew- 
symmetric matrix are mutually orthogonal and the corresponding eigenvalues are 
purely imaginary. The orthogonal subspace for A is characterized by all zero eigen- 
values. A suitable partitioning of the subspaces involves associating eigenvectors 
belonging to the smallest magnitude eigenvalues with the orthogonal complement 
subspace. 

Frequency estimates for sinusoidal triads are found by exploiting the orthogonal- 
ity between constituent signals and noise subspace eigenvectors. A 2-D MUSIC spec- 
trum is constructed as 

where W is constructed from the noise subspace eigenvectors as 

The constituent frequencies of coupled frequency triad may be determined by search- 
ing Brnus(ol ,a2)  for peaks over the range of allowable frequency conlbinations. In the 
case of a single quadratically coupled triad, there are peaks at 
(al,%), (w ,o l ) ,  (ol,-ol*), etc. in accordance with the symmetry properties of 
the bispectrum. This redundancy motivate the use of slices of the bispectrum as will 
be discussed in the next section. Either S or A may be employed to construct 
Brnus(ol ,%). Typically, if the time series is known to be asymmetric, then A should 
be used to determine the coupling frequencies and vice versa for the symmetric time 
series. For a practical implementation the estimates of coupling frequencies may be 
derived from the matrix whose matrix-2 norm is the largest. Once the frequency esti- 
mates are determined, E can be constructed and Py subsequently estimated as 



Q, may be estimated in a similar fashion by replacing (S - PI) by A in (3.21) to find 
the amplitudes p,,;; as defined in (3.10-3.14). Since our time series is of finite length, 
both P, and Q, are not diagonal though diagonal elements would be used for the 
biphase estimates. Given the biphase coefficients Paij and q,,ii, biphases may be 
determined via a ratio of amplitudes as yi = a r ~ t a n ( q ~ ~ ~ / ~ , ~ ~ ) .  This hybridized MUSIC 
scheme is referred to as SKEW-MUSIC. 

3.3 Simulations of 2-D SKEW-MUSIC 

Monte Carlo simulations were conducted to assess the performance of the vari- 
ous algorithms developed in this section. It was desired to test the algorithms herein to 
check the efficacy of the 2-D SKEW-MUSIC algorithm in estimating quadratic cou- 
pling frequencies. 

For the Monte Carlo simulations, testing of 2-D SKEW-MUSIC involved syn- 
thesizing 8,192 point sequences containing quadratically phase-coupled sinusoids with 
additive noise generated from an exponential distribution. Each trial was composed 
of sixty-four 128-point segments. Each segment consists of two unity amplitude 
sinusoids with random starting phases at frequencies fl = 0.34 and fi = 0.1 Hz, 
respectively and a third sinusoid of the same amplitude phase-locked with a constant 
phase offset determined by the biphase. The biphases ranged from 0 through 90 
degrees in 15 degree increments. 

The added exponential noise is adjusted to give signal-to-noise ratios (SNR) of 
14.77,4.77 and 1.76 dB for each complete set of biphase trials. The noise was skewed 
positively or negatively by changing the polarity of the added noise. A representative 
trial requires estimating the cumulants for each epoch then averaging the cumulants 
over all 64 epochs. A 16 x 16 block matrix with a block-Toeplitz structure described 
in (3.8) and (3.9) is formed for both symmetric and skew-symmetric cumulant 
sequences. Eigenvectorleigenvalue decompositions are performed for each matrix. 
Ideally, there are 12 eigenvectors spanning the signal subspace with the remaining 4 
eigenvectors spanning the orthogonal .complement or noise subspace. For noise with 
negative third order moment, the symmetric matrix is no longer positive definite, as 
this additive noise negatively biases the signal eigenvalues. Values of the 2-D 
SKEW-MUSIC function defined in (3.19) are computed over the non-redundant 



autobispectral triangle, i.e. over (fl ,f2) satisfying 0 1 fl 10.5 Hz., 0 5 f2 1 0.25 Hz 
and fl + f2 10.5 Hz. Both arguments of the compound exponential frequency kernel 
in (3.19) were incremented in 0.01 Hz. steps. The frequency estimates are those two 
frequencies where (3.19) is a maximum. Representative plots of the 2-D SKEW- 
MUSIC frequency bispectra are displayed in Figs. 3.1 - 3.6 for different biphases 
using a SNR of 14.77 dB and 20 x20 matrix. In each of these plots the noise used is 
Gaussian generated from the single precision IMSL subroutine, RRNOR. In Figs. 3.1 
& 3.2 a time series of 8192 data points containing a single quadratically phase cou- 
pled sinusoid with a biphase of O0 is analyzed. In Fig. 3.1 the bispectrum generated 
from the symmetric cumulants is displayed. Fig. 3.2 shows the bisptrum resulting 
from modeling a symmetric time series with a skew-symmetric cumulant sequence. 

Figs. 3.3 and 3.4 show results for a time series containing a triad with a biphase 
of 30'. Improvement in the skew-symmetric cumulant results is noted in the case 
where the biphase has been increased. Satisfactory results for both symmetric and 
skew-symmetric cumulant sequences are noted in Figs. 3.5 and 3.6 w:here a biphase of 
60' is used. 

The length of the sequence is shortened to 4096 data points as the SNR using 
Gaussian noise is increased to 24 dB with a 25x25 matrix. Figs. 3.7 and 3.8 show the 
results for a biphase of 30 degrees using symmetric and skew-symn~etric cumulants, 
respectively. In each case the peaks appear in the correct location of (fl , f2) = (.34,. 1). 
The biphase changes to 60' and we see equally good performance for both symmetric 
and skew-symmetric cumulant sequences. These peaks are shown in Figs. 3.9 & 3.10. 
For these low noise cases it is critical to note that the amplitude of the peaks is larger 
than the high noise cases observed. 

Some simulations with non-Gaussian noise show that the algorithms perform 
very well under particularly low signal-to-noise ratios. White exponential noise 
(skewness=3/2) noise is added to a single triad of quadratically phase coupled 
sinusoids so that the SNR=4.77 dB. Two different biphase values, 15' and 75O, are 
employed. Once again symmetric and skew-symmetric cumulant matrices provide 
estimates depicted in Figs. 3.11-3.14. As can be seen from these simulations poor per- 
formance is seen in the case of coupling with low biphase using frequency estimates 
from the skew-symmetric cumulants. The same is true for the 75' case using sym- 
metric cumulants. 

One hundred Monte Carlo trials were conducted for each biphase, noise level 
and noise polarity. Sample means for each frequency for an SNR of 4.77 dB are listed 
in Table 3.1. As the biphase increases from O0 to 90°, the accuracy of the estimates 
derived from the symmetric matrix decreases. Symmetric matrix frequency estimates 



Figure 3.1 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; 
Biphase = 0'; SNR=14.77 dB; Gaussian Noise; N=8192; Peak at 
(.34,.1) Hz 

Figure 3.2 2-D SKEW-MUSIC Bispectrum from Skew-Symmehic Cumulants; 
Biphase = 0'; SNR=14.77 dB; Gaussian Noise; N=8192; Peak at 
(.29,.2) Hz 
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Figure 3.3 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; 
Biphase = 30'; SNR=14.77 dB; Gaussian Noise; N-8192; Peak at 
(.34,. 1) Hz 

Figure 3.4 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 30'; SNR=14.77 dB; Gaussian Noise; N-8192; Peak at 
(.36,.08) Hz 



Figure 3.5 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; 
Biphase = 60'; SNR=14.77 dB; Gaussian Noise; Nz8192; Peak at 
(.34,.1) Hz 

Figure 3.6 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 60'; SNR=14.77 dB; Gaussian Noise; N=:8192; Peak at 
(.34,.1) Hz 



Figure 3.7 2-D SKEW-MUSIC Bispectrum from S ymmemc Cumulants; 
Biphase = 30'; SNR=24 dB; Gaussian Noise; N=4096; Peak at 
(.34,. 1) Hz 

Figure 3.8 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 30"; SNR=24 dB; Gaussian Noise; N=4096; Peak at 
(.34,. 1) Hz 
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Figure 3.9 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; 
Biphase = 60'; SNR=24 dB; Gaussian Noise; N=4096; Peak at 
(.34,. 1 1) Hz 

Figure 3.10 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 60'; SNR=24 dB; Gaussian Noise; N==4096 Peak at 
(.34,. 1 1) Hz 



Figure 3.1 1 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; Biphase 
= 15'; SNR=4.77 dB; Exponentially Distributed Noise; N=8192; Peak 
at (.34,. 1) Hz 

Figure 3.12 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 15'; SNR=4.77 dB; Exponentially Distributed Noise; 
N=8192; Peak at (.31,.1) Hz 



Figure 3.13 2-D SKEW-MUSIC Bispectrum from Symmetric Cumulants; Biphase 
= 75'; SNR=4.77 dB; Exponentially Distributed Noise; N=8192; Peak 
at (.18,.12) Hz 

Figure 3.14 2-D SKEW-MUSIC Bispectrum from Skew-Symmetric Cumulants; 
Biphase = 75'; SNR=4.77 dB; Exponentially Distributed Noise; 
N=8 192; Peak at (.34,. 1) Hz 



deteriorate maximally for a biphase of 90'. Conversely, it is expected that the fre- 
quency estimates from the skew-symmetric matrix will be more accurate for the large 
biphase case and poorest in the case where the biphase is close to zero. Interestingly, 
for this matrix size frequency estimates obtained in the 900 biphase case with the 
skew-symmetric matrix exhibit a significant bias. The symmetric matrix frequency 
estimates do not exhibit a similar bias for a biphase of 0'. This provided motivation 
to increase the block size and, hence, the matrix dimension for better accuracy. The 
computer experiments were rerun employing 20x20 matrices co~nposed of 4 x 5 
blocks and a 25 x 25 matrices composed of 5 x 5 blocks. Greatly improved results can 
be noted in Tables 3.2 and 3.3 for both of these cases. 

This algorithm provides the user with an estimate of the central third order 
moment of the additive noise or the unnormalized skewness. For the exponential dis- 
tribution, the parameter lfA determines the mean, h, and the central third moment, 
2h3. To achieve the previously stated.SNRs, 0 was set equal to either 0.2235, 0.7071 
or 1.0. The average of the 4 smallest eigenvalues of the 16 x 16 symmetric cumulant 
matrix provides an estimate of the third moment. Sample means of the noise skew- 
ness were computed for 100 runs using various combinations of biphase in positively 
and negatively skewed noise. We used the 16 x 16 cumulant matrix for the estimates 
listed in Table 3.4. It can easily be seen that the accuracy of noise estimates increases 
for lower SNR. Also there is a noticeable variation of noise estimates for different 
biphases. 

Table 3.5 shows performance of 2-D SKEW-MUSIC as a function of the 
bicoherence level. The bicoherence level varies from 0.1 to 1.0 by varying the power 
of uncoupled sinusoids. The power of sinusoids with independent phase at the same 
frequencies as members of the triad is varied in accordance with the: desired level of 
bicoherence. The biphase for all of these trials was 45'. 100 trials at each level of 
bicoherence were performed. Means and standard deviations from fl frequency esti- 
mates from both symmetric and skew-symmetric cumulant matrices are listed. 
Interestingly, there is very little trend developed for the bicoherence variation. At this 
SNR, 21.77 dB, there is little change in performance of the algorithm until the 
bicoherence is less than 0.1. In fact, there is no clear trend in bias and variance of the 
estimates for most middle values of coupling fraction. Many more data records to 
average are required for stable values to be established. 



Table 3.1 Table of 2-D SKEW-MUSIC Estimates of Coupling Frequencies from 
16 x 16 Symmemc and Skew-Symmemc Mamces;, 100 Trials per 
Biphase Value 

Table 3.2 Table of 2-D SKEW-MUSIC Estimates of Coupling Frequencies from 
20 x 20 Symmemc and Skew-Syrnrnemc Mamces; 100 Trials per 
Biphase Value 

Phase Coupled Sinusoid Frequency Estimate 
Positively Skewed Noise - SNR = 4.77 dB 

16 x16 Matrix Dimension 

Biphase 

0" 
15' 
30' 
45O 
60° 
75O 
90" 

Phase Coupled Sinusoid Frequency Estimate 
Positively Skewed Noise - SNR = 4.77 dB 

20 x 20 Matrix Dimension 

Matrix Form 

Biphase 

0" 
15' 
30' 
45O 
60° 
75O 
90" 

Symmetric 

Matrix Form 

Skew-Symmetric 
True f l=0.34 

f?l 
3363 
.3384 
.3368 
.3317 
.3261 
.3237 
.2502 

True f l4 .34  
ii 

2046 
.2855 
.2892 
.302 1 
.2984 
.3052 
.2936 

True f24.1 
fi 

.lo16 

.lo08 

.0998 

.lo35 

.lo30 

.lo43 
,1150 

Symmetric 

True f24.1 
fi 

1399 
.I281 
.I264 
.I294 
.I301 
.I347 
.I340 1 

True f l4 .34  
ii 

3398 
.3484 
,3457 
.3396 
.3399 
.3378 
.2539 

Skew-Symmetric 
True f24.1 

fi 
0969 
.0930 
.094 1 
.0977 
.0957 
,1001 
,1137 

True fl=0.34 
ii 

2698 
.34.18 
.3404 
.3409 
.3422 
.3411 
.3455 

True f24.1 
fi 

0.1 104 
.0988 
.0972 
.0975 
.0939 
.0965 
.0968 



Table 3.3 Table of 2-D SKEW-MUSIC Estimates of Coupling Frequencies from 
25 x 25 Symmetric and Skew-Symmetric Matrices; 100 Trials per 
Biphase Value 

Table 3.4 Noise Third Order Moment Estimates 

Phase Coupled Sinusoid Frequency Estimate 
Positively Skewed Noise - SNR = 4.77 dB 

25 x 25 Matrix Dimension 

Biphase 

0" 
15" 
30" 
45" 
60" 
75" 
90" 

Third Moment Noise Estimates 
Positively & Negatively Skewed Noise 

Matrix Form 

Biphase 

0" 
15" 
30" 
45" 
60" 
75" 
90" 

Symmetric 

Signal-to-Noise 

Skew-Symmetric 
True f l4.34 

k 
.3354 
.3379 
.3335 
.3381 
.3338 
.3376 
.2508 

True f14.34 
k 

2639 
.3255 
.3380 
.3309 
.3318 
.3362 
.3286 

TruefZ=O. 1 
i5 

0964 
.096 1 
.0961 
.0957 
.0954 
.0970 
.lo61 

. SNR = 14.77 dB 
True= True= 
0.0223 -0.0223 
0393 -.0054 
.0388 -.0060 
.0367 -.0080 
.0330 -.0114 
.0393 -.0160 
.006 -.0219 
.007 -.0480 

True f2=O. 1 
f5 

.lo24 

.0973 

.0952 

.095 1 

.lo10 

.0987 

.0968 1 

SNR = 1.76 dB 
True= 

2.0 
1.9061 
1.9051 
1.9017 

SNR = 4.77 dB 
True= 
-2.0 

- 1.9796 
-1.9808 
-1.9844 

True= 
0.707 1 
.6825 
.6816 
.6789 
.6745 
.6682 
.6584 
.5884 

1.8958 
1.8867 
1.870 
1.7583 

True= 
-0.0707 1 
-.6914 
-.6921 
-.6948 
-.6993 
-.7059 
-.7162 
-.7920 



Table 3.5 Performance of 2-D SKEW-MUSIC Algorithm: Coupling Frequency 
Estimate Accuracy vs. Bicoherences from 25 x :25 Third Order 
Cumulant Matrix; 100 Trials per Bicoherence Value Accuracy (Means 
and Std. Devs.) of fl estimate shown; True Value: fl =0.34 

Coupled Sinusoid Frequency Estimate vs Bic: 
Symmetric and Skew-Symmetric Cumulant Matrices 

Exponentially Distributed White Noise - SNR = 21.77 dB 
25 x 25 Matrix Dimension: 

Bicoherence 

0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

SJ 
Mean 

x M 3 -  
.3039 
.3173 
.3329 
.3255 
.3396 
.3219 
.3264 
.3271 
.3298 
.3319 
.3379 

- 
S y rnrnetric 
Std. Devs. 

1 
.0739 
.0742 
.0582 
.OW7 
.0632 
.0662 
.0664 
.0561 
.0562 
.062 
.OM18 

Matrix Type 
nmetric 

Std. Devs.. 
1052 
.0933 
.083 
.0696 
.073 1 
.0666 
.0747 
.0630 
.0658 
.0688 
.0684 
.0755 

Skew 
Mean 
3307 
.3424 
.326 
.3327 
.3336 
.3328 
.3257 
.3283 
.3336 
.3354 
.3332 
.3366 



CHAPTER 4 
THE 1 -D BISPECTRUM 

4.1 Introduction 

Estimation of coupling frequencies can also take place on slices of the bispec- 
trum. Projections in the cumulant domain generate slices in the bispectral domain 
through the Fourier-slice theorem. Utilizing symmetry relations within the full extent 
of the bispectral domain, we begin with six 2-D sinusoids which constitute the cumu- 
lant sequence for a single phase coupled sinusoid triad. Through projections, certain 
cumulant components become decoupled. Then through the decoupling process, a 
single 1-D sinusoid is extracted from the 2-D sinusoids along a slice of the bispec- 
trum. The method based on this principle is presented herein. The techniques of 
using cumulant projections provide ample contrast to the methods of Raghuveer and 
Nikias mentioned in chapter 2. We model a slice of the bispectrum whereas they use 
the cumulants to describe projections of the bispectrum. 

The cumulant projections preserve the phase-sensitive statistics. Thus, SKEW- 
MUSIC can be applied in the 1-D case as well. One of the extensions of SKEW- 
MUSIC is known as SKEW-ESPRIT. This algorithm exploits the fact that eigenvec- 
tors from the symmetric cumulant matrix can be converted to their complementary 
skew-symmetric form by a simple rotation. A generalized eigenvector (GEV) solu- 
tion as implemented by the ESPRIT class of algorithms accomplishes this basis rota- 
tion. The biphases are directly related to the generalized eigenvalues (GE) as we 
show below. 

One of the keys in the implementation of the ESPRIT algorithm is the reduction 
of singular and rectangular matrix forms to full rank square forms. The PRO-ESPRIT 
algorithm of Zoltowski and Stavrinides is explained as well. In the simulations we 
employ this technique for accurate biphase estimation. 



4.2 Motivating the Fourier-Slice Bispectrum 

Non-linear system analysis is a computationally intensive enterprise requiring 
large systems of equations [I-31. In a system identification context the number of out- 
put frequency combinations possible is a geometric function of the number of input 
frequencies. Authors such as Victor et. al. make use of this fact in their system 
identification scheme called the sum-of-sinusoids method [4]. Here a group of six or 
eight sinusoids with virtually random phases is input to a nonlinear system. The out- 
put time series of a quadratic system is so rich in frequency diversity that the entire 
Volterra kernel or quadratic transfer function can be characterized with a limited 
number of input sinusoids. Sinusoids with incommensurate frequency values can act 
as an effective substitute for Gaussian noise inputs usually used to characterize com- 
posite linear and nonlinear systems. Several occasions warrant only observation of 
sections of the bispectrum or cross-bispectrum. We may be interested in only cou- 
plings involving specific frequency ratios. Self-self couplings are simple frequency 
doublings such that ol = 201. Ratios of frequency couplings are defined by slope 
lines in the bispectral domain. The slope lines are radial slices defined on a polar 
region of support. 

Access to radial sections of members of a Fourier transform pair is made through 
the use of the Radon transform. Here projections (summations) are computed in the 
bicorrelation (cumulant) domain that are orthogonal to a projection axis at an angle 8 
with respect to one of the lag axes. The Fourier transform of a given projection yields 
a slice in the bispectral domain [5,6]. The orientation of the slice in the complemen- 
tary domain is specified by the projection axis angle, 8. The advantage of using pro- 
jections is ultimately a reduction in dimensionality. As the two frequency variables 
specifying a coupling are related by a simple ratio, our modeling problem becomes a 
function of one variable only. By taking projections normal to the appropriate axis, 
simple two dimensional sinusoids are decoupled in the sense that each becomes a 
function of one frequency argument instead of two [7]. 

Cumulant projections are not unknown to the higher order spectral analysis com- 
munity. Alshebeili and Cetin use projections orthogonal to the ol = 02 axis for phase 
reconstructions [8]. Marmarelis and Marmarelis use projections to gather information 
about the relative size of the second order Volterra kernel [2]. A slice of the second 
order kernel is a Volterra filter that selectively pairs input frequencies of particular 
ratios, i.e., a harmonic Volterra filter. Giannakis and Delopoulos employ cumulant 
projections to anive at second order time skies statistics by projecting cumulants 
orthogonal to one of the lag axes [9]. Likewise, Nikias and Bessios use an adaptation 



of the biperiodograrn to find the bispectrum dong polar rasters [ 101. 

Applying Radon transform theory to the bispectrum, one consideration is to find 
the form of the projected cumulants in the case of three wave coupling. At first the 
cumulants are in the form of (3.2). The Radon transform for the discrete form cumu- 
lants is an approximation to the derivation discussed in the Appendix as 

K L 

where b ( m )  is the projected cumulant sequence at an angle of 8 radians with respect 
to the k-lag axis. Here we(k,l) is the weighting factor determined by some geometri- 
cal considerations based upon a given interpolation rule. For instance, consider a 
square cell centered around each cumulant value at &,I). The coefficient we(k,l) may 
reflect a weighting based on length of intersection of a projection axis at slope 
a = tan8 with a cell centered at (k,l). When l=ak, we(k,l) is a maximum or simply 
unity. Given that this is a discrete formulation, there will be leakage terms that do not 
belong to the slice of the bispectrum corresponding to the angle 8. Secondly, an inter- 
polation technique is needed to carefully calculate projections for a discrete system. 
This involves interpolating from rectangular to polar coordinates. Several candidate 
schemes are presented in [ll]. In addition, transforming to the discrete domain, the 
bandwidth of the hexagonal bispectral domain is effectively greater or less than n for 
certain projection angles where n is the bandwidth of the time series. The sampling 

rate must therefore be increased to include this domain with the maximum 6 n  extent 
in the Radon transform domain. 

In contrast to AR modeling of three-wave coupling as mentioned in chapter 2, 
our method uses cumulant sequences indexed by one variable only after projections 
are made which restrict the complementary bispectral region to a one dimensional 
slice. A one dimensional parametrization of the cumulants as in [12] limits the 
representation in the bispectral domain to a single dimension. This method attempts to 
utilize a one dimensional representation of nonlinear processes in order to generate a 
full 2-D bispectral representation. The AR modeling method is founded on the 
reduced dimension bispectral techniques known as the 1 112-D bispectrum discussed 
in chapter 2. This procedure is used in representing linear processes and as we have 
seen may not adequately describe the complete two dimensional bispectrum. A full 
2-D extent of the cumulants may be required for satisfactory description of nonlinear 
processes unless the projections are made restricting the bifrequency domain to a 
slice. 



4.3 The ESPRIT algorithm: The Generalized Eigenvalue Approach 

The ESPRIT algorithm devised by Roy and Kailath has been used in spectral 
analysis and direction-of-amval (DOA) [13,14]. One method of dealing with singular 
forms of the ESPRIT matrix pencil is the PRO-ESPRIT algorithm devised by Zol- 
towski and Stavrinides and our explanation of this algorithm follows their derivation 
for the general case when dealing with singular and rectangular matrix pencils [14]. 
We must now build the ESPRIT matrix pencil from the block data matrices X and Y 
where we have D sources impinging on 2M sensors. M sensors belong to the X array. 
Each of the M remaining sensors belonging to the Y array is displaced by a specified 
distance and direction from its complement in the X array. We assume that we are 
observing the noiseless case and that the received data matrices for N snapshots result- 
ing in data X and Y which have N columns. 

where x(i) and y(i) are the ith snapshot vectors each of length M belonging to X and 
Y, respectively. With D wavefronts arriving at the sensors we can rewrite (4.2) and 
(4.3) as 

A contains D DOA vectors, a(oi). The displacement or scaling factor, Oi;, that 
creates the phase difference between arriving wavefronts in the X and the Y data 
matrices is 

We note that Q, is a unitary diagonal matrix. The basis of the ESPRIT algorithm is that 
we might combine (4.4) and (4.5) 

Solving for the set of generalized eigenvalues, (01 1, . . , of this matrix pencil 
yields bearing angle estimates contained in 0;;. 



In developing PRO-ESPRIT, Zoltowski and Stavrinides mention that in an array 
processing context the data matrices X and Y have some evident redundancies [14]. 
They mention, "1) X and Y have the same D-dimensional column space, range(A) 
which is typically referred to in the literature as the 'signal subspace ...' In addition to 
this, however, we also note that each matrix has the same row space, range(sT), a D- 
dimensional subspace of N-dimensional space. This space spanned by the D (com- 
plex) time series vectors, si, i = 1, e a e ,D. ... we will here refer to it as the 'source sub- 
space'[14]." Exploiting these redundancies, our goal is to reduce the singular MxN 
data matrix pencil "to an 'equivalent' square DxD matrix pencil having the same D 
nonzero generalized eigenvalues as the original matrix pencil [14]." We accomplish 
this at the core rotations level by simultaneous subspace rotations First, examine the 
singular value decomposition of the data matrices, X and Y. Here 

where the superscript D belonging to a matrix refers to the rank of the respective 
matrix. We include left ( u:) and right ( v:) singular vectors that are associated 
with nonzero GEs. We can write the resultant matrix pencil as 

1 
-(Y - hX) = u,Dx,Dv,DH - huDxDvDH 
6 X X X  

D H DH -huDxDVDH = u!?Quxy Qv Vx X X X  

where the unitary matrix Q, is the invariant subspace rotation matrix relating the left 
singular vectors of X to those of Y as 

DH D DH D Qu=Ux Uy Qv=Vx Vy (4.1 la-b) 

Here an analogous rotation matrix, Q,, exists for the right singular vectors of X and 
Y. Zoltowski and Stavrinides mention that GEVs of the DxD core rotations matrix 
pencil, (Q,z,DQ,, z:) are the D nonzero GEVs of the MxN singular pencil 

( ( l / f i ) y D ,  (116)xD 1. 
The goal of the PRO-ESPRIT scheme is to convert singular or rectangular forms 

to a reduced square core rotations matrices to find the DOAs. In our case we shall find 
that the PRO-ESPRIT algorithm is used to find the biphases by constructing a matrix 



pencil from symmetric and skew-symmetric projected cumulants and finding the gen- 
eralized eigenvalues. Later in chapter 5 we can use the PRO-ESPRIT algorithm to 
find biphases for a 2-D matrix form, the third order cumulant matrix of Swindlehurst 
and Kailath [15]. 

4.4 Symmetric and Skew-Symmetric Subspaces- A Rotational Invariance Approach 

Consider the decomposition of the approximate projected cumulants, b (m) ,  into 
symmetric and skew-symmetric portions, Se(m) and &(m), below. The Radon 
transform preserves phase. Following Appendix A. 1 and section 4.1, in the case of a 
single triad the projection angle 0 is equal to tan(%/ol) we have 

Se(m) = 1/2(Re(m) + Re(-m)) = cos(y) cos(om) + P6(m) (4.12) 

where the polar frequency o = olcos0 + %sine. Here we observe the one dimen- 
sional version of symmetrization. Once again the biphase angle 0 has been extracted 
as the trigonometric coefficients of the sinusoidal cumulants. Instead of one triad 
assume that there are a total of k sinusoidal triads that fall along a particular slice of 
the bispectrum at a radial angle of 8 radians. Symmetric and skew-symmetric pro- 
jected cumulants may be expressed as 

k 
Se(m> = C COS yi (COS qm) + P6(m) 

i= 1 

k 
Ao(m) = C sin y; (sin aim). 

i= 1 

Suppose each sequence is now written in vector form where the projected cumulant's 
lag indexes the elements as se = [Se(0) Se(l) - . ~ ~ ( p - l ) ] ~  and 
ae = [Ae(0) Ae(l) . ~ ~ ( p - l ) ] ~ .  After converting the sinusoids to their equivalent 
complex exponential form, the two respective vectors may be expressed as 

where the amplitude coefficient vectors are given by 



p; = [ cos y1 cos y, - - . cos n, cos n, lT 
and 

qtY = [ sin yl sin yl . . sin n, sin n, lT (4.19) 

The reduced dimension 2k x 2k Vandermonde matrix, E, is composed of individual 
complex exponential columns as 

E = [ e(ol )  I e ( q )  j e(*) I e ( ~ - ~ )  . . . je(%) e (mk)  ] (4.20) 

where the 2k x 1 element vector of complex exponentials, e(oi), is defined as 

1 
e ( q )  = - [1 expu q )  expu 2 mi) . . expu (2k-1) %) lT (4.21) 

2 

and e ( w i )  = e*(q).  The 2k x 2k diagonal matrix, J, which contains the rotational 
constants or phase shifts, is defined as 

J = d i a g  { j ,  -j, j, . . .  j, j, -j,). (4.22) 

J is the 90 degree phase shift matrix which effectively shifts complex exponentials by 
positive or negative 7~12 radians in accordance with the sign of the respective column 
in E. In this case J converts complementary column pairs of E from cosine functions 
to sine functions. 

This construction is used to form the Toeplitz symmetric and skew-symmetric 
projected cumulant matrices, So and &, respectively. The projected third order 
cumulant matrix filled with symmetric cumulants, Se is both symmetric and Toeplitz 
and written as 

As stated earlier .for the 2-D cumulant case, it is possible to decompose So 

Se = E PtY E~ + PI (4.24) 

where P'y = diag{ p' ) is a 2k x 2k dimensioned matrix. Likewise Ae may be 
expressed as 



and analogous to the preceding equation, Q; = diag{ q' 1. 
Note that S and A are both of full rank equal to p=2k. The range space for each 

matrix is the same. The only difference between the two is that the eigenvectors 
representing the constituent bases are rotated from S to A. The rotation is exploited in 
forming the matrix pencil 

S - K A  = E ( P ' ~ - K % J ) E ~ .  (4.26) 

The rank decreases by one, i.e. p = 2k - 1, when K satisfies, 

( b , i i )  = jZi+'K {qy.iiI. 

In this case 

where {pyVii] and {qynii) are the ith diagonal elements of Py and Qy, respectively. 
i+ 1 1 

Here k = - or k=- depending on the position of the biphase argument % in Py or 
2 2 

Ay. Furthermore, the biphases, yi, 1 I i I k, are obtainable since the elements of the 
matrix are known, through 

Thus, K is a generalized eigenvalue (GE) of the matrix pencil ( S, A ). Working 
with this matrix pencil the biphases are found without the knowledge of the consti- 
tuent frequencies. Each GE.  is the ratio of corresponding symmetric and skew- 
symmetric biphase gain factors multiplied by the corresponding phase shift factor f j .  
Therefore simply knowing the GEs enables one to find all the biphases of quadrati- 
cally coupled sinusoids lying along a particular projection angle. Knowledge of the 
coupling frequencies is not required. 

4.5 Simulations of 1-D SKEW-MUSIC 

Simulations demonstrating the efficacy of the Fourier-Slice bispectrum exten- 
sions to SKEW-MU~1c'are presented next. For the purpose of generating cumulant 
projections, cumulants were estimated over a hexagonal grid whose maximum extent 



is f 3 0  cumulant lags along any lag axis. In this context, projections are taken normal 
to the 45' axis and provide information about the fi = f2 frequency axis of the bispec- 
trum. For these simulations each trial consists of a sinusoid triad where fl  = f2 = .05 
Hz and f3 = 0.1 Hz with varying biphases. 

As in the case of 2-D SKEW-MUSIC the noise from an exponential distribution 
necessary to generate a SNR of 4.77 dB was used. The noise was white. The reduced 
order bispectrum has a spacing or sampling rate for a given slice dependent on the size 

of the bispectral hexagon bandwidth relative to the maximal $n bandwidth of the 
polar raster. Suitable full coverage of the cumulant domain yields cumulant projec- 
tions as illustrated in Figs. 4.1 - 4.8 for biphases of 15O, 45O, 60' and 75O, respec- 
tively. Note that the changing biphase is evident in the relative sizes of the sym- 
metric and skew-symmetric cumulants provided in the graphs. Also as the symmetric 
projected cumulants begin to decrease in amplitude, the noise peak .becomes more 
prominent. These estimates were taken from the eigenvectors belonging to the noise 
subspace of the 6 x 6 matrices filled according to (4.21)-(4.23). For the slice selected 
there is one real sinusoid so that the appropriate signal subspace dimension is two. 
The plots indicating coupling frequencies for the two lower biphase cases were gen- 
erated using symmetric cumulants. The skew-symmetric cumulants were used to gen- 
erate the frequency plot of the higher biphase case. 

Monte Carlo simulations of the biphase estimation algorithms, l-D SKEW- 
MUSIC and SKEW-ESPRIT, were run. In each case the biphases of a coupled pair of 
sinusoids along the fl  = f2 main diagonal of the bispectral domain were checked. 
Four different biphase are used in this simulation set: 15O, 45O, 60", and 75'. The 
noise level was enough for a 4.77 dB SNR. 100 trials were run at each biphase value. 
The bicoherence level is 1.0. We fill two 10x10 matrices from the projected sym- 
metric and skew-symmetric sequences. 

Assume that we only have a single real sinusoid that is isolated by the procedure 
of taking cumulant projections at a 45 degree angle. Using this infornlation we reduce 
this singular matrix to a 2x2 core rotations level matrix pencil with the procedure of 
PRO-ESPRIT applied with rotation matrices Q, and Q,. The eigenvalues of the core 
rotations matrix pencil yield the biphases as described earlier. The results of these 
simulations for the l -D SKEW-ESPRIT algorithm are shown in Table 4.1. Likewise 
the l-D SKEW-MUSIC algorithm is tested for biphase estimation as well. Starting 
with the 10 x 10 matrices described above, biphases are found using a l -D version of 
(3.21). For this simulation knowledge of the coupling frequencies are needed. The 
coupling frequencies as described above are placed in the algorithm 



Lag (in Converted Seconds) 

Figure 4.1 Projected Cumulants for Biphase of 15' (Along fl =fi Axis) 
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Figure 4.2 MUSIC spectrum from Projected Cumulants for Biphase of 15' 
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Figure 4.3 Projected Cumulants for Biphase of 45' 
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Figure 4.4 MUSIC spectrum from Projected Cumulants for Biphase of 45' 
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Figure 4.5 Projected Cumulants for Biphase of 60' 
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Figure 4.6 MUSIC spectrum from Projected Cumulants for Biphase of 60' 



Figure 4.7 Projected Cumukants for Biphase of 75' 

Frequency (in Hz) 

Figure 4.8 MUSIC spectrum from Projected Cumulants for Biphase of 75' 



Table 4.1 Biphase Estimates Using SKEW-MUSIC and SKEW-ESPRIT Using 
Fourier-Slice Bispectrum along f 1 =f2 Projection Axis 
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CHAPTER 5 
BIPHASE ESTIMATION AND 

THE TRIPLE KRONECKER PRODUCT MATRIX 

5.1 Introduction 

In this section we generalize the third order moment matrix method of 
Swindlehurst and Kailath for biphase estimation [I]. Starting at the signal level with 
the use of the triple Kronecker product, we are able to redefine the third order 
Kronecker product matrix in terms of forward and backward signal vectors. Matrices 
consisting of symmetric and skew-symmetric cumulants can be be built from the for- 
ward and backward third order Kronecker product matrices. Either of these rectangu- 
lar matrices can be used for coupling frequency determination. Reduction of the rec- 
tangular matrix pencil of symmetric and skew-symmetric matrices to an equivalent 
square form allows the biphases to once again be estimated from the CiEs. 

5.2 Derivation 

The algorithm of Swindlehurst and Kailath utilizes the triple Kronecker product 
of signal vectors to form a triple correlation matrix R3. A novel feature of this 
method is that it is formed directly from the actual signal vectors instead of starting 
with the cumulants. A conventional rendering of the triple Kronecker product matrix 
has been mentioned in chapter 2. To reiterate we see that 

~3 = E { x 8 x 8 x H )  (5.1) 

where 

x  = [x(n) x(n + 1) . . x(n+m-1) lT 

is the data vector. We can decompose the matrix in (53) as an m2 x m block matrix 



Consequently, each m x m block R3(i) is built from the cumulants as 

The use of the singular value decomposition (SVD) of R3 together with the 
appropriate signal subspace algorithm generates estimates of the coupling frequencies 
from a nonlinear process. This method also utilizes the full 2-D cumulant domain 
when estimating frequencies involved in quadratic phase coupling. Unfortunately, 
this algorithm also assumes that constituent sinusoidal triads all have zero biphase. It 
would be advantageous to adapt this method to insure that the biphases can be 
estimated along with coupling frequencies. 

R3 (i) = 

Additionally, R3 is a rectangular m2 x m matrix. The third order moment term, 
R(O,O), does not lie along the main diagonal as in the SKEW-MUSIC symrnemc 
mamx described in chapter 3. Since the additive white noise in the Swindlehurst and 
Kailath formulation is Gaussian, asymptotically this component does not augment the 
R(0,O) term. For non-Gaussian additive white noise the R(0,O) term would also con- 
tain a noise component which would perturb the SVD. We seek to eliminate the 
R(0,O) term while insuring that we can estimate the biphases of coristituent coupled 
sinusoids from our time series. In this fashion the methods of SKEW-MUSIC and 
SKEW-ESPRIT can be generalized for rectangular matrices. Ultimately, a method 
such as PRO-ESPRIT is applied to the singular form R3 in the estimation of the 
biphases [2]. 

First, however, let us estimate biphases and coupling frequencies in the case con- 
sidered by the Swindlehurst and Kailath, that of quadramcally phase coupled 
sinusoids with added Gaussian noise. The vector x is composed of a signal, Es, plus 
an added Gaussian noise component vector, n, so that x = Es + n. Assuming that the 

- - 
R(i, 0) R(i, 1) . . . R(i,m-1) 

R(i-1,-1) R(i-1,O) . . . R(i-1,m-2) 

R(i-m+l,-m+l) R(i-m+l,-m+2) . . . R(i-m+l,O) 
- - 

(5.4) 



time series x(t) contains only phase-coupled sinusoids and Gaussian noise, E is a 
matrix of complex exponential columns. Here d is the number of sinusoids in the time 
series irrespective of quadratic phase coupling. The general structure of E is like that 
of (4.20)-(4.21). However, this time there are 2d columns each of length m. Each 
sinusoid has an amplitude and phase as well. These are contained in the s vector also 
of length 2d 

= [ @(q) Al e - j o ( ~  ) . . . A $(%) Ade-$P(%) IT 
d (5.5) 

Following [I] in the case of quadratically phase coupled sinusoids in Gaussian noise 
the expectation in (5.1) becomes 

R~ =E{(Es+ n)@ ( ~ s + n )  @ ( ~ s + n ) ~ )  (5.6) 

d d d  
= x x xAiAkAl[e(q)@e(mj)@eH(q)l  E{e j(NW + M%Mts) 1 

i=l k=l 1=1 

When there is quadratic phase coupling present for real x(t), the terms under the 
expectation become the biphase angle, namely e'y. If there are N triads in the time 
series x(t), each having a biphase y i ,  the triple Kronecker product representation, R3 
can be written in complex exponential form including biphases of component com- 
plex exponential vectors using the conventions of [I] as 

In this context e(oiL)=[l expuqk)  . expu(m-l)qr)lT and the compound complex 
exponential vector formed from the sum of double Kronecker products is 

for general e(oik) and e(ql ) ,  and k, 1=1, 2, 3 refers to the member number of the ith 
triad. Also a bar over one (or both) of the subscripts for eXy in (5.7) indicates that the 
conjugate has been taken of one (or both) of the constituent vectors. If it is desired to 
make third order cumulant matrices filled with symmetric or skew-symmetric cumu- 
lants, forward and backward vectors, x~ and x ~ ,  need to be defined 



We Can write R3FFF and R3BBB as 

R3FFF = E ( XF @ XF @x? ) R3BBB = E (XB @ XB @xB ) (5.1 la-b 

R 3 ~  has the form of (5.3)-(5.4) whereas R3~BB can be written as 

jYi - T + e  euze (ql)+e-fiielZ3eH(cql)) 

Changes in directionality from forward to backward vectors only conjugate frequency 
terms and leave resulting biphase factors with the same sign. We can then write the 
symmetric, S3, and skew-symmetric, A3, matrices using forward-backward triple 
Kronecker products 

S3 = 1/2[ R~FFF + R~BBB ] A3 = 1/2[ R~FFF - R~BBB 1- (5.13a-b) 

The general formulation of S3 for multiple triads specifically involves the product of 
left and right complex exponential Vandermonde mamces as 

s3 = E ~ P E ~ .  (5.14) 

Assuming that there are N distinctive sets of phase-coupled sinusoids, EL is a m2 x D 
mamx containing columns of the compound complex exponential vectors, ell, e E  , 
etc. and. D = 6N. ER contains the simple complex exponential vectors of the form 
e(@) Z(@), etc. This mamx is m x D. Finally, P, is a D x D diagonal mamx with 
terms of the form A1 A2A3 cosyi. 

In a complementary rendition, A3 can be written as 

A3 = E L Q J E ~ .  (5.15) 

As before, Q  contains terms such as A1A2A3 siny along its diagonal. J  is a unitary 
mamx with alternating phase shifts o f f  90 degrees. Singular value decompositions of 
either S3 or A3 can be accomplished for coupling frequency estimation using the 
appropriate estimator as outlined in [I]. 

To estimate the biphases we again exploit the property of common row and 
column spaces by fist writing a rectangular mamx pencil (S3, A3 ) , 



As before when ~ c j ~ ~ "  = cotyi, the rank of the matrix pencil decreases by one from D 
to D-1. The set (cotyl ,coty2, . . , c o t ~  ) are the GEs of the rectangular matrix pencil 
(S3,A3). TO estimate the GEs and hence the biphases, we must reduce the rectangu- 
lar pencil to an "equivalent" DxD square pencil (S3D,A3D ) having the same nonzero 
GEs as (5.16). Once again the techniques of PRO-ESPRIT give us the appropriate 
square pencil based upon the non-zero singular values and corresponding left and 
right singular vectors of both S3 and A3 [I]. This method of finding coupling frequen- 
cies and respective biphases will be termed SKEW-PRO-ESPRIT. 

In the case of additive white non-Gaussian noise it is desired to eliminate the 
R(0,O) term from the third order cumulant matrix. To prevent the term R(0,O) from 
occurring anywhere in (5.13) we need to eliminate all triple correlations with terms 
having identical time lags, i.e., terms such as E(x(i)x(i)x(i)) cannot appear. This con- 
dition can be prevented by the use of mixed forward-backward Kronecker products 
and time-delay signal vectors. The appropriate alternate definitions of triple 
Kronecker product matrices are given below. Recall that the time series x(t) is real- 
valued, 

where the time-shift signal vector, xp+ = [x(n+l) x(n+2) . x(n+m)lT and 
XB- = [x(n-1) x(n-2) . . . x(n-m)lT. Consequently, we can construct matrices filled 
with symmetric and skew-symmetric cumulants from RsFFB-and R ~ B ~ F +  as 

At this juncture SKEW-PRO-ESPRIT can be performed to find coupling frequencies 
and biphases in the manner described earlier. As we will see in the simulations sec- 
tion, the modified Swindlehurst and Kailath method allows for accurate biphase esti- 
mation in either Gaussian or non-Gaussian distributed noise. 

5.3 Comparing the Structure of the 2-D SKEW-MUSIC Matrix 
and the Triple Kronecker Product Matrix 

Examining the structure of the matrix used in 2-D SKEW MUSIC we notice that 
it does feature Kronecker products of the compound exponential vectors, that is the 
double Kronecker product generated from the Kronecker product of exponential 



vectors. Restating (3.14) from chapter 111, we see that the S matrix used for 2-D 
SKEW MUSIC is written as 

where e& is an exponential vector 

eik = [ 1 exp(m) exp(2wk) . - . exp(mw&) lT 

and e(%,qj) = ek @ eij which is a 2nd order Kronecker product. The coefficient 
(cosyi 

P,.ii = 2 
contains biphases. Likewise A can be decomposed as 

Here again we indicate that the coefficient q,,~ = (sinyi)/2j contains biphases. In 
each case we can write the matrices in terns of simple Kronecker products: 

N 
S = Z hii Z {[eij 8 e&l* 8 [eij 8 eiklT 

i=1 j,k 

+Leij 8 en] 8 [eij 8 eiklH ) 

In much the same fashion A also has a clear Kronecker product rendition: 
N 

A =  Z q,,~ Z {lei, 8 eik]* 8 [eij 8 enlT (5.22) 
i=1 j,k 

-[eij 8 ek] 8 [eij 8 eklH ) 

The matrices from 2D SKEW-MUSIC can in fact be constructed from sums of 4th 
order Kronecker products of exponential vectors. Third order cumulant terms 
corresponding to product terms comprise the matrix entries. The only difference 
between the matrices is the coefficients of Kronecker products. 

The third order cumulant matrix of Swindlehurst and Kailath does not have 
R(0,O) diagonal terms. Being a rectangular matrix S3 and A3, the noise terms cannot 
be isolated nor can either of these matrices be terned symmetric or skew-symmetric. 
The 2D SKEW-MUSIC matrices, S and A, are normal matrices with noise third order 
moment contributions lying along the main diagonal. The symmetric or skew- 
symmetric structure is once again evident when we glance at the structures of the 
matrix decompositions in (3.10) and (3.11). The structure of the matrices for 2-D 



SKEW-MUSIC could also used for biphase determination in much the same manner 
described in this chapter or earlier in chapter 3. 

There have been several algorithms using higher order statistics for array pro- 
cessing and harmonic retrieval applications using 4th order statistics[3,4]. Though 
our matrix has a 4th order structure, we do not fill the matrix with 4th order statistics 
as those harmonic retrieval algorithms require. Our 4th order products are generated 
from purely exponential vectors. The other algorithms begin with products of signal 
vectors. Likewise the cumulants in the 2-D SKEW MUSIC matrices are indexed by 
only two time lag indices, not three as would be the case for fourth order cumulants. 
It would be interesting to compare the structure of our matrix with that generated from 
a true 4th order signal Kronecker product for three-wave coupled sinusoids. 

5.4 Simulations 

The standard Swindlehurst and Kailath third order cumulant matrix technique is 
tested initially [I]. This method features unsymmetrized cumulants. In their simula- 
tions these authors did not vary the biphase, but used a reference biphase of zero 
degrees. We performed simulations with a variety of phase shifts among the 
sinusoidal components in Figs. 5.1 - 5.6 and found that the algorithm performed well 
for nonzero biphase arguments. Figs. 5.5 and 5.6 are especially interesting as they 
show that the algorithm gives satisfactory results for the imaginary biphase of 90'. 

Also Swindlehurst and Kailath used a block data procedure to build their third 
order cumulants matrix. We first calculate the cumulants separately within records 
that are 128 data points long. After 32 (N=4096) such segments we average the 
cumulants and load our matrix as outlined in (5.1)-(5.5). The algorithm was tested 
with both Gaussian and non-Gaussian (exponentially distributed noise). In all simula- 
tions in this section a 16x10 matrix was used and the left singular vectors belonging to 
the six largest singular values were used in these runs. The compound Kronecker pro- 
duct frequency kernel and bispectral estimator in (2.46) were used to find the location 
in the bispectral domain where coupling occurs. 

Monte Carlo simulations of the method outlined in [ I ]  were run over a range of 
bicoherence levels in the same manner as in Table 3.6. The bicoherence values span 
from 0.02 to 1.0. The number of data points used in these simulations is 4096. In 
Table 5.1 the results of those simulations are reported for both Gaussian and exponen- 
tially distributed noise. The results for both noise distributions are similar. In fact, for 



Figure 5.1 Standard Swindlehurst and Kailath algorithm; Biphase = 0'; SNR = 
4.77 dB; Gaussian Noise; N=4096; Peak at (.35,.1) Hz 

Figure 5.2 Standard Swindlehurst and Kailath algorithm; Biphase = 0'; SNR = 
4.77 dB; Exponentially Distributed Noise; N=4096; Peak at (.34,. 12) 
Hz 



Figure 5.3 Standard Swindlehurst and Kailath algorithm; Biphase = 30'; SNR = 
4.77 dB; Gaussian Noise; N=4096; Peak at (.34,. 1) Hz 

Figure 5.4 Standard Swindlehurst and Kailath algorithm; Biphase = 30'; SNR = 
4.77 dB; Exponentially Distributed Noise; N=4096; Peak at (.33,. 11) 
Hz 



Figure 5.5 Standard Swindlehurst and Kailath algorithm; Biphase = 90'; SNR = 
4.77 dB; Gaussian Noise; N=4096; Peak at (.35,.1) Hz 

Figure 5.6 Standard Swindlehurst and Kailath algorithm; Biphase = 90'; SNR = 
4.77 dB; Exponentially Distributed Noise; N=4096; Peak at (.33,. 13) 
Hz 



several bicoherence values the non-Gaussian noise does remarkably well and exceeds 
performance levels for Gaussian noise. This occurs in spite of the fact that this algo- 
rithm is especially designed to handle only added noise that is Gaussian-distributed. It 
is believed that over such short data lengths the Gaussian character of the added noise 
is imevelant. Asymptotic effects do not come into play with only 32 segments of 
length 128. 

Unlike the case of 2D SKEW-MUSIC as presented in chapter 2, there is clear 
trend line due to the fact that the bicoherence or fraction of power in coupled 
sinusoids is lowered. Obviously the effects of the bicoherence are marked and 
improvement is noted as the bicoherence increases. The variance decreases by almost 
66% in moving from the lowest bicoherence to unity. What is remarkable is the fact 
that the Swindlehurst and Kailath algorithm performs so much better that the 2D 
SKEW-MUSIC algorithm in these tests. Examining the standard deviation at a 
bicoherence of 0.1, it is noted that the best performance using 2D SKEW-MUSIC and 
non-Gaussian additive noise was 0.0838 In the third order cumulants matrix method 
the standard deviation had a value of 0.048. Using the third order cumulant matrix 
provided a 42% improvement in standard deviation. This difference less pronounced 
at a bicoherence level of 1 .O. Here performance was almost 31 % better for the triple 
Kronecker product method. Lower bias also characterized the triple Kronecker pro- 
duct method at all levels of bicoherence. 

Moving on to the modified Swindlehust algorithm, Monte Carlo simulations 
were run to determine the accuracy of biphase estimation through the division of the 
cumulants into. symmetric and skew-symmetric portions. The cumulants were formed 
from 8192 data point long segments containing a single triad of phase coupled 
sinusoids. Separate sessions of 100 trials each were run with biphases of 15', 45' and 
60'. Noise levels were maintained at 4.77 dB for all sessions. 

Symmetric and skew-symmetric cumulants were placed in the 16 x 10 S3 and A3 
matrices, respectively as in (5.18a-b). As part of the modification to the classical third 
order cumulant mamx method, the R(0,O) term was deleted as described above. The 
matrix pencil, [ S3, A3 ), forms the starting point for SKEW-PRO-ESPRIT, the rendi- 
tion of the PRO-ESPRIT algorithm for biphase determination directly from the third 
order cumulant sequence. Separate singular value decompostions are performed for 

each matrix. Qu and Qv are formed from the left and right singular vectors 
corresponding to the 6 largest singular values of the each matrix. Thus applying Qu 
and Qv reduced the matrix pencil, { S3, A3 ) , to the the required core rotations square 
matrix pencil as in (4.10). This 6 x 6 matrix pencil yield 6 GEs. These GEs are sub- 
sequently averaged. The inverse tan function yields the biphases. 



As can be seen from Tables 5.2 and 5.3 accurate biphase estimates are possible 
using the PRO-ESPRIT algorithm on 2-D cumulant data. Both exponentially and 
Gaussian distributed noises are added to create SNRs of 11.76, 4.77 and 1.76 dB in 
separate trial sessions. The data length is 8192 points with 64 segments of 128 points 
used throughout. Naturally, as the noise power is increased the variance of the esti- 
mates increases. Gaussian noise seems to generate higher biphase variances than does 
the exponentially distrbuted added noise. Exponential noise has higher bias values 
when the SNR is low at 1.77 dB; otherwise non-Gaussian noise does not cause results 
to deteriorate at all. This may be a fortunate result of removing the noise bearing 
term, R(O,O), from A3. 

In Figures 5.7-5.12 of coupling frequency estimates are shown for several 
combinations of biphase, noise, and cumulant type using the matrices from SKEW- 
PRO-ESPRIT. Accurate estimates of the true coupling frequencies, fi = .34 and 
f2 = .l, are noted. The only exceptions among this collection are for the symmetric 
cumulant matrix, S3, for both Gaussian and non-Gaussian noise. 



Table 5.1 Performance of Standard Swindlehurst and Kailath Algorithm: 
Coupling Frequency Estimate Accuracy vs. Bicoherencces from 16 x 10 
Third Order Cumulant Matrix; 100 Trials per Bicoherence Value 
Accuracy (Means and Variances) of fl  estimate shown; True Value: 
f, 4.34 



Table 5.2 Biphase Estimates Using Modified Third Order Ciumulant Matrix; 
Gaussian Noise-- N=8192; Varying Both Biphase and SNR 

Biphase Estimates Using 
Modified Third Order Cumulant Matrix 

Gaussian Noise -- N=8192 

Table 5.3 Biphase Estimates Using Modified Third Order Cumulant Matrix; 
Exponentially Distributed Noise-- N=8192; Varying Both Biphase and 
SNR 

Biphase Estimates Using 
Modified Third Order Cumulant Matrix 
Ex~onentiallv Distributed Noise -- N=8192 



Figure 5.7 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and 
Kailath algorithm; Symmetric Cumualants; Biphase = 0'; SNR = 
4.77 dB; Gaussian Noise; N=4096; Peak at (.34,.1) Hz 

Figure 5.8 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and 
Kailath algorithm; Skew-Symmetric Cumulants; Biph.ase = 0'; SNR 
= 4.77 dB; Gaussian Noise; N=4096; Peak at (-37,. 13) Hz 



Figure 5.9 SKEW-PRO-ESPRIT adaptation of S windlehurst and Kailath 
algorithm; Symmetric Cumualants; Biphase = 60'; SNR = 4.77 dB; 
Gaussian Noise; N=4096; Peak at (.35,.08) Hz 

Figure 5.10 SKEW-PRO-ESPRIT adaptation of Standard Sw.indlehurst and 
Kailath algorithm; Skew-Symmetric Cumulants; Biphase = 60'; SNR 
= 4.77 dB; Gaussian Noise; N=4096; Peak at (.34,.1) Hz 



Figure 5.11 SKEW-PRO-ESPRIT adaptation of Swindlehurst and Kailath 
algorithm; Symmetric Cumualants; Biphase = 60'; SNR = 4.77 dB; 
Exponentially Distributed Noise; N=4096; Peak at (.35,.08) Hz 

Figure 5.12 SKEW-PRO-ESPRIT adaptation of Standard Swindlehurst and Kailath 
algorithm; Skew-Symmetric Cumulants; Biphase = 60'; SNR = 4.77 
dB; Exponentially Distributed Noise; N=4096; Peak at (.34,.1) Hz 
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CHAPTER 6 
THE EEG AND THREE-WAVE COUPLING 

"In fact, the EEG researcher should remain especially wary of mathematics 
in search of an application. (One should not ask what EEG can do for 
mathematics, but rather what mathematics can do for EEG)" t 

6.1 Introduction 

The time series used for testing the algorithms developed in chapters 3,4 and 5 is 
the electroencephalogram or the EEG. Typically the EEG is recorded off the scalp of 
the human head and reflects the underlying activity of neurons of the cerebral cortex. 
Disc electrodes about 1 cm. wide are placed over an area of the brain and they record 
the surnmated activity of neurons lying directly underneath the scalp placement area. 
To a lesser extent other cells distant from the conducting electrode also influence the 
signal measured. These neurons have their distant effects felt through the conducting 
medium. Cardiac electrical effects and circulatory blood flow as well as other con- 
taminants, such as the electrooculogram (EOG) and other muscular artifacts, also 
influence the final EEG output signal recorded. 

The EEG actually measures three kinds of cerebral function. The fist is parox- 
ysmal activity which is characterized by spikes and sharp waves. K complexes and 
vertex transients in sleep are other examples of paroxysmal activity. Spiky parox- 
ysmal activity is not well suited to spectral analysis since the energy is spread over the 
entire spectrum. Evoked activity such as the sensory event-related potential in 
response to exogenous stimuli is typically time limited and is analyzed in the time 
domain. 

' P. Nunez, The Electric Fields of the Brain, Oxford, New York, 1981, p. 214 



The non-paroxysmal background EEG activity occurs spontaneously in the 
awake adult human. The processes recorded off the scalp are called EEG rhythms and 
are studied by the use of the power spectrum or spectral density. Using the power 
spectrum, the primary unit of analysis is the frequency band. Different rhythms such 
as alpha or beta rhythm occupy specific frequency ranges. All spectral parameters are 
defined within bandwidths. These include power in a band, peak frequency, peak 
intensity, peak half power bandwidth among others. 

The use of the bispectrum as a means of understanding EEG background activity 
challenges the notions of observing EEG within the band window. The question of 
interrelationships among frequency bands forces the researcher to perhaps look out- 
side of this window for the total view of EEG activity. Is activity in higher frequency 
bands independent or simply harmonics of lower frequency components? Correlated 
high frequency activity enables the scientist to narrow hisher field of view as these 
oscillations yield no new information. Can the special property of Gaussian noise 
immunity aid the EEG researcher to uncover new details about the rhythms? Evi- 
dence is cited from a number of sources in this chapter to help promote using the 
bispectrum, in general, and the high resolution parametric bispectrum, in particular, 
for EEG analysis. 

6.2 Spectral Considerations and Problem Statement 

The Electroencephalogram or EEG is a time series recovered typically from the 
scalp which reflects underlying brain activity. The EEG is the spatial average of the 
synchronized or coherent activity of neurons belonging to the cerebral cortex. Strong 
or salient coherencies among large groups of neurons create pronounced rhythms in 
the EEG spectrum. Voltage ranges are between +so p.V for most references on the 
upper portion of the head. Frequency ranges of interest for the EEG range from 0 to 
about 100 Hz. The typical frequency range of interest for the normal waking adult is 
between 0 to about 40 Hz. The frequency range for EEG is divided into bands as 
shown in Table 6.1. 

Predominant activity occurs in the alpha band between 8 and 13 Hz. The alpha 
band is the most pronounced. It also displays the most dynamic activity that can be 
easily traced to the presence or absence of direct sensory stimulation. When there is 
no direct sensory stimulation of any variety, most importantly the lack of visual stimu- 
lation, the alpha wave appears most prominently in the EEG record as very nearly 



Table 6.1 Major Divisions of the EEG Spectrum to 23 Hz 

sinusoidal in shape. The alpha rhythm is said to dominate as the single most notice- 
able feature of the EEG spectrum. Shortly after sensory stimulation commences, the 
alpha wave disappears into the background leaving higher frequency phenomena in 
the normal waking adult to prevail. Opening the eyes in total darkness causes the 
alpha rhythm to fade only partially. It then reappears momentarily. 

EEG Bands and their Spectral Regions 

The process of the fading alpha rhythm when sensory stimulation occurs is usu- 
ally referred to as alpha blocking or alpha desynchronization. Typically, it occurs 
bilaterally. The frequency is said to vary by as much as 1 Hz. in normal subjects. It 
can rise to about 2 Hz faster than its stable rhythm immediately after eye closure -- 
this is called the squeak phenomenon. Most subjects concentrate their mean alpha 
rhythm between 9-10 Hz. There are usually small differences in mean frequency 
between the hemispheres of the brain with only the largest concentration of alpha 
power occurring in the right hemisphere. This degree of alpha power variation is 
dependent on type of responding pattern that a subject exhibits. Most typical is the 
responsive or R type alpha. There are certain responders who display P or persistent 
type alpha activity that diminishes only temporarily during the open eyes condition. 
There is the M or minimal response for subjects who show little or no predominant 
alpha signal. Their EEG records are much flatter than either P or R type subjects. In 
fact, except for peaks in the beta region, their EEG spectra have no distinctive features 
during waking. 

Delta 

Theta 

Alpha 

Beta I 

Beta II 

Alpha tends to occur mainly in the posterior portion of the head. On the Interna- 
tional 10-20 scheme for electrode source positions this would tend -to be strongly in 
the electrodes of the occipital and parietal lobes, i.e. the 01, 02, P3 and P4 elec- 
trodes. The generalized positioning of all major electrodes on the human head is 
shown in Fig. 6.1. Interestingly, beta concentration appears more pronounced on 

1-3 Hz 

4-7 Hz 

8-13 Hz 

13-18 Hz 

18-23 Hz 



frontal or central (C3 or C4) positions. Beta is normal, waking rhythm of the adult 
human. It does not respond to sensory input. It can appear to be more pronounced 
during periods where the organism is carefully attending or "highly alert and focusing 
his attention on a target [I]." 

The alpha rhythm derived from occipital origins exhibits a characteristic "waxing 
and waning." Some authors mention that the visual record of the alpha rhythm indi- 
cates that it is both amplitude and phase modulated [3]. A glance at a sample 1 
second interval of EEG recorded from the 0 1  electrode shows that that there is indeed 
a portion that is amplitude modulated. This section of data is shown in Fig. 6.2. The 
phase modulation is more apparent from data taken near the end of the segment. In 
the power spectrum (Fig. 6.3) for this short section of data, it is clear that a peak in the 
neighborhood of 10.5-1 1 Hz dominates. It is difficult to decide if much smaller "side- 
bands" are seen in the delta region and in the beta-11 bands. 

Another section of data taken from a more anterior derivation (P3) recorded 
simultanwusly shows an entirely different harmonic structure. Now components in 
the beta-I1 band and the delta bands are more pronounced and a wider bandwidth is 
noticeable at this scaling. The alpha wave is reduced in strength. The beta-I1 band 
could easily be thought of as a harmonic of the alpha wave. These are shown in Figs. 
6.4 and 6.5. 

In these short term series, we paid strict attention to peaks while ignoring accom- 
panying noise by reviewing candidate EEG segments and choosing distinctively 
noise-free segments. We should now turn to a long duration (32 second) segment of 
EEG data from two subjects' P3 electrode derivations. A generalized model for the 
spectrum of spontaneous EEG activity was presented by Dumermuth and Molinari [4]. 
This model is composed of three spectral portions: 1 .) a flat, white noise portion; 2.) a 
pink noise portion that begins with a peak near the low end of the delta frequency 
band with a characteristic decreasing slope and DC intercept; 3.) the colored noise 
portion which comprises power in specific peaks, namely the alpha and beta peaks. A 
sample spectrum containing these three components is shown in Figure 6.6. The 
white noise portion is considered to be an artifact as it can be ongoing noise generated 
from extra-cortical or exogenous sources. It can also represent instrumental noise. In 
the cases of paroxysmal activity it may represent epileptiform spikes of short duration. 
The pink noise portion has a cortical origin and is thought of as an "underlying, 
unstructured EEG component which is a natural feature of empirical data and often 
called amorphous or arhythmic activity" [4]. 

The remaining part of the spectrum is the peaks at the alpha and beta band. The 
nature of these peaks and their interrelationship is of key interest to the EEG 
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Figure 6.1 The International 10-20 system for positioning of electrodes [2] 
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Figure 6.2 Segment of EEG Time Series Data from S1 01 electrode; 1 sec. 
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Figure 6.3 Power Spectral Density from 0 1  Time Series Data 
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Figure 6.4 Segment of EEG Time Series Data from S1 P3 electrode; 1 sec. 
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Figure 6.5 Power Spectral Density from P3 Time Series Data 



I 
I I I I I I 

10 20 30 40 50 60 

Frequency (in Hz) 

Figure 6.6 Long Term EEG Spectrum from Ss 1 & 3: Containing Critical EEG 
Spectral Constituents: 1.) White Noise "Floor"; 2.) Pink Noise: l/f 
Type Noise Sloping Contour; 3.) Peaks Which Are Colored or 
Narrowband Phenomenon 



researcher. Questions about their harmonic character immediately become apparent. 
The prominent peak at beta-I1 is approximately twice the frequency of the correspond- 
ing alpha peak. 

The nature of the noise is critical to understanding the peaks themselves Suppose 
the white and pink noises are Gaussian and the signal as represented by the spectral 
peaks is non-Gaussian. Bispectral analysis is one to aid in enhancing the peaks. Once 
the noise components have been removed the peaks themselves remain. The question 
about the nature of the peaks still persists. If the peaks are simply narrowband Gaus- 
sian noise as considered by Dick and Vaughn, the bispectrum should not detect their 
presence [5]. If, on the other hand, the peaks alone represent the only non-Gaussian 
portion of the spectrum, bispectral analysis should isolate the peaks if they happen to 
be quadratically phase-coupled. 

Isolating the peaks from the various noise components is performed in several 
studies. Naturally, the slope and intercept of the pink noise spectrum can be calcu- 
lated and this portion of the spectrum simply subtracted out to reveal the peaks, if the 
beta peak is not submerged in noise [4]. Other studies have focused on enhancing the 
EEG spectrum by extracting the white noise component to isolate key peaks. 
Yarman-Vural, Onaral and Cetin [6] assume that the raw spontaneous EEG signal, 
y(n), can be represented by an embedded signal x(n) contaminated by additive white 
noise w(n) as y(n) = x(n) + w(n). It is assumed that the additive white originates from 
a number of non-cortical sources. The actual EEG signal x(n) can be modeled as an 
AR process. Raw EEG measurements may be represented by the ARMA model 
Yarman-Vural et al. develop a procedure whereby they enhance the measured EEG 
time series by inverse filtering using the MA model [6]. The additive white noise com- 
ponent is removed leaving EEG peaks at alpha and beta locations that are more pro- 
nounced. 

6.3 Bispectral Studies 

The landmark study of the EEG and the bispectrum was the work of Huber et al. 
[7,8]. Not only was this study an effective application of the bispectrum to natural 
signals, but [7] laid out the statistics and formal algorithmic details of the biperido- 
gram for the signal processing community in 1971. As evidence supporting the use of 
the bispectrum, they pointed out the following: 1.) the assumption of stationarity was 
obviated for long records; 2.) the Gaussianity assumption is also violated for records 



exceeding four seconds in length; 3.) there was commonly phase-locking found in 
paroxysmal and non-paroxysmal EEG samples. They suspected that there might be 
important phase relations among different components. 

Huber et al. averaged data corresponding to 80 seconds of EEG [7]. They found 
peaks in the bispectral frequency ranges corresponding to second and third harmonics 
of the alpha band. This indicates that the predominant activity was sighted between 
alpha and its 20 Hz component in beta-I1 as well among alpha, beta-I1 and the 30-Hz 
component in beta-III. These studies focus on deviations from Gaussianity. 
Significant peaks and their confidence intervals are measured with respect to the cen- 
tral X2-distribution. P-values as low as 10-l6 reflected slim probabilities of respective 
peaks originating from a Gaussian time series. 

Ning and Bronzino have conducted studies dealing with the study of EEG in the 
hippocampus during various vigilance states as well as sleep states[9]. During REM 
(rapid eye movement) sleep there is increased theta-theta coupling for harmonic alpha 
components. They are able to differentiate different states by summing all bispectral 
values in a manner akin to constructing the third order moment of the process. Their 
summation is thought to be an index for deviation from Gaussianity. It does not, how- 
ever, take into consideration relative power values of individual time series. 

Another Ning and Bronzino study focused on the cross-bispectrum from two dif- 
ferent regions of the hippocampus of the adult rat [lo]. There are once again indica- 
tions of significant theta region coupling to alpha frequencies during generation of the 
alpha. 

A key study by Barnett et al. studied the bispectrum in human adults in both 
waking and sleeping [ll]. In a fully alert state, the most significant bifrequency peaks 
were found at approximately (10 Hz, 10 Hz). About one half of total of eight subjects 
had high alpha activity. It was primarily these subjects which had the significant 
bispectral values. These authors do not describe how they arrive at the measure of 
significance in their observations. The authors consider the fact that a large propor- 
tion of the beta activity can considered harmonically dependent on alpha amounts. 
There were particularly strong bispectral patterns revealed during sleep. 

Whitton et al. look at the hereditary influences on the bispectrum 1121. Since 
there is a strong genetic basis to alpha wave parameters, these authors decided to test 
if this hypothesis could be extended to alpha harmonics. Using the bispectral test of 
collinearity, they discovered that monozygotic twins exhibited a highly coincident 
bispectrum. 



6.4 Alpha-Beta Interrelations in the EEG 

Evidence about the harmonic nature of the beta response comes from the work of 
Shirninke [13]. Eye opening diminished both alpha and beta responses while closure 
increased the amplitude of both. It was proposed that beta could be both the second 
and third harmonic of the alpha rhythms. Beta may underly the alpha activity which 
becomes synchronized to the beta. Regardless, alpha and beta were thought to ori- 
ginate from the same source. 

Gaarder and Speck explained that a certain percentage of the population have 
coupled alpha and beta reactions [14]. Both peaks seem to dominate. One peak was 
always twice the frequency of the first. Alpha was said to occur whenever every other 
beta cycle was suppressed. Desynchronization was said to occur when the individual 
was involved in some cognitive task. 

True indication of the correlations between alpha and beta came in the study by 
Johnson et al. [IS]. These scientists tested both waking and sleeping subjects to check 
band power interrelationships. Among awake adults exhibiting high alpha only beta 
band power shows significant (p < .01) correlation. Dumermuth and Molinari present 
several examples of EEG with harmonic beta components [16]. These are listed in the 
Table 6.2 

Table 6.2 Activities with Harmonic Beta Components; Adapted from [16]. 

Activities with Harmonic Beta Components 

Mu Rhythm 

Frontal Theta or Alpha Activity 

14+6/sec positive spikes 

Psychomotor variant 

Photic Driving 

Monophasic Sleep Spindles in Babies 

Spiky, i.e. monophasic alpha rhythm 

They also classify several forms of beta activity in clinical and normal controls. 
The divisions include narrow, broadband and harmonic forms of beta activity. Most 
common however is the mixed beta. Often independent and harmonic generators of 



beta activity superimpose and the bispectrum is needed to separate the components. 

The mu rhythm also known as the 'rhythme rolandique en meau' appears in 
some adults [17]. It has a distinctive (9 + 2 Hz) and stable characteristic shape which 
insures very strong second harmonic response. The reactivity of the mu rhythm is dis- 
cussed in the work by Pfurtscheller and Aranibar on cerebral ischemia [18]. The 
simultaneous reactivity of power in both alpha and beta bands can be monitored by 
the "event related desynchronization' procedure useful in clinical practices. Average 
power in several epochs of EEG background activity prior to and after motor activa- 
tion or sensory stimulation is often used to detect a variety of clinical conditions. An 
asymmetrical desynchronization is often useful in detecting ipsilateral ischemic 
attacks. 

Studies of lateral asymmetry have shown that the beta-I1 band has particularly 
low interhemispheric coherence. Only in the frontal lobe does this rhythm exhibit 
significant coherence between hemispheres. At the same time frontal alpha shows the 
same level of significant bilateral correlations [19]. There have been several studies 
where the beta wave has been determined to be influenced by cognitive factors, 
whereas the alpha rhythm is generally thought to be chiefly influenced by generalized 
sensory inputs arousal and concomitant attention levels. The landmark study by Ray 
and Cole [20] was successful in determining that alpha and beta power levels have 
separate determinants that interact in the appropriate experimental contexts. Alpha 
wave power discriminates cognitive tasks dependent on external environmental 
involvement called the intake/rejection factor. EEG beta rhythm responses can dif- 
ferentiate types of cognitive tasks, i.e. verbal and mathematical task by asymmetry of 
response. Since alpha and beta interact there is some simultaneous increase in both 
alpha and beta along the cognitive (analytic/spatial) dimension. Davidson et al. also 
look at the correlation between alpha and beta powers in a study of lateralization of 
spectral powers in psychometrically-matched cognitive processing 1211. They chal- 
lenged the conventional view that alpha and beta powers should be reciprocally 
related. Beta band processing was also shown to exhibit positive correlation with 
alpha band power for a variety of tasks and electrode references. 

Photic flicker or photic driving creates interesting EEG frequency patterns. 
Photic flicker has its own special pattern or shape like paroxysmal activity yet is typi- 
cally analyzed completely in the spectral domain as non-paroxysmal activity. Typi- 
cally, an electronic stroboscope delivering short duration flashes from 1 to 100 per 
second. A frequency following response that is occipital in origin with a characteris- 
tic shape emerges in response to the flashes. The main component of the response is a 
positive-wave response with a latency of 70-90 ms in reaction to isolated flashes. As 



the flash frequency is increased, individual discharges merge to form a spiky rhythm 
that lacks a sinusoidal character, but has higher harmonics present. The rhythm 
increases through the subjects' natural alpha rhythm frequency and then decreases. 
Amplitude decreases as well. The harmonic content of the flicker response increases 
as one moves away from the occipital regions along with a less pronounced ampli- 
tude. Subharmonics dominate in parietal and temporal areas whereas in the anterior 
supraharmonics are commonplace [ 171. 

Mundy-Castle's studies point to definite associations between alpha and beta fre- 
quencies in light of the photic evoked response that can be created containing alpha 
and its second and thud harmonics 1221. A strong reaction was observed between 
beta and the second and/or thud harmonic of the stimulation frequency. It was also 
pointed out there were more occasions of following in the beta region. Those subjects 
with high (>10.3 Hz) mean alpha frequency had much more following by the second 
and third harmonic components of the this rhythm. Observations showed that it might 
be better to look at the harmonic components of the driving response which depend to 
a degree upon the functional state of the brain and the stimulus intensity [23]. These 
harmonics seem to be one of the main indicators of level of excitation of cortical neu- 
rons. Those subjects with high beta activity or who have a tendency for high fre- 
quency alpha activity are much more likely to exhibit this higher harmonic response. 

Nunez describes some of the reasons why beta wave scalp recordings are so lack- 
ing in power [24]. Interestingly, some believe that the scalp, cerebrospinal fluid (CSF) 
and skull act as a low pass filter to eliminate high frequency portions of the EEG spec- 
trum. It has been shown that beta activity up to 30 Hz actually is the dominant rhythm 
in recordings from the depth recordings from the frontal lobe [24]. Immediately it 
might be seen that the scalp and skull selectively attenuate beta frequencies. However, 
there is no evidence from physiology and physics that would dictate that intervening 
brain tissue and CSF would act as a low pass filter. Using pairs of sinusoidal subdural 
current sources over a range of frequencies, Nunez explains that the tissue does not act 
as a low pass filter. The most likely explanation for the attenuation of the beta fre- 
quency components is that the signal is not spatially coherent over large surface mas. 
This would indicate that that the comparatively large surface m a  of the disc electrode 
would fail to capture coherent signal energy in the beta region. The content of EEG at 
higher frequencies has been shown to be dependent on location as well. Nunez and 
his colleagues have shown that there is a 4:l amplitude ratio for cortex-to-scalp 
recordings in the beta frequency range for central derivations. That ratio is only 2:l 
for frontal locations. Outside of the beta frequency range (15 to 25 Hz) that ratio is 
much closer to unity at all recording sites. 



6.5 Coupling and Synchronization I: 
Loss of Phase Information in 

Narrowband Gaussian Models of Alpha Rhythms 

Several schemes have appeared modeling the alpha through complex demodula- 
tion which involves heterodyning the alpha band to base band and then low pass filter- 
ing. Ultimately, capturing the alpha band energy in the envelope requires removing 
phase information in the alpha band. Likewise, the beta band is not considered at all 
as the focus remains on the portion of the frequency band transferred to baseband. 

A dominant model .for the alpha wave has been the narrowband Gaussian noise 
model for the EEG which was proposed by Dick and Vaughn [5]. The model for the 
alpha rhythm in this scenario includes an envelope which is Rayleigh-distributed and 
a uniformly distributed phase. The experimental scheme involves constructing an 
analog circuit device for the complex demodulation of the alpha wave which was 
accomplished on an analog computer. The authors compared the alpha wave ampli- 
tude distribution to the normalized Gaussian density function. Likewise, after com- 
plex demodulation, they compared the distribution of envelope amplitudes to the Ray- 
leigh distribution. The power spectrum of narrowband Gaussian noise was compared 
to standardized alpha spectra to discover similarities as well. The authors discovered 
that the power spectra do not match accurately, because of the existence of band com- 
ponents outsideof the alpha band, particularly at higher frequencies. They admitted 
that the filtering operation involved in the complex demodulation process results in a 
loss of information. 

One review of the different methods of extraction of instantaneous envelope and 
phase was the work of Ktonas and Papp [25]. They use the complex demodulation 
technique to study. the a-spindles occurring during sleep which are believed to be trig- 
gered by subcortical thalarnic centers. The a-spindles have an average frequency of 
about 14 Hz. They occur in short 1-2 second bursts and have an frequency deviation 
average of about 2 Hz which is discovered through zero crossing techniques. 

A classic study testing the ideas of aniplitude modulation and coupling for EEG 
alpha wave modeling was the study of Okyere et al. [3]. Here phase is actually con- 
sidered part of the model to account for some of the frequency modulation of the 
alpha rhythm. A fluctuation in central frequency is noteworthy as Dick and Vaughan 
mention that this frequency is always changing thus making complex demodulation a 
difficult procedure to implement [3]. The waxing and waning of the alpha rhythms 
was thought to be highly correlated with the measure of average cerebral metabolism 
as revealed in the quantity of blood flow through the brain. This study tested the 



relationship between modulation parameters of the alpha wave and the regional cere- 
bral blood flow (rCBF). A composite amplitude and frequency modulation signal 
model is suggested. 

r 1 

where A, is a constant, f, is the frequency of the unmodulated carrier wave, kf is the 
frequency modulation index. Also note that k, is the amplitude modulation index. 
The modulating signals for the AM and FM processes, are ml(t) and m2(t), respec- 
tively. Schemes for the measurement of the amplitude and the frequency modulation 
indices were devised. Amplitude modulation index showed significant correlation 
with ICBF. The authors speculate that the driving mechanisms for the amplitude 
modulation might be related to neural activity in the cerebral cortex. 

6.6 Coupling and Synchronization 11: 
Augmenting the Oscillatory Model of Alpha Generation 

We have seen that the idea of three-wave coupling involves the synchronization 
of harmonically related components. The higher order spectrum looks at frequency 
components that are phase locked to sub- or supra-harmonics. Interestingly, it is often 
noted that coupled oscillations among various neural units on a broad-based network 
level create strong rhythms or peaks in the spectral record. What do the two versions 
of couplings have in common? Does the physiological coupling refer only to coupling 
at the single given frequency? Does the physiology point to multiple frequency cou- 
plings? A glance at the literature gives many tentative answers. 

The theories of coupled oscillators account for much of the wavelike properties 
of the EEG. It is important to realize that the EEG is a spatial average of the underly- 
ing activity of as many as 100 million neurons that are "shadowed" by an electrode. 
As the sensor or EEG electrode is primarily integrative, the widespread temporal and 
spatial character of the EEG is due to coordinated activity of large groups of neurons. 
Much of the cortical rhythmicity is actually said to reside in salient coherencies. Cou- 
plings for the neurophysiologist refer to interactions among several neurons. Strong 
rhythms are said to be generated when groups of neurons all oscillate at the same fre- 
quency. Steriade et al. consider coupling from two points of view. The first is the 
tuning characteristic of individual neurons. They also postulate that properties of 



large groups of neurons acting in unified, holistic fashion are responsible for the 
rhythms [26]: "Synchronization is a state in which two or more oscillators display the 
same frequency because of some forms of co-interaction. There is no necessity in 
deciding between two parts of the alternative, whether the intrinsic properties of sin- 
gle neurons are essential for the genesis of brain waves with different frequencies or 
whether such rhythms basically emerge from synaptic interactions in large neuronal 
pools. Both these factors should be eclectically considered. [26]" 

The very idea of coupling in time and frequency has a strong physiological basis 
as MacVicar and Dudek report on actual pyramidal cells in the rat hippocampus which 
exhibit coupling in their response[27]. Electrotonic couplings from interconnected 
neurons are indicated by the presence of fast pre-potentials (FPPs) in neighboring neu- 
rons. These FPPs provide definitive evidence of neuronal synchronization. These 
authors reason that the electrotonic coupled networks are reverberating circuits that 
could sustain strong coordinated rhythms. 

Models such as these prove to be even' more complicated when oscillations of 
several groups of cells are synchronized by outside pacemakers. These pacemakers 
convey a dominant frequency that is thalamic in origin to groups of single cells. As 
Steriade et al. [26] mention, "In the intact brain, however, the intrinsic properties of 
single cells are subject to controlling influences from synchronizing pacemakers or 
driving forces within given neuronal'networks that unite single cells. Indeed, the 
notion of EEG synchronization supposes the coactivation of a large number of neu- 
rons, the summed synaptic events of which become sufficiently large to be recorded 
with gross electrodes within the brain or over the scalp. The role of synaptic networks 
in the genesis of various EEG rhythms is emphasized by frequency differences 
between various oscillations ... " [26]. 

The thalamocortical feedback network theory was proposed in a classic study by 
Lopes da Silva et al. in 1974 and updated in several recent studies [I, 26,28,29]. A 
general review of the model and the means with which it generates time dependencies 
in the EEG is reviewed in Nunez [24]. The thalamocortical model is used to build the 
oscillatory alpha rhythm from component neurons through basically two different 
types of neurons, the thalamocortical relay cells (TRC) and the interneurons (IN). The 
inhibitory or negative feedback model depends on a strength of couplings between 
TRC and IN neurons. If either coupling coefficient is very large, it indicates that there 
is strong input or feedback of TRC neurons to IN neurons and vice versa. 

Nunez discusses several reasons why this model should be expanded to include 
multiple frequencies of oscillation. The preferred frequency of oscillation is depen- 
dent on the rise time and duration of the inhibitory post-synaptic potentials (LPSPs), 



excitatory (EPSPs) and feedback gains. For instance, pyramidal cells in the cerebral 
cortex are thought to have much shorter PSPs than discussed in the Lopes da Silva 
model. These will produce higher frequency oscillations. 

The model also assumes that the potentials are derived from a fairly large popu- 
lation of neurons. Nunez discusses the fact that the space average theory focuses only 
on macroelectrode potentials which provide a linearized version of underlying 
processes. Actually more detailed approaches may be required for some brain 
processes. Obviating the space average approach involves looking at smaller units of 
analysis wherein the linearity assumption is no longer an assumption. To recover 
information on harmonic beta will require a different level of analysis. 

6.7 Key Studies of Gaussianity of the EEG 

A key component in the study of the relationship of coupling among neural units 
and the statistical properties of the EEG was the work of Rafael Elul from 1969 [30]. 
Elul looked upon the EEG as being the random fluctuations of large,ly asynchronous 
neurons. At times slow wave and large amplitude activity would occur that was indi- 
cative of coordination among those neural elements. He called this synchronous 
activity coupling. When large groups of neurons acted synchronously, the EEG 
features would better reflect underlying activity on a cellular level. Complete asyn- 
chrony of activity of the EEG generators was assumed to reflect underlying Gaussian- 
ity. Synchronous activity established nonlinearities. The nonlinear relationships 
among generators caused a change in the amplitude distribution function of the gen- 
erators. The EEG was not merely noise, but actually contained a fixed signal portion 
evident during non-Gaussian episodes. 

Elul's ideas about recruitment of interactions among neurons manifest in the 
EEG were tested in a cognitive task study. During a mental task when more couplings 
were hypothesized to occur, the time series was said to become non-Gaussian. He 
tested this hypothesis by having subjects perform a mathematical computation while 
their EEG was recorded. The short segments of the EEG that were tested were several 
4 second segments. The chi-squared goodness of fit test was applied to each segment. 
During baseline activity, 64 percent of the segments passed the test of Gaussianity, 
i.e., the null hypothesis was accepted. Under testing of the subjects during perfor- 
mance of a mathematical problem, only 32 percent of the short segments proved to be 
Gaussian. 



A follow-up study to the work of Elul was McEwen and Anderson's exhaustive 
study of EEG during different levels of anesthesia [31]. In an attempt to provide real 
time monitoring of anesthetic level during surgery these authors chose varying lengths 
of EEG data recorded while under the influence of two type of general anesthetic as 
well as during baseline activity. They employed the one sample Kolmogorov- 
Srnirnov (K-S) test for Gaussianity and the two-sample K-S test for wide-sense sta- 
tionarity. They mention that the K-S test is truly the more powerful test when com- 
pared to the goodness-of-fit test. To eliminate the influence of sample dependen- 
cies among the data points, they chose to use a variety of length-compensated sam- 
pling rates. They reasoned that shorter sampling interval time series turns out to have 
greater correlation among the data samples. Certainly for the Gaussianity hypothesis 
to be satisfied, the EEG should be sampled at a rate only slightly higher than the 
Nyquist rate. The significant difference in K-S test results was revealed in that many 
more data segments of length 4 seconds or shorter were deemed Gaussian than in the 
Elul study. They found varying degrees of Gaussianity and stationarity through all the 
electrode derivations. For instance, on average only about 8 percent of the data seg- 
ments 32 seconds in 1engt.h or longer turned out to be Gaussian. For any given length 
of data, stationarity is more likely to be satisfied than Gaussianity. Interestingly, they 
discovered that a 32-second long section of data is perhaps the best compromise 
balancing tradeoffs for stationarity and transient reduction. 

6.8 The Hinich Tests for Gaussianity and Linearity 

The X2-~oodness of fit test used by Elul and the Kolmogorov-Smirnov test used 
by McEwen and Anderson rely on the assumption of independent data samples for all 
the tests [30,31]. 

As described in chapter 1, Hinich has derived tests for Gaussianity and linearity 
based on the statistics of the biperiodograrn and its corresponding bicoherence. These 
tests are described in detail in [32]. The test for Gaussianity relies upon the sampled 
distribution of a properly scaled bicoherence estimator Xm,, where 

Here N is the total data record length, M is the block or segment length. (Data and 
segment length are related to the degrees of freedom (dof) for untapered records as 
related in chapter 2 for the bias and variance of the bicoherence estimator. Recall that 
dof = 2B,T. In this context, T =NAT and Be = l/(MAT). AT is the sampling interval.) 



Since X,, is distributed as complex normal random variable with unit variance and 
non-zero mean, 2 1 X,, 1, is chi-squared with 2 degrees of freedom and non-centrality 
parameter 

It is assumed that the X,,, are independent random variables. It turns out that the 
statistic 

is distributed as XgP(h). Here L represents domain of bispectral data points. P is the 
total number of points in L. 

The Hinich test for Gaussianity poses the following null hypothesis using the 
asymptotic variance-covariance matrix for the bispectral estimates: When the time 
series x(n) is Gaussian, B ( o l , q )  = 0. We reject the null hypothesis at level of 
significance a, if 6 > h ,  where a = Pr(xIP(0) > h). 

The test for linearity relies on the fact that in general the sample distribution of 
of 2 I Xnn 1 is approximately XI (L,) where L,, is given by (6.3). As mentioned in 
chapter 2 the test for linearity relies on the fact that asymptotically the bicoherence is 
constant across all bifrequencies for linear processes. The Hinich test of linearity 
involves a robust nonparametric test of dispersion. The sample distribution of 

2 1 X,,, 1 is compared to the estimated distribution of Xf ( i )  where i is a consistent 
estimator of 1. Let R be the sample interquartile range of 21 XmVn 1 for all the 
bicoherences in the non-redundant sample bispectral domain. The hypothesis of 
linearity is rejected when R is significantly larger or smaller than the interquartile 
range of X$(i). In practice the estimate i is the mean of the quantities 2 I XmVn 1 for 
all m and n. 

6.9 Justification for Parametric Modeling of Alpha Coupling 

With the statistics of the bispectrum well understood through the work of Hinich 
in higher order spectra, there is the question of why we would need to do parametric 
modeling of EEG wave coupling. Is there any information that we would gain by the 
use of model-based estimation of three-wave coupling? We need to consider the vari- 
ous reasons to warrant the use of modeling techniques described herein. 



These parametric techniques are considered to be high resolution procedures for 
second order statistics. They should be able to resolve closely spaced peaks in a 
highly accurate fashion. The problems of leakage and extensive windowing of finite 
length sequences would be eliminated. The resolution issue is a critical one since the 
leakage issue is exaggerated in two-dimensions for the biperiodograrn estimator. 
Since the bispectral estimator has a high variance in the first place, the leakage effects 
only compound the highly fluctuating results. The resolution effects are even an obs- 
tacle for the autoregressive estimator. As detailed in chapter 2, the autoregressive 
bispectral estimator has difficulty producing sharp peaks in the presence of significant 
amounts of added noise. For low SNR cases the eigenstructure based procedures pro- 
vide more well defined peaks. 

More importantly however to active researchers in EEG and new-science are 
the phenomenological concerns. There are fundamental structural reasons necessitat- 
ing sinusoidal modeling. Both the alpha and beta rhythms are truly wide-band 
processes. Compare the bandwidth of alpha wave to total bandwidth of the relevant 
portions of the EEG spectrum. Nunez mentions that the peak power histogram of the 
alpha rhythm gives one the opportunity to define a total of three distinct alpha fre- 
quencies within the range of 8.5 to 13 Hz [24]. First of all, there is the lowest fre- 
quency making a contribution to the total power. The peak frequency exhibits the 
most power. There is also the highest peak within the bandwidth. All of these are 
identifiable components of EEG analysis within a single band using low resolution 
spectral measures! The alpha rhythm cannot necessarily be considered a narrow band 
process. For all subjects in non-paroxysmal EEG studies, the EEG alpha rhythm is 
not stationary, but tends to fluctuate over the course of most studies[24]. 

Several studies point to multiple generators for alpha frequencies. Walter et al. 
point to the fact that there are two independent generators functioning in the same fre- 
quency band. They also suggest that there were wider than usual sidebands of the 
alpha wave at 2 to 5 Hz separation from the main frequency [33]. 

Although it is possible that many sidebands of alpha and beta waves are phase- 
locked, it is not likely considering certain bandwidth consideration. A key study in 
understanding spectral bandwidth of EEG is the work of Wennberg and Zetterberg 
[34]. They define and classify key spectral parameters of the EEG and detail the rela- 
tionships among frequency bands. Although it is possible that many frequencies may 
be involved in coupling, it is likely that coupling involves narrow frequency ranges 
within the alpha and beta band. Critical evidence was presented by these authors 
focusing on which portions of the alpha and beta bands are actually involved in cou- 
pling. Beta is assumed to be a supraharmonic as delta is considered to be a 



subharmonic of the theta wave. 

Additional evidence can stem from different types of alpha responses that are 
exhibited by human subjects. P-type alpha responders show persistent alpha presence 
even during the eyes open condition. In these cases we have to include those that 
show a double-peaked alpha. Double-peaked alpha subjects display one peak belong 
9.0-9.5 Hz and one peak above this boundary. 'During the eyes open condition the 
upper peak disappears while the lower peak remains. We can see in certain subjects 
that the alpha-alpha coupling remains during the eyes open condition often with the 
lower peak. It remains to be seen which of the two peaks remain coupled to high fre- 
quency beta-11 rhythms. Inouye et al. discuss the notion of endogenous and exo- 
genous generators or sources of the alpha rhythms [35]. Posterior (parietal and occipi- 
tal) sources exhibit strong endogenous components with high frequency ( > 9.5 Hz) 
alpha rhythms. On the other hand, anterior derivation provide alpha activity from low 
frequency exogenous generators from 8 to 9.5 Hz. Since we are examining primarily 
posterior electrode sites, it may turn out that high frequency alpha components are the 
critical spectral regions of coupling with the beta-II band. 

More evidence comes from the comments made by Gasser et al. in their study of 
EEG parameter stability [36]. They mention that bandwidth is totally reliant on the 
degree of synchronizatiori or coupling among the neurons. A narrow bandwidth typi- 
cally means more synchronization among elements. It is therefore reasonable to 
believe that sustainable coupling among individual frequencies would require even 
tighter restrictions on bandwidth. In the case of self-self coupling an alpha bandwidth 
of a, when translated to afnquency band one octave higher becomes ag = 20,. We 
know from Wennberg and Zerterberg [34] that alpha and beta bandwidths do not 
observe this relation. It is reasonable to assume that only a narrow portion of the alpha 
band is actually involved in coupling. 

As we shall see one of the most important reasons for applying sinusoidal 
parametrization to EEG three-wave coupling is the form of cumulants. Since our 
methods are correlation-based, the form of these time domain entities is critical in our 
assessment. The projected cumulants for the EEG segments. as seen in the next 
chapter, are taken normal to the 45' main diagonal of the cumulant domain. They are 
sinusoidal in shape. As Barnett et al. mention the most prominent peak occurs in the 
alpha-alpha coupling region near the (10, 10) Hz bifrequency point [ll]. In chapter 4 
and in the Appendix we saw that the projected cumulants for a three-wave coupling 
process are 1-D sinusoids. This exciting fact alone ensures that sinusoidal modeling 
of EEG three-wave coupling offers interesting research possibilities. 
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CHAPTER 7 
EEG SIMULATIONS 

"The final objective in a signal processing scenario is to process a finite set 
of data (either single-sensor or multiple sensor) and extract important infor- 
mation which is "hidden" in the data. This is usually achieved by combin- 
ing the development of mathematical formulations which reach a certain 
level of estimation performance with their algorithmic implementation 
(either in software or hardware) and their application to real data." t' 

7.1 Introduction 

Different algorithms introduced in this thesis and in other scholarly works are 
tested with electroencephalographic (EEG) data for the detection and estimation of 
three-wave coupling. At first, conventional methods including the biperiodogram and 
the Hinich tests for Gaussianity and Linearity are used to furnish a description of the 
data. These methods are then used to establish criteria for the selection of candidate 
time series for testing with parametric algorithms. Three eigenstructure methods are 
used for testing the EEG data. They are the 2-D SKEW-MUSIC method described in 
chapter 3, the standard Swindlehurst and Kailath method introduced in [I] and the 
SKEW-PRO-ESPRIT method discussed in chapter 5. We chose not to make any 
definitive claims of accuracy rankings of these methods. Our goal is only to establish 
that the all methods are likely to provide coupling frequency estimates that are local- 
ized within appropriate sectors of the bispectrum using a low model order. 1-D 
methods are also shown to provide reasonable estimates of frequency interactions as 
well. The right singular vectors belonging to symmetric and skew-symmetric third 
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order cumulant matrices give individual coupling frequency estimates. The 1-D 
MUSIC bispectra from cumulant projections are also examined for biphase estima- 
tion. 

We desire to apply each method to EEG time series displaying predominantly 
alpha-alpha coupling. In the non-redundant sector of the bispectrum this is the fre- 
quency support region of 8 1 fl 113  Hz and 8 I f2 I fl  Hz. We can anticipate the 
need for low model order based on the fact that substantial power is concentrated in 
the alpha band. Also the proportion of alpha power actually involved in coupling is 
relatively strong in this region. This is indicated by the skewness at each point in the 
bispectrum [2]. 

7.2 Materials and Methods 

Seven subjects participated in an experiment to establish appropriate features for 
detection of lateral asymmetry during cognitive tasks in a previous study at Purdue 
University [3]. The tasks used to generate lateral asymmetries were letter completion, 
multiplication (mathematical), 3-D object rotation, number visualization and baseline. 
Each task was completed under two separate states of eye closure in the original 
study, eyes open and eyes closed. The time series selected for bispectral processing 
belonged only to EEG generated during baseline and eyes closed conditions. We 
wished to maximize the appearance of alpha wave coupling around the 10 Hz - 10 Hz 
region without necessarily producing pronounced alpha band power asymmetries. 

For each subject the EEG was recorded during five nonconsecutive 10 second 
segments. All occurred within a 3 minute time interval. The EEG was recorded dur- 
ing this period from electrode sites, C3, C4, P3, P4,Ol and 0 2  according to the Inter- 
national 10-20 electrode location system [4]. One eyeblink (Em) channel was also 
recorded simultaneously. Each 10 second data sequence was sampled at 250 Hz after 
passing through a linear phase filter with low pass cutoff of 100 Hz and high pass cut- 
off of 0.1 Hz from a Grass 7P511J amplifiers. In an earlier study, [5], the time delay 
associated with the Grass amplifiers was verified. These amplifiers have a constant 
time delay of 2.7 msec over the frequency band of interest. After the data was sam- 
pled, the five separate segments of data were combined to form a 50 second data set. 
Artifact rejection was accomplished by examining the EOG channel for VA>50pV 
over a 10 msec window. If that threshold was exceeded, the corresponding EEG 
channel data segments were rejected. Preprocessing of data also included low pass 



filtering by FIR filter, decimation-in-time by a factor of 2 and trend removal to yield 
thirty-two seconds of data. Each one second block length of 125 pts was augmented 
with zeros to make total block length equal 128 points The cumulants as well as 
periodograms and biperiodograms were calculated from 32 blocks of data (N=4096). 
Periodogram data was tapered with a 10% taper window. The subjects were divided 
into a high and low alpha groups. This division was based on the height of the aver- 
age parietal alpha spectral peak. There were 4 members of the high alpha group and 3 
in the low group. 

7.3 Qualifying the Data for Inclusion 
in the Test Data Sample Set 

Before testing the data sets available, a set of criteria was adopted to select can- 
didate sets for the application of the variety of eigenstructure and autoregressive algo- 
rithms. Skewnesses and their statistics were also calculated according to [2]. These 
included the estimated significance of each peak based upon the estimated parent non- 
central x2 distribution. Statistics of Gaussianity and linearity were calculated for all 
seven subjects and are presented in Tables 6.1-6.3. Examining the statistics for Gaus- 
sianity we find all of the EEG time series are highly non-Gaussian with a high degree 
of variability in the Z-scores for all the electrode sites. Part of the reason for this stems 
from the fact that our estimator or statistic does not approximate a consistent one. 
The equation MC = N relates data segment length, M, to total data length, N. Con- 
sistency is approached when c22. Our data segment length was chosen to balance 
competing desires to achieve high resolution while adhering to the stationarity guide- 
lines provided by McEwen and Anderson [6]. 
The interquartile range data reveal that the empirical distribution closely matches the 
estimate of the parent noncentral x2 distribution. Only when moving to the interdecile 
data (Table 7.3) does the quantile match between sample distribution and estimated 
parent begin to deviate slightly. It would appear that the tails of the empirical distri- 
bution are slightly truncated. Actual statements of linearity would have to be made by 
closer examination of individual time series data. Table 7.4 shows the large variation 
in the estimated noncentrality parameter. 

For examining individual peaks and their skewness, it was decided to divide the 
relevant section of the EEG bispectral domain into coupling regions based on their 
antecedent bands in the power spectrum. The EEG hyperbands are illustrated in Fig. 



Table 7.1 Z-Scores for Level of Gaussianity based on Hinich Test: Based on 
Normal Approximation to X2; dof = 2048 

7.1. This grid becomes our chief unit of analysis. It serves to fist determine the area 
in the EEG bispectrum with the most significant peaks. Later it provides a convenient 
map for describing accuracy of 2-D bispectral peak placement. 

EEG Time Series 
Z-Scores for Level of Gaussianity 

N=4096; (128x32); 7 Subjects 

For all electrode derivation and all 7 subjects, the alpha-alpha coupling region 
has by far the largest average number of significant peaks (p < .01). For the P3 site 
the average number of peaks at or above this level is 1.14, i.e. greater than unity. For 
the P4 electrode it is over 2, namely 2.43. The alpha-alpha sector has 22 bifrequency 
points in it. The entire bispectral domain has 1024 individual points. So the alpha- 
alpha hyperband represents just over 2% of the total number of points. There were 
two other occasions when different regions had a greater average number of 
significant peaks than the alpha self-coupling region. The alpha-beta-I sector had 
more peaks in the P3 derivation. The theta-beta I1 hyperband had more peaks in the 
0 1  derivation. Both of these sectors are larger in area than the alpha-alpha sector. 

Since the few significant nonlinearities are concentrated within one sector, we 
expect that we need low model order to faithfully capture the coupling frequency 
information. To insure that there are few competitor peaks in the bispectrum the fol- 
lowing procedure was followed in selecting candidate time series for testing: After the 
biperiodogram and associated statistics for each time series were run, the largest 10 
bispectral peaks were isolated. These 10 peaks were inspected to check for member 
peaks in the alpha-alpha coupling region as well as the theta-theta coupling region. If 
there were peaks present in those regions, their skewnesses were checked to see if 
they were significant (p < .01). If all other peaks among the top ten were not 
significant, that EEG time series was declared a candidate to be tested. Out of the 14 
possible time series at each of three bilateral derivations, 10 parietal, 8 occipital and 6 
central time series met these criteria. 

St. D. 
5.99 
4.61 
6.36 

Derivation 
Central 
Parietal 

Occipital 

Mean 
12.42 
12.322 
10.42 



Table 7.2 Interquartile Ranges for Level of Linearity based on Hinich Test: 
Based On Estimates for Noncentrality Parameter, Bilateral Electrode 
Derivations 

Table 7.3 Interdecile Ranges for Level of Linearity based on Hinich Test: Based 
On Estimates for Noncentrality Parameter; Bilateral Electrode 
Derivations 

EEG Time Series 
Interquartile Ranges 

N=4096; (1 28x32); 7 Subjects 
Derivation 

Central 
Parietal 

Occipital 

Table 7.4 Estimates of Noncentrality Parameter: Hinich Test for Nonlinearity 

EEG Time Series 
Interdecile Ranges 

N=4096; (128x32); 7 Subjects 

Mean 
0.508 
0.505 
0.5 1 

St. D. 
0.0222 
0.025 
0.025 1 

St. D. 
0.0187 
0.0268 
0.259 

Derivation 
Central 
Parietal 

Occipital 

EEG Time Series 
Noncentrality Parameter Estimates 

N4096; (128x32); 7 Subjects 

Mean 
0.816 
0.8 16 
0.8207 

Derivation 
Central 
Parietal 

Occipital 

Mean 
0.784 
0.898 
0.859 

St. D. 
0.377 
0.5055 
0.5793 



The chosen parietal bispectral peaks had 5 biphases above 45 degrees and 5 
below. The average biphase was 43.355 degrees. The occipital was also evenly 
divided with an average biphase of 36.168 degrees. The central electrode had 5 
biphases greater than 45 degrees and 1 less than 45 degrees for an average biphase of 
62.33'. The occipital and central derivations all belonged to the high alpha group. 
There were two parietal derivations in the low alpha group. 

7.4 Algorithm Specifications 

After selecting the time series, the algorithms selected for testing are: 1.) 2-D 
SKEW-MUSIC; 2.) the classical triple Kronecker product method of Swindlehurst 
and Kailath [I]; 3.) the method which includes adaptations to the triple Kronecker 
product method for symmetric and skew-symmetric cumulants and removal of the 
R(0,O) tern from the matrix (SKEW-PRO-ESPRIT); 4.) the autoregressive approach 
of Raghuveer and Nikias [7]. The 2-D SKEW-MUSIC equations, (3.8)-(3.10) and 
(3.16)-(3.18), represent the symmetric and skew-symmetric cumulant matrices, 
respectively. For this method matrix dimensions of 25 x 25and 30 x 30 were chosen. 
Signal subspace dimensions of 6, 12, 18 and 24 were used when applicable. The 
smallest dimension represents peaks along the main diagonal of the bispectrum. 
These are self couplings and represent a phase-locked fl  = f2 dyad. The largest 
dimension is used for 2 sets of triads assuming that fl  # f2 for each triad. Coupling 
frequencies were estimated using (3.19) with noise eigenvectors from both symmetric 
and skew-symmetric matrices. 

For the triple Kronecker matrix techniques, (5.3) was utilized with matrix dimen- 
sions of 16 x 10, 25 x 10 and 36 x 15. Here signal subspace dimensions of 6, 8, 10 
and 12 were candidate sizes. Using SKEW-PRO-ESPRIT both (5.18a) and (5.18b) 
were used and filled with symmetric and skew-symmetric cumulants, respectively. 
The dimensions of the SKEW-PRO-ESPRIT matrices used were the same as the triple 
Kronecker product matrices. For both methods the SVD of all matrices was taken. 
The left singular values furnished 2-D bifrequency estimates using (2.46). Also in the 
case of l-D frequency estimates, the right singular vectors of both the symmetric and 
skew-symmetric cumulant matrices are utilized. Only 16 x 10 and 25 x 10 matrix 
dimensions are used for this estimation procedure. Single coupling frequencies are 
estimated using (2.48). 



Figure 7.1 EEG Band-Band Coupling Regions or Hyperbands 



Finally, the AR method is used for coupling frequency estimation with (2.14)- 
(2.16). These equations are used with symmetric, skew-symmetric and unsym- 
metrized cumulants. Square matrices with AR model orders of 4,6, 8, 10 and 12 were 
employed. 

Frequency resolution for the parametric methods was maintained at the same 
fA = 0.98 Hz as used for the standard biperiodogram. Once bifrequency estimates 
have been generated, the estimates were sorted according to magnitude. If the largest 
peak on the 2-D hyperband grid fell within the same hyperband as the selected 
biperiodogram peak value, then a hit was recorded. The number of hits are counted 
for each matrix size and signal subspace dimension. A hit rate is computed by divid- 
ing the number of hits for a given derivation, matrix dimension, model order and 
cumulant type by the number of sample time series at that derivation. Those matrix 
sizes possessing the greatest number of hits are shown in the Appendix in convenient 
bar graph hit rate profiles. 

A hit rate profile is also computed for the 1-D SKEW-PRO-ESPRIT coupling 
frequency estimates. For each 1-D bispectrum constructed from the right singular 
vectors, a hit was registered when the two largest peaks appeared in the appropriate 
bands corresponding to the biperiodogram peak. Only self couplings were reported. 
A hit rate was computed for these as well. 

We also tested the 1-D SKEW-MUSIC and SKEW-ESPRIT algorithms for cou- 
pling frequency and biphase accuracy. Projected cumulants were made for all 42 time 
series belonging to the subjects. The projections were made along a 45' projection 
axis. A rectangular window of length 21 was used. This supplied 10 forward and 10 
backward lags each plus a zero lag tern. For each projected cumulant lag value, 
twenty one 2-D cumulants were summed. 

To arrive at frequency estimates 10 x 10 matrices were constructed according to 
(4.23)-(4.24) and (4.25). Eigenvector/eigenvalue decompositions were done for both 
symmetric and skew-symmetric projected cumulant matrices. Signal subspace dimen- 
sions of 2 and 4 were utilized for frequency estimates. These dimensions were utilized 
under the assumption that only one or two decoupled sinusoids would appear along 
the central bispectral slice typically in the alpha-alpha or theta-theta coupling fre- 
quency scenarios. 

For biphase estimation the same matrices were utilized. The implementation of 
the SKEW-PRO-ESPRIT entailed reducing each of the matrices down to 2 x 2 or 
4 x 4 core rotations level matrices as in (4.10). The generalized eigenvalues of the 
reduced order matrices contain the biphases as in (4.29). 



7.5 Results 

Some sample 3-D plots for bifrequency estimation are shown in Figs. 7.2-7.13. 
In Fig. 7.1 the biperiodogram for a P4 derivation is shown. Several estimates for 
three different parametric methods are shown in accompanying plots. In the 2-D 
SKEW-MUSIC estimate the model order of 18 insures that we have two main diago- 
nal peaks that correspond to the biperiodograrn peak exactly. Model order 8 in the tri- 
ple Kronecker product method also corresponds to two main diagonal peaks. Low 
model order is achieved for the skew-symmetric cumulants in the case of SKEW- 
PRO-ESPRIT. 

Viewing the second set of bispectral plots (Figs. 7.6-7.9), we note there are 
several delta-alpha peaks that are located near the DC axis of the biperiodograrn. 
Subject 7's P3 derivation is used for this series of bispectra. These competitor peaks 
do not have as large a bicoherence value as the main alpha-alpha peaks do. Each of 
the three eigenstructure methods provides accurate estimates of coupling frequencies 
with low model order. Only in the case of 2-D SKEW-MUSIC does the signal sub- 
space require a full complement of eigenvectors for two self coupling peaks. As can 
be seen on that plot there are two peaks visible along the main diagonal. 

In Figs. 7.10-7.11 we see the bispectra for another parietal time series. A large 
model order (24) in a 30 x 30 2-D SKEW-MUSIC matrix with skew-symmetric cumu- 
lants provides an exact estimate of the coupling frequency along the main bispectral 
diagonal. Fig. 7.12 shows a large central (C3) biperiodogram peak along with much 
delta band diffuse coupling. A distinctive triple Kronecker peak in Fig. 7.13 models 
that peak closely. This time a model order of 12 is used. 

Turning now to the hit rate profiles in the Appendix (Fig. A. 1-A. 12) we see a 
variety of performance levels. For the parietal sites, 2-D SKEW-MUSIC has its best 
performance at a model order of 18 with an average hit rate above 0.5. Though sym- 
metric and skew-symmetric biphases are evenly represented, the most hits are gen- 
erated with the skew-symmetric cumulants. Symmetric cumulant hits increase to their 
peak at model order 12 and then decrease again. It is important to realize that 2-D 
SKEW-MUSIC has fewer distinct model orders to model the coupling frequencies. 
Many of its middle value model orders may indicate better performance than indivi- 
dual model orders of other methods. 

The AR method shows a lower average hit rate profile for parietals. Perhaps the 
AR method is more model order specific and less redundant. The best performance is 
seen for a model order of 6 or one triad. That preferred order selection is also seen 
for the SKEW-PRO-ESPRIT. Here symmetric and skew-symmetric cumulants are 



Figure 7.2 Biperiodogram: S 1; P4 Derivation; Peak at (10.74,10.74) Hz 

Figure 7.3 2-D SKEW-MUSIC: S1; P4 Derivation; 30 x 30 mamx, Skew- 
Symmetric Cums, Signal Subspace Dim: 18; Peak at (10.74,10.74) Hz 



Figure 7.4 S&K Triple Kron. Method: S1; P4 Derivation; 25 x 10 mamx, Signal 
Subspace Dim: 8; Peak at (9.77,10.74) Hz 

Figure 7.5 SKEW-PRO-ESPRIT: S1; P4 Derivation; 16 x 10 mamx, Skew- 
Symmemc Cums, Signal Subspace Dim: 6; Peak at (8.79,8.79) Hz 



Figure 7.6 Biperiodogram: S7; P3 Derivation; Peak at (8.79,8.79) Hz 

Figure 7.7 2-D SKEW-MUSIC: S7; P3 Derivation; 25 x 25 matrix, Skew- 
Symmetric Cums, Signal Subspace Dim: 12; Peak at (9.77,9.77) Hz 



Figure 7.8 S&K Triple Kron. Method: S7; P3 Derivation; 25 x 10 matrix, Signal 
Subspace Dim: 8; Peak at (10.74,10.74) Hz 

Figure 7.9 SKEW-PRO-ESPRIT: S7; P3 Derivation; 16 x 10 mamx, Skew- 
Symmemc Cums, Signal Subspace Dim: 6; Peak at (8.79,9.76) Hz 



Figure 7.10 Biperiodogram: S6; P4 Derivation; Peak at (7.8 1,7.8 1) Hz 

Figure 7.11 2-D SKEW-MUSIC: S6; P4 Derivation; 30 x 30 matrix, Skew- 
Symmetric Cums, Signal Subspace Dim: 24; Peak at (7.81,7.81) Hz 



Figure 7.12 Biperiodogram: S7; 0 2  Derivation; Peak at (9.77,8.79) Hz 

Figure 7.13 SKEW-PRO-ESPRIT: S7; 0 2  Derivation; 16 x 10 matrix, Symrnemc 
Cums, Signal Subspace Dim: 6; Peak at (7.81,11.72) Hz 



evenly represented in the different model orders. 

For the central derivations the hit rates are low for all four methods. Only in the 
case of the triple Kronecker product method are hit rates sizable. Once again the pre- 
ferred model order is 8. Also all the symmetrizable methods show best hit rates for 
the skew-symmetric cumulants. 

All modeling schemes show their best results for the occipital recording sites. 
Several model orders provide hit rate probabilities well above 50%. It is particularly 
interesting to note that here, higher model orders are favored for 2-D SKEW-MUSIC 
and SKEW-PRO-ESPRIT. 2-D SKEW-MUSIC still has best hit rate results for the 
skew-symmetric cumulants. Clearly the occipital sites deliver the best AR results. 
The triple Kronecker product favors signal subspaces of dimension 8 while recording 
its best hit rates for other model orders. 

The 1-D coupling frequency estimates from the right singular vectors have 
representative hit rate profiles in the Appendix (A.13-A.15) as well. In these cases the 
hit rates from both 16 x 10 and 25 x10 size matrices were averaged together. For all 
derivations the model with largest hit rates was model order 8. Two representative 
1-D coupling frequency plots are shown from two subjects, Ss 1 & 7, in Fig. 7.14 and 
7.15. The model order 6 provides us with enough information to judge that 
alpha=alpha self coupling is present in the bispectral domain. 

The remaining eight figures in this chapter (Figs. 7.16-7.23) depict results from 
the 1-D SKEW-MUSIC and SKEW-ESPRIT algorithms. Plots of the symmetric and 
skew-symmetric cumulants for each derivation are given. The projections closely 
resemble single 1-D sinusoids. Along with each set of cumulant projections is the 
measured biphase from the 1-D SKEW-ESPRIT matrix pencil. The FFI' biphase is 
the biphase derived from the biperiodogram. This cited FFI' biphase may belong to 
either the peak on the slice with the largest bispectral magnitude or the largest 
bicoherence. This same convention applies for 1-D frequency information below. 

Below each correlation-domain plot is the frequency information from 1-D 
SKEW-MUSIC. The same signal subspace dimension used to generate biphase infor- 
mation also generates the SKEW-MUSIC frequency information. Tables in the 
Appendix (Tables A.l-A.2) list all 42 EEG time series and their deviations from 
biperiodogram generated frequency estimates. A table with average deviations for all 
electrode sites appears below. Slightly better performance is noted for the signal sub- 
space dimension of 4. Table A.3 in the Appendix shows 22 of the closest 42 biphase 
estimates from 1-D SKEW-ESPRIT. Each of these estimates are within f 15' of their 
respective conventional biperiodogram estimate. In Table 7.6 the summary statistics 
for these estimates are listed according to derivation. 



Table 7.5 

Table 7.6 

Summary Statistics for 1-D SKEW-MUSIC EEG Coupling Frequency 
Estimates 

Summary Statistics 1-D SKEW-ESPRIT EEG Biphase Estimates 

Statistics for 1-D SKEW-MUSIC 
Coupling Frequency Deviations from 

FFT Estimates: EEG Data 

Site 

Parietal 
Central 

Occipital 

Statistics for 1-D SKEW-ESPRIT 
Biphase Deviations from 

FE;T Estimates: EEG Data from 
22 "Closest" Derivations 

Model Order 

Site 

Parietal (N=9) 
Central (N=7) 

Occipital (N=6) 

2 

Statistics 

Mean 

1.61 
1.05 
1.12 

4 

Mean 

4.49 
5.193 
6.148 

St.D. 

1.822 
.892 

2.023 

Mean 

1.67 
.77 
.84 

St.D. 

3.0615 
3.3709 
3.83 

St.D 

2.147 
.783 

1.79 



Frequency (in Hz) 

Figure 7.14 1-D Coupling Frequency Estimates: S 1 P3 Derivation; 16 x 10 matrix 
using Symmetric Cumulants; Signal Subspace Dim: 6 

h 
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Frequency (in Hz) 

Figure 7.15 1-D Coupling Frequency Estimates: S7 P4 Derivation; 16 x 10 matrix 
using Symmetric Cumulants; Signal Subspace Dim: 6 



Figure 7.16 Projected Cumulants from S6: C3 Derivation; Solid: Symmetric; 
Dotted: Skew-Symmemc; ESPRIT Biphase: 50.06; FTT Biphase: 
59.73 

Frequency (in Hz) 

Figure 7.17 l -D SKEW-MUSIC Bispectrum from S6: C3 Derivation from Skew- 
Symmemc Projected Cumulants; Signal Subspace: 2; SKEW-MUSIC 
Peak Freq.: 7.81 Hz; FTT Peak: 7.81 Hz 



Figure 7.18 Projected Cumulants from S7: 0 2  Derivation; Solid: Symmetric; 
Dotted: Skew-S ymmetric; ESPRIT Biphase: 22.02; l+T Biphase: 
23.28 

Frequency (in Hz) 

Figure 7.19 1-D SKEW-MUSIC Bispectrum from S7: 0 2  Derivation from 
Symmetric Projected Cumulants; Signal Subspace: 2; SKEW-MUSIC 
Peak Freq.: 10.74 Hz; l+T Peak: 9.77 Hz 



Figure 7.20 Projected Cumulants from S3: P3 Derivation; Solid: Symmetric; 
Dotted: Skew-Symmetric; ESPRIT Biphase: 7 1.04; FFI' Biphase: 
66.57 

0 10 20 30 40 50 60 
Frequency (in Hz) 

Figure 7.21 1-D SKEW-MUSIC Bispectrum from S3: P3 Derivation from Skew- 
Symmetric Projected Cumulants; Signal Subspace: 4; SKEW-MUSIC 
Peak Freq.: 2.93 Hz; FFI' Peak: 4.88 Hz 



Figure 7.22 Projected Cumulants from S4: C4 Derivation; Solid: Symmetric; 
Dotted: Skew-Symmetric; ESPRIT Biphase: 23.82; FFT Biphase: 
23.4 

Frequency (in Hz) 

Figure 7.23 1-D SKEW-MUSIC Bispectrum from S4: C4 Derivation from 
Symmetric Projected Cumulants; Signal Subspace: 2; SKEW-MUSIC 
Peak Freq.: 9.77 Hz; FFT Peak: 8.79 Hz 
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CHAPTER 8 
DISCUSSION 

8.1 EEG Signal Processing Issues and Insights 

Simulations using EEG time series from on-going, background activity have 
shown that each of four parametric algorithms can be used for satisfactory representa- 
tion of three-wave coupling. This coupling belongs to a non-Gaussian but generally 
linear time series. Since it is linear, the couplings are few and restricted in extent over 
the bifrequency domain. Pronounced peaks localized to a 10 Hz self coupling region 
can be fairly readily captured with low model orders. 

Proof of the economy in representation comes from a number of EEG simula- 
tions. Extending the idea of the band to quadratic systems, we note that the major 
concentration of spectral power in the EEG alpha band is accompanied in the bispec- 
trum by the greatest number of peaks with high skewness in the alpha-alpha hyper- 
band. All of the algorithms have a great probability of placing bispectral maxima in 
this region which covers just over 2% of the entire grid. Model orders ranging from 1 
self-coupled dyad to 2 full triads uncovered peaks in this region of nonlinearities. 
Some of the algorithms were shown to have a certain degree of redundancy as several 
models belonging to the same scheme placed peaks in the alpha-alpha region. 

These methods work well with short data lengths as well. The original work by 
Huber et al. [I] used EEG data segments that were 80 seconds in length. This is more 
than double the length used in this study! These methods, particularly the triple 
Kronecker product approaches, are sensitive enough to display sharp coupling fre- 
quency peaks. At the same time it is assumed that alpha-alpha coupling is a stable 
process which is active during the entire time that alpha synchronization takes place. 
Given that the EEG is not considered particularly stationary, the fact that these 
methods work with short data lengths is an extra dividend. Previous studies of EEG 
spectral parameter stationarity [2,3] point to the fact that the alpha wave is a spectral 
"island" of stability in an otherwise stormy sea of waves. However, because of cou- 
pling, a good deal of beta band power will have appreciable inter-trial constancy. 



Since this alpha self-coupling is so readily detected with these parametric methods, 
the alpha coupling must be a stable phenomenon which is not so easily averaged out. 

The alpha rhythm may be comprised of many components. An extremely nar- 
rowband of the alpha rhythm is coupled with beta frequencies. Yet as the alpha band 
is particularly wide (see sect. 6.8 and [4]), another portion is definitely linear and 
uncoupled with other frequency bands. It may be worthwhile to talk about more than 
one alpha rhythm. Low resolution methods such as conventional FIT-based tech- 
niques and the autoregressive procedure may mask these attributes of the alpha 
rhythm. 

Though earlier we noted the deficiencies of the autoregressive model, it does per- 
form quite well in simulations. As a linear "approximation" to three-wave coupling, it 
reveals coupling in a few select circumstances. Its hit rate profile for the occipital 
derivations is quite high. Perhaps for well-defined situations where less computation- 
ally intensive algorithms are required, narrowband AR modeling may suffice. 

The high performance of the AR algorithm in the occipital regions is noteworthy 
in another respect. Typically, occipital derivations are not known for high concentra- 
tions of beta band frequencies. Their frequency content is typically purely sinusoidal 
with some low frequency modulation. This would be revealed in closely spaced alpha 
sidebands. This envelope is extracted in complex demodulation and narrowband 
Gaussian noise contexts. Our studies reveal quite a sizable proportion of coupling 
with second harmonic frequencies. Perhaps our methods work so proficiently for 
occipital sites, because there is so much less interference from uncorrelated beta fre- 
quency power. The greatest quantity of uncoupled beta is to be found in more anterior 
electrode locations. 

When the 2-D methods are augmented with certain 1-D analogs, more model 
order information can be verified. These 1-D methods spotlight the rhythms belonging 
only to the power spectrum and those with dual membership in both the PSD and 
bispectrum. The use of the Swindlehurst and Kailath SVD formulation often shows 
two peaks corresponding to alpha and beta-I1 waves. Dyadic coupling between alpha 
and beta-II is the major feature of the EEG bispectrum. These are the key sinusoids 
involved in coupling. 

Likewise 1-D SKEW-MUSIC is a convenient method to filter the bispectrum to 
highlight specific harmonic relations. Domain restrictions help to capture weak 
alpha-alpha coupling for those subjects without prominent bispectral features. 1-D 
SKEW-MUSIC is much like a microscope. Though it narrows the field of vision, it 
brings to light many obscured bispectral attributes. One of the key issues discussed in 
the Dumermuth et al. articles [5]  and section 6.8 was the extremely narrow bands 



involved in quadratic phase coupling. Taking narrow slices of the bispectrum pro- 
vides an instrument for inspecting the fine details used by the brain for synchronous 
activity across frequency ranges. All of these eigenstructure methods furnish low 
model order responses. 

Achieving high resolution, we can begin to examine the phase relationships 
between alpha and beta waves. Phase is more easily visualized as the delay between 
1-D signals so it is natural to view the dispersive component of the EEG signals by 
examining cumulant projections. Several cases of EEG time series provided ample 
evidence that 1-D SKEW-ESPRm can accurately estimate the phase difference 
between alpha and beta-11. 

At the end of section 6.8 we discussed the fact that the cumulant projections pro- 
vided the best reason for utilizing eigenstructure approaches for EEG quadratic phase 
coupling. In our brief survey of projected cumulants in chapter VII, all of the pro- 
jected cumulants had a distinctively sinusoidal character. In fact simply measuring 
the peaks of symmetric and skew-symmetric projected cumulants and forming their 
ratio, would yield accurate biphases. Here 1-D methods uncover necessary informa- 
tion about cumulant form that lend support for the use of sinusoidal parametrization. 

8.2 Conclusions and Future Research Suggestions 

This study developed new tools for the investigation of harmonic phenomena in 
stochastic systems. As phase is a signature trait of nonlinear interactions, it was criti- 
cal that these tools provided accommodations for phase measurements. Phase sensi- 
tivity is also a distinguishing characteristic of the bispectrum. Autoregressive 
approaches to bispectral modeling lacked phase measurement facilities. Nonlinear 
interactions require a 2-D representation as inter-frequency modulations are generated 
from different frequencies beating together to form new harmonics. 

A sinusoidal parametrization best represents modulation processes. Phase can be 
easily integrated in an eigenstructure-based scheme. Two-dimensional methods were 
created to be higher order forms of the MUSIC algorithm [6]. Third and fourth order 
Kronecker product matrices were formed from symmetrized cumulants. Phases were 
decoupled during symmetrization which provided a basis for their estimation as 
amplitude coefficients of the sinusoidal 2-D cumulant sequence. Multidimensional 
versions of the ESPRIT algorithm allowed the user to estimate these dispersion rela- 
tions without accompanying frequency information. This approach relied on the 



Procrustes rotation [7] to furnish reduced dimension full rank square matrix pencils. 
The generalized eigenvalues containing the biphases were estimated from the core 
rotations level matrices. 

One-dimensional versions of the eigenvector methods supplied new information 
about the form of the cumulants and coupling frequencies over a restricted domain or 
slice of the bispectrum. In cases where specific harmonic relations need to be under- 
stood, the 1-D SKEW-MUSIC algorithm provides these details [8,9]. 

All of these algorithms were tested with EEG data exhibiting strong alpha wave 
coupling. Parametric methods are useful in cases with restricted coupling domains so 
that low model orders may be used. Testing EEG time series showed that the alpha 
self coupling domain provides highly significant coupling peaks in the bispectrum. 
Coupling frequencies and biphases may be extracted from I-D methods. These I-D 
methods provide the rationale for sinusoidal modeling of EEG coupling [lo, 111. 

Future research may include faster algorithms for computation of the cumulants. 
Schemes may be provided to speed up the calculation of the cumulant projections. 
Algorithms need to be devised for identification of systems along a bispectral slice. 
The concept of quadratic and Volterra filtering is dealt with in this thesis. For weakly 
nonlinear systems adaptive Volterra filtering within a frequency slice may be all that 
is needed for improved system identification performance. Multichannel algorithms 
might also be devised. 

In the brain wave realm extensive new studies could look at phase coupling from 
cerebral surface or depth recordings. These methods could also be applied to 
thalamocortical relays to check if coupling originates within pacemakers that drive or 
extinguish the alpha rhythm. Experiments could be performed at this juncture to vary 
the spectral beta power independently of alpha. The object would be to discover if 
inter-band coupling deteriorates under those conditions. Also it would be interesting 
to see if the classical Lopes da Silva oscillatory model of the alpha rhythm could be 
altered ever so slightly to incorporate higher harmonics [12]. 
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Appendix A: The Form of Projected Cumulants for Quadratically 
Phase Coupled Sinusoids 

Here we show the form projected cumulants of a time series containing quadrati- 
cally phase coupled sinusoids plus noise. Consider an arbitrary continuous third order 
cumulant series, C(z,v), for a single triad of quadratically phase coupled sinusoids in 
non-Gaussian and its 2-D Fourier transform, B(ol , y ) .  It is desired to isolate the pro- 
jected cumulants corresponding to a radial slice of the 2-D bispectrum 
B(ocos0,osin0) at angle 0 with respect to the z axis. In this context o is the radial 
frequency. Assume a bispectral peak for the triad lies along this 1-D radial slice at 
Be(o)=B(ocosO,osinO) . To compute the Radon transform, the cumulants are 
parametrized so that the axes are rotated by 0, i.e., new axes ; and through the uni- 
tary transformations 

i = zcos~  + vsine (All 

Taking the Radon transform involves substituting the inverse of the parametrization 
above to our cumulant function and then forming the projections, ~ ( i ) ,  along lines 
normal to the new axis, i ,  i.e., parallel to j .  The expression for the triad of quadrati- 
cally coupled sinusoids in third order white noise is parametrized by using the inverse 
unitary transformation. The cosine terms are expressed in terms of their constituent 
complex exponential factors and terms in ; and j are collected together for each real 
sinusoid as 2-D sinusoids are easily factored. The subsequent integration yields the 
following set of projected cumulants for the case of a single quadratically coupled 
sinusoidal triad: 

G(;) = cos[(olcos 0 + y sin 0); - y] S(wl sin 0 - y c o s  8) (A3) 

+ cos[(ycos 0 + q sin 0); - y1 G(ysin - wl cos 0) 

+ cos[(y cos 0 - y sin 0); - y] G(y sin 0 + y c o s  0) 

+ cos[( y cos 0 - wl sin 0); - y] S ( y  sin 0 + wl cos 0) 

+ cos[(ol cos 0 - ol sin 0); - y] 6(ol sin 0 + y cos 0) + p s(;) 

The presence of a Kronecker delta function multiplying each term in the pro- 
jected cumulants indicates that there is a reduction from six terms to one term per 



triad on certain slices after taking projections. For the slice within the non-redundant 
sector of the autobispectrum, that is, between 0 I 8  I ~ / 4 ,  we pick the projection axis 
angle 8 to satisfy wl sine - w2cose = 0 so that 6(wl sine - %case)= 1. The last five 
sinusoidal terms of (A3) vanish leaving only 

where a=  olcose  + -sine is the equivalent radial frequency. In this context we 
have shown projected cumulants for a time series with a single triad of sinusoids 
reduce to one 1-D sinusoid from six 2-D sinusoids. This is for projections normal to 
an angle 8 for a peak at Se(o). 



Appendix B: Simulation Results 

Table A.l EEG Coupling Frequency Estimates: 1-D SKEW-MUSIC: Ss: 1-3 

kEG COWLING k'-ATES 

S# Electrode 

1-D SKEW-MUSIC: Subjects: 1-3 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

P3 
P4 
C3 
C4 
0 1  
0 2  
P3 
P4 
C3 
C4 
0 1  
0 2  
P3 
P4 
C3 
C4 
0 1  
0 2  

Model 
2 

SY M/SKW 
SKW 
BOTH 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SKW 
BOTH 
SYM 
SYM 
SYM 
SYM 

Order 
4 

Deviation 
0.0 

.976 

.976 

.976 
0.0 
0.0 
1.96 
5.86 

.976 

.976 
0.0 
0.0 
0.0 

.976 

.976 

.976 
0.0 
0.0 

SYMISKW 
BOTH 
BOTH 
SYM 
SYM 
SKW 
SKW 
SYM 
SYM 
SYM 
SYM 
SKW 
SKW 
BOTH 
BOTH 
SYM 
SYM 
SKW 
SKW 

Deviation 
0.0 

.976 
0.0 

.976 
0.0 
0.0 
0.976 
5.86 
0.0 

.976 
0.0 
0.0 
1.96 

.976 
0.0 

.976 
0.0 
0.0 
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Table A.2 EEG Coupling Frequency Estimates: 1-D SKEW-MUSIC: Ss: 4-7 

Electrode 

P3 
P4 
C3 
c 4  
0 1  
0 2  
P3 
P4 
C3 
C4 
0 1  
0 2  
P3 
P4 
C3 
C4 
0 1  
0 2  
P3 
P4 
C3 
C4 
0 1  
0 2  

2 
SYMfSKW 

SYW 
SKW 
SYM 
SYM 
SYM 
SYM 
SKW 
SKW 
SYM 
SYM 
SYM 
SKW 
SYM 
SYM 
SKW 
SKW 
BOTH 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 
SYM 

 US^: Subjects: 4-7 
Model Order 

Deviation 
1.96 
4.887 
1.96 

.976 
1.95 
7.8 15 
0.0 
2.93 
0.0 
2.93 
0.976 
0.976 
0.976 

.976 
0.0 
0.0 
0.976 
0.976 
0.0 

.976 
1.956 
1.956 
0.976 

SYMISKW 
SYM 
SKW 
SYM 
SYM 
SYM 
SYM 
SKW 
SKW 
SKW 
SYM 
SYM 
SKW 
SYM 
SYM 
SYM 
SYM 
SKW 
SKW 
SYM 
SYM 
SYM 
SYM 
SKW 

Deviation 
0.976 
6.836 
0.976 

.976 
0.976 
6.839 
0.0 
2.93 
0.0 
2.93 
0.976 
0.976 
0.0 

.976 
0.976 

.976 
0.0 
0.0 
1.956 

.976 
0.0 

.976 
0.976 
0.976 0.976 SKW 



Table A.3 Low Error Estimates of Biphases for EEG data from 1-D SKEW- 
ESPRIT 



Model Order 

Figure A. 1 Parietal Hit Rate Profile for 2-D SKEW MUSIC: 30x30 Mamx Dimen- 
sion 

E S Y M  

m SKEW 

UNSYM 

Model Order 

Figure A.2 Parietal Hit Rate Profile: Autoregressive Method 



E SYM 

CD SKEW 

a AVG 

t 
e 0.25 

0 

Model Order 

Figure A.3 Parietal Hit Rate Profile: SKEW-PRO-ESPRIT: 36x15 Matrix Dimen- 
sion 

Model Order 

Figure A.4 Parietal Hit Rate Profile for Triple Kronecker Product Method: 36x15 
Matrix Dimension 



Model Order 

Figure A.5 Central Hit Rate Profile for 2-D SKEW MUSIC: 30x30 Matrix Dimen- 
sion 

E SYM 

m SKEW 

UNSYM 

Model Order 

Figure A.6 Central Hit Rate Profile: Autoregressive Method 



E SYM 

m SKEW 

AVG 

Model Order 

Figure A.7 Central Hit Rate Profile: SKEW-PRO-ESPRIT: 16x10 Matrix Dimen- 
sion 

Model Order 

Figure A.8 Central Hit Rate Profile for Triple Kronecker Product Method: 25x10 
Matrix Dimension 



Model Order 

Figure A.9 Occipital Hit Rate Profile for 2-D SKEW MUSIC: 30x30 Mamx 
Dimension 

Model Order 

Figure A. 10 Occipital Hit Rate Profile: Autoregressive Method 



E SYM 

R 0.5 m SKEW 
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t 
e 0.25 
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Model Order 

Figure A . l l  Occipital Hit Rate Profile: SKEW-PRO-ESPRIT: 16x10 Matrix 
Dimension 

Model Order 

Figure A.12 Occipital Hit Rate Profile for Triple Kronecker Product Method: 36x15 
Matrix Dimension 



t E SYM 

0.5 m SKEW 
R 
a AVG 

t 
e 0.25 
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Model Order 

Figure A.13 Parietal Hit Rate Profile: Results from SKEW-PRO-ESPRIT Right 
Singular Vectors: 16x10 and 25x10 Matrix Dimensions 

a SYM 

m SKEW 

AVG 

4 6 8 

Model Order 

Figure A. 14 Central Hit Rate Profile: Results fiom SKEW-PRO-ESPRIT Right 
Singular Vectors: 16x10 and 25x10 Matrix Dimensions 



Model Order 

e SYM 

m SKEW 

AVG 

Figure A.15 Occipital Hit Rate Profile: Results from SKEW-PRO-ESPRIT Right 
Singular Vectors: 16x10 and 25x10 Matrix Dimensions 
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