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Abstract:  The Clock Constraint Specification Language (CCSL), first introduced as a companion language for Modeling and  
Analysis of Real-Time and Embedded systems (MARTE), has now evolved beyond the time specification of MARTE, and has 
 become a full-fledged domain specific modeling language widely used in many domains. This report demonstrates the encoded 
 PVS (Prototype Verification System) theories for interpreting clock relation and clock expression based on schedules as a 
sequence of clock set. In order to ensure the correctness of the encodings, we prove some interesting properties about the clock 
constraint. Finally, we give an example to illustrate the approach.  
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1. Introduction 

The Unified Modeling Language (UML) Profile for Modeling and Analysis of Real-Time and Embedded 

systems (MARTE)[1], adopted in November 2009, has introduced a Time Model [2] that extends the 

informal Simple Time of UML2. This time model is general enough to support different forms of time 

(discrete or dense, chronometric or logical). Its so-called clocks allow enforcing as well as observing the 

occurrences of events and the behavior of annotated UML elements. The Time Model comes with a 

companion language named the Clock Constraint Specification Language (CCSL) [3] defined in the annex 

of the MARTE specification. Initially devised as a language for expressing constraints between clocks of a 

MARTE model, CCSL has evolved and has been developed independently of the UML. CCSL is now 

equipped with a formal semantics [3] and is supported by a software environment (TimeSquare [4]) that 

allows for the specification, solving, and visualization of clock constraints. 

Lots of works have been published on the modeling capabilities offered by MARTE, much less on 

verification techniques supported. Inspired by the works about state-based semantics interpretation for the 

kernel CCSL operators [5]. This report focuses on formalizing CCSL semantics and then defining the CCSL 

specification by Abstract Data Type (ADT)[6] in terms of syntax of CCSL. 

Section 2 introduces a state-transition based semantics for CCSL in PVS language [7]. Section 3 shows how 

to express a given CCSL specification by an ADT constant, and the semantics on a set of schedules. Section 
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4 proposes a method to analyze boundedness of a CCSL specification. A case is investigated to determine 

its boundedness in section 5. Finally, section 6 makes a comparison with related works, concludes the 

contribution, and outlines some future works. 

2. Clock Relations & Expressions Interpretation 
This section briefly formalizes the logical time model [2] of the Clock Constraint Specification Language (CCSL) 

in PVS language. A technical report [3], [5] and it latest update [8] describes the syntax and the semantics of 

a kernel set of CCSL constraints. We don’t give again the formal definitions for some clock relations and clock 

expressions, which can be found in section 3 in report [5]. One can cross refer to it if you have difficulties in 

understanding some logic semantics in this section. 
The notion of multiform logical time has first been used in the theory of synchronous languages  and its 
polychronous extensions. CCSL is a formal declarative language to specify polychronous clock specification. It 
provides a concrete syntax to make the clocks and clocks constraints first-class citizens of UML-like models. 

Clocks in CCSL are used to measure the number of occurrences of events in a system. Logical clocks replace 

physical times by a logical sequencing. A CCSL specification do not need for clocks to be relative to a global 
physical time. They are by default independent of each other and what matter is the partial ordering of their 
ticks induces by the constraints between them. 

A clock belongs to a clock set 𝒞. A clock c can be seen as a totally ordered set of instants, c. In the following, 

i and j are instants. A time structure is a set of clocks 𝒞 and a set of relations on instants  =⋃c∈𝒞 c. CCSL 

considers two kinds of relations: causal and temporal ones. The basic causal relation is 

causality/dependency, a binary relation on : ≼ ⊂  ×  . i≼ j means i causes j or j depends on i. ≼ is a pre-
order on , i.e., it is reflexive and transitive. The basic temporal relations are precedence (≺), coincidence (

≡), and exclusion (#), three binary relations on . For any pair of instants (i, j) ∈  ×   
In a time structure, i ≺ j means that the only acceptable execution traces are those where i occurs strictly 

before j (i precedes i). ≺ is transitive and asymmetric. i ≡ j imposes instants i and j to be coincident, i.e., they 

must occur at the same execution step, both of them or none of them. ≡ is an equivalence relation, i.e., it is 

reflexive, symmetric and transitive. i # j forbids the coincidence of the two instants, i.e., they cannot occur at 

the same execution step. # is both irreflexive and symmetric. A consistency rule is enforced between causal 

and temporal relations. i ≼ j can be refined either as i ≺ j or i ≡ j, but j can never precede i. CCSL defines a 
concrete syntax to specify instant relation or more generally clock relations, which represent infinitely many 
instant relations.  

In this paper, we consider discrete sets of instants only, so that the instants of a clock can be indexed by 

natural numbers. For a clock c ∈ 𝒞, and for any k ∈ ℕ>0, c[k] denotes the kth instant of c. 
During the execution of a system, an execution step is defined at a given step, every clock in 𝒞 can tick or not 

according to the constraints defined in the specification. A schedule captures what happens during one 

particular execution. 

2.1 Preliminaries 

1. (Schedule): A schedule over clock set 𝒞 is defined as a function Sched : ℕ>0→2𝒞 . ■ 

For a given schedule, the configurations of the clocks tell us the advance of the clocks, relative to the others. 

We can define schedule by a sequence of set of clock as a parameter introduced in a PVS theory: 
 

basic_def[Clock: TYPE]: THEORY BEGIN 

  c, c1, c2: VAR Clock 

  SCHEDULE: TYPE = sequence[set[Clock]] 

  sgm: VAR SCHEDULE 

 



Logical Clock Constraint Specification in PVS        3 

 

RR N° 8748 

sequence[set[Clock]] is a prelude function defined as ℕ→2Clock in PVS[9]. 

2. (Clock configuration): For a given schedule σ, clock c∈ 𝒞 and a natural number n ∈ ℕ, the 

configuration χσ : 𝒞 × ℕ → ℕ is defined recursively as: 

 𝜒𝜎(𝑐, 𝑛) = {

0 ,                           𝑖𝑓  𝑛 = 0 

𝜒𝜎(𝑐, 𝑛 − 1),         𝑖𝑓  𝑐 ∉ 𝜎(𝑛)

𝜒𝜎(𝑐, 𝑛 − 1) + 1, 𝑖𝑓 𝑐 ∈ 𝜎(𝑛)
      (F.1)     ■ 

Clock configuration shown below is a recursive function, where measure n is used to ensure the termination 

of calculation with the deceasing of n. Lemmas Config_nonDec and Config_Invar shows two properties about 

schedule.  
 

n : VAR nat 

config(sgm)(c)(n): RECURSIVE nat = IF n = 0 THEN 0 ELSE  

LET pre = config(sgm)(c)(n - 1) IN IF sgm(n)(c) THEN pre + 1 ELSE pre ENDIF 

     ENDIF MEASURE n  

Config_nonDec: LEMMA  FORALL (i, j: nat): i <= j => config(sgm)(c)(i) <= config(sgm)(c)(j) 

Config_Invar: LEMMA FORALL (m: upfrom(n)): config(sgm)(c)(m) = config(sgm)(c)(n) IFF 

         FORALL (i: subrange(n+1, m)): NOT sgm(i)(c)  

 

The former can be proved by mathematic induction scheme, and the latter can be proved via the former and 

the induction. Proof for Config_nonDec is completed by the following proof scripts: 
%|- Config_nonDec : PROOF 

%|- (spread (induct "j") ((grind) (then (skeep*) (grind)))) 

%|- QED  

 

Hereafter, we don’t give the proof scripts for every formulas because they can be seen in the attached PVS 

dump file. We may sketch the proof method for some of them. One wants to know in detail need also refer 

to Prover Guide [10]. 

For a clock c ∈ 𝒞 , and a step n∈ℕ, χσ(c,n) counts the the number of times the clock c has ticked at step n 
for the given schedule σ. Therefore, the value of χσ(c,n) denotes the index of a certain instant for clock c. 

Over a schedule σ, c can tick k>0 times if and only if ∃n∈ℕ>0, χσ(c,n) = k. 

For a given schedule σ, and a clock c∈ 𝒞, here we interpret c as 𝕀c,σ ={𝒾 : ℕ>0|c∈σ(𝒾)}, which is a subset of 

ℕ>0, containing and only containing the step 𝒾 such that σ(𝒾 ) includes the clock c. A step 𝒾 ∈𝕀c,σ coincides 

with the χσ(c, 𝒾)th instant c[χσ(c, 𝒾)], i.e., 𝒾 ≡ c[χσ(c, 𝒾)] if 𝒾∈ℕc,σ.  
The following I?(sgm)(c) defines the Instant set of clock c along a schedule. idx(sgm)(c)(I: (I?(sgm)(c))) defines 

the index of a certain Instant I of clock c. idx_bij juduges one-to-one relation between Instant set and the 

corresponding index set for every clock. kth_ID describes the fact that a clock c’s kth Instant is step i if and 
only if c’s configuration is k at step i. Note that the datatype of i and k determines that the exists of index k 
and c ticks at step i exactly. 
 

  Index?(sgm)(c)(k: posnat): bool = EXISTS (n: posnat): k = config(sgm)(c)(n)  % Index 1,2,3,...   

  I?(sgm)(c)(n:posnat): bool = sgm(n)(c)  % Instants for c, (I_c) 

  idx(sgm)(c)(I: (I?(sgm)(c))): (Index?(sgm)(c)) = config(sgm)(c)(I) 

  idx_bij: JUDGEMENT idx(sgm)(c) HAS_TYPE  (bijective?[(I?(sgm)(c)), (Index?(sgm)(c))]) 

  kth_Instant(sgm)(c)(x: (Index?(sgm)(c))): (I?(sgm)(c)) = inverse(idx(sgm)(c))(x)  
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  kth_ID: LEMMA FORALL (k: (Index?(sgm)(c))), (i: (I?(sgm)(c))): 

          kth_Instant(sgm)(c)(k) = i IFF config(sgm)(c)(i) = k 

 

To prove kth_ID, the most of works requires us to prove the existence of index and instant. The 

existence can be guaranteed by the following frequently used auxiliary lemma. Pre_tick_ex, which is 

proved using Config_Invar, the monotony of config ensured by definition in (F.1). 

 

  Pre_tick_ex: LEMMA  FORALL (k: posnat): config(sgm)(c)(n) = k =>  

(EXISTS (j: below[n]):  (config(sgm)(c)(j) = k - 1 AND config(sgm)(c)(j + 1) = k)) 

2.2 Clock Relations interpretation  

We can formally define clock relations based on state-based (upon a schedule defined over clock set 

sequence) representation given in [5]. 

 

% Synchronous relations 

SubClock?(sgm)(c1, c2): bool = FORALL (n:posnat): sgm(n)(c1) IMPLIES sgm(n)(c2) 

Exclusion?(sgm)(c1, c2): bool = FORALL (n: posnat): NOT sgm(n)(c1) OR NOT sgm(n)(c2) 

Coincidence?(sgm)(c1, c2): bool = FORALL (n: posnat): sgm(n)(c1) IFF sgm(n)(c2) 

%Asynchronous relations  

Causal?(sgm)(c1, c2): bool =   FORALL n : config(sgm)(c1)(n) >= config(sgm)(c2)(n) 

Precedence?(sgm)(c1, c2): bool = FORALL n: config(sgm)(c1)(n) = config(sgm)(c2)(n) => NOT 

sgm(n+1)(c2) 

% Precedence implies causality 

 Preced_Causal: PROPOSITION Precedence?(sgm)(c1, c2) => Causal?(sgm)(c1, c2) 

% Subclocking implies causality 

Sub_Causal: PROPOSITION SubClock?(sgm)(c1, c2) => Causal?(sgm)(c2, c1)  

PrecedFun: LEMMA FORALL (a, b: Clock): Precedence?(sgm)(a, b) IFF 

      (EXISTS (h: (injective?[(I?(sgm)(b)), (I?(sgm)(a))])): (FORALL (i, j: (I?(sgm)(b))): i < j => h(i) < h(j))  

AND (FORALL (i: (I?(sgm)(b))): h(i) < i) 

 

Some properties, shown as the lemmas, such as Preced_Causal and Sub_Causal, among these clock 

relations are also deduced and given. Their proof is a pure translation the ideas in [5] into PVS proof 

scripts. 

We can establish the semantics’ equivalence based on between states and instants. PrecedFun, as an 

example shows the equivalence, can be proved by instancing h(i) = j such that instants i and j has the 

same index , i.e., config(sgm)(b)(i) = config(sgm)(a)(j). We also need kth_ID above in the process of 

proof. 

2.3 Clock Expressions interpretation 

The followings are some clock expressions defined as the constraint between output clock and input 

one(s) with the given argument if any. Their formal semantics can be found in [5]. 

 

  Union?(sgm)(u: Clock)(c1, c2): bool =    FORALL (n: posnat): sgm(n)(u) IFF (sgm(n)(c1) OR sgm(n)(c2)) 

  Intersection?(sgm)(i: Clock)(c1, c2): bool =  FORALL (n: posnat): sgm(n)(i) IFF (sgm(n)(c1) AND 

sgm(n)(c2)) 

  Inf?(sgm)(inf: Clock)(c1, c2): bool = FORALL (n: nat):  

config(sgm)(inf)(n) = max(config(sgm)(c1)(n), config(sgm)(c2)(n)) 

 Sup?(sgm)(sup: Clock)(c1, c2): bool = FORALL (n: nat):  

config(sgm)(sup)(n) = min(config(sgm)(c1)(n) , config(sgm)(c2)(n))  

Delay?(sgm)(c: Clock, d: nat)(c_del: Clock): bool = FORALL (n: nat): 
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config(sgm)(c_del)(n) = max(config(sgm)(c)(n) - d, 0) 

SampledOn?(sgm)(trig, base: Clock)(samp: Clock): bool =  %weak version: non strict 

    FORALL (n: posnat): sgm(n)(samp) IFF (sgm(n)(base) AND  

  (EXISTS (j:subrange(1, n)): sgm(j)(trig) AND  (FORALL (m: subrange(j,n-1)): NOT sgm(m)(base)))) 

  StrictSampledOn?(sgm)(trig, base: Clock)(samp: Clock): bool =  %strict version 

      FORALL (n: posnat): sgm(n)(samp) IFF (sgm(n)(base) AND  

           (EXISTS (j:subrange(1, n-1)): sgm(j)(trig) AND (FORALL (m: subrange(j+1,n-1)): NOT 

sgm(m)(base)))) 

END basic_def 

 

We can also define the filtering expression, with the argument defined as binary word datatype BW shown 

below in PVS theory binword (shown below). Meanwhile, some associated datatypes and some frequently 

used constant are also given. PVS delectation CONVERSION w, v, fin , inf, as one of type conversion 

mechanism, supplies the possibilities to write argument of BW type as the one of type  finseq[nbit] or 

sequence[nbit]. One can refer to the technique report [6] if there are some difficulties to understand. Lemma 
Periodic_uvomg tell us the fact that the periodicity of a regular binary word given by the form of u.(v) ω, 
u0,u1,…,un ,v0,v1,…,vm, v0,v1,…,vm, v0,v1,…vm,… with |u|=n and |v|=m. 

 

binword: THEORY BEGIN 

    BW: DATATYPE  BEGIN 

      fin(v: finseq[nbit]): fin? 

      inf(w: sequence[nbit]): inf? 

   END BW 

  CONVERSION w, v, fin , inf 

  zero: (fin?) = (# length := 1, seq := LAMBDA (i: below(1)): 0 #) 

 one: (fin?) = (# length := 1, seq := LAMBDA (i: below(1)): 1 #); 

  ^(v: (fin?), n: nat): (fin?) = LET l = v`length * n IN 

        (# length := l, seq := LAMBDA (i: below(l)): v`seq(rem(v`length)(i)) #) 

  NonEmptyFinBW: TYPE = {u | u`length > 0} 

  v: VAR NonEmptyFinBW 

  omg(v): (inf?) = LAMBDA (i: nat): v`seq(rem(v`length)(i)); 

  o(u: (fin?), bw: BW): BW = CASES bw OF fin(v): fin(u o v), 

        inf(w): inf(LAMBDA (i: nat): LET lu = u`length IN 

                     IF i < lu THEN u`seq(i) ELSE w(i - lu) ENDIF) ENDCASES 

  uv_omg(u, v: (fin?)): (inf?) = u o omg(v) 

  Periodic_uvomg: LEMMA FORALL (w:(inf?),u,v:(fin?)): w = uv_omg(u, v) =>  

(FORALL (j: below(v`length), n: nat):w(w)(n * v`length + j + u`length) = w(w)(j + u`length)) 

END binword 

 

By importing theories basic_def and binword,  we can define clock expression FilterBy?, which has the 

periodic behavior Periodic_Config. 
 

clock_expr[Clock: TYPE]: THEORY BEGIN 

  IMPORTING basic_def[Clock] 

  IMPORTING binword 

  sgm: VAR SCHEDULE 
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  FilterBy?(sgm)(c: Clock,w: (inf?))(f: Clock): bool = FORALL (n: posnat): sgm(n)(f)  IFF 

         (IF sgm(n)(c) THEN w(w)(config(sgm)(c)(n) - 1) = 1 ELSE FALSE  ENDIF) 

    

  FilterBy?(sgm)(c: Clock,u: (fin?), v: NonEmptyFinBW)(f: Clock): bool = 

      FilterBy?(sgm)(c,uv_omg(u, v))(f) 

  Periodic?(sgm)(base: Clock, period: posnat, offset: nat)(c: Clock):  bool = 

      FilterBy?(sgm)(base,zero ^ offset, one o zero ^ (period - 1))(c) 

 

  Periodic_Config: LEMMA FORALL (base: Clock), (f: Clock), (period: posnat), (offset: nat): 

      Periodic?(sgm)(base, period, offset)(f) =>  

       (FORALL (n: nat): LET nb = config(sgm)(base)(n), nf = config(sgm)(f)(n) IN 

            IF nb <= offset THEN nf = 0 ELSE nf = div(nb - offset - 1, period) + 1 ENDIF) 

END clock_expr 

3. Clock specification and its Components 
First, we express clock type AClock (all clock) including explicit clock and implicit ones. Second, we give the 

clock relation defined over AClock.  

3.1 Clock as ADT 

We can distinguish two kinds of clock like 0. 

(Clock set) An element in the clock set 𝒞 can be given by the specification writer explicitly (explicit clock), or 

by one of the following clock expressions (implicit clock): 
Clock ≔ ref(a)|a + b | a * b | sup(a, b) | inf(a, b) | dealy(a , n) | SampledOn(a, b)| StrictSampledOn(a, 

b) |FilteredBy(a, u, v)         (F.2) 

where a, b∈𝒞 are clocks, u, v∈ (0+1)* are finite binary words, and n∈ℕ is a natural number. ■ 

We can express CCSL specification as set of clock relation between clocks which are explicitly given (via 

constructor ref) or derived by clock defined by clock expression. 

 

ccsl_spec[Clock: TYPE]: THEORY BEGIN 

  AClock: DATATYPE BEGIN 

    ref(clk: Clock): clock? 

    +(a, b: AClock): union? 

    *(a, b: AClock): intersection? 

    /\(a, b: AClock): inf? 

    \/(a, b: AClock): sup? 

    delay(c: AClock, d: nat): delay? 

    sampledon(trig, base: AClock): sampledon? 

    strictsampledon(trig, base: AClock): strictsampledon? 

    filterby(c: AClock, u: finseq[nbit],v:{vv:finseq[nbit]|vv`length>0}): filterby? 

 END AClock 

 CONVERSION clk, ref 

 

Via PVS conversion mechanism in PVS language [7], the declaration “CONVERSION clk, ref” allows us to 

choose ref(c) or c freely for a given clock c. 
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3.2 Specification as ADT  

(CCSL specification): A CCSL specification 𝒮𝒫ℰ𝒞 is a pair <𝒞, CConstr >, where 𝒞 is a set of clocks, CConstr is a 

set of formulae (including SubClock, Causality, Precedence, Exclusion and Coincidence) used to specify the 

relations among the clocks in the set 𝒞.  ■ 

Clock constrains are finally expressed by clock relation between AClocks including explicit clock and implicit 

ones. We can use the constructor & or the recognizer AND? to collect all the necessary relations that the 
specification must hold. 

 

  SPEC: DATATYPE  BEGIN 

     <|(a, b: AClock): sub? 

     <=(a, b: AClock): causal? 

     <(a, b: AClock): precedence? 

     #(a, b: AClock): exclusion? 

     ==(a, b: AClock): coincidence? 

     &(s1, s2: SPEC): and? 

   END SPEC; 

  ~(a, b:AClock): SPEC = a < b & b < delay(a, 1) 

  sychronize(a, b:AClock): SPEC = a < delay(b, 1) & b < delay(a, 1) 

  RelatedClock(e: AClock): RECURSIVE setof[AClock] = LAMBDA (c: AClock): CASES e 

        OF ref(clk): c = e, 

           delay(a, d): RelatedClock(a)(c), 

           sampledon(trig, base): RelatedClock(trig)(c) OR RelatedClock(base)(c), 

           strictsampledon(trig, base):  RelatedClock(trig)(c) OR RelatedClock(base)(c), 

           filterby(a, u,v): RelatedClock(a)(c)   ELSE RelatedClock(a(e))(c) OR RelatedClock(b(e))(c) 

        ENDCASES MEASURE e BY <<; 

  ConsideredClock(s: SPEC): RECURSIVE setof[AClock] = LAMBDA (c: AClock): CASES s 

     OF &(s1, s2): ConsideredClock(s1)(c) OR ConsideredClock(s2)(c)  ELSE 

LET a = a(s), b = b(s) IN c = a OR c = b OR RelatedClock(a)(c) OR RelatedClock(b)(c) 

        ENDCASES MEASURE s BY <<; 

 

For a given CCSL specification s, ConsideredClock(s) collects all the explicit and implicit clocks occur in s by 

calling RelatedClock used to collect clocks occurs in clock expressions. 

 

3.3 CCSL specification’s interpretation 

By importing PVS theory clock_expr ( indirectly importing theories basic_def and binword), we can associate 

the different clock relation constructors with the corresponding interpretations defined in PVS theory 
basic_def. If there are some clocks occurs in CCSL specification, we may call the semantics of clock expression 
define in PVS theory basic_def or clock_expr. Up to now, we have completed the syntax and semantics model 
of CCSL specification in PVS. From the definition below, we can see it is necessary to recursively call clock 
expression’s interpretation |=(sgm, c) when we try to interpret the clock relation |=(sgm, s). 

 

  IMPORTING clock_expr[AClock] 

  sgm: VAR SCHEDULE[AClock]  

  s: VAR SPEC;  c: VAR AClock; 

  |=(sgm, c): RECURSIVE bool = (NOT and?(s) => (sgm |= a(s)) AND (sgm |= b(s))) AND 

CASES c OF ref(clk): Coincidence?(sgm)(c, clk), 
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           +(a, b): Union?(sgm)(c)(a, b), 

           *(a, b): Intersection?(sgm)(c)(a, b), 

           /\(a, b): Inf?(sgm)(c)(a, b), 

           \/(a, b): Sup?(sgm)(c)(a, b), 

           delay(a, d): Delay?(sgm)(a, d)(c), 

           sampledon(trig, base): SampledOn?(sgm)(trig, base)(c), 

           strictsampledon(trig, base): StrictSampledOn?(sgm)(trig, base)(c), 

           filterby(a, u,v): FilterBy?(sgm)(a, uv_omg(u,v))(c) 

        ENDCASES  MEASURE  c BY <<; 

  |=(sgm, s): RECURSIVE bool = IF and?(s) THEN (sgm |= s1(s)) AND (sgm |= s2(s)) 

         ELSE (sgm |= a(s)) AND (sgm |= b(s)) AND CASES s OF 

<|(a, b): SubClock?(sgm)(a, b), 

                <=(a, b): Causal?(sgm)(a, b), 

                <(a, b): Precedence?(sgm)(a, b), 

                #(a, b): Exclusion?(sgm)(a, b), 

                ==(a, b): Coincidence?(sgm)(a, b) 

             ENDCASES  ENDIF MEASURE s BY <<; 

 END ccsl_spec 

4. Bounded Relation  

We can analyze some interesting features owned by the CCSL specification itself. In this section, we take the 

boundedness as an example to show how to do the analysis. 

For a given CCSL specification, if the difference between the speeds of two clocks a, b∈𝒞 is limited in an 

allowed boundary, we say the clock pair (a, b) has a bounded relation. 

(Bounded relation) For a given clock set 𝒞, two clocks a, b∈𝒞, and a schedule σ over 𝒞, a and b has the 

bounded relation with a given boundary m∈ℕ, denotes |a, b| ≤ m:  

σ ⊨ |a, b| ≤ m  iff  ∀n∈ℕ, |𝜒𝜎(𝑎, 𝑛) − 𝜒𝜎(𝑏, 𝑛)| ≤ 𝑚 

m (resp. –m) is called upper (resp. lower ) bound.  ■ 

 (Bounded Specification) For a given CCSL specification 𝒮𝒫ℰ𝒞 = <𝒞, CConstr>, ∀a, b∈𝒞, r ∈ CConstr, 𝒮𝒫ℰ𝒞 

is bounded if and only if any clock pair has the bounded relation: 

∀σ, σ ⊨ 𝒮𝒫ℰ𝒞 ⟹ ∃m∈ℕ, σ ⊨ |a, b| ≤ m ■ 

0 (resp. 0) can be expressed maxDrift (resp. bounded_ccsl) in PVS as below. ConsideredClock provides the 

possibility to get the clock set from the given specification rather than specify them explicitly. 
 

  delta(sgm)(n: nat)(c1, c2: AClock): int = LET X = config(sgm) IN X(c1)(n) - X(c2)(n) 

  maxDrift(sgm)(a, b: AClock)(m: nat): bool = 

      FORALL (n: nat): LET dif = delta(sgm)(n)(a, b) IN -m <= dif AND dif <= m 

  bounded_ccsl(s: SPEC)(sgm): bool = (sgm |= s) => 

         (FORALL (a, b: (ConsideredClock(s))): EXISTS (m: nat): maxDrift(sgm)(a, b)(m)) 

 

If we check every clock pairs among all clocks in 𝒞 to decide whether a specification is divergence-free or not, 

there are (
|𝒞|
2

) = |𝒞| × (|𝒞| − 1)/2 pairs need to be checked. The number of checks then totals to 𝒪(|𝒞|2). 

But in practice many checks can be safely neglected when the bounded relation is implied by the already 
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checked one according to the following theorem boundsEx_ccsl. boundsEx_ccsl is proved by instancing the 

boundedness of top and bot as that of all the clock pairs. 
 

  bounds_exists(s): bool = FORALL sgm: EXISTS (bot, top: AClock, m: nat): FORALL sgm:  (sgm |= s) => 

          ((sgm |= (bot <= top)) AND maxDrift(sgm)(bot, top)(m) AND 

             (FORALL (c: (ConsideredClock(s))): sgm |= (bot <= c & c <= top))) 

  boundsEx_ccsl: THEOREM bounds_exists(s) IMPLIES bounded_ccsl(s)(sgm) 

 

bounds_exists shown above is used to check whether we can find the fastest clock bot and the slowest one 

top such that all other clocks’ speed lie between them. If so, theorem boundsEx_ccsl tell us the specification 

is bounded. 

5. Case Study 

To illustrate the PVS approach for analyzing CCSL specification, we take an example inspired by[11], that was 

was used for flow latency analysis on Architecture Analysis and Design Language(AADL) specifications. 

However, with CCSL we are conducting different kinds of analyses. 

FIGURE 1 considers a simple application described as a UML activity. This application captures two inputs 

in1 and in2, performs some calculations (step1, step2 and step3) and then produces a result out. This 

application has the possibility to compute step1 and step2 concurrently depending on the chosen execution 

platform. This application runs in a streaming-like fashion by continuously capturing new inputs and 

producing outputs.  

step1

step2

step3

in1

in2

out

ad application

 

FIGURE 1 : Simple application 

To abstract this application as a CCSL specification, we assign one clock to each action. The clock has the 

exact same name as the associated action (e.g., step1). We also associate one clock with each input, this 

represents the capturing time of the inputs, and one clock with the production of the output (out). The 

successive instants of the clocks represent successive executions of the actions or input sensing time or output 

release time. The basic CCSL specification is 𝒮𝒫ℰ𝒞simp = <𝒞,CConstr>, where 

𝒞={in1,in2,step1,step2,step3,out}, CConstr includes the following clock constraints:  

in1 ≼ step1 ∧ step1≺ step3       (F.3) 

in2 ≼ step2 ∧ step2 ≺ step3       (F.4) 

step3 ≼ out          (F.5) 

(F.3) specifies that step1 may begin as soon as an input in1 is available. Executing step3 also requires step1 to 

have produced its output. (F.4) is similar for in2 and step2. (F.5) states that an output can be produced as soon 

as step3 has executed. Note that CCSL precedence is well adapted to capture infinite FIFOs denoted on the 

figure as object nodes. Such a specification is clearly not bounded because of  none of clock constraint can 
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ensure the slower clock tick. Previous work hints us we can introduce the bounded relation as (F.6) shows to 

bound the speed between the faster and slower clock. 

inf(in1, in2) ~out        (F.6) 

Based on subsection 3.3, we formalize this CCSL specification as below: 

 

simpApp: THEORY  BEGIN 

  Clock: TYPE = {in1, in2, step1, step2, step3, out} 

  IMPORTING ccsl_spec[Clock] 

  spec: SPEC =  in1 <= step1 & step1 < step3 & step3 <= out &  

   in2 <= step2 & step2 < step3 & (in1 /\ in2) ~ out 

  safety: THEOREM  FORALL (sgm: SCHEDULE): bounded_ccsl(spec)(sgm) 

end simpApp 

  

Theorem safety asserts all the clock pairs have the bounded relation. safety can be deduced via theorem 

boundsEx_ccsl by instancing bot = inf(in1, in2), top = delay(inf(in1, in2),1) with the following two facts 
deduced from equations (F.3), (F.4), (F.5) and (F.6). 

1. bounded relation with the boundary 1 between clocks bot and top, 

2. causality relations ∀c: {c|ConsideredClocks(spec)(c)}, bot ≼ c≼ out. 

 Noted that ConsideredClocks(spec) = {in1, in2, step1, step2, step3, out, inf(in1, in2), delay(inf(in1, in2),1)} by 

the definition in section 0. The readers who want to get the proof detail can refer to the attached PVS dump 

file. 

6. Related Work and Conclusion 

Some techniques were provided as an effort to analyze CCSL specifications. Exhaustive analysis of CCSL 

through a transformation into labeled transition systems has already been attempted in [12]. However, in 

those attempts, the CCSL operators were bounded because the underlying model-checkers cannot deal with 

infinite labeled transition systems. 
In [13], the authors showed that even though the primitive constraints were unbounded, the composition of 

these primitive constraints could lead to a system where only a finite number of states were accessible. [14] 

defines a notion of safety for CCSL and establish a condition to decide whether a specification is safe on the 
transformed marked graph from CCSL. 
All the above works share one common point: the specification analysis were done by some transformation 

and performed on the transformed target. The results were depended on the correctness and efficiency of 

the mechanized transformation. 

Our contribution is the first try to express and verify CCSL specification using a proof assist. We provide a 

framework to describe a CCSL specification as an ADT and to deduce some interested properties owned by 

the schedule satisfied by that specification via a set of available lemmas to support. 

Based on the state-based semantics of a kernel subset of CCSL, We have translated the clock constraints into 

PVS function in a logic form. And then we describe the relations, using PVS formula, between different kind 

of clock constraints. By founding the boundedness of a clock pair with the clock causality relation of all 

clocks, we found a method to determine whether a given CCSL specification is bounded or not. 

As a future work, we plan to enrich the properties about clock constraints. For instance, how to find the 

potential causality conflict between clocks?  How to decide whether a schedule shows periodicity against by a 

CCSL specification?  etc. Developing some PVS proof strategies dedicated to simplify semantics 
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interpretation may be help to reduce the human reaction when we try to prove some properties about 

specification. 
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