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Abstract

Dynamical connection graph changes are inherent in netsirgh as peer-to-peer networks, wireless
ad hoc networks, and wireless sensor networks. Considdrinfluence of the frequent graph changes
is thus essential for precisely assessing the performadragptications and algorithms on such networks.
With two-fold states, stochastic hybrid systems (SHSs)eféettively model the dynamics of the execu-
tion of algorithms on a network with random and frequent grapanges. In this report, using SHSs, we
analyze the performance of an epidemic-like algorithm, DRGtributed Random Grouping), for average
aggregate computation on a wireless sensor network wittardical graph changes. The convergence
criteria and the upper bounds on the running time of the DRfa@réghm for three representative types

of random graph-changing models are derived. Numericalteare presented to illustrate our analysis.
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Analysis of a Class of Distributed Randomized

Algorithms on Randomly Changing Network Graphs

. INTRODUCTION

Dynamical graph changes are inherent in networks such ast@@eer networks, wireless ad hoc
networks, and wireless sensor networks. Take the exampleeofvireless sensor networks, which have
attracted tremendous research interests in the recergt. yyjaa practical or even hostile environment, the
connection graph of a sensor network may vary frequentlynie tdue to various reasons. For instance,
the communication links (edges of the graph) may fail fongénterfered, jammed or obstructed; sensor
nodes may be disabled or relocate in the field; to save engrgye sensor nodes may sleep or adjust their
transmission ranges, thus altering the connection grapdori#hms and protocols developed on these
networks need to take this nature into consideration. Is $kiting, distributed and localized algorithms
requiring no global data structure, such as routing tabteserhierarchy, are preferable for their scalability
and robustness to the frequent graph changes [1], [2], 43].[B], [6].

Although various algorithms have been proposed to deal ndtlvorks with dynamical graphs, their
performances are usually analyzed under the assumptionfigé@ connection graph [2], [3], [4]. In
this report, using the notion of stochastic hybrid syste®idgs), we present an analytical framework
to model the dynamics of algorithms on a network with a timaeying connection graph. As a par-
ticular example, we analyze the performance of a distribussndomized algorithm, namely, the DRG
(Distributed Random Grouping) algorithm proposed in [}, dverage aggregate computation on sensor
networks with randomly changing graphs. The analysis tiechas introduced in this report can also be
applied to other algorithms whose performances depend @mehvork connection graph.

Distributed average consensis an important problem with many applications in distrémitand
parallel computing [7]. Recently it also finds applicatiansthe coordination of distributed dynamic
systems and multi-agent systems [8], [9], [10], [11], aslveal in distributed data fusion in sensor
networks [2], [3], [4], [5] (in which all sensor nodes, buttrjast the sink node, obtain a consensus on
the global average). In analyzing the performance of th@gsed algorithms, these works either bound
the running time on a fixed graph [2], [3], [4] or only provid&teria for their algorithms to converge
on a dynamical changing graph without charactering the e@ance speed [5], [8], [9], [10], [11]. The

goal of this report is to not only determine the convergeniteréa but also bound the running time of



the DRG algorithm on a randomly changing graph. It turns bat stochastic hybrid systems provide
the ideal framework for modeling and analyzing such a systéiwo-fold randomness: one from the
randomly changing environment (the connection graph)other from the execution of the randomized
algorithm, DRG.

Proposed to model dynamical systems with both continuodsdistrete dynamics, a hybrid system
has a state that consists of a continuous part and a disagténpode). In particular, stochastic hybrid
systems are hybrid systems with stochastic continuousrdigsaand random discrete mode transitions,
and have found applications in a diverse range of scientifit engineering problems such as air traffic
management systems, multi-vehicle coordination conttoimputer networks [12], embedded systems,
and biological systems. The average computation on a seeseork with a randomly changing graph
can be naturally modeled as a stochastic hybrid systemisitsade mode is the network connection graph
which varies with a finite discrete value stochastic procasd its continuous state is the data value stored
at sensor nodes, which will be updated in each iteration efaferage computation algorithms. Under
this framework, we propose three representative graphgihgrpatterns for wireless sensor networks,
and derive upper bounds on the running time of the DRG algorfior each of them. To our knowledge,
this report is the first contribution to model the algorithgmdmics on time-varying graphs by SHSs.

This report has the following contributions. (a) We exjtlicimodel the dynamics of a distributed
randomized algorithm, namely the DRG algorithm, runningaoandomly changing graph by a stochastic
hybrid system. This modeling framework can be easily ex¢ertd model other algorithms on randomly
changing graphs. (b) For the DRG algorithm, we provide thera of its convergence (correctness)
on randomly changing graphs. (c) By characterizing the lyrapanging patterns as specific stochastic
processes (sequences), we extend our previous analyéisalts of the DRG algorithm on a fixed
connected graph and obtain the upper bound on the runnirg (tine convergence speed) of the DRG
algorithm on wireless sensor networks with randomly chaggjraphs. In particular, one of the cases
considered in this report is a network graph that randomiyces amid a set of individually disconnected

but jointly connected graphs, making this report the firsttabution to deal with this case.

Il. RELATED WORKS

In a wireless sensor network, it is often important to corapsitatistics such as the average, the
maximum/minimum, and the count of data stored in the nodethefnetwork. In these cases, the
information of interest is not the data stored at an indigidsensor node, but the aggregate statistics

(aggregatel amid a group of sensor nodes. Possible applications ofeggtgs include the average



temperature in a area, the minimum remaining battery lifalbthe sensor nodes, the count of some
endangered animal in a natural area, and the maximal naiskilea group of acoustic sensors, to name
a few. The operations for computing basic aggregates suelveaage, max/min, sum, and count can be
further adapted to more sophisticated data query or infdomgrocessing operations.

Many tree-based or multi-path-routing approaches, esyatgorithms in [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], have been successfullgwkloped to compute aggregates in a sensor
network. Requiring global data structures such as routitdes or the aggregation tree hierarchy, these
approaches suffer from high overheads on reconstructiaggtbbal data structure when the network
graph change frequently. On the other hand, epidemic-ligiilbuted localized algorithms [2], [3], [4],

[5] compute aggregates with only local one-hop commuroeeti Without the need to maintain a global
data structure, they can be robust and scalable in a larde acd versatile sensor network. Even in the
presence of dynamical graph changes, the aggregate cdioputg these algorithms can continue without
interruption; and the error of the computation results wdlhverge to zero under some assumptions on the
changing graphs [5], [8]. For more discussions on the acwped of distributed localized algorithms, the
readers can refer to [2], [3], [4]. In analyzing the performoes of these algorithms, most existing works
assume a fixed network graph during the whole computationgsy and derive asymptotic bounds on
the running time in terms of thiixed graph’seigen-structure [2], [3]. These bounds may be inadequate in
characterizing the performances of the algorithms on nddsvavith a time-varying graph. For example,
bounds obtained by assuming the worst-case network graplfeen too conservative. This motivates
us to develop analytical tools and frameworks for perforogaanalysis on a time-varying graph.

This report is organized as follows. In Section Il we revieame backgrounds and elaborate on the
DRG algorithm and its performance on a fixed graph. Then irti@e¢V and Section V, three different
random graph changing models are applied to analyze therpeahce of the DRG algorithm. Numerical
results of the convergence rate of the DRG algorithm undeiStis analytical frameworks are provided

in Section VII. Finally, we conclude our work in Section IX.

[Il. BACKGROUND
A. Random geometric graph

A wireless sensor network with sensor nodes and a communication radiusan be abstracted as
as a Poisson random geometric graptn, r, p.) [24], [25], wherep, is the probability that two nodes
within the radiusr of each other can communicate (two nodes with a distanceddlganr can not

communicate with probability one). Given an appropriatét has been shown in [26] that there exists



a minimump, such thatG(n,r,p.) is S-connected § > 1) asymptotically almost surely. On the other
hand, given thep. from the physical environment of a sensor network, we carosbdhe necessary
radio radiusr to achieve thej-connectivity asymptotically almost surely. We mentioe fhiconnectivity
criteria below.

Lemmal: ([26]) Let p.(n) > < for some constant. Consider the Poisson random geometric

= logn

graphG(n,r,p.). Assumes > 1 andlim,,_, (%) = «. Then G(n,r,p) is B-connected
asymptotically almost surely i > 1, and nots-connected asymptotically almost surelyaif< 1.
For convenience, the grapH(n,r,p.) can also be written a&'(V, ), whereV is the set of nodes

with |[V| = n and& is the set of edges formed by the connectivity rules.

B. Distributed random grouping

In our previous work [2], we present a distributed, localizand randomized algorithm called the
Distributed Random Grouping (DR&Igorithm to compute aggregate statistics in a wirelessaen
network. The DRG algorithm is similar to the Gossip algaritf3], [4] but with a better performance.
It requires only local (one-hop) communications among sote save the overhead on constructing
and maintaining global data structures such as routingesabl aggregation tree hierarchies. In [2],
we show that the performance of the DRG algorithm is relatedhe eigen-structure of the network
graph, which is assumed to be fixed throughout the aggregatewtation. Specifically, we use the
algebraic connectivity [27], [28], i.e., the second snetlleigenvalue of the Laplacian matrix, of the
fixed network graph to bound the running time and the total bemof transmissions. The results show
that the DRG algorithm is more efficient than other represérg distributed algorithms such as the
Flooding [3] algorithm and the Gossip algorithm as it canetaklvantage of the broadcasting nature of
wireless transmissions. In the following, we will brieflysigibe the DRG algorithm, which will be the
focus of this report in a generalized setting of randomlyngjiag network graphs.

Each sensor nodéds associated with an initial observation or measuremdonevdenoted by; (0) € R.
The values over all nodes form a vectof0). The goal is to compute (aggregate) functions such as the
average, sum, max, min, etc. of the entriesv@d). Throughout this report we usg(k) to denote the
value of nodei andv(k) = [vi(k),v2(k),...]T the value distribution vectomfter running the DRG
algorithm for k& rounds.

The main idea of the DRG algorithm is as follows. In each roohdhe iteration, each node inde-

pendently becomes a group leader with a probabijlifyand then invites its one-hop neighbors to join



its group by wireless broadcasting an invitation messageneighbor who successfullyreceives the
invitation message then join its group. Note that unlike ¢hacept of aclusterin the sensor network
literature, a group contains only the group leader andiie-hopneighbors. Several disjoint groups
are thus formed over the network. Next, in each group, all b other than the group leader then
send the leader their values so that the leader can computecthl aggregateand broadcast it back to
the members to update their values. Since in each roundpgrare formed at different places of the
network, through this randomized process, the values of@les will diffuse and mix over the network
and converge to the correct aggregate value asymptotiaiiypst surely, provided that the graph is
connectedDRG iterations stop when certain aggregate accuracyrierigee satisfied.

A high-level description of a round (iteration) of the DR@aitithm to compute the average aggregate,
is shown in Fig. 1. Aggregates other than the average can taéneld by an easy modification of this

algorithm [2]. For simplicity, in the report we will focus dine average aggregate only.

C. Performance of the DRG algorithm on a fixed network graph

In [2], a Lyapunov function called thpotential (function) is defined to assess the convergence of the
DRG algorithm.

Definition 2: Consider an undirected connected graptV, &) with |V| = n nodes. Given a value
distribution v(k) = [v1(k), ...,v.(k)]T wherewv;(k) is the value of node after k rounds of the DRG

algorithm, the potentiap,, of roundk is defined as
o1 = |[v(k) = T1[[5 = x" (k)x(k),

where the constarit = 1 3~ v;(k) is the global average value over the network; the vettds the
vector with all entries one ang(k) = [v1(k) — T, ...,v,(k) — 7]" is the error vector.

Running the DRG algorithm on a fixed connected graph, it iy ¢ashow (see [2]) that the potential
¢ Will monotonically decrease to zero from its initial valgg, i.e., the values of all nodes will converge
to the global average asymptotically almost surely.

The main effort to bound the running time of the DRG algoritisrto give a lower bound on the
expected rate of potential decrement, which we called thwergence rate, in each round. We denote

the lower bound byy. In [2], we have proved the following results.

1A wireless broadcast transmission by the group leader caedsived by all its one-hop neighbors.

2Collisions amid multiple invitation messages from differgroup leaders may occur at some nodes. Also, a group leader

will ignore invitations from its neighbors.



Alg: DRG: Distributed Random Grouping for Average

1.1 Each node in the 2dle mode originates to form a group and becomes
the group leader with a probability p,.

1.2 A node i that decides to become a group leader enters the leader
mode and broadcasts a group call message, GCM = (group;q = i), to
all its neighbors and waits for JAC K message from its neighbors.

2.1 A neighboring node j, in the <dle mode and successfully receiving a
GCM, responds to the group leader by a joining acknowledgment,
JACK = (group;q = 1,vj, join(j) = 1), with its value v; included. It
then enters the member mode and waits for the group assignment
message GAM from its leader.

3.1 The group leader, node i, gathers the received JAC K s from its
neighbors; count the total number of group members,
J = Zjegi join(j) + 1; and compute the average value of the group,

Ave(i) = M :

3.2 The group leader, node 7, broadcasts the group assignment message
GAM = (group;q = i, Ave(i)) to its group members and then returns
to the idle mode.

3.3 A neighboring node 7, in the member mode and upon receiving
receiving GAM from its leader node i, updates its value v; = Ave(i)
and then returns to the zdle mode.

Fig. 1. A round of DRG algorithm to compute average aggregate

Lemma3: The convergence rate of the DRG algorithm on a fixed connepi@ohG is, Vi > 0,

Y= inf {E [%’f” — (1+ a)a(G) 222,

wheredor = ¢, — dr+1; a(G) is the algebraic connectivity of the gragh (i.e., the second smallest

eigenvalue of the Laplacian matrix of the graph[27]); « > 1 is a parameter dependent only on the
topology of G; d = max (d;) + 1 ~ max (d;) is the maximum degree of nodes @ p, is the grouping
probability; andp, is the probability of no collision occurring to a group leaslegroup call message,
GCM.



In the above expression of the convergence fatith the exception of the grouping probability,
all the parameters are related to the network gré&ph

From Lemma 3, we can derive the following main result on thggmmance of the DRG algorithm
on a fixed connected graph. The proof of the following theooam be found in [2].

Theorem4: Given a connected undirected gra@hi), £) with |V| = n, and an arbitrary initial value
distributionv(0) with the initial potentiakyy, with a high probability (at Ieas]I—((‘;—Z)"—1 for somes > 2),
the average aggregate 6#(), £) can be solved by the DRG algorithm within ar> 0 accuracy, i.e.,

|v; — | < ¢ for all 4, in
o 9o

rounds, wherey = (1 + a)a(G)2<* is the lower bound on the convergence rate given by Lemma 3.

D. Stochastic hybrid systems

It is nontrivial to extend our results of the DRG algorithm arfixed connected graph in [2] to the
general case of time-varying graphs. For example, considesimplest convergence problem: whether
all the node values will eventually reach consensus by aginwg to the global average, starting from an
arbitrary initial value distribution. For a fixed graph, waMe shown in [2] that this is true if and only if the
graph is connected. However, in the case when the graphéswirying, even if the graph is disconnected
in some time periods, it is still possible that consensushmareached, provided that the graph sequence
assumed by the network as time evolves satisfies certainitmoma [5], [9], [8]. Characterizing the
convergence rate of the DRG algorithm in this case is a ahgilhg task, as it depends on the possible
graphs of the network, as well as the rules for the (randorajugéien of the network graph in time. To
address these challenges, in this section, we will intredhe framework of stochastic hybrid systems
that can be used to model the execution of the DRG algorithna aetwork with randomly evolving
graph.

A hybrid system is a dynamical system whose statex) consists of two parts: (1) a discrete state
(mode),q, taking values in a discrete s&= {q1,¢2,...}; (2) a continuous statex, taking values in a
continuous spac& = R¢. As shown in Fig. 2, the state space of the hybrid syste is X, which
consists oflQ| copies of X. For each mode € @, the actual feasible values afc X may be a subset
of X, called Dom(q), domain of mode, that varies with mode.

To model the dynamics of the DRG algorithm, we need the camnakegtochastic hybrid systems [12],

[29], [30], [31], [32] which are hybrid systems with stockiascontinuous dynamics and random mode



transitions. The evolution of a stochastic hybrid systenddscribed by (1)Xontinuous dynamicshe
continuous statex evolves according to stochastic differential equationBE} (stochastic difference
equation for discrete-time systems) with mode-dependesfficients; (2) Discrete dynamicsmode
transitions follow a stochastic process (sequence) definggd or occur with a probability when certain
conditions, called thguardson x, such as the continuous statereaches the boundary of the feasible
set Dom(q), are satisfies; (3Reset conditionswhen a discrete mode transition occurs, the continuous

statex is restarted in the new domain according to some specifiex.rul

continuous
states

Fig. 2. A possible state space of a hybrid automaton.

We next give the formal definition of hybrid systems.

Definition 5: A hybrid system is a collectio/ = (Q, X, Dom, f, ¥, G, R) where
« ¢ is a discrete variable (mode) taking valuesin

« x IS a continuous variable taking values = R4

e Dom: Q — 2% assigns to each € Q a domainDom(q) of X;

f:Q x X — TX are vector fields orX that define the evolution ot in modeq: x = f(¢,x) or
x(k+1) = f(q(k),x(k));
¥ C @ x Q, where eaclq, ¢') € ¥ specifies a valid transition from modeto mode¢/;

o G: ¥ — 2% assigns to each transitid, ¢’) € ¥ a set (calledguard) G(¢,¢') € X such that a

transition fromgq to ¢’ occurs whenevex reachesj(q, ¢');

e R: ¥ x X — 2% assigns to each transitiah= (¢, ¢') € ¥ the set of valuesi(, x) C Dom(q’)

that x can be reset to after transition from mogéo modeq'.

In our application, since the number of possible networlphsais finite and discrete, each possible
graph can be represented as a discrete mode of the SHS. Thes val the sensor nodes are continuous
variables; hence they can be chosen as the continuous $tédte &HS. As the DRG algorithm is a
randomized algorithm, the continuous state evolves rahdaetording to the random grouping rule of

the DRG algorithm. In the next section, by charactering tiserdte dynamics, i.e., the random transitions



among graphs, we propose several SHSs for modeling the tixe@d the DRG algorithm on randomly

changing graphs.

IV. STOCHASTIC MODELS FOR CHANGING GRAPHS

As the random evolution of the continuous state is natureliigracterized by the random grouping
rule of the DRG algorithm, to analyze the performance of tHe@algorithm on randomly changing
graphs we need to define the graph-changing patterns. Imgipist, we analyze the performance of the
DRG algorithm on three representative graph changing nsoftel wireless sensor networks. First, in
this section, we propose two simple and useful models fordneom evolution of the network graph.
A distinguishing feature of these two models is that at lees graph is connected and will be visited
infinitely often with positive probability. For these two els, the convergence results obtained on a
fixed graph can be directly extended. Another more sophistiit model will be introduced in the next

section.

A. Independently and identically distributed process

To model the switching dynamics caused by the failures apaire of the communication links,
we assume that the network graph is a Poisson geometric maggaph,G(n,r, p.), wherer is the
communication radius satisfying th&connectivity threshold ang, > @ is the probability that an
edge between two nodes within distanceill successfully connect. The initial positions of all thedes
are uniformly randomly chosen and hereafter fixed. In paldic if p. = 1, there is only one possible
graph, denoted by = G(n,r,p. = 1), with each edge within the communication range connected.

At the beginning of each round, each edge&independently fails to connect with probability- p,..
Since the time duration of a round is relatively small, weuass that the connection status of each edge
remains the same within a round. Thus the network graph isl fixeeach round.

A SHS model can be constructed for this randomly evolvingplgrarhe discrete mode(k) of the
SHS is the particular instance of the gra@fw, r, p.) in roundk. From the above description, the mode
sequencgq(k)} is an i.i.d random process with stationary distributios= (71, 2, ..., 7)) on the set
Q={a1,q,...,...,qq} of all possible realizations af(n,r,p.). Note that the size af) is |Q| = 2/¢/,
where¢ is the set of edges of the graph Although |@Q| may appear to be very large, due to the constraint
on p,, all the disconnected graph instances are of probability aémost surely [26], which reduces the
size offeasible@. In round k, the DRG algorithm is executed on the graglt) = ¢ to compute the

global average of the values of all sensor nodes. We can ehbesvalue distributiorv on the sensor
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nodes as the continuous stateof the SHS. Since the graphis fixed in roundk and is almost surely
(-connected by setting, > @ [26], we have a lower bound(q) > 0 on the convergence rate of
the DRG algorithm ory, which depends og as given in Lemma 3. Thus the convergence of the DRG
algorithm trivially holds in this case.

Formally, the stochastic hybrid systeMprc.iid. = (Q, X, Dom, f, ¥, G, R) for running the DRG
algorithm on an i.i.d. sequence of random geometric gr@ph, r, p.) is as follows.

Definition 6 (Hprg,i.i.a.): The stochastic hybrid systefprgiiqa = (Q,X,Dom, f, ¥,G, R) is
given by

« Discrete mode spac€& = {q | ¢ is an instance ofz(n,r, p.)};

« Continuous state space:=v € X = R";

o Domains:Dom(q) = X

« Continuous dynamicse(k + 1) = W (k)v(k) for a sequence of random matricEd’ (k)};
Discrete transmissionst = @ x @ with transition probability fromy; to ¢; given by ;;

Guard:G(q,q') = X for all ¢,¢' € Q;

« Reset: trivial reset withR((¢,¢'),x) = x.
Since the discrete transmissions are independent of thinoons valuex = v, the guard is the whole
continuous state spack, i.e., in a statgg;, v), a transmissior{g;, ¢;) from g¢; to ¢; can occur with a
probability 7; independent of the continuous valuesWe further elaborate on the continuous dynamics
v(k+1) = W(k)v(k). In roundk when the graph is given by(k), depending on the random formation
of groups in the sensor nodes, the effect of a DRG iteratiothenvalue distributiorw (k) at roundk
is a linear operation modeled by the multiplication of a ramdmatrix W (k) depending on the graph
q(k). Specifically, letl'(k) be the set of group leaders in rouhdn the graphy(k), which is a random
set depending on the grouping probability and the grapltiire. Letg; be the set of member nodes in
the group led by nodé¢ i € I'(k), and letJ; = |G;| be the number of nodes in grogp. Then the DRG
iteration is given byv(k + 1) = W (k)v(k), whereW (k) = [wy], 1 < n,¢ < n, is defined by

Jli’ 1,6 € G;;
wpe =31, n=g, and n,¢ & Uer) 9
0, else.

Note that the randomness Wy (k) arises from the random nature Btk).
It is difficult to bound the running time by tracking the dyniamof the above SHS directly. Below,

we upper bound the running time by bounding the expectednpatewhich can be thought of as an
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Lyapunov function of the SHS.
Lemma7: For the hybrid systent prc.i.i.q., after 7 rounds, the expected potentilo,| < Z7 ¢y,

where

Z = Zﬂ'q(l

q€Q
is called theaverage concentration ratef Hppra ii.d..

Proof: For the i.i.d. proces§gy }, a modeg has the stationary probability, from the very beginning
of the DRG iterations. For thig, a lower boundy, of the convergence rate can be computed as in Lemma
3. Suppose that we run the DRG algorithm forounds. At the beginning of the-th round, the potential
¢-—1 of the previous round, and the grapfr) = ¢, and hencey,, of the current round, are known. At

the end of ther-th round, by Lemma 3, we have

|:¢7' 1= (b’r
¢7’ 1

=E [‘b’r ’ ¢7’—17 Q(T) = Q] < (1 - ’Yq)(ﬁr—l

=FE [¢T | ¢T—1] =F [E [¢T | br-1, Q(T) = QH

br-1, q(1) = q} > g

= 3" Pla(r) = QB¢ | 61, a(r) =
q€eQ

< Z 7Tq(1 - ’Yq)(b’r—l =Z¢r-1.
q€Q

By the principle of expectation of conditional expectation

El¢:| = E[E[¢r | 9rall < E[Z¢r1] = ZE [pr].

So by induction,E [¢,] < Z7E [¢o] = Z" ¢ , Which is exactly the desired conclusion. [ |
Note thatZ < 1 as the graphs i) are almost surely connected. Hengg, } is a super-martingale.
From this lemma, we can derive the bound on the running timiheDRG algorithm.

Theorem8: For the SHSHpRe,i.i.q. With an arbitrary initial value distributiorv(0) and the initial
potentialgg, with high probability (at least — ( )" 1 o > 2), the average consensus problem can be
solved by the DRG algorithm with an> 0 accuracy, i.e.|v; — 7| < ¢ for all i, in

O (U logz(;—z)>

rounds, whereZ = 3 o (1 — ).

Proof: To meet the accuracy criterion afterrounds, by lemma 7, it is sufficient to have

Elg] < Z7¢p < €.
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Taking logarithm, we have
log (% 2
. Og(i ) _ g
log(7)
Note thatZ < 1, and¢y > 2 (otherwise the accuracy criterion is trivially satisfieBy the Markov

inequality,

P(¢, > %) <
Chooser = o log;(5-) for somes > 2. Sinces — 1> 1 and (5) < 1,
2 2
P(6, > &) < 272 (D) = (T yo1,
(¢pr 2 e7) < (=) ¢o)

Thus,P(¢, < &%) > 1— (;—i)("‘l) is arbitrarily close to 1 by choosing large (Since typicallypg > &2,

—

taking o = 2 is sufficient to have high probability at leakt- O(%); in the casep, > <2, a largero is
needed to ensure a high probability.) Therefore, when O <0 logZ(;—z)), w. h. p, we haveg, < £2,
implying that the accuracy criteriorjof — 9| < ¢,¥i € V) must have been met at or before theh

round. [ ]

B. Markov pure jump process

In this section, we extend the i.i.d. model of the previoustiea to a more general one, called the
pure jump procesdn this model we assume the following properties.
1) A p-connected geometric gragh(n,r,p.) = G,.;.(V, &) is constructed at the deployment stage
of the sensor network;
2) An edgee € £(G, ;) fails and recovers independently according to two Poissmntprocesses

with constant intensities. and i, respectively.

Similar to the i.i.d model, a stochastic hybrid Systéfiy rc, pure jump CaN be constructed to model
the randomly changing graphs in this case. The discrete rsotte network graph in each round, and
the continuous state is the value distribution on the senedes. Consider a simple example with an
initial graph consisting of four nodes and four edges whiekehthe same failure and recovery rates.
Fig. 3 plots the diagram of the Markov chain modeling the diions among all possible graphs. The
state space of the Markov chain is finite since there is onlyigefnumber of possible graphs.

In this model, unlike in the i.i.d. case, the graph may bedatisected in certain rounds. The following

theorem gives the criterion on the convergence of the DR@rittgn.
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Theorem9: Let G be the union of alfecurrentmodes (graphs) of the Markov chain modeling the
graph evolution of the pure jump model, i.6,= Uw(q)>0 ¢. If G is connected, then the DRG algorithm
will converge to the global aggregate.

Sketch of ProofA recurrent state in a Markov chain is visited infinitely afteHence discrepancy of
values on arbitrary two nodes will eventually be smoothetlasuthe Markov chain modeling the graph
evolution traverses the edges @finfinitely many times. |

To further bound the running time in the case that the DRGrélgun will converge, we assume that
the Poisson intensities are strictly positive:, A\. > 0, Ve € £(Gp.;.). In this case G of Theorem
9 is just the initial graphG,, ;. which is 8-connected. As a result, the Markov chain of the graph is
ergodic so that there exists a stationary probability itistion 7. Similar to the i.i.d model, we can
compute a convergence ratefrom the stationary probability distribution of the Markov Chain{q; }.
This rate will apply when the Markov chain is already in siatiry distribution from the beginning,
and can help us to derive bounds on the running time of the DR@ritam, i.e., E[¢;] < ZI ¢y,
where Zs = > .o m(1 —74) < 1. In general, however, the Markov chafg} may start from some
initial distribution other than the stationary one. In th&se, estimating the convergence rate becomes a
challenging task. One way to get an approximate bound is lasva Let m = 75 + 7, wherer; is the
number of rounds after which the system distribution becoméficiently close to the steady one. Then
the following inequality holds approximately:

Elo.] < 22([] Zu(k))do.

k=1
Here Z; = 3 come(1 —vg) < 1; and Zy(k) = > copqe(k)(1 — ) < 1, wherep,(k) is the state

probability of modeg in roundk. By boundingZ,(k), we can upper bound the running time of the DRG

algorithm onHpre, pure jump-

V. INDIVIDUALLY DISCONNECTED BUT JOINTLY CONNECTED GRAPHS

In the previous section, we introduce two models of randosuljtching graphs. In both models, at
least one connected graph will be visited infinitely ofteenide the expected potential decrement in each
round is greater than zero, or equivalentfy< 1. As a further extension, in this section, we consider a
model where all the possible graphs are disconnected. Ima@ugodel, the expected potential decrement
in a single round in the worst case is uniformly zerng & 0, Vq; henceZ = 1). Thus the previous

method fails to yield a meaningful bound on the running tildewever, even though all possible graphs
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Fig. 3. Markov chain of the pure jump process. Each graph enright is a state in its corresponding row of states of the

Markov chain.

are disconnected, if their union graph is connected, the RRGrithm can still converge. In this section,

we will study this general case.

A. Convergence criteria

We consider a model where all the possible graphs are indilligdisconnected but jointly connected.
We assume that each graph occurs with some positive pribaibila round of the DRG algorithm
and is visited infinitely often in the whole stochastic greggguence. In such a model, the expected
potential decrement in a single round in the worst case ifotmly zero, i.e.,y, = 0, Vg. We can
not directly extend the results of [2] like the previous twadels in the previous section. However,
even though all possible graphs are disconnected, if thm@gmugraph is connected, the DRG algorithm
can still converge to global average. We can show this cgevexe criterion, by extending the proof of
Theorem 1 in [5]. Suppose there are< oo possible disconnected graph&’;} each of which is visited
infinitely often. On each graply; there are a set of possible group distributidi¥;, } followed from
the randomized grouping rule of the DRG algorithm. Ed&h. is associated with a double stochastic,
symmetric and paracontractidignatrix W P<: (w.r.t. Euclidean norm) so that the value vector is updated
by v(k 4 1) = WPsiv(k) whenDg, occurs at round:. (The value updating matrik/; of [5] depends
only on the chosen network gragky but ourWWPe: is determined by the group distributiddg. which

3A matrix W is paracontracting w.r.t. a vector nor|| if Wz # z < ||Wz| < ||z|. [5]



15

in turn depends on the graph; and therandomizedgrouping strategy of the DRG algorithm.) Each
G, is visited i.0., so isDg,. Hence, there exists at least a set of updating matdices {IW?s:} for
i=1---r such thatM = %E;’zl WPes: is stochastic, symmetric and irreducible if the union ofgible
graphs is connected. This implies th&t’s fix-point subspace, i.e., the eigenspace associatedthgth
eigenvalue 1H(M) = span(1). Therefore, by [5],N\ H(WP<:) = span(1), which by [33] leads to
the conclusion that the DRG algorithm will asymptoticallynwerge to theunique fixed poin{217v) 1,

i.e., the status of the average consensus.

B. Convergence rate and the upper bound of running time

For illustration purpose, we analyze the simplest case avittee network graph switches randomly
(infinitely often) between two graphs that are individuallgconnected but jointly connected. Our analysis
can be easily extended to the general case of switching amrd than two graphs. As an example, see
Fig. 13(a). In each round, the network graph can be eitheor GG,. Hence in the stochastic hybrid system
model, the space of discrete modesijs= {G1,G2}. The mode transition pattern can be characterized
by a two-state Markov chain shown in Fig. 14(a).

SinceG; and G, are each disconnected, the lower bound on the convergetecéoracach of them
in a single round is zero. However, in two rounds, the netwody switch between these two jointly
connected graphs with positive probability, resulting ipasitive expected potential decrement. Thus to
lower bound the expected potential decrement rate, we reeedrisider two rounds of DRG iterations.
Since this is a worst-case analysis, we assume the worsdrsceonly one group is formed in each round.
The DRG algorithm can have more groups in a round and henceegmfaster than the upper bound
derived here. Also, we assume every node has equal prdbatoilbecome a leader. Without loss of
generality, definex(k) = v(k) —v1, which is orthogonal to the vectdr, i.e.,x(k)L1. Then each round
of DRG iteration can be expressed=as + 1) = W (k)x(k) for some random matrixV' (k) depending
on the choice of group leader. For example, if in rodndhe network graph ig; € {G1, G2} and node

i becomes the group leader, thBA(k) = W9 = [w?zé’i] where
ﬁ? if U»CE{Ngk(l)Ul}v
w%’g"i =41, if n,¢ ¢ {Ng, (i) Ui} andn =g; (1)
0, otherwise.

Here N, (7) is the set of neighbors of nodein graphg;.



16

In constructinglV (k), we consider only one group in a round. The DRG algorithm cavelmore
groups in a round and hence converge potentially faster tthempper bound derived here.

In summary, the formal definition of the stochastic hybridteyn Hprc, ;... for modeling the DRG
algorithm on this randomly changing graph model is giverowel

Definition 10: The stochastic hybrid systefprc, j... = (Q, X, Dom, f,G, ¥) is given by

« Q ={G1,Gy} and the graph of round is g € Q;

e X : x=v—7vle R"is the offset value distribution;

e Dom: Dom(q) = {x € R" : x L1} consists of alk whose entries add up to zero;
fix(k+1) =W(k)x(k) for some random matriXV (k) defined by (1);
o U: P(grtrs = Golgr = Gy) > 0;

P(gk+1 = Gilge = G2) > 0;

e G = X; R s the trivial reset:R((q,q¢),x) = x.

From the continuous dynamics, in two rounds, we haye + 2) = W (k + 1)W (k)x(k) = Wx(k).

The ratio of potential decrement after two rounds is
O — dr2 _ [x(k)|? — |Ix(k +2)]?

PR EOIE
x(K)TWTWx(k)
T @)

Define~, as the lower bound on the expected convergence rate aftecdngecutive rounds:

) Ok — Pkt
= f P =T .
i xdffu;{ [ . ]}
x(k)#0

—1-

From (2), we have

> [% - ¢k+2] - x(k)' B [WTW] x(k)

P x(k)Tx(k)
o x(k)TKx(k)
_1_W21—>\2(K)>0, 3)

where )\, (K) is the second largeseigenvalue of the matri¥X defined by
K=E|WW|

P, . ) ) )
= E E %(W9k+17]W9k72)T(ng+1Jngul).
(grsgr+1) J

In the above,P,, ,.., = P(gr)P(gk+1l|gx) is the probability that the graph of roundis g, and the

graph of roundk +1 is gx.1. S0, the lower bound on the expected convergence rate afiecdansecutive
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rounds is
Yo = 1—)\2(K) > 0.

Note that the algebraic connectivityG) in Lemma 3 is thesecond smallestigenvalue of the Laplacian
matrix of a fixed graph; while hera,(K) is the second largeseigenvalue of a compound matriK.
Also, the largest eigenvalue & is always one so theecond largeseigenvalue\;(K) < 1 since the
two possible graphs are jointly connected.

Theorem11: For the SHSHprg, j... with an arbitrary initial value distributiorv(0) and the initial
potential ¢, with high probability (at least — (;—i)"‘l ; o > 2), the average consensus problem
can be solved by the DRG algorithm within an > 0 accuracy, i.e.|v; — 7| < ¢ for all 4, in
0] (o— log)\2(K)(%i)> rounds

Proof: Similarto Hprg, i.i.4., to meet the accuracy criterion, after rounds ofHpre, j.., by (3), we
needE[po,] < (1 —72)"¢o = (A2(K))"¢p < €2, from which we getr > log)\2(K)(;—i). ReplacingZ by
X2(K) in the proof of Theorem 8, we have= O (a logAQ(K)(;—i)) to meet the accuracy criterion. Hence,
we need2r = O (20 1ogA2(K)(;—j))=0 (a 10gA2(K)(§—i)) rounds for the DRG algorithm to converge
within an e accuracy. ]
Similar procedures can be carried out to obtain the convemyeate for network graphs randomly
switching among a set of individually disconnected but tigirconnected graphs consisting of more
than two graphs. In the following section, we provide anaffe way to compute the compound matrix,

K, for two useful families of individually disconnected buwiijtly connected graphs.

VI. COMPUTATION OF MATRIX K

As we see from the above, the compound maKixs a key element in the upper bound of the running
time of the DRG algorithm. Here we introduce an effective viaycompute the compound matriX
whenn and|Q| are large. Given a sequence of graphs each withodes, by exploiting the sparsity
of matricesW (k), we analytically obtain the associateéd” IV in terms of the number of nodes We
then obtain the compound matrKK by averagingWTW over all possible graph sequences determined
by the graph changing pattern.

As an example to illustrate our computation method, we am@rsa set of individually disconnected
but jointly connected graphs. The possible graphs are fra®t @fh = n — 1 graphs each witlm nodes
positioned as a linear array and with only one edge conrgtitio consecutive nodes. Shown in Fig. 4(a)
is a possible graph with an edge between nedand nodem + 1, and in Fig. 13(c) is an example

set of all possible graphs with = 4. Because of the extreme sparsity of each graph, a timengryi
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network graph randomly switching among these graphs is grtteeworst cases for the DRG algorithm
to converge. However, since these graphs are jointly caadethe DRG algorithm will converge to the
global average. In each round, we assume that only one of thedes becomes the group leader with
the probability 1/n. As a result, unless one of the two end nodes of the only edgentes a leader,
the transition matrixiV (k) is the identity matrix/ of ordern. For example, suppose that the network

graph isG,, in Fig. 4(a) at rounds. When noden or nodem + 1 becomes the group leader,

I 0 0
1/2 1/2
W (k) = Wonm = wemmtl = | ¢ /2 1 0 |; (4)
1/2 1/2
0 0 In—m—l

when the other nodes become the leatiéfk) is the identity matrix of orden, i.e., W (k) = W&mi#{mm+1} —
I,,. For convenience, we define two mutually independent sespsenhe graph sequence—= {gk}’,;:l,
namely the realization of the randomly switching networ&mr over round¢ = 1, ... h, and the leader
sequencd, = {I;.}?_,, wherel; is the leader node for the randomly switching network grgpht round
k. The leader sequende= {I;}!_, is an i.i.d. sequence where eakhis of the uniform distribution

over alln nodes. We re-write
K=FE [W/TW}
-y PWE [WTW‘ A} — Y P(A)K,.
A A
The graph sequenceand P(A) depend on the graph changing pattern; and the mRtfix= £ [WTW‘ A]

is the compound matrix for a given graph sequenceSince the computation dK, is the key to

computingK, in the following, we illustrate the computation &, through an example.

“Since each node becomes a group leader in probahifity the expected number of leaders in the whole network is 1.
Whenn is large, it is easy to show by Markov inequality that the praility that the number of leaders in a round is larger

than 1 is very small.
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BecausdV (k)T = W (k) and the group leaders in different rounds are chosen indiepely, we have

h h
[Tw® [[wk-k+1)
k=1

k=1

K, —F [WTW‘A] _ A

— Z P(l — {lk}Z:l‘A)Wghll .. Wgh,Jh, . nglh, .. Wghll
= ZP (L1|A) - P(Ip | M)Wl amte L prgmle . pyonh

— ZP Llgi)- lh|gh)ng7ll RO ¥ VLR ¥ TR Wguh’

where W9 is the W (k) decided byg, andi; at round k. Note thatV9~!* appears twice on the right

hand side. Since we assume that there is only one leader imreand, P(Ix|gx) = 1/n, 1 < k < h.
EachW (k) = W9 is a basic computation block of the computationkof and can be represented

as a bipartite graph. An example of this basic computati@akfor W (k) = W9rlk = [wgk’l’“] on the

Ui

graphgr = G,, of Fig. 4(a) is shown in Fig. 4(b). Specifically, corresporglio each entrng’“ of

W (k), there is a link with Welghtwg"’l’“

connecting the upper node (entry nodegnd the lower node
(exit node); of the bipartite graph. Those links with zero Weig}mg’y(’l’“ = 0) are omitted since they
will not contribute to the computation dK,. For the example of Fig. 4(b), with probabilit%', when
either of nodem or m + 1 becomes the leadet,= b = % , i.e., W(k) is given by (4); with probability
n=2'q=1,b=0,ie., W(k) will be the identity matrix of orden. To computeK, these computation
blocks are cascaded as in Fig. 5. The computation blocks mrerraymmetric across the horizontal line
in Fig. 5: the first and the last computation blocks are theesastc.

As an example, we show how to compuig, for a graph sequencé = {gk}gzl in which g, has
only one edge connecting nodésand k + 1 (i.e., m = k in Fig. 4(a)). Corresponding to the graph
sequence\, the computation blocks are cascaded in a way as in Fig. thiocasen = 4, i.e., h = 3.
We define a path) := (s1, ..., sy, ..., sap41) to be a possible node sequence starting from the entry
nodes; of the top (first) computation block to the exit nodg,,; of the bottom (last) computation
block. Each intermediate nodg is the entry node of thef-th computation block and the exit node
of the (f — 1)-th computation block. Fig. 5 illustrates the possible pdibr computingK,(1,1) and
K (2,3) whereK,(1,1) has four different paths anl{ 4 (2, 3) has three different paths. In general, the
number of possible path¥ 4(z, ) for computingK (4, j) is

N(i,j) = n — max(0, max(i, j) — 2).

Furthermore, denote a path with the first nade= 7 and the last nodey, 1 = j by ¥(3, ), and the
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1 2 m m+1l n
O + ++0—0O +«++::0

(@) An example graphG,, of linear array with only
nodesm andm + 1 connected.

I 1 2 m m+1 n
1 1...ab a....|1
j 1 2 m m+1 n

(b) The computation block folV (k) on the graphG.,
where with probability%, a="b= % and with probability
"7—72, a=1b=0.

Fig. 4. An example graph of linear array and its correspapdiomputation block for computing 4.

set of all possible)(i,j) by V(i,j) = {¢ := (s1, ..., Sop+1)|s1 = 4, 89n+1 = j}. In the example of
Fig. 5(a), the number of possible paths i (1,1) is N(1,1) = |[¥(1,1)] = 4.

Define theaverage weighof a pathz/z as

gk, k gk,lk
z : H P lk‘gk w5k5k+1 52h k+1S2h—k+2
I k=1

h

=TI D PUklg) - wiie,, - wi™ e s ()

k=1 1
wherewg’,j’sl,f+1 is the (s;,5541) entry of the matrixiv9t = W (k) of roundk. Also, the last equality in
the above equation follows from the fact thHat {lk}Z:1 is an i.i.d. sequence. Each entry Kfy, i.e.,
K(,7), therefore can be computed by summing the average weigha#i pbssible paths connecting
the entry nodes; =i on the top to the exit node,,; = j at the bottom:
Ka(i,j)= Y, ().
YEW(i,5)

Take the possible path, := (a =1, b, ¢, d, e, f, g = 1) of Fig. 5(a) for example. With probability
2/n, the weights of link(a, b) and(f, g) are both1/2; with probability (n — 2)/n, they are both 1. All
the other links on this path are always of weight 1 (with philigy 1). Hence by (5) the average weight
of path; is
n—2 2n —3

11+ 1-1=
2 2 n - oon

SN

w(1r) =
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4

(a) paths forKa(1,1) (b) paths forKa (2, 3)

Fig. 5. The un-solid lines are the possible paths (multiian combinations) for an entry of the matiig, .

wheren = 4 in this example. As another example for the possible path=(a = 2,b, ¢, d, e, f,

g = 3) in Fig. 5(b), with probability2/», the weight of(a,b) is 1/2 and the weight of f, ¢) is 1, while
with probability (n — 2)/n, both the weights ofa,b) and(f,g) are 1. (Hence, the weight dff, g) is
always 1 in this case.) In order for the lirfk, /) to have nonzero weight, node 2 or node 3 must be the
leader of round 2, which occurs with probabiligyn. In this case, the weights @b, c) and (e, f) are

both 1/2. The average weight of this path is therefore

2 1 n—2 2 11 n—11
7 =(Z.2.1 11 (2202 = il
@(2) (n 2 * n ><n 2 2> n 2n

In the above equation, we only need to consider two roundsesat round 3, the linké&e, d) and(d, e)

are of weight 1 with probability 1.

From these cascading computation blocks, we obtain they/@redlexpression of, as follows. Let
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K/\(i,j);n:4.
10° : , — ——
% +——F—
K1)
——K,(1,2)
- _ —o—K,(1.3)
N 107} - e
<
X
~——
e ~—
107 T
4 5 6 7 8 9 10 11 12
n, number of nodes
(@) Ka, n=4. (b) The trend of K, in logarithm axes, whem is

creasing from 4 to 10. Three typical entriesiéf, are

shown.
Fig. 6. Properties of<4.
r= 5. Then
Ka(i,j) =
(1—3r) L2 4 b i=j=1;
P (1= 3r)2 200 4 (1 - 3y, l<i=j<m
(2r) " (r + r(1 — 3r) L b lmesdy i=1,j=1+uz,
1<x<n—1;
(1—2r)(2r)*  (r +r(1 = 3r) 2 ppntl=e=t) ] < <n, j=i+a,
1<x<n—r;
| Ka(j,4), i> .

Note thatK, is a double stochastic matrix which can be easily verifiethftbe above expression.
The computedk’, is shown in Fig. 6(a) fom = 4 and in Fig. 6(b) forn = 4,...12. It can be seen

from Fig. 6(b) that the matri¥X, will approach the identity matrix of ordetr whenn is large, i.e., if

n — oo, thenr — 0, Kx(i,i) — 1 and K (i,i + z) ~ . An intuitive explanation of this observation

is that when the numbet of nodes is very large, the graph becomes very sparse andrdbahjlity

that any one of the two end nodes of the only edge in each grapbnties a DRG group leader is rare,

diminishing the chance to reduce the potengighrough the DRG iterations.
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—— normallzeol>\2

0.8
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n
0.2r % y:]_—)\z
—x— normalizedy*:l—)\;
0.1r
O L
4 6 8 10 12

the number of nodes n

Fig. 7. The second largest eigenvalue of compound m&ix\2(K), and convergence ratg,= 1 — X\2(K) vs the number

of nodes,n, in the jointly connected linear graphs, under a determingraph changing pattern.

If the graph sequencé& occurs with probability 1, i.e., if the graph changing pattés deterministic
(a special case of the general random switching setting)) Kl = K, can be directly obtained from
the above computation dK,. Taking this case as an example to discuss the convergestod of the
DRG algorithm on such a set of graphs, we show the secondslaejgenvalue\;(K) = A\2(K,) and
the convergence rate of the DRG algorith below in Fig. 7 forn = 4,...,12. It can be seen that
the larger the numbet, the smaller the convergence rateimplying a slower convergence of the DRG
algorithm while computing the aggregates on such kind oplgsa The reason is straightforward. Only
when an end node of the only edge of each graph becomes a gianlgr lwill the DRG averaging process
really take effect to reduce the value variations on nodéelsemthe number of node becomes large,
the chance of the two end nodes of the only edge independeatigming a leader dwindles, slowing
down the convergence process.

Running the DRG algorithm on such a set/of= n — 1 possible graphs, the convergence rates

the minimal ratio of the expected potential decremgfity| after h rounds of the DRG algorithm to the
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(known) original potential, i.e.,

V< E [¢k_¢k+h] .

o

For fair comparison, we also show in Fig. 7 the normalizedapeater \; = /A, and normalized
convergence rate* = 1 — A\j which indicates the minimal ratio of the expected potentiatrement
E[é¢] after a round of the DRG algorithm to the potential at the beigig of that round of the DRG

algorithm, following from the relationshif [ 1| dr] < Aodr = (A5)" ¢y

G Ze G, 2e G, °2® G 2
L .
| 3
40/.\3-’ | ‘° s o .\. | 40/. o
G G G Gs

B> B3
1 _ n-1 X I I X 14 X I X 11 1x
X=n Y= : | | \l 11
: n YMY \1 \1 yNy lyD><y
n=4 [ [ [ [ [ \

Fig. 8. The star topology, disconnected star graphs and tbeiesponding computation blocks.

Another useful graph topology is the star topology, whiclaliso a common topology for networks.
We llustrate a simple example for = 4 nodes in Fig. 8. The grapliy at the top right of Fig. 8
is the joint connected star graph with four nodes. For colever® we can rearrange graghinto a
linear topology as graply shown belowG. Actually, by a proper numbering of nodes, any graph can
be rearrange into a linear array. We consider the graph seque= {G;, G2, G3}, which is of the
equivalent representatioh = {Cfl, Go, ég}. From the linear arrangement of nodes, it becomes clear
that the principle of cascading computation blocks in thevigus example of linear array can also be
applied again here. We show the corresponding computatamk$®B,, By, Bs at the bottom of graphs
G1, Ga, Gs. Similar to the previous example of linear array, to comgiite we cascade the computation
blocks in a way in Fig. 9 where Fig. 9(a) illustrates the polespaths forK, (1, 1) and Fig. 9(b) show
those forK (2, 3).



25

I
I
I
:
3
(a) paths forKa(1,1) (b) paths forKa (2, 3)

Fig. 9. The un-solid lines are the possible paths (multgtian combinations) for an entry of the matidi&, in star topology.

To generalize this star topology, we number the center ned®ode '1’, which sequentially connects
to sorely one another node in each round, i.e. there is ordyealge in each round. We number the node
connected in round as nodek — 1. There will be totalh = n — 1 rounds. Letr = (”7‘1)2, by Fig. 9,

we obtain, for star topology witlh nodes, the compound matrix

K (i, j) =
o L (), i=j=1
Lp3@e—j=1) 4 p30-D(L 4 LI 1 <j<n,
. M:L;“ + %1—171";”7 l<i=j<m
e L<i<j<m
kKA(jJ‘)? P>

Fig. 10 shows the the matrik’, for a star topology with four nodes, i.ex,= 4. Each sub-figure presents
a row of the matrixK,. It is also easy to verify that th&, is a double stochastic matrix by Fig. 11.

Every column of K is depicted by a distinct color whereas the values on eachamwsummed up
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together to be 1. Note thdt, is a symmetric matrix.

© o

K (2.])
o
o U P O U P O U P o N b

K,(L,)

K3 )
o

K (4. ])
o

Fig. 10. TheK, of a star topology.

We also compare the the normalized convergencevyate 1 — A5 of the DRG algorithm on linear
topology with that on star topology. It is shown in Fig. 12ttkath larger normalized convergence rate
the DRG algorithm will converge faster in star topology thiathe linear topology of the same size. This
is because, in the star topology, the center node is alwaysemted to be a bridge for data exchange,
providing a better connection. Meanwhile, the diameterhaf star topology is only two whereas the
diameter of the linear topology will go up th = n — 1. Any two nodes in the star topology need at
most two edges to exchange data but in the linear topology ey require at most edges.

We also see from Fig. 12 that both the normalized convergeatss of two topologies (at least)
decrease exponentially fast with the number of nade@\ote that the y-axis of bottom sub-figure is in
log-normal scale.) The normalized convergence rate ofitieait topology drops faster than that of the
star topology. We can use the slope of each line in the bottaorfigure of Fig. 12 as thecalability
indicator of a set of switching graphs of the same size to run the DRGrigthmo—-for the extreme
example, the slope close to zero indicates a constant n@edatonvergence rate of the DRG algorithm
regardless of the size of the graph. So given a threshgldhe scalability ¢,,, of the DRG algorithm on

a set of switching graph§ is

(o, (G) = max <i> .

n>n, \ Invy*(n)
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Fig. 11. The row stack chart fak’y of a star topology.

VIlI. NUMERICAL RESULTS

We now present some numerical results on the convergereefrtiie DRG algorithm on the randomly
graph-changing models studied in Section V. Recall thahimcase, there are a total @possible graphs
for the network, each of which is disconnected. As a famityvéver, theh graphs are jointly connected.
A lower bound~y;, on theh-step convergence rate is given y =1 — A\2(K), whereK = FE [WTW]
andW =W (k+h—1)---W(k+ )W (k).

In Fig. 13, four cases under study are plotted. In case | asd kg the union of possible graphs forms
a linear array with three and four nodes, respectively. bBedhand case IV, the union of possible graphs
forms a ring with three and four nodes, respectively. Thekdarchains (the randomly graph-changing
model) describing the transitions among possible grapasshown in Fig. 14: Fig. 14(a) for case I,
Fig. 14(b) for case Il and case llI; and Fig. 14(c) for caseWé computey, for case I,y3 for case Il
and lll, and~, for case IV, under different transition probabilitipsand q.

Fig. 15(a) plots the computed (K) of case | as a function of the transition probabilitieandg. It can
be seen that, gs andq both approacld, \2(K) achieves its minimum; hencg = 1 — A2 (K) achieves
its maximum, implying the fastest convergence rate of the&sDiRyorithm. This is understandable as, in
this case, the transitions between the two possible graghtha most frequent and occur in each round,
remedying the slow convergence caused by the individuaodisected graph. On the other hand, by
requiring thatp + ¢ = 1, A\2(K) becomes a function gf only, and is plotted in Fig. 15(b). Note that the
plot in Fig. 15(b) is a slice of the plot in Fig. 15(a) along tive p + ¢ = 1. As can be seen from the
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plot, the minimum\2(K), hence the maximal convergence rate occurs ap = ¢ = 0.5 when the two
graphs have identical stationary probability 0.5. For &len choices of and ¢ satisfyingp + ¢ = 1,
the transitions have a tendency of staying in one graph lpmgéch slows down the convergence of the
DRG algorithm.

Fig. 15(c) compares the convergence rates of the DRG digorior these four cases as well as an
additional case of the ring topology that is of five discorted@raphsh = 5. The computed convergence
rate v, for these five cases are plotted in Fig. 15(c) as functionqefttansition probability (in case
I, we setq = p). We observe that, the larger the number of nodes, the sltdvweeconvergence rate. In
addition, with the same number of nodes, the case whose wmaph is a linear array has the slower
convergence rate than the corresponding case whose uraph @ a ring. This is because on a linear
array each of the two end nodes has only one direction to dpretits value whereas all nodes in a

ring have two.
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Fig. 14. The Markov chain for jointly connected switchingaghs each of which is disconnected.

VIIl. A N APPLICATION: SLEEFAWAKE SCHEDULING

One of the efforts to save energy consumption in sensor mktisdo let some sensor nodes sleep (in
power saving mode) from time to time without affecting thereotness of the execution of the algorithm
but possibly with some acceptable degradation on the pedoce of the algorithm. In our example,
the network graph may become disconnected when some nags Jlhis is especially true for sparse
network graphs. However, from the results of previous sastiwe know that the DRG algorithm still
converges as long as the time-varying network graph isljoicwnnected. In this section we discuss

the DRG’s performance on several sleep/awake schedulimgesees and try to find the best controlled
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graph sequence in terms of both energy saving and convergene.

We consider a sparse graph: a linear array with 4 sensor rindeesow. The network graph “e” of

Fig. 16(e) is the connected graph while all four nodes ar&kaw@ther graphs in Fig. 16 are disconnected

because some sensor nodes are in sleep mode, e.g., in grafffigial6(a)) node 3 and node 4 are

in sleep mode. When a node sleeps, its CPU is at power savimg raod its radio components are

deactivated. We compare nine different periodic graph seces (i.e., different sleeping schedules for
sensor nodes)A; = {e}, Ao = {abc}, As = {abecb}, Ay = {abce}, A5 = {dc}, A¢ = {df}, A7 =
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{adefc}, As = {edef}, Ag = {eaebec}, where{abc} means that the network graph repeats in “abc”
pattern periodically, i.e., in first round the network graphrig. 16(a), the second round Fig. 16(b), the
third round Fig. 16(c) and the fourth round Fig. 16(a) agairetc. Since the graphs in each sequence
are joint connected, the DRG algorithm will converge forsthgraph sequences.

Running the DRG algorithm on amnodes linear array withn;, awake nodes, we model the expected

energy consumption in the rouridof the DRG algorithm as follows.

2
EDRG = E(?’Etm + 2(Er/w + ECPU—active))
my — 2
+ k (4Et:c + 3(Er/w + ECPU—active))

mp,
+ F(ECPU—idle + Ey)

9
= " 3By + By + 1) — ~Ep,

whereEy = Ei; + B,y + EcpU—active AN By = Ecpy—idqie + Erz; By IS the energy for transmitting

a message and,, is for nodes to listen to MAC channels and receive messagea. round of the
DRG algorithm, the CPU of an awake node consumieSy _qciive OF Ecpu—igie When it is busy or
idle, respectivelyE, ,,, is the total energy required for an awake node to read/ writrmation from/to

its EEPROM in a round of the DRG algorithm. Except the numideawake nodesny, all the other
parameters in the above equation are constants in roundseoDRG algorithm. (For detail energy
guantities consumed by a sensor node, we refer to [34].) iaéenergy consumptioRpra in a round

of the DRG algorithm is a linear function of the number of aealodesn; which may vary by rounds.
To compare the average energy consumed in a round for diffgraph sequences, we take the average
number of awake nodeB}, . (A) = > ..o mi/|Al, where|A| is the number of graphs of a sequence
pattern, as the normalized energy index for the sequéneeg., for{dc} the normalized energy index
is Efpa({dc}) = (3+2)/2=2.5.

From Theorem 2, givep, ande, the running time is proportional te |A|log™}(\2(Ky)). Thus, we
define the normalized index for running time of the DRG altyon Time*(A) = —log ' (\5(Ky)) =
~[AJlog ™ (A2 (K,)).

Fig. 17 shows our simulation results for the nine graph sece® mentioned previously. The x-axis is
the normalized index for running time; the y-axis is the nalized energy indeX’;, ,.(A). The sequence
Ay, = {e} where nodes never sleep consumes the most energy but cesvasgest. In contrast, the
sequencds = {abcb} where two nodes sleep in turn round by round consumes leasgyehut converges

the slowest. There will be always a tradeoff between these performance indices. To incorporate
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Fig. 17. The normalized energy per round and normalized ergence time for different graph sequences.

both energy consumption and convergence time into the pea#ioce assessment, we can minimize the

combined indices:

min(a - Eppq(A) + 8- Time* (A)),

where o« + = 1. Two extreme cases arex = 1,4 = 0) and (« = 0,5 = 1), representing
the consideration of only energy consumption and only cayesmce time correspondingly. By linear
programming on the convex hull of Fig 17, we can find the prapaph sequence for a desired pair of

a and . For example, the sequendg = {dc} should be used when we s@0982 < g < 0.2926.

IX. CONCLUSION AND FUTURE WORK

To guarantee the correctness and precisely bound the giinie of an algorithm developed on a
sensor network, we need to consider one of the senor nesvestient nature: a frequently changing
graph. In this report, we model the execution of the DisteduRandom Grouping (DRG) algorithm
for computing the average aggregate on a sensor networkravitihomly changing graphs by stochastic
hybrid systems (SHSs). Criteria are given for the convaergeof the DRG algorithm on a randomly
changing graph; for several typical random graph-changindels, the lower bounds on the convergence

rate and the upper bounds of running time are presented.
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This work can be extended in several ways. For example, fyjpagiother stochastic graph changing
patterns, we can evaluate in more detail the performancheDRG algorithm. The SHSs framework
can also be applied to model and analyze other algorithmsimgnon a randomly changing graph.
Furthermore, tools for SHSs, e.g. optimization of SHSs, lmauised to develop algorithms that are most

efficient w.r.t. certain criteria for a sensor network witliaaadomly changing graph.
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