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Abstract 

This report inrvestigates the issues of securing access to computin,g resources in  com- 

putation.al grids. Grid en,viron,men.ts are built orb top of platforms that corrtrol access to 

resources within a sin,gle adenin.istrative domairr, at the g.r-an,ular.ity of a use,r. In wide-area 

multi-domain. grid en.viron,men.ts, the overhead of mainiainin,g user accounts is prohibitive, 

a.rad secu7.in,g access to resources via user accountability is impractical. Typically, these is- 

sues are han,dled by inlplenlert,ting checks that guaran,tee the safety of applic~ations, so [hat 

they can rurt. in  shared  use^ accour1.t~. This work shows that safety checks - lan,guage-based, 

compile-time, link-time, load-lime - curren.tly implemen.ted in most grid en.virorrmen.ts are 

either in,adequute or limit allowed grid users and applicatiorrs. Techn.ique.s without such 

li7nitations are presen.ted. Shadow accoun,ts allow reu.se of user accounts without adminis- 

trative overheads, and run-time solution~s - run-time 7non.itorirt.y and virtu.tr1 machines - 

allow arbilrary code to execute while erilforciny a given resource access policy. 

Key Phrases: security in grid environments; safety of grid applications; access control of 

shared resources; sharing user accounts; shadow accou~its; run-time application sandboxing; 

virtual machines. 



Introduction 

Access to  computing resources has traditionally been coritrolled by assigning an "accou~it" 

to each user. The process of assigning such i~ser accounts serves two purposes: 1) it helps 

establish the accorintability of users - by obtziini~ig personal and contact illformatior1 for 

each user, for example; a ~ i d  2) it allows administrators to enforce usage policies - by not 

giving out accou~it~s on certain machines, for example. 

This approach has worked well within single administrative domains, but it has several 

limitatioris t'hat present significant obstacles to tlie viability of computational grids, which 

typically span multiple administrative domains. For example, creating accounts has an 

administrative overhead, making it difficult to give users dynamic or temporary (in terms 

of minutes or hours) access to resources. A~iother problem is that resource owners must 

implicitly rely on the accountability of the users of the resources, making it difficult and 

imprudent for them to  share resources outside of their administrative domains. Yet another 

issue results from the inability of resource owners to control how tlie resource is utilized by 

its users. For example, a resource owner may want some users to o~ily use certain rnachi~ies 

for specified applicatiorls - but has no easy way to enforce this. 

This i~ivestigation addresses the security implications of making a complitirig resoiirce 

available via computational grids. Both grid applications and shared resources must be 

secured from rnalicio~ls actions of each other. This work focuses 011 the issue of protecting 

the shared resources from arbitrary code. It highlights the problems arid limitations of 

current grid environments, and proposes solutions that are more robust, scalable, a ~ i d  

secure. 

The rest of the report is orga.11ized as follows. Sertiorl 2 describes t,he context for this work, 



the PUNCH network computing environment. Section 3 olitl i~~es some of the lirnitatio~is 

of the current approaches to sharing computing resources across admiriistrative domains. 

Section 4 proposes new sohitions that can be used to overcome these limitations. Finally, 

Section 5 presents concluding remaxks. 



Background 

This work was conducted in the context of PUNCH, the Purdue University Network Com- 

puting Hubs [9]. PUNCH is platform for grid computing that allows users to access 

and run unmodified applications or1 distributed resources via standard Web browsers (see 

ww~.~unc l i .~u rdue .edu) .  PUNCH currently provides computing services t:o about 2,000 

studerits arid researchers across two doze11 countries. More than 70 applications from dif- 

ferent research institutions and vendors are available. 

Operating a computing portal with a world-wide user base prese~its some rather inter- 

esting issues. For example, PUNCH provides access to several commercial tools; access to 

these tools must be restricted to Purdue students due to licensing constraints. Applications 

range from batch (e.g., CacheSim5 - a cache simulator) to interactive (e.g., DLX-View - 

a pipeli~ie simulator) to development environments (e.g., the SimpleScalar set of tools for 

computer architecture simulation). Users are transient - students tend t o  use PUNCH 

a semester (or quarter) a.t a time, and researchers utilize the system for specific projects. 

Usage policies associated with machines are complex and often change - for example, 

many machines are o~ily available for specific types of applications (e.g., ones that tend to 

run quickly), and non-Purdue users typically can o~ily use them when they are not heavily 

loaded. 

The diversity of PUNCH users and applicatio~is has significant value i11 terms of vali- 

dating research concepts. However, operatirig and supporting s l ~ d i  a service in a research 

enviroriment is impractical 11nless the administrative costs can he kept under co~itrol. This 

work highlights the mecha~iisms i11 PUNCH that make it possible to streamline a ~ i d  auto- 

mate marly of the tasks associated with graritirig users a.ccess to computi~ig systems without 



violating usage policies or compromising on security. 

PUNCH users can request user accou~its, these are logical accounts decoupled from ma- 

chine accourits (Section 4.1), via its portal interface. These requests are processed automat- 

ically, arid users are given access according to a default policy. Users that request additional 

privileges (e.g., Purdue students wanting access to commercial tools) are granted access af- 

ter manual verification by an administrator. Changes are automatically propagated when 

machines are added or removed, or when usage policies change. 



3. Securing Access to Grid 

Resources from Malicious Use 

From a security standpoint, the domain of trust - the set of entities that are trusted or 

accountable - must lie with either the users, the applicatio~ls, or the grid middleware 

(or some combi~iatio~i of the three). In dynamic, wide-area comp~iting enviro~ime~lts, it 

is generally impractical to expect that all users can be held accou~itable for their actions. 

Plus, accountability does not prevent damage from being do~ie, making this a costly s c ~  

lution. Another option is to trust tlie applicatio~is. This is typically acconiplished either 

by co~istraining the development environment to a point where the generated applications 

are guaranteed to be safe, or by making sure that the applications come from a trusted 

source. However, limiting the functionality of applications also limits tlie usefiilness of the 

computing environment, and history has shown that it is possible for applications from 

trusted sources to corlt ain bugs (www.bugnet .corn) that compromise their integrity. 

Conseque~itly, security is best achieved by active enforcement of policies within the grid 

middleware layers. The following discussion surveys the different approaches utilized within 

current grid e~iviro~lments and describes their limitations; the subsequent section describes 

new sol~~tions that overcome some of the limitations of the current approaches. 

3.1. User-based domain of trust 

111 systems that rely on end-user accountability, the principal [16] - the entity responsible 

for actions of a process - is the user accolirit identifier. The process of obtai~iirig user 

accounts is independent of the actual grid middleware, arid is typically defi~ied by the 



owners of the computirlg resources. Examples in t.his category include Globus [dl, Sun Grid 

E,rigine [17], and PBS [ 2 ] .  

This approach is not scalable as the administrative overhead of creatior~/rnaintenarlce, 

due to (a) the large number of  account,^ and (b) transient users requiring the account for 

short periods of time, may be inhibiting. Moreover, if a user cannot be made accountable, 

she/he cannot be given an account. This limits the potential users of the grid resources. 

The grid process has access to all the resources of a st.andard TJNIX user; as a conse- 

quence, if the grid user account is compromised, all other systems in the Grid on which 

that user has accounts are opened up for misuse. This makes proper implemerltatiori of 

standard Unix securit,y or1 all the systems urlderlyirig the Grid more crucial. 

In order to overcome the overhead of creat,ing individual accounts, some systems rely 

011 sharing accounts among grid users. Examples include E~itropia (www.e~itropia.com), 

Distributed.Net (www.distributed.net,) and United Devices (www.ud.com), where resource 

owners dowrlload grid applications and run them in their accourits. There are two problems 

with this approach. Firstly, though the grid processes may belong to different grid users, 

as far as the TJNIX system is concerned they belong to the same user. So a grid process can 

misbehave and affect the ot'her processes in the same accourit, for e.g., a malicious process 

can terminate other processes owned by the user (using 'kill -9 -1'). Secondly, since the 

shared accourit is a standard account (even user "~iobody" [ l l ]  is a standard user t'hough 

without a file system), it has access to local resources, axid can exploit them at least to 

the extent allowed by the underlying UNIX access model. 111 addition, the grid user can 

misuse resources, for example, to launch distributed denial-of-service attacks. 

3.2. Application-based domain of trust 

Orie way of working around the need for end-user account,ability is to er~sure that applica- 

tions executed in grid environments are "safe". This "safety" can be achieved in one of two 

ways: by coristrai~ling the application development environment, or by trusting the source 

of the application. Systems that rely on an application-based domain of trust typically run 

,jobs from all users i11 a, single, shared account. Examples in this category that, constrain the 



Table 3.1. Examples of systems that rely on application-based domain of trust, and the corre- 

sponding restrictions and limitations. 

Issues 

High overhead of adapting 

application to grid; 

Unmodified binaries not 

supported 

Exponential binary code 

bloat (PCC); 

Ovcrheatl of analysis may 

not be justified; 

Application can be 

tampered with at  a later 

stage; 

Unmodified binaries not 

supported 

Application can be 

tampered with at a later 

stage; 

Unmodified binaries not 

supported 

Overhead of analysis may 

not be justified; 

May not protect against 

self-modification or 

stacklheap execution 

Point of trust 

Entire ap- 

plication 

generation 

process 

Compile-time 

Link-t ime 

Load-time 

Examples 

Entropia, 

Distributed.net, 

SETI@Home 

Static compiler analysis; 

proof carrying code 

(PCC) - proof synthesis 

Condor; 

System-call wrapper 

approaches 

Static analysis of machine 

code; 

PCC - proof verification 

Restrictions 

Safc APIs; 

Requires application 

source; 

Trusted programmer, 

compiler, linker; 

Human intervention 

Analysis currently 

possible only for restricted 

subsets of languages; 

For PCC gcneral 

verification is 

un-decidable 

Limited functionality; 

KO dynamic linking 

Works only for restricted 

subsets of languages 



/ *  This program loads t h e  malicious 
code i n t o  t h e  heap and then executes 
t h e  code * /  1 I 

fread(codeBuffer ,  1, f i l e s i z e ,  f d ) ;  

f  = (codeBuffer) ;  /*Casting t o  func*/ 
f  ( 5 )  ; /*Executing code*/ 

/ *  Assembly code t o  execute 
n  number of forks each 
running an i n f i n i t e  locp * /  
looped0  ( 

- asm- ( "  
push %ebp 
mov %esp, %ebp 

54: mov 
decl  
t e s t  
j  9  
j  mp 

Jl: mov 
i n t  
mov 
t e s t  
j  ne 

56: jmp 
52: leave 

r e t  
" 1  ; 

Grid Application Malicious code 

Figure 3.1. Sample grid application code that can invoke malicious code at run time. The 

malicious code bypasses the system call library and invokes fork() and exec() via the kernel. 

application development environment include Condor [I  I] ,  safe languages such as Java [6], 

and proof-carrying codes [12]. Examples of systems that rely on third-party trust (for the 

safety of applications) include Entropia, Distributed.net and United Devices. 

There are several problems with these approaches (see Table 1). Entities such as En- 

tropia protect computing resources by carefully controlling the entire process of building 

applications. This method, while feasible, is clearly experisive and time-co~isuming - par- 

tic~llarly for large, complex a,pplications. The use of safe languages such as Java can make 

this approach less complicated, but t,liis excludes t,he use of unmodified binaries. Compile- 

time or link-time tests that at,t,empt t,o verify the safety of applications are also possible 

(e.g., as with Condor), but such tests can be defeated. 

In general, if users are allowed to modify code in a11y way (i.e., at the source, object,, or 

binary levels), it is relatively simple for them to introduce trojan processes i11 the shared 

account - without being detected by any compile- or link-time tests. Consider the following 

example (see Figure 3.1). The grid application s1iow11 in the left half of the figure reads 



a file into heap memory as a string. The string (in this case) contains machine code that 

invokes a fork() and exec(). Now, the grid application sets a pointer to the starting 

address of the string and executes it as a function (see the left half of the figure). This is 

possible because the stack and data segments in Unix are executable.' 

These types of "attacks" are very difficult to  detect at compile or link time. Even if one 

could detect and disallow explicit casting of function pointers, other approaches exist : for 

example, one could simply modify the executable (ma~iually) after it has been compiled or 

import the malicious code into the execution stream at run-time. Also, it is not necessary 

to  rely on the executable nature of the stack and data segments [IS]. 

3.3. Discussion 

As shown in Figure 3.2, grid environments can be classified 011 the basis of their domain 

of trust. Towards the left bottom of the figure are the ideal grid environments: they allow 

untrusted users to  develop and execute arbitrary applications, while enforcing usage arid 

security policies. 

The X-axis represents the domain of trust. On the left, the run-time e~iviro~iment trans- 

parently handles trust issues; as one moves to the right, the domain of trust moves to  

the application, the application generation process, a11d finally to the end user. Observe 

that,  in general, as one moves to  the right, administrative and/or customization overheads 

associated with defining and enforcing security increase. The Y-axis represents the cost of 

building a grid application. At the bottom, the cost is negligible - grid environments in 

this space transparently support urimodified binaries. At the other extreme, grid environ- 

ments require custom-designed applications for security. 

To better understand the classification scheme, consider the following examples with 

respect to their positions in the figure. Systems such as Condor lie at the center of the 

figure - they only require applications to be relinked with special-purpose libraries. 011 

the other hand, with languages such as Java, one would have to rewrite the application 

'This is a fundarncntal charactcristic of LTnix and cannot be disabled without other side effects that  

limit functionality. 



Entropia, dislributed.nel, SETI@Home etc. 

I 

Run-time Application i Static Linking Compiling Source Code End Usen 
Environment executables & Application generation Process 4 

Domain of Trust 

Figure 3.2. Classification of Grid Environments 

completely - thus putting such approaches in the top right part of the figure. Fi~ially, 

systems such as Glob~is and PBS require pote~itial users t o  establish accountability directly 

with the system administrators, but allow them to rilri unmodified binaries - thus placing 

them in the right part of the classificatio~i space. 

Observe that the region between the domain of trust and the run-time environment, 

along the X-axis, presents opportunities for intrusion, if security is not actively enforced at 

run-time. For example, in the case of Condor, link-time checks collld be bypassed after the 

linking process is complete, but before the executable is submitted to  Condor. Systems sudi 

as Entropia work around this problem by having a large domain of trust (by controlling 

applicatio~l ge11era.tion through execution). However, this is a manual and time-consuming 

approach that sig~iificantly increases t,he overhead (and cost,) of building grid applicatio~is. 

The following section describes solutions based on a combi~~ation of private, anonymous 



accolints and either 1) run-time monitoring or 2) virtual machines. Sutli soh~t,ions lie 

towards the bottom left of the cla.ssification space (see figure) and can facilitate secure 

sharing of computing resources without compromisi~lg security. 



4. Securing Access to Grid 

Resources - The PUNCH Approach 

111 this section, we present techniques to  overcome the grid security shortconlings prese~~ted 

i11 Section 3. Section 4.1 describes the method used in PUNCH to overcome the administra- 

tive overhead of maintaining user  account,^ on grid resources. Sections 4.2 and 4.3 describe 

two approaches, currently being evaluated in PTJNCH, to guarantee safe grid applications i11 

the absence of user-accountability. The domain of trust i11 both these approaches - based 

on process monitoring and virtual maclii~ies - is in the ru11-time e~ivironment provided by 

the grid middleware. 

4.1. Private, anonymous accounts 

A standard user account provides the followi~ig functions: (a) allows data storage, 

(b) maintains privacy of data, (c) co~lt,rols access t o  computing resources, a,nd (d) ensures 

accountability. On standard systems a user account is associated with a unique numeric 

identifier (e.g. TJNIX uid), which is permanently assigned to  the user. Creating individual 

user accou~its on all machines, has administ'rative overheads, because a perma~le~i t  iden- 

tifier must be created at the host system level, for every user - temporary or permanent. 

However, the functions provided by the user accou~lt need not be tied to the unique iden- 

tifier all the time, provided a separate mecllanism is available to eIislire data identity and 

privacy. PUNCH mai~l ta i~ls  grid user data in logical riser accounts [8] whidl are not tied 

to  specific numeric identifiers. It also maintains a set of physical user acr:ounts referred 

to  as "shadow accounts". PTJNCH treats the numeric identifiers of these shadow accou~its 



as intercharigeable entities that can be recycled among grid users on demand. Herice, the 

logical accourits serve ns capabilities to L'check out" shadow accounts or1 t,he appropriate 

resources. 

There are two advantages to this approach. 

Recycling a small ni~mber of shadow accourits among the grid users removes the 

problems associated with creation/maintenance of physical user accounts on the host 

machines in the grid. 

Sirice the physical a,ccounts on the hosts are time multiplexed among the grid users, 

there is no need for grid processes belonging to different users to share accolints - 

thus implicitly providing protectiori between grid processes of different users on a 

host. 

PUNCH has employed shadow accounts since early 1998. 

4.2. Run-time Process Monitoring 

Arbitrary applications can be saridboxed at execution time, to enforce host security poli- 

cies [ I ,  7, 51, by monitoring the system call trace of the programs and selectively permitting 

or denying access to resources as specified by a policy file. This is enabled by process tracing 

capabilities, tlie p t r a c e 0  system-call arid the /proc file-system, in modern UNlX systems. 

Using p t r a c e 0 ,  a parent process can monitor its child process, intercept system-calls, arid 

use the /proc interface to  modify the child's run-time environment, and thereby grant or 

deny access to resources at a very fine grariularity. Run-time monitoring along with shadow 

accoi~rits described in Section 4.1 provides a security solution that is close to the ideal grid 

in Figure 3.2. 

When the entire applicat,ion is monitored, the cost of shifting back and forth between 

kernel and user mode atleast twice and the context switches between the applicatio~l arid tlie 

monitoring process for eacli intercepted system call can be significant. Hybrid approaches 

tliat use static analyses of source code at compile t.ime or of machine code i ~ t  load time, to 

determine iirlsafe portioris of code and limit mo~iitoririg to these portions, can redlice tlie 

overliead of rilri-time mo~iitori~ig. 



Wlie~i the applicatio~i source is available, the compiler can perform static arialyses of 

tlie ~ l ~ i t r ~ i s t e d  program and find portions of code that can~iot be guaranteed to be safe 

(e.g., pointer casting, memory de-referencing, etc.). 01ily these unsafe portions of code 

need to be monitored at run-time, for example using the shadow processing approach [13]. 

With this approach, program-slicing techniques are used to generate a customized program 

by deleting comp~itations not relevant to the monitoring. The original application is run 

i11 lock-step with the customized program, the shadow process. Run-time monitoring is 

applied only to tlie shadow process, and if it fails any check, the original application is 

terminated. Overhead from the shadow processing can be hidden, by using idle processors 

in m~iltiprocessor workstations. This approach can also be used with unmodilied machine 

code, ~ i s i ~ i g  tlie static analyses presented i11 [21]. 

This approach of ruri-time monitoring in shadow-accou~lts is being tested internally in 

PUNCH. Run-time monitoring [I] has also bee11 employed on PUNCH as an e~iabli~ig 

mechanism for the implementation of a virtual file system [S]. 

4.3. Run-time Virtual Machines 

The Java Virtual Machine (JVM) [lo] implements a security manager, which uses signa- 

ture verificatio~l and application sandboxing, to ensure that byte code froin a11 uritrusted 

source cannot cause damage to the local resources of the host. There are security issues 

with Java implementation as disc~lssed in [3], but even with these problems fixed, the Java 

approach implies grid applications are restricted to  Java, and applicatio~ls developed in 

other languages must be ported to the Java platform. hloreover, current Java applications 

rely on the Java Native Interface, written in languages like C, for local 1,IO etc, making 

them suscept,ible to the types of attacks implied by Figure 3.1. 

A virtual machine that is deco~ipled from applications can also be co~iceived. Examples 

of application-independent virtual rnachi~les for UNIX-based systems i~iclude IRM's Virtual 

Image Facility [15] and VMware 1191. These systems support sa~idboxing at the level of 

operating systems: mult,jple copies of a "guest" O/S (a  commoIl case to both approaches 

is 1,INUX) may ceexist at run-time, shari~ig a machine's hardware tlirougli a "liost" O/S 



(e.g. LINUX or VM/ESA). 

Application-independent virtual machines provide a substrate for executing arbitrary 

un-trusted code without compromisi~ig the host machine security. Furthermore, un-trusted 

users can be supported in a secure manner via a single-user assignment to guest O/S 

sessions. As long as the interface between the host and guest operating systems is secure, 

untrusted users can execute arbitrary applications without compromising either t,he host 

or any of the other guest operating systems (i.e. those belonging to other users). 

While virtual machines support a secure e~iviro~ime~it  for supporti~ig u11-trusted users and 

applications, there are performance and portability issues that hinder their application to 

existing systems. Today's virtual machi~ies are clistomized to specific hardware platforms 

(e.g. TRhI S/390 and Intel x86) and incur run-time overheads for O/S requests. Specialized 

support for virtual machines can mitigate run-time overheads, but may require hardware 

assistance 11ot available in commodity processors (e.g. multiple levels of address tra~islatio~i 

i11 the S/390 [20]). 

Future work will investigate resource management mechanisms that will allow virtual 

machines to be allocated efficiently 011-demand and user-transpare~itly, as computing units 

for PTJNCH. 



Conclusions 

The issues with secliring access to shared resolirces i11 grid e~ivironme~its are the result of 

a mismatcli between the characteristics of grid users and traditional users of the comput- 

ing resolirces that u~iderly the grid. The access mechariisms of the underlying computing 

platforms, which are at the granularity of a user, are thus not restrictive e~lough i11 grid e~ivi- 

roments. The limitations of tecll~iiques currently used to overcome this issut: are presented. 

Solutions that can be implemented in the grid middleware are described - slladow accounts 

to  overcome the administrative overhead of maintaining user accounts, and techniques that 

secllre access to grid resources, sucli as run-time rno~iitoririg and virtual machines. C '  ~iverl 

the wide-scale deployment of grid environments, a long-term solution to the issues pre- 

sented may involve modifying the underlying operating systems or1 computirig resource, to 

support grid users, for e.g. a capability-based access model to resources. 
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