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The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the
ionization regime in the presence of interfaces using tight-binding and band minima basis approaches and
compared to the recent precision measurements. In contrast with previous effective mass-based results, the
quadratic Stark coefficient obtained from both theories agrees closely with the experiments. It is also
shown that there is a significant linear Stark effect for an impurity near the interface, whereas, far from the
interface, the quadratic Stark effect dominates. This work represents the most sensitive and precise
comparison between theory and experiment for single donor spin control. Such precise control of single
donor spin states is required particularly in quantum computing applications of single donor electronics,
which forms the driving motivation of this work.
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Solid state quantum computer architectures have re-
ceived considerable attention in recent years due to their
promise of scalability and utilization of the vast knowledge
and experience of the semiconductor fabrication industry.
Several proposals employ the electronic states of phospho-
rus donors in silicon to encode qubits based on nuclear spin
[1], electronic spin [2–4], or the electronic states of a
singly ionized two donor system [5]. Two-dimensional
architectures for such qubits have been proposed to dem-
onstrate scalability strategies [6].

In Kane’s original nuclear spin qubit proposal [1], and
the more recent semiglobal control electron spin proposal
[3], single-qubit operations are performed by electrically
controlling the hyperfine interaction between the donor
electron spin and the nuclear spin of the P impurity. To
implement rigorous large-scale quantum algorithms pro-
tected by quantum error correction, the donor wave
function-dependent hyperfine coupling constant needs to
be controlled to a very high degree of precision. Recent
experiments have made tremendous inroads towards
achieving control of donors. In Ref. [7], charge relaxation
times were measured in a two P donor device. In Ref. [8],
coherent oscillations of P donor electron spins were mea-
sured by electrically detected magnetic resonance. Similar
techniques were used in Ref. [9] to invesitgate the hyper-
fine interaction in the presence of lattice strain for Si grown
on Si1!xGex. This work is motivated by a recent ESR
experiment [10] that measured the Stark shifts for 121Sb
donors in silicon buried at a depth of 150 nm from an
interface. Effective mass theory (EMT) inferred from 1s
manifold calculation of Ref. [11] predicts a quadratic Stark
shift some 10 times greater than the measured result. This
Letter investigates the Stark shift in the experimentally
probed regime and shows that two sophisticated methods,

namely, tight-binding (TB) and band minima basis (BMB),
are able to predict the system control parameters very well.
The Sb and P donors in Si can be treated as analogous
because their ground state binding energies differ only by
2.8 meV, and their 1s manifold splittings due to valley-orbit
coupling and local perturbations are also similar in nature
[12]. This is important as both the TB and the BMB
methods employed here are optimized for P donors. This
agreement between theory and experiment for this measure
of wave function control represents the most precise test of
our understanding of donor systems and, in conjunction
with the advancement in single atom fabrication technol-
ogies [13–16], represents an important step towards ex-
perimental realization of high precision control of donor
spins in Si.

Most of the approaches based on EMT have involved
using hydrogenic envelope functions [17] with Bohr radii
calculated analytically or fitted variationally. While Kettle
et al. [18] used EMT to study the effects of electric fields
and interfaces nonperturbatively with a Technology
Computer Aided Design gate potential, this work ignored
valley-orbit (VO) interaction responsible for lifting the
degeneracies of the 1s manifold. A number of authors
[11,19,20] used EMT to investigate the donor energy spec-
trum using symmetry arguments, perturbation theory, or
the single or multivalley Schrödinger equation. In
Ref. [11], Friesen considered valley-orbit coupling and
field effects in the effective mass formalism, to solve a
multivalley Schrödinger equation for the six 1s states in the
valley basis. Martins et al. [21] used a TB sp3s" second-
nearest-neighbor model to study effects of electric fields.
In Ref. [22], the BMB approach was proposed and applied
to the same problem. Calderon et al. [23] used EMT to
investigate shuttling times of the donor electron between a
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donor-bound state and a surface bound state. Both TB and
BMB approaches consider core effects and VO coupling
explicitly to model impurities. The TB and the BMB
methods are quite distinct in the sense that TB represents
the Hamiltonian in real space, while BMB represents it in
momentum space. The close agreement of the results from
two such different methods of calculations, as shown in
this work, emphasizes the fundamental nature of the im-
purity physics. The work presented here resolves signifi-
cant limitations of the previous treatments by including
realistically large device components with over 3# 106

atoms in an atomistic treatment under realistic boundary
conditions. This is also one of the first theoretical works on
the Stark effect for P impurities to be benchmarked with a
relevant experiment. While most theoretical approaches
have concentrated on donor spectrum and wave functions
near the ionization regime, little work has been done to
explore the linear and quadratic Stark shifts of the hyper-
fine coupling far below the ionization regime for realisti-
cally large systems in the presence of interfaces.

The spin Hamiltonian of a donor electron in an applied
electric field ~" and a magnetic field B0ẑ is

 Hz $ g% ~"&!BB0Sz ' A% ~"&IzSz; (1)

where A% ~"& and g% ~"& are the electric field-dependent hy-
perfine coupling and electron g factor, respectively. An
electric field distorts the shape of the donor wave function
and modifies its angular momentum, which in turn modi-
fies the g factor. The field also pulls the donor wave
function away from the impurity site, reducing A% ~"& which
is proportional to j!% ~"; ~r0&j2, where ~r0 is the impurity site.
The change in A% ~"& is parametrized as

 "A% ~"& $ A%0&%"2"2 ' "1"&: (2)

The quadratic Stark coefficient "2 was measured to be
!3:7# 10!3 !m2=V2 from the experiment by Bradbury
et al. [10]. The EMT result inferred from Ref. [11] in
Ref. [10] was !2# 10!2 !m2=V2. This value is used
here for comparison, although we note that the result
may change if p-type states are included in the EMT
analysis. Since the spin-orbit Stark effect is small for
practical magnetic fields, this Letter focuses on the behav-
ior of A% ~"& only. An impurity placed far away from inter-
faces in an unstrained Si lattice experiences a dominant
quadratic Stark effect for both A% ~"& and g% ~"&. However, the
presence of nearby interfaces or lattice strain can produce a
non-negligible linear Stark effect [24,25]. The origin of the
linear and quadratic Stark effects can be explained quali-
tatively from perturbation theory. The unperturbed ground
state wave function for an impurity placed far away from
interfaces has an approximate even symmetry. First order
perturbation theory does not yield any energy correction if
the perturbing Hamiltonian of a constant electric field is of
odd symmetry. However, second order perturbation theory
produces a quadratic dependence of the corrected energy

on the field. If the impurity is very close to the interface,
the even symmetry of the unperturbed wave function is
broken. In such a case, first order perturbation theory also
yields a linear dependence of the corrected energy on the
electric field.

TB and BMB methods are separately used to calculate
A% ~"&. From each calculation, the ground state wave func-
tion !% ~"; ~r& is calculated in the presence of the field ~". The
hyperfine coupling A% ~"& is determined by

 

A% ~"&
A%0& $ j!% ~"; ~r0&j2

j!%0; ~r0&j2
: (3)

In the range of low electric fields considered here, the
excited states (E and T) are not expected to affect A% ~"&
since this manifold is separated by 10 meV from the
ground A1 state. While EMT-based approaches are con-
cerned with contributions from valley-minima states only,
TB and BMB approaches consider a more extensive Bloch
structure of the material. TB and BMB also include VO
interaction consistently, while most EMT treatments of VO
are in violation of some of the assumptions made to derive
the effective mass equation [22].

The BMB technique solves the Hamiltonian including
an external electric field in a large but truncated basis of
pure crystal Bloch states near the conduction band minima
of a host obtained by the pseudopotential method. Since
the discretized Schrödinger equation is solved in reciprocal
space, the Fourier transform of the impurity potential is
used. Near the impurity core, the potential is modified from
its Coulombic nature to include central cell effects. The
corrected potential produces a broader Fourier spectrum in
k space and couples different valleys to lift the 1s degen-
eracies. The core potential in momentum space used in
Ref. [22] is taken from Pantelides and Sah [26]. An overall
quenching factor provides a one-parameter fit to the ground
state energy from which the excited state energies and
degeneracies compare well with experiment. After inclu-
sion of the external field, the hyperfine coupling strength is
obtained.

The standard technique in semiempirical TB [27] is to
optimize a parameter set to accurately reproduce the bulk
band structure of a host. Once this is done, the same set is
used for atomistic modeling of any devices made of that
host. For this work, the TB parameter set of sp3d5s"

nearest-neighbor spin model for Si was optimized by a
genetic algorithm [28]. The donor potential used is a
screened Coulomb potential truncated to U0 at the donor
site. U0 is treated as an adjustable parameter and found to
be 4.33 eV to obtain the experimental ground state energy
of 45.6 meV for Si:P. The potential due to the electric field
is added to the diagonal of the Hamiltonian. The real space
Hamiltonian with closed boundary conditions is solved by
a parallel Lanczos algorithm in Nano Electronic Modeling
Tool 3D [29] for the donor wave function.
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Both methods described here are applicable to other
hosts and impurities. To describe other group V impurities,
the hydrogenic Coulomb potential is still valid in the bulk,
but the core corrections need to be adjusted to reflect
correct experimental binding energies.

Figure 1 summarizes the effects of the electric field and
the interface on the donor electron. The TB calculations
use a domain of 32 nm# 65 nm# 32 nm zinc blende
lattice with 3:45# 106 atoms. The distance between the
impurity and the interface is varied parallel to the electric
field. The BMB calculation assumes a maximal depth of
10.86 nm from the interface and employs a basis set of
7986 states. The choice of this depth is dictated by the ease
of computation as it is sufficiently deep to nullify surface
effects while not too deep to make the problem computa-
tionally intractable. In TB, a range of depths from 5 to
32 nm have been considered. For each TB data point, the
typical computation times require about 7 hours on
20 CPUs [30]. Figure 1(a) shows the variation of "A% ~"&
with electric field for various impurity depths. The data are
fitted to the quadratic equation of (2). As the depth in-
creases, the quadratic coefficient "2 approaches a constant
value, while the linear coefficient "1 becomes negligible
[Fig. 1(b)]. For small impurity depths, "1 is comparable to
"2, which results in a shift of the peak of the parabola in
Fig. 1(a) towards a nonzero electric field. If the linear Stark
effect is negligible, an applied electric field has two effects
on the ground state wave function: (i) a decrease in the
peak amplitude of the wave function at the impurity site,
reflected by a decrease in A% ~"& in Fig. 1(a) for higher

depths, and (ii) a shift in the mean position of the wave
function opposite the electric field, giving rise to a nonzero
dipole moment as shown in Fig. 1(c). The dipole moments
vary linearly with the electric field, and their slopes ap-
proach a constant value as the depth increases [Fig. 1(d)].
The wave function plots of Fig. 2 also demonstrate
these effects. The larger distortions of the wave function
at higher electric fields explain the increasing dipole
moments.

If the impurity is close to the interface, the wave func-
tion is distorted even at zero electric field. This distortion
comes from changes in the slope of the part of the wave
function between the impurity and the interface. Also the
mean position of the wave function shifts farther as the
distance between the impurity and the interface is reduced.
These effects give rise to an asymmetric charge distribu-
tion about the impurity, and a nonzero dipole moment is
observed even at " $ 0. This is verified by the shift of the y
intercept of the lines in Fig. 1(c) for small impurity depths.
In effect, the interface behaves like an electric field pushing
the donor electron away from it. The strength of this field
increases as the impurity is placed closer to the interface.
This means that a higher electric field directed away from
the interface is needed to counteract these interface effects
and to restore the decreasing behavior of A% ~"&, as demon-
strated in Fig. 1(a).

Some of the numerical results can be explained qualita-
tively with the perturbation model using a basis of unper-
turbed impurity wave functions f!0

mg, where m indexes
increasing binding energy (m $ 0 being the ground state).
For an electric field given by q"y, the wave function
corrected to first order is expressed as

 j!1
0i $ j!0

0i! q"
X

m!0

X
i

h!0
m;ijyj!0

0i
E0
0 ! E0

m;i
j!0

m;ii; (4)

where i is the degeneracy index for a state m. The dipole
moment D $ qh!1

0jyj!1
0i is then given by
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FIG. 2 (color online). (a) Electric field-induced differential
map of donor electron wave probability density j!%"; z0&j2 !
j!%0; z0&j2 shown as a 2D cut through the impurity center at z0 $
16:29 nm for " $ 0:5 MV=m. The electric field is directed along
the negative y axis. (b) 1D cut though the center of the impurity
parallel to the electric field showing the differential map of the
probability density for two different electric fields.
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FIG. 1. (a) Electric field response of hyperfine coupling at
various impurity depths (BMB and TB). (b) Quadratic (left-
hand axis) and linear (right-hand axis) Stark coefficients with
depth (TB). (c) Mean position of the ground state electron
distribution (dipole moment) as a function of the electric field
(TB). (d) The electric field gradient of the dipole moments [i.e.,
the slopes of the lines in (c)] with respect to depth (TB).
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 D $ qh!0
0jyj!0

0i! 2q2"
X

m!0

X
i

jh!0
m;ijyj!0

0ij2
E0
0 ! E0

m;i

' q2"2
X

m1;2!0

X
i;j

h!0
0jyj!0

m1;iih!0
m2;jjyj!0

0i
%E0

0 ! E0
m1;i&%E0

0 ! E0
m2;j&

: (5)

The quadratic term in " can be neglected compared to the
other two terms for small ". This results in a linear function
with intercept and slope depending on h!0

0jyj!0
0i and

jh!0
0jyj!0

m;iij2%E0
0 ! E0

m;i&!1, respectively. For an impurity
far away from the interface, the unperturbed ground state
wave function is of even symmetry, the expression for the
intercept evaluates to zero, and the expression for the slope
assumes a constant value. On the other hand, for small
impurity depths, the unperturbed wave function is distorted
by the proximity to the interface. Since the ground state has
no longer an even symmetry, the intercept evaluates to a
nonzero quantity, in consistence with Fig. 1(c). The tran-
sition probabilities between the ground state and the ex-
cited states are also changed due to these distortions,
causing the slope of the dipole moment to vary with depth,
in consistence with Fig. 1(d). The same reasoning explains
why the quadratic Stark coefficient approaches a constant
value and the linear Stark coefficient becomes negligible
with increasing depth.

Table I gives the comparison between theory and ex-
periment and shows that the EMT estimate of "2 differs by
an order of magnitude, while TB and BMB estimates agree
closely with each other and the experiment. The BMB
estimate for a depth of 10.86 nm is already close to the
converged TB estimate, although the peak "A% ~"& at a
nonzero " in Fig. 1(a) indicates that the BMB estimate
would improve even more at greater depths.

In summary, the Stark shift of the hyperfine coupling for
Si:P in the presence of interfaces is analyzed from two very
different theories (BMB and TB). The results of both
methods are consistent and agree well with the experimen-
tal data for Si:Sb, thereby providing the most sensitive test
of our understanding of shallow donor quantum control to
date. For future work, both TB and BMB can be optimized

for Sb donors, and the Stark shifts can be investigated in
the presence of interfaces as well as lattice strain and a gate
structure more closely resembling that of the experiment.
In conclusion, we emphasize the need for very close inter-
action between theory and experiment to accomplish the
high precision control required in quantum computing.
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TABLE I. Comparison of the quadratic Stark coefficients from
experiment, EMT, BMB, and TB.

Method Depth (nm) "2%!m2=V2&
Experiment (Sb) [10] 150 !3:7# 10!3

EMT (P) [11] 1 !2# 10!2

BMB (P) 10.86 !2:74# 10!3

TB (P) 10.86 !2:57# 10!3

21.72 !2:76# 10!3
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