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ABSTRACT 

Estimating the directions-of-arrival (DOAs) of propagating plane waves is a prob- 

lem of interest in a variety of applications including radar, mobile communications, 

sonar, and seismology. The widely studied uniform linear array (ULA) can only pro- 

vide estimates of source bearings relative to  the array axis. A planar. array is required 

if estimates of source azimuth and elevation are required (2D angle estimation). Uni- 

form circular arrays (UCAs) have several properties that make them attractive for 

2D angle estimation; e.g., directional patterns synthesized with UCAs can be elec- 

tronically rotated in the plane of the array without significant change of beam shape. 

Two signal subspace algorithms for 2D angle estimation with UC.4s have been de- 

veloped. Both algorithms operate in beamspace and employ phase mode excitation 

based beamformers. The first algorithm, UCA-RB-MUSIC, offers numerous advan- 

tages over element space MUSIC. These advantages include reduced computation due 

to  the ability to compute subspace estimates via a real-valued eigenvalue decompo- 

sition and the applicability of ULA techniques such as Root-MUSIC. The second 

algorithm, UCA-ESPRIT, represents a significant advance in the area of 2D angle 

estimation. It is a novel closed-form algorithm that provides automatically paired 

source azimuth and elevation angle estimates via the eigenvalues of a matrix. The 

eigenvalues have the form p = sin 8 e j d ,  where 8 and q5 are the elevation and azimuth 

angles, respectively. UCA-ESPRIT avoids expensive search procedures and is thus 

superior to  existing 2D angle estimation algorithms with respect to computational 

complexity. The statistical performance of element space MUSIC, UCA-RB-MUSIC, 

and UCA-ESPRIT has been analyzed. Computer simulations that demonstrate the 

efficacy of the algorithms and validate the performance analysis results are presented. 
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1. INTRODUCTION 

1.1 Introduction 

Array processing deals with the processing of signals carried by propagating wave 

phenomena. An array of sensors located at  different points in space in the field of 

interest receives the incident signals. The aim of array processing [Hay851 is to extract 

useful information about the incident field e.g., its direction, speed of propagation, 

signature, etc. The problem of interest to us is direction-of-arrival (DOA) estimation 

using an array of sensors . Multiple propagating plane waves that are co-located in 

frequency are incident on the array, and additive noise corrupts the received signals. 

The goal is to estimate the azimuth and elevation angles (2D angle estimation) of 

each source. DOA estimation is a relevant problem in a number of areas including 

radar, sonar, mobile communications, non-cooperative electronic communication, and 

direction finding. 

Let us briefly look at the use of antenna arrays in mobile communications. The 

mobile communication channel is characterized by severe multipath fading. Due to 

multiple propagation paths and the time varying nature of the channel, the signal 

power received by a given antenna element has a wide dynamic range. The spatial 

diversity introduced by employing several spatially separated antennas helps combat 

multipath signal fading. The antenna array can also discriminate between signals 

co-located in frequency provided they arrive from different directions. Antenna ar- 

rays can perform spatial filtering; a signal arriving from a desired direction can be 

received, while supressing undesired signals from other directions. DOA estimation 

is an important aspect in mobile communications. The DOAs of the desired and 

interfering signals (possibly from neighboring cell sites) need to  be determined. The 



array can then be steered to receive the desired signal, while placing a null in the 

direction of the interferer. 

In this report, we assume that the signals incident on the array are narrow-band, 

i.e., the signals waveforms do not change appreciably in the time taken for the wave- 

front to propagate across the aperture of the array. The complex envelope representa- 

tion is extremely convenient for representing narrow-band signals; the signal received 

at each antenna element is thus represented by its complex envelope. The 'array 

response vector' or 'array manifold vector' characterizes the response of the array 

to a narrow-band plane wave arrival from a given direction. For an array of identi- 

cal, omnidirectional elements, the array response vector consists of just phase factors 

corresponding to the time differences between the instants the wavefront reaches the 

different antenna elements. A simple data model [Hay851 in terms of array response 

vectors describes the array output in the multiple source/additive noise scenario. 

This data model, which is all-pervasive in the DOA estimation literature, is the one 

employed in this report. 

The classical method for DOA estimation with sensor arrays is 'beamforming'. 

Beamforming is essentally a spatial filtering operation that 'steers' the array to a 

desired direction in space [Pi189]. The output of the beamformer is large when a 

source arrives from the direction to which the array is steered. Conventional beam- 

forming cannot resolve sources that are spaced less than a beamwidth ('the width 

of the main-lobe of the spatial filter) apart [Hay85]. Other conventional methods 

for DOA estimation that have better resolution capabilities than beamforming are 

Capon's minimum variance method, and linear prediction (see [Pi189]). Algorithms 

that can resolve sources that are spaced less than a beamwidth apart are called 'su- 

perresolution' algorithms. The 'signal subspace' or 'eigenstructure' techniques are 

superresolution methods that rely on an eigenvalue decomposition (EVD) of the ar- 

ray output covariance matrix. MUSIC (Multiple SIgnal Classification) [Sch86] and 

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) 

[RK89] are among the most well known signal subspace algorithms. 



The widely studied uniform linear array (ULA) can only provide estimates of 

source bearings with respect to the array axis (ID angle estimates). The structure of 

the ULA (the ULA manifold vectors are Vandermonde) has led to the development of 

powerful techniques such as Spatial Smoothing [SWK85, PKSSa], and Root-MUSIC 

[Bar831 that are specific to ULAs. A planar array is required if estimates of both 

azimuth and elevation angle are required. Our interest is in high resolution 2D angle 

estimation, and we choose to employ the Uniform Circular Array (UCA) configura- 

tion. This is because UCAs possess a number of attractive properties as discussed 

below. 

UCAs provide 360" azimuthal coverage, and also provide information on source 

elevation angles. In addition, directional patterns synthesized with UCAs can be 

electronically rotated in the plane of the array without significant change of beam 

shape. ULAs in contrast provide only 180" coverage, and beams formed with ULAs 

broaden as the array is steered away from boresight. Phase mode excitation of UCAs, 

which essentially is Fourier analysis of the array excitation function, was studied by 

researchers in the early 1960s [THNGl, LCD671. This theory led to a powerful pat- 

tern synthesis technique for UCAs [Dav83]. Davies [Dav65] showed how the simple 

phasing techniques normally associated with ULAs (Butler beamforming matrices) 

could be used to provide the necessary phasing for pattern rotation with UCAs. 

These attractive features led to the development of experimental systems that em- 

ployed phase mode excitation for pattern synthesis with UCAs [Dav65, GD831. These 

systems however employed the beamforming principle to obtain DOA estimates; as 

mentioned earlier, beamforming cannot provide superresolution. 

1.2 Overview of the Report 

This report presents the development and statistical performance analysis of two 

superresolution algorithms [MZ93a7 MZ93bl for DOA estimation with UCAs. Both 

algorithms employ phase mode excitation based beamforming in conjunct ion with 

subspace techniques to provide high resolution DOA estimates. The first algorithm, 



UCA-RB (Real-Beamspace) MUSIC, is a beamspace MUSIC algorithm that offers 

many advantages over element space MUSIC. The second algorithm is named UCA- 

ESPRIT because the steps involved in the algorithm are similar to those of TLS- 

ESPRIT [RK89]. We note that the applicability of the ESPRIT principle in conjunc- 

tion with rotationally invariant arrays (such as UCAs) was studied in [Swi92]. It was 

shown that such techniques cannot provide unique DOA estimates when more than 

one source is present. Although this is true in element space, the phase mode exci- 

tation based transformation from element space to beamspace induces a beamspace 

manifold whose structure can be exploited to develop an ESPRIT like algorithm, 

UCA-ESPRIT. 

1.2.1 Features of UCA-RB-MUSIC 

The UCA-RB-MUSIC algorithm offers numerous advantages over element space 

MUSIC. These advantages include the ability to compute subspace estimates via real- 

valued eigenvalue decompositions (EVDs), improved estimator performance in corre- 

lated source scenarios due to an inherent Forward/Backward (FB) average [PK89a], 

and the ability to employ Root-MUSIC to obtain azimuth estimates of sources at  

a given elevation. UCA-RB-MUSIC requires a two-dimensional spectral search to 

obtain the DOA estimates. However, the computational complexity is lower than 

for element space MUSIC, since samples of the 2D beamspace MUSIC spectrum cor- 

responding to a given elevation can be obtained via an FFT. In contrast, element 

space MUSIC requires a complex-valued EVD for computing subspace estimates, and 

ULA techniques such as Root-MUSIC cannot be employed. Averaging similar to FB 

averaging can be performed in element space with UCAs, but only when the number 

of array elements, N ,  is even. It was shown in [SN9:1] that beamspace MUSIC es- 

timators can never outperform the corresponding element space MUSIC estimators. 

While this is generally true, UCA-RB-MUSIC can outperform element space MUSIC 

in correlated source scenarios when N is odd. This is due to the decorrelating effect 

of the FB average inherent in UCA-RB-MUSIC, but not available in element space 



for odd N. Previous work on the application of ULA techniques with UCAs include 

that of Tewfik and Hong [TH92], and Friedlander and Weiss [FW92]. Comparisons 

between their approaches and UCA-RB-MUSIC are made in Section 4.2. 

1.2.2 Features of UCA-ESPRIT 

UCA-ESPRIT is a novel algorithm that represents a significant advance in the 

area of 2D angle estimation. It is a closed-form algorithm that provides automati- 

cally paired azimuth and elevation estimates for each source. The term 'closed-form' 

connotes that the algorithm dispenses with the searchlopt imizat ion procedures that 

are characteristic of one class of 2D angle estimation algorithms. MUSIC, for example, 

requires a two-dimensional spectral search to obtain the DOA estimates. Maximum 

likelihood approaches [CS91] require even more expensive multidimensional search 

procedures. The other class of 2D angle estimation algorithms, ESPRIT based algo- 

rithms, [RK89, ZS891 require arrays that contain subarrays possessing displacement 

invariances in two dimensions. These algorithms do not require search procedures, 

and provide closed-form estimates of source direction cosines with respect to each 

displacement axis. However, they require a pairing procedure (usually ad-hoc) to 

properly associate the independently obtained direction cosine estimates. The ES- 

PRIT based algorithm for arrays with regular geometries described in [SK93] does 

provide automatically paired angle estimates; the algorithm however requires a mul- 

tidimensional search for optimality. 

Unlike the existing 2D angle estimation algorithms, UCA-ESPRIT provides au- 

tomatically paired source azimuth and elevation estimates via the eigenvalues of a 

matrix (that is derived from the least squares solution to an overdetermined sys- 

tem of equations). The eigenvalues have the form p; = sine; ejb', where 0; and q5; 

are respectively the elevation and azimuth angles of the ith source. Note also that 

p; = u; + jv;, where u; and v; are respectively the direction cosines with respect to the 

x and y axes. UCA-ESPRIT is clearly superior to the existing 2D angle estimation 

algorithms in terms of computational complexity. Another factor that that reduces 



the computational burden of UCA-ESPRIT is that the algorithm can be implemented 

with just real-valued EVDs. It should be pointed out that the UCA-RB-MUSIC esti- 

mator has a lower variance than the UCA-ESPRIT estimator. For improved estimator 

performance, the azimuth and elevation estimates from UCA-ESPRIT can be used as 

starting points for localized Newton searches of the two-dimensional UCA-RB-MUSIC 

spectrum. 

1.2.3 Mutual Coupling Effects and the use of Directional Antenna Ele- 
ments 

The effects of mutual coupling on the structure of the UCA element space man- 

ifold are studied. It is shown that the general structure of the original beamspace 

manifold (in the absence of mutual coupling) is retained even when mutual coupling 

effects apply. The only difference is the introduction of gain and phase factors in 

the original beamspace manifold. Consequently, minor modifications enable UCA- 

RB-MUSIC and UCA-ESPRIT to cope with mutual coupling effects. Acounting for 

mutual coupling effects is much simpler with UCAs than with other array configura- 

tions. 

The effects of employing directional antenna elements in the UCA are also inves- 

tigated. Both UCA-RB-MUSIC and UCA-ESPRIT are applicable if the individual 

element patterns are omnidirectional in azimuth. UCA-ESPRIT cannot be employed 

if this condition on element patterns is not met. However, a beamspace algorithm 

possessing many of the features of UCA-RB-MUSIC is still applicable. 

1.2.4 Performance Analysis Results 

Asymptotic expressions for the variances/covariances of the MUSIC estimator for 

the 1D angle estimation problem are available in [SN89]. The MUSIC spectrum in the 

2D angle estimation problem is a function of two variables (azimuth and elevation), 

and results on the performance of MUSIC in the 2D scenario are not available in 

the literature. Such asymptotic results (applicable to arbitrary array configurations) 



are derived herein; the derivation is along the lines of the work in [SN89]. Asymp- 

totic expressions for the variances/covariances of the UCA-RB-MUSIC estimators 

are also derived. UCA-RB-MUSIC works with real-valued signal and noise subspace 

eigenvectors. In contrast, the signal and noise subspace eigenvectors corresponding 

to element space MUSIC are complex-valued. The analysis of UCA-RB-MUSIC dif- 

fers from that of element space MUSIC in that the statistics of the eigenvectors of 

the sample covariance matrix are different. The asymptotic performance of the UCA- 

ESPRIT algorithm is also analyzed. The analysis employs techniques used in [RH89a] 

to study the performance of the ESPRIT algorithm for ID angle estimation. All the 

performance analysis results are verified by computer simulations. 

The asymptotic behavior of the direction cosine estimators corresponding to ele- 

ment space MUSIC, UCA-RB-MUSIC, and the Cramer-Rax, bound (CRB) is inves- 

tigated in some detail for the one and two source scenarios. Closed-form expressions 

are obtained for the element space MUSIC direction cosine estimator variances in 

these scenarios. The performance study reveals that both the element space MUSIC 

estimator variances and the CRB are constants (independent of the DOA) in the 

single source case. The UCA thus favors sources from all directions equally. In the 

two source case, the DOA dependence of the element space MUSIC estimator vari- 

ance and the CRB is only through the distance between the source locations, and 

the orientation of the line joining the source locations in direction cosine space. In 

other words, the direction cosine estimator variances depend on the source DOAs only 

through the position of one source relative to the other. The above properties are due 

to the circular symmetry of the UCA; arbitrary array geometries do not in general 

possess such properties. Although closed-form expressions for the UCA-RB-MUSIC 

estimator variances cannot be obtained, their behavior is shown to closely follow that 

of element space MUSIC and the CRB. 



1.3 Literature Review 

References to pertinent articles in the literature were made in the overview of 

Section 1.2. This section is devoted to a brief survey of signal subspace techniques, 

previous work on 2D angle estimation, and work on performance analysis. 

1.3.1 Signal Subspace Techniques for 1D Angle Estimation 

As discussed in Section 1.1, signal subspace or eigenvector techniques for DOA 

estimation rely on an EVD of the array output covariance matrix. The eigenvectors 

are partitioned into the 'signal space' and 'noise space' eigenvectors. Subspace tech- 

niques exploit the properties of the signal and noise subspaces to extract information 

on the source DOAs. Eigenvector methods were first employed by Pisarenko [Pis731 

to retrieve harmonics embedded in a time series. There has been subsequent interest 

in applying eigenvector techniques to time series analysis (see [KT821 and the ref- 

erences therein). The MUSIC algorithm [Sch86] for DOA estimation with antenna 

arrays was developed by Schmidt in the late 1970s. This work generated a lot of 

interest in subspace techniques for DOA estimation, and a number of modifications 

to MUSIC such as the minimum-norm approach [KT83], and Root-MUSIC [Bar831 

were proposed. Beamformer preprocessing was proposed in [BK84] as a modification 

of MUSIC for sector-wise searches for sources. A lot of work on such Beamspace 

MUSIC algorithms has since been done (see [ZKS93] and accompanying references). 

All the MUSIC based approaches (except for Root-MUSIC) require a search for peaks 

in the MUSIC spectrum. When Root-MUSIC is employed with a ULA, the spectral 

search is replaced by a polynomial rooting procedure. 

The ESPRIT approach that was initially proposed by Paulraj et al. [PRK86] 

requires an array of matched doublets, whose elements are translationlly separated 

by a constant displacement vector. A refinement of the algorithm, TLS-ESPRIT 

[RK89], avoids some of the numerical problems of the original approach. ESPRIT 

provides closed-form estimates of source DOAs via the eigenvalues of a matrix that is 

essentially a subspace rotation operator. ESPRIT thus avoids the search procedures 



associated with MUSIC. Other matrix pencil based approaches based on the ESPRIT 

ideas include PRO-ESPRIT [ZS89] and the direct matrix pencil algorithm [HS90]. 

The weighted subspace fitting algorithm [V091] is another signal subspace tech- 

nique for DOA estimation. The algorithm is optimal (minimum variance), but re- 

quires an expensive multidimensional search procedure. It is interesting to note that 

TLS-ESPRIT and even the deterministic maximum likelihood algorithm [SN89] fall 

into the subspace fitting framework. 

1.3.2 2D Angle Estimation Algorithms 

Both MUSIC and ESPRIT can be employed for 2D angle estimation. MUSIC can 

be employed with arbitrary array geometries, but requires a two-dimensional spectral 

search. Arrays with displacement invariances in two dimensions are required when 

ESPRIT is employed for 2D angle estimation. ESPRIT applied independently to the 

two subarray pairs provides independent estimates of source direction cosines with 

respect to the two displacement axes (see [ZS89]). A procedure (which is usually ad- 

hoc) for pairing the independently obtained direction cosine estimates is thus required. 

There are further complications if two of the sources share a common bearing with 

respect to one of the displacement axes. The algorithm [SK93] applicable to certain 

arrays with regular geometries provides automatically paired direction cosine esti- 

mates. However, it requires a multidimensional search for optimality (a suboptimal 

closed-form procedure for obtaining D OA estimates was presented). The algorithm 

for rectangular arrays [Hua92] can cope with the case where two sources share a 

common spatial frequency component; however, the algorithm still requires a pairing 

procedure. Several other techniques proposed for rectangular arrays include a state- 

space approach [KAR83], a matrix approximation approach [SK88], and a maximum 

likelihood approach [CS91]. All these approaches fail if two sources share a common 

spatial frequency component. In the light of this review of 2D angle estimation al- 

gorithms, it is clear that UCA-ESPRIT is unique in that it provides automatically 

paired 2D angle estimates via a closed-form procedure. 



1.3.3 Performance Analysis of Signal Subspace DOA Estimators 

Asymptotic (large number of snapshots of array data) expressions for the vari- 

ances of the MUSIC [SN89], ESPRIT [RH89a], and TLS-ESPRIT [OVK9:1.] estima- 

tors are available in the literature. The statistics of the eigenvectors of the array 

output covariance matrix (which is complex Wishart distributed when the noise is 

complex Gaussian) are required for the analysis. These eigenvector statistics were 

obtained in [Gup65, Bri81, JF85, KB86] for the complex Gaussian noise case. The 

Forward/Backward (FB) spatial smoothing scheme [PK89a] enables subspace tech- 

niques for ULAs to cope with coherent signal arrivals. The performance of the MU- 

SIC algorithm with spatial smoothing was analyzed by Pillai and Kwon [PK89b]. 

Zoltowski and Kautz [ZKS93] showed that a real-valued EVD is sufficient when op- 

erating in beamspace with a ULA (employing centro-Hermitian beamformers). They 

also showed that working with the real part of the beamspace covariance matrix is 

equivalent to performing a FB average. Based on the work in [PK89b], they derived 

the statistics of the corresponding real-valued eigenvectors [ZK92]. These statistics 

are employed here to analyze the UCA-RB-MUSIC algorithm. 

Li and Vaccaro employed perturbation analysis to analyze the performance of 

MUSIC and ESPRIT [LV90]. They obtained estimator variance expressions for the 

finite sample case, under the assumption of high SNR (signal to noise ratio). Expres- 

sions for the Cramer-Rao bound on estimator variances/covariances for the 1D angle 

estimation problem have been derived in [SN89] and [SN90] for both the determinis- 

tic and stochastic signal models. The deterministic CRB derivation was extended in 

[YB92] for the two (or higher) dimensional case. 

1.4 Organization of the Report 

The organization of this report is as follows: Chapter 2 provides some of the 

background material on array processing for DOA estimation. Chapter 3 introduces 

beamforming techniques for circular apertures and arrays; cophasal beamforming 

and phase mode excitation based beamforming are studied. The UCA-RB-MUSIC 



and UCA-ESPRIT algorithms are developed in Chapter 4. Chapter 5 addresses the 

performance analysis of the algorithms. Results of computer simulations of UCA- 

RB-MUSIC and UCA-ESPRIT are also presented in this chapter. Finally, Chapter 6 

provides a summary of the results, and discusses directions for future research. 

1.5 Notational Conventions 

The notational conventions employed in this report are as follows: bold face lower 

case letters are used to denote column vectors, and bold face upper case letters de- 

note matrices. An asterisk is used to denote the complex conjugate operation e.g., 

A*. The transpose and Hermitian transpose operations are respectively denoted by 

superscripts T and H e.g., GT, GH. Hats are used to denote estimated values of 

quantities e.g., S .  The same symbol is used to denote similar quantities in element 

space and beamspace; the element space quantities are distinguished by underbars 

e.g., S and S respectively span the beamspace and element space signal subspaces. 

0 t her notational conventions employed will be specified as and when necessary. 





2. BACKGROUND: ARRAY PROCESSING FOR ARRIVAL ANGLE 
ESTIMATION 

This chapter presents background material that is relevant for DOA estimation 

with antenna arrays. The signals incident on the antenna array (from different di- 

rections, but co-located in frequency) are assumed to be narrow-band propagating 

plane waves. Section 2.1 provides a mat hematical description for propagating plane 

waves. The array output signals are represented in terms of their complex envelopes. 

Section 2.2 thus reviews the complex envelope representation of band-pass signals. 

The concept of the array response vector (or manifold vector), is elucidated in Sec- 

tion 2.3. The array manifold vector provides a description of the array output when a 

narrow-band signal from a given direction impinges on it. The data model most com- 

monly used to model the array output in a narrow-band, multiple source scenario is 

introduced in Section 2.4. Section 2.5 discusses the beamforming operation, and the 

concept of antenna array patterns. Finally, Section 2.6 reviews the popular MUSIC 

algorithm for estimating the arrival directions of multiple sources. The Beamspace 

MUSIC and Root-MUSIC variations of MUSIC are also discussed. 

2.1 Propagating Plane Waves 

A plane wave propagating in space can be represented by the following equation: 

where s(t,j ') is the signal amplitude at time t at  the location p' (position vector), g 

is the function specifying the shape of the wave, v is the speed of propagation, and 

6 is the unit vector in the direction of propagation. At any given time, the signal 

amplitude is constant on any plane perpendicular to the direction of propagation. 



Figure 2.1 Spherical coordinate system 

The points in space on such a plane are described by the equation 6 . p'= k, where 

k is a constant. Let i = -6 be the vector specifying the DOA of the plane wave. 

Equation 2.1 can then be rewritten as 

The spherical coordinate system (r, 8,4) depicted in Figure 2.1 will be employed 

to specify the DOA of a signal. The elevation and azimuth angles of a source arriving 

from the direction i are 8 and 4, respectively. The DOA vector i can also be expressed 

in cartesian coordinates as follows: 

i = (u, v, w) = (sin 8 cos 4, sin 8 sin 4, cos o), 12-31 

where u,v, and w are respectively the direction cosines with respect to the x, y, and 

z axes. 



Harmonic Plane Waves 

The harmonic wave whose shape is specified by g(t) = A cos(27r f t  + a), and prop- 

agating a t  the speed of light c is of interest in radar systems. The wavelength X and 

frequency f of the wave are related by the equation c = f A. Following Equation 2.2, 

such a wave arriving from the direction i is described by 

where ko = 2n/X is the wavenumber. The quantity koi.p'is the phase shift in radians 

between the signal received at the origin and that at locations on the plane i . p' = 

constant. The components of the vector koi are the spatial frequencies of the signal 

in the x, y ,  and z directions. 

2.2 Complex Envelope Representation of Band-Pass Signals 

The complex envelope representation of is a very useful tool for the analysis of 

band-pass systems. The complex envelope retains all the information content of a 

band-pass signal, but is itself a low-pass signal. The representation of the antenna 

element outputs in terms of complex envelopes turns out to be very useful for the 

narrow-band DOA estimation problem. The following discussion of the complex en- 

velope representation is brief, and further details may be found in [Hay83]. 

Let g(t) be a real-valued band-pass signal with carrier frequency f, and bandwidth 

2W. For the purposes of illustration, let the amplitude spectrum of g(t) be as shown 

in Figure 2.2a. The pre-envelope of the signal g(t) is a complex-valued function g+(t) 

defined by 

g+(t) = g(t) + jG(t), 

where G(t) is the Hilbert transform of g(t). The complex envelope ij(t) of the signal 

g(t) is defined as follows: 



Figure 2.2 Band-pass signals: (a) Amplitude spectrum of signal. (b) Amplitude 
spectrum of pre-envelope. (c) Amplitude spectrum of complex envelope. 



The complex envelope j ( t )  is a low-pass signal whose spectrum is limited to the 

frequency band -W 5 f 5 W. The amplitude spectra of g+(t) and j ( t )  are depicted 

in Figures 2.2b and 2.2c, respectively. The signal g(t) may be expessed in terms of 

the complex envelope j ( t )  as follows: 

The complex envelope j ( t )  can also be expressed in the following form: 

where a(t) and 4(t) are both real-valued, low-pass functions. The corresponding 

representation for the narrow-band signal g(t) is 

2.3 Array Manifold Vectors 

The array manifold vector (or array response vector) for an array of N elements 

corresponding to a narrow-band signal arrival from the direction ? is an N vector 

a(?). It provides a convenient description of the signals received by the array, and - 

is valid only for narrow-band signals. Consider an antenna array that consists of 

N identical, isotropic elements. The array geometry is depicted in Figure 2.3. The 

array elements are numbered from 0 to N - 1, and the position vector p', specifies 

the location of element n. The origin of the coordinate system is chosen to coincide 

with the location of element 0, and hence go = 6. The signals received by the antenna 

elements are represented by their complex envelopes: jn (t ) represents the output of 

element n at time t. The array output at time t is given by the vector 

We proceed to obtain the array manifold vector corresponding to a plane wave arrival 

from the direction ?. The case of a harmonic plane wave is first considered. We then 

show that the same manifold vector can be used to describe the array output when 

the incident signal is a narrow-band plane wave. 



Figure 2.3 Arbitrary array geometry 

Harmonic Plane Waves 

The signal received by element 0 (located at the origin) is the harmonic signal 

go(t) = A c o s ( 2 ~  fct + a). The signal received at element n is a time delayed version 

of go(t). Since time delays translate into phase delays for harmonic signals, we have 

(following Equation 2.4) g,(t) = A c o s ( 2 ~  fct + koi . p', + a) .  The complex envelope 

of gn(t) is 

&(t) = Aexp(ja)exp(jko+ - p',) = io( t )  exp(jko+ .A), [2-9] 

where &(t) is the complex envelope of the signal received at element 0. From Equa- 

tions 2.8 and 2.9, we see that the array output at time t can be expressed as follows: 

~ ( t )  = j ~ ( t )g (+ ) ,  where 

1 



is the array manifold vector corresponding to the direction i. Component n of a(+) is 

just the phase shift between the signals received at element n and at the origin at any 

given time instant. Equation 2.10 expresses the array output in terms of the signal 

jo(t) received at the reference element (element O), and the array response vector 

a(+). If the origin of the coordinates does not coincide with an element location, the - 

array output can be expressed as x(t) = jorg(t)g(i), where jorg(t) is the complex 

envelope of the signal received at the origin at time t. If the array elements were not 

omnidirectional but had a complex response pattern h(i), the array manifold vector 

would be modified as follows: a(?) = h(i)a(i).  

Narrow-Band Plane  Waves 

In practice, the signals received by the antenna elements are not pure sine waves, 

but are pulsed sine waves with some target modulation. The spectrum of the received 

signal is however still concentrated in a small frequency band around the carrier fre- 

quency fc. Assume that the spectrum is confined to the band fcf W as in Figure 2.2a. 

If the maximum frequency deviation W from fc is 'small', the array manifold vector 

can still be represented by phase differences corresponding to those for a harmonic 

signal with frequency fc. The definition of 'small' however depends on the center 

frequency fc and the aperture (maximum distance between any two elements) of the 

array. 

Assume that the two array elements that are furthest apart are elements 0 and 

n. Since the incident signals are band-pass, the signal received at element 0 can be 

expressed as follows (see Equation 2.7): 

The complex envelope of this signal is ijo(t) = a(t) exp[jq5(t)]. The signal received 

at element n is a time delayed version of go(t). Following Equation 2.2, we have 

gn(t) = go(t + T) , where T = i - &/c is the appropriate time delay. Using the fact 

that ko = 2n fc/c, we obtain g,(t) = a(t + T) cos[2n fct + ko? p', + q5(t + T:)]. The 



complex envelope of this signal is 

Now if jo(t + T) M jo(t) , we have j, (t) = jO(t) exp(j koi.p',). This equation is identical 

in form to Equation 2.9, and the array output can hence be written as 

as in Equation 2.10. The components of the array manifold vector a(?) in the above 

equation are the phase factors corresponding to the center frequency fc. 

The signals received by the array are narrow-band if jo(t + T,,,) M jO(t), where 

T,, is the maximum time taken for a wavefront to propagate across the entire array. 

From the definition of T, we see that T,,, = I I $ n l l / ~  = dmax/c, where dm, is the 

maximum distance between any two array elements. Now, jo(t) is a low-pass signal 

with maximum frequency component W. If W is such that T,,, << 1 / W, the signal 

jo(t) cannot change appreciably in time T,,,, and the received signals are narrow- 

band. 

To illustrate via an example, consider the case of a 10 element uniform linear 

array (ULA) operating at a center frequency fc = 2 GHz ( A  = 0.15m). The elements 

are spaced half a wavelength apart to avoid grating lobes. We have dm,, = 9A/2 = 

0.675m1 and T,,, = 2.25ns. We want to find limits on the maximum frequency 

deviation W for which the wave can be considered to be narrow-band. In the time 

period T,,,, the maximum fractional change of a sinusiod (change in signal level / 
signal amplitude) is ~TWT,,,. Limiting the maximum fractional change to 1% yields 

W = 0.71 MHz. The received signal would thus be narrow-band if its spectrum was 

confined to the band fc f 0.71 Mhz. 

2.4 Array Data Model 

The standard model employed to describe the antenna array output in a multiple 

source, narrowband scenario is presented in this section. The array has N identical 



elements at locations p',, n = 0,1, .  . . , N - 1 with reference to an appropriately posi- 

tioned cartesian coordinate system. Assume that d < N point sources are present in 

the far-field of the array, and that the source DOAs are ik, k = 1,2,. . . , d. Narrow- 

band plane waves with common center frequency f, emanate from each of the sources 

and impinge on the array. Addititve noise corrupts the signals received by the an- 

tenna elements. The received signals (in complex envelope form) are sampled at time 

instants t = 1,2,. . . , L, yielding L snapshots of array data. The snapshot vector at 

time t is modeled as follows: 

where a ( ik ) ,  defined in Equation 2.11, is the array manifold vector corresponding to 

the kth source. The signal DOAs do not change during the observation period, and 

the manifold vectors thus remain constant over all the snapshots. In the model, sk(t)  

is the complex envelope of the kth signal at the reference element (the origin). The 

vector n(t)  is formed by stacking the complex envelopes of the noise at the array 

elements. Equation 2.15 can be expressed in matrix form as follows: 

where A = [s(il), . . . ,a(id)] is the DOA matrix, and s(t) = [sl(t),  s2(t), , sd(t)lT 

is the vector of signal complex envelopes. 

The signals and the noises are assumed to be stationary, zero mean, uncorrelated 

random processes. The noise covariance matrix is R, = E [n(t)nH(t)], and the source 

covariance matrix is P = E [s(t)sH(t)]. The array output covariance matrix R = 

E [x(t)xH(t)] thus has the form 

The noise vector is frequently assumed to be spatially white, (uncorrelated from sensor 

to sensor) with variance a. The noise covariance matrix is thus R, = aI. The source 

covariance matrix P has full rank d provided the incident signals are non-coherent. 



2.5 Beamforming and Array Patterns 

Beamforming is a spatial filtering operation that is the basis for the conventional 

method of DOA estimation with antenna arrays. A beam is formed by weighting 

and summing the array outputs. Let x ( t )  be the array output at time t ,  and wH = 

[wo, wl , . . . , w ~ - ~ ]  be the beamforming weight vector. The beam output is 

y ( t )  = w H x ( t ) .  

The response of the array to a source in the direction i is given by the array manifold 

vector a(+).  The elements of the manifold vector are just the phase shifts incurred by 

the wavefront in propagating from element to element. The standard beamforming 

procedure is to choose the beamformer weights such that these phase shifts are com- 

pensated for. Such a beamformer is called a cophasal beamformer; the weight vector 

required to 'steer' the array to the direction is is just aH(i,). From Equation 2.18, we 

see that the beam output is large when a source arrives from the direction is,  since 

all the signals sum up in phase. Signals arriving from other directions are attenuated 

by the beamformer. The beamformer thus performs spatial filtering. 

Given a certain weight vector w H,  the antenna array pattern specifies the response 

of the beamformer to a source arriving from the arbitrary direction i .  The array 

pattern thus specifies the spatial frequency response of the antenna array for a given 

set of beamformer weights. The array pattern depends only on the weight vector w H  

and the relative positions of the array elements. The array pattern is independent 

of the type of elements employed. For an N element array with elements located at 

@ o , @ l , .  . . , F N - 1 ,  the array pattern is 

N-1  

f ( i )  = wHa(i) = C wn exp(j koi - A). [2.19] 
n=O 

The array pattern f ( i )  is in general complex-valued. Its absolute value If ( i )  1 is 

typically an oscillatory function with a main-lobe and side-lobes. The main-lobe 

represents the pass-band of the beamformer; sources from directions i: in the main- 

lobe region are passed without much attenuation. It is desirable that the array pattern 



Figure 2.4 Array pattern for a 10 element ULA 



have a narrow main-lobe and low side-lobes. The array can be steered to 'look' 

in different directions by changing the weight vector wH. For example, (cophasal 

excitation) the weight vector wH = aH(iS)  steers the main-lobe to the direction is. 

For illustrative purposes, we proceed to obtain the cophasal array pattern for 

a ULA. The ULA has N elements located on the z axis of the spherical coordinate 

system of Figure 2.1. The elements are spaced apart by a distance d, and the position 

vector at  element n is p', = n d i .  The interelement spacing is assumed to be d = 

X/2 to avoid grating lobes. The array manifold vector (given by Equation 2.11) 

corresponding to the arrival of a narrow-band plane wave of wavelength X from the 

direction i is 

where u = cos 9. It is clear that the ULA is sensitive only to the angle 9 that the 

source makes with the axis of the array and that it is insensitive to the angle 4. The 

normalized cophasal beamforming weight vector required to steer the array to the 

direction us is wH(uS) = gH(us)/N. Using Equation 2.19, we find that the array 

pattern is 

7r sin [N: (U - us)] 
- 1)-(21-21,) ) - 1 < u I 1 .  

2 

The spatial frequency response of the ULA under cophasal excitation thus has sinc-like 

structure. If the origin of the coordinate system had chosen to be at  the center of the 

array, the corresponding cophasal array pattern would have been real-valued. With 

the origin at the center of the array, the element positions are specified by p7, = (nd - 

( N  - l)d/2) 2 .  The corresponding array manifold vector d ( u )  = e-j(N-1)nU12 - a(u) is 

centro-Hermitian. The corresponding real-valued array pattern is 

sin [ ~ f  (u - us)] 
f1(.) = , - 1 < u < 1 .  

N sin [ f (u  - us)] 

Figure 2.4 depicts the absolute value of the array pattern for an N = 10 element ULA 

steered to boresight (us = 0). The main-lobe has a 3dB beamwidth u 0.886 x 4/N, 



and the first side-lobe is approximately 13.5dB below the level of the main-lobe. The 

width of the main-lobe is inversely proportional to the aperture of the array. The 

side-lobe levels can be lowered by applying amplitude tapers to the beamforming 

weight vector. This windowing operation however broadens the main lobe. 

The development of the UC A-RB-MUSIC algorithm involves synthesis of real- 

valued array patterns for the UCA. As described in Section 2.6.2, synthesizing real- 

valued beam patterns reduces the computational complexity of the beamspace MUSIC 

algorithm. 

2.6 The MUSIC Algorithm 

The MUSIC (Multiple SIgnal Classification) algorithm [Sch86] for DOA estima- 

tion of narrow-band signals is described in Section 2.6.1. MUSIC is one of the 'super- 

resolution' algorithms that can resolve sources that are spaced less than a beamwidth 

apart. The Beamspace MUSIC algorithm employs a beamforming matrix to pro- 

cess the array data. MUSIC is then applied to the data in the transformed space 

(beamspace). Section 2.6.2 contains a brief description of Beamspace MUSIC. Note 

that the UCA-RB-MUSIC algorithm is a beamspace version of MUSIC that employs 

a phase mode excitation based beamformer. The MUSIC (and Beamspace MUSIC) 

algorithms obtain DOA estimates via a search for peaks in the MUSIC spectrum. A 

variation of the algorithm, Root-MUSIC [Bar83], dispenses with the need for a spec- 

tral search when a ULA is employed. Root-MUSIC provides DOA estimates via the 

zeros of a polynomial; the expensive search procedure required by MUSIC is replaced 

by a polynomial rooting procedure. Root-MUSIC was originally designed for use in 

conjunction with ULAs. However, employing phase mode excitation based bearn- 

formers allows Root-MUSIC and other ULA techniques to be employed in beamspace 

with UCAs (see Section 4.2.1, [ZM92], and [MZ92]). Section 2.6.3 describes the Root- 

MUSIC algorithm. 



2.6.1 E l emen t  Space MUSIC 

MUSIC is also known as 'Element Space MUSIC' when the algorithm is applied 

to  the array data directly (no preprocessing via beamforming matrices is employed). 

Let us assume that d narrow-band plane waves from the distinct directions ik, k = 

1,2, .  . . , d are incident on an array of N elements. The standard data model x(t) = 

As(t)  + n(t)  of Equation 2.16 describes the array output. We will assume without - 

loss of generality that the noise vector n(t) is spatially white with covariance matrix 

aI. As in Equation 2.17, the element space covariance matrix is 

The incident signals are assumed to be non-coherent, and the source covariance matrix 

P thus has full rank d. The N x N matrix A P A ~  (called the clean covariance matrix) 

is Hermitian, and has rank d. Its spectral decomposition is 

where the eigenvalues A; are real-valued and satisfy 

The orthonormal eigenvectors 3; (called signal space eigenvectors), and -a g. (called 

noise space eigenvectors) are grouped to form the matrices 

The vectors g. are in the null-space of A P A ~ ,  and we thus have AHg. = O d .  The 
-a --a 

matrix G thus spans the orthogonal complement of R(A), and is said to span the 

noise subspace. The matrix S clearly spans R(A), and is said to span the signal 

subspace. The MUSIC spectrum defined by 

goes to infinity when i = i;, a true signal direction. The d peak locations in the 

MUSIC spectrum thus specify the source DOAs. The matrix sH above is the 



projection matrix onto the noise subspace. Note that the eigenvectors of the element 

space covariance matrix R are identical to those of the clean covariance matrix. 

The spectral decomposition of the element space covariance matrix, which is what is 

available, is 

where Ai = + a. THE EVD of R thus yields the necessary bases for the signal and 

noise subspaces. 

In practice, a finite number of snapshots, K, of array data are available. The 

sample covariance matrix 

is used as an estimator for R. This estimator is consistent and asymptotically efficient 

when the noise is Gaussian. The EVD of $ reveals that d of the smallest eigenvalues 

are clustered together. Criteria such as the Akaike Information Criterion (AIC) or 

Minimum Descriptor Length (MDL) [WK85] can be employed to obtain an estimate, 

2, of the number of sources. Given the estimate of the number of sources, the eigen- 

vectors can be partitioned to form S and &. The estimator & is then employed 

in (2.25) that defines the MUSIC spectrum. The location of peaks in the spectrum 

give the source DOAs. The MUSIC algorithm can be employed even if the noise is 

spatially correlated (provided the noise covariance matrix R, is known). When the 

noise is correlated, the generalized eigenvalue decomposition (GEVD) of the matrix 

pencil {R, R,) yields bases for the signal and noise subspaces. 

2.6.2 Beamspace MUSIC 

With beamspace MUSIC, the array output data is first processed by a beamform- 

ing matrix. The MUSIC algorithm is then applied to the transformed (beamspace) 

data. The dimension of the beamspace data vector may be smaller than the di- 

mension, N, of the element space data vector. Operating in beamspace can offer a 

number of advantages (such as reduced computational complexity, lower SNR resolu- 

tion thresholds, and reduced sensitivity to sensor perturbations) over element space 



operation [ZKS93]. Beamspace processing yields rich dividends with UCAs - phase 

mode excitation based beamforming leads to the development of the UCA-RB-MUSIC 

and UCA-ESPRIT algorithms. 

In the following developments we will assume that the element space noise vector 

has covariance matrix 01. Let FH be the b x  N beamforming matrix, where the number 

of beams is b 5 N. Each row of FH is a beamforming weight vector that possibly steers 

the array to a desired direction. The effect of the beamforming matrix could thus be 

to limit the search for sources to a certain sector in space. The beamspace data vector 

is y( t )  = FHx(t)  = FHAs(t) + FHn(t). The matrix A = [a(i l) ,  . . . , a(id)]  = FHA 

is the beamspace DOA matrix, and a(+;) = FHa(+;) are the appropriate beamspace 

manifold vectors. The beamspace covariance matrix is 

The beamspace noise vector has covariance matrix FHF, and is white only if the 

beamformer is orthogonal (i.e., satisfies FHF = I).  Now, as with element space 

MUSIC, the GEVD of the matrix pencil {R,FHF)  yields matrices S and G that 

respectively span the beamspace signal and noise subspaces. The beamspace MUSIC 

spectrum is 

The source DOAs are obtained by searching for peaks in the spectrum as usual. 

Section 2.5 addressed real-valued pattern synthesis with ULAs. The UCA-RB 

(Real-Beamspace) MUSIC algorithm also employs a beamformer that synthesizes real- 

valued beam pat terns. Synthesis of real-valued pat terns implies that the beamspace 

DOA matrix A is real-valued. It is clear from (2.28) that the real-valued GEVD 

of the matrix pencil {Re (R) ,  Re (FHF))  yields bases for the beamspace signal and 

noise subspaces in such cases. Synthesizing real-valued patterns thus reduces the 

computational complexity, as only real-valued EVDs are required. 



Root-MUSIC [Bar83, ZKS931 is a variation of the MUSIC algorithm that was 

originally developed for use in conjunction with ULAs. Root-MUSIC provides DOA 

estimates via the zeros of a polynomial, and the computationally expensive spectral 

search procedure required by MUSIC is avoided. As seen in Section 2.5, the ULA 

manifold vectors are Vandermonde. This allows the denominator of the MUSIC 

spectrum of Equation 2.25 to be writ ten as a polynomial. The zeros of this polynomial 

that are close to the unit circle identify the source arrival angles as described below. 

The ULA manifold vector defined in Equation 2.20 is a(u) = [I, ejTU, . . . , ej(N-l)rru]T. 

The manifold vector can be written in terms of the complex variable z as follows: 

where it is understood that z = eJTu lies on the unit circle. The denominator of the 

MUSIC spectrum of Equation 2.25 can be expressed as the polynomial 

We have Q(z;) = 0 when z; = eJrrui corresponds to a true signal arrival direction. 

The roots of the equation Q(z) = 0 that are close to the unit circle thus identify the 

signal DOAs. The polynomial Q(z) above has order 2(N - 1) and its coefficients are 

easily shown to be centro-Hermitian. Thus if z; is a zero of Q(z), so is l/z:. The 

roots thus occur in pairs on radial lines in the z plane. A root z; close to the unit 

circle corresponds to a source in the direction u; = arg(z;)/?r. 

The Root-MUSIC algorithm offers better performance than spectral MUSIC as 

has been documented in [RH89b]. Root-MUSIC has a lower failure rate than spectral 

MUSIC [SS91]. A 'failure' here refers to the presence of only a single peak in the 

MUSIC spectrum, when two closely spaced sources are present in reality. Root- 

MUSIC exhibits two distinct signal zeros in many of the cases where spectral MUSIC 

fails to resolve the two sources. Our initial research efforts [ZM92, MZ921 focused 

on applying Root-MUSIC with UCAs to perform the azimuthal search for sources 



at a given elevation. Although Root-MUSIC cannot be employed in element space 

with UCAs, the phase mode excitation based transformation to beamspace induces a 

beamspace manifold vector whose azimuthal dependence is through a Vandermonde 

vector. This property allows Root-MUSIC to be employed in beamspace with UCAs. 

Section 4.2.1 discusses how Root-MUSIC is applicable as part of the UCA-RB-MUSIC 

algorithm. 



3. BEAMFORMING FOR CIRCULAR RING ARRAYS/APERTURES 

This chapter reviews beamforming techniques for circular ring arrays/apertures. 

Two beamforming techniques - standard cophasal beamforming, and phase mode ex- 

citation based beamforming are studied. The UCA-RB-MUSIC and UCA-ESPRIT 

algorithms employ phase mode excitation based beamformers, and most of the at- 

tention is thus focused on phase mode excitation based beamformers. Discussions on 

phase mode excitation of UCAs can be found in [Dav83, LCD67, CZ691. Cophasal 

excitation is not employed in the development of UCA-RB-MUSIC or UCA-ESPRIT: 

the discussion is included for the sake of completeness. Further details on cophasal 

beamforming with UCAs can be found in [Ma74]. The discussions on beamforming 

first address the case of the circular ring aperture. The UCA (sampled version of the 

circular ring aperture) is then considered. The development of UCA-RB-NIUSIC and 

UCA-ESPRIT requires that the UCA far-field patterns closely approximate those of 

circular ring apertures. This can be accomplished by judicious choice of the number 

of array elements. 

The UCA geometry is introduced in Section 3.1; expressions for the UCA manifold 

vectors are also obtained. Section 3.2 describes cophasal beamforming for circular 

arrays/apertures. Phase mode excitation of UCAs is next discussed in Section 3.3. 

A discussion on the number of independent modes that can be excited with a given 

aperture and the selection of the number of array elements is included. Phase mode 

excitation based pattern synthesis for UCAs is described in Appendix B. 



Figure 3.1 Uniform circular array geometry. 

3.1 Uniform Circular Array Geometry 

The UCA geometry is depicted in Figure 3.1. The antenna elements, assumed to 

be identical and omnidirectional, are uniformly distributed over the circumference of 

a circle of radius T in the xy plane. A spherical coordinate system is used to represent 

the arrival directions of the incoming plane waves. The origin of the coordinate system 

is located at the center of the array. Source elevation angles 8 E [O, ~ / 2 ]  are measured 

down from the z axis, and azimuth angles 4 E [ O , ~ T ]  are measured counterclockwise 

from the x axis. 

Element n of the array is displaced by an angle y, = 2nn/N from the x axis. 

The position vector at this location is p', = (T cosy,, T sin y,, 0). Consider a nar- 

rowband plane wave with wavenumber ko = 27r/X propagating in the direction -i 

with elevation and azimuth 8 and 4, respectively. The unit vector i has cartesian 

coordinates i = (u, v, cos 8): u = sin 8 cos 4, and v = sin 8 sin 4 are respectively the 

direction cosines with respect to the x and y axes. From this point onwards, the vec- 

tor 8 = ((, 4 )  where ( = kor sin 8, or the vector p = (u, v) will be used to represent 



the DOA of a signal (rather than the vector i as in the previous chapter). At any 

given time instant, the signal complex envelopes received at the origin and at element 

n differ in phase by +, = , jkoi .A = ,jkor(ucos%+vsin%) = , jf  c o s ( d - ~ n ) .  The element 

space UCA manifold vector thus has the following representations: 

3.2 Cophasal  Excitat ion of Circular Arrays/Apertures  

a(8) = - 

Cophasal excitation of arrays with arbitrary geometries was discussed in Sec- 

tion 2.5. In this type of beamforming, the beamformer weights steer the array to the 

desired 'look' direction by compensating for the corresponding phase shifts at each 

element location. The Bessel function of the first kind, Jo, describes the far-field 

pattern resulting from cophasal excitation of circular ring apertures. In the following 

discussion of cophasal excitation, the vector P of direction cosines is used to represent 

source arrival directions. 

3.2.1 Circular Ring Aperture:  Cophasal Excitat ion 

The representation in terms of 8 will be used in the development of the UCA-RB- 

MUSIC and UCA-ESPRIT algorithms. The representation in terms of P is more 

convenient for performance analysis of the algorithms. 

- - 
,j( -(d-70) 

c-(d-rl ) 

, j f  C O ~ ( ~ - Y N - I )  - - 

We proceed to obtain the expression for the far-field pattern f '(P, P,) that de- 

scribes the aperture gain in the direction P = (u, v) when cophasal beamforming 

is employed to steer the aperture to the direction Ps = (us, us). The superscript c 

signifies that the pattern corresponds to a continuous aperture. It is useful to define 

the difference vector 

P - P - Ps = (ud,vd), where ud = u - US, and vd = v  -US.  d -  P.21 

, a (P )  = 

- - 
ejkor(ucos-yo+vsin-yo) 

,jkor(u c-rl +vs inr l )  

, j k o r ( u c - - y ~ - ~  + v s i n r ~ - l )  
- - 

[3.1l 



Let the representation of Pd in polar coordinates be (T, v). We have 

T = du/1+ vj, and u = tan-' (vd/ud). 

The beamformer weight required at angular position 7 E [ 0 , 2 ~ ]  to steer the aperture 

to the direction ps is w(7) = e-jk~r(U~COe^I+V~sin^I). The resulting far-field pattern is 

This integral can be simplified using the property Jo(s) = & ~i~ ejXcosy dy to obtain 

the following expression for the far-field pattern: 

The cophasal beam-pattern of circular ring apertures is thus described by the Bessel 

function Jo. Note that the array gain in the direction p depends only on the distance 

T = llPdll (in the uv plane) between this direction and the 'look' direction. 

3.2.2 Uniform Circular Array: Cophasal Excitation 

As discussed in Section 2.5, the beamforming weight vector required to steer the 

UCA to the direction Ps is just wH = a H ( P s ) / ~ .  The corresponding far-field pattern 

is f"(P, Ps) = aH(Ps)a(P)/N, where the superscript s signifies a sampled aperture. 

Substituting for a from Equation 3.1, we obtain 

where T and v are defined in Equation 3.3. Employing a procedure similar to that 

used to prove Equation 3.10, the above directional pattern can be expressed as 

The first term in the above expression (called the principal term) is identical to the 

far-field pattern for the continuous aperture. The remaining terms, called residual 

terms, arise due to sampling of the continuous aperture. The principal term dominates 



the pattern provided N is sufficiently large. The residual term that contributes the 

most to f '(P, P,) is the term with index q = 1. The amplitude of this term is no 

greater than IJN(k0rr)1. The argument of the Bessel function is bounded by 2kor, 

since T E [0,2]. Now, JN(2kor) is small if N > 2kor: this is because the value of the 

Bessel function is small when its order excceeds its argument. Choosing a sufficiently 

large number, N, of array elements thus virtually eliminates the contribution of the 

residual terms. The discussion in Section 3.3.2 of phase mode excitation for UCAs 

includes a more detailed account on the contribution of residual terms. 

3.3 Phase Mode Excitation of Circular ArraysIApertures 

In this excitation technique, the phase of the excitation function (beamformer 

weight) increases linearly as the circular aperture is traversed. This linear increase 

of phase is similar to the cophasal excitation of a ULA. The excitation function 

corresponding to phase mode m (for integer m) for a circular ring aperture is w,(r) = 

ejrn7, 7 E [ 0 , 2 ~ ] .  The excitation function for phase mode m undergoes a phase 

increment of 2 m ~  on traversing the circle. It is clear that phase mode m is just 

a spatial harmonic of any arbitrary excitation function: The arbitrary excitation 

function ~ ' ( 7 )  has the expansion ~ ' ( 7 )  = Cg==_, cmejm7, where c, is the Fourier 

series coefficient corresponding to phase mode m. 

Phase mode excitation is the basis for a powerful pattern synthesis technique for 

circular arrays. Attractive directional pat terns (with good directivity properties) can 

be synthesized using phase mode excitation [Dav83]. Pattern synthesis is however 

not of direct concern in the development of UCA-RB-MUSIC and UCA-ESPRIT. 

The algorithms rather exploit the structure of the induced beamspace manifold to 

advantage. Our initial efforts [ZM92, MZ921 on applying ULA techniques with UCAs 

focused on synthesizing sinc-type patterns with UCAs. A discssion of phase mode 

excitation based pattern synthesis for UCAs is thus included in Appendix B. In the 

following discussion of phase mode excitation for circular arrays, sources DOAs are 

represented by the vector 8 = (c, d), where c = kor sin 0. 



3.3.1 Circular Ring Aperture: Phase Mode Excitation 

The excitation function corresponding to phase mode m (for integer m) is wm(y) = 

dm,. The resulting far-field pattern is fh(B) = & J:~ wm(y)ej(cOs(+-y) dy. Again, the 

superscript c signifies a continuous aperture. As shown in Appendix A.l, the far-field 

pattern can be expressed as follows: 

In the above expression, Jm(() is the Bessel function of the first kind of order m. The 

following observations can be made about the far-field pattern. First, the azimuthal 

variation ejmd in the far-field pattern has the same form as the excitation function 

ejmy. This property is the basis for phase mode excitation based pattern synthesis 

with UCAs, as described in Appendix B. Second, the elevation dependence (and 

also the amplitude) of the far-field pattern is through the Bessel function J, (0. This 

places limitations on the number of independent modes that can be excited by a given 

circular aperture, as described below. 

Number of Modes Excitable with a given Circular Aperture 

Let M denote the highest order mode that can be excited by the aperture at a 

reasonable strength. A rule of thumb for determining M is [Dav83] 

This is justified as follows: The visible region 8 E [ 0 , ~ / 2 ]  translates into ( = 

kor sine E [0, Lor]. M is chosen as above because the mode amplitude Jm(() is 

small when the Bessel function order m exceeds its argument (. For mode orders 

ml > M ,  f&(B) is small over the entire visible region. The beamformer for such a I - 

mode m thus severely attenuates sources from all directions. The M' = 2M + 1 phase 

modes, m E [-M, MI (where M is specified by Equation 3.7) can thus be excited at 

a reasonable strength by a given aperture. 

The following example illustrates the limit on the number of excitable modes. 

Consider a circular aperture of radius r = A. Equation 3.7 suggests that the maximum 



Figure 3.2 Bessel functions. 



mode ordler is M = 6 (the closest integer to 27~). The Bessel functions of order 0 

through 7 are plotted in Figure 3.2. The figure reveals that J7(5) is indeed small over 

the entire visible region 0 5 5 5 27r. Thus only phase modes of order m E 1:-6,6] can 

be excitedl at a reasonable strength by the aperture. 

3.3.2 Uniform Circular Array: Phase Mode Excitation 

We now consider phase mode excitation of an N element UCA. The normalized 

beamform.ing weight vector that excites the array with phase mode m, JmJ  _< M is 

The re~ult~ing array pattern f;(e), where the superscript s denotes the sampled aper- 

ture, is 
1 N-1  

As shown in Appendix A.2, the array pattern can be expressed as follours [Dav83, 

where g = Nq-m and h = Nq+m. The first term in this equation, the principal term, 

is identica,l to the far-field pattern of Equation 3.6 corresponding to the c:ontinuous 

circular aperture. The remaining terms arise due to sampling of the c:ontinuous 

aperture, and are called residual or aliasing terms. Examination of Equ,ation 3.10 

reveals that the condition N > 21mJ must be satisfied for the principal berm to be 

the dominant one. The highest mode excited has order M, and we therefore need 

array elements. This condition is identical to the Nyquist sampling criterion, as 

M defines the maximum spatial frequency component in the array excitation. With 

M = kor ads in Equation 3.7, it is clear that (3.11) requires the circumferential spacing 

between adjacent array elements to be less than 0.5X. Note that an int.erelement 



Ta~ble 3.1 Maximum residual term contribution as a function of N for a UCA with 
r = X and M = 6. 

spi~cing of 0.5X is sufficient to avoid grating lobes with ULAs. In practice, employing 

N > 2M + 5 elements is sufficient to make the residual term contributions negligible. 

With N 2 2M + 5 elements, the UCA far-field pattern closely fo~llows that of the 

coritinuous circular aperture. The following discussion addresses this issue in more 

detail. 

Ch~oosing N to make Residual Term Contributions Negligible - - 

The residual term that contributes the most to the far-field pattern of Equa- 

tion 3.10 arises from the q = l index. The amplitude of this term fbllows the Bessel 

function of order N - Iml. The residual contribution is clearly ma~ximum for mode 

M, and the amplitude of this residual term follows JNdM (0. Now JN-M(<) is mono- 

tone increasing over the visible region [0, kor] by virtue of the choice of M and N in 

Equations 3.7 and 3.11. JN-M(kor) is therefore an upper bound on the maximum 

contribution of any residual term. This upper bound can be made a,s small as desired 

by making the number N of array elements sufficiently large. 

We return to the example of the UCA of radius r = X with M = 6 to illustrate 

the selection of N. Equation 3.11 requires that the array have AT > 12 elements. 

The upper bound on the maximum residual contribution, JN-M(kor.), is tabulated in 

Table 3.1 for various values of N. The table indicates that the residual contribution is 

'srr~all enough' to be ignored for N > 15 elements (circumferential spacing < 0.42X). 

Thus having N > 15 elements ensures that the UCA far-field patterns corresponding 

to phase mode excitation with mode orders Iml 5 M = 6 are virtually identical to 

the far-field patterns of Equation 3.6 corresponding to a continuous: aperture. 



The dsevelopment of the UCA-RB-MUSIC and UCA-ESPRIT algorithms in the 

following chapter assume that the maximum mode M and the number osf array el- 

ements N' have been chosen according to the design guidelines establishled in this 

section. The principal term thus characterizes the UCA far-field pattern. for mode 

orders Iml 5 M: We have 

The final equality above follows from the property J-,(() = (-l)m J,((:) of Bessel 

functions. 



4. DEVELOPMENT O F  UCA-RB-MUSIC A N D  UC.A-ESPRIT 

The UCA-RB-MUSIC and UCA-ESPRIT algorithms for 2D angle estimation with 

UCAs are described in this chapter. Both algorithms operate in beamspace and em- 

plaly phase mode excitation based beamformers. The beamforming matrices employed 

by the algorithms are constructed in Section 4.1. Section 4.2 describes the UCA- 

REI-MUSIC algorithm: the advantages UCA-RB-MUSIC offers over element space 

MUSIC are discussed in some detail. The UCA-ESPRIT algorithm is next developed 

in Section 4.3. The changes in the UCA manifold due to mutual coupling between 

array elements is described in Section 4.4. Simple modifications that enable UCA- 

RE;-MUSIC and UC A-ESPRIT to account for mutual coupling effects are presented. 

Section 4.5 investigates the use of directional antenna elements with UCAs. Both 

UCIA-RB-MUSIC and UCA-ESPRIT are applicable if the element patterns are om- 

nid.irectiona1 in azimuth (only elevation dependent). Although UCA.-ESPRIT cannot 

be employed when the elements have arbitrary patterns, a phase mode excitation 

based beamspace MUSIC algorithm is still applicable. 

4.3. Beamforming Matrices for UCA-RB-MUSIC and  UCA-ESPRIT 

Three phase mode excitation based beamformers that synthesize beamspace man- 

ifolds of dimension M' = 2 M  + 1 are developed in this section. The beamforming 

matrices are denoted F2, Ff, and F f ;  the corresponding beamspace manifolds are 

a.48)) ar(8), and a,(8), respectively. The subscipts e, r, and u respectively stand 

for 'even', 'real-valued' and 'UCA-ESPRIT' for reasons that will soon be apparent. 

All three beamformers are orthogonal (have orthonormal rows), and satisfy FHF = I. 



The orthogonal matrix 

is the bui:llding block for the three beamformers. It is evident from Equation 3.8 that 

the rows of the MI x N matrix V H are phase mode excitation beamforming weight 

vectors. These rows are in fact an MI dimensional subset of the N IDF'T (Inverse 

Discrete Fourier Transform) weight vectors. 

The beamforming matrix F t  is defined as follows: 

F: = cevH7 where [4-21 

The diagonal, unitary matrix C, serves to eliminate factors of the form jlnLl in Equa- 

tion 3.12. The resulting beamspace manifold vectors thus have the form 

+(0) = Ffg(0) m f i J ( [ ) ~ ( # ) ,  where L4.31 

J(c) = diag{J~(c)~...,J~(c)~Jo(c),J~(c)~-..,J~(c)}~ and L4.41 

j M 4  e- j4  ejo ,j4 , jM4]T v(#) = [e-  ,..., 7 7 7 - r n - 7  P.51 

The azimuthal variation of +(0) is through the vector v(#) that is similar in form to 

the ULA manifold vector. The elevation dependence takes the form of a !symmetric 

amplitude taper through the matrix J(c) of Bessel functions. The diagonal elements 

of J(c) are even about the center element; thence the subscript e. The beamspace 

manifold ;xe(0) is centro-Hermitian and satisfies i+(0) = a:(0), where i is the reverse 

permutation matrix with ones on the anti-diagonal and zeros elsewhere. Employing 

the beamlormer F? thus allows a Forward-Backward (FB) average to be performed 

in beamspace. 

The centro-Hermitian nature of +(0) motivates the development of .the beam- 

former Ffr that synthesizes a real-valued beamspace manifold. We have 

F: = wHFf = wHcevH7 and L4.61 

a,(0) = FFg(0) = wH+(0) = f i w H ~ ( [ ) v ( # ) .  P.71 



It is evident that the beamspace manifold a,(@) is real-valued if' the matrix W H  

has centro-Hermitian rows. Orthogonality of FF is maintained by restricting W to 

be unitary. An appropriate sparse matrix W H  and the corresponding beamspace 

manifold are given below. The symbol OM denotes a zero vector of length M .  

Another choice of W and the corresponding real-valued beamspacle manifold are as 

folllows: 
1  w = - [ ~ ( a - ~ ) i  - . . iv(ao)i. - iv(aM)], and m [4.10] 

ar ( 8 )  = [ f  ( C ,  d - Q - M ) ,  . - 7  f ((7 d - a-l), f ( ( 7  d ) ,  f ( ( 9  d - a1 ), . - 7  f ( ( 9  d - a M ) I T ,  

[4.11] 

where f ( C , d )  = & [ ~ o ( < ) + 2 ~ f = ,  J,(C)cos(md)], and ai = 2 s i / M t ,  i E [- M, MI. 

With this choice of W ,  the beamformer F: synthesizes the basic beam pat tern f  ( C ,  4 )  
which is just the sum of the components of +(@). Multiple beams are obtained 

by rotating this basic pattern in azimuth by the angles ai. Having a real-valued 

besmspace manifold is advantageous for computational reasons. It allows subspace 

estimates to be obtained via real-valued EVDs as opposed to complex-valued EVDs, 

and thus provides computational savings. The UCA-RB-MUSIC algorithm developed 

in .the following sect ion exploits this property. 

The last beamformer F t  synthesizes the beamspace manifold a,(@) whose spe- 

cial structure is exploited in the development of the UCA-ESPRIT algorithm. The 

beamformer is defined by 

F: = cuvH, where [4.12] 

C u  = diag { j M ,  . . . , j l ,  jO,  j - I , .  . . , j - M } .  



The diagonal, unitary matrix C, serves to eliminate factors of the form jrn in Equa- 

tion 3.12. The resulting beamspace manifold is 

a,(8) = ~ E a ( 6 )  s f i J - ( [ ) v ( ( ) ,  where [4.13] 

J-(O = diag {J-M([),. . , , J-I([), Jo([), JI([), .. ,JIM([)}, [4.14] 

and v(4)  is defined in Equation 4.5. Examination of Equations 4.6 and 4.12 shows 

that a un:itary transformation relates the beamformers F t  and F;: We have F t  = 

Co WFF, where 

Co = cUceH = diag { ( - I ) ~ ,  . . . , (-I)', 1, 1, . . . ,I}. [4.15] 

The same transformation thus relates the corresponding beamspace manifold vectors: 

We have 

a,($) = CoWar(8).  [4.16] 

This prop~erty enables computation of the beamspace signal subspace matrix for UCA- 

ESPRIT via a real-valued EVD. 

4.2 Development of UCA-RB-MUSIC 

UCA-ltB (Real-Beamspace) MUSIC employs the beamformer F r  that synthesizes 

the real-v,dued beamspace manifold a,($) = f iwHJ([)v(4) of Equation 4.7. De- 

pending on the choice of W, ar (0) has the form of Equation 4.9 or Equation 4.11. 

Since a,((?) is real-valued, signal eigenvector estimates can be obtained via a real- 

valued EVD as described below. This reduction in computation (element space MU- 

SIC requires a complex-valued EVD) is one of the advantages of UCA-RB-MUSIC. 

Let A = [2(01), . . . be the N x d DOA matrix, assuming that d signals im- 

pinge on the array. Using the standard data model, the element space data vector can 

be represented as follows: x( t )  = As(t)  + n(t), where s(t) is the vector of signal com- 

plex envelopes, and n(t)  is the noise vector. The signals and the noises are assumed 

to be stationary, zero mean, uncorrelated random processes. The incident ;signals are 

assumed l,o be non-coherent, and the source covariance matrix P = E [s(t)sH(t)] is 



thus positive definite. The noise process n(t) is assumed to be complex Gaussian dis- 

trilbuted and spatially white with covariance matrix 01. The element space covariance 

ma~trix R = E [x(t)xH(t)] thus has the form 

Eniploying the beamformer Ff yields the beamspace data vector y(t) = Ffx(t) = 

A,s(t) + Ffn(t), where A, = FfA is the real-valued beamspace DOA matrix. The 

corresponding beamspace covariance matrix is denoted Ry. Expressions for Ry and 

the matrix R = Re {Ry ) are given below: 

where PR = Re {P). It is clear that the real-valued EVD of R. yields bases for 

the beamspace signal and noise subspaces. Let X1 > > Ad > Xd+1 = = 

AM, = a be the ordered eigenvalues of R, and let sl, . . . , sd, gd+:l, . . . , g ~ l  be the 

corresponding orthonormal eigenvectors. The real-valued matrices S and G defined 

below respectively span the beamspace signal and noise subspaces. 

The UCA-RB-MUSIC spectrum 

has peaks at 8 = 8; corresponding to the signal arrival directions. DOA estimates 

are therefore obtained by searching for d peaks in the two-dimensional UCA-RB- 

MUSIC spectrum. The major computations required by UCA-RB-MUSIC are a real- 

valued EVD of the matrix R, and a two-dimensional search for peak,s in the spectrum 

Sb(8) = Sb(C, 4). The elevation dependence of the spectrum is through the parameter 

C =- kor sin 8, where 8 is the elevation angle. 



4.2.1 A.dvantages of UCA-RB-MUSIC 

The UCA-RB-MUSIC algorithm offers many attractive features that art: not avail- 

able in element space. All these features are available in beamspace because the 

azimuthal. dependence of the beamspace manifold ar(8) of Equation 4.7 is through 

the vectoir v(4) whose form is similar to the ULA manifold vector. One advantage 

mentioned already is the computational savings due to the requirement of only a real- 

valued EVD. Other advantages include improved estimator performance (due to FB 

averaging, applicability of Root-MUSIC, and the ability to perform coarse searches of 

the UCA-RB-MUSIC spectrum via an FFT. These features are discussed in further 

detail below. 

Forward/Backward averaging in beamspace 

As mentioned Section 4.1, the beamformer FF synthesizes the centro-Hermitian 

beamspace manifold ~ ( 8 ) .  Forward/Backward (FB) averaging is thus possible in 

beamspace: The corresponding FB averaged covariance matrix is Rfb = (R, + 
i ~ z i ) / 2 ,  where R, = FCRF. is the beamspace covariance matrix under the beam- 

former F::. The property iw = W* is employed in the manipulations below that 

show that the matrix R = Re {Ry) employed by UCA-RB-MUSIC is derived from 

the FB averaged covariance matrix Rfb. 

UCA-RB-MUSIC is thus endued with benefits associated with FB averaging, such as 

improved estimator performance in correlated source scenarios. FB type averaging 

can be performed in element space with a UCA when the number of arra!y elements 

N is even; this property does not appear to have been exploited by researchers prior 

to this work. FB type averaging is possible for even N because the permuted version 

Ja(8) of the element space manifold vector, with 



is centro-Hermitian. However, such averaging is not possible in element space when 

N is odd. UCA-RB-MUSIC can thus outperform element space N[USIC when N is 

odld. The theoretical performance curves in Section 5.5 substantiate this claim. 

S~ec t ra l  Search via FFT 

UCA-RB-MUSIC requires a search for peaks in the 2D spectrum of Equation 4.22 

to obtain source azimuth and elevation estimates. This search is expedited by the fact 

that the computationally efficient FFT can be employed to evaluate the spectrum at 

each candidate elevation angle. Let V(4; [) = vH (4) J([) WGG~W.' J ([)v (4) denote 

the UCA-RB-MUSIC null spectrum at the elevation specified by [ = kor sin 8. With 

Q( = J ( [ )wGGTwHJ([ ) ,  the null spectrum can be written in th'e form 

MI-1 

V(4; [) = x a((l)ejl+, where ac(I) = x Q((i, j ) .  [4.25] 
l=-(MI-1) i,j:j-i=l 

The matrix QC is Hermitian such that a((-I) = a;(l). V(4; [) can thus be writ- 

ten in terms of the Discrete Time Fourier Transform of the M' point sequence 

a; = {aC(0), 2aC(-I), . . . , 2aC(-M' + 1)): We have V(4; [) = R.e {A;(d)), where 

Ai(4) = xEk1 al,(l)e-jl+. The UCA-RB-MUSIC null spectrum V($; [) at the el- 

evation specified by [ can thus be evaluated at L equispaced azimuth angles dl = 

2xI/L, I = 0,1,. . . L - 1 via an L point FFT of the sequence a; a#ppropriately zero 

padded. In contrast, the search for peaks in the element space IMUSIC spectrum 

cannot be expedited via an FFT. 

The Root-MUSIC algorithm [Bar831 originally developed for use in conjunction 

with ULAs hinges on the Vandermonde structure of the ULA manifold. Root-MUSIC 

cannot be employed in element space with UCAs as the UCA manifold vectors a(@) 

of Equation 3.1 are not Vandermonde. However, the azimuthal dependence of the 

UCA-RB-MUSIC null spectrum is through the vector v(4) of Equation 4.5 that is 

Vandermonde except for a multiplicative scale factor. Root-MUSIC can thus be 

emlployed in beamspace to obtain azimuth angles of sources at a given elevation. The 

Ro'ot-MUSIC formulation follows on setting z = ej+ in Equation 4.25, and equating 



the null slpectrum V(q5; <) to zero. The polynomial equation 

results. R,oots z; of this equation which are close to the unit circle yield the azimuth 

estimates 4; = arg (2;) of sources at the elevation <. UCA-RB-MUSIC thins benefits 

from the concomitant advantages of Root-MUSIC such as a lower failure rate for 

closely spaced sources at a given elevation. 

Mapping onto ULA type manifold 

Severa,l researchers [Dav83, DD921 have considered the case where all incident 

sources are confined to a given elevation angle, say (0, and the problem of interest is to 

estimate the source azimuth angles. It is clear from Equation 4.3 that the beamformer 

FELA(<o) = (l/n) J-I (6)F: maps the UCA manifold a(<o, 4) corresponding to the 

elevation onto the manifold v(d) of Equation 4.5. We have 

and the beamspace manifold corresponding to the elevation is similar to the ULA 

manifold. Using the beamformer FZLA(C0) in such a scenario thus permits Spatial 

Smoothing [PK89a] to be employed in beamspace to combat the rank reducing effect 

caused by source coherency. Further, sinc type azimuthal patterns can be synthe- 

sized as with a ULA [ZM92, MZ921, and the Beamspace Root-MUSIC algorithm 

[ZKS93] can thus be employed. This algorithm allows for parallel sector-wise az- 

imuthal searches for sources via rooting of reduced order polynomials. 

4.2.2 U-CA-RB-MUSIC: Algorithm Summary 

1. Form the array sample covariance matrix &. = $ x(t)xH(t) by averaging 

over the I< data snapshots. Also form the sample beamspace covariance matrix 

RY = F;&F,. 

2. Perform the real-valued EVD of the matrix R = Re { R ~ } ,  and apply an appro- 

priate detection technique to get an estimate d of the number of sources. Let the 



ordered eigenvalues of R be il > - - .  > AM., and the corresponding orthonor- 

ma1 eigenvectors be P I , .  . . , Pi, gi+l,. . . , gMt. Form the matrices s = [PI , .  . . , PJ 

and G = . , gMt] that respectively span the estimated signal and noise 

subspaces. 

3. Search for 2 peaks in the two-dimensional UCA-RB-MUSIC spectrum 

1 h(e) = [4.27] 
vH(4) J(C) [WGGTW~] J([)V(#J) ' 

,. ,. 
The peak locations 9; = (kor sin B;,  #J;), i = 1,. . . ,a give the DOA estimates. 

As described earlier, use of the FFT facilitates this 2D spectral search. 

4. If a good estimate of source elevation angle is available, Root-MUSIC can be 

employed to obtain the azimuth angle estimate as described earlier. Root- 

MUSIC can resolve sources at a given elevation and closely spaced in azimuth 

even if the UCA-RB-MUSIC spectrum reveals only a single peak in the vicinity. 

4.2.3 Previous  Work on  Application of ULA Techniques -with UCAs 

As mentioned in Section 1.1, phase mode excitation based beamformers have been 

em.ployed to synthesize attractive directional patterns with UCAs, and to obtain DOA 

estimates via the beamforming principle. Our initial work [ZM9:2, MZ921 focused 

on phase mode excitation based sinc-type pattern synthesis with UCAs (patterns 

similar to the cophasal ULA beam patterns). Root MUSIC was tihen employed to 

obtain azimuth angle estimates of sources at a given elevation. Other work on the 

application of ULA techniques with UCAs include that of Tewfik a.nd Hong [TH92], 

and Friedlander and Weiss [FW92]. 

To compare UCA-RB-MUSIC with the work reported in [TH92], we recall that 

the rows of the matrix VH (of Equation 4.1) that defines the bea,mforming matrix 

F,h' are inverse DFT weight vectors. Row m E [-M, MI of VH excites the array with 

phase mode m, and a total of MI = 2M + 1 < N modes are excited. Thus, only MI 

of the N possible phase modes are excited. The reason for choosing MI < N was 

to make the contributions of residual terms to the UCA far-field pattern negligible, 



thus leading to a beamspace manifold whose azimuthal dependence is through the 

Vandermonde (except for a multiplicative scale factor) vector ~ ( 4 ) .  A fill1 N x N 

inverse D'FT beamformer was employed in [TH92] to make the transformmation from 

element slpace to beamspace. Some of the beams thus have significant contributions 

from residual terms, and this detracts from the desired Vandermonde structure. The 

approach proposed in [TH92] was to employ Root-MUSIC to obtain source azimuth 

estimates at each elevation angle under consideration. The imperfect Vartdermonde 

structure however introduces errors in the estimates. The problem of elevation angle 

estimatioli was not addressed in [TH92]. 

Friedlitnder [FW92] proposed the interpolated array scheme that employs mapping 

matrices to map the manifold vectors for an arbitrary array onto Vandermonde ULA 

type steering vectors. The azimuthal field of view corresponding to each candidate 

elevation angle is divided into sectors, for each of which a different mapping matrix is 

designed. The interpolating matrix for a given sector is computed as the least squares 

solution of an overdetermined system of equations corresponding to the desired map- 

ping. The link between the present work and the interpolated array technique is 

provided by Equation 4.26. It reveals that FELA(c0) is the desired mappilng matrix 

that maps the element space UCA manifold a((0, 4) corresponding to the elevation c0 
onto the IJLA type manifold vector ~ ( 4 ) .  Phase mode analysis thus provitles closed- 

form expressions for the mapping matrix for each elevation angle, and the mapping 

is valid for the entire 360" of azimuth. 

4.3 Development of UCA-ESPRIT 

The UCA-ESPRIT algorithm represents a significant advance in the area of 2D 

arrival angle estimation. It is a closed-form algorithm that provides autlomatically 

paired source azimuth and elevation angle estimates. In contrast, the algosrithms for 

2D arrival angle estimation to date have required expensive spectral search'es [Sch86], 

iterative solutions to multi-dimensional optimization problems [CS91, SK931, or a 

pairing p1,ocedure for associating independently obtained direction cosine estimates 



[ZS89]. The UCA-ESPRIT algorithm is fundamentally different from ESPRIT in that 

it is not based on the displacement invariance array structure required by ESPRIT 

[R:K89]. The development of UCA-ESPRIT hinges rather on a recursive relationship 

beltween Bessel functions. The steps in the algorithm however, are similar to those of 

TLS-ESPRIT [RK89]. In the 1D angle estimation scenario, TLS-IESPRIT provides 

DOA estimates via the eigenvalues of a matrix. UCA-ESPRIT provides closed-form 

DOA estimates via matrix eigenvalues in the 2D angle estimation scenario: The 

eigenvalues have the form p; = sin 8; ej48, and thus yield automaticislly paired source 

azimuth and elevation angle estimates. Since 8; E [O, .lr/2], the eigenvalues satisfy 

)pi[  5 1, and lie within or on the unit circle. It is clear that )pi)  = sin 0;, and 

arg (pi) = 4; respectively specify the elevation and azimuth angles of the ith source 

without ambiguity. Note also that p; = u; + jv;, where u; = sine';cos4;, and v, = 

sin0;sin4; are respectively the direction cosines with respect to the x and y axes. 

Another similarity between UCA-ESPRIT and ESPRIT is the approximate halving 

(with respect to the size of the beamspace manifold) in the maximum number of 

resolvable sources. UCA-ESPRIT can resolve a maximum of dm,, := M - 1 sources, 

roughly half the number resolvable with UCA-RB-MUSIC. 

The beamformer Ff of Equation 4.12 forms the basis for the development of 

UCIA-ESPRIT. The structure of the corresponding beamspace manifold a,(@) of 

Equation 4.13 is crucial to the development of the algorithm. We have 

Co:nsider extracting three subvectors of size Me = MI-2 from the beamspace manifold 

as follows: a; = A;a,(@), i = -1,0,1, where the Me x M1 selection ~natrices A-1, A. 



and A1 pick out the first, middle and last Me elements from a,($). Thle property 

J-,(() = (-l), Jm(() of Bessel functions leads to the following relationship: 

al = Dia'_, , where [4.29] 

M-2 D = diag ((-1) , . . . , (-I)', (-I)', (-I)', . . . , ( - I ) ~ } .  

The phases (excluding the signs of the values of the Bessel functions) of the vectors 

%, ejda-l and e-jdal are the same. The recursive relationship Jm-1 (() + J m + l ( ( )  = 

(2m/() Jn,(() can now be applied to match the magnitude components of the three 

vectors. This leads to the critical relationship 

I'm = pa-1 + p*al [4.30] 

= pa-l + p*Dia'_,, where 
X 

I' = - diag{-(M - 1) ,..., - l ,O , l , . . . ,  M - 11, and 
r r  

p = sindejd. 

The partitions of the beamspace DOA matrix A, = [a,(B1) i - .  . . a,(Bd)] also satisfy 

the above property. Defining A; = AiAu,  i = -1,O, we obtain 

I'Ao = A-lO + D ~ A ' _ ~ @ * ,  where 

O = diag {pl, . . . , pd) = diag {sin dl ejm', . . . , sin dd ejdd). 

The beamspace signal subspace matrix S, that spans R{Au) can be obtained via a 

complex-valued EVD of the beamspace covariance matrix Ru = FfRF,. However, 

the relationship of Equation 4.16 allows S, to be expressed in terms of the signal 

subspace matrix S of Equation 4.20 that was obtained via a real-valued EVD. We 

have A, == CoWA, = Co WST-', where T is a d x d real-valued non-singul-ar matrix. 

Thus 

A, = S,T-', and S, = COWS. [4.32] 

The critical relationship (4.31) can now be expressed in terms of the partitions 

S; = AiSU, i = -1,O of the signal subspace matrix S,. Substituting A;; = SiT-' 



in Equation 4.31, and using the fact that T is real-valued leads to the following 

relationship: 

FSo = S-l!l! + D~S?,P*, where 

* = T-~@T.  

Writing in block matrix form yields the following system of equations: 

E g  = rSo ,  where 

E  = [S-1 i D ~ s I ~ ] ,  and 

This system of equations is overdetermined when Me > 2d i.e., d < M ,  and has a 

un-ique solution 2 or equivalently, !l!. From (4.33) we have = T!l!T-l, and the 

eigenvalues of !l! are thus p; = sin 8; ejdi, i = 1, .  . . , d. The eigenvalu'es of !l! thus yield 

automatically paired source azimuth and elevation angles: We have 8; = ~ i n - ~ ( J p ; ( )  

and 4; = arg (p;). We point out that the eigenvalues p; can be obtained via a 

real-valued EVD in place of the complex-valued EVD of !@ = !l!R + j q 1 .  We have 

!l!9* = !l!k + *; = T-lQQ*T, a real-valued matrix. The real-valued EVD of the 

matrix !l!i+*; thus yields the matrix T of eigenvectors, and @ is computed according 

to Q = T!l!T-'. UCA-ESPRIT cannot be employed when d 2 M ,  i~nd  the system of 

Equation 4.34 is underdetermined. This is because the system possesses an infinity of 

solutions having the block conjugate structure of 9, as shown in Appendix C.2. The 

ma,ximum number of sources that UCA-ESPRIT can resolve is thus dm,, = M - 1, 

where M is the maximum mode excited. 

Under noisy conditions, the matrices E and so are formed using signal subspace 

estimates. The matrix @ is then obtained as the least squares (LS) solution to the 

overdetermined system 

E g  = rso. 
Appendix C.1 shows that 9 has block conjugate structure, as in the noise free case. 

The eigenvalues of the upper block & yield the source DOA estimates as described 



earlier. Appendix C.1 also shows that the block conjugate structure leads to the 

following simplification in computing the LS solution. It allows the LS solution to 

be obtained by solving the system of 2d real equations below rather than solving a 

system of 2d complex equations as would otherwise be required. 

A A 

B = s'~,s-~, C = S!~D~SI,, and Q = s'l,I'So. [4.37] 

The subscripts R and I in the above equation denote the real and imaginary parts, 

respect ivelly. 

UCA-ESPRIT is clearly superior to existing 2D angle estimation algorithms with 

respect to computational complexity. The significant computations required by UCA- 

ESPRIT include a real-valued EVD of the MI x M' matrix R, solution of the sys- 

tem (4.36) of 2d real equations, and a d x d EVD of the complex-valued matrix 8 (or 

a real-valued EVD of &; + &:) . Spectral searches, iterative optimization techniques, 

and the need to pair independently obtained direction cosine estimates are dispensed 

with. The simulations in Section 5.6 however show that the UCA-RB-M'USIC esti- 

mates have lower variances than the UCA-ESPRIT estimates. The UCA-ESPRIT 

estimates serve as good starting points for iterative Newton searches for peaks in 

the UCA-RB-MUSIC spectrum. The performance of UCA-RB-MUSIC can thus be 

realized at the additional cost of a Newton iteration if required. 

4.3.1 UCA-ESPRIT:  Algorithm S u m m a r y  

1. Obtain the real-valued matrix s via Steps 1 and 2 in the algorithm summary of 

Section 4.2.2. Compute S, = C,WS, where C, is defined in Equation 4.15, and 

W is specified by either Equation 4.8 or Equation 4.10. Form the submatrices 

S; = A;s,, i = -1,0, and construct the matrix E = [s-1 i DPSI~]. 

2. Obtain the least squares solution & = &R + j&r by solving the real-valued 

system of equations in (4.36). 



3. Compute the eigenvalues Pi, i = 1 .  . , d of . The eigenvalues 5; are the 
A A A 

diagonal entries of the matrix TqT-', where T-' is the real-valued matrix 

whose columns are the eigenvectors of fbk + @:. The estimates of the elevation 

and azimuth angles of the ith source are 8; = sin-'(I$;l) and 4; = arg ($;), 

respectively. If direction cosine estimates are desired, we have hi = Re {$;I, 
and 6; = Im {$;I. 

4. DOA estimates of lower variance can be obtained by using the UCA-ESPRIT 

estimates from Step 3 as starting points for a Newton search for nearby maxima 

in the two-dimensional UCA-RB-MUSIC spectrum of Equation 4.27. 

4.4 Mutual Coupling Effects 

Mutual coupling effects can be quite significant with UCAs of omnidirectional 

elements [Dav83]. In the presence of mutual coupling, a (6)  of Equation 3.1 is no 

longer an accurate representation of the UCA manifold. The UC!A manifold after 

incorporating mutual coupling effects is denoted ~ ~ ( 6 ) .  We have 3,(6) = Ya(6), 

wh.ere Y is the mutual coupling matrix [RW92]. At first glance it; appears that all 

the phase mode excitation developments are inapplicable due to tlne presence of Y. 

However it is well known [Dav83] that exciting a UCA with phase mode m synthesizes 

the same phase mode in the far-field pattern even when mutual coupling effects apply. 

A change in the corresponding mode amplitude in the far-field pattern is the only 

effect of mutual coupling. As a consequence of this property, UCA-RB-MUSIC and 

UC A-ESPRIT are easily adapted to account for mutual coupling efects. Accounting 

for mutual coupling with a UCA turns out to be much simpler than with other array 

geometries (see [F W9 11). 

Before proceeding to discuss the modifications required to adapt the algorithms 

to cope with mutual coupling, we provide a proof of the above mentioned property. 

Th~e matrix VH defined in Equation 4.1 excites the UCA with the appropriate phase 



modes, artd the relationship to be proved is 

where A, is a diagonal matrix whose entries represent the change in far-field mode am- 

plitude due to  mutual coupling. The mutual coupling matrix Y is circulant due to cir- 

cular symmetry of the UCA. Let yT be the first row of Y: we have yT = {yo, yl , y2, yl) 

for a four element UCA. It is well known [Dav79] that the DFT (Discrete Fourier 

Transform) matrix diagonalizes any circulant matrix; the IDFT (Inverse DFT) ma- 

trix thus gives the left eigenvectors of any circulant matrix. As mentioned in Sec- 

tion 4.1, the M' rows of the matrix V H are a subset of the N IDFT weight vectors. 

We therefore have 

V ~ Y  = nYvH, where [4.39] 

Ay = diag{X-M ,..., XO ,..., A M )  [4.40] 

is the diagonal matrix whose entries are the appropriate subset of eigenvz~lues of Y.  

These equations prove the assertion in (4.38). We also point out that the eigenvalue 

of Y associated with the i th column of the DFT matrix (or the i th row of the IDFT 

matrix) is' just the i th element in the DFT of the sequence yT. 

From Equation 4.38 it is evident that the beamformers 

1 H F& = A;'F:, Frrn = WHFrrn, a n d ~ t ~  = Ah; F, 

respectively synthesize the beamspace manifolds a, (O), a, (O), and a, ( 0 )  of Sec- 

tion 4.1. It is clear that both UCA-RB-MUSIC and UCA-ESPRIT can be applied 

in conjunction with the above beamformers. However, there are slight differences in 

the imp1e:mentation of the algorithms as F E ~  is not an orthogonal beamformer. With 

a being the power of the spatially white element space noise, the beamspace noise 

covariance matrix is R, = aFkF,, = aWHJAyl-2W, a real-valued, Toeplitz ma- 

trix. Since the beamspace noise is non-white, a generalized eigenvalue decomposition 

(GEVD) is required to obtain signal eigenvector estimates. The steps involved in 



adapting UCA-RB-MUSIC and UCA-ESPRIT to cope with mutual coupling effects 

are summarized below. The mutual coupling matrix Y can be obtained experimen- 

tally or via theoretical analysis. 

4.4.1 Incorporation of Mutua l  Coupling Effects: Algorithm Summary  

1. Let A; denote the ith bin of the DFT of the vector yT that specifies the first 

row of the mutual coupling matrix Y. Using the fact that X-; = AN-i, form 

the matrix A, = diag {A-M,. . . , AO, . . . ,AM}. 

2. Form the sample beamspace covariance matrix RY = FF,&F~~, where FFm = 

WH A;'FF. The beamformer F t  is defined in Equation 4.2. 

3. Perform the real-valued GEVD of R = Re {RY} in the metric of WHIAyI-2W. 

Obtain an estimate d* of the number of sources, and form the matrices s = 

[PI, . . . , id and G = [ g ~ + ~ ,  . . , gMl] by grouping the d* "largest" and M' - d 

LLsmallest" generalized eigenvectors. 

4. Use the matrices s and G from the previous step in the algorithm summaries of 

Sections 4.2.2 and 4.3.1 for UCA-RB-MUSIC and UCA-ESPRIT, respectively. 

4.5 Extensions for Directional Elements 

The developments to this point assumed that the UCA consisted of omnidirec- 

tional elements. We now consider the case where the UCA emp1o:ys directional ele- 

ments disposed such that circular symmetry is retained. Rahim et al. [RD82] obtained 

expressions for the far-field patterns of UCAs of directional elements under phase 

mode excitation: They showed that the far-field pattern still has the same azimuthal 

variation ejm+ as the excitation function. However, the amplitude of the phase mode 

in the far-field pattern is a sum of Bessel functions rather than just Jm(C). One of 

the advantages of using directional elements is that at tractive azimuthal directional 

patterns can be synthesized over wide frequency ranges (over an octave). Consider 



azimuthal pattern synthesis in the array plane (8 = 90'): With omnidirectional ele- 

ments, the mode amplitude Jm(2nr/X) undergoes rapid variations and passes through 

nulls as X is varied. This is not suitable for pattern synthesis, as non-zero mode am- 

plitudes are required. With directional elements, the mode amplitude is a sum of 

Bessel fu~lctions, and is observed to be stable over wide frequency ranges. Another 

advantage of using directional elements is that mutual coupling effects (r;pecifically 

diametrical coupling across the array) are mitigated in arrays of small radius. 

Let g(8,4) represent the directional response of an individual antenna element. 

The UCA of directional elements is characterized by the element space mimifold 

a ( 0 )  = Gea(0), where [4.42] 

G e  = diag 4 - TO), . . . , g(8,4 - YN-I)), 

and y; = 2ni/N is the angular position of the ith element. First consider the case 

where the element pattern is only elevation dependent (omnidirectional in azimuth). 

With the element pattern denoted g(B), the corresponding UCA manifold is a ( e )  = 

g(B)a(B), a scalar multiple of the omnidirectional UCA manifold. The element space 

data vector thus has the representation x( t )  = Ast(t)+n(t) ,  where s t(t) = Ges(t), and 

G e  = diag {g(Bl), . . . , g(Bd)). It is evident that UCA-RB-MUSIC and UCA-ESPRIT 

are both applicable in this scenario - the only change is that the source covariance 

matrix P is replaced by Pd = G ~ P G ~ .  

Now consider the general case where the element pattern is a function of both 

azimuth a,nd elevation. Let g(4; 8) = ce (k)ejkm be the Fourier series expansion 

for the azimuthal variation of the element pattern at the elevation 8. The far-field 

pat tern (ignoring residual terms) resulting from excitation of the UCA of ldirect ional 

elements with phase mode m is [RD82] 

f; (0) = w F a ( 0 )  z ~ , ( B ) e j " ~ ,  where 
P 

Am(8) = ce(k)jm-k ~ , - k ( k o r  sin 8). 
k=-p 

This equakion is similar to Equation 3.12 for the omnidirectional element case. The 

only difference is that the mode amplitude Am(8) involves a sum of Bessel functions, 



and is not just Jm(<). The mode amplitudes are easily shown to satisfy A-,(B) = 

A,,(O). An element pattern suggested in [RD82] is g(8,4) = 1 + sin 0 cos 4: The 

mode amplitudes corresponding to this pattern are Am(8) = jm[Jm(<) - j sinOJ;(<)], 

wh.ere < = kor sine. From Equation 4.43, it is evident that the beamformer VH of 

Equation 4.1 synthesizes the beamspace manifold 

ad(8) = vH%(8) = Jd(8)v($), where [4.44] 

Jd(e) = diag{A~(e) ,  . . . , A  l(e),Ao(e),Al(e),...,A,r(e)). 

Th.e azimuthal dependence of the beamspace manifold ad(8) is through the vector 

v($), as was the case with UCA-RB-MUSIC. The beamspace MUSIC algorithm (em- 

ploying the beamformer VH) for the UCA of directional elements thus possesses most 

of the features of UCA-RB-MUSIC. The features that are lost are the ability to per- 

form FB averaging, and to compute signal eigenvectors via a real-valued EVD. This 

is because the beamspace manifold ad(8) is not centro-Hermitian. UCA-ESPRIT 

cannot be employed when the elements have directional patterns that are functions 

of both azimuth and elevation. This is because the components of Jd(e) are sums of 

Bessel functions, and the recursive Bessel function relationship cannot be employed 

to match the magnitude components of the subvectors of ad(8). 





5. PERFORMANCE ANALYSIS 

The statistical performance of element space MUSIC, UCA-RB-MUSIC, and UCA- 

ESPRIT is investigated in this chapter. Asymptotic expressions for the variances and 

covariances of the element space MUSIC estimators for 2D angle estimation are pre- 

sented in Section 5.1. Such performance analysis results are available for the 1D angle 

estimation case [SN89]. However the present work appears to be the first time such 

results have been made available for the case of 2D angle estimation. Section 5.2 con- 

siders the performance of the UCA-RB-MUSIC algorithm. With IJCA-RB-MUSIC, 

signal subspace estimates are obtained via real-valued EVDs, and the analysis differs 

from that of element space MUSIC in this respect. The final results, however, are 

similar in form to those for element space MUSIC. The statistical performance of 

UCA-ESPRIT is investigated in Section 5.3. The analysis is similar to that of the 

ESPRIT algorithm for 1D angle estimation [RH89a]. Section 5.4 presents results on 

the Cramer-Rao bound (CRB) for the 2D angle estimation problem. Finally, the 

performance of the algorithms for the one and two sources cases is investigated in 

some detail in Section 5.5. It has been shown [SN91] that beamspace MUSIC estima- 

tors cannot perform better than the corresponding element space MUSIC estimators. 

However, FB averaging is possible in beamspace and not possible in element space 

when the number of array elements N is odd. UCA-RB-MUSIC can thus outper- 

form element space MUSIC when N is odd. The theoretical performance curves of 

Section 5.5 demonstrate this property. 

Before beginning the analysis, we restate some of the assumptions made, and in- 

troduce some notation. The number of incident signals d is assunled to be known. 

The signals s(t)  and noises n(t)  are assumed to be stationary, zero mean, uncorre- 

lated random processes. The noise process n(t)  is assumed to be c:omplex Gaussian 



and spatially white with covariance matrix aI. The signals are assumed to be non- 

coherent, and the source covariance matrix P is thus positive definite. T'he number 

of snapshots of array data is K. The dimension of the element space UCA manifold 

is N, and the dimension of the real-valued beamspace manifold is M'. UCA-RB- 

MUSIC works with subspace estimates obtained via an EVD of the real matrix R 

of Equation 4.19. The eigenvalues of R in descending order are { x ; ) ~ ~ .  The real, 

orthonormal matrices S and G that respectively span the beamspace signal and noise 

subspaces are defined in Equations 4.20 and 4.21. The same symbol is usecl to denote 

similar quantities in element space and beamspace; the element space qua~ntities are 

distinguished by underbars e.g., S and S respectively span the beamspace and ele- 

ment space signal subspaces. Hats are used to denote estimated values of quantities 

e.g., G .  In this chapter, subscripts are used to denote partial derivatives e.g., b( and 

bCd respectively represent the first partial derivative of b with respect to (, and the 

mixed partial derivative with respect to C and 4. 

5.1 Performance of MUSIC for 2D Angle Estimation 

Theorem 5.1.1 gives asymptotic (large number of snapshots K) expressions for 

the variances and covariances of the element space MUSIC estimator for 2D angle 

estimation. The results of the theorem hold for arbitrary array configura~tions. The 

following lemma gives asymptotic expressions for the errors in the element space 

MUSIC arrival angle estimates. The proof of the lemma is based on a first order 

Taylor series expansion of the MUSIC null spectrum about the true parameter values, 

and is similar to the proof of Lemma 5.2.1 in Section 5.2. The only difference is that 

the manifold vectors and subspace matrices are complex-valued in elemlent space, 

whereas they are real-valued in beamspace. 

L e m m a  5.1.1 The asymptotic expression for the element space MUSIC estimation 

error vector, gi = [((. -a - 6) , (d. -% - di)lT, for source i is 

ei = E - ' ~  - {- - L e i  , where 



is a symmetric, positive definite matrix with determinant a. The vector 

is a random vector. 

Although the MUSIC estimation errors are in terms of the matrix that spans the 

estimated noise subspace, knowledge of the statistics of the signal space eigenvectors 

is sufficient to obtain expressions for the variances of the DOA estimators. The 

fo:llowing lemma gives the well known result [SN89] on the statistics of the signal 

space eigenvectors of the element space sample covariance matrix that is complex 

Wishart distributed with K degrees of freedom. 

Lemma 5.1.2 The element space signal eigenvector estimation errors, (S; - s;), are 

asymptotically jointly Gaussian distributed with zero means. The error covariance 

matrices are given by 

r 1 

The following theorem gives expressions for the variances and covariance of the 

element space MUSIC arrival angle estimators -I i, and 6. corresponding to the ith 
-I 

source. The proof of the theorem employs Lemmas 5.1.1 and 5.1.2., and is similar to 

tht: proof of Theorem 5.2.1 in the Section 5.2. 

Theorem 5.1.1 The element space MUSIC estimation error vector = [(i; - 

C;) , (4; - - 4;)lT for the ith source is asymptotically zero mean with covariance matrix 

~ a r  cov 
Cov (g;) = P.31 

cov ( t . ,  4.1 v a r  (6.) [ -I -I -t 8=8; 



where a,b,c, and are as defined in Lemma 5.1.1. Two expressions for tlne factor p - 

follow. The latter expression is useful for analytical studies of performance. 

5.2 Performance Analysis of UCA-RB-MUSIC 

Theorem 5.2.1 gives asymptotic (large number of snapshots K) expressions for 

the variances and covariances of the UCA-RB-MUSIC estimators. To avtoid double 

subscripts, the symbols b(6) = a,(6) and B = A, are used to respectively repre- 

sent the beamspace manifold vector and the beamspace DOA matrix. The following 

lemma gives asymptotic expressions for the errors in the UCA-RB-MUSIC arrival 

angle estimates. 

Lemma 5.2.1 The asymptotic expression for the UCA-RB-MUSIC estimation error 

vector, e; = [(& - 6) , (A - di)lT, for source i is 

is a symmetric, positive definite matrix with determinant A. The vector 

is a random vector. 

Proof: The UCA-RB-MUSIC null spectrum is V(6) = bT(6)bBTb(6) .  The null 

spectrum has a local minimum at ei = (ti, di) and we thus have i/c(ei) = 0, and 

~ ~ ( 8 ; )  = 0. Now, e; is a consistent estimator of Bi, and a first order Ta,ylor series 

expansion yields the following: 



Putting these equations into matrix form, we obtain 

The expansions for the derivatives occurring in this equation are as given below. Only 

terms which result in contributions of order 0(1/N) in Equation 5..6 are retained. 

Substituting these expressions back into Equation 5.6 and dropping the common 

factor of two leads to the desired result Eei = p, where E ,  e;, andl p are as defined 

in the lemma. Positive definitiveness and hence non-singularity of :E follow from the 

Cauchy-Schwarz inequality. 

UCA-RB-MUSIC works with subspace estimates obtained frorn the real matrix 

R = Re {RY} that is derived from a FB averaged covariance matrix. The statistics of 

the signal space eigenvectors of R are required for the analysis of IICA-RB-MUSIC. 

Tbe following lemma drawn from [ZK92] gives these statistics. 

L e m m a  5.2.2 The real beamspace signal eigenvector estimation errors, (G; - s;), are 

asymptotically (large K) zero mean with covariance matrices given by 

M' 
rrsjj A; u 

(Xi - Xr)(Xj - As) r=d+l 
S T S T  + 6j.i X 

2(Xi - r=l a = l  

[5.71 
r#i s#j 



where 

1 
r,sji = - {hihsb;jbTs + hiXjbisbjr + wT(s~sT + S~S:)W;), and wi = Im-[Ry}si. 

2 

The following theorem gives expressions for the variances and covariance of the 

UCA-RB-MUSIC arrival angle estimators ci and #; corresponding to the lith source. 

The results are similar in form to those of Theorem 5.1.1 corresponding to t:he element 

space case. However, due to the inherent FB average, the results depend only on the 

real part PR of the source covariance matrix P. The decorrelating effect of the FB 

average allows UCA-RB-MUSIC to outperform element space MUSIC in correlated 

source scenarios when N is odd. 

Theorem 5.2.1 The UCA-RB-MUSIC estimation error vector e; = [((i - 6) , (6; - 
#;)IT for the ith source is asymptotically zero mean with covariance matrix 

cov (ei) = v a r i L )  cov(Ci>6i)]  = n p  [ b  c ]  
cov  (Ci, 6i) v a r  ( i i )  2KA c a 

15-81 

e=ei 
where a,  b, c, and A are as defined in Lemma 5.2.1. Two expressions for tlie factor p 

follow. In the latter expression, which is useful for analytical studies of performance, 

PR = Re {PI .  

Proof: The MUSIC estimation error vector as given by Lemma 5.2.1 is 

We proceed to derive the expression for the variance of the estimator ti. The remain- 

ing results can be obtained in similar fashion. The above equation yields 

b' (. - (. - - where b' = be - c f.  
' ' - - A '  



As shown in [SN89], we have bT(8;)BBT FT: - b T ( 8 ; ) ~ ~ T ~ ~ T .  This result leads 

to the following expressions for the random quantities e and f in terms of the esti- 

mated signal space eigenvectors, whose statistics are available. T'he dependence of 

the expressions on 8; is dropped for conciseness. 

Substituting in Equation 5.9, and using the definitions in Lemma 5.2.1 leads to the 

following expression for the term b': 

where q = (bb( - cbd) is a deterministic quantity, and z = G G ~ S S T ~  is a random 

vector. The vector z will shortly be shown to have the following stististics: 

E ( z )  = 0, and [5.1 I.] 

OP cov ( z )  = E ( zzT)  = - G G ~ ,  
2 1 -  

where p(8;) is defined in the theorem statement. Equation 5.10 now- yields E (b') = 0, 
a bA and Var (b') = qTGGTq = +. The final equality results because qTGGTq = 

bA, a relationship which is easily verified. Employing these results in Equation 5.9 

completes the proof: We obtain E (ti - 6 )  = 0, and Var ( t i )  = & {g )e=e i .  The 

proof for the expression of p(8;) in terms of PR = Re {P) follows a similar proof in 

[SN89]. 

It now remains to verify the expressions for the statistics of the vector z .  We have 

We have E ( i k  - s k )  = 0 from Lemma 5.2.2, and thus E ( z )  = 0 as claimed. Now, 



Using the result of Lemma 5.2.2 on the signal eigenvector statistics, we obtain 

as claimed in Equation 5.11. 

5.3 Performance Analysis of UCA-ESPRIT 

Techniques similar to those used in [RH89a] to analyze the performance of the 

ESPRIT algorithm for 1D angle estimation are employed in the following analysis of 

UCA-ESPRIT [MZ93b]. As described in Section 4.3, the eigenvalues of the matrix 
.. - 

3b have the form ji; = sin ejbi = il; + jC;,  and provide automatically paired source 

DOA estimates. Theorem 5.3.1 gives asymptotic expressions for the variances and co- 

variance of t he UCA-ESPRIT direction cosine estimators il; and 6;. The t heorem also 

gives approximate expressions (accurate at moderate to high SNRs) for the variances 

of the estimators (: = sin i; and 6;. 
The asymptotic variance expressions in Theorem 5.3.1 involve the eigeiivectors of 

@. Equation 4.33 gives the spectral decomposition of @: We have @ == T-'QT, 

where T is real-valued. The left and right eigenvectors of @ are thuls real val- 

ued, and are denoted qT and x;, respectively. The UCA-ESPRIT algorithm in- 

corporates beamspace signal subspace computation via a real-valued EVD: We have 

Su = COWS, where Su spans the UCA-ESPRIT signal subspace, and S is obtained 

via the EVD of the real-valued matrix R of Equation 4.19. The analysis of UCA- 

ESPRIT thus requires the statistics of the signal eigenvector estimates i; that form 

the columns of S .  Lemma 5.2.2 in Section 5.2 gives these statistics. 



A superscript e is used to denote the error in an estimate in the following develop- 

ments e.g., sf = i, - s; is the error in the i th signal eigenvector estimate. The super- 

script + is used to denote the Moore-Penrose pseudo-inverse e.g., E:+ = ( E H E ) - l ~ H  

is the pseudo-inverse of E. 

Theorem 5.3.1 The UCA-ESPRIT direction cosine estimators Q; iand 6; are asymp- 

totically unbiased. Asymptotic (large K) expressions for the variances and covariance 

of these estimators are given below: 

T VUT (Qi) = Hi ajR 

Var (6) = a ~ ~ , a , ~  

T COV (Q;, 6;) = aiR Hi a j~ 

Th.e matrices Hi and the vectors a; = a ; ~  + jaiI are defined as follows: 

E+ . The matrix E = SWl i D"I:, is formed using the true I 
signal space eigenvectors. The following approximate expressions for the asymptotic 

variances of the estimators [,! = sin 8, and #; are accurate at  moderate to high SNRs. 

Var (C) c Var (Qi) cos2 #, + Var (6i) sin2 #i + Cov (Qi ,  ti) Sin 24,. [5.15] 
1 

Var (3;) - [var (6i) cos2 #i + Var (Q;) sin2 #; - Cov (Qi, iti) sin 2#i] . [5.16] (GI2 
Proof: To a first order approximation, the UCA-ESPRIT eigenvalue error due to 

errors in subspace estimates is 

T e  
p; = qi e xi .  [5.17] 

The least squares solution to the overdetermined system EZ = I'so of Equation 4.35 

yields the estimate & = [QT BHIT.  This system can be rewritten as (E + E e ) ( 9  + 
!Pe) = I' (So + Sg). Using the fact that E g  = rSo, and retaining only first order - 

terms, we obtain E r  = I'Sg - Eeg.  Employing the least squares solution yields 



the equation = E+ (I'S; - Ee3P). This solution is adequate in that it yields 

expressions for DOA estimator variance that are accurate to o(K- ' )  [RH89a]. Now 

Qe = Id  1 O d x d  and thus [ I 

-1,O. Substituting in Equation 5.18 leads to the following expression: 

Substituting (5.19) in (5.17) and using the fact that xi is a real-valued eigenvector of 

Q, we obtain the equation 

where 0 7  = a& + jas = $ E + ~  [I'Aocow - piA- lCoW - ~ ~ D ~ A - ~ C , , W * ]  is 
r 1 

I a complex-valued vector. Both Se = s; i . . . i s;] and x; are real-valued. From 

Equation 5.20, we have 

U: = a & s e x i ,  and ve = a;sexj. [5.21] 

It is now evident from Lemma 5.2.2 that E (uf) = E (vf) = 0. The UCA-ESPRIT di- 

rection cosine estimates are thus asymptotically unbiased as claimed. Equations 5.13 

and 5.14 that define the variances of the direction cosine estimators follow on straight- 

forward application of the results of Lemma 5.2.2 in Equation 5.21. 

It now remains to verify Equations 5.15 and 5.16 that respectively give asymptotic 

expressions for the variances of the estimators (: and 4;. These expressi.ons follow 

from the geometry depicted in Figure 5.1. The subscript i that denotes the i th 

source is dropped for notational expedience. Let the UCA-ESPRIT eigenvalue error 

be pe = Ipelejp. The errors in the direction cosine estimates are thus ue =: Jpel cos P, 
and w e  = (pel sinp. From Figure 5.1 we see that ll = lpel cos(p - 4) FZ (It'. We thus 

obtain [Ie FZ ue cos 4 + ve sin 4. This leads to the expression in (5.15) as E ( ( Ie )  = 0, 



Figure 5.1 UCA-ESPRIT eigenvalue error. 

and Var ( p )  = Var ([Ie). Figure 5.1 also shows that l2 = Ipel sin(/? -- 4) F;: ( I @ .  Thus 

@ % $ [ve cos 4 - ue sin 41, and the expression in (5.16) follows as E (4') = 0, and 

Var (6) = Var (@). The approximations made in obtaining the above expressions are 

accurate provided the eigenvalue error pe is small; the expressions are thus accurate for 

moderate to high SNRs. Note that Var (6) cr l/(sin2 8): The variance of the azimuth 

estimator thus increases as the elevation angle 8 decreases. This is a,n intuitive result; 

we know that azimuth is not a good descriptor of source DOA when 8 is small (in 

fact all azimuth angles are equivalent when 8 = 0'). 

5.4 The Cramer-Rao Bound 

It is instructive to compare the performance of the element spalce MUSIC, UCA- 

RB-MUSIC, and UCA-ESPRIT estimators with the ultimate performance dictated by 

the Cramer-Rao bound (CRB). The following lemmagives the CRB on the covariance 

matrix of unbiased estimators of the parameter vector O = [C1,. . . , (d, &, . . . , 4dIT.  

The CRB expression below is based on a random signal model, anld is known as the 



unconditional, or stochastic CRB. The result is a generalization of a similar result 

in [SNSCI] for the 1D angle estimation problem. The symbol @ is used to clenote the 

Hadamard or element-wise matrix product. 

Lemma 5.4.1 The stochastic CRB for any unbiased estimator of O is 

0 
C R B ( 8 )  = - [ ~ e  {H @ PT}] -' , where 

2K 

P' P' 
P+ = [ ] with P' = P _ n H ~ - ' ~ P ,  

H = DH[I-A(AHA)-'AH]D, and 

= [%(el),.-.,%(@d),q(@l),..-,q(@d)] 

We point out that the expression (valid when K is large) for the conditional., or deter- 

ministic CRB can be obtained by making the substitution P' = P in the lemma. Due 

to the simpler expression for P + ,  the deterministic CRB is employed in the theoretical 

performance study in Section 5.5. The study is meaningful as the deterministic CRB 

is a tighter bound than the stochastic CRB. The stochastic CRB is however used as 

the benchmark for comparison in the simulations of Section 5.6. This is because our 

developments have assumed a random signal model. 

5.5 Study of Theoretical Performance for the One and Two Source Cases 

This section investigates the theoretical performance of the element space MUSIC, 

UCA-RB-MUSIC, and UCA-ESPRIT estimators for the one and two source cases. 

The behavior of the deterministic CRB is also studied. The study foculses on the 

behavior of the direction cosine estimators ir and 6 rather than the behavior of ( and 

d. This is because the variance of the azimuth estimator 6 increases as 8 decreases. 

Further, all values of 4 are equivalent when the elevation 8 = 0'. There is no such 

ambiguity in the direction cosine space; we have u = v = 0. The vector of direc- 

tion cosines, ,B = (u,v) is thus used to represent the source DOAs. The: results of 

Theorems 5.1.1 and 5.2.1 are easily modified to give the variances of the direction 



cosine estimators. All that is required is to replace the subscripts (1 and 4 denoting 

partial derivatives by the subscripts u and v ,  respectively. The same substitution in 

Lemma 5.4.1 gives the CRB expressions for the direction cosine estimators. 

The main results of this theoretical performance study are as follows: (a) The 

deterministic CRB is independent of the source DOA in the single source scenario. 

For the two source case, the CRB depends only on the distance T between the two 

source locations in the uv plane, and their relative orientation as specified by the angle 

v of the line joining these locations. ( b )  Closed-form expressions for the element space 

MUSIC estimator variances are obtained for both the one and two source cases. The 

element space MUSIC estimator variances exhibit the same behavio~r as the CRB for 

these cases. ( c )  It is shown via a study of theoretical performance curves that the DOA 

dependence of the UCA-RB-MUSIC estimator variances closely follows the behavior 

of the CRB and element space MUSIC. The performance curves also demonstrate 

that UCA-RB-MUSIC can outperform element space MUSIC in correlated source 

scenarios when N is odd. (d) The UCA-ESPRIT estimator variances for the single 

source case are independent of azimuth at low elevation angles (sin0 < 0.6). At 

higher elevation angles, the estimator variances become azimuth dependent. 

5.5.1 The Deterministic CRB 

Consider the case of a single source of power p  = E ls(n)I2 incident on the UCA 

from the direction ,B = (u, v ) .  Appendix D.2 shows that the deterministic CRB for 

unbiased estimators of u and v is 

where p / a  is the signal to noise ratio. The CRBs for u and v are identical, and are 

independent of the arrival angle. The UCA thus favors all arriv(a1 angles equally. 

Not all array configurations have this desirable property; the rectangular array, for 

example, does not. 

Let p, and p2 specify the source DOAs for the two source case. Let the difference 

vector Pd = p2 - P I  have the representation Pd = ~ e j "  in polar coordinates. T is the 



distance between the two sources in the uv plane, and v is the angle of the line joining 

the two sources. Appendix D.2 shows that the dependence of the CRBs on the source 

DOAs is only through the vector Pd, or equivalently, through the parameters T and 

v. Thus the CRBs do not depend on the absolute positions of the sources but only 

on their positions relative to each other. 

5.5.2 Performance of Element Space MUSIC 

The variances of the element space MUSIC estimators for the single source case 

are shown in Appendix D.l to be 

Var (ii) = Var (6) = 1 +1 /N  

KN(kor)"p/o) ' 

The u and v estimator variances are equal and independent of the source DOA. 

Comparison with Equation 5.23 shows that the element space MUSIC estimators are 

asymptotically efficient in the single source scenario. 

Theorem 5.1.1 gives expressions for the element space MUSIC estimator variances. 

We have Var ( t i )  = ( o d l 2 K A )  - lp=p, and Var (it,) = (opg12K~l) Simplified 
1' 

expressions for the parameters a', b and c can be obtained for the two source case; 

Appendix D.l outlines the derivation of the following results: 

4 p 1 )  = ~ ( p , )  = -(kor)2q{N~l(kor~)}2 sin u cos u 

1 In the above equations, q = N11-Jo2('arr)l. The final equation above signifies that the 

quantity - p is a function of T and the source covariance matrix P.  Equation 5.25 

shows that a,b,c, and - p depend on the source DOAs only through the parameters T 

and u. Thus the element space MUSIC estimator variances depend only on T and 

u: this behavior is similar to that of the CRBs. Equation 5.25 also shows that the 

'The scalar a is distinct from the UCA manifold vector 



parameters g,b, and _c are the same for the two sources. The parameter - p is also 

the same for both sources, provided they are equipowered. Thus with equipowered 

sources, the u and v estimator variances are the same for both sources. 

It can be verified that the variances of the u estimates are highest when the angle 

v = 0, i.e., when the sources have different u coordinates but the sa,me v coordinate. 

Similarly, the variances of the v estimates are highest when v = 7r/2. Now, _c = 0 

when v = 0 or n/2 and hence a = &. The estimator variances corresponding to 
U P  0 19 these orientations are thus given by Var (2) = z, and Var ( B )  = ~7;:. The minimum 

values that g and _b take are identical and equal to (kor)2[q - qN2J:(kors)]. The 

worst case estimator variances for any two source scenario are thus 

max (Var 2;) = max (Var 6;) = ap(Pi) [5.26] 
2 ~ ( k o r ) ~ [ q  - qN2 J:(kors)] ' 

The expression above depends only on the distance T, and the siignal powers and 

correlations as specified by the source covariance matrix P. 

Figure 5.2 depicts the theoretical performance curves (dashed lin'es) of the element 

space MUSIC estimators in a two source scenario. The scenario is identical to that 

of Simulation Example 1 in Section 5.6: the location of the first source is kept fixed, 

and the angle v is changed by shifting the position of the second source. The distance 

between the sources is maintained at T = 0.25, corresponding to a spacing of about 

two thirds of the main-lobe width of the cophasal beampattern. The graphs depict 

the estimator performance as a function of the angle v between the sources. As 

expected, the highest u and v estimator variances occur at  v = 0, and v = n/2, 

respectively. The estimator variances are seen to be identical for the two sources. 

This is in accord with expectations as the sources are equipowered l(SNR=7dB). The 

ultimate performance dictated by the CRB is also sketched (dotted lines) in the figure. 

Note that the element space MUSIC, and CRB performance curves are independent 

of the location of the first source. 
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5.5.3 Performance of UCA-RB-MUSIC 

Theorem 5.2.1 gives expressions for the UCA-RB-MUSIC estimator variances. We 

have Var (6,) = (apbl2KA) la=Bi ,  and Var (6;) = (apal2KA) la=Bi .  The beamspace 

manifold a,(@) of Equation 4.7 (denoted b(B) in this chapter) has complex struc- 

ture. Thus, unlike with element space MUSIC, simple expressions for the parameters 

a, b, and c cannot be obtained. The beamformer FF that makes the transformation 

to beamspace is orthogonal and one might thus expect the behavior of the UCA- 

RB-MUSIC estimates to be similar to that of the element space R4USIC estimates. 

Examination of theoretical performance curves reveals that this is indeed true. Fig- 

ure 5.2 depicts the theoretical performance of the UCA-RB-MUSIC estimators (solid 

lines) for the same two source scenario. The graphs shown are a sul?erposition of the 

performance curves corresponding to four different locations of the first source. These 

locations are = (u, v )  = (0, O), (0.15,0.15), (-0.3,0.3) and (0.45, -0.45). The curves 

are almost identical, confirming that the the dependence of the UCA-RB-MUSIC es- 

timator variances on the source DOAs is for the most part through the parameters T 

and v. 

The graphs in Figure 5.2 also show that UCA-RB-MUSIC outperforms element 

space MUSIC in the source scenario under consideration. This is due to the decor- 

relating effect of the FB average inherent in UCA-RB-MUSIC. FEI averaging is not 

possible in element space when N is odd, and UCA-RB-MUSIC thus outperforms 

element space MUSIC. 

5.5.4 Performance of UCA-ESPRIT 

Theorem 5.3.1 gives expressions for the variances of the UCA-ESPRIT direction 

cosine estimates 6; and 6;. These expressions are quite complicated and cannot be 

simplified even for the single source case. Theoretical performance curves are used 

to investigate the performance of UCA-ESPRIT for the single source case with an 

SNR of 5dB. The standard deviations of the direction cosine estimates as a function 

of source azimuth angle are plotted in Figure 5.3 for several different elevation angles 
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Figure 5.3 Theoretical performance of UCA-ESPRIT for the single source case. 



(C' = sin9 = 0.5,0.7.0.9 and 1.0). The deterministic CRB (which is independent 

of source location) is also plotted. The theoretical performance curves show that 

the estimator performance virtually meets the CRB for C' < 0.5. The estimator 

performance degrades as 5' increases from 0.5 to 1.0. The performance also becomes 

azimuth dependent at these higher elevation angles. The worst perfbrmance of the u 

estimate is at an azimuth of 0" (where v performs best), and the worst performance 

of the v estimate is at an azimuth of 90" (where u performs best). The behavior of 

Cov(u, v) as given by Equation 5.13 is responsible for the shape of the graphs. The 

correlation coefficent between the u and v estimates is observed to be close to zero for 

5' < 0.5. The magnitude of the correlation coefficient increases with increasing C', and 

also becomes azimuth dependent; the correlation coefficient has srriallest magnitude 

at azimuths of 0' and 90". The u and v estimates are projections of the eigenvalue 

p on the real and imaginary axes, respectively. This projection together with the 

behavior of the correlation coefficient is responsible for the curvature of the graphs 

at higher elevations. Although the variances of the u and v estimates are azimuth 

dependent, one would expect the variances of the C' and 4 estimates to be independent 

of azimuth. Plots of the expressions of Equations 5.15 and 5.16 show that the and 

4 estimator variances are independent of azimuth, but are elevation dependent. 

For comparison between UCA-RB-MUSIC and UCA-ESPRIT, we note that the 

UCA-RB-MUSIC u and v estimator variances are virtually DOA independent for the 

single source case. Further, these variances are very close to the CRB in the above 

single source scenario. UCA-RB-MUSIC thus performs better than UCA-ESPRIT, 

with the difference in performance being more pronounced at higher 5'. The UCA- 

ESPRIT estimates can be used as starting points for Newton searches for peaks in 

the UCA-RB-MUSIC spectrum if estimates of better quality are required. 

5.6 Results of Computer Simulations 

This section documents the results of three computer simulations that explore the 

performance (estimator standard deviation) of UCA-RB-MUSIC aind UCA-ESPRIT 
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in a two source scenario. Simulation examples 1,2, and 3 respectively investigate 

the performance of the algorithms as a function of the angle v between the sources, 

the common source SNR, and the phase of the correlation coefficient between the 

signals. The computer simulations show that the experiment a1 results closely match 

the theoretical performance predictions, thus validating the performance analysis re- 

sults that have been obtained. The array and source descriptions for the simulations 

are as follows: The radius of the UCA is r = A,  and the maximun2 mode excited is 

M = 6 (this example was considered in Section 3.3.1). The number of array elements 

is chosen to be N = 19; Table 3.1 shows that the maximum residual contribution is 

negligible with these parameters. The source separation is T = 0.25 in all the simu- 

lations. This separation is about two-thirds of the main-lobe width of the cophasal 

UCA beam pattern that closely follows the Bessel function Jo [CZ691. The correlation 

between the signals is fairly high (magnitude of correlation coefficient = 0.8) in all 

the simulations. A moderate number of snapshots (K = 64) is ern~ployed. The the- 

oretical asymptotic performance expressions are expected to be quite accurate with 

64 snapshots. The simulations assume perfect detection of the number of sources. 

The SNRs quoted in the simulations are per source per array element. All the simu- 

lations feature equipowered sources; this implies identical values of' the CRB for the 

two sources (also, the UCA-RB-MUSIC estimator variances for the first source will 

be very similar to those for the second source). 

5.6.1 Simulation Example 1 

This simulation investigates the estimator performance as a function of the angle 

v of the line joining the two sources in the uv plane. The first source location is 

fixed at Pl = (ul ,  vl) = (0.3,0.6), corresponding to an elevation dl  = 42.1' and 

an azimuth 41 = 63.4'. The angle v is varied from 0' to 180' by rotating the 

second source about the first in the uv plane (the distance T is st:t at 0.25). Both 

sources had SNRs of 7dB, and the correlation coefficient between the sources was 

0.8ej"I4. The results of the simulations are plotted in Figure 5.4. The graphs show 



that UCA-RB-MUSIC performs better than UCA-ESPRIT. Further, the UCA-RB- 

MUSIC performance is fairly close to the CRB. Note that the performance curves for 

UCA-RB-MUSIC and the CRB are independent of the location of the first source. 

In contrast, the performance of the UCA-ESPRIT estimates depends on the absolute 

position of each source. This is attested by the fact that the variances of the UCA- 

ESPRIT estimates are higher for the second source than for the first. 

In the remaining two simulations, the second source is located at P2 = (u2, v2) = 

(0.175,0.8165), corresponding to an elevation 82 = 56.62' and an azimuth li2 = 77.9'. 

The location of the first source is left unchanged. These source locations cor~cespond to 

a separation 7 = 0.25, and an orientation v = 120'. Examination of Figure 5.4 shows 

that the variance of the UCA-ESPRIT u estimate is higher for the second source 

than for the first at this value of v. However, the variance of the UCA-ESPRIT v 

estimates are approximately the same for the two sources. This behavior is evident in 

the UCA-ESPRIT performance curves of simulation examples 2 and 3. We reiterate 

that the UCA-RB-MUSIC performance curves and the CRB are identical for the two 

sources. 

5.6.2 Simulation Example 2 

This simulation examines the performance of the DOA estimators as a function 

of the common source SNR. The source locations are as specified in thle previous 

paragraph, and the correlation coefficient between the sources is 0.8eJ"/~. Figure 5.5 

depicts the results of the simulations. The graphs show that the performance of UCA- 

RB-MUSIC is fairly close to the CRB even at OdB SNR. UCA-RB-MUSIC) is seen to 

outperform UCA-ESPRIT; the performance difference, however, is less significant at 

higher SNRs. The experimental results for UCA-ESPRIT corresponding to OdB SNR 

deviate a little from the theoretical predictions. This is probably because the first 

order approximation employed in the analysis is not accurate enough at this low SNR. 

Another observation from Figure 5.5 is that the UCA-ESPRIT estimator variances for 

the second source are a little lower than the theoretical predictions. This difference is 
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Figure 5.5 Performance of UCA-RB-MUSIC and UCA-ESPRIT as a function of the 
common source SNR. 
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Figure 5.6 Plot of UCA-ESPRIT eigenvalues. 



more pronounced in Figure 5.7 corresponding to Simulation Example 3. This behavior 

can be explained as follows: The far-field patterns corresponding  to phase modes 0 

and 2 have low gains at the location of the second source. We have Jo(Cz) = -0.09 

and J2(C2) = -0.04, where C2 = 2?rsine2. The output powers associated with the 

incident signals in two of the 13 available beams is therefore small. In contrast, the 

gain of these two beams is fairly large at the location of the first source: We have 

J0(C2) = -0.37 and J2(C2) = 0.31. This explains the fact that the theoretical analysis 

predicts higher UCA-ESPRIT estimator variances for the second source than for the 

first. The non-asymptotic behavior of the FB average is responsible for the fact 

that the experimental estimator performance for the second source (with K = 64 

snapshots) is a little better than the theoretical (asymptotic) predictions. 

Figure 5.6 depicts the UCA-ESPRIT eigenvalues ji; (marked by 'x's). The figure 

was formed by superimposing the results of 200 runs at  an SNR of 10 dB. The true 

source locations are at the intersections of the dotted radial lines (azimuth angles) 

and the dotted circles (elevation angles). 

5.6.3 Simulat ion Example  3 

This simulation investigates the performance of the algorithms as a function of 

the phase of the correlation coefficient between the signals. The source locations 

are the same as in the previous example. The common source SNlt is 7dB, and the 

magnitude of the correlation coefficient between the sources is 0.8. :Figure 5.7 depicts 

the performance of the DOA estimators as the phase of the correlation coefficient 

is varied from O0 to 180'. The behavior of the estimators (best performance at 

a correlation phase of 90') is due to the FB average inherent in UCA-RB-MUSIC 

and UCA-ESPRIT. As a consequence of the FB average, the performance of the 

algorithms depends only on the real part, PR, of the source covaxiance matrix P. 

The off-diagonal elements of PR are zero when the correlation phase is 90°, and the 

algorithms see the sources as effectively uncorrelated. The FB average in fact enables 
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Figure 5.7 Performance of UCA-RB-MUSIC and UCA-ESPRIT as a function of the 
correlation coefficient phase. 



UCA-RB-MUSIC and UCA-ESPRIT to resolve two coherent sources, provided the 

phase of the correlation coefficient is neither 0" nor 180". 





6. CONCLUSIONS 

6.1 Summary of Results 

Two signal subspace algorithms for 2D angle estimation with LJCAs, UCA-RB- 

MUSIC and UCA-ESPRIT, have been developed. Both algorithins employ phase 

mode excitation based beamformers and operate in beamspace. UCA-RB-MUSIC is 

a beamspace version of MUSIC that offers the following advantages olver element space 

MUSIC: ULA techniques such as FB averaging, Root-MUSIC, and Spatial smoothing 

can be employed in beamspace with the UCA. This is because the structure of the 

induced beamspace manifold is similar to the ULA manifold. The decorrelating effect 

of the inherent FB average allows UCA-RB-MUSIC to outperform element space 

MUSIC in correlated source scenarios when the number of array elements N is odd 

(FB type averaging is not possible in element space when N is odcl). Finally, UCA- 

RB-MUSIC is more computationally efficient than element space MUSIC. This is 

because a real-valued EVD provides signal subspace estimates, ancl the FFT can be 

employed to facilitate the search for peaks in the beamspace MUSIC spectrum. 

UCA-ESPRIT is a closed-form algorithm that provides automa~tically paired az- 

imuth and elevation angle estimates for each source. It is the only. available closed- 

form algorithm for 2D angle estimation and thus represents a signiificant advance in 

the area. The eigenvalues of the matrix !I! (derived from the least squares solution 

to  an overdetermined system of equations) have the form p; = sin 8; ejbi = u; + jv;, 
and thus provide the properly associated DOA estimates. UCA-ESPRIT does not 

require expensive search procedures and is thus superior to existing 2D angle esti- 

mation algorithms with respect to computational complexity. An.other factor that 



reduces the computational load is that the implementation of UCA-ESPRI'T calls for 

only real-valued EVDs. 

The effects of mutual coupling on the structure of the UCA element space mani- 

fold were analyzed. It was shown that the general structure of the original beamspace 

manifold is retained even when mutual coupling effects are present - the only differ- 

ence is the introduction of gain and phase factors in the beamspace manifold. Con- 

sequently, minor modifications enable UCA-RB-MUSIC and UCA-ESPRIT to cope 

with mututal coupling effects. The properties of the UCA of directiona:l elements 

were also studied. Both UCA-RB-MUSIC and UCA-ESPRIT are applicable if the 

individual element patterns are omnidirectional in azimuth. UCA-ESPRIT cannot 

be employed if this condition on element patterns is not met. However, a beamspace 

algorithm possessing many of the features of UCA-RB-MUSIC is still appllicable. 

The statistical performance of the element space MUSIC, UCA-RB-M-IUSIC, and 

UCA-ESPRIT algorithms for 2D angle estimation has been analyzed; a,symptotic 

(large number of snapshots) expressions for the estimator variances/covarii~nces have 

been derived. The analysis of element space MUSIC for 2D angle estimakion holds 

for arbitrary array configurations. Prior to this work, the performance of MUSIC had 

been examined for only the 1D angle estimation problem. Closed-form expressions 

have been obtained for the element space MUSIC estimator variances in the one and 

two source scenarios. An investigation of the theoretical behavior of the element space 

MUSIC direction cosine estimator variances and the CRB has provided useful insights. 

In the single source case, both the element space MUSIC estimator variances and the 

CRB are constants (independent of the DOA). In the two source case, they depend 

only on the relative positions of the sources in the direction cosine space i.e., they de- 

pend only on the distance between the source locations and the orientation of the line 

joining the sources. The behavior of the UCA-RB-MUSIC estimator variances closely 

follows that of element space MUSIC and the CRB. The results of computer simu- 

lations that demonstrate the efficacy of UCA-RB-MUSIC and UCA-ESPRIT were 

presented. These results also validate the theoretical performance analysis; results. 



6.2 Directions for Future Research 

Two areas that merit further investigation are identified below. They concern the 

development of UCA-ESPRIT like algorithms for filled circular apertures/arrays and 

concentric ring arrays. We proceed to outline some ideas for accomplishing the above 

goals. 

6.2.1 Adaptation of UCA-RB-MUSIC and UCA-ESPRIII! for Filled Cir- 
cular Arrays 

Several existing phased array radar systems, e.g., the SPY-1A or SPY-1B radars 

in the AEGIS series [Sen88], and the arrays comprising the PAVE-PAWS surveillance 

network [Bro85], have circular apertures with antenna element 1oca.tions specified by 

a hexagonal sampling lattice. Filled circular arrays also have potential application 

as base station antennas in mobile communications systems. The effort to adapt 

the UCA-RB-MUSIC and UCA-ESPRIT algorithms for filled circu~lar arrays is thus 

relevant and significant. We proceed to discuss phase mode excitation (with a radial 

amplitude taper) of a circular disc aperture. The resulting far-field patterns are very 

similar to those of Section 3.3.1 for circular ring apertures. The UCA-RB-MUSIC 

and UCA-ESPRIT algorithms are thus easily adapted for use with filled circular 

apertures/arrays. 

An excitation function corresponding to phase mode m for a circular disc aperture 

is 
m .  

w,(p, y) = j - m  ( E )  eJm7, p E [o, r], 7 E [o, 2 ~ 1 .  r [6.11 

The term ejm7 (for integer m) excites the mth phase mode, (PIT)" is a mode depen- 

dent radial amplitude taper, and the phase factor j-" ensures (as with the UCA) 

that the far-field mode amplitude is real-valued. The resulting far-field pattern is 

1 R 27r 

f m ( C ,  4) = fm(kor sin8,d) = - J J U ) ~ ( P ,  7) ejk,p sin 8 cos(+-7) 2n o o 
P dP d~ 

= JR(p/r)m J~ (kop sin 8) ejm4 p dp 



The relationship J xm Jm(x) = xm Jm+l(x) was employed to obtain the final expression 

above. The far-field pattern above is similar to that of Equation 3.6 corresponding to 

phase mode excitation of a circular ring aperture. The differences are the i~ncrease in 

Bessel function order by one and the C dependence in the denominator. It is clear that 

a Real-Beamspace MUSIC algorithm similar to UCA-RB-MUSIC can be employed 

with a circular disc aperture. The UCA-ESPRIT principle can also be employed to 

develop a closed form 2D angle estimation algorithm with the circular disc aperture. 

A relationship between the far-field patterns corresponding to three succes~sive phase 

modes can be developed by employing the recursive Bessel function property. The 

critical relationship is 

where p = sin 0 e j4 .  The development of the closed-form 2D angle estimation algo- 

rithm for the circular disc aperture now parallels the development of UCA,-ESPRIT. 

As was the case with UCAs, the far-field patterns of filled circular arrays closely 

follow the patterns of the circular disc apertures provided the interelement spacings 

are sufficiently small. Criteria need to be developed for locating array elements in 

a filled circular aperture such that the resulting patterns approximate those of con- 

tinuous disc apertures. Possible sampling rasters include hexagonal, rectangular and 

polar. The efficacy of the versions of UCA-RB-MUSIC and UCA-ESPRIT for filled 

circular apertures needs to be evaluated. Comparisons can also be made between the 

performance of the algorithms for circular ring arrays and filled circular apertures. 

6.2.2 Adaptation of UCA-ESPRIT for Concentric Ring Arrays 

Concentric ring arrays have been employed for synthesis of directive patterns 

with low side-lobe levels [SS65]. We outline some ideas for extending the UCA- 

ESPRIT principle for concentric ring arrays (with two rings). The two concentric 

rings are assumed to have radii di ) ,  i = 1,2.  The spacing between the rings is denoted 



rd = - r(l). MI = 2M + 1 phase modes are excited at each ring, as with the UCA. 

It is evident that the UCA-ESPRIT invariance principle can be indelpendently applied 

to beam outputs of each ring. This yields twice as many equations clompared with the 

single ring case; about twice as many sources can thus be resolved by the concentric 

ring array. The number of sources resolvable is easily verified to be dm,, = 2M - 1, 

where M is the maximum mode excited. The number of sources resolvable with a 

single ring is M - 1. 

UCA-ESPRIT relies on the recursive relationship between Bessel functions. Javier 

R. Lopez, who was a visiting scholar at Purdue University during the Fall of 1993, 

conceived the idea of employing another Bessel function property with concentric ring 

arrays. The property 

Jm-l(C) - Jm+1(5) = ZJk(5) L6.41 

relates Bessel functions and their derivatives. The idea was that the derivative could 

be approximated from the quantities associated with the two closely spaced rings. In 

the following, the superscript (i) will be employed to denote evaluation of a quantity 

at the i th ring e.g., ~ ( ~ 1  = kOr(2) sin8 is just evaluated at the second ring. The 

far-field pattern associated with phase mode m (neglecting the phase factor j m)  is 

f$(8) = ~ ~ ( < ( ~ ) ) e j " d .  Employing the relationship (6.4), it is easy to show that 

jd (1) e fm-l (e) - e-j4 f i l l(8) = 2ejm4J' (((I)). m 

The derivative can be approximated by 

- 4  (2) 

J:(c'") M 
e [ f m  (0)  - fL')(')l 

kord sin 8 9 

provided the denominator kord sin 8 is small. Combining Equations 6.5 and 6.6 leads 

to the relationship 

where p = sin 8 ejd as usual. This relationship provides another set of equations 

for the concentric ring array. More sources can be resolved by incorporating these 



equations as well. The selection of the radial difference r d  is importan~t, for the 

approximation of Equation 6.6 to be good. The denominator of this equation is 

kord sin 0 = 9 5 9. The final inequality above follows from Equation 3.7. It is 

clear that r d  has to be a small fraction of the radius d2)  for the approximation in (6.6) 

to be accurate. This is a possible limitation of the method. Further investigation of 

the ideas proposed above is required. 



BIBLIOGRAPHY 



BIBLIOGRAPHY 

[Dav 791 

[Dav83] 

A.J. Barabell. Improving the resolution performance of eigenstructure- 
based direction-finding algorithms. In Proc. IEEE In~t. Conf. Acoust., 
Speech, Signal Processing, pages 336-339, 1983. 

G. Bienvenu and L. Kopp. Decreasing high resolution met hod sensitivity by 
conventional beamformer preprocessing. In Proc. IEEE Int. Conf. Acoust., 
Speech, Signal Processing, volume 2, pages 33.2.1-33.2.4, 1984. 

D.R. Brillinger. Time Series: Data Analysis and Theory. Holden-Day, San 
Francisco, 1981. 

E. Brookner. Phased array radars. Scientific America.n, pages 94-102, 
February 1985. 

M.P. Clark and L.L. Scharf. A maximum likelihood estimation technique 
for spatial-temporal modal analysis. In Proc. 25th Annu,. Asilomar Conf. 
Signals, Syst., Comput., volume 1, pages 257-261, 1991. 

R.E. Collin and F.J. Zucker, editors. Antenna Theory, vol.ume 1, chapter 5. 
McGraw-Hill, New York, 1969. 

D.E.N. Davies. A transformation between the phasing techniques required 
for linear and circular aerial arrays. Proc. IEE, 112(11):2041-2045, Novem- 
ber 1965. 

P.J. Davies. Circulant matrices. Wiley, New York, 1979. 

D.E.N. Davies. The Handbook of Antenna Design, voluine 2, chapter 12. 
A.W. Rudge, K. Milne, A.D. Olver, and P. Knight (Eds.), Peter Peregrinus, 
London, 1983. 

E. Doron and M. Doron. Coherent wideband array processing. In Proc. 
IEEE Int. Conf. Acoust., Speech, Signal Processing, volume 2, pages 497- 
500, 1992. 

B. Friedlander and A.J. Weiss. Direction finding in the presence of mutual 
coupling. IEEE Trans. Antennas Propagat., 39(3):273-284, March 1991. 



[FW92] B. Friedlander and A.J. Weiss. Direction finding using spatial smoothing 
with interpolated arrays. IEEE Trans. Aerosp. Electron. Syst., :28(2):574- 
587, April 1992. 

[GD83] J.R.F. Guy and D.E.N. Davies. UHF circular array incorporating open-loop 
null steering for communications. Proc. IEE, 130, pts. F and H(1):67-77, 
February 1983. 

[Gup65] R.P. Gupta. Asymptotic theory for principal component analysis in the 
complex case. J. Indian Stat. Assoc., 3:97-106, 1965. 

[Hay831 S.S. Haykin. Communication Systems. Wiley, New York, 1983. 

[Hay851 S.S. Haykin. Array Signal Processing, chapter 4. S.S. Haykin Ed., Prentice- 
Hall, New Jersey, 1985. 

[HS90] Y. Hua and T.K. Sarkar. Matrix pencil method for estimating parame- 
ters of exponentially damped undamped sinusoids in noise. IEEE Trans. 
Acoust., Speech, Signal Processing, 36(5):814-824, May 1990. 

[Hua92] Y. Hua. Estimating two-dimensional frequencies by matrix enhancement 
and matrix pencil. IEEE Trans. on Signal Processing, 40(9):2267-2280, 
September 1992. 

[JF85] D.J. Jeffries and D.R. Farrier. Asymptotic results for eigenvector methods. 
J. Indian Stat. Assoc., 132 pt. F(7):589-594, June 1985. 

[KAR83] S.Y. Kung, K.S. Arun, and B.D. Rao. State-space and singular-value 
decomposition-based approximation methods for the harmoni'c retrieval 
problem. J. Opt. Soc. Amer., 73(12): 1799-181 1, December 1983. 

[KB86] M. Kaveh and A.J. Barabell. The statistical performance of the MUSIC 
and minimum-norm algorithms in resolving plane waves in noise. IEEE 
Trans. Acoust., Speech, Signal Processing, 34:331-341, April 1986. 

[KT821 R. Kumaresan and D.W. Tufts. Estimation of frequencies of nnultiple si- 
nusoids: making linear prediction perform like maximum likelihood. Proc. 
IEEE, 70:975-989, September 1982. 

[KT831 R. Kumaresan and D.W. Tufts. Estimating the angles of arrival of multiple 
plane waves. IEEE Trans. Aerosp. Electron. Syst., 19:134-130, January 
1983. 

[LCD671 I.D. Longstaff, P.E.K. Chow, and D.E.N. Davies. Directional properties of 
circular arrays. Proc. IEE, 114, June 1967. 



[LV90] F. Li and R.J. Vaccaro. Unified analysis of DOA estirr~ation algorithms 
in array signal processing. In 2nd Int'l. Workshop on SVD and Signal 
Processing, volume 25, pages 147-169, 1990. 

[Ma741 M.T. Ma. Theory and Application of Antenna Arrays. Wiley, New York, 
1974. 

[MZ92] C.P. Mat hews and M.D Zoltowski. Direction finding with circular arrays 
via phase mode excitation and Root-MUSIC. In Proc. IEEE AP-S Int. 
Symposium, volume 2, pages 1019-1022, 1992. 

[MZ93a] C.P. Mathews and M.D. Zoltowski. Eigenstructure techniques for 2D an- 
gle estimation with uniform circular arrays. submitted to1 IEEE Trans. on 
Signal Processing, March 1993. 

[MZ93b] C.P. Mathews and M.D. Zoltowski. Performance analysis of the UCA- 
ESPRIT algorithm for circular ring arrays. submitted to IEEE Trans. on 
Signal Processing, August 1993. 

[OVK91] B. Ottersten, M. Viberg, and T. Kailath. Performance analysis of the 
total least squares ESPRIT algorithm. IEEE Trans. on Signal Processing, 
39:1122-1135, May 1991. 

[Pi1891 S.U. Pillai. Array Signal Processing. Springer-Verlag, New York, 1989. 

[Pis731 V.F. Pisarenko. The retrieval of harmonics from a covariance function. 
Geophys. J. Roy. Astronom. Soc., 33:347-366, 1973. 

[PK89a] S.U. Pillai and B.H. Kwon. Forwardlbackward spatial smoothing tech- 
niques for coherent signal identification. IEEE Trans. Acoust., Speech, Sig- 
nal Processing, 37(1):8-15, January 1989. 

[PK89b] S.U. Pillai and B.H. Kwon. Performance analysis of MUSIC-type high 
resolution estimators for direction finding in correlated and coherent scenes. 
IEEE Trans. Acoust., Speech, Signal Processing, 37(8): 1 :1176-1189, August 
1989. 

[PRK86] A. Paulraj, R. Roy, and T. Kailath. A subspace rotation approach to signal 
parameter estimation. Proc. IEEE, 74:1044-1045, July 1'986. 

[RD82] T. Rahim and D.E.N. Davies. Effect of directional elements on the direc- 
tional response of circular antenna arrays. Proc. IEE, 129, pt. H(1):180-22, 
February 1982. 

[RH89a] B.D. Rao and K.V.S. Hari. Performance analysis of ESPRIT and TAM in 
determining the direction of arrival of plane waves in noise. IEEE Trans. 
Acoust., Speech, Signal Processing, 37(12):1990-1995, December 1989. 



[RW 921 

B.D. Rao and K.V.S. Hari. Performance analysis of Root-MUSIC. IEEE 
Trans. Acoust., Speech, Signal Processing, 37(12):1939-1949, December 
1989. 

R. Roy and T. Kailath. ESPRIT-Estimation of signal parameters via rota- 
tional invariance techniques. IEEE Trans. Acoust., Speech, Signal Process- 
ing, 37(7):984-995, July 1989. 

C. Roller and W. Wasylkiwskyj. Effects of mutual coupling on super- 
resolution DF in linear arrays. In Proc. IEEE Int. Conf. Acoust., Speech, 
Signal Processing, volume 5, pages 257-260, 1992. 

R.O. Schmidt. Multiple emitter location and signal parameter estimation. 
IEEE Trans. Antennas Propagat., 34(3):276-280, March 1986. 

J .  Sensi, Jr. The AEGIS System, chapter 3. E.Brookner (Ed.), Artech 
House, Boston, 1988. 

A.K. Shaw and R. Kumaresan. Some structured matrix approximation 
problems. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 
volume 4, pages 2324-2327, 1988. 

A.L. Swindlehurst and T. Kailath. Azimuth/Elevation direction find- 
ing using regular array geometries. IEEE Trans. Aerosp. Electron. Syst., 
29(1):145-156, January 1993. 

P. Stoica and A. Nehorai. MUSIC, Maximum likelihood and Cramer-Rao 
bound. IEEE Trans. Acoust., Speech, Signal Processing, 37(5):720-741, 
May 1989. 

P. Stoica and A. Nehorai. Performance study of conditional and uncondi- 
tional direction-of-arrival estimation. IEEE Trans. Acoust., Speech, Signal 
Processing, 38(10): 1783-1795, October 1990. 

P. Stoica and A. Nehorai. Comparative performance of elernent-space 
and beam-space MUSIC estimators. Circuits, Syst. and Signal Processing, 
10(3):285-292, 1991. 

C.O. Stearns and A.C. Stewart. An investigation of concentric ring anten- 
nas with low sidelobes. IEEE Trans. Antennas Propagat., pages 856-863, 
November 1965. 

P. Stoica and T. Soderstrom. On spectral and root forms of sinusoidal 
frequency estimators. In Proc. IEEE Int. Conf. Acoust., Speech, Signal 
Processing, pages 3257-3260, 1991. 



[Swig21 A. Swindlehurst. DOA identifiability for rotationally invariant arrays. 
IEEE Trans. Acoust., Speech, Signal Processing, 40(7): 1825-1828, July 
1992. 

[SWK85] T. J .  Shan, M. Wax, and T. Kailath. On spatial smoothing for estimation of 
coherent signals. IEEE Trans. Acoust., Speech, Signal Processing, 332306- 
811, August 1985. 

[TH92] A.H. Tewfik and W. Hong. On the application of uniform linear array 
bearing estimation techniques to uniform circular arrays. IEEE Trans. on 
Signal Processing, 40(4): 1008-101 1, April 1992. 

[THNGl] J.D. Tillman, C.E. Hickman, and H.P. Neff. The theory of a single ring 
circular array. Trans. Amer. Inst. Electr. Engrs., 80, pt. 1:110, 1961. 

[V091] M. Viberg and B. Ottersten. Sensor array processing based on subspace 
fitting. IEEE Trans. on Signal Processing, 39:1110-1121, May 1991. 

[WK85] M. Wax and T. Kailath. Detection of signals by infoi:mation theoretic 
criteria. IEEE Trans. Acoust., Speech, Signal Processing, pages 387-392, 
April 1985. 

[YB92] S.F. Yau and Y. Bresler. A compact Cramer-Rao bound expression for 
parametric estimation of superimposed signals. IEEE Trans. on Signal 
Processing, 40(5): 1226-1230, May 1992. 

[ZK92] M.D. Zoltowski and G.M. Kautz. Performanceanalysis ofeigenstructure 
based DOA estimators employing conjugate centro-sym~netric beamform- 
ers. In Proc. 6th SSAP Workshop on Statistical Signal and Array Process- 
ing, pages 384-387, October 1992. 

[ZKS93] M.D. Zoltowski, G.M. Kautz, and S.D. Silverstein. Beamspace Root- 
MUSIC. IEEE Trans. on Signal Processing, 41 (1):344-364, January 1993. 

[ZM92] M.D. Zoltowski and C.P. Mathews. Direction finding wit11 uniform circular 
arrays via phase mode excitation and Beamspace Root-IMUSIC. In Proc. 
IEEE Int. Conf. Acoust., Speech, Signal Processing, volume 5, pages 245- 
248, 1992. 

[ZS89] M.D. Zoltowski and D. Stavrinides. Sensor array signal. processing via a 
Procrustes rotations based eigenanalysis of the ESPRIT clata pencil. IEEE 
Trans. Acoust., Speech, Signal Processing, 37(6):832-861, June 1989. 





APPENDICES 



Appendix A: Phase Mode Excitation of Circular Arrays/,Apertures: Ex- 
pressions for Far-Field Patterns 

Expressions for the far-field patterns resulting from phase mode excitation of 

continuous circular apertures and uniform circular arrays are derived below. The 

expressions involve Bessel functions of the first kind. The integral representation of 

the Bessel function is useful: We have Jm ( x )  = & J,Z" ej(xsin8-m8) d8 . M aking a simple 

substitution yields the following equivalent definition: 

The above equation will be employed in the far-field pat tern deriva,t ions below. 

A . l  Far-Field Pattern for a Continuous Circular Aperture 

The far-field pattern resulting from excitation of a continuous circular aperture 

with phase mode m is 

where ( = kor sin 8. Making the substitution 7' = y - 4 yields 

The desired result fk ( 8 )  = j m  ~ ~ ( ( ) e j " d  now follows from Equation A. 1. 

A.2 Far-Field Pattern for a Uniform Circular Array 

The far-field pattern resulting from excitation of an N element UCA with phase 

mode m is 

where yn = 27rnlN specifies the array element locations. The summand in the above 

equation can be expressed as an integral using the sifting property of the delta func- 

tion. We have 





Appendix B: Phase Mode Excitation Based Pattern Synthesis for UCAs 

Phase mode excitation can be employed to synthesize attractive directional pat- 

terns for UCAs as described below. The UCA far-field pattern f  (8, $) is a function 

of the elevation 8 ,  and the azimuth $. The azimuthal pattern corresponding to a 

given elevation angle 8 is denoted f  ($; 8 ) .  Phase mode excitation caa be employed to 

synthesize a desirable azimuthal pattern f  (4; 8 )  at a given elevation 8 .  The synthe- 

sized pattern f  (4; 8) could be real-valued; this leads to a reduction in computational 

complexity of the Beamspace MUSIC aalgorithm as described in Section 2.6.2. The 

far-field patterns f ( $ ;  8 )  synthesized via phase mode excitation are trigonometric 

polynomials in $. This allows Root-MUSIC to be employed to perform the search in 

azimuth for sources at a given elevation as discussed in Section 4.2.1. 

Given the parameters ko and r ,  the maximum mode M and the: number of array 

elements N are chosen according to the guidelines of Sections 3.3.1 and 3.3.2. We will 

assume that M and N are chosen such that the UCA far-field patterns corresponding 

to modes m E [ - M ,  MI are given by Equation 3.12. The beamform-ing weight vector 

wg of Equation 3.8 excites the UCA with phase mode m. For pattern synthesis with 

the UCA, all the modes m E [- M ,  MI are simultaneously excited, with the excitation 

coefficient for mode m being c,. The beamforming weight vector employed is thus 

From Equation 3.12 we see that the resulting far-field pattern is 

M 

f  ( 8 , $ )  E C ~ ~ j l ~ l ~ ~ ~ ~ ( k o ~  sin 8)ejmr = km(8)ejmr, 
m=-M 

P.21 

where km(8)  = cmjlml J l m l ( k 0 r  sin 8 ) .  The pattern f  (4; 8 )  at the elevation 8 is a 

trigonometric polynomial. The desired pattern f  (4; 8 )  is synthesized by appropri- 

ate choice of the coefficients km(8)  of the trigonometric polynomial. The excita- 

tion coefficients c,  are chosen to provide the desired values of k m ( 8 ) .  It is clear 

from Equation B.2 that the entire pattern is real-valued if c- ,  == c,  (this makes 

k-m ( 8 )  = km ( 0 ) ) -  



The example below illustrates sinc-type azimuthal pattern synthesis foi: the UCA 

in the array plane (elevation 0 = a/2). Synthesis of sinc-type patterns (similar to 

ULA far-field patterns) with UCAs was considered by Davies in [Dav83]. I:n practice, 

sinc-type patterns are not very useful because of the high side-lobe levels. The pattern 

synthesis procedure can however be employed to synthesize attractive patterns with 

low side-lobe levels. For sinc-type pattern azimuthal pattern synthesis at  8 = a/2, 

the required excitation coefficients are cm = l/jlml ~ ~ , ~ ( k ~ r ) .  This yields km(B) = 

Jlml(kor~in8)/Jlml(kor), and we have k,(a/2) = 1 for all m. From Equation B.2 we 

see that the azimuthal pattern in the array plane 

M sin(2M + 1)4/2 
f (4; r / 2 )  = C eimd = 

m=-M sin 4/2 

has the desired sinc-type structure. The shape of the azimuthal pattern at  other 

elevation angles is determined by the coefficients k,(O); these patterns will not be 

sinc shaped. We note that although the sinc-type pattern f (4; a/2)  above has its 

maximum at  4 = 0, the maximum array gain may occur at an elevation other than 

n/2. This is not the case with cophasal excitation, where the maximum gain is always 

in the 'look' direction. 

The mechanism for synthesizing a desired azimuthal pattern at a given eleva- 

tion was described above. To employ beamspace MUSIC, multiple beam outputs are 

required. Multiple beam outputs are typically obtained by rotating the entire pat- 

tern f (0,4) in azimuth. It is clear from Equation B.2 that replacing cm by c,e-jma 

achieves the desired pattern rotation: the corresponding pattern is f (0, 4 - a). The 

matrix W of Equation 4.10 provides pattern rotation for the UCA-RB-MUSIC al- 

gorithm. It generates the MI = 2M + l beams f (c, 4 - a;) by rotating the basic 

beam-pattern f (c, 4) in azimuth by the angles a; = 2ai/M1, i E [-M, MI. 

Our initial research efforts [ZM92, MZ921 focused on applying ULA techniques 

with UCAs. Sinc-type pattern synthesis as described above, and the use of Root- 

MUSIC to perform the azimuthal search at  a given elevation were proposed. 



Appendix C: Properties of UCA-ESPRIT 

C. l  Block Conjugate Structure of the LS Solution 

Consider first the noise free case, where the true signal subq~ace matrices are 

available. Assume that the least squares solution to Equation 4.34 is g = [!PT i *TIT. 
The LS solution is obtained by solving the system EHEg = EHT'So. Substituting 

for E from (4.34), this system can be expanded as follows: 

Equating the upper and lower blocks of the above equation, we obtain 

sr1 [s-1!Pl + DiSl1!P2] = Sprs0, and [c.21 

sT1  is-^!^^ + s:~!P~] = sT1~irsO = sTlrs;. IC.31 

The property Dh'S0 = rS6 that was used in the final equality above can be estab- 

lished by multiplying Equation 4.33 by DT. Now, the right hand sides; of Equations C.2 

and C.3 are conjugates, and the left hand sides are therefore conjugates as well. We 

thus have !P2 = !P;, and the LS solution g has block conjugate structure as expected. 

All that is required for the proof to carry over to the case where signal subspace 

estimates are employed is to show that Dirso = rs;. This relationship was shown 

to hold in the noise free case: We have DiMerSo = rS;. The subscript Me denotes 

the dimension of the reverse permutation matrix. Substituting So = AoCoWS and 

using the property iMtw = W* and the fact that S is real-valued establishes the 

following: DiMeI'Aoco = I 'A0~, iM, .  This property is used in the following se- 

quence of manipulations which complete the proof for the case where signal subspace 

estimates are employed. 



We now have = G; = B, and Equation C.2 (written in terms of estimated 

quantities) thus uniquely specifies the LS solution. The LS solution @ is obtained by 

solving the following d x d complex-valued system of equations: 

BB + cG* = Q, where 

A A 

B = S!,S-~, C = ~ ' 1 , ~ i ~ f  ,, and Q = S:,I'S,. 

Writing in terms of the real and imaginary parts shows that @ can be obtained by 

solving the 2d x 2d real-valued system of Equation 4.36. 

C.2 Failure of UCA-ESPRIT when d > M 

The system E& = I'so is underdetermined, and has an infinity of solutions & 
when the number of sources d 2 M. Following the procedure employed in the previous 

proof, the minimum norm solution = E~(EE~) - ' I ' s~  can be shown to have 

block conjugate structure. We now proceed to show that q ( ~ )  = ~ ( E ~ E )  iis spanned 

by block conjugate vectors. Linear combinations of these vectors can be! added to 

G without destroying the block conjugate structure. There is thus no unique -man 

block conjugate solution to Equation 4.35 when d > M. 

The 2d x 2d matrix E' = E ~ E  can be written in block form as follows: E' = 
r 1 

I :* :* I , where B and C are as defined in Equation 4.37. Let z = [zT z;lT be 

L J 

a vector in q(E1). Setting E'z = 0 leads to the two equations below: 

Bzl + Cz2 = 0, and IC.41 

Forming (C.4) + (C.5)' and (C.4)' + (C.5) leads to the system 

This system shows that there is a block conjugate vector in q(E1) corresponding to 

the vector z E q(Ef). Thus q(E1) = q ( ~ )  can be spanned by block conjugate vectors, 

and the proof is complete. 



Appendix D: Study of Theoretical Estimator Performance 

The following easily proved relationships are employed in obtaining expressions for 

the variances of the element space MUSIC estimators. For brevity, the dependence of 

the manifold vectors on the DOA is not always shown i.e., a is used in place of a(P). 

aU = Dc a, and 5, = Ds a, where [D.11 

Dc = ( j  kor) diag {cos 70, . . . , cos T N - ~ ) ,  and 

D, = ( j  kor) diag {sin .yo, . . . , sin 7N-1). 

In the definitions above, 7; = 2.lri/N is the angular location of the ith antenna element. 

The following relationships can be established using the above equations: 

Consider the two source locations P1 = (ul, vl) and P2 = (ti2, v2). Let Pd = (ud, vd) 

where ud = u2 - u1 and vd = v2 - vl. The representation of Pd in polar coordinates 

is (T, u), where T = du: + vi and u = tan-'(vd/ud). The relationship below states 

that the UCA cophasal beam pattern approximately follows the Bessel function Jo. 

The relationship is accurate for our purposes because the residual contributions have 

been made negligible by appropriate choice of N. We have 

and the array gain depends only on the distance T between the loci~tions P1 and P2. 
The final relationships to be established are 

An outline of the proof of Equation D.4 is provided below. Equation D.5 can be 

proved in similar fashion. Using the results in (D.l), we can write aH(/3,)au(/32) = 



N j kor cos 7,  e j k ~ r ( u d C O s ~ n + v d  The summation of the exponential terms alone 

is just the cophasal beampattern of Equation D.3. The partial derivative of the 

cophasal pattern with respect to ua, & N JO (kor Jm) , thus evaluates the entire 

summation. Simplifying and using the property JA = - J1 yields the desired result. 

D.l  Element Space MUSIC Estimator Variances 

Expressions for the element space MUSIC estimator variances and covariance are 

given in Theorem 5.1.1.  The variance expressions are in terms of the quantities 

a = aHGGHaU, _b = aHGGHaV and = R ~ { & G G ~ ~ , ) .  The projection matrix - -u - -v - 

onto the noise subspace can be expressed in terms of the DOA matrix (as follows: 

= I - A (AHA)-' p. 

Sinele Source Case 

For the single source case, we have A = 3. Using Equation D.2,  we obtain 

a = _b = ( k o ~ ) ~ N / 2  and _c = 0. Substituting the source power p in place of P in - 

Equation 5.4,  we find that up - = ( 1  + l / N ) / ( p / o ) .  Substituting these results in 

Theorem 5.1.1 yields 

Var ( 2 )  = Var ( C )  = 1 +1 /N  
IcN(kor)2 (plu) ' and 

Two Source Case 

Let Q = (AHA)-'. Using the result of Equation D.3, Q can be expressed as 

follows: 

9 q Jo( k0r.r) I , where 
9 Jo(kor7) Q 



The simplified expression for a in Equation 5.25 is derived below. Expressions for 

and _c can be obtained in similar fashion. We have 

a(P1) = a f ( P 1 )  [I - A&AH1 %(PI)  P.71 

= N(kor)'/2 - (af(P1)A) Q ( ~ ~ g ~ ( P 1 ) )  

Using Equations D.2 and D.4, we obtain A~II,(P,) w [0 i korNJ1 ( k g ~ ~ )  cos uIT. Sub- 

sti tuting in Equation D.7 yields the desired expression 

Finally, Equation 5.4 shows that the dependence of - p on the source DOAs is only 

through the matrix Q = (AHA)-'. It is evident from Equation D.6 that Q and thus 

p depends only on the distance T - 

D.2  T h e  Deterministic C R B  

From Lemma 5.4.1 it is clear that the dependence of the deterministic CRB on 

the source DOAs is through the matrix H. We proceed to show that the CRBs are 

independent of the DOA in the single source case. We also show that the CRBs 

depend on the source DOAs only through the parameters T and u in the two source 

case. 

Single Source Case 

Substituting a in place of A in Equation 5.22 and using the results of Equation D.2 

yields H = I. Further, all the elements of the matrix P+ are identical and 

equal to the source power p. Substituting these results in Equation 5.22 yields the 

CRB covariance matrix 

CRB (ii, fi) = 
1 

I. 
I(N(kor)'(p/a) 

T w o  Source Case 

We have H = D H D  - D ~ A Q A ~ D .  The entries of the second matrix in this 

expression have forms similar to the second term in Equation D.7, and thus depend 



only on r and v. The entries of the first matrix DHD have the form %H(Pi)ay(/3j) 

where x and y could be either u or v, and i, j E [I, 21. Expressions for these terms can 

be obtained by taking partial derivatives of the cophasal beampattern with respect to 

ud and vd as in the proof of Equation D.4. These terms can also be shown to depend 

only on r and v. Thus the matrix H depends on the source DOAs only through T 

and v, and so does the CRB covariance matrix. 
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