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Practical application of zone-folding concepts in tight-binding calculations
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Modern supercell algorithms, such as those used in treating arrays of quantum dots or alloy calculations, are
often founded upon local basis representations. Such local basis representations are numerically efficient, allow
considerations of systems consisting of millions of atoms, and naturally map into carrier transport simulation
algorithms. Even when treating a bulk material, algorithms formulated on a local basis generally cannot
produce arE(k) dispersion resembling that of a simple unit cell, due to zone folding. This paper provides an
exact method for perfect supercells to unfold the zone folgd diagrams into a meaningful bulk dispersion
relation. In addition, a modification to the algorithm for use with imperfect supercells is presented. With this
method, questions such as algorithm verification, dispersions in nanowires, and dispersions in finite supercell
heterostructures can be addressed.

DOI: 10.1103/PhysRevB.71.115215 PACS nunt®er71.20—b, 73.21.Cd

I. INTRODUCTION The answer to this question lies in the type of supercell

The band-structure calculation of atom clusters has beef€ing studied. If all of the small cells in the supercell are
common practice in the computational exploration of moderridentical, then an exact reconstruction of a traditioBet)
material sciencé:3® Such calculations for materials are typi- diagram is in principle possible. An efficient technique for an
cally performed within a plane-wave basis in an infinitely €xact reconstruction would be of great utility in verifying
periodic system. The resulting dispersion relationships irsupercell algorithms. That is, a correct supercell algorithm
various crystal directions are critical for the evaluation of theapplied to a perfect crystal should give the saffk) dis-
material properties. In contrast to plane-wave basis set, ongersion, as does a conventional energy-band calculation.
finds local basis sets theoretically and practically more con- If, on the other hand, the small cells comprising the su-
venient for the calculation of electronic transport in percell are not identical, perhaps having different atoms or
nanostructurédsand more efficient with smaller computa- different displacements of the atoms within the small cells,
tional requirements than corresponding pseudopotentighen only an approximaté(k) relation is possible. Imperfect
methods for the calculation of electronic structure in
multimillion-atom system8: These advantages are fully uti- T T T N T
lized when finite size structures in finite environments are : '
simulated. Such modern supercell algorithms have been em-
ployed in treating impuritie$,quantum dot$,and alloys®

Despite the preferred and primary use of the local basis
sets for finite-size nanoelectronic structures, it is often in-
structive to also examine the system under some periodic
boundary conditions, where periodicity may be considered in
one, two, or three dimensions. Concrete examples for such
applications of periodic boundary conditions are vertical
transport in one-dimensionallD) heterostructures with
finite-size supercellgwo-dimensional2D) periodicity], cal-
culation of zero-bias dispersion along a quantum wire with
confinement in two dimension& D periodicity), and bulk
band structurdthree-dimensional3D) periodicity]. Such a
supercell treatment consisting of multiple sm@lé., primi-
tive) cells reSL,'Its in multiple folding of ,the typical b,and FIG. 1. Three of the bands alofi§j00] for the simple cubisp®
structureE(k) .dlagram into smaller Bnlloum zongsee Fig. system studied herésee text Bulk bands for this systenfi.e.,

1). Such multiple folding obscures the desired band-structurgyose of the primitive cell, with the lattice paramegrare plotted
analysis. The fundamental question to be answered i pold; the solid line is double degenerate. Bands for»a22 2
whether a traditionalE(k) diagram can be reconstructed supercell along100] are plotted with fine lines. Note that the bulk
from the eigenvalues and eigenvectors of the small supercelands exactly overlap two of the supercell bands. The dashed line
Brillouin zone. denotes the supercell Brillouin zone.

Energy [eV]

0.6 0.8 1.0
k)‘a [7]
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supercells such as this lack translational symmetry so that theectors from a supercell verification calculation.

wave vectorsk, are no longer good quantum numbers, and, The first step is to precisely determine the Brillouin zones

strictly speaking, the functiofE(k) does not exist. If the of the two descriptions of the same crystal. Consider a bulk

disorder is not too great, then the bdstk) that can be crystal with a primitive cell described by direct lattice vec-

achieved is one belonging to a translationally symmetric systors &, i=1,2,3. In aconventional calculation a crystal of

tem that mimics as closely as possible the actual system. THd;N; primitive cells along the direction;, the wave vectors

dispersion of this translationally symmetric system may therof the first Brillouin zone are

be said to approximate the properties of the actual system.

Here the opjective of zone _unfolding is to reconstruct the k=> _pj_bj, a b =275, (1)

best approximaté&(k) for the imperfect system. i-1 MjN; ’
The ideal unfolding method would be applicable to both _

perfect and imperfect supercells. For perfect supercells if/nere the integerp;

would exactly reconstruct the small c@lk) relations. For by

=q(M;N;) and the functiory is defined

imperfect supercells it would provide the best possible ap- -(Q-2 Q

proximate reconstruction. Here we present an algorithm tai- — -~ 10,1, g Q even
lored for the empirical tight-binding method, which is exact  q(Q) =

and highly efficient for perfect supercells, and that can ex- -(Q-1) _101 Q-9 0 odd
tract not only eigenenergies but in many cases the small cell 2 ottt '
eigenstates as well. For imperfect supercells, the great vari- 2)

ety of systems that might be modelégmiconductor alloys,

arrays of nonidentical quantum dots, gtmakes it far from  In a supercell calculation, on the other hand, the direct lattice
clear at this point whether any single method will be best forvectors are nowA;=N;a, i=1,2,3 for asupercell ofN;

all such cases. Nevertheless, the extension of the method ferimitive cells along the direction;. This same crystal then
perfect supercells to imperfect ones presented shows mudtasM; supercells alond\;, and thus the supercell wave vec-
promise, and will likely be an integral part of approaches fortors K, belonging to the first supercell Brillouin zone are

the imperfect case. Section Il discusses the exact algorithm 3 3
for perfect supercells. Section Il discusses its extension to K = 2 TLB_ — E _mj_b_ B = ib- (3)
the imperfect case and presents results for one example of a oM I N PN

disordered system. Section IV presents the conclusions. ) , )
where as usual the integarg=q(M;). Using Eqs(1)~(3), it

follows that for supercell reciprocal lattice vectofS,
Il. PERFECT SUPERCELLS =n,;B;+n,B,+n3Bs, N, integers, the equality

A useful unfolding method for perfect systems must take 5 m 5 m M.

into account several complications common in supercell cal- K +G,= >, (—LBJ- + nij> => ——p =k (4
culations. First, because most supercell calculations use an =1 \M; =1 NjM;
iterative metho_d such as La_ncz?_)e,ven within a re_stricted holds, provided that the integeps, my, n;, M; satisfy
range of energies only certain eigenvalues and eigenvectors AR
are generally available. Hence an unfolding method must be pj =m; +n;M;. (5
g 25 much information a4 possibe about the bulk srtes. [ATAYSiS Of s equation shows that 8 odd regardless of

" . X X " the parity of M;), maxp;) occurs for the pair(m,n;)
addition, the supercell eigenvectors for a given eigenenergy ! Voo : 1071
are generally superpositions of bulk states at that energ;?,{ma){q(MJ)]’ma){q(NJ)]}’ while in a like manner, mifp;)

with the mixing generally being more severe for larger, moreoCcCUrs for the_ pai.r(mj.,nj)={min[q(M,:)],min[q(N,-)]}. For
even the situation is somewhat different: rf@x occurs

realistic, supercells. This distinction is important, because thi: :
bulk eigenenergies and eigenvectors are calculatddras  10F (M;.1m;)=(0,N;/2) but min(p;) occurs for (my,m)=(1,
tions of the wave vectok, making a hunt through the bulk ~Nj/2). In this case then, the limits on; are no longer
spectrum for the desired eigenenergies an unattractive proBrescribed by the functiog, and this subtlety must be kept
pect. A useful unfolding algorithm must therefore yield bothin mind when extracting bulk states from supercell eigenvec-
the corresponding bulk wave vectors and eigenvectors thd@rs.
Contribute to a Superce” state at a given energy_ The next Step _COI"ISiStS of Comparing the wave function for
The foregoing discussion suggests that an efficient verifia given energy in the conventional and supercell calcula-
for that is precisely what happens in a calculation when onlhye9y Ep with wave vectork, is written
supercelland not primitive ce)l periodicity is imposed upon Ns N kR
a bulk crystal._Zone folding is most often discussed in the | pn(K)) => > -
context of semiconductor superlattidesg., GaAsAlAs,),*° j=1 a,u1=1 VNgN¢
and some of the more useful details of the pure form seem X|a, 1R+ pr) 6)
neglected in the literature. It is, however, these very details TP
that lead to an efficient method for extraction of bulk eigen-where the origin of thgth supercell i<R;; the location of the

b (K +G,)gK*Ca

115215-2



PRACTICAL APPLICATION OF ZONE-FOLDING.. PHYSICAL REVIEW B 71, 115215(2005

[th primitive cell relative to its supercell origin ig; « the e‘iK"’l,B(l"‘,;“)(K)
orbital type(s, py, etc); u the atom index within a primitive (@ — .
cell (for crystals with polyatomic basgsNc=N;N,N3 the By (K) = i« '(a : '
number of primitive cells per supercell; amés=M;M,M, e NGB (K)
the number of supercells in the solid. The total number of
(orbital, atom pairs per primitive cell is de_noteNQwW In a, n(l)bﬁ,“"‘)(K + G
contrast, the supercell eigenstates are simultaneous eigen- '
C(a"u)(K) - : (11)
states of energy and supercell wave veckoronly, p :

(a.pe)
s Ne kR, apningPp (K +Gnng)

N
LECOEDIDY IE N (SR |a, iR +p). (7)) and theNe X N unitary matrixU is
j=1 a,u1=1 VNg

@P1CGn) PG . PGy
As mentioned above, the supercell eigenstates are generally i G .

" Do . . 1 | €r2Gno . @P2Gning
superpositions of primitive-cell eigenstates. Using E@s. Uz — . (12
and(7), ~ WNg ) :

Ne eich'G”(l) - - eich'G”(Nc)
[W,(K)) = 2 @ (| on(K + Gng)), (8)  (The unitarity of the matrix follows directly from the fact
j=1

that thep; andG,, are, respectively, direct lattice vectors and

where the notatiom(j), j=1,2 N refers to thejth trio~ Wave vectors of the first Brillouin zone for the primitive
’ ’ LA 11

of integersn specifying a supercell reciprocal lattice vector cell.™) he bulk d .
G,. A few comments regarding E@8) are in order. First, To extract the bulk wave vectors and states, g is
often many of the coefficients,, are zero since the primi- repeatedly solvedexploiting the unitarity ofu, of coursg
tive cell eigenstates of enerds, coincide with only some o €ach(orbital, atom combination(, 1) and the results
wave vectorX +G,. Second w’;\en there is a degeneracy insaved. Exploiting the normalization of the bulk eigenstates,
the primitive-cell spectruniseveral states having the same th€ €xpansion coefficiens, ,, which give the contribution
energy,E,, and wave vectork +G,), the kettﬂp (K+G,)) of eac_h bulk state to a superla_ttlce elgenstate, are obtained by
appearing in Eq(8) is the projection of the supercell eigen- summmﬁ over atonﬁ and orbitals for a fixed enefgy,and
state|W(K)) onto the degenerate primitive cell subspace SUPErcell reciprocal lattice vect@,

(There is_ no unique ba_lsis for this supspace. lag ni| = < [ [[Cl@r 2
Equation(8) leads directly to an efficient method for ex- pn() s e A

traction of bulk states from the supercell states. Substituting
Egs.(6) and(7) into Eqg. (8), projecting out the component

. . ()] = (a,p1)
for the keta, u; Rj+p), and rearranging yields one of thig [Cp Y= apn()Pp P(K+ G- 13
equations Since the overall phase of a bulk state is unimportant, the
1 Ne bulk coefficients follow immediately once tlag , have been
e PB(K) = =2 apa( b (K + Gy €nin. determined

’ VN j=1 [C(a,,u«)].
9 b (K + Gij) = |—"—i (14)

ap,n(|

In matrix form, these equatiori®ne per primitive ce)lread Equations(13) and (14) are then repeatedly solved for each

B#(K)=U - Cl@¥(K), (10) G, contributing to the superlattice eigenstgie(K)) to give
P - ° the constituent bulk states. Carrying out the calculation of
where Egs. (10)—(14) for all of the superlattice eigenstates yields

TABLE |. Bulk-state decompositions and contributions to superlattice states for the simple cyul2ix 2 supercell considered. The
energy is —9.0002 eV and the superlattice wave vectdf #0.01,0.01,0.04=/a), wherea is the primitive cell lattice parameter; the
phase of thes orbital for all states is set atz/8 2. k is the bulk wave vector in units @fr/a). The bulk projections out of the supercell states
yielded wave vectorK +G,,, G,,=n(w/a), which, when shifted back into the bulk first Brillouin zone agree with the kulkhe superlattice
states are labelefL1-SL3 and the figures in each of these columns are the contributions of the bulkistateach, i.e., the, , from Egs.

(8)~(11).

k n S X y z St SL2 SL3

(-0.99,0.01,0.00 (1,0,0 =-i3.768x1072 -9.993x101 3.229x10*% 3.229x10% 3.854x10°1 9.064x 10! 1.732x1071
(0.01,-0.99,0.00 (0,1,0 =-i3.768x1072 3.229x10* -9.993x101 3.229x10% 8.263x10°1 4.225x101 3.724x1071
(0.01,0.01,-0.99 (0,0, =-i3.768x1072 3.229x10* 3.229x10% -9.993x10! 4.107x101 4.293x10% 9.118x107%
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0 . ¥ 7 TABLE II. Bulk states for comparison with projections from
: 1 eigenstates of the X 2X 3 supercell considere(lable Ill). The
2k : - energy in 11.5 eV and the units for the wave ve&tare(w/a), the
: ] same as in Table I. There are two degenerate bulk stBtesnd
4 K=(k,001,001) 7a ; ] B2) at each wave vector; the and z components of all of these
I~ : ] states are zero.
P
2 : k B1-x Bl-y B2-x B2-y
3| ] (0,0,-2/3 0 1 1 0
.................................................... G < : (0,0,2/3 O 1 1 0
.10 F .
. E ] As a first examplgTable )), consider the supercell with
"2_10 """"" s o 05 N;=N,=N3;=2 having threefold degenerate stat8&1-SL3)
' | ' | at energy -9.0002 eV and supercell wave veclér
k, (#a) =(0.01,0.01,0.04=/a). Each state is a superposition of the

three bulk statek listed in the leftmost column of the table.
The contributions of each of these bulk states to the supercell
states are listed in the last three columns; Fig. 2 locates the
first of these bulk states and the supercell stat&@dg) dia-
rams. The projection algorithm actually returned bulk wave
ectorsK +G,,,G,=n(w/a) for n in the second column of
the table; when shifted back into the bulk first Brillouin zone
these wave vectors matched the blildn all cases the same

gtlgter;]axmum possible information about the bulk €198 Mhree bulk states were projected out of each of the three

- . supercell states, and these projected bulk states agreed with
Before examining specmp examples, several Cpmment'tihose calculated directly from the bulk>x4 Hamiltonian
on the efficient implementation of the method are in order

. S _ ‘matrix. Even though they have the same energy, full recov-
First, the matrixU is independent of the superlattice wave gy of the bulk states is possible because they have different

vectorK, so it need be computed only once and reused fof “Note that when a supercell state is composed of multiple
all K of interest. SincdJ is unitary, computing its inverse 0 pyk states at differerk, the algorithm returnsll of these
solve Eq.(10) is a trivial task. Second, solving E¢LO) for  constituent states in the decomposition of a single supercell
each(orbital, atom pair involves a computational burden of state.
No,cen Matrix-vector multiplications of dimensioNc, cost- Consider next a case in which there are genuine degen-
ing N%Noyce” operations. This is more efficient than a eracies in the bulk spectrum and the limitations these place
straightforward single matrix-vector multiplication of dimen- on the information obtainable from the supercell states
sion NeNo cers OF (NcNo cen)? Operations(A special, sparse (Tables Il and 11). The supercell hal;=1, N,=2, N3=3 (6
matrix-vector multiplication algorithm would be needed to primitive cellg, and the superlattice wave vector Ks=0.
limit the operation count Uch:No,cen-) Finally, the same ma- Table Il shows that there are two bulk states at each of the
trix U can be employed even when some of the bulk wavevave vectorsk,=(0,0,+2/3(w/a) for energy 11.5eV.
vectors K +G,, lie outside the first Brillouin zone of the Table Il shows that, as expected, each of the four supercell
primitive cell (i.e., whenNc is even, since Eqs(2)—(5) can  states at 11.5 eV arld=0 is composed of bulk states at both
be used to shift these wave vectors back into the first zoneof these wave vectors. Figure 3 locates the supercell state at
A few numerical examples illustrate the method and theK =0 and the bulk state &,=(0,0, +2/3(w/a) on theE(k)
information obtainable from a supercell calculation. For eas@liagrams. Note that the algorithm correctly determines the
of presentation, we choose a simple cubic lattlettice pa-  bulk wave vectors involved, but it no longer returns the same
rametera) with one atom per primitive cell, and a nearest- states as does the bulk calculation. Furthermore, the bulk
neighborsp® tight-binding model. The Slater-Kostérpa-  states projected out of the supercell states are not orthogonal.
rameters for our model argn eV): e;=-2.0, £,=5.0, Vg, This lack of orthogonality can occur because there are
=-1.0,Vgp,=3.0,Vpp,=4.0, anadV,,,=-1.5. bulk degeneracies at more than one bulk wave vedtor,

FIG. 2. Bulk bandgbold lines and supercell bandgine lineg
for the 2x 2 X 2 supercell of Table I. The supercell state and one of
the bulk states contributing to it are indicated with open circles.
Note that the bulk bands are shown from the negative Brillouin
zone face to zone center, while the supercell bands proceed from t
zone center to their positive Brillouin zone face.

TABLE lIl. Bulk states projected out of the supercell state&at0, energy 11.5 eV for the X 2 X 3 supercell are considerédompare
to the bulk states of Table)lIThe bulk wave vectork in units of (7/a) are correctly projected out, and each of the four degenerate supercell
states is an equal superposition of bulk statds=0,0, £2/3(7/a), as indicated in the Weight column. Te&ndz components are zero
in all cases and thus are not shown. While the superlattice states are orthonormal, the bulk states projected out of théseetextot

k Weight  SL1-x Sl1-y S12-x SL2-y SL3-x SL3-y Sl4-x Sl4-y

(0,0,-2/3 12 04796 0877601792 09804 0.197¢30%6 07504 0.661672%%4° 0.4958  0.868¢ 9%
(0,0,2/3 1/y2  0.4796 0.8778°1702 009804 0.197€73046 (07504 0.66162324°  0.4958 0.86844938
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12 T ) 0.6 T
K=(0.01,0.01,0.01) wa 1
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5 ]
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& 2 03[ ]
4 ] £ 'S ]
02 N
2 -
01 | ]
0 L ]
Y 038 1.0 ]
0.0 _..._._._I_n_._n_n_..n_n_....l_n_._n_n_l_n_n_n_n_l_._._n_._
kaln -10 5 0 5 10 15 20
FIG. 3. Bulk bandgbold lines and supercell bandgine lineg Energy [eV]

for the 1X 2 X 3 supercell of Tables Il and Ill. The supercell state at

K =0 and one of the bulk states contributing to it are indicated with ~ FIG. 4. Probability coefficients|a,q|* for fixed Gigo
open circles. =(1,0,0m/a from an imperfect X2x2 supercell atK

=(0.01,0.01,0.01 w/a) (see text There are 32 dots, one for each
of the supercell states. Those energies at which the probability is
First, due to the bulk degeneracy at eachkof the projec- greatest can be interpreted as being the band energies at this
tions of the(orthogonal supercell states onto the subspaces=K +G;q, for an averaged, translationally symmetric, Hamiltonian.
at k. need not be identical. This differs from the case of
Table I, where there is but one bulk state at the given energy
perk, and orthogonality is maintained via the weights,. The extension of the method of Sec. Il to imperfect su-
Second, the projections of the supercell states ontokthe percells applies the philosophy of conventional alloy calcu-
subspace need not be orthogonal since tfgenerally non- lations in reverse. If physically meaningful, approximate
orthogonal projections ontok_ subspace can compensate.band structures exist, then each must have its own transla-
Together with differing weightsa,,, this compensation tjonally symmetric system, with identical small cells. These
keeps the four supercell states orthogonal. Of course, if abpproximate perfect systems have, like the VCA Hamiltonian
supercell states can be recovered, one can construct orthodfiscussed above, Bloch states of the form, E®). The
nal bases for the degenerate bulk subspaces using the Grafjathod of Sec. Il may then be used to determine the contri-

Schmidt procedure. Thus, in the presence of bulk degenergyions of each of these Bloch states to a given supercell
cies, the algorithm still recovers the bulk wave vectors; tate at small-cell wave vectér=K +G
n-

recovery of the bulk states themselves depends on the avaﬁ In an imperfect system, states at all available small-cell

ability of supercell states. wave vectork =K +G, will generally contribute to a given
supercell state aK, with the probabilities given by the
|ap,n|2. Note that this is unlike the case of a perfect supercell,
. IMPERFECT SUPERCELLS where typically only some of the bulk states contribute to
each supercell statesee Tables I-I)l This fact leads to a
In developing an extension of the projection method ofmethod by which the supercell calculatiolefinesthe best
Sec. Il to the case of imperfect supercells, it is essential t@average, translationally symmetric, approximating Hamil-
always keep in mind that one can only speak of a meaningfulonian. Roughly, the method proceeds as follows: the proce-
band-structurd(k) for an imperfect system so long as there dure of Sec. Il is carried out on all of the supercell states
exist translationally symmetric systems whose bands yiel@btained at a giverdk. Then, for each of thé\: supercell
carrier dynamics approximating those of the actual, imperreciprocal lattice vector&,, (each of which defines a small-
fect system. This is precisely the philosophy of conventionatell wave vectok=K +G,), a plot of the|ap,n|2 is made with
alloy calculations. For example, in calculating alloy bandsenergy on the horizontal axis and probability on the vertical
with the virtual crystal approximatiofVCA) as imple- axis. The energies at which the probability is largest are
mented in tight binding, one postulates a perfect crystal haviaken to be the band energies of the translationally symmet-
ing tight-binding parameters given by an appropriate averagric averaged Hamiltonian at small-cell wave vectorK
ing of parameters from the constituent bulk materials. This+tG,,.
postulated, translationally symmetric VCA Hamiltonian then  The algorithm outlined above will doubtless need further
has identical unit cells with “average” atoms in them, and itsrefinement. One open question is the exact nature of the av-
eigenstates are Bloch states of the form given in(By.Its  eraging to be used to read off the peak energies. It is not
bands are thus taken to approximate those of the actual syslear to us at this point that one prescription will be best for
tem. all imperfect systems. For example, one type of averaging

115215-5
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might prove more appropriate for semiconductor alloys I[V. CONCLUSIONS

while another might quk better .for arrays of nonlqentm_al We have demonstrated a computationally efficient means
quantum dots. Even with these important caveats in mind

. . : . of verifying tight-binding supercell algorithms by extracting
very preliminary results show promise. Figure 4 is an ex-, . waye vectors and eigenstates directly from the supercell
ample of such a calculation for an “alloy” supercell with giates Costly searches through the bulk spectrum are not
N1=N,=N3=2 for K=(0.01,0.01,0.0k=/a). In this calcu-  required, and even explicit matrix inversions are unnecessary
lation the atoms in four of the small cells have theirand  due to the unitarity of the matrix involved. The method
p-onsite energies each increased by 0.25 eV.[&hg* from  shows promise for future extensions. Direct applications in-
the projections of each of the 32 supercell states onto smaltlude arrays of quantum dots, and it may even have some
cell Bloch states 0iG;50=(1,0,0/a are plotted as dots. utility in approximate treatment of semiconductor alloys.
Clear peaks are seen at roughly -9, -4, and 13 eV, and the
point density is greatest around 13 é&bout twice that at

the other peak energiesThese energies can then be taken to
be the approximate band energieskatK +Gyqo with the We acknowledge conversations with N. Vagidov. The
greater density at about 13 eV indicating degenerate ofork at Purdue was supported by the U. S. Army Research
nearly degenerate bands. Much far beyond the scope of th®ffice through the ARDA program and directly through
paper remains to be done to refine this approach, yet as FigRDA, as well as by the National Science Foundation, Grant
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