
HAL Id: hal-01191855
https://hal.inria.fr/hal-01191855v2

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Complete Tracking of Provenance in
Experimental Distributed Systems Research

Tomasz Buchert, Lucas Nussbaum, Jens Gustedt

To cite this version:
Tomasz Buchert, Lucas Nussbaum, Jens Gustedt. Towards Complete Tracking of Provenance in
Experimental Distributed Systems Research. REPPAR - Second International Workshop on Repro-
ducibility in Parallel Computing – held together with Euro-Par, Aug 2015, Vienna, Austria. �hal-
01191855v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49489049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01191855v2
https://hal.archives-ouvertes.fr


Towards Complete Tracking of Provenance
in Experimental Distributed Systems Research

Tomasz Buchert1, Lucas Nussbaum1, and Jens Gustedt2

1 Inria, Villers-lès-Nancy, France
Université de Lorraine, LORIA, France

CNRS, LORIA - UMR 7503, France
{tomasz.buchert, lucas.nussbaum}@loria.fr

2 Inria, Villers-lès-Nancy, France
Université de Strasbourg, France

CNRS, ICube - UMR 7357, France
jens.gustedt@inria.fr

Abstract. Running experiments on modern systems like supercomput-
ers, cloud infrastructures or P2P networks became very complex, both
technically and methodologically. It is difficult to re-run an experiment
or understand its results even with technical background on the tech-
nology and methods used. Storing the provenance of experimental data,
i.e., storing information about how the results were produced, proved to
be a powerful tool to address similar problems in computational natural
sciences. In this paper, we (1) survey provenance collection in various
domains of computer science, (2) introduce a new classification of prove-
nance types, and (3) sketch a design of a provenance system inspired by
this classification.

1 Introduction

Computers are becoming faster and more powerful, but our understanding is not
advancing accordingly. On the contrary, since the systems become more and more
complex one can argue that we know less and less about them. This discrepancy
is disconcerting and calls for action in almost all domains of computer science.

Experimental research in distributed systems is especially exposed to this
problem. The systems under study are complex, built from similarly complex
software and hardware which interact in unexpected ways. Often the scale of
experiments is large and even their execution is challenging, as is the under-
standing of a particular system or drawing scientifically valid conclusions. A
platform may suffer from intermittent or fatal failures which should not go un-
noticed. The number of relevant factors and the level of complexity has long
surpassed our capacity to reason about such systems as a whole.

The complexity of the systems is not the only difficulty, however. Quite often
the description of processes (including descriptions of scientific experiments) that
run on them is complex, incomplete or even erroneous. This is another menace
to reproducibility which is generally considered a hallmark of science.



2 Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt

Among the techniques that may improve both understandability and repro-
ducibility of scientific research is provenance. Traditionally understood as infor-
mation about origins and/or a chain of custody of a historical object, it has
found another meaning in computing and science as a representation of origin
and transformation of a given data object during computation. In this sense it
is, in fact, a form of documentation. It improves understandability and repro-
ducibility by tracking how the processes transform data and by capturing the
context where these processes take place.

However, obtaining useful provenance information is not an easy task. The
problems are conceptual (e.g., what should be tracked and to which level of
detail?) and technical (e.g., how to store and query provenance information
efficiently?). Collection of provenance may be in conflict with performance or
even correctness of the system by inadvertently changing its behavior.

This paper makes three contributions. First, we analyze provenance collec-
tion techniques in computer science with the intention to improve their use in
experimental distributed system research. Second, building upon the previous
observations, we classify provenance into three distinct but interrelated types.
Finally, we design a provenance system that follows this distinction and can
provide answers to a range of queries.

The paper is structured as follows. In Section 2 we make our first contribution
by making a thorough analysis of provenance in various domains. In Section 3, as
another contribution, we propose a new classification into three types of prove-
nance. Then, in Section 4, we make our third and last contribution by considering
implications of this classification for experimental distributed systems research
and sketch a design of a provenance system. Finally, we draw final conclusions
and describe our future work in Section 5.

2 Provenance in computer science

In this section, we look at provenance as an object of study on its own, and then
gradually narrow the domain and discuss its use and support in general com-
puting, scientific workflows, control-flows and, finally, in experimental research
in distributed systems.

2.1 General provenance

In this work, provenance is a collection of metadata associated with a run of a
computational process that provides any kind of useful information as to how
it was executed. This is a much broader term than data provenance which is a
prevailing notion of provenance in computational life and earth sciences. Collec-
tion of data provenance is an active domain of research that meets much success
in computational natural sciences [30].

Provenance can be prospective (i.e., obtained via static analysis) and retro-
spective (i.e., obtained postmortem) [12,13]. Additionally, one may differentiate



Towards Complete Tracking of Provenance in Experimental DS Research 3

by the level of abstraction that provenance provides [2]. Four levels of prove-
nance can be distinguished: L0 (abstract experiment description), L1 (service
instantiation), L2 (data instantiation) and L3 (run-time provenance) of increas-
ing precision and decreasing level of abstraction. Formal approaches to the rep-
resentation of provenance [9,25,27], and generic standards for interchange of
provenance information3 have been proposed.

Efficient storage and querying of provenance information (which may be vo-
luminous) is another important aspect. Using efficient representation based on
the type of provenance is a standard approach, among other techniques [4].

A common way to construct and evaluate provenance systems consists in
defining queries that the provenance has to answer [9]. Such a use-case driven
approach is common in the domain as is shown by provenance challenges evalu-
ating capabilities of provenance systems [26].

Hierarchical logging, which is essential to our approach to track the prove-
nance of experiments, is often used to provide a way of looking at series of events
in a way that would be otherwise difficult with a linear representation. Recently,
systemd4 benefited from this approach to improve logging of Unix services.

From this overview we conclude that there are numerous aspects of prove-
nance and fragmented initiatives to provide it. The lack of general provenance
tracking is mainly due to different requirements imposed by different domains.
In the next sections, we will observe how provenance collection is addressed in
different domains of computer science. To this end, we turn to provenance in
general computing, scientific workflows, control-flows and in distributed systems
research.

2.2 Provenance in general computing

In this section, we explore how provenance is provided in a general context
(programming languages, scientific computing, data analysis, etc.). Provenance
in general computing is rarely addressed, at least explicitly. First, provenance
collection always incurs overhead that may make it unfeasible to use (e.g., in
high-performance computing). Moreover, each subdomain of computing calls for
a different approach and therefore can be impractical and tedious to implement in
each case. We will see that provenance is, with some exceptions, often addressed
in ad hoc manner and in a very limited sense.

Some notions of provenance in database systems has been proposed [8], the
most common describing relationship between a data source, a query and the
results of query execution.

Software documentation is a form of prospective provenance information that
explains how the software works (or should work). Literate programming [22]
proposes to have a verbose, natural-language description interwoven with code
in a single document. Similar initiatives have been proposed in the scientific
context (e.g., literate experimentation [31]).

3 http://www.w3.org/TR/prov-overview/
4 http://freedesktop.org/wiki/Software/systemd/

http://www.w3.org/TR/prov-overview/
http://freedesktop.org/wiki/Software/systemd/


4 Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt

A useful source of provenance is provided by instrumentation and monitoring.
Deep instrumentation or monitoring may be intrusive for the execution, and
change the behavior of the studied system or even cause it to malfunction.

The history of how experiments evolved over time is also a form of provenance
and is generally provided by version control systems (Git, Subversion, Mercurial,
etc.). These systems trace the content of individual files and have no semantic
knowledge about the whole system. Many systems, programming languages be-
ing a prime example, offer therefore language-specific software archives that
host code that can be referenced (e.g., PyPI for Python or Hackage for Haskell).
Studies of large, language-agnostic software repositories have been done as well,
showing interesting aspects of long-term software evolution (e.g., Debsources [7]).
Some retrospective studies trace authorship of modern BSD systems, as far as
40 years into the past [32].

There are solutions that build on version control systems and aim at auto-
mated capture of experiment context for easier reproducibility of research [14].
More recently, researchers propose experimental workflows based on Git branch-
ing model and literate programming with Org-mode [33].

2.3 Provenance in scientific workflows

Scientific workflows describe the set of tasks needed to carry out a computational
experiment [16]. Their role usually consists in carrying out the computation using
a given infrastructure (e.g., a computational grid or virtual machines in a cloud),
but without going into details about how exactly these operations are executed.
Therefore scientific workflow systems provide a high-level abstraction of com-
puting and are used even by non-technical researchers. The efficient mapping,
scheduling and execution of scientific workflows is a vivid domain of research.

The standard representation of scientific workflows uses acyclic data-flows to
describe transformations of input data in a structured way. The acyclic graph
structure implies a natural way to collect data provenance by workflow systems.
The data-centric nature of scientific workflows is a well-known fact: it has been
observed that the data preparation (i.e., initial transformation of input data to
useful representation) accounts for more than 50% of workflow structure [20].

The history of how experimental workflows evolved is rarely tracked, with
some exceptions. For example VisTrails [18] enables to backtrack from a failed
approach by storing historical changes in a tree.

Similarly, details of the underlying platform are also rarely collected. Since
the premise of scientific workflow systems is to abstract the details of the com-
puting platform away and still obtain qualitatively equivalent results, this is
understandable. This type of provenance can be still useful, for example for
debugging, but is not essential.

Examples of scientific workflow systems include Kepler, Pegasus, Taverna,
and VisTrails; see [34,36] for surveys of scientific workflow systems. The details
of provenance support in scientific workflow systems are explored thoroughly [19].



Towards Complete Tracking of Provenance in Experimental DS Research 5

2.4 Provenance in control-flows

For the purpose of this article, we define control-flows as workflows consisting of a
set of activities that are performed under causal, temporal and spatial constraints
to achieve a specific goal, such as, in the context of this article, the collection
of experimental results. This definition is closely related to the one of business
processes in Business Process Modeling (BPM) [23]. The differences between
control-flows and data-flows are studied quite extensively [3,24], including the
expressiveness of both formalisms [10]. The most important distinction is that
data-flows are data-centric, contrary to control-flows.

The provenance collection in BPM and control-flows does not seem to be
very much explored yet. This may be due to mentioned difficulties and due to
proprietary nature of many BPM systems. To our knowledge, this article may
be the first to explore provenance tracking in control-flows to a larger extent.

2.5 Provenance in experimental distributed systems research

Research in distributed systems developed a wide range of methods to tame
the complexity associated with experimentation. These methods can be grouped
into four methodologies: simulation, benchmarking, emulation and in-situ exper-
iments [21]. The in-situ methodology, which we focus on in this work, consists
in running a real system on a real platform, and arguably requires the most
extensive provenance coverage among all methodologies.

There are various solutions that control executions of in-situ experiments on
real platforms (e.g., Plush [1], OMF [29]). The support for provenance tracking
in these tools is almost nonexistent [5].

Recording and subsequently restoring the state of platform configuration is
another aspect of provenance addressed to some extent by system configuration
management tools like Puppet, Chef or Salt. NixOS [17] takes a more generic
approach of declarative and stateless description of full system.

3 New classification of provenance

As has been observed above, there are many different ways to provide provenance
information and methods differ between domains. In this section, we will observe
that for any form of computation executed on a system like grid, cloud, or any
computing platform, the general provenance can be split into 3 different types.
More precisely, we will show that apart from the provenance of data two other
types of provenance exist: the provenance of description and the provenance of
process, and that all three are useful and even necessary for a complete prove-
nance system. Although this article concentrates on the domain of experimental
distributed systems research, the discussion in this section is general and applies
to scientific workflow systems and even outside the scientific context.

To explain the existence of these three types of provenance, we make the fol-
lowing observations about entities that are present in an arbitrary computation



6 Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt

Table 1. Summary of the three proposed provenance types their position in existing
classifications. L2 provenance is not present in most distributed research experiments.

Name Entities Moment of collection ([13]) Level ([2])

Data
Results, monitoring data,

platform configuration
Retrospective

L3 (and L2,
if present)

Description
Experiment description,
platform specification

Prospective L0 and L1

Process Runtime information Retrospective L3

on a computing platform. First, from an abstract point of view, there are two el-
ements necessary to run it: its abstract description and a physical platform. The
platform consists of physical machines, network equipment, installed software
and other details. The execution of the given computation may have useful run-
time information and may produce, receive or transform arbitrary data. All these
objects can be separated into 3 different classes (see Table 1 for a summary).

Note that L2 provenance (data instantiation) is not covered, since exper-
iments we focus on do not take raw data as input. However, if need be, L2
provenance can be classified under the provenance of data.

Provenance of data is information on how data objects were created and
transformed during the execution of the given computation. This is a type
of provenance that is largely synonymous with provenance itself due to its
successful application in scientific workflow systems. Moreover, data prove-
nance is implied by the structure of a data-flow, that is, its interpretation
and representation is derived from the original structure of a data-flow.
According to the existing classifications (see [2,13]), the provenance of data
is of retrospective and runtime (L3) type. It may also cover L2 provenance
(data instantiation), however it is not the case in our domain.

Provenance of description is information on how the description of the com-
putation evolved as a function of time and how its constituents came to be.
This provenance type is a form of documentation, but has multiple other
uses. In particular it may track dependencies of the computation, as well
as authorship information, among others. We will see that in our proposed
approach even more features are present (see Section 4.2).
This provenance is prospective and covers the levels L0 and L1 of provenance.

Provenance of process constitutes metadata that document details of how
the execution of the computation progressed. In particular, it includes in-
formation on how it behaved in time (e.g., when parts of it executed) and
in space (e.g., which machines were involved during execution). This kind
of information is useful to understand the inner workings of the computa-
tion and the system, and resolve problems when they happen. Additionally,
it documents the execution for reproducibility purposes. The provenance of
process is implied by the control-flow structure, just like data provenance is
implied by the structure of scientific workflows (see Section 4.3).



Towards Complete Tracking of Provenance in Experimental DS Research 7

The provenance of process is retrospective and of runtime (L3) type.

One can argue, that all the mentioned supplementary types of provenance can
be considered like any other data that, by definition, is tracked by the provenance
of data. There are nevertheless a few reasons that warrant such a distinction.

First, the provenance of description operates at a higher level than the others.
Indeed, the information it provides would not normally require the execution of
the given computation, unlike the others. Second, as we will see in Section 4,
different types of questions can be posed for each type of provenance. The pre-
sented distinction allows for more efficient storage and access, as well as more
appropriate representation and visualization. Finally, provenance information is
difficult to query without structured data and may be overwhelming both con-
ceptually and in terms of resource requirements. For this reason, virtually every
approach models provenance information in one way or another.

4 Design of a provenance system

In Section 3 we introduced a new classification of provenance into three types.
This section proposes a design of a system that takes as an assumption the
control-flow structure of experiment description. Our decision is dictated by
promising results obtained while running large-scale, challenging experiments
represented as business processes [6]. To represent experiments, the BPM work-
flow patterns [35] are used, extended with experimental patterns that include
parallel execution of commands, failure handling, etc. We have shown previously
that under sensible assumptions large-scale experiments can be run robustly.

First, let us explicitly state assumptions guiding our discussion and design:

1. The experiment follows in-situ methodology in distributed systems research.
2. The experiment description is a control-flow based on workflow patterns.
3. The data processing does not constitute a large fraction of the experiment

execution. If it is not the case then it would be reasonable to use a scientific
workflow system instead.

For such an experiment, one can ask a question about requirements of a
prospective provenance system. We take the following approach: (1) we find
entities that can be distinguished in the experiment, (2) we define questions
that can be asked about them.

The first part has been already done in the previous section. As for the second
step, we start with a general principle that for a given entity X the two following
pieces of information describe fully its provenance: (1) the origin of X and (2)
the logical, spatial and temporal context of X.

For the objects stored as the provenance of experiment data, the prospective
questions ask which activities created the given datum (logical), which physical
nodes or equipment was involved (spatial) and when that datum was collected
(temporal). In the case of the provenance of experiment description this leads
to questions about authorship of code (logical), about the dependencies between



8 Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt

For each
MPI runtime

Install
runtime

(module MPI)

Linpack
benchmark
(module LP)

Fig. 1. High-level workflow description of the exemplary experiment (modified BPMN
notation). Each runtime is sequentially installed and evaluated with Linpack bench-
mark. Note that some parts of the workflow refer to external repositories.

Table 2. Summary of provenance types, the objects and relations they are concerned
about and examples of queries that one may ask for each of them.

Type of provenance Examples of queries

Data
Which node produced the highest benchmark result?

What was the runtime system configuration of the nodes?

Description
What are the dependencies of the experiment?

Are there newer versions of modules?
Who is the author of the activity X?

Process
What is the Gantt diagram of the experiment?
What is the critical path of the experiment?

What are the failure rates of activities?

Data & Description Did the system specification reflect reality?

Data & Process What activities executed at the node X?

Description & Process Who authored a change that caused the experiment to fail?

All types Who is the author of a module that produced the result X?

modules (logical) and about the changes to the experiment in time (temporal;
there is no spatial context, however). Finally, in the context of the provenance
of experiment process this information reduces to details on how the experiment
activities executed with respect to each other and the experiment description
(logical), where they executed (spatial) and when they executed (temporal).

This analysis leads to examples of questions presented in Table 2. In the fol-
lowing sections, a design of a provenance system is presented. It consists of three
subsystems, each capturing one type of the defined provenance. We observe that
the natural representation for the provenance of data, the provenance of descrip-
tion and the provenance of process is: by a directed graph, by a rooted acyclic
graph, and by a hierarchical tree, respectively. We illustrate the discussion with
an abstract example of performance evaluation of MPI runtimes with Linpack
benchmark (see Figure 1 for its workflow description).

4.1 Provenance of experiment data

As observed before, capturing and storing the provenance of data is a challenging
task with many difficulties. However, due to our special use case (i.e., control-
flow based experiments in distributed systems research) we were able to make



Towards Complete Tracking of Provenance in Experimental DS Research 9

a few assumptions. In particular, since the data transformation does not con-
stitute a significant portion of experiments we are interested in, we can store
the provenance of data (and data itself) in mostly unstructured way. As a re-
sult, we propose a simple key-value store, e.g., BerkeleyDB [28]. Distributed key
stores may be preferred if high-availability or scalability is requested (e.g., Dy-
namo [15]). Objects stored as the provenance of data may reference each other,
although we do not optimize for queries involving these relations. Abstractly,
data provenance is an arbitrary directed graph, that presumably is sparse.

Each datum in the store has its name, type, value and optional annotations.
The name is an identifier (not necessarily unique) of the given data artifact in
the context of the current experiment run. Its type defines a group of objects it
belongs to (e.g., nodes, results) and can be used to optimize queries by narrowing
them down to a subset of elements in the store. The value of the datum is its
raw value, it may be, for example, the result of a benchmark on a node. Finally,
optional annotations are used to link the data to related entities, for example to
the node that the result comes from, or a timestamp when this data object was
stored. They may also link to other types of provenance.

The data stored must be explicitly marked as such. There are two reasons
behind: (1) contrary to data-flows, in control-flows it is not explicitly known
what constitutes data, (2) it narrows down the scope of what is collected and
improves performance. Nevertheless, some elements of data provenance can be
collected automatically, the configuration of the platform, for example.

The data provenance collected in the exemplary MPI experiment consists of
benchmark results (benchmark type), and runtime configuration of nodes (node
type). The benchmark results point to nodes that participated in the execution
and to instances of activities that produced them (see Section 4.3).

4.2 Provenance of experiment description

In this section, we provide a design for a representation of experiments that
traces the provenance of the experiment description. By experiment description
we mean the workflow of actions executed as experiment.

Our solution to this problem is inspired by software engineering, more pre-
cisely, by (1) a version control system (Git) to track evolution and authorship of
the description and (2) a module system based on programming languages (Go)
to improve reproducibility, document dependencies and facilitate collaboration.
Note that creative use of Git branching model is nothing new [14,33].

However, as Git tracks content at the level of files, it does not meet all our
needs. For that reason we propose a simple, yet powerful and easy to use module
system that is built on top of it. It adds an additional layer that tracks depen-
dencies of experiments. The approach is modular and ensures reproducibility
and consistency of the experiment description, while remaining easy to use.

The experiment and its modules is tracked in a Git repository, and tags
represent its evolution. Dependencies of the experiment follow the same scheme
and are referenced as a pointer to a tag in another repository. It implies that
a pair (repository, tag) unambiguously defines the experiment description with



10 Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt

Foreach loop Install OpenMPI

LP benchmark

Install MPICH

LP benchmark

For each
MPI runtime

Install
runtime

Linpack
benchmark

Fig. 2. Example of a mapping between the control-flow and its log. Nesting of workflows
implies the hierarchical structure of the log, as is shown with dashed edges.

its all transitive dependencies. Cycles in the dependency graph are forbidden,
hence the provenance of description is a directed, acyclic graph.

In our exemplary experiment, the main workflow references well-defined ver-
sions of modules with MPI support (module MPI) and Linpack support (module
Linpack). Moreover, the latter depends on the former to launch itself.

The repositories containing the workflows can be hosted at social software
repositories like GitHub, which offer useful features supporting collaboration,
innovation, knowledge sharing and community building [11].

4.3 Provenance of experiment process

In this section we start with analysis of control-flows (based on business pro-
cesses) and observe that their structure maps to a hierarchical log. We then use
this structure as a representation of the process provenance.

Just like scientific workflows imply the structure of data provenance, the
structure of an experiment represented as a control-flow implies a form of process
provenance. From a high-level point of view, a BPM-like data-flow can be defined
either as an activity (a basic, atomic action) or as a pattern (e.g., a sequence of
activities). Other patterns have been defined in the literature [35].

In the example in Figure 2, we see the same workflow that was shown in
Figure 1, and associated structure of the provenance of process. In particular,
subworkflows map deeper into the log hierarchy. We see therefore that the natural
representation for the provenance of process is a hierarchical tree.

Each log entry has some predefined data recorded: a timestamp when its
execution started, timestamp when its execution finished and the node where it
was executed. The log entries annotate their log with relevant information, such
as data produced by this activity or a pointer to the source code. The log can
be stored in the key-value store used to store the provenance of data.

5 Conclusions and future work

This paper made three contributions. First, we analyzed the provenance in dif-
ferent disciplines of computer science. Then we observed that provenance can be



Towards Complete Tracking of Provenance in Experimental DS Research 11

Msg 1

Msg 2

Msg 3

Msg 4

Data 2

Data 1

Data 3

Module 2Module 1

Module 4Module 3

Experiment

Fig. 3. Interactions between 3 types of provenance. The central role is occupied by the
process provenance. It refers two-sidedly to the description provenance and to the data
provenance, with no direct links between them.

split into three different types: the provenance of data, the provenance of descrip-
tion and the provenance of process. Finally, we designed a provenance system
for distributed systems research that can capture all of them (see Figure 3).

Currently, we focus on the implementation. We also plan to enhance the
presented design: in particular, we want to consider a formal model of provenance
and verify that all useful queries can be answered within its framework.

References

1. Albrecht, J., et al.: Planetlab application management using plush. ACM SIGOPS
Operating Systems Review 40, 33–40 (Jan 2006)

2. Barga, R.S., et al.: Automatic capture and efficient storage of e-science experiment
provenance. Conc. and Comp.: Practice and Experience 20(5), 419–429 (2008)

3. Barker, A., et al.: Scientific workflow: A survey and research directions. In: Parallel
Proc. and Applied Math., LNCS, vol. 4967, pp. 746–753. Springer (2008)

4. Biton, O., et al.: Querying and managing provenance through user views in scien-
tific workflows. In: Proc. of the 24th Intern. Conf. on Data Eng. pp. 1072–1081.
ICDE ’08, Washington, DC, USA (2008)

5. Buchert, T., et al.: A survey of general-purpose experiment management tools for
distributed systems. Future Generation Computer Systems (2014)

6. Buchert, T., et al.: A workflow-inspired, modular and robust approach to experi-
ments in distributed systems. In: The 14th Intern. Symp. on Cluster, Cloud and
Grid Comp. Chicago, Illinois, USA (May 2014)

7. Caneill, M., et al.: Debsources: Live and historical views on macro-level software
evolution. In: Proc. of the 8th Inter. Symp. on Empirical Soft. Eng. and Meas. pp.
28:1–28:10. ESEM ’14, New York, NY, USA (2014)

8. Cheney, J., et al.: Provenance in databases: Why, how, and where. Found. Trends
databases 1(4), 379–474 (Apr 2009)

9. Cohen, S., et al.: Towards a model of provenance and user views in scientific work-
flows. In: Proc. of the Third Inter. Conf. on Data Integr. in the Life Sciences. pp.
264–279. DILS’06 (2006)

10. Curcin, V., et al.: Scientific workflow systems - can one size fit all? In: Biomedical
Engineering Conf. pp. 1–9 (Dec 2008)

11. Dabbish, L., et al.: Social coding in github: Transparency and collaboration in an
open software repository. In: Proc. of the ACM Conf. on Computer Supported
Cooperative Work. pp. 1277–1286. CSCW ’12, New York, NY, USA (2012)



12 Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt

12. Davidson, S.B., et al.: Provenance in scientific workflow systems. IEEE Data Eng.
Bull. 30(4), 44–50 (2007)

13. Davidson, S.B., et al.: Provenance and scientific workflows: challenges and oppor-
tunities. In: In Proc. of ACM SIGMOD. pp. 1345–1350 (2008)

14. Davison, A.: Automated capture of experiment context for easier reproducibility
in computational research. Computing in Science and Eng. 14(4), 48–56 (2012)

15. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev. 41(6), 205–220 (Oct 2007)

16. Deelman, E., et al.: Workflows and e-science: An overview of workflow system
features and capabilities. Future Generation Computer Systems 25(5), 528–540
(2009)

17. Dolstra, E., et al.: Nixos: A purely functional linux distribution. In: Proc. of the
13th Intern. Conf. on Func. Prog. pp. 367–378. ICFP ’08 (2008)

18. Freire, J., et al.: Managing rapidly-evolving scientific workflows. In: Prov. and
Annot. of Data, LNCS, vol. 4145, pp. 10–18. Springer (2006)

19. Freire, J., et al.: Provenance for computational tasks: A survey. Computing in
Science & Engineering 10(3), 11–21 (2008)

20. Garijo, D., et al.: Common motifs in scientific workflows: An empirical analysis.
Future Generation Computer Systems 36(0), 338 – 351 (2014)

21. Gustedt, J., et al.: Experimental methodologies for large-scale systems: a survey.
Parallel Processing Letters 19(3), 399–418 (2009)

22. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (1984)
23. Ko, R.K.L.: A computer scientist’s introductory guide to business process man-

agement (bpm). Crossroads 15(4), 4:11–4:18 (Jun 2009)
24. Ludäscher, B., et al.: Scientific workflow management and the kepler system. Con-

currency and Computation: Practice and Experience 18(10), 1039–1065 (2006)
25. McPhillips, T., et al.: Scientific workflow design for mere mortals. Future Genera-

tion Computing Systems 25(5), 541–551 (May 2009)
26. Moreau, L., et al.: Special issue: The first provenance challenge. Concurrency and

Computation: Practice and Experience 20(5), 409–418 (2008)
27. Moreau, L., et al.: The open provenance model core specification (v1.1). Future

Generation Computer Systems 27(6), 743 – 756 (2011)
28. Olson, M.A., et al.: Berkeley db. In: Proc. of the Annual USENIX Technical Conf.

pp. 43–43. ATEC ’99, Berkeley, CA, USA (1999)
29. Rakotoarivelo, T., et al.: Omf: a control and management framework for networking

testbeds. ACM SIGOPS Operating Systems Review 43(4), 54–59 (Jan 2010)
30. Simmhan, Y.L., et al.: A survey of data provenance in e-science. SIGMOD Rec.

34(3), 31–36 (Sep 2005)
31. Singer, J.: A literate experimentation manifesto. In: Proc. of the 10th SIGPLAN

symposium on new ideas, new paradigms, and reflections on programming and
software. pp. 91–102. ONWARD ’11, ACM, New York, NY, USA (2011)

32. Spinellis, D.: A repository with 44 years of unix evolution. In: Proc. of the 12th
Working Conf. on Mining Soft. Repos. pp. 13–16. IEEE (2015)

33. Stanisic, L., et al.: An effective git and org-mode based workflow for reproducible
research. SIGOPS Oper. Syst. Rev. 49(1), 61–70 (Jan 2015)

34. Talia, D.: Workflow systems for science: Concepts and tools. ISRN Soft. Eng. (2013)
35. Van Der Aalst, W.M.P., et al.: Workflow patterns. Distrib. Parallel Databases

14(1), 5–51 (Jul 2003)
36. Yu, J., et al.: A taxonomy of scientific workflow systems for grid computing. SIG-

MOD Record 34, 44–49 (Sep 2005)


	Towards Complete Tracking of Provenance in Experimental Distributed Systems Research
	Introduction
	Provenance in computer science
	General provenance
	Provenance in general computing
	Provenance in scientific workflows
	Provenance in control-flows
	Provenance in experimental distributed systems research

	New classification of provenance
	Design of a provenance system
	Provenance of experiment data
	Provenance of experiment description
	Provenance of experiment process

	Conclusions and future work


