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OMEN an atomistic and full-band quantum
transport simulator for post-CMOS nanodevices
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Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA

E-mail: mluisier@purdue.edu

Abstract—The technology computer aided design of
nanometer-scaled semiconductor devices requires appropriate
quantum-mechanical models that capture the atomic granularity
of the simulation domain. The recently developed nanodevice
simulator OMEN fulfills this condition. It is able to treat
two- and three-dimensional transistor structures in a full-band
framework using the semi-empirical sp3d5s∗ tight-binding
model. In this formalism each atom of the device is represented
by a set of ten orbitals leading to multi-band and open-boundary
Schrödinger equations that have to be solved thousands of
times. To improve its computational efficiency OMEN has four
levels of parallelism that make it run on the largest available
supercomputers.

I. INTRODUCTION

Within the next five to ten years the semiconductor industry
will face the greatest challenge in its history. The conventional
planar bulk MOSFETs will reach their physical and technical
limit and the continuation of Moore’s law will depend on novel
and original device structures. For example the feasibility
of silicon-on-insulator ultra-thin-body (UTB) and multi-gate
nanowire (NW) field-effect transistors (FETS) has already
been demonstrated by several groups [1], [2], [3].

Modeling such devices requires approaches beyond the
classical drift-diffusion and effective mass approximations.
The treatment of strong quantization effects as well as the
atomic granularity and dimensions of ultra-scaled transistors
is demanding state-of-the art physical models. For that purpose
we have developed OMEN [4], [6], [7] the first atomistic
and full-band quantum transport simulator designed for post-
CMOS transistors like UTB and NW FETs that can treat
realistically extended and gated devices. A brief summary of
its simulation capabilities is presented in this paper.

II. METHOD

OMEN is a two- and three-dimensional Schrödinger-
Poisson solver based on the sp3d5s∗ semi-empirical tight-
binding method [8]. This bandstructure model has been chosen
for (i) its ability to reproduce the principal bulk characteristics
of electrons and holes, (ii) its straight-forward extension to
nanostructures, and (iii) its atomic description of the sim-
ulation domain. Carrier and current densities are obtained
by injecting electrons and holes at different momentum and
energies into the device and by solving the resulting system
of equations in the Wave Function (WF) or in the Non-
equilibrium Green’s Function (NEGF) formalism [4]. The
treatment of the open-boundary conditions (OBCs) deserves

a special attention since their calculation can generate most
of the computational burden if standard techniques such as
iterative solvers or generalized eigenvalue problems are used.
In OMEN the OBCs are obtained from a shift-and-invert
procedure resulting in a normal eigenvalue problem which is at
least one order of magnitude faster than the usual approaches
[5].

The WF and the NEGF formalisms give the density-of-
states (DOS) and the transmission probability (TE) from one
contact of the device to the other(s) as function of the injected
momentum and energy. The carrier and current densities are
calculated by integrating the DOS and TE, respectively and
they are self-consistently coupled to the solution of a 2D or
3D Poisson equation. For that purpose a finite-element grid
is constructed and the electron and hole charges coming from
the tight-binding calculation are represented by delta-functions
placed on node positions.

The core operation of OMEN is the calculation of the open-
boundary conditions and of the carrier and current densities
using either NEGF or WF. This is repeated for each energy,
momentum, self-consistent Poisson iteration, and bias point. In
a typical 2D UTB simulation NE=500 to 2000 energy points
and Nk=10 to 20 momentum points have to be included for
each Poisson iteration and bias point to get accurate results.
In other words the Schrödinger equation has to be solved at
least 5000 times per bias point. Even if this can be achieved
in a couple of seconds the calculation of one single bias
point without self-consistency will take hours on a single
processor. However, more and more researchers have access to
clusters composed of hundreds of processors. To benefit from
this resources the computation of the bias points, the energy
and momentum integrations, and the spatial decomposition
of the simulation domain have been parallelized so that a
single simulation can run on a number of processors NCPU

comprised between O(103) and O(104) with an almost perfect
speed-up factor of NCPU .

III. RESULTS

Typical device structures that OMEN can handle are shown
in Fig. 1 and comprise nanowire field-effect transistors with
any cross section shape (square, circular, triangular, hexagonal,
· · ·), gate architecture (all-around, single, double, or triple),
and transport direction (<100>, <110>, <111>, <112>,
· · ·) as well as ultra-thin-body FETs with single- or double-
gate and any configuration of surface orientation and transport
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Fig. 1. Schematic view of a circular gate-all-around nanowire (left) and of two double-gate (right) field-effect transistors (FETs) with different transport
directions <> and surface orientations (). The nanowire and the ultra-thin-body are surrounded by oxide layers of thickness tox that isolate them from the
metallic gate contacts. The dots represent atoms that are colored according to the carrier distribution. Red atoms depict a high carrier density, blue atoms a
low density.

direction. All the channel atoms are represented in the tight-
binding formalism. The oxide layers surrounding the channel
do not participate to the transport calculation due to a poor
parametrization of the material and an insufficient knowledge
of their coupling to the semiconductor. The oxide layers
are modeled in the Poisson equation as perfect insulators
characterized by their relative permittivity εr and an infinite
band gap. Hence, the electrons are confined in the channel and
do not penetrate into the oxide as illustrated in Fig. 1.

Different semiconductor materials have been parametrized,
among them Si, Ge, GaAs, InAs, AlAs, or SiGe. Ternary alloy
semiconductors like InGaAs and AlGaAs are treated either as
virtual crystals or as atomistically and randomly disordered
entities [9]. The parameters are obtained by fitting the band
gaps and effective masses of the bulk bandstructure at points of
high symmetry. These semi-empirical parameters are assumed
unchanged for nanostructures where the surface atoms are
passivated.

Current characteristics and internal quantities such as the
transmission coefficient, the density-of-states, the carrier den-
sity, and the electrostatic potential can be investigated for n-
and p-doped transistors. For example in Fig. 2 the logarithmic
and ballistic transfer characteristics Id − Vgs of n-doped
gate-all-around nanowire transistors with a diameter d=4 nm
and a gate length Lg=10 nm are compared for transport
along different crystal axis. Similarly in Fig. 3 the ballistic
transfer characteristics of n-doped and p-doped double-gate
UTB FETS are shown. The six devices have the same di-
mensions and surface orientation (100), but different transport
directions (<100>, <110>, and <111>). Such comparisons
are straight-forward in a full-band model, but require lot of

approximations in effective-mass-like approaches.
OMEN offers a good insight into the internal quantities

of the simulated devices as illustrated in Fig. 4 and 5. The
maximum value of the drain current in Fig. 2 depends on
the transport direction. To understand this behavior the corre-
sponding transmission coefficients from the source to the drain
contact in Fig. 4 can be investigated. It is observed that the first
current channels open for the nanowire with transport along
<110>. It is followed by the <100> nanowire that counts
two times more channels. The two effects (energy turn-on and
number of channels) more or less compensate each other so
that the <110> and <100> currents are about the same.

Another important transistor characteristics is its subthresh-
old swing or the amount of gate voltage change necessary
to increase (or decrease) the drain current by one order of
magnitude. This information is directly related to the quality
of the control one has over the potential barrier induced by the
gate contact. Fig. 5 shows the variation of the potential barrier
height for two gate voltages and the resulting inversion charges
in the channel for a p-doped UTB FET. Ideally a variation of
the gate voltage of δVg would change the barrier height by
q · δVg where q is the elementary charge.

The transport in OMEN is not restricted to its ballistic
component, but elastic scattering like surface roughness [6]
and alloy disorder [9] can be fully taken into account due to
the atomic nature of the simulation domain. For a given device
configuration one can study the most advantageous transport
direction and surface orientation with respect to ON- and OFF-
current, subthreshold swing, drain-induced barrier lowering,
source-to-drain tunneling, transient time, and sensitivity to
surface roughness.
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Fig. 2. Transfer characteristics Id − Vgs (Vds=0.6 V) of
n-doped Si gate-all-around nanowire FETs (diameter d=4 nm,
gate length Lg=10 nm) with transport along the <100>, the
<110>, and the <111> crystal axis.
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Fig. 3. Transfer characteristics Id − Vgs (Vds=±1.0 V) of n- (right) and p- (left) doped Si
double-gate ultra-thin body (DG UTB) FETS (body thickness tSi=4.9 nm, gate length Lg=22
nm) with (110) as surface orientation and transport along the <100>, the <110>, and the
<111> crystal axis.
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Fig. 4. Transmission coefficient through the same gate-all-around
nanowire FETs as in Fig. 2 at Vgs=Vds=0.6 V. The energy reference
E=0.0 eV is the top of the bulk valence band.
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Fig. 5. Number of holes (solid lines) and inverse average electrostatic potential
(dashed lines) along the transport direction of the <110>/(110) DG UTB simulated
in Fig. 3. Results were obtained at Vds=-1.0 V.

The multi-level parallel implementation of OMEN and the
optimization of its numerical algorithm make the simulation
of NW with a cross section up to 22 nm2 and UTB with
a body thickness up to 10 nm and a gate length of Lg=40
nm possible. For a realistic UTB structure designed according
to the 22 nm technology node specifications an almost ideal
scaling of the simulation walltime up to 32768 processors
can be demonstrated [10]. In Fig. 6 the walltime measured
for the simulation of a circular nanowire FET (green curve
with triangle, diameter d=3nm, gate length Lg=15 nm) and
a double-gate UTB FET (blue curve with crosses, body
thickness tbody=4.9 nm, gate length Lg=22 nm) are reported
as function of the number of processors used. The dashed line
indicates the ideal scaling slope.

IV. CONCLUSION

At the moment no other full-band and atomistic quantum
transport simulator offers such physical capabilities, compu-
tational efficiency, and support in developing nanotransistors
as OMEN. Gate leakage currents, surface reconfiguration, dis-
crete doping atoms, and dissipative electron-phonon scattering
are planned for future extensions.
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Fig. 6. OMEN scaling performance for the computation of the transfer
characteristics Id − Vgs of a UTB (same structure as in Fig. 3, blue curve
with crosses) and a circular nanowire (diameter of 3 nm, green curve with
triangles) field-effect transistor. The four levels of parallelism of OMEN are
turned on for the UTB case (8 bias points, 16 momentum points, about
1400 energy points, and domain decomposition on 2 cores). The nanowire
simulation requires three levels of parallelism (16 bias points, no momentum,
about 540 energy points, and domain decomposition on 2 processors).
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