
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

9-1-2001

Security Implications of Making Computing
Resources Available via Computational Grids
Sumalatha Adabala
Purdue University School of ECE

Ali Raza Butt
Purdue University School of ECE

Renato J. J. Figueiredo
Purdue University School of ECE

Nirav H. Kapadia
Purdue University School of ECE

Jose A. B. Fortes
Purdue University School of ECE

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Adabala, Sumalatha; Butt , Ali Raza ; Figueiredo, Renato J. J. ; Kapadia, Nirav H. ; and Fortes, Jose A. B. , "Security Implications of
Making Computing Resources Available via Computational Grids" (2001). ECE Technical Reports. Paper 14.
http://docs.lib.purdue.edu/ecetr/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4949159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-ECE 01-2
SEPTEMBER 2001

Security Implications of Making
Computing Resources Available via

Computational Grids1

Sumalat ha Adabala

Ali Raza Butt

Renat o J. Figueiredo

Nirav H. Kapadia

Jos6 A. B. Fortes

School of Electrical and Computer Engineering
1285 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1285

'This work was partially fr~nded by the National Science For~ndation under grants EEC-
9700762, ECS-9809520, ETA-9872516, and RIA-9975275, and by a n acanlcmic rein\~estmcnt. grant,
from P ~ ~ r d u e 1Jnivcrsity. Intel, Pnrdoc, SRC, and HP hasre providcd equipment grants for PUNCH
compnt,c-scrvcrs.

Contents

1 Introduction 1

2 Background 3

3 Securing Access to Grid Resources from Malicious Use 5

3.1. User-based domain of trust . 5

3.2. Application-based domain of trust . 6

3.3. Discussion . 9

4 Securing Access to Grid Resources - The PUNCH Approach 12

4.1. Private, anonymous accounts . 12

4.2. Run-time Process Monitoring . I 3

4.3. Run-time Virtual Machines . 14

5 Conclusions 16

Bibliography 18

List of Tables

3.1 Examples of systems that rely on application-based domain of trust, and the

corresporlding restrictions and limitatioris. 7

List of Figures

3.1 Sample grid application code that ca11 invoke malicious code at run time.

The maliciol~s code bypasses the system call library and invokes fork() and

exec() via the kernel. 8

3.2 Classification of Grid E,nvironments . 10

Abstract

This report inrvestigates the issues of securing access to computin,g resources in com-

putation.al grids. Grid en,viron,men.ts are built orb top of platforms that corrtrol access to

resources within a sin,gle adenin.istrative domairr, at the g.r-an,ular.ity of a use,r. In wide-area

multi-domain. grid en.viron,men.ts, the overhead of mainiainin,g user accounts is prohibitive,

a.rad secu7.in,g access to resources via user accountability is impractical. Typically, these is-

sues are han,dled by inlplenlert,ting checks that guaran,tee the safety of applic~ations, so [hat

they can rurt. in shared use^ accour1.t~. This work shows that safety checks - lan,guage-based,

compile-time, link-time, load-lime - curren.tly implemen.ted in most grid en.virorrmen.ts are

either in,adequute or limit allowed grid users and applicatiorrs. Techn.ique.s without such

li7nitations are presen.ted. Shadow accoun,ts allow reu.se of user accounts without adminis-

trative overheads, and run-time solution~s - run-time 7non.itorirt.y and virtu.tr1 machines -

allow arbilrary code to execute while erilforciny a given resource access policy.

Key Phrases: security in grid environments; safety of grid applications; access control of

shared resources; sharing user accounts; shadow accou~its; run-time application sandboxing;

virtual machines.

Introduction

Access to computing resources has traditionally been coritrolled by assigning an "accou~it"

to each user. The process of assigning such i~ser accounts serves two purposes: 1) it helps

establish the accorintability of users - by obtziini~ig personal and contact illformatior1 for

each user, for example; a ~ i d 2) it allows administrators to enforce usage policies - by not

giving out accou~it~s on certain machines, for example.

This approach has worked well within single administrative domains, but it has several

limitatioris t'hat present significant obstacles to tlie viability of computational grids, which

typically span multiple administrative domains. For example, creating accounts has an

administrative overhead, making it difficult to give users dynamic or temporary (in terms

of minutes or hours) access to resources. A~iother problem is that resource owners must

implicitly rely on the accountability of the users of the resources, making it difficult and

imprudent for them to share resources outside of their administrative domains. Yet another

issue results from the inability of resource owners to control how tlie resource is utilized by

its users. For example, a resource owner may want some users to o~ily use certain rnachi~ies

for specified applicatiorls - but has no easy way to enforce this.

This i~ivestigation addresses the security implications of making a complitirig resoiirce

available via computational grids. Both grid applications and shared resources must be

secured from rnalicio~ls actions of each other. This work focuses 011 the issue of protecting

the shared resources from arbitrary code. It highlights the problems arid limitations of

current grid environments, and proposes solutions that are more robust, scalable, a ~ i d

secure.

The rest of the report is orga.11ized as follows. Sertiorl 2 describes t,he context for this work,

the PUNCH network computing environment. Section 3 olitl i~~es some of the lirnitatio~is

of the current approaches to sharing computing resources across admiriistrative domains.

Section 4 proposes new sohitions that can be used to overcome these limitations. Finally,

Section 5 presents concluding remaxks.

Background

This work was conducted in the context of PUNCH, the Purdue University Network Com-

puting Hubs [9]. PUNCH is platform for grid computing that allows users to access

and run unmodified applications or1 distributed resources via standard Web browsers (see

ww~.~unc l i .~u rdue .edu) . PUNCH currently provides computing services t:o about 2,000

studerits arid researchers across two doze11 countries. More than 70 applications from dif-

ferent research institutions and vendors are available.

Operating a computing portal with a world-wide user base prese~its some rather inter-

esting issues. For example, PUNCH provides access to several commercial tools; access to

these tools must be restricted to Purdue students due to licensing constraints. Applications

range from batch (e.g., CacheSim5 - a cache simulator) to interactive (e.g., DLX-View -

a pipeli~ie simulator) to development environments (e.g., the SimpleScalar set of tools for

computer architecture simulation). Users are transient - students tend t o use PUNCH

a semester (or quarter) a.t a time, and researchers utilize the system for specific projects.

Usage policies associated with machines are complex and often change - for example,

many machines are o~ily available for specific types of applications (e.g., ones that tend to

run quickly), and non-Purdue users typically can o~ily use them when they are not heavily

loaded.

The diversity of PUNCH users and applicatio~is has significant value i11 terms of vali-

dating research concepts. However, operatirig and supporting s l ~ d i a service in a research

enviroriment is impractical 11nless the administrative costs can he kept under co~itrol. This

work highlights the mecha~iisms i11 PUNCH that make it possible to streamline a ~ i d auto-

mate marly of the tasks associated with graritirig users a.ccess to computi~ig systems without

violating usage policies or compromising on security.

PUNCH users can request user accou~its, these are logical accounts decoupled from ma-

chine accourits (Section 4.1), via its portal interface. These requests are processed automat-

ically, arid users are given access according to a default policy. Users that request additional

privileges (e.g., Purdue students wanting access to commercial tools) are granted access af-

ter manual verification by an administrator. Changes are automatically propagated when

machines are added or removed, or when usage policies change.

3. Securing Access to Grid

Resources from Malicious Use

From a security standpoint, the domain of trust - the set of entities that are trusted or

accountable - must lie with either the users, the applicatio~ls, or the grid middleware

(or some combi~iatio~i of the three). In dynamic, wide-area comp~iting enviro~ime~lts, it

is generally impractical to expect that all users can be held accou~itable for their actions.

Plus, accountability does not prevent damage from being do~ie, making this a costly s c ~

lution. Another option is to trust tlie applicatio~is. This is typically acconiplished either

by co~istraining the development environment to a point where the generated applications

are guaranteed to be safe, or by making sure that the applications come from a trusted

source. However, limiting the functionality of applications also limits tlie usefiilness of the

computing environment, and history has shown that it is possible for applications from

trusted sources to corlt ain bugs (www.bugnet .corn) that compromise their integrity.

Conseque~itly, security is best achieved by active enforcement of policies within the grid

middleware layers. The following discussion surveys the different approaches utilized within

current grid e~iviro~lments and describes their limitations; the subsequent section describes

new sol~~tions that overcome some of the limitations of the current approaches.

3.1. User-based domain of trust

111 systems that rely on end-user accountability, the principal [16] - the entity responsible

for actions of a process - is the user accolirit identifier. The process of obtai~iirig user

accounts is independent of the actual grid middleware, arid is typically defi~ied by the

owners of the computirlg resources. Examples in t.his category include Globus [dl, Sun Grid

E,rigine [17], and PBS [2] .

This approach is not scalable as the administrative overhead of creatior~/rnaintenarlce,

due to (a) the large number of account,^ and (b) transient users requiring the account for

short periods of time, may be inhibiting. Moreover, if a user cannot be made accountable,

she/he cannot be given an account. This limits the potential users of the grid resources.

The grid process has access to all the resources of a st.andard TJNIX user; as a conse-

quence, if the grid user account is compromised, all other systems in the Grid on which

that user has accounts are opened up for misuse. This makes proper implemerltatiori of

standard Unix securit,y or1 all the systems urlderlyirig the Grid more crucial.

In order to overcome the overhead of creat,ing individual accounts, some systems rely

011 sharing accounts among grid users. Examples include E~itropia (www.e~itropia.com),

Distributed.Net (www.distributed.net,) and United Devices (www.ud.com), where resource

owners dowrlload grid applications and run them in their accourits. There are two problems

with this approach. Firstly, though the grid processes may belong to different grid users,

as far as the TJNIX system is concerned they belong to the same user. So a grid process can

misbehave and affect the ot'her processes in the same accourit, for e.g., a malicious process

can terminate other processes owned by the user (using 'kill -9 -1'). Secondly, since the

shared accourit is a standard account (even user "~iobody" [l l] is a standard user t'hough

without a file system), it has access to local resources, axid can exploit them at least to

the extent allowed by the underlying UNIX access model. 111 addition, the grid user can

misuse resources, for example, to launch distributed denial-of-service attacks.

3.2. Application-based domain of trust

Orie way of working around the need for end-user account,ability is to er~sure that applica-

tions executed in grid environments are "safe". This "safety" can be achieved in one of two

ways: by coristrai~ling the application development environment, or by trusting the source

of the application. Systems that rely on an application-based domain of trust typically run

,jobs from all users i11 a, single, shared account. Examples in this category that, constrain the

Table 3.1. Examples of systems that rely on application-based domain of trust, and the corre-

sponding restrictions and limitations.

Issues

High overhead of adapting

application to grid;

Unmodified binaries not

supported

Exponential binary code

bloat (PCC);

Ovcrheatl of analysis may

not be justified;

Application can be

tampered with at a later

stage;

Unmodified binaries not

supported

Application can be

tampered with at a later

stage;

Unmodified binaries not

supported

Overhead of analysis may

not be justified;

May not protect against

self-modification or

stacklheap execution

Point of trust

Entire ap-

plication

generation

process

Compile-time

Link-t ime

Load-time

Examples

Entropia,

Distributed.net,

SETI@Home

Static compiler analysis;

proof carrying code

(PCC) - proof synthesis

Condor;

System-call wrapper

approaches

Static analysis of machine

code;

PCC - proof verification

Restrictions

Safc APIs;

Requires application

source;

Trusted programmer,

compiler, linker;

Human intervention

Analysis currently

possible only for restricted

subsets of languages;

For PCC gcneral

verification is

un-decidable

Limited functionality;

KO dynamic linking

Works only for restricted

subsets of languages

/ * This program loads t h e malicious
code i n t o t h e heap and then executes
t h e code * / 1 I

fread(codeBuffer , 1, f i l e s i z e , f d) ;

f = (codeBuffer) ; /*Casting t o func*/
f (5) ; /*Executing code*/

/ * Assembly code t o execute
n number of forks each
running an i n f i n i t e locp * /
looped0 (

- asm- ("
push %ebp
mov %esp, %ebp

54: mov
decl
t e s t
j 9
j mp

Jl: mov
i n t
mov
t e s t
j ne

56: jmp
52: leave

r e t
" 1 ;

Grid Application Malicious code

Figure 3.1. Sample grid application code that can invoke malicious code at run time. The

malicious code bypasses the system call library and invokes fork() and exec() via the kernel.

application development environment include Condor [I I] , safe languages such as Java [6],

and proof-carrying codes [12]. Examples of systems that rely on third-party trust (for the

safety of applications) include Entropia, Distributed.net and United Devices.

There are several problems with these approaches (see Table 1). Entities such as En-

tropia protect computing resources by carefully controlling the entire process of building

applications. This method, while feasible, is clearly experisive and time-co~isuming - par-

tic~llarly for large, complex a,pplications. The use of safe languages such as Java can make

this approach less complicated, but t,liis excludes t,he use of unmodified binaries. Compile-

time or link-time tests that at,t,empt t,o verify the safety of applications are also possible

(e.g., as with Condor), but such tests can be defeated.

In general, if users are allowed to modify code in a11y way (i.e., at the source, object,, or

binary levels), it is relatively simple for them to introduce trojan processes i11 the shared

account - without being detected by any compile- or link-time tests. Consider the following

example (see Figure 3.1). The grid application s1iow11 in the left half of the figure reads

a file into heap memory as a string. The string (in this case) contains machine code that

invokes a fork() and exec(). Now, the grid application sets a pointer to the starting

address of the string and executes it as a function (see the left half of the figure). This is

possible because the stack and data segments in Unix are executable.'

These types of "attacks" are very difficult to detect at compile or link time. Even if one

could detect and disallow explicit casting of function pointers, other approaches exist : for

example, one could simply modify the executable (ma~iually) after it has been compiled or

import the malicious code into the execution stream at run-time. Also, it is not necessary

to rely on the executable nature of the stack and data segments [IS].

3.3. Discussion

As shown in Figure 3.2, grid environments can be classified 011 the basis of their domain

of trust. Towards the left bottom of the figure are the ideal grid environments: they allow

untrusted users to develop and execute arbitrary applications, while enforcing usage arid

security policies.

The X-axis represents the domain of trust. On the left, the run-time e~iviro~iment trans-

parently handles trust issues; as one moves to the right, the domain of trust moves to

the application, the application generation process, a11d finally to the end user. Observe

that, in general, as one moves to the right, administrative and/or customization overheads

associated with defining and enforcing security increase. The Y-axis represents the cost of

building a grid application. At the bottom, the cost is negligible - grid environments in

this space transparently support urimodified binaries. At the other extreme, grid environ-

ments require custom-designed applications for security.

To better understand the classification scheme, consider the following examples with

respect to their positions in the figure. Systems such as Condor lie at the center of the

figure - they only require applications to be relinked with special-purpose libraries. 011

the other hand, with languages such as Java, one would have to rewrite the application

'This is a fundarncntal charactcristic of LTnix and cannot be disabled without other side effects that

limit functionality.

Entropia, dislributed.nel, SETI@Home etc.

I

Run-time Application i Static Linking Compiling Source Code End Usen
Environment executables & Application generation Process 4

Domain of Trust

Figure 3.2. Classification of Grid Environments

completely - thus putting such approaches in the top right part of the figure. Fi~ially,

systems such as Glob~is and PBS require pote~itial users t o establish accountability directly

with the system administrators, but allow them to rilri unmodified binaries - thus placing

them in the right part of the classificatio~i space.

Observe that the region between the domain of trust and the run-time environment,

along the X-axis, presents opportunities for intrusion, if security is not actively enforced at

run-time. For example, in the case of Condor, link-time checks collld be bypassed after the

linking process is complete, but before the executable is submitted to Condor. Systems sudi

as Entropia work around this problem by having a large domain of trust (by controlling

applicatio~l ge11era.tion through execution). However, this is a manual and time-consuming

approach that sig~iificantly increases t,he overhead (and cost,) of building grid applicatio~is.

The following section describes solutions based on a combi~~ation of private, anonymous

accolints and either 1) run-time monitoring or 2) virtual machines. Sutli soh~t,ions lie

towards the bottom left of the cla.ssification space (see figure) and can facilitate secure

sharing of computing resources without compromisi~lg security.

4. Securing Access to Grid

Resources - The PUNCH Approach

111 this section, we present techniques to overcome the grid security shortconlings prese~~ted

i11 Section 3. Section 4.1 describes the method used in PUNCH to overcome the administra-

tive overhead of maintaining user account,^ on grid resources. Sections 4.2 and 4.3 describe

two approaches, currently being evaluated in PTJNCH, to guarantee safe grid applications i11

the absence of user-accountability. The domain of trust i11 both these approaches - based

on process monitoring and virtual maclii~ies - is in the ru11-time e~ivironment provided by

the grid middleware.

4.1. Private, anonymous accounts

A standard user account provides the followi~ig functions: (a) allows data storage,

(b) maintains privacy of data, (c) co~lt,rols access t o computing resources, a,nd (d) ensures

accountability. On standard systems a user account is associated with a unique numeric

identifier (e.g. TJNIX uid), which is permanently assigned to the user. Creating individual

user accou~its on all machines, has administ'rative overheads, because a perma~le~i t iden-

tifier must be created at the host system level, for every user - temporary or permanent.

However, the functions provided by the user accou~lt need not be tied to the unique iden-

tifier all the time, provided a separate mecllanism is available to eIislire data identity and

privacy. PUNCH mai~l ta i~ls grid user data in logical riser accounts [8] whidl are not tied

to specific numeric identifiers. It also maintains a set of physical user acr:ounts referred

to as "shadow accounts". PTJNCH treats the numeric identifiers of these shadow accou~its

as intercharigeable entities that can be recycled among grid users on demand. Herice, the

logical accourits serve ns capabilities to L'check out" shadow accounts or1 t,he appropriate

resources.

There are two advantages to this approach.

Recycling a small ni~mber of shadow accourits among the grid users removes the

problems associated with creation/maintenance of physical user accounts on the host

machines in the grid.

Sirice the physical a,ccounts on the hosts are time multiplexed among the grid users,

there is no need for grid processes belonging to different users to share accolints -

thus implicitly providing protectiori between grid processes of different users on a

host.

PUNCH has employed shadow accounts since early 1998.

4.2. Run-time Process Monitoring

Arbitrary applications can be saridboxed at execution time, to enforce host security poli-

cies [I , 7, 51, by monitoring the system call trace of the programs and selectively permitting

or denying access to resources as specified by a policy file. This is enabled by process tracing

capabilities, tlie p t r a c e 0 system-call arid the /proc file-system, in modern UNlX systems.

Using p t r a c e 0 , a parent process can monitor its child process, intercept system-calls, arid

use the /proc interface to modify the child's run-time environment, and thereby grant or

deny access to resources at a very fine grariularity. Run-time monitoring along with shadow

accoi~rits described in Section 4.1 provides a security solution that is close to the ideal grid

in Figure 3.2.

When the entire applicat,ion is monitored, the cost of shifting back and forth between

kernel and user mode atleast twice and the context switches between the applicatio~l arid tlie

monitoring process for eacli intercepted system call can be significant. Hybrid approaches

tliat use static analyses of source code at compile t.ime or of machine code i ~ t load time, to

determine iirlsafe portioris of code and limit mo~iitoririg to these portions, can redlice tlie

overliead of rilri-time mo~iitori~ig.

Wlie~i the applicatio~i source is available, the compiler can perform static arialyses of

tlie ~ l ~ i t r ~ i s t e d program and find portions of code that can~iot be guaranteed to be safe

(e.g., pointer casting, memory de-referencing, etc.). 01ily these unsafe portions of code

need to be monitored at run-time, for example using the shadow processing approach [13].

With this approach, program-slicing techniques are used to generate a customized program

by deleting comp~itations not relevant to the monitoring. The original application is run

i11 lock-step with the customized program, the shadow process. Run-time monitoring is

applied only to tlie shadow process, and if it fails any check, the original application is

terminated. Overhead from the shadow processing can be hidden, by using idle processors

in m~iltiprocessor workstations. This approach can also be used with unmodilied machine

code, ~ i s i ~ i g tlie static analyses presented i11 [21].

This approach of ruri-time monitoring in shadow-accou~lts is being tested internally in

PUNCH. Run-time monitoring [I] has also bee11 employed on PUNCH as an e~iabli~ig

mechanism for the implementation of a virtual file system [S].

4.3. Run-time Virtual Machines

The Java Virtual Machine (JVM) [lo] implements a security manager, which uses signa-

ture verificatio~l and application sandboxing, to ensure that byte code froin a11 uritrusted

source cannot cause damage to the local resources of the host. There are security issues

with Java implementation as disc~lssed in [3], but even with these problems fixed, the Java

approach implies grid applications are restricted to Java, and applicatio~ls developed in

other languages must be ported to the Java platform. hloreover, current Java applications

rely on the Java Native Interface, written in languages like C, for local 1,IO etc, making

them suscept,ible to the types of attacks implied by Figure 3.1.

A virtual machine that is deco~ipled from applications can also be co~iceived. Examples

of application-independent virtual rnachi~les for UNIX-based systems i~iclude IRM's Virtual

Image Facility [15] and VMware 1191. These systems support sa~idboxing at the level of

operating systems: mult,jple copies of a "guest" O/S (a commoIl case to both approaches

is 1,INUX) may ceexist at run-time, shari~ig a machine's hardware tlirougli a "liost" O/S

(e.g. LINUX or VM/ESA).

Application-independent virtual machines provide a substrate for executing arbitrary

un-trusted code without compromisi~ig the host machine security. Furthermore, un-trusted

users can be supported in a secure manner via a single-user assignment to guest O/S

sessions. As long as the interface between the host and guest operating systems is secure,

untrusted users can execute arbitrary applications without compromising either t,he host

or any of the other guest operating systems (i.e. those belonging to other users).

While virtual machines support a secure e~iviro~ime~it for supporti~ig u11-trusted users and

applications, there are performance and portability issues that hinder their application to

existing systems. Today's virtual machi~ies are clistomized to specific hardware platforms

(e.g. TRhI S/390 and Intel x86) and incur run-time overheads for O/S requests. Specialized

support for virtual machines can mitigate run-time overheads, but may require hardware

assistance 11ot available in commodity processors (e.g. multiple levels of address tra~islatio~i

i11 the S/390 [20]).

Future work will investigate resource management mechanisms that will allow virtual

machines to be allocated efficiently 011-demand and user-transpare~itly, as computing units

for PTJNCH.

Conclusions

The issues with secliring access to shared resolirces i11 grid e~ivironme~its are the result of

a mismatcli between the characteristics of grid users and traditional users of the comput-

ing resolirces that u~iderly the grid. The access mechariisms of the underlying computing

platforms, which are at the granularity of a user, are thus not restrictive e~lough i11 grid e~ivi-

roments. The limitations of tecll~iiques currently used to overcome this issut: are presented.

Solutions that can be implemented in the grid middleware are described - slladow accounts

to overcome the administrative overhead of maintaining user accounts, and techniques that

secllre access to grid resources, sucli as run-time rno~iitoririg and virtual machines. C ' ~iverl

the wide-scale deployment of grid environments, a long-term solution to the issues pre-

sented may involve modifying the underlying operating systems or1 computirig resource, to

support grid users, for e.g. a capability-based access model to resources.

Acknowledgements

This work was funded by the National Science Foundation under grants EEC-

9700762, TXS-9809520, EIA-9872516, and EIA-9975275, and by an academic reinvestment

grant from P~irdue U~iiversity. Intel, Purdue, SRC, and HP have provided equipment grants

for PTJNCH compute-servers.

Bibliography

[I] A. D. Alexandrov, M. Tbel, K. E. Schauser, and C. J . Scheirnan. Ufo: A personal global

file system based on user-level extensions to the operating system. AChl Transactions on

Compr~t~er Systems. 16(3), pages 207-233, August 1998.

[2] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T . Proett, and D. Tweten. Portable

batch system: External reference specification. Technical report, hlRJ Technologjr Solrltions,

November 1999.

[3] D. Dean, E. w. Felten, and TI. S. Wallach. Java security: from HotJava, to Netscape and

beyond. In IEEE, editor, 1996 IEEE Symposium on Security and Privacy: May 6-8, 1996,

Oakland, California, pages 190-200, 1996.

[4] 1. Foster and C. Kesselrnan. Globus: A metacomputing infrastrilcture toolkit. The Interna-

tional Journal of Supercomputer Applications and High Performance Computing, 1 l(2) :115-

128, Summer 1997.

[5] 1. Goldberg, D. R. Thomas, and E. A. Brewer. A secure environment for untrusted

helper applications: Confining the wily hacker. In Proceedings of the 6th Usenix Security

Symposium San Jose, Ca., 1996.

[6] J . Gosling, and H. hlcGilton. The .Java Language Environment. Sun Microsystems Computer

Company, 1995.

[7] M. R. Jones. Interposition agents: Transparently interposing user code at the system inter-

face. In Symposium on Operating Systems Principles, pages 80-93, 1993.

[8] N. H. Kapadia, R. J . Figueiredo, and J . A . B. Fortes. Enhancing the scalability and usability

of comput,ational grids via logical user accounts and virtual file systems. In Proceedings of

the Heterogeneous Computing IVorkshop (HCW) at the International Parallel and Distributed

Processing Symposium(IPDPS), San Franr.isco, California, April 2001.

[9] N. H. Kapadia, R. J . Figueiredo, and J . A. R. Fort,es. Punch: Web port,al for running tools.

IEEE Micro, pages 38-47, hlay-June 2000.

[lo] T. Tindholm and F. Yellin. The Java Virbual hlachine Specification. Addison-Wesley, Read-

ing, hlA, 1997.

[l l] M. J . M. J . Litzkow, M. Livny, and M. W. hlutka. Condor - A hunter of idle workstations. In

Proceedings of the 8th International Conference on Distributed Computing Systems (ICDCS),

pages 104-111, Washington, DC, 1988. TEEE Computer Society.

[12] G. C. Necula. Proof-Carrying Code. Conference Record of POPL '97: The 24th AChl

SIGPLAN-SIGACT Symposium on Principles of Programming I,a.ngi~a.ges, pages 106-119,

Paris, Fra.nce, 1997.

[13] H. Patil and C. N. Fischer. Efficient run-time monitoring using shadow processing. Tn

Automated and Algorithmic Debugging, pages 119-132, 1995.

[14] C. Pricc. Mips TV instruction set, revision 3.1. Technics,] report, January 1995.

[15] IBM Corporation. White Paper: S/390 Virtual Image Fhcilit,y for [,inux, Guide and Refer-

ence. GC24-5930-03, February 2001.

[16] J . Saltzer and M. Schroeder. The Protection of Information in Computer Systems. Proceed-

ings of the IEEE, 63(9):1278-1308, 1975.

[17] s u n T M Grid Engine SoftwareDetailed View. http://www.sun.com/software/gridware/details.html

[18] T,. Torvalds. Posting to linux kernel mailing list http://www.lwn.net/!180806/a/linus-

noexec.htm1. Technical report, August 1998.

[19] VMware Incorporated. VMwa.re GSX Server http://www.vmware.com, 2000.

[20] C. F. Webb. S/390 microprocessor design. In IBM Journal of Research and Development,

pages 899-906, December 2000.

[21] Z. Xu, R. P. Miller, and T. W. Reps. Safety checking of machine code. In SIGPLAN

Conference on Programming Language Design and Implementation, pages 70-82, 2000.

	Purdue University
	Purdue e-Pubs
	9-1-2001

	Security Implications of Making Computing Resources Available via Computational Grids
	Sumalatha Adabala
	Ali Raza Butt
	Renato J. J. Figueiredo
	Nirav H. Kapadia
	Jose A. B. Fortes

