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ABSTRACT

Estimating the directions-of-arrival (DOAs) of propagating plane wavesis a prob-
lem of interest in a variety of applications including radar, mobile communications,
sonar, and seismology. The widely studied uniform linear array (ULA) can only pro-
vide estimates of source bearings relativeto the array axis. A planar. array is required
if estimates of source azimuth and elevation are required (2D angle estimation). Uni-
form circular arrays (UCASs) have several properties that make them attractive for
2D angle estimation; e.g., directional patterns synthesized with UCAs can be elec-
tronically rotated in the planeof the array without significant change of beam shape.
Two signal subspace algorithms for 2D angle estimation with UCAs have been de-
veloped. Both algorithms operate in beamspace and employ phase mode excitation
based beamformers. The first algorithm, UCA-RB-MUSIC, offers numerous advan-
tages over element space MUSIC. These advantages include reduced computation due
to the ability to compute subspace estimates via a real-valued eigenvalue decompo-
sition and the applicability of ULA techniques such as Root-MUSIC. The second
algorithm, UCA-ESPRIT, represents a significant advance in the area of 2D angle
estimation. It is a novel closed-form algorithm that provides automatically paired
source azimuth and elevation angle estimates via the eigenvalues of a matrix. The
eigenvalues have the form p = sin8e’?, where 8 and ¢ are the elevation and azimuth
angles, respectively. UCA-ESPRIT avoids expensive search procedures and is thus
superior to existing 2D angle estimation algorithms with respect to computational
complexity. The statistical performance o element space MUSIC, UCA-RB-MUSIC,
and UCA-ESPRIT has been analyzed. Computer simulations that demonstrate the

efficacy of the algorithms and validate the performance analysis results are presented.
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1. INTRODUCTION

1.1 Introduction

Array processing deals with the processing of signals carried by propagating wave
phenomena. An array o sensors located at different points in space in the field of
interest receives theincident signals. Theaimof array processing [Hay85] isto extract
useful information about the incident field e.g., its direction, speed o propagation,
signature, etc. The problem of interest to usisdirection-of-arrival (DOA) estimation
using an array o sensors . Multiple propagating plane waves that are co-located in
frequency are incident on the array, and additive noise corrupts the received signals.
The goal is to estimate the azimuth and elevation angles (2D angle estimation) of
each source. DOA estimation is a relevant problem in a number of areas including
radar, sonar, mobile communications, non-cooperative el ectronic communication, and
direction finding.

Let us briefly look at the use of antenna arrays in mobile communications. The
mobile communication channel is characterized by severe multipath fading. Due to
multiple propagation paths and the time varying nature of the channel, the signal
power received by a given antenna element has a wide dynamic range. The spatial
diversity introduced by employing several spatially separated antennas helps combat
multipath signal fading. The antenna array can also discriminate between signals
co-located in frequency provided they arrive from different directions. Antenna ar-
rays can perform spatial filtering; a signal arriving from a desired direction can be
received, while supressing undesired signals from other directions. DOA estimation
is an important aspect in mobile communications. The DOAs of the desired and

interfering signals (possibly from neighboring cell sites) need to be determined. The



array can then be steered to receive the desired signal, while placing a null in the
direction o the interferer.

In this report, we assume that the signals incident on the array are narrow-band,
i.e., the signals waveformsdo not change appreciably in the time taken for the wave-
front to propagate across the aperture o thearray. The complex enveloperepresenta-
tion isextremely convenient for representing narrow-band signals; the signal received
at each antenna element is thus represented by its complex envelope. The 'array
response vector' or 'array manifold vector' characterizes the response o the array
to a narrow-band plane wave arrival from a given direction. For an array o identi-
cal, omnidirectional elements, the array response vector consists o just phase factors
corresponding to the time differences between the instants the wavefront reaches the
different antenna elements. A simple data model [Hay85] in terms d array response
vectors describes the array output in the multiple source/additive noise scenario.
This data model, which is all-pervasive in the DOA estimation literature, is the one
employed in this report.

The classical method for DOA estimation with sensor arrays is 'beamforming'.
Beamforming is essentally a spatial filtering operation that 'steers the array to a
desired direction in space [Pil89]. The output of the beamformer is large when a
source arrives from the direction to which the array is steered. Conventional beam-
forming cannot resolve sources that are spaced less than a beamwidth (‘thewidth
d the main-lobe o the spatial filter) apart [Hay85]. Other conventional methods
for DOA estimation that have better resolution capabilities than beamforming are
Capon's minimum variance method, and linear prediction (see [Pil89]). Algorithms
that can resolve sources that are spaced less than a beamwidth apart are called ‘su-
perresolution’ algorithms. The 'signal subspace' or 'eigenstructure’ techniques are
superresolution methods that rely on an eigenvalue decomposition (EVD) o the ar-
ray output covariance matrix. MUSIC (Multiple SIgnal Classification) [Sch86] and
ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)

[RK89] are among the most well known signal subspace algorithms.




The widely studied uniform linear array (ULA) can only provide estimates o
source bearings with respect to the array axis (1D angle estimates). The structure of
the ULA (the ULA manifold vectors are Vandermonde) has led to the development of
powerful techniques such as Spatial Smoothing [SWK85, PK89a], and Root-MUSIC
[Bar83] that are specific to ULAs. A planar array is required if estimates o both
azimuth and elevation angle are required. Our interest isin high resolution 2D angle
estimation, and we choose to employ the Uniform Circular Array (UCA) configura-
tion. This is because UCASs possess a number of attractive properties as discussed
below.

UCAs provide 360° azimuthal coverage, and aso provide information on source
elevation angles. In addition, directional patterns synthesized with UCAs can be
electronically rotated in the plane o the array without significant change d beam
shape. ULAs in contrast provide only 180° coverage, and beams formed with ULAs
broaden as the array is steered away from boresight. Phase mode excitation d UCAS,
which essentially is Fourier analysis of the array excitation function, was studied by
researchers in the early 1960s [THN61, LCD67]. This theory led to a powerful pat-
tern synthesis technique for UCAs [Dav83]. Davies [Dav65] showed how the simple
phasing techniques normally associated with ULAs (Butler beamforming matrices)
could be used to provide the necessary phasing for pattern rotation with UCAs.
These attractive features led to the development of experimental systems that em-
ployed phase mode excitation for pattern synthesis with UCAs[Dav65, GD83]. These
systems however employed the beamforming principle to obtain DOA estimates; as

mentioned earlier, beamforming cannot provide superresolution.

1.2 Overview of the Report

This report presents the development and statistical performance analysis d two
superresolution algorithms [MZ93a, MZ93b] for DOA estimation with UCAs. Both
algorithms employ phase mode excitation based beamforming in conjunction with

subspace techniques to provide high resolution DOA estimates. The first algorithm,




UCA-RB (Real-Beamspace) MUSIC, is a beamspace MUSIC algorithm that offers
many advantages over element space MUSIC. The second algorithm is named UCA-
ESPRIT because the steps involved in the algorithm are similar to those of TLS-
ESPRIT [RK89]. We note that the applicability of the ESPRIT principlein conjunc-
tion with rotationally invariant arrays (such as UCAS) was studied in [Swi92]. It was
shown that such techniques cannot provide unique DOA estimates when more than
one source is present. Although this is truein element space, the phase mode exci-
tation based transformation from element space to beamspace induces a beamspace
manifold whose structure can be exploited to develop an ESPRIT like algorithm,
UCA-ESPRIT.

1.2.1 Features of UCA-RB-MUSIC

The UCA-RB-MUSIC algorithm offers numerous advantages over element space
MUSIC. These advantages include the ability to compute subspace estimates viareal-
valued eigenvalue decompositions (EVDs), improved estimator performancein corre-
lated source scenarios due to an inherent Forward/Backward (FB) average [PK89a],
and the ability to employ Root-MUSIC to obtain azimuth estimates of sources at
a given elevation. UCA-RB-MUSIC requires a two-dimensional spectral search to
obtain the DOA estimates. However, the computational complexity is lower than
for element space MUSIC, since samplesd the 2D beamspace MUSIC spectrum cor-
responding to a given elevation can be obtained via an FFT. In contrast, element
space MUSIC requires a complex-valued EVD for computing subspace estimates, and
ULA techniques such as Root-MUSIC cannot be employed. Averaging similar to FB
averaging can be performed in element space with UCAs, but only when the number
of array elements, N, iseven. It was shown in [SN91] that beamspace MUSIC es-
timators can never outperform the corresponding element space MUSIC estimators.
While thisis generally true, UCA-RB-MUSIC can outperform element space MUSIC
in correlated source scenarios when N isodd. Thisis due to the decorrelating effect

o the FB average inherent in UCA-RB-MUSIC, but not available in element space




for odd N. Previous work on the application d ULA techniques with UCAs include
that o Tewfik and Hong [TH92], and Friedlander and Weiss [FW92]. Comparisons
between their approaches and UCA-RB-MUSIC are made in Section 4.2.

122 Features of UCA-ESPRIT

UCA-ESPRIT is a novel agorithm that represents a significant advance in the
area o 2D angle estimation. It is a closed-form algorithm that provides automati-
caly paired azimuth and elevation estimates for each source. The term ‘closed-form'
connotes that the algorithm dispenses with the search /optimization procedures that
are characteristicd oneclassd 2D angleestimation algorithms. MUSIC, for example,
requires a two-dimensional spectral search to obtain the DOA estimates. Maximum
likelihood approaches [CS91] require even more expensive multidimensional search
procedures. The other class d 2D angle estimation algorithms, ESPRIT based algo-
rithms, [RK89, ZS89] require arrays that contain subarrays possessing displacement
invariances in two dimensions. These algorithms do not require search procedures,
and provide closed-form estimates o source direction cosines with respect to each
displacement axis. However, they require a pairing procedure (usually ad-hoc) to
properly associate the independently obtained direction cosine estimates. The ES
PRIT based algorithm for arrays with regular geometries described in [SK93] does
provide automatically paired angle estimates; the algorithm however requires a mul-
tidimensional search for optimality.

Unlike the existing 2D angle estimation algorithms, UCA-ESPRIT provides au-
tomatically paired source azimuth and elevation estimates via the eigenvaluesd a
matrix (that is derived from the least squares solution to an overdetermined sys
tem o equations). The eigenvalues have the form u; = sin 8; e’%¢, where 0; and ¢;
are respectively the elevation and azimuth angles o the ith source. Note also that
i = u; Tjv;, whereu; and v; are respectively the direction cosines with respect to the
x and y axes. UCA-ESPRIT is clearly superior to the existing 2D angle estimation

algorithms in terms d computational complexity. Another factor that that reduces



the computational burden of UCA-ESPRIT isthat thealgorithm can be implemented
with just real-valued EVDs. It should be pointed out that the UCA-RB-MUSIC esti-
mator has alower variance than the UCA-ESPRIT estimator. For improved estimator
performance, the azimuth and elevation estimatesfrom UCA-ESPRIT can be used as
starting pointsfor localized Newton searchesd the two-dimensional UCA-RB-MUSIC

spectrum.

123 Mutual Coupling Effects and the use of Directional Antenna Ele-
ments

The effectsd mutual coupling on the structure d the UCA element space man-
ifold are studied. It is shown that the genera structure d the original beamspace
manifold (in the absence d mutual coupling) is retained even when mutual coupling
effects apply. The only differenceis the introduction d gain and phase factors in
the original beamspace manifold. Consequently, minor modifications enable UCA-
RB-MUSIC and UCA-ESPRIT to cope with mutual coupling effects. Acounting for
mutual coupling effectsis much simpler with UCAs than with other array configura
tions.

The effects of employing directional antenna elementsin the UCA are also inves
tigated. Both UCA-RB-MUSIC and UCA-ESPRIT are applicable if the individual
element patterns are omnidirectional in azimuth. UCA-ESPRIT cannot be employed
if this condition on element patterns is not met. However, a beamspace algorithm
possessing many d the features & UCA-RB-MUSIC is still applicable.

1.2.4 Performance Analysis Results

Asymptotic expressions for the variances/covariances o the MUSIC estimator for
the 1D angle estimation problem are availablein [SN89]. The MUSIC spectrum in the
2D angle estimation problem is a function o two variables (azimuth and elevation),
and results on the performance & MUSIC in the 2D scenario are not available in

the literature. Such asymptotic results (applicableto arbitrary array configurations)




are derived herein; the derivation is aong the lines o the work in [SN89]. Asymp-
totic expressions for the variances/covariances of the UCA-RB-MUSIC estimators
are also derived. UCA-RB-MUSIC works with real-valued signal and noise subspace
eigenvectors. In contrast, the signal and noise subspace eigenvectors corresponding
to element space MUSIC are complex-valued. The analysis of UCA-RB-MUSIC dif-
fers from that of element space MUSIC in that the statistics of the eigenvectors of
the sample covariance matrix are different. The asymptotic performanced the UCA-
ESPRIT algorithm isalso analyzed. The analysis employs techniques used in [RH89a
to study the performance of the ESPRIT algorithm for 1D angle estimation. All the
performance analysis results are verified by computer simulations.

The asymptotic behavior of the direction cosine estimators corresponding to ele-
ment space MUSIC, UCA-RB-MUSIC, and the Cramer-Rao bound (CRB) is inves
tigated in some detail for the one and two source scenarios. Closed-form expressions
are obtained for the element space MUSIC direction cosine estimator variances in
these scenarios. The performance study reveals that both the element space MUSIC
estimator variances and the CRB are constants (independent of the DOA) in the
single source case. The UCA thus favors sources from all directions equally. In the
two source case, the DOA dependence o the element space MUSIC estimator vari-
ance and the CRB is only through the distance between the source locations, and
the orientation of the line joining the source locations in direction cosine space. In
other words, the direction cosineestimator variances depend on the source DOAs only
through the position of one sourcerelativeto theother. The above propertiesare due
to the circular symmetry o the UCA; arbitrary array geometries do not in general
possess such properties. Although closed-form expressions for the UCA-RB-MUSIC
estimator variances cannot be obtained, their behavior is shown to closaly follow that

of element space MUSIC and the CRB.



1.3 Literature Review

References to pertinent articles in the literature were made in the overview o
Section 1.2. This section is devoted to a brief survey o signal subspace techniques,

previous work on 2D angle estimation, and work on performance analysis.

1.3.1 Signal Subspace Techniquesfor 1D Angle Estimation

As discussed in Section 1.1, signal subspace or eigenvector techniques for DOA
estimation rely on an EVD d the array output covariance matrix. The eigenvectors
are partitioned into the'signal space' and 'noise space eigenvectors. Subspace tech-
niques exploit the propertiesd the signal and noise subspaces to extract information
on the source DOAs. Eigenvector methods were first employed by Pisarenko [Pis73]
to retrieve harmonics embedded in a time series. There has been subsequent interest
in applying eigenvector techniques to time series analysis (see [KT82] and the ref-
erences therein). The MUSIC algorithm [Sch86] for DOA estimation with antenna
arrays was developed by Schmidt in the late 1970s. This work generated a lot o
interest in subspace techniques for DOA estimation, and a number o modifications
to MUSIC such as the minimum-norm approach [KT83], and Root-MUSIC [Bar83]
were proposed. Beamformer preprocessing was proposed in [BK84] as a modification
d MUSIC for sector-wise searches for sources. A lot of work on such Beamspace
MUSIC algorithms has since been done (see [ZKS93] and accompanying references).
All the MUSIC based approaches (except for Root-MUSIC) require a search for peaks
in the MUSIC spectrum. When Root-MUSIC is employed with a ULA, the spectral
search is replaced by a polynomial rooting procedure.

The ESPRIT approach that was initially proposed by Paulraj et al. [PRKS86]
requires an array o matched doublets, whose elements are translationlly separated
by a constant displacement vector. A refinement of the algorithm, TLS-ESPRIT
[RK89], avoids some d the numerical problems o the original approach. ESPRIT
provides closed-form estimates of source DOASs viathe eigenvaluesd a matrix that is

essentially a subspace rotation operator. ESPRIT thus avoids the search procedures



associated with MUSIC. Other matrix pencil based approaches based on the ESPRIT
ideas include PRO-ESPRIT [ZS89] and the direct matrix pencil algorithm [HS90].
The weighted subspace fitting algorithm [VO91] is another signal subspace tech-
nique for DOA estimation. The algorithm is optimal (minimum variance), but re-
quires an expensive multidimensional search procedure. It isinteresting to note that
TLS-ESPRIT and even the deterministic maximum likelihood algorithm [SN89] fall

into the subspace fitting framework.

1.3.2 2D Angle Estimation Algorithms

Both MUSIC and ESPRIT can be employed for 2D angle estimation. MUSIC can
be employed with arbitrary array geometries, but requires a two-dimensional spectral
search. Arrays with displacement invariances in two dimensions are required when
ESPRIT isemployed for 2D angle estimation. ESPRIT applied independently to the
two subarray pairs provides independent estimates of source direction cosines with
respect to the two displacement axes (see [ZS89]). A procedure (which is usually ad-
hoc) for pairing the independently obtai ned direction cosineestimatesisthus required.
There are further complications if two of the sources share a common bearing with
respect to one of the displacement axes. The algorithm [SK93] applicable to certain
arrays with regular geometries provides automatically paired direction cosine esti-
mates. However, it requires a multidimensional search for optimality (a suboptimal
closed-form procedure for obtaining DOA estimates was presented). The algorithm
for rectangular arrays [Hua92] can cope with the case where two sources share a
common spatial frequency component; however, the algorithm still requires a pairing
procedure. Several other techniques proposed for rectangular arrays include a state-
space approach [KARB83|, a matrix approximation approach [SK88], and a maximum
likelihood approach [CS91]. All these approaches fail if two sources share a common
spatial frequency component. In the light of this review of 2D angle estimation al-
gorithms, it is clear that UCA-ESPRIT is unique in that it provides automatically

paired 2D angle estimates via a closed-form procedure.



1.3.3 Performance Analysis of Signal Subspace DOA Estimators

Asymptotic (large number o snapshots d array data) expressions for the vari-
ances d the MUSIC [SN89], ESPRIT [RH89a], and TLS-ESPRIT [OVK91] estima-
tors are available in the literature. The statistics d the eigenvectors o the array
output covariance matrix (which is complex Wishart distributed when the noise is
complex Gaussian) are required for the analysis. These eigenvector statistics were
obtained in [Gup65, Bri81, JF85, KB86] for the complex Gaussian noise case. The
Forward/Backward (FB) spatial smoothing scheme [PK89a] enables subspace tech-
niques for ULAs to cope with coherent signal arrivals. The performance o the MU-
SIC algorithm with spatial smoothing was analyzed by Pillai and Kwon [PK89b].
Zoltowski and Kautz [ZKS93] showed that a real-valued EVD is sufficient when op-
erating in beamspace with a ULA (employing centro-Hermitian beamformers). They
also showed that working with the rea part o the beamspace covariance matrix is
equivalent to performing a FB average. Based on the work in [PK89b], they derived
the statistics d the corresponding real-valued eigenvectors [ZK92]. These statistics
are employed here to analyze the UCA-RB-MUSIC algorithm.

Li and Vaccaro employed perturbation analysis to analyze the performance o
MUSIC and ESPRIT [LV90]. They obtained estimator variance expressions for the
finite sample case, under the assumption d high SNR (signal to noise ratio). Expres-
sions for the Cramer-Rao bound on estimator variances/covariances for the 1D angle
estimation problem have been derived in [SN89] and [SN90] for both the determinis-
tic and stochastic signal models. The deterministic CRB derivation was extended in

[YB92] for the two (or higher) dimensional case.
1.4 Organization of the Report

The organization o this report is as follows. Chapter 2 provides some o the
background material on array processing for DOA estimation. Chapter 3 introduces
beamforming techniques for circular apertures and arrays; cophasal beamforming
and phase mode excitation based beamforming are studied. The UCA-RB-MUSIC
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and UCA-ESPRIT algorithms are developed in Chapter 4. Chapter 5 addresses the
performance analysis of the algorithms. Results of computer simulations of UCA-
RB-MUSIC and UCA-ESPRIT are aso presented in this chapter. Finally, Chapter 6

provides a summary o the results, and discusses directions for future research.

1.5 Notational Conventions

The notational conventions employed in this report are as follows. bold face lower
case letters are used to denote column vectors, and bold face upper case letters de-
note matrices. An asterisk is used to denote the complex conjugate operation e.g.,
A*. The transpose and Hermitian transpose operations are respectively denoted by
superscripts T and H e.g., GT, GH. Hats are used to denote estimated values o
quantities e.g., S. The same symbol is used to denote similar quantities in element
space and beamspace; the element space quantities are distinguished by underbars
e.g., Sand S respectively span the beamspace and element space signal subspaces.

Other notational conventions employed will be specified as and when necessary.
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2. BACKGROUND: ARRAY PROCESSING FOR ARRIVAL ANGLE
ESTIMATION

This chapter presents background material that is relevant for DOA estimation
with antenna arrays. The signals incident on the antenna array (from different di-
rections, but co-located in frequency) are assumed to be narrow-band propagating
plane waves. Section 2.1 provides a mathematical description for propagating plane
waves. The array output signals are represented in termsof their complex envelopes.
Section 2.2 thus reviews the complex envelope representation of band-pass signals.
The concept of the array response vector (or manifold vector), is elucidated in Sec-
tion 2.3. Thearray manifold vector provides a description of the array output when a
narrow-band signal from a given direction impingeson it. The data model most com-
monly used to model the array output in a narrow-band, multiple source scenario is
introduced in Section 2.4. Section 2.5 discusses the beamforming operation, and the
concept of antenna array patterns. Finally, Section 2.6 reviews the popular MUSIC
algorithm for estimating the arrival directions o multiple sources. The Beamspace
MUSIC and Root-MUSIC variations of MUSIC are also discussed.

2.1 Propagating Plane Waves

A plane wave propagating in space can be represented by the following equation:

st =g(t- L), 21

where s(t, p) is the signal amplitude at timet at the location § (position vector), g
is the function specifying the shape o the wave, v is the speed of propagation, and
v is the unit vector in the direction of propagation. At any given time, the signal

amplitude is constant on any plane perpendicular to the direction of propagation.




Figure 21 Spherical coordinate system

The points in space on such a plane are described by the equation ¢ . §' = k, where

k is a constant. Let # = —6 be the vector specifying the DOA o the plane wave.
Equation 2.1 can then be rewritten as

Fep

s(t,p) =g (t + —v—p) . [2.2]

The spherical coordinate system (r,8, ¢) depicted in Figure 2.1 will be employed

to specify the DOA o asignal. The elevation and azimuth angles o a source arriving

from thedirection + are # and ¢, respectively. The DOA vector # can also be expressed

in cartesian coordinates as follows:
# = (u,Vv,w) = (sinf cos¢,sind sin ¢, cosb), [2.3]

where u,v, and w are respectively the direction cosines with respect to the x, y, and

2z aXes.
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Har monic Plane Waves

The harmonic wave whose shape is specified by g(t) = Acos(2xft +a) , and prop-
agating at the speed o light c is o interest in radar systems. The wavelength A and
frequency f o the wave are related by the equation ¢ = f A. Following Equation 2.2,

such a wave arriving from the direction 7 is described by

s(t,p) = Acos [27rf (t + %) + al = Acos[2m ft + ko - P+ a, [2.4]
where kg = 27 /) is the wavenumber. The quantity ko7 - p is the phase shift in radians
between the signal received at the origin and that at locations on the plane 7. p =
constant. The components o the vector kqr are the spatial frequenciesd the signal

inthex, y, and z directions.
2.2 Complex Envelope Representation of Band-Pass Signals

The complex envelope representation o is a very useful tool for the analysis of
band-pass systems. The complex envelope retains all the information content o a
band-pass signal, but isitself a low-pass signal. The representation o the antenna
element outputs in terms o complex envelopes turns out to be very useful for the
narrow-band DOA estimation problem. The following discussion o the complex en-
velope representation is brief, and further details may be found in [Hay83].

Let g(¢) bearea-valued band-pass signal with carrier frequency f. and bandwidth
2W. For the purposes d illustration, let the amplitude spectrum o g(t) be as shown
in Figure 2.2a. The pre-enveloped thesignal g(t) is a complex-valued function g (t)
defined by

9+(t) = g(t) +34(2),

where §(t) is the Hilbert transform o ¢(¢). The complex envelope g(t) of the signa
g(t) is defined as follows:

9(t) = 9+(t) exp(—j2r fet).




16

(a) |G|

(b) |G+(f)|
2a |
|
|
|
|
|
‘ f
0 fe-W [ fe+W
G(f)
(c) 2 G(f)
W 0w !

Figure 22 Band-pass signals: (a) Amplitude spectrum o signal. (b) Amplitude
spectrum o pre-envelope. (c) Amplitude spectrum o complex envelope.
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The complex envelope §(t) is a low-pass signal whose spectrum is limited to the
frequency band —W < f < W. The amplitude spectrad g¢.(t) and §(t) are depicted
in Figures 2.2b and 2.2c, respectively. The signal g(t) may be expessed in terms d

the complex envelope §(t) as follows:

9(t) = Re [§(t) exp(52r f.1)] [2.5]

The complex envelope g(t) can also be expressed in the following form:

4(t) = a(t) exp[34(1)], [2.6]

where a(t) and ¢(t) are both real-valued, low-pass functions. The corresponding

representation for the narrow-band signal g¢(t) is
g(t) = a(t) cos27 f.t + ¢(1)]. [2.7]
2.3 Array Manifold Vectors

The array manifold vector (or array response vector) for an array d N elements
corresponding to a narrow-band signal arrival from the direction 7 is an N vector
a?. It provides a convenient description d the signals received by the array, and
is valid only for narrow-band signals. Consider an antenna array that consists o
N identical, isotropic elements. The array geometry is depicted in Figure 23. The
array elements are numbered from 0 to N — 1, and the position vector 7, specifies
the location o element n. Theorigin d the coordinate system is chosen to coincide
with thelocation of element 0, and hence py = 0. The signalsreceived by the antenna
elements are represented by their complex envelopes: g,(t) represents the output o

element n at timet. The array output at timet is given by the vector

x(t) = [§o(t), 31 (2), - -+, gna(B)]". [2.8]

We proceed to obtain the array manifold vector corresponding to a plane wave arrival
from the direction 7. The case  a harmonic plane waveisfirst considered. We then
show that the same manifold vector can be used to describe the array output when

the incident signal is a narrow-band plane wave.
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Y3

Figure 2.3 Arbitrary array geometry

Harmonic Plane Waves

The signal received by element 0 (located at the origin) is the harmonic signal
90(t) = Acos(2r f.t T &). The signal received at element r is a time delayed version
of go(t). Since time delays translate into phase delays for harmonic signals, we have
(following Equation 2.4) g»(t) = A cos(2 f.t + kot . 5, T @). The complex envelope
o g.(t)is

in(t) = Aexp(ja) exp(jkor - ) = do(t) exp(iko - Fi), [2.9]
where go(t) is the complex envelope o the signal received at element 0. From Equa-

tions 2.8 and 2.9, we see that the array output at timet can be expressed as follows:

x(t) = go(t)a(?), where [2.10]
[ exp(7kot - Po) /
exp(gkot - ;1 T

a(f) = p(]k, A) [2.11]

| exp(jkof - Pn-1) |
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isthe array manifold vector corresponding to the direction #. Component n o a(7) is
just the phase shift between the signals received at element n and at the origin at any
given time instant. Equation 2.10 expresses the array output in terms o the signal
go(t) received at the reference element (element 0), and the array response vector
a(7). If theorigin o the coordinates does not coincide with an element location, the
array output can be expressed as x(t) = gorg(t)a(7), Where g,r4(t) is the complex
envelope o the signal received at the origin at timet. If the array elements were not
omnidirectional but had a complex response pattern k(#), the array manifold vector

would be modified as follows: a;(7) = k(7)a(F).
Narrow-Band Plane Waves

In practice, the signals received by the antenna elements are not pure sine waves,
but are pulsed sine waves with some target modulation. The spectrum o thereceived
signal is however still concentrated in a small frequency band around the carrier fre-
quency f.. Assumethat the spectrum isconfined to theband f.+W asin Figure 2.2a.
If the maximum frequency deviation W from f. is 'small’, the array manifold vector
can still be represented by phase differences corresponding to those for a harmonic
signal with frequency f.. The definition o 'small' however depends on the center
frequency f. and the aperture (maximum distance between any two elements) d the
array.

Assume that the two array elements that are furthest apart are elements 0 and
n. Since theincident signals are band-pass, the signal received at element 0 can be

expressed as follows (see Equation 2.7):

go(t) = a(t) cos[2r f.t + ¢(1)]. [2.12]

The complex envelope d this signal is go(t) = a(t) exp[j¢(t)]. The signa received
at element n is a time delayed version d go(t). Following Equation 2.2, we have
9n(t) = go(t T 7) , where 7 = # - B, /c is the appropriate time delay. Using the fact
that ko = 27 f./c, we obtain gn(t) = a(t+ 7)cos[2rft + kot - j, T 4(t T 7)]. The
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complex envelope o this signd is

gn(t) = a(t+r7)exp[jd(t+ 7)]exp(jkof - pn)

= Jo(t + 7) exp(jkof - Pn). [2.13]

Now if go(tF7) & Fo(t), we have §a (1) = o(t) exp(jkof-p,). Thisequation isidentical
in form to Equation 2.9, and the array output can hence be written as

x(t) = go(t)a(?), [2.14]

as in Equation 2.10. The components o the array manifold vector a(7) in the above
equation are the phase factors corresponding to the center frequency f..

The signals received by the array are narrow-band if go(t + Tmax) =~ Go(t), where
Tmax 1S the maximum time taken for a wavefront to propagate across the entire array.
From the definition of 7, we see that Tmax = ||Pr]l/¢ = dmax/c, Where dpax is the
maximum distance between any two array elements. Now, go(t) is a low-pass signal
with maximum frequency component W. If W is such that 7nax < 1/W, the signa
go(t) cannot change appreciably in time ry,ax, and the received signals are narrow-
band.

To illustrate via an example, consider the case o a 10 element uniform linear
array (ULA) operating at a center frequency f. = 2 GHz (A = 0.15m). The elements
are spaced half a wavelength apart to avoid grating lobes. We have dpax = 9A/2 =
0.675m, and Tmax = 2.25ns. We want to find limits on the maximum frequency
deviation W for which the wave can be considered to be narrow-band. In the time
period Tmax, the maximum fractional change o a sinusiod (change in signa level /
signal amplitude) is 27 W ruax. Limiting the maximum fractional change to 1% yields
W = 0.71 MHz. The received signal would thus be narrow-band if its spectrum was
confined to the band f, + 0.71 Mhz.

2.4 Array Data Model

The standard model employed to describe the antenna array output in a multiple

source, narrowband scenario is presented in this section. The array has N identical
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elements at locations p,,, n =0,1,..., N — 1 with reference to an appropriately posi-
tioned cartesian coordinate system. Assumethat d < N point sources are present in
the far-field o the array, and that the source DOAs are 7, k = 1,2,...,d. Narrow-
band plane waves with common center frequency f. emanate from each o the sources
and impinge on the array. Addititve noise corrupts the signals received by the an-
tenna elements. The received signals (in complex envelopeform) are sampled at time
instants t = 1,2,...,L, yielding L snapshots d array data. The snapshot vector at

timet is modeled as follows:
x(t) = Y sk(t)a(fe) +n(t) t=1,2,...,L, [2.15]

k=1
where a(7), defined in Equation 2.11, is the array manifold vector corresponding to
the kth source. The signal DOAs do not change during the observation period, and
the manifold vectors thus remain constant over all the snapshots. In the model, s,(t)
is the complex envelope d the kth signal at the reference element (the origin). The
vector n(t) is formed by stacking the complex envelopes o the noise at the array

elements. Equation 2.15 can be expressed in matrix form as follows:
x(t) = As(t) + n(t) t=1,2,...,L, [2.16]

where A = [a(1),...,a(7;)] is the DOA matrix, and s(t) = [s1(t), s2(t),- - -, 84(t)]T
is the vector d signal complex envelopes.

The signals and the noises are assumed to be stationary, zero mean, uncorrelated
random processes. The noise covariancematrix is Ry, = E[n(t)n"(t)] and the source
covariance matrix is P = E [s(t)sH(t)]. The array output covariance matrix R =

E [x(t)x™(t)] thus has the form

R =APAf 4+ R,. [2.17]

The noise vector isfrequently assumed to be spatially white, (uncorrelated from sensor
to sensor) with variance a. The noise covariance matrix is thus R, = ¢I. The source

covariance matrix P has full rank d provided the incident signals are non-coherent.




2.5 Beamforming and Array Patterns

Beamforming is a spatial filtering operation that is the basis for the conventional
method of DOA estimation with antenna arrays. A beam is formed by weighting
and summing the array outputs. Let x(¢) be the array output at timet, and w¥ =

[wo, w1,...,wN-1] be the beamforming weight vector. The beam output is
y(t)= wix(t). [2.18]

The response o the array to a source in the direction r is given by the array manifold
vector a(#). The elements o the manifold vector are just the phase shifts incurred by
the wavefront in propagating from element to element. The standard beamforming
procedure is to choose the beamformer weights such that these phase shifts are com-
pensated for. Such a beamformer is called a cophasal beamformer; the weight vector
required to 'steer' thearray to thedirection #, is just af(#,). From Equation 2.18, we
see that the beam output is large when a source arrives from the direction 7, since
all the signals sum up in phase. Signals arriving from other directions are attenuated
by the beamformer. The beamformer thus performs spatial filtering.

Given a certain weight vector wH, theantenna array pattern specifiesthe response
o the beamformer to a source arriving from the arbitrary direction i . The array
pattern thus specifies the spatial frequency response o the antenna array for a given
set of beamformer weights. The array pattern depends only on the weight vector w"
and the relative positions o the array elements. The array pattern is independent

d the type d elements employed. For an N element array with elements located at

Po, P1,- - -y PN—1, the array pattern is
N-1
f(i)=wHa(f) =) waexp(jkof - pn). [2.19]
n=0

The array pattern f (i)is in general complex-valued. Its absolute value |f(i) is
typically an oscillatory function with a main-lobe and side-lobes. The main-lobe
represents the pass-band o the beamformer; sources from directions 7 in the main-

lobe region are passed without much attenuation. It isdesirable that thearray pattern
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Figure 2.4 Array patternfor a 10 element ULA
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have a narrow main-lobe and low side-lobes. The array can be steered to 'look’
in different directions by changing the weight vector wH. For example, (cophasal
excitation) the weight vector wH = a(#,) steers the main-lobe to the direction #,.

For illustrative purposes, we proceed to obtain the cophasal array pattern for
a ULA. The ULA has N elementslocated on the z axis o the spherical coordinate
system of Figure 2.1. Theelementsare spaced apart by adistance d, and the position
vector at element n is g, = nd 2. The interelement spacing is assumed to be d =
A/2 to avoid grating lobes. The array manifold vector (given by Equation 2.11)
corresponding to the arrival o a narrow-band plane wave o wavelength X from the
direction 7 is

a(u) = [1,e™, ... WD [2.20]

where u = cosé. It is clear that the ULA is sensitive only to the angle 9 that the
source makes with the axis of the array and that it isinsensitiveto the angle ¢. The
normalized cophasal beamforming weight vector required to steer the array to the
direction u, is w#(u,) = af(u,)/N. Using Equation 2.19, we find that the array
pattern is

sin [N2(u — u,)]
N sin [%(u - u,)] ’

f(u) = exp [j(N— l)g(u—u,)] l<u<l.

Thespatial frequency response of the ULA under cophasal excitation thus has sinc-like
structure. If theorigin o the coordinate system had chosen to be at the center of the
array, the corresponding cophasal array pattern would have been rea-valued. With
the origin at the center o thearray, the element positions are specified by p,, = (nd—
(N - 1)d/2) 2. The corresponding array manifold vector a'(u) = e #(N-1)™/2 a(y) is

centro-Hermitian. The corresponding real-valued array pattern is

B sin lN%(u - u,)J
~ Nsin [%(u - u,)] ’

f'(u

~1<u<l. [2.21]

Figure 2.4 depicts the absolute value of the array pattern for an N = 10 element ULA
steered to boresight (u, = 0). The main-lobe has a 3dB beamwidth u ~ 0.886 x 4/N,
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and thefirst side-lobe is approximately 13.5dB below the level o the main-lobe. The
width o the main-lobe is inversely proportional to the aperture d the array. The
side-lobe levels can be lowered by applying amplitude tapers to the beamforming
weight vector. This windowing operation however broadens the main lobe.

The development o the UCA-RB-MUSIC algorithm involves synthesis o real-
valued array patterns for the UCA. As described in Section 2.6.2, synthesizing real-
valued beam patterns reduces the computational complexity o the beamspace MUSIC
algorithm.

26 TheMUSIC Algorithm

The MUSIC (Multiple SIgnal Classification) algorithm [Sch86] for DOA estima-
tion d narrow-band signalsis described in Section 2.6.1. MUSIC isoned the ‘super-
resolution’ algorithms that can resolve sources that are spaced less than a beamwidth
apart. The Beamspace MUSIC algorithm employs a beamforming matrix to pro-
cess the array data. MUSIC is then applied to the data in the transformed space
(beamspace). Section 2.6.2 contains a brief description o Beamspace MUSIC. Note
that the UCA-RB-MUSIC algorithm is a beamspace versiond MUSIC that employs
a phase mode excitation based beamformer. The MUSIC (and Beamspace MUSIC)
algorithms obtain DOA estimates via a search for peaks in the MUSIC spectrum. A
variation o the algorithm, Root-MUSIC [Bar83], dispenses with the need for a spec-
tral search when a ULA is employed. Root-MUSIC provides DOA estimates via the
zerosd a polynomial; the expensive search procedure required by MUSIC is replaced
by a polynomial rooting procedure. Root-MUSIC was originally designed for use in
conjunction with ULAs. However, employing phase mode excitation based beam-
formers allows Root-MUSIC and other ULA techniquesto be employed in beamspace
with UCAs (see Section 4.2.1, [ZM92], and [MZ92]). Section 2.6.3 describes the Root-
MUSIC algorithm.



26.1 Element Space MUSIC

MUSIC is also known as 'Element Space MUSIC' when the algorithm is applied
to the array data directly (no preprocessing via beamforming matrices is employed).
Let us assume that d narrow-band plane waves from the distinct directions 7, k =
1,2,...,d areincident on an array of N elements. The standard data model x(t) =
As(t) T n(t) of Equation 2.16 describes the array output. We will assume without
loss of generality that the noise vector n(t) is spatially white with covariance matrix

ol. Asin Equation 2.17, the element space covariance matrix is
R=APAY ;7L [2.22]

Theincident signals are assumed to be non-coherent, and the source covariance matrix
P thus has full rank d. The N X N matrix APA¥ (called the clean covariance matrix)
is Hermitian, and has rank d. Its spectral decomposition is
d N
APA" =% Xssf + 3 Mgl [2.23]
i=1 i=d+1

where the eigenvalues ); are real-valued and satisfy
A;2...2A§>Oa’nd_2+1=..-=i?vz .

The orthonormal eigenvectors s; (called signal space eigenvectors), and g. (called

noise space eigenvectors) are grouped to form the matrices

S=1Is,...,84] and G = [g, [2.24]

+1""’§N]'

The vectors g, are in the null-space o APA¥, and we thus have A¥g. = 0,. The
matrix G thus spans the orthogonal complement of R(A), and is said to span the
noise subspace. The matrix S clearly spans R(A), and is said to span the signal

subspace. The MUSIC spectrum defined by

A 1
Se(f) = o (7) GG7 a(?) [2.25]

goes to infinity when # = #;, a true signal direction. The d peak locations in the

MUSIC spectrum thus specify the source DOAs. The matrix GG above is the
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projection matrix onto the noise subspace. Note that the eigenvectors of the element
space covariance matrix R are identical to those of the clean covariance matrix.
The spectral decomposition o the element space covariance matrix, which is what is
available, is

R=

N
Assi + > oggl, [2.26]
t=d+1

where A; = A] +a THEEVD o R thus yields the necessary bases for the signal and

M=

1

1]
—

noise subspaces.
In practice, a finite number of snapshots, K, of array data are available. The
sample covariance matrix
R= % S (k) (k) [2.27]
k=1
is used as an estimator for R. Thisestimator isconsistent and asymptotically efficient
when the noise is Gaussian. The EVD of _E reveals that d of the smallest eigenvalues
are clustered together. Criteria such as the Akaike Information Criterion (AIC) or
Minimum Descriptor Length (MDL) [WK85] can be employed to obtain an estimate,
a?, of the number o sources. Given the estimate of the number of sources, the eigen-
vectors can be partitioned to form S and G. The estimator G is then employed
in (2.25) that defines the MUSIC spectrum. The location o peaks in the spectrum
give the source DOAs. The MUSIC algorithm can be employed even if the noiseis
spatially correlated (provided the noise covariance matrix Ry is known). When the
noise is correlated, the generalized eigenvalue decomposition (GEVD) o the matrix

pencil {R, Ry} yields bases for the signal and noise subspaces.

2.6.2 Beamspace MUSIC

With beamspace MUSIC, the array output dataisfirst processed by a beamform-
ing matrix. The MUSIC algorithm is then applied to the transformed (beamspace)
data. The dimension of the beamspace data vector may be smaller than the di-
mension, N, of the element space data vector. Operating in beamspace can offer a
number of advantages (such as reduced computational complexity, lower SNR resolu-

tion thresholds, and reduced sensitivity to sensor perturbations) over element space




operation [ZKS93]. Beamspace processing yields rich dividends with UCAs — phase
mode excitation based beamforming leads to the development o the UCA-RB-MUSIC
and UCA-ESPRIT algorithms.

In the following developments we will assume that the element space noise vector
has covariancematrix oI. Let FH bethe bx N beamforming matrix, where the number
o beamsisb < N. Each row of F isa beamformingweight vector that possibly steers
the array to a desired direction. The effect o the beamforming matrix could thus be
tolimit the search for sourcesto acertain sector in space. The beamspace data vector
isy(t) = Fx(t) = FHAs(t) T FPn(t). The matrix A = [a(f)),...,a(7:)] = FHA
is the beamspace DOA matrix, and a(#;) = FFa(#;) are the appropriate beamspace
manifold vectors. The beamspace covariance matrix is

R = FPRF = APA¥ 4 oFFF. [2.28]

The beamspace noise vector has covariance matrix FHF, and is white only if the
beamformer is orthogonal (i.e., satisfies FH'F = 1). Now, as with element space
MUSIC, the GEVD d the matrix pencil {R,FFF} yields matrices S and G that
respectively span the beamspace signal and noise subspaces. The beamspace MUSIC

spectrum is
1

aH (#) GGH a(F)’
The source DOAs are obtained by searching for peaks in the spectrum as usual.
Section 2.5 addressed real-valued pattern synthesis with ULAs. The UCA-RB

(Real-Beamspace) MUSIC algorithm also employs a beamformer that synthesizesreal-

Sy(7) = [2.29]

valued beam patterns. Synthesis of real-valued patterns implies that the beamspace
DOA matrix A is real-valued. It is clear from (2.28) that the real-valued GEVD
o the matrix pencil {Re (R),Re(F™F)) yields bases for the beamspace signal and
noise subspaces in such cases. Synthesizing real-valued patterns thus reduces the
computational complexity, as only real-valued EVDs are required.
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2.6.3 Root-MUSIC

Root-MUSIC [Bar83, ZKS93] is a variation o the MUSIC algorithm that was
originally developed for use in conjunction with ULAs. Root-MUSIC provides DOA
estimates via the zeros o a polynomial, and the computationally expensive spectral
search procedure required by MUSIC is avoided. As seen in Section 2.5, the ULA
manifold vectors are Vandermonde. This alows the denominator of the MUSIC
spectrum of Equation 2.25 to be written as a polynomial. The zerosd this polynomial
that are close to the unit circle identify the source arrival angles as described below.
The ULA manifold vector defined in Equation 2.20 isa(u) = [1,e/™, ..., e/N-Dm|T,
The manifold vector can be written in terms o the complex variable z as follows.

g(z) = [1, 2, 22a o ,ZN—I]Ta
where it is understood that z = ¢?™ lieson the unit circle. The denominator o the
MUSIC spectrum o Equation 2.25 can be expressed as the polynomial

Q(z) = a™(:)GG"a(2). [2.30

We have Q(z;) = 0 when z; = ™ corresponds to a true signa arrival direction.
The roots d the equation Q(z) = 0 that are close to the unit circle thus identify the
signal DOAs. The polynomial Q(z) above has order 2(N — 1) and its coefficientsare
easily shown to be centro-Hermitian. Thusif z; isazero d Q(z), s0is1l/z. The
roots thus occur in pairs on radial linesin the z plane. A root z; close to the unit
circle corresponds to a source in the direction u; = arg(z;)/x.

The Root-MUSIC agorithm offers better performance than spectral MUSIC as
has been documented in [RH89b]. Root-MUSIC has alower failurerate than spectral
MUSIC [SS91]. A ‘failure’ here refers to the presence o only a single peak in the
MUSIC spectrum, when two closely spaced sources are present in reality. Root-
MUSIC exhibits two distinct signal zerosin many o the cases where spectral MUSIC
fails to resolve the two sources. Our initial research efforts [ZM92, MZ92] focused
on applying Root-MUSIC with UCAs to perform the azimuthal search for sources
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at a given elevation. Although Root-MUSIC cannot be employed in element space
with UCAs, the phase mode excitation based transformation to beamspace induces a
beamspace manifold vector whose azimuthal dependence is through a VVandermonde
vector. This property alows Root-MUSIC to be employed in beamspace with UCAs.
Section 4.2.1 discusses how Root-MUSIC isapplicableas part o the UCA-RB-MUSIC
algorithm.
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3. BEAMFORMING FOR CIRCULAR RING ARRAYS/APERTURES

This chapter reviews beamforming techniques for circular ring arrays/apertures.
Two beamforming techniques - standard cophasal beamforming, and phase mode ex-
citation based beamforming are studied. The UCA-RB-MUSIC and UCA-ESPRIT
algorithms employ phase mode excitation based beamformers, and most o the at-
tention is thus focused on phase mode excitation based beamformers. Discussions on
phase mode excitation o UCAs can be found in [Dav83, LCD67, CZ69]. Cophasal
excitation is not employed in the development & UCA-RB-MUSIC or UCA-ESPRIT:
the discussion is included for the sake d completeness. Further details on cophasal
beamforming with UCAs can be found in [Ma74]. The discussions on beamforming
first address the case o the circular ring aperture. The UCA (sampled version o the
circular ring aperture) is then considered. The development o UCA-RB-NIUSIC and
UCA-ESPRIT requiresthat the UCA far-field patterns closely approximate those of
circular ring apertures. This can be accomplished by judicious choice d the number
of array elements.

The UCA geometry isintroduced in Section 3.1; expressionsfor the UCA manifold
vectors are also obtained. Section 3.2 describes cophasal beamforming for circular
arrays/apertures. Phase mode excitation of UCAs is next discussed in Section 3.3.
A discussion on the number o independent modes that can be excited with a given
aperture and the selection of the number o array elementsisincluded. Phase mode

excitation based pattern synthesisfor UCAs s described in Appendix B.
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<y

Figure 3.1 Uniform circular array geometry.

3.1 Uniform Circular Array Geometry

The UCA geometry is depicted in Figure 3.1. The antenna elements, assumed to
be identical and omnidirectional, are uniformly distributed over the circumference of
acircled radius r in the xy plane. A spherical coordinate system is used to represent
thearrival directionsd theincoming plane waves. Theorigin o thecoordinate system
islocated at the center of the array. Source elevation angles 4 € [0, /2] are measured
down from the z axis, and azimuth angles ¢ € [0, 2x] are measured counterclockwise
from the x axis.

Element n of the array is displaced by an angle vy, = 27n/N from the x axis.
The position vector at this location is g, = (rcosy,, rsinvy,,0). Consider a nar-
rowband plane wave with wavenumber ko, = 27/) propagating in the direction —#
with elevation and azimuth § and ¢, respectively. The unit vector # has cartesian
coordinates 7 = (u,v,cosd): u=sinfcosg, and v = sinf sin¢ are respectively the
direction cosines with respect to the x and y axes. From this point onwards, the vec-

tor § = ((,$) where { = kor sin8, or the vector 8 = (u,v) will be used to represent
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the DOA o a signal (rather than the vector 7 as in the previous chapter). At any
given time instant, the signal complex envelopesreceived at the origin and at element
n differ in phase by 9, = eiko7Pn — eikor(ucosmtusinm) — giCcos(¢=m) The element

space UCA manifold vector thus has the following representations:

ej( cos(d—0) | ejkor(u cosvyo+vsinyg)
ej( cos(d—y1) ejkor(u cosv; +vsiny )
a(f) = , a(B) = [3.1]
ej( cos($—yN-1) ejkor(u cosyn—1+vsinyy_1)

The representation in terms o 8 will be used in the development of the UCA-RB-
MUSIC and UCA-ESPRIT algorithms. The representation in terms of 3 is more

convenient for performance analysis d the algorithms.
3.2 Cophasal Excitation of Circular Arrays/Apertures

Cophasal excitation o arrays with arbitrary geometries was discussed in Sec-
tion 2.5. In thistype o beamforming, the beamformer weights steer the array to the
desired 'look’ direction by compensating for the corresponding phase shifts at each
element location. The Bessal function o the first kind, Jy, describes the far-field
pattern resulting from cophasal excitation o circular ring apertures. In the following
discussion of cophasal excitation, the vector 8 o direction cosines is used to represent

source arrival directions.
321 Circular Ring Aperture: Cophasal Excitation

We proceed to obtain the expression for the far-field pattern f°(3, 3,) that de-
scribes the aperture gain in the direction 3 = (u,v) when cophasa beamforming
is employed to steer the aperture to the direction 8, = (us,vs). The superscript ¢
signifies that the pattern corresponds to a continuous aperture. It is useful to define

the difference vector

Bi — B - B, = (uqg,vq), Where ug = u — us, and vg = v — v,. [3.2]




Let the representation of 3, in polar coordinates be (r,v). We have

7=y ul+v3, and v = tan™ (va/ua). [3.3]

The beamformer weight required at angular position v € [0, 2x] to steer the aperture
to the direction B, is w(y) = e~7kor(uscosy+v.siny)  The resulting far-field pattern is
fc(ﬁ,ﬁs) - /21\' ejkor(udcos'y+ud sin-y) d,},
0
This integral can be simplified using the property Jo(z) = #fo” e’*°°s¥ dy to obtain

the following expression for the far-field pattern:

(B, B,) = Jo(korT). [3.4]

The cophasal beam-pattern o circular ring apertures is thus described by the Bessd
function Jo. Note that thearray gain in the direction 8 depends only on the distance

T = ||B4]| (in the uv plane) between this direction and the 'look" direction.
3.22 Uniform Circular Array: Cophasal Excitation

As discussed in Section 2.5, the beamforming weight vector required to steer the
UCA tothedirection B, isjust wH = a¥(8,)/N. The corresponding far-field pattern
is f2(8,8,) = a¥(8,)a(B)/N, where the superscript s signifiesa sampled aperture.
Substituting for a from Equation 3.1, we obtain

=
£(8,8,) = - ;:% gikorT cos(v=2mn/N)

where 7 and v are defined in Equation 3.3. Employing a procedure similar to that
used to prove Equation 3.10, the above directional pattern can be expressed as

f(B,8,) = Jo(kort) + QiquJNq(kng) cos(Nqv). [3.5]

-

The first term in the above expression (called the principal term) isidentical to the
far-field pattern for the continuous aperture. The remaining terms, called residual

terms, arise dueto sampling of the continuous aperture. The principal term dominates
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the pattern provided N is sufficiently large. The residua term that contributes the
most to f*(3,3,) is the term with index g = 1. The amplitude o this term is no
greater than |Jy(korT)|. The argument of the Bessdl function is bounded by 2kor,
since T € [0,2]. Now, Jn(2kor) issmall if N > 2kor: thisis because the value o the
Bessel function issmall when its order excceedsits argument. Choosing a sufficiently
large number, N, of array elements thus virtually eliminates the contribution o the
residual terms. The discussion in Section 3.3.2 of phase mode excitation for UCAs

includes a more detailed account on the contribution o residual terms.

33 Phase Mode Excitation of Circular Arrays/Apertures

In this excitation technique, the phase o the excitation function (beamformer
weight) increases linearly as the circular aperture is traversed. This linear increase
o phase is similar to the cophasal excitation o a ULA. The excitation function
corresponding to phase mode m (for integer m) for a circular ring apertureis wy,(y) =
e’™ vy € [0,27]. The excitation function for phase mode m undergoes a phase
increment of 2m# on traversing the circle. It is clear that phase mode m is just
a spatial harmonic o any arbitrary excitation function: The arbitrary excitation
function w'(y) has the expansion w'(y) = =%°___ cne’™, where c,, is the Fourier
series coefficient corresponding to phase mode m.

Phase mode excitation is the basis for a powerful pattern synthesis technique for
circular arrays. Attractivedirectional patterns (with good directivity properties) can
be synthesized using phase mode excitation [Dav83]. Pattern synthesis is however
not of direct concern in the development o UCA-RB-MUSIC and UCA-ESPRIT.
The algorithms rather exploit the structure d the induced beamspace manifold to
advantage. Our initial efforts [ZM92, MZ92] on applying ULA techniques with UCAs
focused on synthesizing sinc-type patterns with UCAs. A discssion o phase mode
excitation based pattern synthesis for UCAs s thus included in Appendix B. In the
following discussion of phase mode excitation for circular arrays, sources DOAs are

represented by the vector 8 = ((, ¢), where { = korsiné.
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3.3 1 Circular Ring Aperture: Phase Mode Excitation

Theexcitation function corresponding to phase mode m (forinteger m) iswy,(y) =
/™. Theresulting far-field pattern is £¢,(8) = & [§7 wn(7)e/¢<=(#=" dy. Again, the
superscript c signifiesa continuous aperture. Asshown in Appendix A.l, thefar-field

pattern can be expressed as follows:

fr(8) = j™ T ()™ [3-6]

In the above expression, J,.(¢) isthe Bessel function o thefirst kind of order m. The
following observations can be made about the far-field pattern. First, the azimuthal
variation e’™¢ in the far-field pattern has the same form as the excitation function
e’™. This property is the basis for phase mode excitation based pattern synthesis
with UCAs, as described in Appendix B. Second, the elevation dependence (and
also the amplitude) o thefar-field pattern isthrough the Bessdl function J,,(¢). This
places limitations on the number o independent modes that can be excited by agiven
circular aperture, as described below.

Number of Modes Excitable with a given Circular Aperture

Let M denote the highest order mode that can be excited by the aperture at a
reasonable strength. A rule o thumb for determining M is [Dav83]

M= ko'r‘. [37]

This is justified as follows. The visible region 8 € [0,7/2] translates into ( =
korsind € [0,kor]. M is chosen as above because the mode amplitude J,.(¢) is
small when the Bessal function order m exceeds its argument (. For mode orders
im| = M, f¢(8) is small over the entire visible region. The beamformer for such a
mode m thus severely attenuates sourcesfrom all directions. The M' = 2M *1 phase
modes, m € [—M,M] (where M is specified by Equation 3.7) can thus be excited at
a reasonable strength by a given aperture.

The following example illustrates the limit on the number o excitable modes.
Consider acircular apertureof radiusr = A. Equation 3.7 suggests that the maximum
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mode order is M = 6 (the closest integer to 2x). The Bessdl functions o order 0
through 7 are plotted in Figure 3.2. Thefigure revealsthat J7(¢) isindeed small over
theentire visible region ¢ < ¢ < 2x. Thus only phase modesd order m € [—6, 6] can

be excited at a reasonable strength by the aperture.

332 Uniform Circular Array: Phase Mode Excitation

We now consider phase mode excitation o an N element UCA. The normalized

beamforming weight vector that excites the array with phase mode m, |m| < M is

1

W,I,{ = N[ejm"ro, ™ Lo ,ejm’nv-1] — i[l, eerm/N, . ,eerm(N—l)/N]. [3.8]
Theresulting array pattern fz (), where the superscript s denotes the sampled aper-

ture, is

1 N-1
1

fm(8) = wria(8) = — 3 e mmertendmn), [3.9]
n=0

As shown in Appendix A.2, the array pattern can be expressed as follours [Dav83,
CZ69]:

fa(8) =i Jn(Qe™ + 37 (39, (Qe + j* (™), Im| <N, [3.10]

g=1

whereg = Ng—mand h = Ng¢+m. Thefirst terminthisequation, theprincipal term,
is identical to the far-field pattern of Equation 3.6 corresponding to the continuous
circular aperture. The remaining terms arise due to sampling o the continuous
aperture, and are called residual or aliasing terms. Examination o Equation 3.10
reveals that the condition N > 2|m| must be satisfied for the principal term to be

the dominant one. The highest mode excited has order M, and we therefore need
N> oM [3.11)

array elements. This condition is identical to the Nyquist sampling criterion, as
M defines the maximum spatial frequency component in the array excitation. With
M = kor as in Equation 3.7, it isclear that (3.11) requires the circumferential spacing
between adjacent array elements to be less than 0.5X. Note that an interelement
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Table 3.1 Maximum residual term contribution as a function o N for a UCA with
r=Xand M = 6.

N 13 14 15 16 17 18 19
JIn-m(kor) || 0.158 | 0.073 | 0.029 | 0.010 | 0.003 | 8.8¢-4 | 2.3e-4

spacing of 0.5\ issufficient to avoid grating lobes with ULAs. In practice, employing
N > 2M + 5 elementsis sufficient to make the residual term contributions negligible.
With N > 2M *+ 5 elements, the UCA far-field pattern closely follows that of the
continuous circular aperture. The following discussion addresses this issue in more
detail.

Choosing N to make Residual Term Contributions Negligible

The residual term that contributes the most to the far-field pattern d Equa-
tion 3.10 arises from the q = | index. The amplitude d this term fbllows the Bessel
function o order N — |m|. The residual contribution is clearly maximum for mode
M, and the amplituded this residual term follows Jn_ps(¢). Now Jy_as(¢) is mono-
tone increasing over the visible region [0, kor| by virtue d the choiced M and N in
Equations 3.7 and 3.11. Jy_p(kor) is therefore an upper bound on the maximum
contribution of any residual term. This upper bound can be made as small as desired
by making the number N d array elements sufficiently large.

We return to the example o the UCA d radius r = A with M = 6 to illustrate
the selection o N. Equation 3.11 requires that the array have N > 12 elements.
The upper bound on the maximum residual contribution, Jy_as(kor), is tabulated in
Table 3.1 for various valuesd N. Thetableindicatesthat the residual contributionis
‘small enough' to be ignored for N > 15 elements (circumferential spacing < 0.42X).
Thus having N > 15 elementsensures that the UCA far-field patterns corresponding
to phase mode excitation with mode orders |m| < M = 6 are virtually identical to

the far-field patterns o Equation 3.6 corresponding to a continuous:. aperture.
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The development d the UCA-RB-MUSIC and UCA-ESPRIT algorithms in the
following chapter assume that the maximum mode M and the number of array -
ements N have been chosen according to the design guidelines established in this
section. The principal term thus characterizes the UCA far-field pattern. for mode

orders |m| < M: We have
£2.(0) = ™ Im(Q)€™? = jIMJm (O™, m| < M. [3.12]

The final equality above followsfrom the property J-m(¢) = (-1)"Jn({) o Bessel

functions.
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4. DEVELOPMENT OF UCA-RB-MUSIC AND UCA-ESPRIT

The UCA-RB-MUSIC and UCA-ESPRIT algorithmsfor 2D angle estimation with
UCAs are described in this chapter. Both algorithms operate in beamspace and em-
ploy phase mode excitation based beamformers. The beamforming matrices employed
by the algorithms are constructed in Section 4.1. Section 4.2 describes the UCA-
REI-MUSIC algorithm: the advantages UCA-RB-MUSIC offers over element space
MUSIC are discussed in somedetail. The UCA-ESPRIT algorithm is next developed
in Section 4.3. The changes in the UCA manifold due to mutual coupling between
array elements is described in Section 4.4. Simple modifications that enable UCA-
RB-MUSIC and UCA-ESPRIT to account for mutual coupling effects are presented.
Section 4.5 investigates the use of directional antenna elements with UCAs. Both
UCIA-RB-MUSIC and UCA-ESPRIT are applicable if the element patterns are om-
nidirectional in azimuth (only elevation dependent). Although UCA-ESPRIT cannot
be employed when the elements have arbitrary patterns, a phase mode excitation

based beamspace MUSIC algorithm is still applicable.
43. Beamforming Matricesfor UCA-RB-MUSIC and UCA-ESPRIT

Three phase mode excitation based beamformers that synthesize beamspace man-
ifolds of dimension M’ = 2M + 1 are developed in this section. The beamforming
matrices are denoted FH, F, and F¥; the corresponding beamspace manifolds are
ae(8), ar(8), and a,(8), respectively. The subscipts e, r, and u respectively stand
for 'even’, 'real-valued' and 'UCA-ESPRIT' for reasons that will soon be apparent.

All three beamformersare orthogonal (haveorthonormal rows), and satisty FHF = 1.
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The orthogonal matrix
sz/N[W_ME---Ewof---EwM] [4.1]

is the building block for the three beamformers. It is evident from Equation 3.8 that
the rows of the M’ X N matrix V™ are phase mode excitation beamforming weight
vectors. These rows are in fact an M’ dimensional subset o the N IDF'T (Inverse
Discrete Fourier Transform) weight vectors.

The beamforming matrix FZ is defined as follows:

F7 = C.VH, where [4.2]

e

Ce - diaag{j_M,--.’j_l,j()’j—l’“"j_M}'

The diagonal, unitary matrix C, servesto eliminate factors o theform ;™! in Equa-

tion 3.12. The resulting beamspace manifold vectors thus have the form

ac() = Fla(6)~ vVNI(()v(4), where [4.3]
J(C) = diag {JM(C)"JI(C)’JO(C)aJl(C)’7']M(C)}v and [4‘4]
v(¢) = [e M .. e &0 e, ..., e MHT [4.5]

The azimuthal variation of ae(8) isthrough the vector v(¢) that issimilar in form to
the ULA manifold vector. The elevation dependence takes the form o a !symmetric
amplitude taper through the matrix J({) d Bessd functions. The diagonal elements
of J(¢) are even about the center element; thence the subscript €. The beamspace
manifold ae(8) iscentro-Hermitian and satisfiesiae(8) = az(8), whereT isthe reverse
permutation matrix with ones on the anti-diagonal and zeros elsewhere. Employing
the beamformer F¥ thus allows a Forward-Backward (FB) average to be performed
in beamspace.

The centro-Hermitian nature o a.(8) motivates the development of the beam-

former F¥ that synthesizes a real-valued beamspace manifold. We have

FY = WHFY =WHC. V¥ and [4.6]
a;(8) = Ffa(8) = Wa,(0) = VNWHI(()v(4). [4.7]



43

It is evident that the beamspace manifold a,(8) is rea-valued if' the matrix W"
has centro-Hermitian rows. Orthogonality of F¥ is maintained by restrictingW to
be unitary. An appropriate sparse matrix WH and the corresponding beamspace

manifold are given below. The symbol 0,, denotes a zero vector d length M.

Inv Om Iy

1
WH:W o, v2 oI |, and [4.8]

jiv Op —jIn

a(8) = \/Q_N[JM(C)COS(M¢),...,JI(C)COS(¢),—%J0(C), J1(¢) sin(4),

vy Ji(€) sin(M@)]T. [4.9]

Another choice o W and the corresponding real-valued beamspace manifold are as

follows:
W = \/%[V(OZ-M)E v v(eg)i - - iv(an)], and [4.10]
al‘(e) = [f(Ca¢ - a—M),.“v f(Ca¢ - 0_1), f(C’¢)’ f(C,¢ - al)). LR f(C,‘[b - aM)]Tv
[4.11]

where £(¢,6) = v/F[Jo(¢) +2 0y Jm(C) cos(md)], and o = 2mi/M’, i € [~ MM].
With this choiceof W , the beamformer F synthesizes the basic beam pattern f(¢, ¢)
which is just the sum o the components o a.(@). Multiple beams are obtained
by rotating this basic pattern in azimuth by the angles «;. Having a rea-valued
beamspace manifold is advantageous for computational reasons. It allows subspace
estimates to be obtained via real-valued EVDs as opposed to complex-valued EVDs,
and thus provides computational savings. The UCA-RB-MUSIC algorithm developed
in the following section exploits this property.

The last beamformer FH synthesizes the beamspace manifold a, (@) whose spe-
cia structure is exploited in the development d@ the UCA-ESPRIT algorithm. The
beamformer is defined by

FI = C,V#, where [4.12)

Cy = diag{jM,..,5%,j%i™",...,i ™M}
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The diagenal, unitary matrix Cy serves to eliminate factors o the form ;™ in Equa-
tion 3.12. The resulting beamspace manifold is

an(8) = FHa(8) =~ VNI_(¢)v(¢), where [4.13]
dla'g {J—M(C)’ taly J—I(C)a JO(C)’ Jl(C)a BRI ] JM(()}, [4].4]

Ih
—~—
a
N’

I

and v(¢) is defined in Equation 4.5. Examination d Equations 4.6 and 4.12 shows
that a unitary transformation relates the beamformers Fif and F: We have FH =
CoWFH where

Co = CuCo” =diag {(-1)™,...,(-1D},1,1,...,1}. [4.15]

The same transformation thus relates the corresponding beamspace manifold vectors:
We have
au(o) - CoWar(o). [4.].6]

This property enables computation of the beamspace signal subspace matrix for UCA-
ESPRIT viaa rea-valued EVD.

4.2 Development of UCA-RB-MUSIC

UCA-RB (Real-Beamspace) MUSIC employsthe beamformer F that synthesizes
the real-valued beamspace manifold ar(8) = VNWHI(()v(¢4) o Equation 4.7. De-
pending on the choice o W, a(0) has the form of Equation 4.9 or Equation 4.11.
Since a,(#) is real-valued, signal eigenvector estimates can be obtained via a real-
valued EVD as described below. This reduction in computation (element space MU-
SIC requires a complex-valued EVD) is one o the advantages & UCA-RB-MUSIC.

Let A = [a(6,),... ,a(8y)] bethe N x d DOA matrix, assuming that d signals im-
pinge on the array. Using the standard data model, the element space data vector can
be represented as follows: x(t) = As(t) T n(t), where s(t) is the vector of signal com-
plex envelopes, and n(t) is the noise vector. The signals and the noises are assumed
to be stationary, zero mean, uncorrelated random processes. The incident signals are
assumed to be non-coherent, and the source covariance matrix P = E [s(t)s™(t)]is
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thus positive definite. The noise process n(t) is assumed to be complex Gaussian dis-
tributed and spatially white with covariance matrix ¢I. Theelement space covariance
matrix R = E [x(¢)x¥(¢)] thus has the form

R =APA" 46l [4.17]

Eniploying the beamformer F# yields the beamspace data vector y(t) = Fx(t) =
A.s(t) T FAn(t), where A, = FHA is the real-valued beamspace DOA matrix. The
corresponding beamspace covariance matrix is denoted Ry. Expressions for Ry and

the matrix R = Re{Ry} are given below:

Ry = F/RF; = A,PA,” 01 [4.18]
R = Re{Ry} = A;PpA,” 41, [4.19]

where Pr = Re{P). It is clear that the rea-valued EVD o R. yields bases for
the beamspace signal and noise subspaces. Let Ay > -+ > Ay > gy = -+ =
Ay = a be the ordered eigenvalues of R, and let s;,...,84,84+1,- -, &M be the
corresponding orthonormal eigenvectors. The real-valued matrices S and G defined

below respectively span the beamspace signal and noise subspaces.

S = [si...,sd [4.20]

G = [gd+1, ey ng] [42']

The UCA-RB-MUSIC spectrum

1 1

0) = T 0)GGETa(8) V(B0 WEGTWHI(0)v (%)

[4.29]

has peaks at 8 = 8; corresponding to the signal arrival directions. DOA estimates
are therefore obtained by searching for d peaks in the two-dimensional UCA-RB-
MUSIC spectrum. The major computations required by UCA-RB-MUSIC are a real-
valued EVD o the matrix R, and a two-dimensional search for peaks in the spectrum
S5(8) = Ss(¢,4). Theelevation dependence of the spectrum isthrough the parameter

¢ = korsin@, where 8 is the elevation angle.
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The UCA-RB-MUSIC algorithm offers many attractivefeatures that art: not avail-
able in element space. All these features are available in beamspace because the
azimuthal. dependence d the beamspace manifold a;(8) o Equation 4.7 is through
the vector v(¢) whose form is similar to the ULA manifold vector. One advantage
mentioned already isthe computational savings dueto the requirement o only a real-
valued EVD. Other advantages include improved estimator performance due to FB
averaging, applicability d Root-MUSIC, and the ability to perform coarse searches of
the UCA-RB-MUSIC spectrum viaan FFT. These features are discussed in further
detail below.

Forward/Backward averaging in beamspace

As mentioned Section 4.1, the beamformer FZ synthesizes the centro-Hermitian
beamspace manifold ac(@). Forward/Backward (FB) averaging is thus possible in
beamspace: The corresponding FB averaged covariance matrix is Ry = (Re +
IR:1)/2, where R, = FZRF, is the beamspace covariance matrix under the beam-
former FH. The property IW = W* is employed in the manipulations below that
show that the matrix R = Re{Ry} employed by UCA-RB-MUSIC is derived from

the FB averaged covariance matrix R g.
1
R = Re{WFR.W} = E(WHRQW + WIRIW™) [4.23]
1 ~
= EWH(RQ +IR:I)W = WHR, W. [4.24]

UCA-RB-MUSIC is thus endued with benefits associated with FB averaging, such as
improved estimator performance in correlated source scenarios. FB type averaging
can be performed in element space with a UCA when the number of array elements
N is even; this property does not appear to have been exploited by researchers prior
to this work. FB type averaging is possiblefor even N because the permuted version

Ja(8) o the element space manifold vector, with

I In/: ~0 ’
0 Iy
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is centro-Hermitian. However, such averaging is not possible in element space when
N isodd. UCA-RB-MUSIC can thus outperform element space MUSIC when N is
odd. The theoretical performance curvesin Section 5.5 substantiate this claim.
Spectral Search via FFT

UCA-RB-MUSIC requires a search for peaks in the 2D spectrum of Equation 4.22

to obtain source azimuth and elevation estimates. Thissearch isexpedited by thefact

that the computationally efficient FFT can be employed to evaluate the spectrum at
each candidate elevation angle. Let V(¢;¢) = vH($)I(O)WGGTWHJ(¢)v(¢) denote
the UCA-RB-MUSIC null spectrum at the elevation specified by { = kyr sind. With
Q¢ = J(OWGGTWHJ(¢), the null spectrum can be written in the form

V#0= S aDe®, wherea)= Y Q). [4.25]
I=—(M'-1) i,jij—i=l

The matrix Q. is Hermitian such that ac(—=I) = a7(l). V(4;¢) can thus be writ-
ten in terms o the Discrete Time Fourier Transform o the M’ point sequence
ab = {ac(0),2a¢(—1),...,2a;(~M' T 1)}: We have V(4;¢) = Re{A}(¢)}, where
Al(¢) = TM al (e, The UCA-RB-MUSIC null spectrum V(¢;¢) at the el-
evation specified by [ can thus be evaluated at L equispaced azimuth angles ¢; =
2xl/L,1=0,1,...L —1viaan L point FFT d the sequence a; appropriately zero
padded. In contrast, the search for peaks in the element space MUSIC spectrum
cannot be expedited viaan FFT.

Application of Root-MUSIC

The Root-MUSIC algorithm [Bar83] originally developed for use in conjunction
with ULAs hinges on the Vandermonde structure of the ULA manifold. Root-MUSIC
cannot be employed in element space with UCAs as the UCA manifold vectors a(8)
o Equation 3.1 are not Vandermonde. However, the azimuthal dependence o the
UCA-RB-MUSIC null spectrum is through the vector v(¢) of Equation 4.5 that is
Vandermonde except for a multiplicative scale factor. Root-MUSIC can thus be
employed in beamspace to obtain azimuth angles of sources at a given elevation. The

Root-MUSIC formulation follows on setting z = e/ in Equation 4.25, and equating



the null spectrum V(¢;() to zero. The polynomial equation
ac(M' —1)22M'2 pa (M —2)22M 2 .. fa(—M'+1)=0

results. Roots z; o this equation which are close to the unit circle yield the azimuth
estimates ¢; = arg(z;) o sources at the elevation (. UCA-RB-MUSIC thus benefits
from the concomitant advantages o Root-MUSIC such as a lower failure rate for
closely spaced sources at a given elevation.

Mapping onto ULA type manifold

Several researchers [Dav83, DD92] have considered the case where al incident
sources are confined to a given elevation angle, say (p, and the problem o interest isto
estimatethe source azimuth angles. It isclear from Equation 4.3 that the beamformer
FH,4(C) = (1/vV/N) 37 (¢o)FH mapsthe UCA manifold a((o, ¢) corresponding to the
elevation (o onto the manifold v(¢) of Equation 4.5. We have

FgLA(CO)Q(CO, ¢) = v(4), [4.26]

and the beamspace manifold corresponding to the elevation (o is similar to the ULA
manifold. Using the beamformer F¥, ,(¢o) in such a scenario thus permits Spatial
Smoothing [PK89a] to be employed in beamspace to combat the rank reducing effect
caused by source coherency. Further, sinc type azimuthal patterns can be synthe-
sized as with a ULA [ZM92, MZ92], and the Beamspace Root-MUSIC algorithm
[ZKS93] can thus be employed. This algorithm alows for parallel sector-wise az-

imuthal searches for sources via rooting o reduced order polynomials.
4.2.2 UCA-RB-MUSIC: Algorithm Summary

1. Form the array sample covariance matrix R = * YK, x(t)xH(t) by averaging
over the K datasnapshots. Alsoform the sample beamspace covariance matrix
Ry = FII:IB_Fr.

2. Perform the real-valued EVD o the matrix R = Re{f{y}, and apply an appro-

priate detection techniqueto get an estimate d of the number of sources. Let the
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ordered eigenvalues of R be }; > --- > Appr, and the corresponding orthonor-
mal eigenvectorsbe sy, ..., 85, 84,1, - -, &ar- FOrm the matricesS = [3,, ..., 5]
and G = [g4.,,---,8&m] that respectively span the estimated signa and noise

subspaces.

3. Search for d peaks in the two-dimensional UCA-RB-MUSIC spectrum

~ . 1
5(8) = vH($)I() [WGGTWH] I(¢)v(¢) [4:27]

The peak locations 8; = (korsind;, ¢:), 1 = 1,...,d give the DOA estimates.

As described earlier, used the FFT facilitates this 2D spectral search.

4. If agood estimate d source elevation angle is available, Root-MUSIC can be
employed to obtain the azimuth angle estimate as described earlier. Root-
MUSIC can resolve sources at a given elevation and closely spaced in azimuth
even if the UCA-RB-MUSIC spectrum revealsonly asingle peak in thevicinity.

4.2.3 PreviousWork on Application of ULA Techniques with UCASs

As mentioned in Section 1.1, phase mode excitation based beamformers have been
employed to synthesize attractivedirectional patterns with UCAS, and to obtain DOA
estimates via the beamforming principle. Our initial work [ZM92, MZ92] focused
on phase mode excitation based sinc-type pattern synthesis with UCAs (patterns
similar to the cophasal ULA beam patterns). Root MUSIC was then employed to
obtain azimuth angle estimates o sources at a given elevation. Other work on the
application o ULA techniques with UCAsinclude that of Tewfik and Hong [TH92],
and Friedlander and Weiss [FW92].

To compare UCA-RB-MUSIC with the work reported in [TH92], we recal that
the rows of the matrix VM (of Equation 4.1) that defines the beamforming matrix
F! areinverse DFT weight vectors. Row m € [—M,M] of VH excites the array with
phase mode m, and atotal o M’ =2M *1 < N modes are excited. Thus, only M’
o the N possible phase modes are excited. The reason for choosing M’ < N was
to make the contributions o residual termsto the UCA far-field pattern negligible,
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thus leading to a beamspace manifold whose azimuthal dependence is through the
Vandermonde (except for a multiplicative scale factor) vector v(¢). A full N X N
inverse D'FT beamformer was employed in [TH92] to make the transformation from
element space to beamspace. Some o the beams thus have significant contributions
from residual terms, and this detracts from the desired Vandermonde structure. The
approach proposed in [TH92] was to employ Root-MUSIC to obtain source azimuth
estimates at each elevation angle under consideration. The imperfect Vandermonde
structure however introduces errors in the estimates. The problem o elevation angle
estimation was not addressed in [TH92].

Friedlitnder [FW92] proposed theinterpolated array schemethat employsmapping
matrices to map the manifold vectors for an arbitrary array onto Vandermonde ULA
type steering vectors. The azimuthal field o view corresponding to each candidate
elevation angle isdivided into sectors, for each o which a different mapping matrix is
designed. Theinterpolating matrix for a given sector is computed as theleast squares
solution of an overdetermined system d equations corresponding to the desired map-
ping. The link between the present work and the interpolated array technique is
provided by Equation 4.26. It reveasthat FH,; ,({) is the desired mapping matrix
that maps the element space UCA manifold a({o, ¢) corresponding to the elevation (o
onto the ULA type manifold vector v(¢). Phase mode analysis thus provides closed-
form expressions for the mapping matrix for each elevation angle, and the mapping

is valid for the entire 360° o azimuth.

4.3 Development of UCA-ESPRIT

The UCA-ESPRIT algorithm represents a significant advance in the area o 2D
arrival angle estimation. It is a closed-form algorithm that provides automatically
paired source azimuth and elevation angle estimates. In contrast, the algorithms for
2D arrival angle estimation to date have required expensive spectral searches [Sch86],
iterative solutions to multi-dimensional optimization problems [CS91, SK93], or a

pairing procedure for associating independently obtained direction cosine estimates
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[2589]. The UCA-ESPRIT algorithm isfundamentally different from ESPRIT in that
it is not based on the displacement invariance array structure required by ESPRIT
[RK89]. The development d UCA-ESPRIT hingesrather on a recursive relationship
between Bessdl functions. Thestepsin the algorithm however, are similar to those o
TLS-ESPRIT [RK89]. In the 1D angle estimation scenario, TLSIESPRIT provides
DOA estimates via the eigenvaluesd a matrix. UCA-ESPRIT provides closed-form
DOA estimates via matrix eigenvalues in the 2D angle estimation scenario: The
eigenvalues have the form g; = sin8; e’%, and thus yield automaticislly paired source
azimuth and elevation angle estimates. Since §; € [0,7/2], the eigenvalues satisfy
l#zi] < 1, and lie within or on the unit circle. It is clear that |u;| = sinég;, and
arg (p;) = ¢; respectively specify the elevation and azimuth angles o the ith source
without ambiguity. Note also that g; = u; T jv;, where u; = sin 8; cos ¢;, and v; =
sin §;sin ¢; are respectively the direction cosines with respect to the x and y axes.
Another similarity between UCA-ESPRIT and ESPRIT is the approximate having
(with respect to the size d the beamspace manifold) in the maximum number o
resolvable sources. UCA-ESPRIT can resolve a maximum o d,,, = M — 1 sources,
roughly half the number resolvable with UCA-RB-MUSIC.

The beamformer FH o Equation 4.12 forms the basis for the development o
UCIA-ESPRIT. The structure d the corresponding beamspace manifold a,(@) o
Equation 4.13 is crucial to the development o the algorithm. We have

[ J_p(¢)emiM? |

J_1(¢)e?
au(0) =Fa(8) = VN | Jy(() [4.28)
Jl(C)ejd’

Im(C)e?M?

Consider extracting three subvectorsd size M, = M'—2 from the beamspace manifold
asfollows. a; = A;au(8), : = —1,0,1, wherethe M, x M’ selection matrices A_;, Ay



and A, pick out the first, middle and last M, elements from a,(8). The property
J_m(€) = (—=1)™Jm({) of Bessel functions leads to the following relationship:

a, = DIa*,, where [4.29]
D = diag{(-)"Z,...,(-1)%(-1)°% (=1)",...,(-)¥}.

The phases (excluding the signs o the values of the Bessel functions) o the vectors
a0, e’%a_; and e~7%a; are the same. The recursive relationship Jm-1(¢) F Jm41(¢) =
(2m/¢) J.(¢) can now be applied to match the magnitude components o the three
vectors. This leads to the critical relationship

Tag = pa_, T p'a [4.30]
= pa_,; T p*Dia*,, where
r = 7r_Xr diag {—(M - 1),...,-1,0,1,...,M -1}, and
p = sinfe’?.

The partitions of the beamspace DOA matrix Ay = [au(8;):--.lau(84)] also satisfy
the above property. Defining A; = A;A,, : = —1,0, weobtain

TAy, = A_,® TDIA* & where [4.31]

® = diag{p,...,ps} =diag{sin 6, &’ ,...,sinf;e’%}.

The beamspace signal subspace matrix S, that spans R{A,} can be obtained viaa
complex-valued EVD o the beamspace covariance matrix Ry, = FIRF,. However,
the relationship of Equation 4.16 alows S, to be expressed in terms of the signa
subspace matrix S of Equation 4.20 that was obtained via a real-valued EVD. We
have Ay == Co WA, = CoWST™!, where T isadxd real-valued non-singular matrix.
Thus

Ay =SyT', and S, = C,WS. [4.32]

The critical relationship (4.31) can now be expressed in terms o the partitions
S: = A;Syu, i = —1,0 o the signal subspace matrix S. Substituting A; = S;T™!
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in Equation 4.31, and using the fact that T is real-valued leads to the following
relationship:

I'Sq = S_,¥1TDis*, & where [4.33]
v = T $T.

Writing in block matrix form yields the following system o equations:

E¥ = TS, where [4.34]
E = [S_,:DIS,], and

'
¥ =

w*

This system of equations is overdetermined when M, > 2d i.e., d < M, and has a
unique solution ¥ or equivalently, . From (4.33) we have @ = T®T"!, and the
eigenvaluesof ¥ arethus u; =sing; e’ i =1,...,d. Theeigenvalues o ¥ thusyield
automatically paired source azimuth and elevation angles: We have 8, = sin™(|u:|)
and ¢; = arg(p;). We point out that the eigenvalues x; can be obtained via a
real-valued EVD in place o the complex-valued EVD o ® = w5t j¥;. We have
U = ¥%4 + ¥} = T-18&*T, a rea-valued matrix. The rea-valued EVD o the
matrix % +®¥3 thus yieldsthe matrix T of eigenvectors, and @ iscomputed according
to ® = TP®T-!. UCA-ESPRIT cannot be employed when d > M, and the system of
Equation 4.34 is underdetermined. Thisis because the system possesses an infinity of
solutions having the block conjugate structure o ¥, as shown in Appendix C.2. The
maximum number of sources that UCA-ESPRIT can resolve is thus dpee = M — 1,
where M is the maximum mode excited.

Under noisy conditions, the matrices E and S, are formed using signal subspace
estimates. The matrix ¥ is then obtained as the least squares (LS) solution to the
overdetermined system

E® =T'S,. [4.35]
Appendix C.1 shows that ¥ has block conjugate structure, as in the noise free case.
The eigenvalues of the upper block ¥ yield the source DOA estimates as described
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earlier. Appendix C.1 also shows that the block conjugate structure leads to the
following simplification in computing the LS solution. It alows the LS solution to
be obtained by solving the system of 2d real equations below rather than solving a

system of 2d complex equations as would otherwise be required.

B+C)r (C-B 1

(B+C)r ( )1 AR = Qr , where [4.36]
(B+C) (B-C)r || ¥ Q:

B = é}—{lé—ly C= gi_leiéil, and Q = Sljlréo [437]

The subscripts R and | in the above equation denote the real and imaginary parts,
respectively.

UCA-ESPRIT is clearly superior to existing 2D angle estimation algorithms with
respect to computational complexity. The significant computations required by UCA-
ESPRIT include a real-valued EVD o the M’ X M’ matrix f{, solution o the sys
tem (4.36) o 2d real equations, and ad x d EVD o the complex-valued matrix T (or
areal-valued EVD of W%t {¥?). Spectral searches, iterative optimization techniques,
and the need to pair independently obtained direction cosine estimates are dispensed
with. The simulations in Section 5.6 however show that the UCA-RB-MUSIC esti-
mates have lower variances than the UCA-ESPRIT estimates. The UCA-ESPRIT
estimates serve as good starting points for iterative Newton searches for peaks in
the UCA-RB-MUSIC spectrum. The performance d UCA-RB-MUSIC can thus be
realized at the additional cost of a Newton iteration if required.

4.3.1 UCA-ESPRIT: Algorithm Summary

1. Obtain the real-valued matrix Svia Steps 1 and 2 in the algorithm summary of
Section 4.2.2. ComputeS‘iu = COWS, where C,, isdefined in Equation 4.15, and
W is specified by either Equation 4.8 or Equation 4.10. Form the submatrices
S: = A;Sy, 1 = —1,0, and construct the matrix E = [S_; : DIS*,].

2. Obtain the least squares solution ¥ = ¥+ ¥, by solving the real-valued
system of equations in (4.36).



3. Compute the eigenvalues g;, : = 1 ..,dd . The eigenvalues j; are the
diagonal entries of the matrix T®T-!, where T-! is the real-valued matrix
whose columns are the eigenvectors o %+ ¥2. The estimatesd the elevation
and azimuth angles of the ith source are §; = sin™(|fi;|) and ¢; = arg (i),
respectively. If direction cosine estimates are desired, we have 4; = Re{i;},

and v; = Im{ﬂ,}

4. DOA estimates d lower variance can be obtained by using the UCA-ESPRIT
estimates from Step 3 as starting pointsfor a Newton search for nearby maxima
in the two-dimensional UCA-RB-MUSIC spectrum of Equation 4.27.

4.4 Mutual Coupling Effects

Mutual coupling effects can be quite significant with UCAs of omnidirectional
elements [Dav83]. In the presence o mutual coupling, a(8) o Equation 3.1 is no
longer an accurate representation of the UCA manifold. The UCA manifold after
incorporating mutual coupling effects is denoted a,,(8). We have a,,(8) = Ya(8),
where Y is the mutual coupling matrix [RW92]. At first glance it; appears that all
the phase mode excitation developments are inapplicable due to the presence o Y.
However it iswell known [Dav83] that exciting a UCA with phase mode m synthesizes
the same phase mode in thefar-field pattern even when mutual coupling effectsapply.
A change in the corresponding mode amplitude in the far-field pattern is the only
effect of mutual coupling. As a consequence d this property, UCA-RB-MUSIC and
UCA-ESPRIT are easily adapted to account for mutual coupling efects. Accounting
for mutual coupling with a UCA turns out to be much simpler than with other array
geometries (see [FW91]).

Before proceeding to discuss the modifications required to adapt the algorithms
to cope with mutual coupling, we provide a proof o the above mentioned property.
The matrix V™ defined in Equation 4.1 excites the UCA with the appropriate phase
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modes, and the relationship to be proved is
VH#a, (0)=VHYa(8) = A, V¥a(8), [4.38)

where A, isadiagonal matrix whoseentriesrepresent the changein far-field mode am-
plitudedueto mutual coupling. Themutual coupling matrix Y iscirculant dueto cir-
cular symmetry of the UCA. Let yT bethefirstrow of Y: wehavey’ = {y0,¥1:Y2,¥1}
for a four element UCA. It is well known [Dav79] that the DFT (Discrete Fourier
Transform) matrix diagonalizes any circulant matrix; the IDFT (Inverse DFT) ma-
trix thus gives the left eigenvectors o any circulant matrix. As mentioned in Sec-
tion 4.1, the M’ rows of the matrix VM are a subset of the N IDFT weight vectors.

We therefore have

VEY = A, VH where [4.39]
Ay = diag{/\_M,...,/\o,...,/\M} [440]

Is the diagonal matrix whose entries are the appropriate subset of eigenvalues of Y .
These equations prove the assertion in (4.38). We aso point out that the eigenvalue
of Y associated with the ith column of the DFT matrix (or theith row of the IDFT
matrix) is just the ith element in the DFT of the sequencey.

From Equation 4.38 it isevident that the beamformers
Fl, = AJ'FY, FE = WHFE | and FH | = ARIFH [4.41]

respectively synthesize the beamspace manifolds a (O),a (O), and a (8) of Sec-
tion 4.1. It is clear that both UCA-RB-MUSIC and UCA-ESPRIT can be applied
in conjunction with the above beamformers. However, there are slight differencesin
the implementation of the algorithmsas FZ | isnot an orthogonal beamformer. With
a being the power o the spatially white element space noise, the beamspace noise
covariance matrix is Ry = oF Frm = oWH|A,|7*W, a rea-valued, Toeplitz ma-
trix. Since the beamspace noise is non-white, a generalized eigenvalue decomposition

(GEVD) is required to obtain signal eigenvector estimates. The steps involved in
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adapting UCA-RB-MUSIC and UCA-ESPRIT to cope with mutual coupling effects
are summarized below. The mutual coupling matrix Y can be obtained experimen-
tally or viatheoretical analysis.

4.4.1 Incorporation of Mutual Coupling Effects: Algorithm Summary

1 Let A denote the ith bin of the DFT o the vector yT that specifies the first
row of the mutual coupling matrix Y. Using the fact that A_; = Ax_;, form
the matrix A, =diag{A-ar,..-5A0,---,Am}-

2. Form the sample beamspace covariance matrix Ry = FZ RFyp,, Where FEL, =
WHAZ'FH. The beamformer F¥ is defined in Equation 4.2.

3. Perform the rea-valued GEVD o R = Re{Ry} in the metricd WH|A,|"?W.
Obtain an estimate d o the number of sources, and form the matrices § =
[81,-..,85) and G = [g4,,,.*-,&m] by grouping the d "largest" and M’ - d
“smallest” generalized eigenvectors.

4. Usethe matrices S and G from the previous step in the algorithm summaries o
Sections 4.2.2 and 4.3.1 for UCA-RB-MUSIC and UCA-ESPRIT, respectively.

45 Extensionsfor Directional Elements

The developments to this point assumed that the UCA consisted of omnidirec-
tional elements. We now consider the case where the UCA employs directional ele-
ments disposed such that circular symmetry isretained. Rahim et al. [RD82] obtained
expressions for the far-field patterns o UCAs of directional elements under phase
mode excitation: They showed that the far-field pattern still has the same azimuthal
variation '™ as the excitation function. However, the amplitude d the phase mode
in the far-field pattern is a sum o Bessdl functions rather than just J,(¢). One d
the advantages of using directional elementsis that attractive azimuthal directional

patterns can be synthesized over wide frequency ranges (over an octave). Consider
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azimuthal pattern synthesis in the array plane (8 = 90°): With omnidirectional ele-
ments, the mode amplitude J,,(2#xr/)) undergoes rapid variations and passes through
nullsas X is varied. Thisis not suitable for pattern synthesis, as non-zero mode am-
plitudes are required. With directional elements, the mode amplitude is a sum o
Bessel functions, and is observed to be stable over wide frequency ranges. Another
advantage o using directional elements is that mutual coupling effects (specifically
diametrical coupling across the array) are mitigated in arrays o small radius.

Let g(8, ¢) represent the directional response d an individual antenna element.

The UCA o directional elementsis characterized by the element space manifold
a,(0) = Gga(8), where [4.42]
G0 = dia’g{g(o’4—70),---,9(0,¢—7N—1)},

and v; = 2#:/N is the angular position of the ith element. First consider the case
where the element pattern isonly elevation dependent (omnidirectional in azimuth).
With the element pattern denoted g(@), the corresponding UCA manifold is a;(8) =
9(0)a(8), a scalar multiple o the omnidirectional UCA manifold. The element space
data vector thus has the representation x(t) = As’(t)+n(t), wheres'(t) = Gygs(t), and
Gy =diag{g(61),...,9(04)}. It isevident that UCA-RB-MUSIC and UCA-ESPRIT
are both applicable in this scenario — the only change is that the source covariance
matrix P is replaced by Py = G,PGE.

Now consider the general case where the element pattern is a function o both
azimuth and elevation. Let g(¢;8) = T4__, cs(k)e’*® be the Fourier series expansion
for the azimuthal variation of the element pattern at the elevation 8. The far-field
pattern (ignoring residual terms) resulting from excitation of the UCA o directional
elements with phase mode m is [RD82]

f2(0) = wla,(0) = A,.(0)e’™, where [4.43]
P

An(8) = kz co(k)j™ *Jm_r(kor SN8).
==p

This equation is similar to Equation 3.12 for the omnidirectional element case. The

only differenceis that the mode amplitude A,,(8) involvesa sum o Bessel functions,
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and is not just J,,(¢{). The mode amplitudes are easily shown to satisfy A_,,(6) =
A,.(0). An element pattern suggested in [RD82] is g(,¢) = 1+ snfcos¢: The
mode amplitudes corresponding to this pattern are A,,(6) = j™[Im(<)- jsin8J. ({)],
where ( = korSine. From Equation 4.43, it is evident that the beamformer VH o
Equation 4.1 synthesizes the beamspace manifold

a;(0) = V¥Ha,(0)=J40)v(¢), where [4.44]
34(0) = diag {Au(0), ..., A1(8), Ao(6), Ar(6), ..., Are(8)}.

The azimuthal dependence o the beamspace manifold a,(8) is through the vector
v($), as was the case with UCA-RB-MUSIC. The beamspace MUSIC algorithm (em-
ploying the beamformer V) for the UCA o directional elementsthus possesses most
o thefeatures & UCA-RB-MUSIC. Thefeatures that are lost are the ability to per-
form FB averaging, and to compute signa eigenvectorsvia a rea-valued EVD. This
Is because the beamspace manifold a,(@) is not centro-Hermitian. UCA-ESPRIT
cannot be employed when the elements have directional patterns that are functions
d both azimuth and elevation. This is because the components o J4(8) are sums o
Bessel functions, and the recursive Bessel function relationship cannot be employed
to match the magnitude components d the subvectors d a4 (8).
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5. PERFORMANCE ANALYSIS

Thestatistical performanced element space MUSIC, UCA-RB-MUSIC, and UCA-
ESPRIT isinvestigated in this chapter. Asymptotic expressionsfor the variances and
covariances d the element space MUSIC estimators for 2D angle estimation are pre-
sented in Section 5.1. Such performance analysis results are availablefor the 1D angle
estimation case [SN89]. However the present work appears to be the first time such
results have been made availablefor the cased 2D angle estimation. Section 5.2 con-
siders the performance o the UCA-RB-MUSIC algorithm. With UCA-RB-MUSIC,
signal subspace estimates are obtained via rea-valued EVDs, and the analysis differs
from that d element space MUSIC in this respect. The fina results, however, are
similar in form to those for element space MUSIC. The statistical performance o
UCA-ESPRIT is investigated in Section 5.3. The analysis is similar to that o the
ESPRIT agorithm for 1D angle estimation [RH89a]. Section 5.4 presents results on
the Cramer-Rao bound (CRB) for the 2D angle estimation problem. Finally, the
performance d the algorithms for the one and two sources cases is investigated in
some detail in Section 5.5. It has been shown [SN91] that beamspace MUSIC estima-
tors cannot perform better than the corresponding element space MUSIC estimators.
However, FB averaging is possible in beamspace and not possible in element space
when the number d array elements N is odd. UCA-RB-MUSIC can thus outper-
form element space MUSIC when N is odd. The theoretical performance curves o
Section 5.5 demonstrate this property.

Before beginning the analysis, we restate some d the assumptions made, and in-
troduce some notation. The number d incident signals d is assumed to be known.
The signals s(t) and noises n(t) are assumed to be stationary, zero mean, uncorre-

lated random processes. The noise process n(t) is assumed to be complex Gaussian



and spatially white with covariance matrix ¢I. The signals are assumed to be non-
coherent, and the source covariance matrix P is thus positive definite. T'he number
d snapshots o array data is K. The dimension d the element space UCA manifold
is N, and the dimension d the real-valued beamspace manifold is M'. UCA-RB-
MUSIC works with subspace estimates obtained via an EVD o the real matrix R
of Equation 4.19. The eigenvaluesd R in descending order are {)\;}M,. The real,
orthonormal matrices S and G that respectively span the beamspace signal and noise
subspaces are defined in Equations 4.20 and 4.21. The same symbol isused to denote
similar quantities in element space and beamspace; the element space quantities are
distinguished by underbars e.g., S and S respectively span the beamspace and ele-
ment space signal subspaces. Hats are used to denote estimated values d quantities
e.g., G. In this chapter, subscripts are used to denote partial derivatives e.g., b, and
b¢s respectively represent thefirst partial derivative of b with respect to ¢, and the
mixed partial derivative with respect to ( and ¢.

5.1 Performance of MUSIC for 2D Angle Estimation

Theorem 5.1.1 gives asymptotic (large number of snapshots K) expressions for
the variances and covariances d the element space MUSIC estimator for 2D angle
estimation. The results o the theorem hold for arbitrary array configurations. The
following lemma gives asymptotic expressions for the errors in the element space
MUSIC arrival angle estimates. The proof d the lemma is based on a first order
Taylor seriesexpansion o the MUSIC null spectrum about the true parameter values,
and is similar to the proof o Lemmab.2.1 in Section 52. Theonly differenceis that
the manifold vectors and subspace matrices are complex-valued in element space,

whereas they are real-valued in beamspace.

Lemmab5.1.1 The asymptotic expression for the element space MUSIC estimation

error vector, e; = (£ — (i), (2 — ¢:)]7, for sourcei is

&= {E‘IB}ozoi , where [5.1]
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is a symmetric, positive definite matrix with determinant A. The vector

o —Re{a"GG " a,} } _ Kg
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is a random vector.

Although the MUSIC estimation errorsare in termsd the matrix G that spans the
estimated noise subspace, knowledge o the statistics o the signal space eigenvectors
is sufficient to obtain expressions for the variances o the DOA estimators. The
following lemma gives the wel known result [SN89] on the statistics of the signa
space eigenvectors of the element space sample covariance matrix R that is complex

Wishart distributed with K degrees of freedom.

Lemmab5.1.2 The element space signal eigenvector estimation errors, (§; — s;), are
asymptotically jointly Gaussian distributed with zero means. The error covariance

matrices are given by

& A H Ai d A-,- H N g H
F [(§,‘ - §i)(.§j - §j) ] = R ; m 8,8, + _zd;H m; grgr 5,‘_,’ [5.2]
r#i -

The following theorem gives expressions for the variances and covariance o the
element space MUSIC arrival angle estimators 41. and 2 corresponding to the ith
source. The proof o the theorem employs Lemmas 5.1.1 and 5.1.2, and is similar to

tht: proof o Theorem 5.2.1 in the Section 5.2.

Theorem 5.1.1 The element space MUSIC estimation error vector €; — [(f, -

G), (éi — ¢:))T for theith sourceis asymptotically zero mean with covariance matrix

b ¢

Var Cov(g,éi) op b ¢ 5.3]
c a 0-0:

Cov () = o i = —=
Cov (Qi’ Q;) Var (.?1) 2K4




where a, b,c, and A are as defined in Lemma5.1.1. Two expressions for the factor p
follow. The latter expression is useful for analytical studies d performance.

§6) = 31”6 (5.4

r=1

i

_ [P—I]H +o [P—l (AHA) -1 P_l]
5.2 Performance Analysis of UCA-RB-MUSIC

Theorem 5.2.1 gives asymptotic (large number o snapshots K) expressions for
the variances and covariances o the UCA-RB-MUSIC estimators. To avoid double
subscripts, the symbols b(8) = a,(0) and B = A, are used to respectively repre-
sent the beamspace manifold vector and the beamspace DOA matrix. The following
lemma gives asymptotic expressions for the errors in the UCA-RB-MUSIC arrival

angle estimates.

Lemma5.2.1 The asymptotic expression for the UCA-RB-MUSIC estimation error

vector, e; = (i — &), (i — ¢:)]7, for source is
e; = {E_lp}g_g. , where [5.5]
bIGG™b; bIGGTb,

a ¢
bIGGTb, bIGGTb, | [ ¢ b ]
is a symmetric, positive definite matrix with determinant A. The vector

7]

Proof: The UCA-RB-MUSIC null spectrum is V(8) = b7(8)GGTb(8). The null

—bTGGThb,
~bTGGThb,

is a random vector.

spectrum has a loca minimum at 6; = ({},q@.-) and we thus have I/((é;) = 0, and
V4(6;) = 0. Now, 8; is a consistent estimator of 8;, and a first order Taylor series

expansion yields the following:

0 = Vi(0:) = Vp(8:) + Vee(8:) (& — G) + Veo(8:)(8i — ¢4)
0 = Vi(8:) m Vy(8:) + Vic(8:)(G — G) + Vips (8:)(i — &)




Putting these equations into matrix form, we obtain
t@wox@wa][@—a)]:_ (6)
Vac(8:) Vis(8:) | | (6 — ) (6

Theexpansionsfor the derivatives occurring in this equation are as given below. Only

. [5.6]

Ve
Vs

terms which result in contributions o order O(1/N) in Equation 5.6 are retained.

V;(6;) = 2b"(8;)GGTb¢(6;)

Vy(8;) = 2bT(8,)GGTby(8;)

Vec(6:) = 2b(8,)GGb(6:) + 2b7(6;)GG b (65)
~ 2b7(6;)GG b(6;)

Vss(8:) = 2b3(8,)GGTby(8;) + 2bT(8:)GGTbyy(6:)

Q

2b3 (8;)GGTby(6;)
Vis(6:)) = 2b7(8;)GGTb(8;) + 2bT(8:)GGTb4(8:) = Vie(8:)

Substituting these expressions back into Equation 5.6 and dropping the common
factor of two leads to the desired result Ee; = p, where E, €], and p are as defined
in the lemma. Positive definitiveness and hence non-singularity o E follow from the
Cauchy-Schwarz inequality.

UCA-RB-MUSIC works with subspace estimates obtained from the real matrix
R = Re{Ry} that isderived from a FB averaged covariance matrix. The statisticsof
the signal space eigenvectorsd R are required for the anaysis & UCA-RB-MUSIC.

The following lemma drawn from [ZK92] gives these statistics.

Lemma5.2.2 Thereal beamspace signal eigenvector estimation errors, (8; —s;), are

asymptotically (large K) zero mean with covariance matrices given by
E[(8: —s)(3 ~s;)7] =
r
1

7 |2

re=
r

R,

Lrej ST +8y 5o — MO 588 | [T
1 (Ai - ’\T)(AJ - ’\3) r=d+1 2(/\, —7)
2

[

..
o oy
Ha



where
1
Frsji = 5 {/\i/\a5ij5ra T AXj6i,6, T W?(s,s? + sjsf)w,-} , and w; = Im {Ry }s;.

The following theorem gives expressions for the variances and covariance d the
UCA-RB-MUSIC arrival angle estimators ¢; and ¢; corresponding to the :th source.
Theresultsare similar in form to those o Theorem 5.1.1 corresponding to the element
space case. However, due to the inherent FB average, the results depend only on the
real part Pr o the source covariance matrix P. The decorrelating effect of the FB
average alows UCA-RB-MUSIC to outperform element space MUSIC in correlated

source scenarios when N is odd.

Theorem 5.2.1 The UCA-RB-MUSIC estimation error vector e; = [((; - ¢, (& —

#:)]7 for the ith source is asymptotically zero mean with covariance matrix

~

CO'U (e,') = VGT'A((:'Z COU (("\i”\(bi) o7 b C [58]
Cov (i, ¢1) g;%g = 2KA ¢ a |6-6;

where a, b, ¢, and A are as defined in Lemma 5.2.1. Two expressionsfor the factor p
follow. In the latter expression, which is useful for analytical studies d performance,
PR = Re{P}.

d A
p(0;) = Zm|bT(ai)Sr|2

r=1

PR, +o [P,;l (B”B)” P,;l]

it

Proof: The MUSIC estimation error vector as given by Lemma5.2.1 is

e oY

¢ — b
We proceed to derivethe expression for the variance d the estimator (, The remain-

_ 1
={E"'p}g_0, = A

ing results can be obtained in similar fashion. The above equation yields

B

—, where ) = be — cf. .
A,Were C [5.9]

Gi—G=




As shown in [SN89], we have bT(8,)GGT ~ —b7(8,)SSTGGT. This result leads
to the following expressions for the random quantities e and f in terms of the esti-
mated signal space eigenvectors, whose statistics are available. T'he dependence of

the expressions on 8; is dropped for conciseness.

e = —bTGGTb, ~ b'SSTGG b, = b]GGTSSb
f = —bTGGTby ~ bTSSTGGTby = bTGGTSSTb

Substituting in Equation 5.9, and using the definitions in Lemma 5.2.1 leads to the

following expression for the term B:
¥ =q'z, [5.10]

where g = (bb; — cby) is a deterministic quantity, and z = GGTSSTb is a random

vector. The vector z will shortly be shown to have the following stististics:

E(z) = 0, and [5.11]

Cov(z) = E (zzT) = 2K GGT

where p(8;) is defined in the theorem statement. Equation 5.10 now- yields E (b')= 0,
and Var (0')= 22 qTGGTq = 222 Thefinal equality results because qTGG"q =
bA, a relationship which is easily verified. Employing these results in Equation 5.9
completes the proof: We obtain E({; — ¢;) = 0, and Var (§;) = 3% {PA—"}G:&. The
proof for the expression of p(8;) in terms of P = Re{ P) follows a similar proof in
[SN89].

It now remainsto verify the expressionsfor the statistics o the vector z. We have

d
z=GGTSS8™b = Z GGT5,(sib) = 3 (bTst)GGT (8x — s¢). [5.12]
k=1 k=1

We have E (8¢ — s¢) = 0 from Lemma5.2.2, and thus E (z)= 0 as claimed. Now,
d d

Cov (z) = E [227] = kz_: ;(stk)(stl)GGTE (8¢ — s1)(3: — s)"| GG,




Using the result & Lemmab5.2.2 on the signal eigenvector statistics, we obtain

C - S (b7s, ) (bTs) 0O S o o
ov(z) = 2.2 (b'si)( Sl)m > &8

r=d+1

g ’ Ak T 2 T

as claimed in Equation 5.11.
5.3 Performance Analysis of UCA-ESPRIT

Techniques similar to those used in [RH89a] to analyze the performance o the
ESPRIT algorithm for 1D angle estimation are employed in the following analysis o
UCA-ESPRIT [MZ93b]. As described in Section 4.3, the eigenvaluesd the matrix
¥ have the form 2; = siné; /% = 4; T j&;, and provide automatically paired source
DOA estimates. Theorem 5.3.1 gives asymptotic expressionsfor the variances and co-
variance o the UCA-ESPRIT direction cosineestimators il; and 6;. The theorem aso
gives approximate expressions (accurate at moderate to high SNRs) for the variances
of the estimators ¢/ = siné; and ¢.

The asymptotic variance expressions in Theorem 5.3.1 involve the eigenvectors o
¥. Equation 4.33 gives the spectral decomposition & ¥: We have ¥ = T-!®T,
where T is red-valued. The left and right eigenvectors d ¥ are thus real va-
ued, and are denoted qf and X;, respectively. The UCA-ESPRIT algorithm in-
corporates beamspace signal subspace computation via a rea-valued EVD: We have
Su = Co WS, where S,; spans the UCA-ESPRIT signal subspace, and S is obtained
via the EVD d the real-valued matrix R o Equation 4.19. The analysis & UCA-
ESPRIT thus requires the statistics d the signal eigenvector estimates s; that form
the columns o S. Lemma5.2.2 in Section 5.2 gives these statistics.
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A superscript e is used to denote the error in an estimate in the following develop-
mentse.g., Sf = §; — S; istheerror in the ith signal eigenvector estimate. The super-
script T is used to denote the Moore-Penrose pseudo-inverse e.g., E+ = (E#E)-1E¥#

is the pseudo-inverse o E.

Theorem 5.3.1 The UCA-ESPRIT direction cosine estimators 4; iand 9; are asymp-
totically unbiased. Asymptotic (large K) expressionsfor the variances and covariance

o these estimators are given below:

Var (4;) = a}—R H; a;r [5.13]
Var (f),‘) = aﬂ- H,- o J)
Cov (ﬂi, f),) = a}—R H; ais

The matrices H; and the vectors &; = a;r + jaiy are defined as follows:

d
H,’ = Z XijXik COU(S;, SZ) [514]

J

of = qfE* [[A¢CoW — s A_1CoW — uDIA_ CoW?|,

1) )

d

—
E
Il

—

where Ett = [I,,Eodxd] E*. The matrix E = [S_l EDiS:l] is formed using the true
signal space eigenvectors. The following approximate expressions for the asymptotic

variances of the estimators (! = sind; and ¢; are accurate at moderate to high SNRs.

Var ((f) ™ Var qiycos® ¢ + Var (i) sin? ¢; + Cov (i, #1) sin 24; [5.15]

Var (¢;) = '((—‘:})2‘ [Var (9:) cos? @i + Var (4;) sin? ¢; — Cov (i, ;) sin 2¢,-] .[5.16]

Proof: To a first order approximation, the UCA-ESPRIT eigenvalue error due to
errors in subspace estimatesis

= q ;. [5.17)

The least squares solution to the overdetermined system E® =TS, o Equation 4.35

yields the estimate ¥ = [#T: ¥H]T. This system can be rewritten as (E+ E)(¥ T

¥¢) = I'(So T S¢). Using the fact that E¥ = I'S,, and retaining only first order
terms, we obtain E¥® = I'S§ — E°¥. Employing the least squares solution yields




the equation ¥* = E* (I'S§ — E°¥). This solution is adequate in that it yields
expressions for DOA estimator variance that are accurate to o(K~') [RH89a]. Now
Pe = [Idiodxd _\l’_e and thus

¥° = E*' IS — E°¥], [5.18]

where Et? = [Id : ded] Et. Wehave E¢ = [Se_l fDiS‘fl] , where S¢ = A;C,WS®, ¢ =

—1,0. Substituting in Equation 5.18 leads to the following expression:
¥° = E** [[ACoWS® — A_;CoWS W — DIA_;CoW*S | . [5.19]

Substituting (5.19) in (5.17) and using thefact that x; is a real-valued eigenvector of

¥, we obtain the equation

/1':'3 = uf +jvf = aiTSeX,', [520]

where af = ol t ja¥ = qFE* [[ACoW — i:A_,CoW — u!DIA_,CoW*| is
a complex-valued vector. Both S® = [sii Esg] and X; are real-valued. From

Equation 5.20, we have
u:? = a?}zsexi, and vf = aiTISexi. [5.21]

It is now evident from Lemma5.2.2that E (uf) = E (vf) = 0. The UCA-ESPRIT di-
rection cosine estimates are thus asymptotically unbiased as claimed. Equations 5.13
and 5.14 that define the variances of the direction cosine estimatorsfollow on straight-
forward application of the results of Lemmab5.2.2in Equation 5.21.

It now remainsto verify Equations 5.15 and 5.16 that respectively give asymptotic
expressions for the variances of the estimators (] and ¢;. These expressions follow
from the geometry depicted in Figure 5.1. The subscript i that denotes the ith
source is dropped for notational expedience. Let the UCA-ESPRIT eigenvalue error
be u¢ = |u°|e’?. The errorsin the direction cosine estimates are thus u® = || cos g,
and v° = |u°|sin 8. From Figure 5.1 we see that I, = |u¢| cos(8 — 4) = (. We thus

obtain ¢"* & u®cos¢ T vesin4. This leads to the expression in (5.15) as E (¢'°) = 0,




fpi=1

u=Re {p}

Figure5.1 UCA-ESPRIT eigenvalueerror.

and Var (¢') = Var (¢**). Figure5.1 also shows that I, = |¢¢|sin(8 - ¢) ~ ('¢°. Thus
¢ ~ %[vecosqs — u®sin¢], and the expression in (5.16) follows as E(¢¢) = 0, and
Var (¢) = Var (¢°). The approximations made in obtaining the above expressions are
accurate provided theeigenvalueerror u€ issmall; theexpressionsare thus accurate for
moderate to high SNRs. Notethat Var (qAS) x |/(sin?8): Thevariance d the azimuth
estimator thus increases as the elevation angle 8 decreases. Thisisan intuitiveresult;
we know that azimuth is not a good descriptor o source DOA when 8 is small (in

fact all azimuth angles are equivalent when 8 = 0°).
5.4 The Cramer-Rao Bound

It is instructive to compare the performance o the element space MUSIC, UCA-
RB-MUSIC, and UCA-ESPRIT estimators with the ultimate performance dictated by
the Cramer-Rao bound (CRB). Thefollowinglemmagivesthe CRB on the covariance
matrix of unbiased estimators d the parameter vector ® = [(1,...,(4, #1,...,Pq]-

The CRB expression below is based on a random signal model, and is known as the



unconditional, or stochastic CRB. The result is a generalization d a similar result
in [SN90] for the 1D angle estimation problem. The symbol ® is used to clenote the

Hadamard or element-wise matrix product.

Lemma 5.4.1 The stochastic CRB for any unbiased estimator of @ is

CRB(®) = [Re{ Ho PT}] where [5.22]
= _
P, = with P =PA"RT AP,
P P’
H — D¥ [1 A(AA)” ]D and
D = [a;(01),.--,8;(04),24(01),.--,24(04)]

We point out that the expression (valid when K islarge) for the conditional., or deter-
ministic CRB can be obtained by making the substitution P = P in the lemma. Due
to the simpler expression for P+, the deterministic CRB isemployed in the theoretical
performance study in Section 5.5. The study is meaningful as the deterministic CRB
is a tighter bound than the stochastic CRB. The stochastic CRB is however used as
the benchmark for comparison in the simulations of Section 5.6. This is because our

developments have assumed a random signal model.
5.5 Study of Theoretical Performancefor the One and Two Source Cases

This section investigates the theoretical performanced the element space MUSIC,
UCA-RB-MUSIC, and UCA-ESPRIT estimators for the one and two source cases.
The behavior o the deterministic CRB is aso studied. The study focuses on the
behavior of the direction cosine estimators « and 6 rather than the behavior of ( and
J). Thisis because the variance d the azimuth estimator ¢ increases as 6 decreases.
Further, all values o ¢ are equivalent when the elevation 8 = 0°. There is no such
ambiguity in the direction cosine space; we have u = v = 0. The vector o direc-
tion cosines, 3 = (u,v) is thus used to represent the source DOAs. The: results of

Theorems 5.1.1 and 5.2.1 are easily modified to give the variances d the direction
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cosine estimators. All that is required is to replace the subscripts ¢ and ¢ denoting
partial derivatives by the subscripts » and v, respectively. The same substitution in
Lemma 5.4.1 gives the CRB expressions for the direction cosine estimators.

The main results of this theoretical performance study are as follows. (a) The
deterministic CRB is independent o the source DOA in the single source scenario.
For the two source case, the CRB depends only on the distance = between the two
sourcelocations in the uv plane, and their relativeorientation as specified by the angle
v o thelinejoining these locations. (b) Closed-form expressionsfor the element space
MUSIC estimator variances are obtained for both the one and two source cases. The
element space MUSIC estimator variances exhibit the same behavior as the CRB for
these cases. (c)Itisshown viaastudy d theoretical performance curvesthat the DOA
dependence d the UCA-RB-MUSIC estimator variances closaly follows the behavior
o the CRB and element space MUSIC. The performance curves also demonstrate
that UCA-RB-MUSIC can outperform element space MUSIC in correlated source
scenarios when N is odd. (d) The UCA-ESPRIT estimator variances for the single
source case are independent o azimuth at low elevation angles (sinf < 0.6). At

higher elevation angles, the estimator variances become azimuth dependent.
5.5.1 The Deterministic CRB

Consider the case o a single source of power p = E|s(n)|? incident on the UCA
from the direction 8 = (u,v). Appendix D.2 shows that the deterministic CRB for
unbiased estimators d «w and v is

CRB() = CRB(Y) = k011~)2 el (5.23]

where p/o is the signal to noise ratio. The CRBs for « and v are identical, and are

independent o the arrival angle. The UCA thus favors al arrival angles equally.
Not all array configurations have this desirable property; the rectangular array, for
example, does not.

Let 3, and B3, specify the source DOAs for the two source case. Let the difference

vector 8, = B, — B, have the representation 8, = e’ in polar coordinates. T isthe
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distance between the two sources in theuv plane, and v istheangle d thelinejoining
the two sources. Appendix D.2 shows that the dependence o the CRBs on the source
DOAs is only through the vector 8,, or equivaently, through the parameters 7 and
v. Thus the CRBs do not depend on the absolute positions o the sources but only

on their positions relative to each other.

5.5.2 Performance of Element Space MUSIC

The variances d the element space MUSIC estimators for the single source case
are shown in Appendix D.l to be

Var (4) = Var (5) = T LV

= KN (kr)2(p]o) 15-24]

The v and v estimator variances are equal and independent d the source DOA.
Comparison with Equation 5.23 shows that the element space MUSIC estimators are
asymptotically efficient in the single source scenario.

Theorem 5.1.1 givesexpressions for the element space MUSIC estimator variances.
We have Var (%;) = (Uﬂb/2Ké)|g=g,., and Var (it,) = (agg/ZKé)Iﬂ#;i. Simplified
expressions for the parameters a', b and ¢ can be obtained for the two source case;

Appendix D.l outlines the derivation o the following results:

a() = a(B) = (ko) [ - a{Na(horr) cos Y] 529

BB =8B ~ (hor)? |5~ alNA(kerr)sin )]
o(By) =c(B;) ~ —(kor)’q{NJi(korT)}*sinvcosv
e(B) = f(r,P)

Q

In the above equations, q = W The final equation above signifies that the
quantity a is a function of 7 and the source covariance matrix P. Equation 5.25
shows that a, b, ¢, and a depend on the source DOAs only through the parameters T
and v. Thus the element space MUSIC estimator variances depend only on 7 and

v: this behavior is similar to that o the CRBs. Equation 5.25 aso shows that the

'The scalar g is distinct from the UCA manifold vector a
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parameters a, b, and ¢ are the same for the two sources. The parameter p is adso
the same for both sources, provided they are equipowered. Thus with equipowered
sources, the u and v estimator variances are the samefor both sources.

It can be verified that the variances o the u estimates are highest when the angle
v =0, i.e., when the sources have different u coordinates but the same v coordinate.
Similarly, the variances d the v estimates are highest when v = x/2. Now, ¢ = 0
when v = 0 or »/2 and hence A = agb. The estimator variances corresponding to

op

these orientations are thus given by Var (2) = 5=, and Var (¢) =

op
2Kb"

values that ¢ and b take are identical and equal to (kor)?[§ — qN2J}(korT)]. The

The minimum

worst case estimator variances for any two source scenario are thus

o o ap(Bs) [5.26]
max (Vard:) = max (Var ) = o SN — N T (kor ]

The expression above depends only on the distance 7, and the signd powers and
correlations as specified by the source covariance matrix P.

Figure 5.2 depicts the theoretical performancecurves (dashed lines) of theelement
space MUSIC estimators in a two source scenario. The scenario is identical to that
o Simulation Example 1 in Section 5.6: thelocation o thefirst source is kept fixed,
and theangle v is changed by shifting the position o the second source. The distance
between the sources is maintained at 7 = 0.25, corresponding to a spacing d about
two thirds of the main-lobe width o the cophasal beampattern. The graphs depict
the estimator performance as a function d the angle » between the sources. As
expected, the highest u and v estimator variances occur at v = 0, and v = /2,
respectively. The estimator variances are seen to be identical for the two sources.
Thisisin accord with expectations as the sources are equipowered (SNR=7dB). The
ultimate performance dictated by the CRB isalso sketched (dotted lines) in thefigure.
Note that the element space MUSIC, and CRB performance curves are independent

o thelocation of thefirst source.
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Figure 5.2 Theoretical performance d element space MUSIC and UCA-RB-MUSIC
as afunction o v.




5.5.3 Performance of UCA-RB-MUSIC

Theorem 5.2.1 gives expressionsfor the UCA-RB-MUSIC estimator variances. We
have Var (i) = (0pb/2K A)|g_g,, and Var (4;) = (0pa/2KA)|g_g,. The beamspace
manifold ar(@) of Equation 4.7 (denoted b(8) in this chapter) has complex struc-
ture. Thus, unlike with element space MUSIC, simple expressions for the parameters
a,b, and c cannot be obtained. The beamformer F that makes the transformation
to beamspace is orthogonal and one might thus expect the behavior o the UCA-
RB-MUSIC estimates to be similar to that o the element space MUSIC estimates.
Examination o theoretical performance curves revealsthat thisisindeed true. Fig-
ure 5.2 depicts the theoretical performance d the UCA-RB-MUSIC estimators (solid
lines) for the same two source scenario. The graphs shown are a superposition d the
performance curves corresponding to four different locations o the first source. These
locationsare 3 = (u,v) = (0,0),(0.15,0.15), (—0.3,0.3) and (0.45,—0.45). Thecurves
are almost identical, confirming that the the dependence o the UCA-RB-MUSIC es-
timator variances on the source DOAs isfor the most part through the parameters =
and v.

The graphs in Figure 5.2 aso show that UCA-RB-MUSIC outperforms element
space MUSIC in the source scenario under consideration. This is due to the decor-
relating effect o the FB average inherent in UCA-RB-MUSIC. FB averaging is not
possible in element space when N is odd, and UCA-RB-MUSIC thus outperforms
element space MUSIC.

55.4 Performance of UCA-ESPRIT

Theorem 5.3.1 gives expressions for the variances o the UCA-ESPRIT direction
cosine estimates u; and ;. These expressions are quite complicated and cannot be
simplified even for the single source case. Theoretical performance curves are used
to investigate the performance of UCA-ESPRIT for the single source case with an
SNR o 5dB. The standard deviations d the direction cosine estimates as a function
o source azimuth angle are plotted in Figure 5.3 for severa different elevation angles
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Figure 5.3 Theoretical performanced UCA-ESPRIT for the single source case.
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(¢’ = sinf = 0.5,0.7.0.9 and 1.0). The deterministic CRB (which is independent
d source location) is also plotted. The theoretical performance curves show that
the estimator performance virtually meets the CRB for ¢’ < 0.5. The estimator
performance degrades as (' increases from 0.5 to 1.0. The performance also becomes
azimuth dependent at these higher elevation angles. The worst performance d the u
estimate is at an azimuth o 0° (where v performs best), and the worst performance
d the v estimateis at an azimuth o 90" (where u performs best). The behavior d
Cov(u, V) as given by Equation 5.13 is responsible for the shape d the graphs. The
correlation coefficent between the u and v estimatesis observed to be close to zerofor
¢’ <0.5. Themagnituded the correlation coefficient increases with increasing ¢’, and
also becomes azimuth dependent; the correlation coefficient has smallest magnitude
at azimuths o 0° and 90°. The u and v estimates are projections d the eigenvalue
¢ on the real and imaginary axes, respectively. This projection together with the
behavior of the correlation coefficient is responsible for the curvature of the graphs
at higher elevations. Although the variances o the u and v estimates are azimuth
dependent, one would expect the variances d the {’ and ¢ estimatesto be independent
o azimuth. Plotsd the expressions o Equations 5.15 and 5.16 show that the ¢’ and
¢ estimator variances are independent d azimuth, but are elevation dependent.

For comparison between UCA-RB-MUSIC and UCA-ESPRIT, we note that the
UCA-RB-MUSIC u« and v estimator variances are virtually DOA independent for the
single source case. Further, these variances are very close to the CRB in the above
single source scenario. UCA-RB-MUSIC thus performs better than UCA-ESPRIT,
with the difference in performance being more pronounced at higher ¢’. The UCA-
ESPRIT estimates can be used as starting points for Newton searches for peaks in
the UCA-RB-MUSIC spectrum if estimates of better quality are required.

5.6 Results of Computer Simulations

This section documentsthe resultsd three computer simulations that explorethe
performance (estimator standard deviation) o UCA-RB-MUSIC and UCA-ESPRIT
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in a two source scenario. Simulation examples 1,2, and 3 respectively investigate
the performance o the algorithms as a function d the angle » between the sources,
the common source SNR, and the phase o the correlation coefficient between the
signals. The computer simulations show that the experimental results closely match
the theoretical performance predictions, thus validating the performance analysis re-
sults that have been obtained. The array and source descriptions for the simulations
are as follows: The radius o the UCA isr = A, and the maximum mode excited is
M = 6 (thisexample was considered in Section 3.3.1). The number of array elements
is chosen to be N = 19; Table 3.1 shows that the maximum residual contribution is
negligible with these parameters. The source separation is 7 = 0.25 in all the simu-
lations. This separation is about two-thirds o the main-lobe width of the cophasal
UCA beam pattern that closely followsthe Bessdl function Jo [CZ69]. The correlation
between the signals is fairly high (magnitude of correlation coefficient = 0.8) in all
the simulations. A moderate number o snapshots (K = 64) is employed. The the-
oretical asymptotic performance expressions are expected to be quite accurate with
64 snapshots. The simulations assume perfect detection of the number of sources.
The SNRs quoted in the simulations are per source per array element. All the simu-
lations feature equipowered sources; this implies identical values of' the CRB for the
two sources (also, the UCA-RB-MUSIC estimator variances for the first source will

be very similar to those for the second source).

5.6.1 Simulation Example 1

This simulation investigates the estimator performance as a function o the angle
v o the line joining the two sources in the uv plane. The first source location is
fixed at B, = (u;,n) = (0.3,0.6), corresponding to an elevation §; = 42.1° and
an azimuth ¢, = 634. The angle v is varied from 0° to 180° by rotating the
second source about the first in the uv plane (the distance 7 is set at 0.25). Both
sources had SNRs o 7dB, and the correlation coefficient between the sources was

0.8e/"/%. The results of the simulations are plotted in Figure 5.4. The graphs show




that UCA-RB-MUSIC performs better than UCA-ESPRIT. Further, the UCA-RB-
MUSIC performance isfairly closeto the CRB. Note that the performance curvesfor
UCA-RB-MUSIC and the CRB are independent o the location o the first source.
In contrast, the performance of the UCA-ESPRIT estimates depends on the absolute
position o each source. Thisis attested by the fact that the variances d the UCA-
ESPRIT estimates are higher for the second source than for thefirst.

In the remaining two simulations, the second source is located at 8, = (ug, v2) =
(0.175,0.8165), corresponding to an elevation 8, = 56.62' and an azimuth ¢, = 77.9.
Thelocation d thefirst source isleft unchanged. Thesesourcelocations correspond to
aseparation 7 = 0.25, and an orientation » = 120. Examination of Figure 5.4 shows
that the variance o the UCA-ESPRIT w estimate is higher for the second source
than for the first at this value o v. However, the variance of the UCA-ESPRIT v
estimates are approximately the samefor the two sources. This behavior isevident in
the UCA-ESPRIT performance curves of simulation examples 2 and 3. We reiterate
that the UCA-RB-MUSIC performance curves and the CRB are identical for the two

sources.

5.6.2 Simulation Example 2

This simulation examines the performance o the DOA estimators as a function
d the common source SNR. The source locations are as specified in the previous
paragraph, and the correlation coefficient between the sources is 0.8¢7*/4. Figure 5.5
depicts theresultsof thesimulations. Thegraphs show that the performance o UCA-
RB-MUSIC isfairly close to the CRB even at 0dB SNR. UCA-RB-MUSIC)is seen to
outperform UCA-ESPRIT; the performance difference, however, is less significant at
higher SNRs. The experimental resultsfor UCA-ESPRIT corresponding to 0dB SNR
deviate a little from the theoretical predictions. This is probably because the first
order approximation employed in the analysisis not accurate enough at thislow SNR.
Another observation from Figure5.5isthat the UCA-ESPRIT estimator variancesfor
the second source are alittlelower than the theoretical predictions. This differenceis
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more pronounced in Figure 5.7 corresponding to Simulation Example3. This behavior
can be explained as follows. The far-field patterns corresponding to phase modes 0
and 2 have low gains at the location of the second source. We have Jo(¢z) = —0.09
and J2(¢2) = —0.04, where {; = 2xsin,. The output powers associated with the
incident signals in two o the 13 available beams is therefore small. In contrast, the
gain of these two beams is fairly large at the location o the first source: We have
Jo(¢2) = —0.37 and J»(¢2) = 0.31. Thisexplainsthefact that the theoretical anaysis
predicts higher UCA-ESPRIT estimator variances for the second source than for the
first. The non-asymptotic behavior of the FB average is responsible for the fact
that the experimental estimator performance for the second source (with K = 64
snapshots) is alittle better than the theoretical (asymptotic) predictions.

Figure 5.6 depicts the UCA-ESPRIT eigenvalues ji; (marked by 'x's). Thefigure
was formed by superimposing the results of 200 runs at an SNR o 10 dB. The true
source locations are at the intersections o the dotted radial lines (azimuth angles)

and the dotted circles (elevation angles).
5.6.3 Simulation Example 3

This simulation investigates the performance of the algorithms as a function o
the phase of the correlation coefficient between the signals. The source locations
are the same as in the previous example. The common source SNR is 7dB, and the
magnitude of the correlation coefficient between the sourcesis 0.8. :Figure5.7 depicts
the performance of the DOA estimators as the phase of the correlation coefficient
is varied from 0° to 180°. The behavior o the estimators (best performance at
a correlation phase of 90°) is due to the FB average inherent in UCA-RB-MUSIC
and UCA-ESPRIT. As a consequence o the FB average, the performance o the
algorithms depends only on the real part, Pr, of the source covariance matrix P.
The off-diagona elementsof Pr are zero when the correlation phase is 90°, and the
algorithms see the sources as effectively uncorrelated. The FB averagein fact enables
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UCA-RB-MUSIC and UCA-ESPRIT to resolve two coherent sources, provided the

phase d the correlation coefficient is neither 0" nor 180°.
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6. CONCLUSIONS

6.1 Summary of Results

Two signal subspace algorithms for 2D angle estimation with UCAs, UCA-RB-
MUSIC and UCA-ESPRIT, have been developed. Both algorithms employ phase
mode excitation based beamformers and operate in beamspace. UCA-RB-MUSIC is
a beamspace version o MUSIC that offersthefollowing advantages over element space
MUSIC: ULA techniques such as FB averaging, Root-MUSIC, and Spatial smoothing
can be employed in beamspace with the UCA. This is because the structure of the
induced beamspace manifold is similar to the ULA manifold. The decorrelating effect
o the inherent FB average allows UCA-RB-MUSIC to outperform element space
MUSIC in correlated source scenarios when the number o array elements N is odd
(FB type averaging is not possible in element space when N is odd). Finally, UCA-
RB-MUSIC is more computationally efficient than element space MUSIC. This is
because a real-valued EVD provides signal subspace estimates, and the FFT can be
employed to facilitate the search for peaks in the beamspace MUSIC spectrum.

UCA-ESPRIT is a closed-form algorithm that provides automatically paired az-
imuth and elevation angle estimates for each source. It is the only. available closed-
form algorithm for 2D angle estimation and thus represents a signiificant advance in
the area. The eigenvalues o the matrix ¥ (derived from the least squares solution
to an overdetermined system of equations) have the form x; = sinf; /% = u; +jv,-,
and thus provide the properly associated DOA estimates. UCA-ESPRIT does not
require expensive search procedures and is thus superior to existing 2D angle esti-

mation algorithms with respect to computational complexity. Another factor that



reduces the computational load is that the implementation o UCA-ESPRI'T callsfor
only real-valued EVDs.

The effects of mutual coupling on the structure o the UCA element space mani-
fold wereanalyzed. It wasshown that the general structured the original beamspace
manifold is retained even when mutual coupling effects are present - the only differ-
ence is the introduction of gain and phase factors in the beamspace manifold. Con-
sequently, minor modifications enable UCA-RB-MUSIC and UCA-ESPRIT to cope
with mututal coupling effects. The properties o the UCA o directional elements
were also studied. Both UCA-RB-MUSIC and UCA-ESPRIT are applicable if the
individual element patterns are omnidirectional in azimuth. UCA-ESPRIT cannot
be employed if this condition on element patterns is not met. However, a beamspace
algorithm possessing many o thefeatures o UCA-RB-MUSIC is still applicable.

The statistical performanced the element space MUSIC, UCA-RB-MUSIC, and
UCA-ESPRIT algorithms for 2D angle estimation has been analyzed; asymptotic
(large number of snapshots) expressions for the estimator variances/covariances have
been derived. The analysis of element space MUSIC for 2D angle estimation holds
for arbitrary array configurations. Prior to this work, the performance o MUSIC had
been examined for only the 1D angle estimation problem. Closed-form expressions
have been obtained for the element space MUSIC estimator variances in the one and
two source scenarios. Aninvestigation o the theoretical behavior of the element space
MUSIC direction cosine estimator variances and the CRB has provided useful insights.
In the single source case, both the element space MUSIC estimator variances and the
CRB are constants (independent d the DOA). In the two source case, they depend
only on the relative positions o the sources in the direction cosine spacei.e., they de-
pend only on the distance between the sourcelocations and the orientation o theline
joining the sources. The behavior d the UCA-RB-MUSIC estimator variances closely
follows that of element space MUSIC and the CRB. The results of computer simu-
lations that demonstrate the efficacy o UCA-RB-MUSIC and UCA-ESPRIT were

presented. These results also validate the theoretical performance analysis; results.
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6.2 Directionsfor Future Research

Two areas that merit further investigation are identified below. They concern the
development of UCA-ESPRIT like algorithms for filled circular apertures/arrays and
concentric ring arrays. We proceed to outline some ideas for accomplishing the above

goals.

6.2.1 Adaptation of UCA-RB-MUSIC and UCA-ESPRIT for Filled Cir-
cular Arrays

Several existing phased array radar systems, e.g., the SPY-1A or SPY-1B radars
in the AEGIS series [Sen88], and the arrays comprising the PAVE-PAWS surveillance
network [Bro85], have circular apertures with antenna element locations specified by
a hexagonal sampling lattice. Filled circular arrays also have potential application
as base station antennas in mobile communications systems. The effort to adapt
the UCA-RB-MUSIC and UCA-ESPRIT algorithms for filled circular arrays is thus
relevant and significant. We proceed to discuss phase mode excitation (with a radial
amplitude taper) o a circular disc aperture. The resulting far-field patterns are very
similar to those o Section 3.3.1 for circular ring apertures. The UCA-RB-MUSIC
and UCA-ESPRIT algorithms are thus easily adapted for use with filled circular
apertures/arrays.

An excitation function corresponding to phase mode m for a circular disc aperture

wn(p,7) =377 (B)m ™,  pelo,r], v €[0,2r]. [6.1]

T
The term /™ (for integer m) excites the mth phase mode, (p/r)™ is a mode depen-
dent radial amplitude taper, and the phase factor ;=™ ensures (as with the UCA)
that the far-field mode amplitudeis real-valued. The resulting far-field pattern is

1 R 2
fm(<,¢) = f'm(kor Sinoa (,25) = ﬂA A ’wm(p,’)’)ejkops'n€cos(¢——y)pdpd’y

R .
= /0 (p/r)"™ Jm(kopSin8) €™ pdp




_ (g) Toin(C) €%, 6.2]

Therelationship [ 2™ Jn(z) = X" Jmm41(z) was employed to obtain thefinal expression
above. Thefar-field pattern aboveis similar to that of Equation 3.6 corresponding to
phase mode excitation o a circular ring aperture. The differences are the increase in
Bessal function order by oneand the { dependencein the denominator. It isclear that
a Real-Beamspace MUSIC algorithm similar to UCA-RB-MUSIC can be employed
with a circular disc aperture. The UCA-ESPRIT principle can also be employed to
develop a closed form 2D angle estimation algorithm with the circular disc aperture.
A relationship between the far-field patterns corresponding to three successive phase
modes can be developed by employing the recursive Bessal function property. The
critical relationship is

%(m +1)fn(0) = pfinr(8) + 4" Finsa (0), [6.3]

where ¢ = sinf ¢’®. The development o the closed-form 2D angle estimation algo-
rithm for the circular disc aperture now parallels the development & UCA-ESPRIT.

As was the case with UCAs, the far-field patterns o filled circular arrays closdly
follow the patterns of the circular disc apertures provided the interelement spacings
are sufficiently small. Criteria need to be developed for locating array elements in
afilled circular aperture such that the resulting patterns approximate those o con-
tinuous disc apertures. Possible sampling rasters include hexagonal, rectangular and
polar. The efficacy o the versionsd UCA-RB-MUSIC and UCA-ESPRIT for filled
circular apertures needs to be evaluated. Comparisons can also be made between the

performance o the algorithms for circular ring arrays and filled circular apertures.

6.2.2 Adaptation of UCA-ESPRIT for Concentric Ring Arrays

Concentric ring arrays have been employed for synthesis of directive patterns
with low side-lobe levels [SS65]. We outline some ideas for extending the UCA-
ESPRIT principle for concentric ring arrays (with two rings). The two concentric

rings are assumed to have radii r(), i = 1, 2. The spacing between the ringsis denoted




ry = r® -, M’ = 2M *1 phase modes are excited at each ring, as with the UCA.
It isevident that the UCA-ESPRIT invariance principle can be independently applied
to beam outputs of each ring. Thisyields twice as many equations compared with the
single ring case; about twice as many sources can thus be resolved by the concentric
ring array. The number of sources resolvable is easily verified to be dye, = 2M - 1,
where M is the maximum mode excited. The number of sources resolvable with a
singleringis M — 1.
UCA-ESPRIT relieson the recursive relationship between Bessel functions. Javier
R. Lopez, who was a visiting scholar at Purdue University during the Fall o 1993,
conceived theidea of employing another Bessel function property with concentric ring
arrays. The property
In-1(¢) = Im+1(€) = 2J,(C) [6.4]

relates Bessel functions and their derivatives. The idea was that the derivative could
be approximated from the quantities associated with the two closely spaced rings. In
the following, the superscript (i) will be employed to denote evaluation o a quantity
at theith ring e.g., (® = ker@sin8 is just ¢ evaluated at the second ring. The
far-field pattern associated with phase mode m (neglecting the phase factor j™) is

F9(8) = J,.(¢®)ei™. Employing the relationship (6.4), it is easy to show that
e 1), (€)= e73% 1),(8) = 2641 (). /6.5

The derivative can be approximated by
e SD(0) — 1(6)]

korgsin8

T () = ) [6-6]

provided the denominator kyrgSin8 is small. Combining Equations 6.5 and 6.6 leads
to the relationship

pIl1(8) — w £51(0) ~ [f(”() 1)), [6.7

where ¢ = sinfe’® as usual. This relationship provides another set of equations

for the concentric ring array. More sources can be resolved by incorporating these




equations as well. The selection d the radial difference ry is important, for the
approximation o Equation 6.6 to be good. The denominator d this equation is
korgsind = 5(;2(),7'1 < %(‘;)d Thefinal inequality above followsfrom Equation 3.7. It is
clear that 74 has to be asmall fraction o the radius r() for the approximation in (6.6)
to be accurate. Thisis a possible limitation o the method. Further investigation of

the ideas proposed aboveis required.
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APPENDICES




Appendix A: Phase Mode Excitation of Circular Arrays/Apertures: Ex-
pressions for Far-Field Patterns

Expressions for the far-field patterns resulting from phase mode excitation o
continuous circular apertures and uniform circular arrays are derived below. The
expressions involve Bessel functions o thefirst kind. The integral representation of
the Bessel function is useful: We have Jp,(x) = & f§" ef(==in0-m8) g, Making a simple
substitution yields the following equivalent definition:

1 27 .
jme(x) — %/0 e](:rcos€+m9) do [Al]

The above equation will be employed in the far-field pattern derivations below.
A.l Far-Field Pattern for a Continuous Circular Aperture

The far-field pattern resulting from excitation d a continuous circular aperture

with phase mode m is
1 27 .
£2.8) = £2(C,6) = 5 [ et gy, (A2

where ¢ = kor sin8. Making the substitution 4/ = v — 4 yields
1 27r N ' !
c(9) = _/ il¢cosy'+m(v'+¢)] 41
m@)=5_| e o

The desired result f2(8) = j™Jn(¢)e’™* now follows from Equation A.1.
A.2 Far-Field Pattern for a Uniform Circular Array

The far-field pattern resulting from excitation o an N element UCA with phase

mode m is
1 N-1

fn(®) = 11(C8) = 5 X e, [A3]

n=0
where v, = 27n/N specifiesthe array element locations. The summand in the above
equation can be expressed as an integral using the sifting property o the deltafunc-

tion. We have
1 N-1

n(8) = N 2

n=0

o ) 2r
/ eJm’ye]C COS(¢_7)6(7 —_ 771) dﬂy = / 6-7[( COS(¢_7)+m7]g(’>’) d’y, [A-4]
0 0
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where g(7) = & S} §(y—,) is an impulse train with impulses at the array element
locations. The function g(¥) is periodic with period 27 /N and can hence be expressed

as a Fourier series. The Fourier series expansion for g(y) is
g(,y i i eJaNY.
2 S
Substituting in Equation A.4, we obtain

: () / 3l¢ cos(d—)+(m+aN)] 4
fn(8) q_X_:oo 5= ), ¢ .

The integral above is similar to that in Equation A.2. As before, making the substi-
tution 4/ = v — ¢ yields

Fa0) = 3 T (@)
g=—00
= jme(C)ejm¢+ Z j"H-qN']mﬂﬂV(C)‘3ji(m+qN)q5
g=—00,97#0

The terms above corresponding to negative values of g can be grouped into a sepa-
rate infinite summation. When the mode order m is positive and satisfies m < N,
these terms give rise to Bessel functions of negative orders. Employing the property

J_m(€) = (=1)™Jn(¢) of Bessel functions yields the desired result
£2(8) = M IO + 1 (75O + (™), [A.5]
g=1
where ¢ = Ng—m and h = Ng+m. It is easy to see that the expression above holds
even when the mode order m is negative and satisfies |m| < N. The expression for
the UCA far-field pattern above is thus valid for mode orders |m| < N. We note that
for a UCA of N elements, all phase mode orders m + kN, for arbitrary integers k,

are identical. This is easily seen from Equation 3.8.
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Appendix B: Phase Mode Excitation Based Pattern Synthesis for UCAs

Phase mode excitation can be employed to synthesize attractive directional pat-
terns for UCAs as described below. The UCA far-field pattern f(#,$) is a function
o the elevation 8, and the azimuth ¢. The azimuthal pattern corresponding to a
given elevation angle 8 isdenoted f(¢;8). Phase mode excitation caa be employed to
synthesize a desirable azimuthal pattern f(¢;8) at a given elevation 8. The synthe-
sized pattern f(¢;8) could be real-valued; this leads to a reduction in computational
complexity o the Beamspace MUSIC aalgorithm as described in Section 2.6.2. The
far-field patterns f(¢;8) synthesized via phase mode excitation are trigonometric
polynomialsin ¢. This alows Root-MUSIC to be employed to perform the search in
azimuth for sources at a given elevation as discussed in Section 4.2.1.

Given the parameters k; and 7, the maximum mode M and the: number o array
elements N are chosen according to theguidelinesdf Sections 3.3.1 and 3.3.2. We will
assume that M and N are chosen such that the UCA far-field patterns corresponding
to modes m € [ - M M] aregiven by Equation 3.12. The beamforming weight vector
wH o Equation 3.8 excites the UCA with phase mode m. For pattern synthesis with
the UCA, al the modes m € [-M, M] are simultaneously excited, with the excitation
coefficient for mode m being ¢,,. The beamforming weight vector employed is thus

M
wil= % c.wil [B.1]
m=—M

From Equation 3.12 we see that the resulting far-field pattern is
M
f(8,4) ~ X%A emg ™ i (kor Sin 8) ™ = K, (8)e™?, [B.2]
m==

where kn(0) = cmj™ Jjm(korsing). The pattern f(¢;8) at the elevation 0 is a
trigonometric polynomial. The desired pattern f(¢;8) is synthesized by appropri-
ate choice o the coefficients k,,(6) o the trigonometric polynomial. The excita-
tion coefficients ¢, are chosen to provide the desired values o k., (6). It is clear

from Equation B.2 that the entire pattern is real-valued if ¢_,» = ¢, (this makes
k- (6) = kn(0)).




The example below illustrates sinc-type azimuthal pattern synthesis for the UCA
in the array plane (elevation 0 = #/2). Synthesis o sinc-type patterns (similar to
ULA far-field patterns) with UCAs was considered by Daviesin [Dav83]. In practice,
sinc-type patterns are not very useful because o the high side-lobe levels. The pattern
synthesis procedure can however be employed to synthesize attractive patterns with
low side-lobe levels. For sinc-type pattern azimuthal pattern synthesis at § = = /2,
the required excitation coefficients are ¢, = 1/j™Jjm|(kor). This yields k., (8) =
Jim|(kor sin 8) [ Jmy(kor), and we have kn(7/2) = 1 for all m. From Equation B.2 we
see that the azimuthal pattern in the array plane

M e sin(2M T 1)¢/2
M sing¢/2

has the desired sinc-type structure. The shape o the azimuthal pattern at other

fg;7/2) = [B.3]

m=-—

elevation angles is determined by the coefficients k,,(6); these patterns will not be
sinc shaped. We note that although the sinc-type pattern f (¢;7/2) above has its
maximum at ¢ = 0, the maximum array gain may occur at an elevation other than
7 /2. Thisis not the case with cophasal excitation, where the maximum gain is aways
in the'look' direction.

The mechanism for synthesizing a desired azimuthal pattern at a given eleva
tion was described above. To employ beamspace MUSIC, multiple beam outputs are
required. Multiple beam outputs are typically obtained by rotating the entire pat-
tern f (8, ¢) in azimuth. It is clear from Equation B.2 that replacing ¢, by c,e™ ™
achieves the desired pattern rotation: the corresponding pattern isf (0,¢ — a&). The
matrix W of Equation 4.10 provides pattern rotation for the UCA-RB-MUSIC al-
gorithm. It generates the M’ = 2M * | beams f (¢, 4 — a&;) by rotating the basic
beam-pattern f (¢, 4) in azimuth by the angles & = 2xi/M’, i € [-M, M].

Our initial research efforts [ZM92, MZ92] focused on applying ULA techniques
with UCAs. Sinc-type pattern synthesis as described above, and the use o Root-

MUSIC to perform the azimuthal search at a given elevation were proposed.
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Appendix C: Propertiesof UCA-ESPRIT
C.1 Block Conjugate Structure of the LS Solution

Consider first the noise free case, where the true signal subspace matrices are
available. Assumethat the least squares solution to Equation 4.34 is ¥ = [T : wI|T,
The LS solution is obtained by solving the system EFE®¥ = EHT'S,. Substituting

for E from (4.34), this system can be expanded as follows:

S}_II R ‘I’I Sill )
) [s_1 :DIS‘;I] = | s, [C.1]
ST, pi v, ST, Di

Equating the upper and lower blocks o the above equation, we obtain

SH[S_,®, + DIS*,¥,] = S¥rS,, and [C.2]
ST,[DIS_, ¥, tS*,¥,] = ST,Dirs, = S7,IS;. [C.3]

The property DIT'S, = I'S;; that was used in the final equality above can be estab-
lished by multiplying Equation 4.33 by DI. Now, theright hand sides of Equations C.2
and C.3 are conjugates, and the left hand sides are therefore conjugates as well. We
thus have ¥, = ¥}, and the LS solution ¥ has block conjugate structure as expected.

All that is required for the proof to carry over to the case where signal subspace
estimates are employed is to show that DIT'S, = I'S;. This relationship was shown
to hold in the noise free case: We have DI, I'So = I'S;. The subscript M, denotes
the dimension o the reverse permutation matrix. Substituting So = A,CeWS and
using the property IpW = W* and the fact that S is real-valued establishes the
following: DiMeI‘AOC0 = I'A¢Cola. This property is used in the following se-
guence of manipulations which complete the proof for the case where signal subspace

estimates are employed.

DIy, 'Sy = DIp,.TACoWS = TAColyr WS
= TACoW*S =TS,
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We now have ¥, = 'il; = \il, and Equation C.2 (written in terms o estimated
quantities) thus uniquely specifiesthe LS solution. The LS solution ¥ is obtained by
solving the following d x d complex-valued system o equations:

BW¥ + C¥* = Q, where
B =S%S_,,C=8%DiS* ,andQ = S$¥,IS,.

Writing in terms o the real and imaginary parts shows that ¥ can be obtained by
solving the 2d X 2d real-valued system of Equation 4.36.

C.2 Failureof UCA-ESPRIT when d> M

The system E¥ = T'S, is underdetermined, and has an infinity of solutions ¥
when the number o sourcesd > M. Followingthe procedure employedin the previous
proof, the minimum norm solution ¥,.,, = EF (EE#)-1T'Sy can be shown to have
block conjugate structure. We now proceed to show that n(E) = (EFE) is spanned
by block conjugate vectors. Linear combinations o these vectors can bel added to
Qmm without destroying the block conjugate structure. There is thus no unique
block conjugate solution to Equation 4.35 when d > M.

The 2d x 2d matrix E' = EFE can be written in block form as follows. E' =
B C

C* B*

a vector in n(E’). Setting E‘z = 0 leads to the two equations below:

, Where B and C are as defined in Equation 4.37. Let z = [z] :2I]T be

BZ] + CZZ = 0, and [C4]
C*Z] +B*Z2 = 0. [05]

Forming (C.4) T (C.5)" and (C.4)* T (C.5) leads to the system

B C z1+z;}_0

Cc* B

Z2 + 2]

This system shows that there is a block conjugate vector in n(E’) corresponding to

A

the vector z € n(E’). Thus 5(E’) = 5(E) can be spanned by block conjugate vectors,

and the proof is complete.
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Appendix D: Study of Theoretical Estimator Performance

Thefollowing easily proved relationships are employed in obtai ning expressionsfor
the variances o the element space MUSIC estimators. For brevity, the dependence d

the manifold vectors on the DOA is not always shown i.e., a is used in place d a(8).

2, = D¢a, and a, = Dga, where [D.1]
D. = (jkor)diag{cosyo,...,c0sYn_1}, and
Dy = (jkor)diag{sinyo,...,Sinyn_1}.

In the definitionsabove, v; = 2xi/N istheangular location d theith antennaelement.

The following relationships can be established using the above equations:

afa, = afla,=0 [D.2]
afla = afa = N(’“O")2
—u =Uu —_t =V 2

Consider the two source locations 8, = (uy,v1) and B, = (uz,vs). Let By = (ugq,vq)
where ug = us — uy and vg = v2 — v1. The representation o 3, in polar coordinates
is (, u), where T = \/u2t v2 and v = tan~!(vs/uq). The relationship below states
that the UCA cophasal beam pattern approximately follows the Bessel function Jp.
The relationship is accurate for our purposes because the residual contributions have

been made negligible by appropriate choiced N. We have

QH(,Bl)Q(,Bz) ~ NJo(kor), (D.3]

and the array gain depends only on the distance T between the locations 3, and 3,.
The final relationships to be established are

a"(B))a.(B;) ~ —korNJy(korr)cosv = —a"(B,)a,(B,), and  [D.4]
QH(,Bl)Qu(,Bz) r~  —korNJy(korT)siny = —QH(ﬂz)éu(,BJl)- [D.5]

An outline of the proof of Equation D.4 is provided below. Equation D.5 can be

proved in similar fashion. Using the resultsin (D.1), we can write a”(8,)a,(8,) =
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TN, Jkor cos yn edkor(uacostnteasing)  The symmation o the exponential terms alone
is just the cophasal beampattern o Equation D.3. The partial derivative o the
cophasal pattern with respect to ug, aiudNJo (kor\/u'j + v2), thus evaluates the entire
summation. Simplifying and using the property J§ = —J; yields the desired result.

D.lI Element Space MUSIC Estimator Variances

Expressions for the element space MUSIC estimator variances and covariance are
given in Theorem 5.1.1. The variance expressions are in terms o the quantities
a=afGG"a,, b = a?GG"a, and ¢ = Re{a’GG"a,}. The projection matrix
onto the noise subspace can be expressed in terms d the DOA matrix as follows:
GG =1 - A(A7A)7 A",

Single Source Case

For the single source case, we have A = a. Using Equation D.2, we obtain
a =b = (kor)?’N/2 and ¢ = 0. Substituting the source power p in place d P in
Equation 5.4, we find that cp = (1+1/N)/(p/o). Substituting these results in
Theorem 5.1.1 yields
14+1/N

K N(kor)*(p/o)’
Cov (4,9) = 0.

and

Var (2)= Var (d)

Two Source Case

Let Q = (A”A)~'. Using the result o Equation D.3, Q can be expressed as

follows;

q qJo(korT)

q.]o(ko'l"‘r) q
_ 1
T = N = Rkorr)]

] , Where [D.6]
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The simplified expression for e in Equation 5.25 is derived below. Expressions for b

and ¢ can be obtained in similar fashion. We have

a(B,) = QuH(ﬂl) [X - AQA"a,(B,) [D.7]
= N(kr)?/2 - (af’(8,)A) Q (A"a.(8)))
Using Equations D.2 and D.4, weobtain A¥a (8,) = [0: kor N J;(kor7) cosv]T. Sub-
stituting in Equation D.7 yields the desired expression
a(By) ~ (or)? [ 5 — a{Ns(korr) cos )] D5

Finally, Equation 5.4 shows that the dependence o a on the source DOAs is only
through the matrix Q = (A” A)~. It isevident from Equation D.6 that Q and thus

p depends only on the distance 7
D.2 The DeterministicCRB

From Lemma 5.4.1 it is clear that the dependence of the deterministic CRB on
the source DOAs is through the matrix H. We proceed to show that the CRBs are
independent of the DOA in the single source case. We also show that the CRBs
depend on the source DOAs only through the parameters = and v in the two source

case.

Single Source Case

Substituting a in placedt A in Equation 5.22 and using the results o Equation D.2
yields H = M%ﬁ I. Further, al the elements of the matrix P, are identical and
equal to the source power p. Substituting these results in Equation 5.22 yields the

CRB covariance matrix

1

CRB (i,9) = gyrirao7a

Two Source Case

We have H = DHD — DFAQAFD. The entries o the second matrix in this

expression have forms similar to the second term in Equation D.7, and thus depend
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only on r and v. Theentries of the first matrix DD have the form aZ(8:)a,(8;)
where x and y could beeitheru orv, and i, € [1,2]. Expressions for these terms can
be obtained by taking partial derivativesdf the cophasal beampattern with respect to
ug and vq as in the proof of Equation D.4. These terms can also be shown to depend
only on 7 and v. Thus the matrix H depends on the source DOAs only through =

and v, and so does the CRB covariance matrix.
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