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This letter first shows that dynamic switching schemes can be used to reduce energy dissipation
below the thermodynamic minimum of NkT ln r �N=number of information carriers and 1/r
=error probability�, but only at the expense of the error immunity inherent in thermodynamic
processes for which the final state is insensitive to the switching dynamics. It is further shown that,
for a system which has internal feedback, e.g., nanomagnets, such that all N spins act in concert, it
should be possible to switch with an energy dissipation of the order of kT ln r �considerably less
than the thermodynamic limit of NkT ln r�, while retaining an error immunity comparable to
thermodynamic switching. © 2007 American Institute of Physics. �DOI: 10.1063/1.2709640�

It is generally recognized1,2 that the most important fac-
tor limiting the down scaling3 of complementary metal-oxide
semiconductor �CMOS� devices is the power dissipation,
which in the simplest approximation can be described by the
charging and discharging of a capacitor. The energy dissi-
pated in charging a capacitor C is independent of the wire
resistance R and is given by

Edissipated = limR→0 �
0

�

i2Rdt =
1

2
CV2, �1�

where V is the applied voltage. The discharging process in-
volves charging the next stage, making the total dissipation
in one cycle equal to CV2=NqV, where N is the number of
electrons and q is the electronic charge. It can be shown that
for an error probability of 1 /r= Ioff / Ion, thermodynamics re-
quires the minimum voltage to be V= �kT /q�ln r, which
translates to a theoretical minimum dissipation of NkT ln r or
NkT ln 2 �see Refs. 4 and 5 and references therein� for an
error probability 1 /r=50%.

There is great interest at this time in the possibility of
low-power switching through spin-based systems.4,6–8 How-
ever, a simple scheme employing a z directed magnetic field
to switch “up” �+z� spins to “down” �−z� will also require a
minimum dissipation of NkT ln r. To see this, we note that
the magnetic field B creates an energy difference given by
�g�B�B between the up and down states so that the error
probability, 1 /r=N↑ /N↓=exp�−g�BB /kT�, where N↑ and N↓
are the occupation probabilities of up spins and down spins,
respectively. This requires a minimum B=kT / �g�B�ln r and
a minimum energy of g�BB=kT ln r has to be dissipated for
each individual spin. Charge and spin-based switching thus
appear to be very similar with V→B and q→g�B, both of
which dissipate NkT ln r for every switching event, involving
N entities �charge or spin�.

In this letter, we first show that, with either charge or
spin, it is possible to reduce the dissipation below the limit,
NkT ln r, by using a system which has an oscillatory re-
sponse �such as a RLC circuit, see Fig. 1�, but only at the
expense of errors. Next we show that, using interacting sys-
tems �such as interacting spins in a nanomagnet�, it is pos-
sible to perform error-free, pseudodigital switching, while

still dissipating considerably less than NkT ln r. Using the
Landau-Lifshitz-Gilbert equation to model realistic nano-
magnets, we shall show that a Co cluster of 104 spins can be
switched with a power dissipation of only a few kT, far less
than the thermodynamic limit of �104kT ln r. The basic idea
is that spins in a magnet acts in concert as a single giant spin,
making the dissipation of the order of kT ln r rather than
NkT ln r. Similar reduction may also be possible using
charge-based interacting systems such as ferroelectrics. Note
that our approach is different from adiabatic or reversible
schemes9 that have been discussed extensively. Although, the
total dissipation will be dependent on specific architecture
used for communication between computing units, for this
letter, we shall restrict ourselves only to the discussion of
energy dissipation during an individual switching process.

Using a z directed magnetic field to switch spins from up
to down, as discussed in the second paragraph, is an example
of what we shall call “thermodynamic switching,” where the
final state is completely determined by the laws of thermo-
dynamic equilibrium. A different approach is to use a mag-
netic field perpendicular to the spin direction, say, along the
y axis, wait for the spin to precess exactly by 180° and then
turn off the field. The precession can be modeled by dm̄ /dt

=−� �m̄� H̄� where, m̄ is the polarization of the spin, � is
the gyromagnetic ratio, and H is the magnetic field. We
shall refer to this as “dynamic switching.” Ideally no energy

�E=−m̄ · H̄� should be dissipated. The price we pay, however,

a�Electronic mail: ssalahud@purdue.edu

FIG. 1. �Color online� Inset: RLC circuit. Variation of capacitor voltage and
dissipated energy with time. The dissipated energy builds up slowly and
reaches the value of 1 /2CV2 as the circuit reaches the steady state with the
capacitor charging up to the supply voltage.
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is the extreme sensitivity of the final state to the initial con-
ditions and the duration of the pulse. If the applied pulse
does not rotate the spins by exactly 180°, an error is incurred
which accumulates from one switching event to the next as
in an analog computer. To reset the state of the spin reliably,
one needs to use thermodynamic switching and pay the en-
ergy cost of NkT ln r.

In practice, even dynamic switching will involve some
dissipation due to coupling to the environment. The preces-
sional dynamics is described by

dm̄

dt
= − �m̄ � H̄ + �Td�−1�m − m0� , �2�

where Td is the damping matrix element and m0 is the initial
polarization. A simple calculation shows that the average dis-
sipation will be Edissipated��g�BB� /Qf, where Qf �Td /�cycle,
is the ratio of the damping time �Td� to the pulse width or
half the time period ��cycle�, similar to the quality factor of a
RLC circuit. Indeed it can be shown that if we were to charge
a capacitor through a series RLC circuit and stop the pulse
exactly at point A �see Fig. 1�, then it would be possible to
charge the capacitor to supply voltage V, while dissipating
only ��1/2CV2� / �Qf�, where Qf denotes the quality factor�.1

In either case, charge or spin, dissipation is reduced by the
“quality factor” but extreme precision is required. The mag-
netic pulse must be stopped exactly when the spin has ro-
tated by 180° and not, for example, by 185°. Similarly, the
RLC circuit needs to be stopped right at point A and not at
point B or C. We can correct this error by resetting, only if
we immediately dissipate the energy required by thermody-
namic processes: for the RLC circuit, we have to let it reach
steady state by dissipating 1/2CV2 �see Fig. 1�; for spins, we
have to put a magnetic field and dissipate g�BB, both of

which amount to NkT ln r as discussed earlier.
We now consider a magnet, which is an interacting sys-

tem of N spins and show that it has the ability to self-correct
while dissipating energy �kT ln r, far less than the NkT ln r
required to switch N noninteracting spins. The magnetization
dynamics is described by the Landau-Lifshitz-Gilbert equa-
tion which is written as

�1 + �2�
�m

�t
= ��m � Heff� −

��

m
m � m � Heff �3�

where, Heff=−�1/Ms��mE and E=−Msm̂ · H̄−K1 cos2 �
+Kp sin2 � cos2 �, where K1 is uniaxial anisotropy constant,
Kp is in-plane anisotropy constant, Ms is the saturation mag-
netization, and � is the Gilbert damping parameter. The en-
ergy landscape of a magnet, with uniaxial anisotropy along
the z axis and easy-plane anisotropy in the y-z plane �see Fig.
2�a�� is shown in Fig. 2�b�. No matter what the initial angle
of magnetization, it will relax to one of the two minima at 0
or 180, giving rise to the property of self-correction. The
energy dissipation in the switching process can be calculated
from

dE

dt
= −

�

1 + �2 ��Ms��m̄ � Heff�2 − Msm̄ ·
d

dt
Happlied. �4�

Equation �4� has to be integrated to give the total energy
dissipated over the time duration of an applied pulse. In Fig.
3 the solid and dashed curves show the variation of dissi-
pated energy with Gilbert damping coefficient � for a hcp Co
with K1=3.9�106 ergs/cm3, Kp=8�Ms

2, Ms=1400 emu,
and volume 	=70 nm3 �so that in Fig. 2�a� the barrier height,
U=K1	=6.6kT� for a magnetic pulse applied in y- and −z
directions, respectively. For all cases, we have used a mag-
netic pulse amplitude of 2K1 /Ms, which is the critical field
for switching. For a typical value of �=0.1, the dissipation
for each switching event for a y pulse is �5kT and that for a
−z pulse is �35kT. Note that the number of spins involved is
�Ms /�B�	�104, for which the thermodynamic switching
would require 104kT ln r. Dynamic switching scheme with
self-correction thus requires much smaller dissipation than
thermodynamic switching, while retaining the immunity to
errors.

Let us first look at what happens when a magnetic pulse
is applied in the y direction. The energy landscape is modi-
fied from Fig. 2�b� to the form shown in Fig. 2�c�, assuming
that the magnet always remains in the y-z plane. Instinctively

1Interestingly, for dynamic switching g�BB need not equal kT ln r and is
only determined by the speed of switching �Ref. 6�.

FIG. 2. �Color online� �a� Magnet having an uniaxial anisotropy along the z
axis and easy-plane anisotropy in the y-z plane. � measures the deflection
from the z axis. � is the deflection from the x axis on the x-y plane. �b�
Energy landscape without any external field �c� Energy landscape with an
applied field in y direction �d� Energy landscape with an applied field in −z
direction. For both �c� and �d�, it is assumed that magnet always remains in
the y-z plane.

FIG. 3. �Color online� Variation of energy dissipation with Gilbert damping
parameter � for y and −z pulses. For comparison, the thermodynamic limit
for 104 noninteracting spins is also shown. Note that for −z pulse, the dis-
sipation is always greater than kT ln r, but for y pulse, it can be smaller.
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we expect the magnetization to settle in the lowest energy
direction, that is, the y direction with �=90°. But it over-
shoots and oscillates back and forth several times. If we stop
the pulse at any time while �
90°, the energy landscape
will revert to the zero field shape shown in Fig. 2�b� and the
magnetization will settle to �=180°. For the parameter val-
ues used, the pulse width needs to lie between 20 and 50 ps
to achieve this switching. Much longer pulses will take
the magnetization to the y direction with a dissipation of
E�0�−E�� /2�=K1	. But since we rotate the magnet to
�=�±� dynamically and then stop the pulse, the dissipation
is lower. With a pulse applied in the −z direction �see Fig.
2�d��, there is a lower bound to the pulse width but no upper
bound since �=� is the equilibrium condition �see Fig. 2�d��
for this field direction. However, as we have found �compare
�35kT for −z pulse with �5kT for y pulse� this increased
error margin comes with the price of higher dissipation. In
this case, the minimum dissipation is E�0�−E���=4K1	 �see
Fig. 2�d�� to which we should add contributions from out of
plane motion and �.

It is interesting to note that, switching with a z pulse is
similar to a thermodynamic process and yet the dissipation
�35kT� is much less than the thermodynamic limit
�104kT ln 2�. This can be understood in the following way.
Imagine replacing the system of N particles of charge q each
with a single charge Nq. Then for an error probability of 1 /r
the minimum voltage would be V= �kT /Nq�ln r. Conse-
quently the minimum energy dissipation is �kT ln r rather
than NkT ln r. Similarly, a monodomain magnet may be
thought of a system where all the spins in the volume 	
behave as one single spin having a giant magnetic moment
of Ms	. In general, for an error probability of exp�−U /kT�, a
system consisting of N electrons �e.g., ferroelectrics� or spins
�e.g., ferromagnets�, that act together as one, should dissipate
overall �U �rather than N�U for independent particles�,
where � depends on the order of anisotropy �for example, for
a second order anisotropy �=4�. This emphasizes the impor-
tance of using strongly interacting systems over noninteract-
ing particles.10 The dynamic scheme allows one to further
lower the dissipation by making �
1. Note that this is dif-
ferent from the reversible switching discussed by Landauer,9

Lent et al.,10 and Timler and Lent.11 A summary of dissipa-
tion for various switching mechanisms discussed here is
shown in Fig. 4.

The barrier height �U=K1	� determines not only the er-
ror probability but also the retention time �, i.e., the time that
the magnetic spins would reside in one of the minima shown
in Fig. 2�a� before spontaneously transiting to the other. This

time can be calculated from 1/�= f0e−�, where �=K1	 /kT
and f0 is a constant of the order of 109 s−1 �see Ref. 12�. In
traditional magnets 	 is large enough that � is days or years
and one seldom talks about it. But in our example we have
considered a nanomagnet with 	=70 nm3, so that K1	
�6.6kT in order to minimize dissipation. This yields a reten-
tion time of 1 �s which should be adequate for logic opera-
tions since it represents many clock cycles.13,14 If we were to
halve the volume, the energy dissipated would be halved,
but the retention time would be �30 ns which may not be
acceptable.

In this letter we have not gone into the question of how
the magnetic fields needed for switching are generated. This
could either involve traditional “coils” or the recently dem-
onstrated spin-torque effect which could be coupled with
magnetic tunneling junction �MTJ� devices to read the infor-
mation. Since practical spin torque and MTJ devices operate
at a few hundred mV, which is a factor of 4–6 lower than
present-day CMOS supply voltages, low voltage �and hence
lower power� operation may be possible provided the resis-
tance of the MTJ is not so high that performance would be
compromised. But this does not seem like a fundamental
problem and MTJ-spin-torque pairs15 with dynamic switch-
ing at the device level looks worth investigating. However,
we note that unless the MTJ resistance in the antiparallel
combination can be increased significantly, MTJs seem more
suited to crossbar architectures than conventional CMOS
architecture.

The biggest advantage of thermodynamic switching lies
in its immunity to errors which comes from the insensitivity
of the final state to the details of the switching pulse. But this
robust certainty comes with minimum energy cost of
NkT ln r. We show that we can avoid this energy cost
through dynamic switching but the error immunity is lost.
We then show, using nanomagnets as an example, that an
interacting system, where all N spins act as one, can self-
correct and allow an error-free, pseudodigital switching
while dissipating much less than the thermodynamic limit.

The authors would like to acknowledge the joint support
of the NSF and Nanoelectronics Research Initiative �NRI�
for this work.
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