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FEATURE SELECTION VIA AN UPPER BOUND (TO ANY

DEGREE TIGHTNESS) ON PROBABILITY OF MISCLASSIFICATION

Cecil R. Hallum

Loyola University, New Orleans, Louisiana

I. ABSTRACT

Currently, many techniques exist for feature
selection purposes which are related but, unfortunate­
ly, in an indeterminable way to the probability of
misclassification. In this paper a procedure is pre­
sented which yields an upper bound (to any degree
tightness) on the probability of misclassification in
sample Gaussian maximum likelihood classification be­
tween each pair of categories in p-dimensional space.
The technique permits features to be selected so that
the optimal q (q ~ p) features have the property that
no other subset of q features yield a smaller value to
the upper bound on the probability of misclassifica­
tion. A computer-assessible transformation is uti­
lized which permits a multiple integral over the mis­
classification region in p-dimensional space to be
approximated, to any degree of accuracy, by the pro­
duct of p iterated integrals, each over univariate
space, and each of which may be obtained by a simple
table-look-up procedure. Quite often, transformations
are used without consideration of loss of information~

however, the one utilized in this procedure results in
no loss of information and leaves the standard likeli­
hood ratio invariant in value.

II. INTRODUCTION

There seems to be general agreement among remote sensing community personnel,
and classification theorists in general, that the cost function which has appli­
cable meaning to the user scientist is expected cost of misclassification. Any
procedure, then, which is optimal for feature selection purposes should be one
whicn minimizes this cost function. A popular (and realistic) assumption in almost
all remote sensing applications is that the costs of misclassifying an individual
from category C. as being from category C., i ~ j = 1,2, ••• ,m, are equal, in which
case the expect~d cost of misclassificati6n reduces to probability of misclassifi­
cation. Currently, many techniques exist for feature selection purposes (eigen­
value/eigenvector techniques (Chien and Fu, 1968) including factor analysis and
principal components, standard regression techniques, Wilk's scatter technique
(Wilks, 1962), the divergence criterion (Marill and Green, 1963), Sammon's non­
linear mapping (Sammon, 1970), LaMotte-Hocking regression techniques (LaMotte and
Hocking, 1970), the Battacharyya distance measure (Kailath, 1967), the Matusita
distance (Matusita, 1966), the concept of equivocation (Babu, 1972), and others,
including trial-and-error approaches with sets of features with varied composi­
tion) which are related but, unfortunately, in an indeterminable way to the prob­
ability of misclassification. In this paper a procedure is presented which yields
an upper bound (to any degree desired tightness) on the probability ofwmisclassi­
fication in sample Gaussian maximum likelihood classification between each pair of
categories in p-dimensional space. The technique permits features to be selected
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RECOGNITION SPACE

(2)

(1)

P (X IC .)
J

and
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where U. and U. are the respective sample means, M. and M. are the sample variance­
covariafice matrices. Transforming to a new space By the rtonsingu1ar transformation
Q, where Q is the matrix with the'property

Let C. and C. be two categories (i ~ j) which have the Gaussian distribution
with respective dertsities

III. TRANSFORMATION TO AN EQUIVALENT PATTERN

between pairs of categories so that the optimal q (q s p) features have the pro­
perty that no other subset of q features yields a smaller value to the upper bound
on the probability of misclassification. A simple, computer-assessib1e transforma­
tion is utilized which permits a multiple integral over the misc1assification
region in p-dimensiona1 space to be approximated, to any degree of accuracy, by
the product of p iterated integrals, each over univariate space, and each of which
may be obtained by a simple table-look-up procedure. The utility of this trans­
formation in the classification processing phase of pattern recognition recently
appeared in the literature (Minter and Hallum, 1972) and, unlike many transforma­
tions which are used without consideration of loss of information, the one utilized
herein results in no loss of information and leaves the standard likelihood ratio
invariant in value.

/2
1

A 1/2exp{-1/2(X - v.)TM~l(X - V.)}
(27T)P IM.I J J J

J

_____~_=1~~~~ {1/2(X _ U.)T(QT-1QTM.QQ-1)-1(X - U;)}
/2 TA 1/2exp - ~ ~ .....

(27T) P IQ Mi Q I

p(xlc i )

p(xlc
j )

"- <.

(0 is a diagonal matrix and I the identity matrix), the likelihood ratio (assuming
the classification scheme is Bayes with equal a priori class probabilities and
with cost matrix elements c .. = c - co .. , where c is a constant and 0 .. is the

~J ~J ~J

Kronecker delta) of p(xlc.) to p(xlc.) takes the form
~ J
loA T A-1

A

/2 x 1/2exp{-1/2 (X - U.) M. (X - U;)
(27T)P 1M. I ~ a .....

~

1 { 1/2 (X _ u.) T (QT-
1

QTM.QQ-1) -1 (X - U )}
p/2 TA 1/2exp - J J j

(27T) IQ MjQI
(3)
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In both the transformed and the untransformed space, the boundary of the
misclassification region between categories Ci and Cj (defined by those points

satisfying p(xlc.)/p(xlc.) = f(Z!C.)/f(zlc.) = 1) is always a hyperellipsoid or a
1. J 1. J

hyper-hyperboloid. In the transformed space, this boundary is specified by the
quadratic equation

PROBABILITY OF MISCLASSIFICATION

IV. A FIRST DEGREE APPROXIMATION TO THE

-I"pT M.p-1
1.

Routines for obtaining P and 0 have been implemented for some time and are avail­
able via the IBM Scientific SUbroutine Packa e (IBM Corp., 1970) and the Catalog
of Mathematical Rout1.nes at NASA MSC 1.n Houston, Texas.
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In the above, d~ is the k t h diagonal element of Dj Zk' Vk, and Wk are the k t h

T T T
coordinates of the vectors Z = (Zl' Z2' ••• ' Zp) = Q X, V = {VI' V2, ••• , Vp)

T A T T A

QUi' and W = (WI' W2"'.' Wp) = Q Uj' respectively. The utility of the trans-

formation Q in classification processing has already appeared (Minter and Hallum,
1972) in the literature, and it needs be stressed that Q needs be obtained only
once for each pair of categories for a given classification situation (such as a
flight-line for classification). Moreover, observe that the invariance of the
likelihood ratio (note equations (3)) guarantees that pattern classification in the
original and the transformed space is equivalent.

To obtain Q (see Minter and Hallum, 19721, let Q ~ p-l~ where P is the
Cholesky (Ratishauser, 1966) factorization of M., i.e. M.= P P where P is upper
triangular, and 0 is the orthogonal transformation whichJdiagonalizes the symmetric
matrix

where Pki(Zk) and Pkj(Zk) are the univariate normal densities

-



which is the equation of a central conic whose center is located at the point with

kt h coordinate (d~Wk - Vk)/(d~ - 1) and whose principal axes are parallel to the

coordinate axes. In the forthcoming development, the center will be utilized to
obtain the smallest hyper-box, with sides parallel to the coordinate axes in the
transformed space, which encloses the region of misclassification. Integration,
then, over the region of misclassification is approximated to "first degree ap­
proximation" (which is sufficient in a large number of cases) by integrating over
this box, moreover, the manner of integration for the total probability of mis­
classification between Ci and Cj is carried out in such a manner that the result-

ing value is always greater than or equal to the probability of misclassification.

The technique for "first degree approximation" for the case of a hyperellip­
soidal region of misclassification is illustrated in Fig. 1 and 2 for two dimen­
sions. The dashed line in Fig. I and 2 denotes the equi-probable line between
Ci and Cj (specified by equation (6) with p = 2) and is the boundary of the region

of misclassification. Figure 2 indicates what we would see in Fig. I by looking
down on the Zl' z2-plane from the y-direction. From Fig. I and 2, the probability

of misclassification is given by

(7)

.
where R denotes the region outside of R. In general, the determination of the
function to be integrated over R is accomplished by selecting the one having mini­
mum value at the center point CR of R, which is simply the center of the conic

specified by equation (6), the remaining function is integrated over R. As is
well-known, in p-dimensional space the integration in (7) becomes extremely diffi­
cult, if not impossible, utilizing existing techniques. However, the points
all' a21' a12' a22 are easily obtained, in general, for p-dimensional space, alj

and a 2j are obtained by putting all Zk' with the exception of Zj' in (6) equal to

the corresponding coordinate of the center CR, and solving the resulting univari­

ate quadratic in Zj for Zj. Applying the quad~atic formula, the resulting two

values of Zj are denoted by a l j and a 2j and are given by

1,2, ••• ,p) of the center of the conic specified in

(8)

(9)

(IO)

1,2, ••• ,pj

d~ (W~ + lnd~)] /d~).
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An upper bound approximation to the first integral in (7) is given by inte­
grating over the box B, i.e.

a 2l a 22
~ f PH (Zl)dZ l f P2i (Z2)dZ 2

all a 12

(11)

(15)

(13)

(14 )

(12)

a21 a22
~ J Plj (Zl)dZ l J P2j (Z2)dZ 2

all a 12

iff (Ztc .: dZldZ 2R J

Using the similar approximation as in (11),

However, f(ZIC.) ~f(ZIC.) for all Z over the regions Rl, R2, R3, and R4, there-
~ J

and the right-hand side of (14) exceeds the true value by precisely the amount

3B-17

However, .a portion of this excess is eliminated in determining the total prob­
ability of misclassification between categories Ci and Cj by noting that the

second integral in (7) may be obtained as follows:

where F denotes the univariate, cumulative Gaussian distribution function with
mean 0 and variance 1 and whose value may be obtained at the indicated points by
referring to a normal distribution table (which could easily be stored for quick
reference) or by utilizing one of the several efficient techniques which are
available for estimating tail probabilities under the univariate Gaussian distri­
bution curve. Note also that the right hand side of (11) exceeds the true value
of the multiple integral over R by precisely the amount

Sr'



where ~ is the non-negative quantity which represents the over-estimate of the
probability, P, of misclassification and is giv~n by

(17)

(16)P + e

E =

The preceding discussion was for the case of a hyperellipsoidal region of
misclassification, however the same discussion applies verbatim as well to the
case of a hyper-hyperboloidal region of misclassification where, for the two-dimen­
sional case, Rl , R2 , R3, and R4 are specified in Fig. 3 and all = -CD, a 2l =00.

In general, the misclassification region will be hyper-hyperboloidal provided T.<O
J

in (10) for at least one value of j = 1,2, ••• ,p, in which case, a l j = -00 and a 2j

=00 for each such j.

fore the upper bound estimate to "first degree approximation" of "the probability
of misclassification is given by

utilizing the "first-degree approximation," feature selection is easily im­
plemented by ordering the features as follows: for m,nE.{1,2, ••• ,p}, feature
Z is preferable to feature Z providedm n

(18)

After ordering the coordinates in the above manner, denote them by Z(l)' Z(2) , ••• ,

Z(p): if we want to achieve a probability of misclassification not to exceed a

preset value «, we select the first k ordered coordinates such that

k-l
TT p(n) ~ ex
n=l

(19)
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ON PROBABILITY OF MISCLASSIFICATION

A. A HYPERELLIPSOIDAL REGION OF MISCLASSIFICATION

(21)

(20)
k
lTP
n=l (n ) ~ ex.

1 - [F (a 2 (n) - W(n) - F (a l (n) - W(n) )]

T j > 0 for each j = 1,2, ••• ,p,

but

where

v. AN UPPER BOUND (TO ANY DEGREE TIGHTNESS)
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a{l) a{l) a(2) a(2) a(3) a(3) a{k) a{k) a{N-l) a{N-l)
12' 22' 12' 22' 12' 22 , ••• , 12' 22 , ••• , 12 ' 22

(e.g., in Fig. 4 N = 6) easily obtained by repeated application of the quadratic
formula. In" general, if Zl' Z2' •• " Zq is a given subset of q features (q ~ p) of

(kl' ••• , k ) ~ th
p-dimensional space, the notation a. . q will be used to represent the i--

1.)

of the two j~ coordinate values {lower coordinate value if i = 1, upper value

Utilizing the coordinates of the center of the conic of equation (6), incre­
ments along a principal axis can be made and, e.g. in two-dimensional space, the
points

(or equivalently, if d~ - 1 is of the same sign for all k = 1,2, ••• ,p) where T j is

given by equation (10). To aid in following the discussion below, refer to Fig. 4
for the case of two dimensions.

In general, the region of misclassification in p-dimensional space will be
hyperellipsoidal provided

The previous section summarizes the approach for a "first-degree approxima­
tion" to the probability of misclassification and provides an upper bound estimate
which, in many instances, will be sufficient. The procedure may be generalized
further to obtain as tight an upper bound on the probability of misclassification
as one chooses. In the following, explicit expressions are given for upper bound
estimates, to any degree of desired tightness, for each of the two possible
regions of misclassification.

p
for n = l,2, ••• ,p. If 1T p{n»«then the conclusion is, to the "first-degree

n=l
approximation," there is reason to doubt that it is possible to classify with this
probability of misclassification. We do know, however, that it is possible to
distinguish, using the first k ordered features, between categoriesC. and C. with

1. )

probability of"misclassification not to exceed the value of the left side of (20).



(24)

(23)

(22)

+

(kl,··.,k)
R. q )

J

Bq n
TT 1 p . (Z )dZ

n=l A n1. n n
n

V~ - d~ (W~ +
] J J

1 - d:?
J

Vf - df (Wf +
] ] J

1 - d~
]
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%
k =1q

Nz:
k =1

q

c . ­
RJ

(kl,···,k ) q q Cl'
+ k. - Vi} - Wi ) 2]R. q In TT d 2 - E [ 1.

1. + (ali + k iJ k=l k i~j di

trRjd: Vir - (C Rj
_ W

j
) 2 ] •

where

The (N - l)th degree upper bound estimate of the probability of misclassification
between categories C. and C. is then given by

1. J

if i = 2) of the point on the boundary of the region of misclassification obtained
after moving a distance of klA from all to a 2l, a distance of k 2A from a

1 2
to a

22,

••• , and a distance of kqA from a l q to a 2q• The increment length A might, for

example, be A~ max la2n - alnl/N. Requiring N to be an~ integer in the
n

following will simplify the problem of making certain the region over which inte­
gration is carried out completely encloses the region of misclassification. For

{
(kl,···,kq)

a particular j~ 1,2, ••• ,q}, the two values (i.e. for i = 1,2) of a.. are
1.J

obtained by replacing the Zk's in equation (6), with the exception of the j~,

by the coordinates of the point obtained after moving a distance of klA from all

toward a
l 2,

a distance of k 2A from a l 2 to a 22, ••• , and a distance of kqA from a l q

to a
2q,

and solving the reSUlting quadratic in Z. for Z. using the quadratic for-
(kl, •• ~,k) J (kl, ••• ,kq)

mula. These two values of Zj denoted by a l j q and a 2 j are given
by



N

r
k =1

q

(25)

where, for each n 1,2, ••• ,q,

and

A
n

where I
n

is the indicator function

(

1 , if

0, if

The expression in (25) is the value of the upper bound estimate over a region
which encloses the region of misclassification with the property that the enclos­
ing region squeezes down on the hyperellipsoidal region of misclassification as N
becomes large.

B. A HYPER-HYPERBOLOIDAL REGION OF MISCLASSIFICATION

The region of misclassification in p-dimensional space will be hyper-hyperbo­
loidal provided T. < 0 (of equation (10» for one or more jE{1,2, ••• ,p}, or equi-

)

valently, 'provided d~ - 1 is not of the same sign for all k = 1,.2', ••• ,p. The
procedure for obtain1ng the upper bound approximation is very similar to that for
the hyperellipsoidal region. The primary difference is that of having to inte­
grate over a region in a negative direction from a O and a positive direction from

3B-21

,
aO (refer to Fig. 5 for the case of two dimensions). If we let S = {j , T j < O}

then the jth coordinates of a
O

and a~, denoted by ao)' and a~)., respectively, are
given by

~

For larger Nand

tal' ,
if j E S

a
Oj

= )
CRj, if j E S

(a2, ,
if j e S

a Oj = )
C

Rj,
if j E S

where a l j, a 2 j, and CRj are given by equations (8) and (9). Moreover, for the

hyper-hyperboloidal region of misclassification, for each value of i = 1,2, the
(kl' .. .,k )'

quantity a, , q is identical to that of equations (22) and (23) upon replac-
1)

, ,
1ng CR, by aO'; similarly, replacing CR, by a O' in (22) and (23) and k i4 by -ki 4

)) (kl' ••• ,k») )(kl,··.,kq )
in expression (24) for R, q, we obtain a. ,

. ) 1)



smaller A (N and A are not necessarily related and N may be even or odd for the
hyper-hyperboloidal easel, the value of the integration over the enclosing region
becomes a tighter upper bound approximation to the probability of misclassifica­
tion. The explicit expression for this estimate in terms of the cumulative
Gaussian distribution function F, with mean 0 and variance 1, is given by

I

q Bn

TT J p . (Z ldZ 1
n=l I nJ n n

An

I

(
An - Vn)l s. r. (Bn - Vn)

-F d +1TlF d
n n=l n

VI. CONCLUSIONS

A
(kl' ••• ,kql

- knAn a l n

(kl,···,k )
B a q - (k - llAn In n

, (k l, ••• ,k l
A a q - (k - llA •n In n '

N N q Bn
~ ... % [ TT ( p . (Z l dZ +

kl=l k =1 n=lJ nJ n n
q An

1 -

where

For a given set of q features, the procedure presented herein permits the
calculation of as tight an upper bound estimate on the probability of misclassifi­
cation in Gaussian maximum likelihood classification between each pair of cate­
gories as one chooses using these selected features. The original space is trans­
formed to an equivalent pattern recognition space so that all calculations become
univariate calculations, including the integrations. An explicit expression is
given for as tight an upper bound estimate as one chooses in terms of univariate
Gaussian distribution functions which are easily and accurately obtained. The
procedure may be utilized to select the optimal q (q E p) features having the
property that no other subset of q features yield a smaller value to the upper
bound on the probability of misclassification. In particular, beginning with q
1, the technique may be applied and q increased, if necessary, until the upper
estimate becomes less than some preselected threshold Gl, where ~~ the ~argest

value of the probability of misclassification that can be tolerated in a given
classification situation. From this set, the q features yielding the smallest
value less than ((is selected.
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throughout. Also, it needs be pointed out that the space in which feature selec­
tion is carried out herein is the same space in which classification processing
by thresholding (see Minter and Hallum, 1972) is accomplished~ consequently, the
recommended procedure is to select features utilizing the technique presented
herein and then perform classification processing utilizing the Minter-Hallum
classification procedure.

As a final consideration, if the a priori class probabilities q. and q. are
1. J

known for categories C. and C., respectively, then they may easily be incorporated
1. J

into the procedure presented herein by simply replacing

The selected features will be those which best discriminate between cate­
gories Ci and Cj. It is likely that for a third category, say Ck' those features

which permit best discrimination between categories Ci and Ck will be different

from those that best discriminate between Ci and Cj (and Ci and Ck). Therefore,

to achieve the degree of classification accuracy that is hoped for in the near
future in remote sensing, the selection of pairwise categorical features should be
significantly superior to choosing one set of features for all the categories
combined.
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Figure 3. A Hyperboloidal Misclassification Region in Two­
dimensional Space Between Categories C. and C .•. . 1 J
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