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Abstract

This report investigates the issues of securing access to computing resources in com-
putational grids. Grid environments are built on top of platforms that control access to
resources within a single administrative domain, at the granularity of a user. In wide-area
multi-domain grid environments, the overhead of maintaining user accounts is prohibitive,
and securing access to resources via user accountability is impractical. Typically, these is-
sues are handled by implementing checks that guarantee the safety of applications, so that
they can run in shared user accounts. This work shows that safety checks — language-based,
compile-time, link-time, load-lime — currently implemented in most grid environments are
either inadequate or limit allowed grid users and applications. Techniques without such
limitations are presented. Shadow accounts allow reuse of user accounts without adminis-
trative overheads, and run-time solutions — run-time monitoring and virtual machines —

allow arbilrary code to execute while enforcing a given resource access policy.

K ey Phrases:. security in grid environments; safety of grid applications; access control of
shared resources; sharing user accounts; shadow accounts; run-time application sandboxing;

virtual machines.



1. | Nntr oduction

Access to computing resources has traditionally been coritrolled by assigning an “account”
to each user. The process of assigning such user accounts serves two purposes: 1) it helps
establish the accountability of users — by obtaining personal and contact information for
each user, for example; and 2) it alows administrators to enforce usage policies — by not
giving out accounts on certain machines, for example.

This approach has worked well within single administrative domains, but it has severa
limitatioris that present significant obstacles to the viability of computational grids, which
typically span multiple administrative domains. For example, creating accounts has an
administrativeoverhead, making it difficult to give users dynamic or temporary (in terms
of minutes or hours) access to resources. Another problem is that resource owners must
implicitly rely on the accountability of the users of the resources, making it difficult and
imprudent for them to share resources outside o their administrativedomains. Yet another
issue results from the inability of resource owners to control how the resource is utilized by
its users. For example, a resource owner may want some users to only use certain machines
for specified applications — but has no easy way to enforce this.

This investigation addresses the security implications of making a computing resoiirce
available via computational grids. Both grid applications and shared resources must be
secured from malicious actions of each other. This work focuses on theissue of protecting
the shared resources from arbitrary code. It highlights the problems and limitations of
current grid environments, and proposes solutions that are more robust, scalable, and
secure.

Therest of the report isorganized asfollows. Section 2 describes the context for this work,



the PUNCH network computing environment. Section 3 outlines some of the limitations
of the current approaches to sharing computing resources across administrative domains.
Section 4 proposes new solutions that can be used to overcome these limitations. Finaly,

Section 5 presents concluding remaxks.



2. Background

This work was conducted in the context of PUNCH, the Purdue University Network Com-
puting Hubs [9]. PUNCH is platform for grid computing that allows users to access
and run unmodified applications on distributed resources via standard Web browsers (see
www.punch.purdue.edu). PUNCH currently provides computing services to about 2,000
students arid researchers across two dozen countries. More than 70 applications from dif-
ferent research institutions and vendors are available.

Operating a computing portal with a world-wide user base presents some rather inter-
esting issues. For example, PUNCH provides access to several commercial tools; accessto
these tools must be restricted to Purdue students due to licensing constraints. Applications
range from batch (e.g., CacheSim5 — a cache simulator) to interactive (e.g., DLX-View —
a pipeline simulator) to development environments (e.g., the SimpleScalar set of tools for
computer architecture simulation). Users are transient — students tend to use PUNCH
a semester (or quarter) at a time, and researchers utilize the system for specific projects.
Usage policies associated with machines are complex and often change — for example,
many machines are ounly available for specific types of applications (e.g., ones that tend to
run quickly), and non-Purdue users typically can only use them when they are not heavily
loaded.

The diversity of PUNCH users and applications has significant value in terms of vali-
dating research concepts. However, operating and supporting such a service in a research
enviroriment is impractical unless the administrative costs can he kept under control. This
work highlights the mechanisms in PUNCH that make it possible to streamline and auto-

mate marly of thetasks associated with grauting users access to computing systems without



violating usage policies or compromising on security.

PUNCH users can request user accounts, these are logical accounts decoupled from ma-
chine accounts (Section 4.1), viaits portal interface. These requests are processed automat-
ically, arid users are given access according to a default policy. Users that request additional
privileges (e.g., Purdue students wanting access to commercial tools) are granted access af-
ter manual verification by an administrator. Changes are automatically propagated when

machines are added or removed, or when usage policies change.



3. Securing Accessto Grid

Resour ces from Malicious Use

From a security standpoint, the domain of trust — the set of entities that are trusted or
accountable — must lie with either the users, the applications, or the grid middleware
(or some combination of the three). In dynamic, wide-area computing environments, it
is generally impractical to expect that all users can be held accountable for their actions.
Plus, accountability does not prevent damage from being done, making this a costly so-
lution. Another option is to trust tlie applications. This is typically accomplished either
by coustraining the development environment to a point where the generated applications
are guaranteed to be safe, or by making sure that the applications come from a trusted
source. However, limiting the functionality of applications also limits the usefulness of the
computing environment, and history has shown that it is possible for applications from
trusted sources to contain bugs (www.bugnet.com) that compromise their integrity.
Consequently, security is best achieved by active enforcement o policies within the grid
middlewarelayers. Thefollowing discussion surveys the different approaches utilized within
current grid environments and describes their limitations; the subsequent section describes

new solutions that overcome some of the limitations of the current approaches.

3.1. User-based domain of trust

ln systemsthat rely on end-user accountability, the principal [16] - the entity responsible
for actions of a process - is the user account identifier. The process of obtaining user

accounts is independent of the actual grid middleware, arid is typically defined by the



owners of the computing resources. Examplesin this category include Globus [4], Sun Grid
Engine [17], and PBS [2].

This approach is not scalable as the administrative overhead of creation/maintenance,
due to (a) the large number o accounts and (b) transient users requiring the account for
short periods of time, may be inhibiting. Moreover, if a user cannot be made accountable,
she/he cannot be given an account. This limits the potential users of the grid resources.

The grid process has access to all the resources of a standard TINIX user; as a conse-
guence, if the grid user account is compromised, all other systems in the Grid on which
that user has accounts are opened up for misuse. This makes proper implementation of
standard Unix security on all the systems underlying the Grid more crucial.

In order to overcome the overhead of creating individual accounts, some systems rely
on sharing accounts among grid users. Examples include Entropia (www.entropia.com),
Distributed.Net (www.distributed.net) and United Devices (www.ud.com), where resource
owners download grid applications and run them in their accounts. There are two problems
with this approach. Firstly, though the grid processes may belong to different grid users,
asfar asthe TINIX system is concerned they belong to the same user. So agrid process can
misbehave and affect the other processes in the same account, for e.g., a malicious process
can terminate other processes owned by the user (using 'kill -9 -1'). Secondly, since the
shared accourit is a standard account (even user "nobody” [11] is a standard user though
without a file system), it has access to loca resources, and can exploit them at least to
the extent alowed by the underlying UNIX access model. In addition, the grid user can

misuse resources, for example, to launch distributed denial-of-service attacks.

3.2. Application-based domain of trust

Orie way o working around the need for end-user accountability isto ensure that applica-
tions executed in grid environmentsare "safe”". This "safety” can be achieved in one of two
ways: by constraining the application development environment, or by trusting the source
of the application. Systems that rely on an application-based domain of trust typically run

jobs from al usersin a single, shared account. Examples in this category that, constrain the



Point of trust Examples Restrictions I ssues

Entire ap- || Entropia, Safc APIs; High overhead of adapting
plication Distributed.net, Requires application application to grid;

gener ation SETI@Home source; Unmodified binaries not
process Trusted programmer, supported

compiler, linker;

Human intervention

Compile-time

Static compiler analysis;
proof carrying code

(PCC) - proof synthesis

Analysis currently
possible only for restricted
subsets of languages,

For PCC general
verification is
un-decidable

Exponential binary code
bloat (PCC);

Overhead of analysis may
not be justified;
Application can be
tampered with at alater
stage;

Unmodified binaries not

supported
Link-time Condor; Limited functionality; Application can be
System-call wrapper No dynamic linking tampered with at a later
approaches stage;
Unmodified binaries not
supported
L oad-time Static analysis of machine | Worksonly for restricted Overhead of analysis may

code;

PCC - proof verification

subsets of languages

not be justified;
May not protect against
self-modification or

stack/heap execution

Table 3.1. Examples of systems that rely on application-baseddomain of trust, and the corre-

spondingrestrictions and limitations.




4 ™

/* Assembly code to execute
/* This program loads the malicious n number of forks each
code into the heap and then executes running an infinite locp */
the code */ looped() {
. ——asm__ ("
/ “push %ebp
. mov %esp, ¥ebp
FILE *fd; / J4: mov 0x8 (%ebp), %eax
void (*f) (int); decl 0x8 (3ebp)
char *codeBuffer; test $eax, $eax
jg Ji
jmp J2
. Jl: mov 30x2, %eax
fread(codeBuffer, 1, fileSize, fd); int $0x80
mov %eax, $eax
test %eax, $eax
f = (codeBuffer); /*Casting to func*/ jne J4
f(5): /* Executing code*/ J6: jmp J6
. J2: leave
ret
")y
- / )
. i
Grid Application Malicious code

Figure 3.1. Sample grid application code that can invoke malicious code at run time. The

malicious code bypassesthe system call library and invokes fork() and exec() via the kernel.

application development environment include Condor [11], safe languages such as Java [6],
and proof-carrying codes [12]. Examples of systems that rely on third-party trust (for the
safety of applications) include Entropia, Distributed.net and United Devices.

There are several problems with these approaches (see Table 1). Entities such as En-
tropia protect computing resources by carefully controlling the entire process of building
applications. This method, whilefeasible, is clearly expensive and time-consuming — par-
ticularly for large, complex applications. The use of safe languages such as Java can make
this approach less complicated, but this excludes the use of unmodified binaries. Compile-
time or link-time tests that attempt to verify the safety of applications are also possible
(e.g., as with Condor), but such tests can be defeated.

In general, if users are allowed to modify code in any way (i.e., at the source, object,, or
binary levels), it is relatively simple for them to introduce trojan processes in the shared
account — without being detected by any compile- or link-timetests. Consider the following

example (see Figure 3.1). The grid application shown in the left half of the figure reads



a file into heap memory as a string. The string (in this case) contains machine code that
invokes a fork() and exec(). Now, the grid application sets a pointer to the starting
address of the string and executes it as a function (seethe left half of the figure). Thisis
possible because the stack and data segments in Unix are executable.'

These types of "attacks" are very difficult to detect at compile or link time. Even if one
could detect and disallow explicit casting of function pointers, other approaches exist: for
example, one could simply modify the executable (manually) after it has been compiled or
import the malicious code into the execution stream at run-time. Also, it is not necessary

to rely on the executable nature of the stack and data segments [18].

3.3. Discussion

As shown in Figure 3.2, grid environments can be classified on the basis of their domain
of trust. Towards the left bottom of the figure are the ideal grid environments: they allow
untrusted users to develop and execute arbitrary applications, while enforcing usage arid
security policies.

The X-axis represents the domain of trust. On the left, the run-time environment trans-
parently handles trust issues; as one moves to the right, the domain of trust moves to
the application, the application generation process, and finally to the end user. Observe
that, in general, as one movesto the right, administrative and/or customization overheads
associated with defining and enforcing security increase. The Y-axis represents the cost of
building a grid application. At the bottom, the cost is negligible — grid environmentsin
this space transparently support unmodified binaries. At the other extreme, grid environ-
ments require custom-designed applications for security.

To better understand the classification scheme, consider the following examples with
respect to their positions in the figure. Systems such as Condor lie at the center of the
figure — they only require applications to be relinked with special-purpose libraries. On

the other hand, with languages such as Java, one would have to rewrite the application

'This is a fundamental characteristic of Unix and cannot be disabled without other side effects that

limit functionality.
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Figure 3.2. Classification of Grid Environments

completely — thus putting such approaches in the top right part of the figure. Finally,
systemssuch as Globus and PBS require potential users to establish accountability directly
with the system administrators, but allow them to run unmodified binaries — thus placing
them in the right part of the classification space.

Observe that the region between the domain of trust and the run-time environment,
along the X-axis, presents opportunities for intrusion, if security is not actively enforced at
run-time. For example, in the case of Condor, link-time checks could be bypassed after the
linking process is complete, but before the executableissubmitted to Condor. Systemssuch
as Entropia work around this problem by having a large domain of trust (by controlling
application generation through execution). However, thisis a manual and time-consuming
approach that significantly increases the overhead (and cost,) of building grid applications.

The following section describes solutions based on a combination of private, anonymous



accounts and either 1) run-time monitoring or 2) virtual machines. Such solutions lie
towards the bottom left of the classification space (see figure) and can facilitate secure

sharing of computing resources without compromising security.



4.  Securing Accessto Grid
Resources — The PUNCH Approach

Tn this section, we present techniquesto overcomethegrid security shortcomings presented
in Section 3. Section 4.1 describes the method used in PUNCH to overcome the administra-
tiveoverhead of maintaining user accounts on grid resources. Sections 4.2 and 4.3 describe
two approaches, currently being evaluated in PUNCH, to guarantee safe grid applications in
the absence of user-accountability. The domain of trust in both these approaches — based
on process monitoring and virtual machines — isin the run-time environment provided by

the grid middleware.

4.1. Private, anonymous accounts

A standard user account provides the following functions: (a) allows data storage,
(b) maintains privacy of data, (c) controls access to computing resources, and (d) ensures
accountability. On standard systems a user account is associated with a unique numeric
identifier (e.g. TINIX uid), which is permanently assigned to the user. Creating individual
user accounts on all machines, has administrative overheads, because a permanent iden-
tifier must be created at the host system level, for every user - temporary or permanent.
However, the functions provided by the user account need not be tied to the unique iden-
tifier all the time, provided a separate mechanism is available to ensure data identity and
privacy. PUNCH maintains grid user data in logical rise accounts [8] which are not tied
to specific numeric identifiers. It also maintains a set of physical user accounts referred

to as "shadow accounts". PTINCH treats the numeric identifiers of these shadow accoumnts



as interchangeable entities that can be recycled among grid users on demand. Hence, the
logical accounts serve as capabilities to “check out" shadow accounts on the appropriate
resources.

There are two advantages to this approach.

e Recycling a small number of shadow accourits among the grid users removes the
problems associated with creation/maintenance of physical user accounts on the host

machines in the grid.

e Since the physical accounts on the hosts are time multiplexed among the grid users,
there is no need for grid processes belonging to different users to share accounts —
thus implicitly providing protection between grid processes of different users on a

host.

PUNCH has employed shadow accounts since early 1998.

4.2. Run-time Process Monitoring

Arbitrary applications can be sandboxed at execution time, to enforce host security poli-
cies[1, 7, 5], by monitoring the system call trace of the programs and selectively permitting
or denying accessto resources as specified by apolicy file. Thisisenabled by process tracing
capabilities, tlieptrace() system-call arid the /proc file-system, in modern UNTX systems.
Using ptrace(), a parent process can monitor its child process, intercept system-calls, arid
use the /proc interface to modify the child's run-time environment, and thereby grant or
deny access to resources at a very fine granularity. Run-time monitoring along with shadow
accounts described in Section 4.1 provides a security solution that is close to the ideal grid
in Figure 3.2.

When the entire application is monitored, the cost of shifting back and forth between
kernel and user mode atleast twice and the context switches between the application and tlie
monitoring process for each intercepted system call can be significant. Hybrid approaches
that use static analyses of source code at compile time or of machine code at load time, to
determine unsafe portions of code and limit monitoring to these portions, can reduce tlie

overliead of run-time monitoring.



When the application source is available, the compiler can perform static analyses of
tlie untrusted program and find portions of code that cannot be guaranteed to be safe
(e.g., pointer casting, memory de-referencing, etc.). Only these unsafe portions of code
need to be monitored at run-time, for example using the shadow processing approach [13].
With this approach, program-slicing techniques are used to generate a customized program
by deleting computations not relevant to the monitoring. The original application is run
in lock-step with the customized program, the shadow process. Run-time monitoring is
applied only to tlie shadow process, and if it fails any check, the original application is
terminated. Overhead from the shadow processing can be hidden, by using idle processors
in multiprocessor workstations. This approach can also be used with unmodilied machine
code, using tlie static analyses presented in [21].

This approach of run-time monitoring in shadow-accounts is being tested internally in
PUNCH. Run-time monitoring [1] has also been employed on PUNCH as an enabling

mechanism for the implementation of a virtual file system [8].

4.3. Run-time Virtual Machines

The JavaVirtual Machine (JVM) [10] implements a security manager, which uses signa-
ture verification and application sandboxing, to ensure that byte code from an untrusted
source cannot cause damage to the local resources of the host. There are security issues
with Java implementation as discussed in [3], but even with these problemsfixed, the Java
approach implies grid applications are restricted to Java, and applications developed in
other languages must be ported to the Java platform. Moreover, current Java applications
rely on the Java Native Interface, written in languages like C, for local I/O etc, making
them susceptible to the types of attacks implied by Figure 3.1.

A virtual machine that is decoupled from applications can also be conceived. Examples
of application-independent virtual machines for UNIX-based systemsinclude IBM’s Virtual
Image Facility [15] and VMware [19]. These systems support sandboxing at the level of
operating systems: multiple copies of a "guest" O/S (acommon case to both approaches

is LINUX) may co-exist at run-time, sharing a machine's hardware through a “liost" O/S



(e.g. LINUX or VM/ESA).

Application-independent virtual machines provide a substrate for executing arbitrary
un-trusted code without compromising the host machine security. Furthermore, un-trusted
users can be supported in a secure manner via a single-user assignment to guest Q/S
sessions. Aslong as the interface between the host and guest operating systems is secure,
untrusted users can execute arbitrary applications without compromising either the host
or any of the other guest operating systems (i.e. those belonging to other users).

While virtual machines support a secure environment for supporting un-trusted users and
applications, there are performance and portability issues that hinder their application to
existing systems. Today's virtual machines are customized to specific hardware platforms
(e.g. IBM S/390 and Intel x86) and incur run-time overheadsfor O/S requests. Specialized
support for virtual machines can mitigate run-time overheads, but may require hardware
assistance not availablein commodity processors (e.g. multiplelevelsof address translation
in the S/390 [20]).

Future work will investigate resource management mechanisms that will alow virtual
machines to be allocated efficiently 011-demand and user-transparently, as computing units

for PTINCH.



5. Conclusions

The issues with securing access to shared resources in grid environments are the result of
a mismatch between the characteristics of grid users and traditional users of the comput-
ing resources that underly the grid. The access mechanisms of the underlying computing
platforms, which are at thegranularity of a user, are thus not restrictiveenough in grid envi-
roments. The limitationsof techmiques currently used to overcome this issue are presented.
Solutions that can be implemented in the grid middleware are described — shadow accounts
to overcome the administrative overhead of maintaining user accounts, and techniques that
secure access to grid resources, such as run-time monitoring and virtual machines. Given
the wide-scale deployment of grid environments, a long-term solution to the issues pre-
sented may involve modifying the underlying operating systems on computing resource, to

support grid users, for e.g. a capability-based access model to resources.
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