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Abstract

Dynamical connection graph changes are inherent in networks such as peer-to-peer networks, wireless

ad hoc networks, and wireless sensor networks. Consideringthe influence of the frequent graph changes

is thus essential for precisely assessing the performance of applications and algorithms on such networks.

With two-fold states, stochastic hybrid systems (SHSs) caneffectively model the dynamics of the execu-

tion of algorithms on a network with random and frequent graph changes. In this report, using SHSs, we

analyze the performance of an epidemic-like algorithm, DRG(Distributed Random Grouping), for average

aggregate computation on a wireless sensor network with dynamical graph changes. The convergence

criteria and the upper bounds on the running time of the DRG algorithm for three representative types

of random graph-changing models are derived. Numerical results are presented to illustrate our analysis.

Index Terms

Performance Analysis, Sensor Networks, Aggregate Computation, Randomized Algorithms, Dis-

tributed Algorithms, Stochastic Hybrid Systems, Graph Theory.
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Analysis of a Class of Distributed Randomized

Algorithms on Randomly Changing Network Graphs

I. INTRODUCTION

Dynamical graph changes are inherent in networks such as peer-to-peer networks, wireless ad hoc

networks, and wireless sensor networks. Take the example ofthe wireless sensor networks, which have

attracted tremendous research interests in the recent years. In a practical or even hostile environment, the

connection graph of a sensor network may vary frequently in time due to various reasons. For instance,

the communication links (edges of the graph) may fail for being interfered, jammed or obstructed; sensor

nodes may be disabled or relocate in the field; to save energy,some sensor nodes may sleep or adjust their

transmission ranges, thus altering the connection graph. Algorithms and protocols developed on these

networks need to take this nature into consideration. In this setting, distributed and localized algorithms

requiring no global data structure, such as routing table ortree hierarchy, are preferable for their scalability

and robustness to the frequent graph changes [1], [2], [3], [4], [5], [6].

Although various algorithms have been proposed to deal withnetworks with dynamical graphs, their

performances are usually analyzed under the assumption of afixed connection graph [2], [3], [4]. In

this report, using the notion of stochastic hybrid systems (SHSs), we present an analytical framework

to model the dynamics of algorithms on a network with a time-varying connection graph. As a par-

ticular example, we analyze the performance of a distributed randomized algorithm, namely, the DRG

(Distributed Random Grouping) algorithm proposed in [2], for average aggregate computation on sensor

networks with randomly changing graphs. The analysis techniques introduced in this report can also be

applied to other algorithms whose performances depend on the network connection graph.

Distributed average consensusis an important problem with many applications in distributed and

parallel computing [7]. Recently it also finds applicationsin the coordination of distributed dynamic

systems and multi-agent systems [8], [9], [10], [11], as well as in distributed data fusion in sensor

networks [2], [3], [4], [5] (in which all sensor nodes, but not just the sink node, obtain a consensus on

the global average). In analyzing the performance of the proposed algorithms, these works either bound

the running time on a fixed graph [2], [3], [4] or only provide criteria for their algorithms to converge

on a dynamical changing graph without charactering the convergence speed [5], [8], [9], [10], [11]. The

goal of this report is to not only determine the convergence criteria but also bound the running time of
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the DRG algorithm on a randomly changing graph. It turns out that stochastic hybrid systems provide

the ideal framework for modeling and analyzing such a systemof two-fold randomness: one from the

randomly changing environment (the connection graph), theother from the execution of the randomized

algorithm, DRG.

Proposed to model dynamical systems with both continuous and discrete dynamics, a hybrid system

has a state that consists of a continuous part and a discrete part (mode). In particular, stochastic hybrid

systems are hybrid systems with stochastic continuous dynamics and random discrete mode transitions,

and have found applications in a diverse range of scientific and engineering problems such as air traffic

management systems, multi-vehicle coordination control,computer networks [12], embedded systems,

and biological systems. The average computation on a sensornetwork with a randomly changing graph

can be naturally modeled as a stochastic hybrid system: its discrete mode is the network connection graph

which varies with a finite discrete value stochastic process, and its continuous state is the data value stored

at sensor nodes, which will be updated in each iteration of the average computation algorithms. Under

this framework, we propose three representative graph changing patterns for wireless sensor networks,

and derive upper bounds on the running time of the DRG algorithm for each of them. To our knowledge,

this report is the first contribution to model the algorithm dynamics on time-varying graphs by SHSs.

This report has the following contributions. (a) We explicitly model the dynamics of a distributed

randomized algorithm, namely the DRG algorithm, running ona randomly changing graph by a stochastic

hybrid system. This modeling framework can be easily extended to model other algorithms on randomly

changing graphs. (b) For the DRG algorithm, we provide the criteria of its convergence (correctness)

on randomly changing graphs. (c) By characterizing the graph changing patterns as specific stochastic

processes (sequences), we extend our previous analytical results of the DRG algorithm on a fixed

connected graph and obtain the upper bound on the running time (the convergence speed) of the DRG

algorithm on wireless sensor networks with randomly changing graphs. In particular, one of the cases

considered in this report is a network graph that randomly switches amid a set of individually disconnected

but jointly connected graphs, making this report the first contribution to deal with this case.

II. RELATED WORKS

In a wireless sensor network, it is often important to compute statistics such as the average, the

maximum/minimum, and the count of data stored in the nodes ofthe network. In these cases, the

information of interest is not the data stored at an individual sensor node, but the aggregate statistics

(aggregates) amid a group of sensor nodes. Possible applications of aggregates include the average
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temperature in a area, the minimum remaining battery life ofall the sensor nodes, the count of some

endangered animal in a natural area, and the maximal noise level in a group of acoustic sensors, to name

a few. The operations for computing basic aggregates such asaverage, max/min, sum, and count can be

further adapted to more sophisticated data query or information processing operations.

Many tree-based or multi-path-routing approaches, e.g. the algorithms in [13], [14], [15], [16], [17],

[18], [19], [20], [21], [22], [23], have been successfully developed to compute aggregates in a sensor

network. Requiring global data structures such as routing tables or the aggregation tree hierarchy, these

approaches suffer from high overheads on reconstructing the global data structure when the network

graph change frequently. On the other hand, epidemic-like distributed localized algorithms [2], [3], [4],

[5] compute aggregates with only local one-hop communications. Without the need to maintain a global

data structure, they can be robust and scalable in a large scale and versatile sensor network. Even in the

presence of dynamical graph changes, the aggregate computation by these algorithms can continue without

interruption; and the error of the computation results willconverge to zero under some assumptions on the

changing graphs [5], [8]. For more discussions on the advantages of distributed localized algorithms, the

readers can refer to [2], [3], [4]. In analyzing the performances of these algorithms, most existing works

assume a fixed network graph during the whole computation process, and derive asymptotic bounds on

the running time in terms of thefixed graph’seigen-structure [2], [3]. These bounds may be inadequate in

characterizing the performances of the algorithms on networks with a time-varying graph. For example,

bounds obtained by assuming the worst-case network graph are often too conservative. This motivates

us to develop analytical tools and frameworks for performance analysis on a time-varying graph.

This report is organized as follows. In Section III we reviewsome backgrounds and elaborate on the

DRG algorithm and its performance on a fixed graph. Then in Section IV and Section V, three different

random graph changing models are applied to analyze the performance of the DRG algorithm. Numerical

results of the convergence rate of the DRG algorithm under our SHS analytical frameworks are provided

in Section VII. Finally, we conclude our work in Section IX.

III. B ACKGROUND

A. Random geometric graph

A wireless sensor network withn sensor nodes and a communication radiusr can be abstracted as

as a Poisson random geometric graphG(n, r, pe) [24], [25], wherepe is the probability that two nodes

within the radiusr of each other can communicate (two nodes with a distance larger thanr can not

communicate with probability one). Given an appropriater, it has been shown in [26] that there exists
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a minimumpe such thatG(n, r, pe) is β-connected (β ≥ 1) asymptotically almost surely. On the other

hand, given thepe from the physical environment of a sensor network, we can choose the necessary

radio radiusr to achieve theβ-connectivity asymptotically almost surely. We mention the β-connectivity

criteria below.

Lemma1: ([26]) Let pe(n) ≥ c
logn for some constantc. Consider the Poisson random geometric

graphG(n, r, pe). Assumeβ ≥ 1 and limn→∞

(
nπr2(n)pe(n)

logn

)
= α. ThenG(n, r, pe) is β-connected

asymptotically almost surely ifα > 1, and notβ-connected asymptotically almost surely ifα < 1.

For convenience, the graphG(n, r, pe) can also be written asG(V, E), whereV is the set of nodes

with |V| = n andE is the set of edges formed by the connectivity rules.

B. Distributed random grouping

In our previous work [2], we present a distributed, localized, and randomized algorithm called the

Distributed Random Grouping (DRG)algorithm to compute aggregate statistics in a wireless sensor

network. The DRG algorithm is similar to the Gossip algorithm [3], [4] but with a better performance.

It requires only local (one-hop) communications among nodes to save the overhead on constructing

and maintaining global data structures such as routing tables or aggregation tree hierarchies. In [2],

we show that the performance of the DRG algorithm is related to the eigen-structure of the network

graph, which is assumed to be fixed throughout the aggregate computation. Specifically, we use the

algebraic connectivity [27], [28], i.e., the second smallest eigenvalue of the Laplacian matrix, of the

fixed network graph to bound the running time and the total number of transmissions. The results show

that the DRG algorithm is more efficient than other representative distributed algorithms such as the

Flooding [3] algorithm and the Gossip algorithm as it can take advantage of the broadcasting nature of

wireless transmissions. In the following, we will briefly describe the DRG algorithm, which will be the

focus of this report in a generalized setting of randomly changing network graphs.

Each sensor nodei is associated with an initial observation or measurement value denoted byvi(0) ∈ R.

The values over all nodes form a vectorv(0). The goal is to compute (aggregate) functions such as the

average, sum, max, min, etc. of the entries ofv(0). Throughout this report we usevi(k) to denote the

value of nodei and v(k) = [v1(k), v2(k), . . .]
T the value distribution vectorafter running the DRG

algorithm fork rounds.

The main idea of the DRG algorithm is as follows. In each roundof the iteration, each node inde-

pendently becomes a group leader with a probabilitypg and then invites its one-hop neighbors to join
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its group by wireless broadcasting an invitation message1. A neighbor who successfully2 receives the

invitation message then join its group. Note that unlike theconcept of acluster in the sensor network

literature, a group contains only the group leader and itsone-hopneighbors. Several disjoint groups

are thus formed over the network. Next, in each group, all members other than the group leader then

send the leader their values so that the leader can compute the local aggregateand broadcast it back to

the members to update their values. Since in each round, groups are formed at different places of the

network, through this randomized process, the values of allnodes will diffuse and mix over the network

and converge to the correct aggregate value asymptoticallyalmost surely, provided that the graph is

connected. DRG iterations stop when certain aggregate accuracy criteria are satisfied.

A high-level description of a round (iteration) of the DRG algorithm to compute the average aggregate,

is shown in Fig. 1. Aggregates other than the average can be obtained by an easy modification of this

algorithm [2]. For simplicity, in the report we will focus onthe average aggregate only.

C. Performance of the DRG algorithm on a fixed network graph

In [2], a Lyapunov function called thepotential(function) is defined to assess the convergence of the

DRG algorithm.

Definition 2: Consider an undirected connected graphG(V, E) with |V| = n nodes. Given a value

distribution v(k) = [v1(k), ..., vn(k)]
T wherevi(k) is the value of nodei after k rounds of the DRG

algorithm, the potentialφk of roundk is defined as

φk = ||v(k) − v1||22 = x
T (k)x(k),

where the constantv = 1
n

∑
i∈V vi(k) is the global average value over the network; the vector1 is the

vector with all entries one andx(k) = [v1(k) − v, ..., vn(k) − v]T is the error vector.

Running the DRG algorithm on a fixed connected graph, it is easy to show (see [2]) that the potential

φk will monotonically decrease to zero from its initial valueφ0, i.e., the values of all nodes will converge

to the global averagev asymptotically almost surely.

The main effort to bound the running time of the DRG algorithmis to give a lower bound on the

expected rate of potential decrement, which we called the convergence rate, in each round. We denote

the lower bound byγ. In [2], we have proved the following results.

1A wireless broadcast transmission by the group leader can bereceived by all its one-hop neighbors.

2Collisions amid multiple invitation messages from different group leaders may occur at some nodes. Also, a group leader

will ignore invitations from its neighbors.
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Alg: DRG: Distributed Random Grouping for Average

1.1 Each node in the idle mode originates to form a group and becomes
the group leader with a probability pg.

1.2 A node i that decides to become a group leader enters the leader

mode and broadcasts a group call message, GCM ≡ (groupid = i), to
all its neighbors and waits for JACK message from its neighbors.

2.1 A neighboring node j, in the idle mode and successfully receiving a
GCM , responds to the group leader by a joining acknowledgment,
JACK ≡ (groupid = i, vj , join(j) = 1), with its value vj included. It
then enters the member mode and waits for the group assignment
message GAM from its leader.

3.1 The group leader, node i, gathers the received JACKs from its
neighbors; count the total number of group members,
J =

∑
j∈gi

join(j) + 1; and compute the average value of the group,

Ave(i) =
P

k∈gi
vk

J
.

3.2 The group leader, node i, broadcasts the group assignment message
GAM ≡ (groupid = i, Ave(i)) to its group members and then returns
to the idle mode.

3.3 A neighboring node j, in the member mode and upon receiving
receiving GAM from its leader node i, updates its value vj = Ave(i)
and then returns to the idle mode.

Fig. 1. A round of DRG algorithm to compute average aggregate

Lemma3: The convergence rate of the DRG algorithm on a fixed connectedgraphG is, ∀k ≥ 0,

γ ≡ inf
v 6=v1

{
E

[
δφk
φk

]}
= (1 + α)a(G)

pgps
d
,

whereδφk = φk − φk+1; a(G) is the algebraic connectivity of the graphG (i.e., the second smallest

eigenvalue of the Laplacian matrix of the graphG [27]); α > 1 is a parameter dependent only on the

topology ofG; d = max (di) + 1 ≈ max (di) is the maximum degree of nodes inG; pg is the grouping

probability; andps is the probability of no collision occurring to a group leaders’ group call message,

GCM.
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In the above expression of the convergence rateγ, with the exception of the grouping probabilitypg,

all the parameters are related to the network graphG.

From Lemma 3, we can derive the following main result on the performance of the DRG algorithm

on a fixed connected graph. The proof of the following theoremcan be found in [2].

Theorem4: Given a connected undirected graphG(V, E) with |V| = n, and an arbitrary initial value

distributionv(0) with the initial potentialφ0, with a high probability (at least1−( ε
2

φ0
)σ−1 for someσ > 2),

the average aggregate onG(V, E) can be solved by the DRG algorithm within anε > 0 accuracy, i.e.,

|vi − v| ≤ ε for all i, in

O

(
σ

γ
log(

φ0

ε2
)

)

rounds, whereγ = (1 + α)a(G)pgps

d is the lower bound on the convergence rate given by Lemma 3.

D. Stochastic hybrid systems

It is nontrivial to extend our results of the DRG algorithm ona fixed connected graph in [2] to the

general case of time-varying graphs. For example, considerthe simplest convergence problem: whether

all the node values will eventually reach consensus by converging to the global average, starting from an

arbitrary initial value distribution. For a fixed graph, we have shown in [2] that this is true if and only if the

graph is connected. However, in the case when the graph is time-varying, even if the graph is disconnected

in some time periods, it is still possible that consensus canbe reached, provided that the graph sequence

assumed by the network as time evolves satisfies certain conditions [5], [9], [8]. Characterizing the

convergence rate of the DRG algorithm in this case is a challenging task, as it depends on the possible

graphs of the network, as well as the rules for the (random) evolution of the network graph in time. To

address these challenges, in this section, we will introduce the framework of stochastic hybrid systems

that can be used to model the execution of the DRG algorithm ona network with randomly evolving

graph.

A hybrid system is a dynamical system whose state(q,x) consists of two parts: (1) a discrete state

(mode),q, taking values in a discrete setQ = {q1, q2, . . .}; (2) a continuous state,x, taking values in a

continuous spaceX = R
d. As shown in Fig. 2, the state space of the hybrid system isQ ×X, which

consists of|Q| copies ofX. For each modeq ∈ Q, the actual feasible values ofx ∈ X may be a subset

of X, calledDom(q), domain of modeq, that varies with modeq.

To model the dynamics of the DRG algorithm, we need the concept of stochastic hybrid systems [12],

[29], [30], [31], [32] which are hybrid systems with stochastic continuous dynamics and random mode
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transitions. The evolution of a stochastic hybrid system isdescribed by (1)Continuous dynamics:the

continuous statex evolves according to stochastic differential equations (SDE) (stochastic difference

equation for discrete-time systems) with mode-dependent coefficients; (2)Discrete dynamics:mode

transitions follow a stochastic process (sequence) definedonQ or occur with a probability when certain

conditions, called theguardson x, such as the continuous statex reaches the boundary of the feasible

setDom(q), are satisfies; (3)Reset conditions:when a discrete mode transition occurs, the continuous

statex is restarted in the new domain according to some specified rules.

modesQ 

X

X

Xq

q
1

|Q|q
k

Dom(1)

Dom(|Q|)

Dom(k)

continuous
states

Fig. 2. A possible state space of a hybrid automaton.

We next give the formal definition of hybrid systems.

Definition 5: A hybrid system is a collectionH = (Q,X,Dom, f,Ψ ,G, R) where

• q is a discrete variable (mode) taking values inQ;

• x is a continuous variable taking values inX = R
d;

• Dom : Q→ 2X assigns to eachq ∈ Q a domainDom(q) of X;

• f : Q×X → TX are vector fields onX that define the evolution ofx in modeq: ẋ = f(q,x) or

x(k + 1) = f(q(k),x(k));

• Ψ ⊂ Q × Q , where each(q, q′) ∈ Ψ specifies a valid transition from modeq to modeq′;

• G : Ψ → 2X assigns to each transition(q, q′) ∈ Ψ a set (calledguard) G(q, q′) ⊂ X such that a

transition fromq to q′ occurs wheneverx reachesG(q, q′);

• R : Ψ ×X → 2X assigns to each transitionψ = (q , q ′) ∈ Ψ the set of valuesR(ψ,x) ⊂ Dom(q ′)

that x can be reset to after transition from modeq to modeq′.

In our application, since the number of possible network graphs is finite and discrete, each possible

graph can be represented as a discrete mode of the SHS. The values on the sensor nodes are continuous

variables; hence they can be chosen as the continuous state of the SHS. As the DRG algorithm is a

randomized algorithm, the continuous state evolves randomly according to the random grouping rule of

the DRG algorithm. In the next section, by charactering the discrete dynamics, i.e., the random transitions
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among graphs, we propose several SHSs for modeling the execution of the DRG algorithm on randomly

changing graphs.

IV. STOCHASTIC MODELS FOR CHANGING GRAPHS

As the random evolution of the continuous state is naturallycharacterized by the random grouping

rule of the DRG algorithm, to analyze the performance of the DRG algorithm on randomly changing

graphs we need to define the graph-changing patterns. In thisreport, we analyze the performance of the

DRG algorithm on three representative graph changing models for wireless sensor networks. First, in

this section, we propose two simple and useful models for therandom evolution of the network graph.

A distinguishing feature of these two models is that at leastone graph is connected and will be visited

infinitely often with positive probability. For these two models, the convergence results obtained on a

fixed graph can be directly extended. Another more sophisticated model will be introduced in the next

section.

A. Independently and identically distributed process

To model the switching dynamics caused by the failures and repairs of the communication links,

we assume that the network graph is a Poisson geometric random graph,G(n, r, pe), wherer is the

communication radius satisfying theβ-connectivity threshold andpe > c
logn is the probability that an

edge between two nodes within distancer will successfully connect. The initial positions of all thenodes

are uniformly randomly chosen and hereafter fixed. In particular, if pe = 1, there is only one possible

graph, denoted bŷG = G(n, r, pe = 1), with each edge within the communication range connected.

At the beginning of each round, each edge ofĜ independently fails to connect with probability1−pe.
Since the time duration of a round is relatively small, we assume that the connection status of each edge

remains the same within a round. Thus the network graph is fixed in each round.

A SHS model can be constructed for this randomly evolving graph. The discrete modeq(k) of the

SHS is the particular instance of the graphG(n, r, pe) in roundk. From the above description, the mode

sequence{q(k)} is an i.i.d random process with stationary distributionπ = (π1, π2, . . . , π|Q|) on the set

Q = {q1, q2, . . . , . . . , q|Q|} of all possible realizations ofG(n, r, pe). Note that the size ofQ is |Q| = 2|E|,

whereE is the set of edges of the grapĥG. Although|Q| may appear to be very large, due to the constraint

on pe, all the disconnected graph instances are of probability zero almost surely [26], which reduces the

size of feasibleQ. In roundk, the DRG algorithm is executed on the graphq(k) = q to compute the

global average of the values of all sensor nodes. We can choose the value distributionv on the sensor
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nodes as the continuous statex of the SHS. Since the graphq is fixed in roundk and is almost surely

β-connected by settingpe > c
logn [26], we have a lower boundγ(q) > 0 on the convergence rate of

the DRG algorithm onq, which depends onq as given in Lemma 3. Thus the convergence of the DRG

algorithm trivially holds in this case.

Formally, the stochastic hybrid systemHDRG,i.i.d. = (Q,X,Dom, f,Ψ ,G,R) for running the DRG

algorithm on an i.i.d. sequence of random geometric graphG(n, r, pe) is as follows.

Definition 6 (HDRG,i.i.d.): The stochastic hybrid systemHDRG,i.i.d. = (Q,X,Dom, f,Ψ ,G,R) is

given by

• Discrete mode space:Q = {q | q is an instance ofG(n, r, pe)};

• Continuous state space:x = v ∈ X = R
n;

• Domains:Dom(q) = X;

• Continuous dynamics:v(k + 1) = W (k)v(k) for a sequence of random matrices{W (k)};

• Discrete transmissions:Ψ = Q × Q with transition probability fromqi to qj given byπj;

• Guard:G(q, q′) = X for all q, q′ ∈ Q;

• Reset: trivial reset withR((q, q′),x) = x.

Since the discrete transmissions are independent of the continuous valuesx = v, the guard is the whole

continuous state spaceX, i.e., in a state(qi, v), a transmission(qi, qj) from qi to qj can occur with a

probabilityπj independent of the continuous valuesv. We further elaborate on the continuous dynamics

v(k+1) = W (k)v(k). In roundk when the graph is given byq(k), depending on the random formation

of groups in the sensor nodes, the effect of a DRG iteration onthe value distributionv(k) at roundk

is a linear operation modeled by the multiplication of a random matrixW (k) depending on the graph

q(k). Specifically, letΓ(k) be the set of group leaders in roundk on the graphq(k), which is a random

set depending on the grouping probability and the graph structure. LetGi be the set of member nodes in

the group led by nodei, i ∈ Γ(k), and letJi = |Gi| be the number of nodes in groupGi. Then the DRG

iteration is given byv(k + 1) = W (k)v(k), whereW (k) = [wης ], 1 ≤ η, ς ≤ n, is defined by

wης =





1
Ji
, η, ς ∈ Gi;

1, η = ς, and η, ς /∈ ⋃
i∈Γ(k) Gi;

0, else.

Note that the randomness inW (k) arises from the random nature ofΓ(k).

It is difficult to bound the running time by tracking the dynamics of the above SHS directly. Below,

we upper bound the running time by bounding the expected potential, which can be thought of as an
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Lyapunov function of the SHS.

Lemma7: For the hybrid systemHDRG,i.i.d., after τ rounds, the expected potentialE[φτ ] ≤ Zτφ0,

where

Z =
∑

q∈Q

πq(1 − γq)

is called theaverage concentration rateof HDRG,i.i.d..

Proof: For the i.i.d. process{qk}, a modeq has the stationary probabilityπq from the very beginning

of the DRG iterations. For thisq, a lower boundγq of the convergence rate can be computed as in Lemma

3. Suppose that we run the DRG algorithm forτ rounds. At the beginning of theτ -th round, the potential

φτ−1 of the previous round, and the graphq(τ) = q, and henceγq, of the current round, are known. At

the end of theτ -th round, by Lemma 3, we have

E

[
φτ−1 − φτ
φτ−1

∣∣∣∣ φτ−1, q(τ) = q

]
≥ γq

⇒E [φτ | φτ−1, q(τ) = q] ≤ (1 − γq)φτ−1

⇒E [φτ | φτ−1] = E [E [φτ | φτ−1, q(τ) = q]]

=
∑

q∈Q

P (q(τ) = q)E [φτ | φτ−1, q(τ) = q]

≤
∑

q∈Q

πq(1 − γq)φτ−1 = Zφτ−1.

By the principle of expectation of conditional expectation,

E [φτ ] = E [E [φτ | φτ−1]] ≤ E [Zφτ−1] = ZE [φτ−1] .

So by induction,E [φτ ] ≤ ZτE [φ0] = Zτφ0 , which is exactly the desired conclusion.

Note thatZ < 1 as the graphs inQ are almost surely connected. Hence{φτ} is a super-martingale.

From this lemma, we can derive the bound on the running time ofthe DRG algorithm.

Theorem8: For the SHSHDRG,i.i.d. with an arbitrary initial value distributionv(0) and the initial

potentialφ0, with high probability (at least1− ( ε
2

φ0
)σ−1 ; σ > 2), the average consensus problem can be

solved by the DRG algorithm with anε > 0 accuracy, i.e.,|vi − v| ≤ ε for all i, in

O

(
σ logZ(

ε2

φ0
)

)

rounds, whereZ =
∑

q∈Q πq(1 − γq).

Proof: To meet the accuracy criterion afterτ rounds, by lemma 7, it is sufficient to have

E[φτ ] ≤ Zτφ0 ≤ ε2.
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Taking logarithm, we have

τ ≥ log(φ0

ε2 )

log( 1
Z )

= logZ(
ε2

φ0
).

Note thatZ < 1, andφ0 > ε2 (otherwise the accuracy criterion is trivially satisfied).By the Markov

inequality,

P (φτ ≥ ε2) ≤ E[φτ ]

ε2
≤ Zτφ0

ε2
.

Chooseτ = σ logZ( ε
2

φ0
) for someσ ≥ 2. Sinceσ − 1 ≥ 1 and ( ε

2

φ0
) < 1,

P (φτ ≥ ε2) ≤ Z
σ logZ( ε2

φ0
)
(
φ0

ε2
) = (

ε2

φ0
)σ−1.

Thus,P (φτ < ε2) ≥ 1−( ε
2

φ0
)(σ−1) is arbitrarily close to 1 by choosing largeσ. (Since typicallyφ0 ≫ ε2,

taking σ = 2 is sufficient to have high probability at least1 − O( 1
n); in the caseφ0 > ε2, a largerσ is

needed to ensure a high probability.) Therefore, whenτ = O
(
σ logZ( ε

2

φ0
)
)

, w. h. p., we haveφτ < ε2,

implying that the accuracy criterion (|vi − v̄| ≤ ε,∀i ∈ V) must have been met at or before theτ -th

round.

B. Markov pure jump process

In this section, we extend the i.i.d. model of the previous section to a more general one, called the

pure jump process. In this model we assume the following properties.

1) A β-connected geometric graphG(n, r, pe) = Gp.j.(V, E) is constructed at the deployment stage

of the sensor network;

2) An edgee ∈ E(Gp.j.) fails and recovers independently according to two Poisson point processes

with constant intensitiesλe andµe respectively.

Similar to the i.i.d model, a stochastic hybrid systemHDRG, pure jump can be constructed to model

the randomly changing graphs in this case. The discrete modeis the network graph in each round, and

the continuous state is the value distribution on the sensornodes. Consider a simple example with an

initial graph consisting of four nodes and four edges which have the same failure and recovery rates.

Fig. 3 plots the diagram of the Markov chain modeling the transitions among all possible graphs. The

state space of the Markov chain is finite since there is only a finite number of possible graphs.

In this model, unlike in the i.i.d. case, the graph may be disconnected in certain rounds. The following

theorem gives the criterion on the convergence of the DRG algorithm.
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Theorem9: Let G̃ be the union of allrecurrent modes (graphs) of the Markov chain modeling the

graph evolution of the pure jump model, i.e.,G̃ =
⋃
π(q)>0 q. If G̃ is connected, then the DRG algorithm

will converge to the global aggregate.

Sketch of Proof:A recurrent state in a Markov chain is visited infinitely often. Hence discrepancy of

values on arbitrary two nodes will eventually be smoothed out as the Markov chain modeling the graph

evolution traverses the edges ofG̃ infinitely many times. �

To further bound the running time in the case that the DRG algorithm will converge, we assume that

the Poisson intensities are strictly positive:µe, λe > 0, ∀e ∈ E(Gp.j.). In this case,G̃ of Theorem

9 is just the initial graphGp.j. which is β-connected. As a result, the Markov chain of the graph is

ergodic so that there exists a stationary probability distribution π. Similar to the i.i.d model, we can

compute a convergence rateZ from the stationary probability distributionπ of the Markov Chain{qk}.

This rate will apply when the Markov chain is already in stationary distribution from the beginning,

and can help us to derive bounds on the running time of the DRG algorithm, i.e.,E[φτ ] ≤ Zτs φ0,

whereZs =
∑

q∈Q πq(1 − γq) < 1. In general, however, the Markov chain{qk} may start from some

initial distribution other than the stationary one. In thiscase, estimating the convergence rate becomes a

challenging task. One way to get an approximate bound is as follows. Let τ = τs + τt, whereτt is the

number of rounds after which the system distribution becomes sufficiently close to the steady one. Then

the following inequality holds approximately:

E[φτ ] ≤ Zτs

s (

τt∏

k=1

Zt(k))φ0.

Here Zs =
∑

q∈Q πq(1 − γq) < 1; and Zt(k) =
∑

q∈Q pq(k)(1 − γq) < 1, wherepq(k) is the state

probability of modeq in roundk. By boundingZt(k), we can upper bound the running time of the DRG

algorithm onHDRG, pure jump.

V. INDIVIDUALLY DISCONNECTED BUT JOINTLY CONNECTED GRAPHS

In the previous section, we introduce two models of randomlyswitching graphs. In both models, at

least one connected graph will be visited infinitely often. Hence the expected potential decrement in each

round is greater than zero, or equivalently,Z < 1. As a further extension, in this section, we consider a

model where all the possible graphs are disconnected. In such a model, the expected potential decrement

in a single round in the worst case is uniformly zero (γq = 0, ∀q; henceZ = 1). Thus the previous

method fails to yield a meaningful bound on the running time.However, even though all possible graphs
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Fig. 3. Markov chain of the pure jump process. Each graph on the right is a state in its corresponding row of states of the

Markov chain.

are disconnected, if their union graph is connected, the DRGalgorithm can still converge. In this section,

we will study this general case.

A. Convergence criteria

We consider a model where all the possible graphs are individually disconnected but jointly connected.

We assume that each graph occurs with some positive probability in a round of the DRG algorithm

and is visited infinitely often in the whole stochastic graphsequence. In such a model, the expected

potential decrement in a single round in the worst case is uniformly zero, i.e.,γq = 0, ∀q. We can

not directly extend the results of [2] like the previous two models in the previous section. However,

even though all possible graphs are disconnected, if their union graph is connected, the DRG algorithm

can still converge to global average. We can show this convergence criterion, by extending the proof of

Theorem 1 in [5]. Suppose there arer <∞ possible disconnected graphs{Gi} each of which is visited

infinitely often. On each graphGi there are a set of possible group distributions{DGi
} followed from

the randomized grouping rule of the DRG algorithm. EachDGi
is associated with a double stochastic,

symmetric and paracontracting3 matrixWDGi (w.r.t. Euclidean norm) so that the value vector is updated

by v(k + 1) = WDGiv(k) whenDGi
occurs at roundk. (The value updating matrixWi of [5] depends

only on the chosen network graphGi but ourWDGi is determined by the group distributionDGi
which

3A matrix W is paracontracting w.r.t. a vector norm‖·‖ if Wx 6= x ⇔ ‖Wx‖ < ‖x‖. [5]
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in turn depends on the graphGi and therandomizedgrouping strategy of the DRG algorithm.) Each

Gi is visited i.o., so isDGi
. Hence, there exists at least a set of updating matricesΓ = {WDGi} for

i = 1 · · · r such thatM = 1
r

∑r
i=1W

DGi is stochastic, symmetric and irreducible if the union of possible

graphs is connected. This implies thatM’s fix-point subspace, i.e., the eigenspace associated withthe

eigenvalue 1,H(M) = span(1). Therefore, by [5],
⋂

Γ H(WDGi ) = span(1), which by [33] leads to

the conclusion that the DRG algorithm will asymptotically converge to theunique fixed point
(

1
n1

T
v
)
1,

i.e., the status of the average consensus.

B. Convergence rate and the upper bound of running time

For illustration purpose, we analyze the simplest case where the network graph switches randomly

(infinitely often) between two graphs that are individuallydisconnected but jointly connected. Our analysis

can be easily extended to the general case of switching amid more than two graphs. As an example, see

Fig. 13(a). In each round, the network graph can be eitherG1 orG2. Hence in the stochastic hybrid system

model, the space of discrete modes isQ = {G1, G2}. The mode transition pattern can be characterized

by a two-state Markov chain shown in Fig. 14(a).

SinceG1 andG2 are each disconnected, the lower bound on the convergence rate for each of them

in a single round is zero. However, in two rounds, the networkmay switch between these two jointly

connected graphs with positive probability, resulting in apositive expected potential decrement. Thus to

lower bound the expected potential decrement rate, we need to consider two rounds of DRG iterations.

Since this is a worst-case analysis, we assume the worst scenario: only one group is formed in each round.

The DRG algorithm can have more groups in a round and hence converge faster than the upper bound

derived here. Also, we assume every node has equal probability to become a leader. Without loss of

generality, definex(k) = v(k)− v1, which is orthogonal to the vector1, i.e.,x(k)⊥1. Then each round

of DRG iteration can be expressed asx(k + 1) = W (k)x(k) for some random matrixW (k) depending

on the choice of group leader. For example, if in roundk, the network graph isgk ∈ {G1, G2} and node

i becomes the group leader, thenW (k) = W gk,i = [wgk,i
ης ] where

wgk,i
ης =





1
di+1 , if η, ς ∈ {Ngk

(i) ∪ i};

1, if η, ς /∈ {Ngk
(i) ∪ i} andη = ς ;

0, otherwise.

(1)

HereNgk
(i) is the set of neighbors of nodei in graphgk.
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In constructingW (k), we consider only one group in a round. The DRG algorithm can have more

groups in a round and hence converge potentially faster thanthe upper bound derived here.

In summary, the formal definition of the stochastic hybrid systemHDRG, j.c. for modeling the DRG

algorithm on this randomly changing graph model is given below.

Definition 10: The stochastic hybrid systemHDRG, j.c. = (Q,X,Dom, f,G,Ψ) is given by

• Q = {G1, G2} and the graph of roundk is gk ∈ Q;

• X : x = v − v̄1∈ R
n is the offset value distribution;

• Dom: Dom(q) = {x ∈ R
n : x⊥1} consists of allx whose entries add up to zero;

• f : x(k + 1) = W (k)x(k) for some random matrixW (k) defined by (1);

• Ψ : P(gk+1 = G2 |gk = G1 ) > 0 ;

P(gk+1 = G1 |gk = G2 ) > 0 ;

• G = X; R is the trivial reset:R((q, q′),x) = x.

From the continuous dynamics, in two rounds, we havex(k + 2) = W (k + 1)W (k)x(k) = W̃x(k).

The ratio of potential decrement after two rounds is

φk − φk+2

φk
=

‖x(k)‖2 − ‖x(k + 2)‖2

‖x(k)‖2

= 1 − x(k)T W̃ T W̃x(k)

x(k)Tx(k)
. (2)

Defineγ2 as the lower bound on the expected convergence rate after twoconsecutive rounds:

γ2 ≡ inf
x(k)⊥1;
x(k)6=0

{
E

[
φk − φk+2

φk

]}
.

From (2), we have

E

[
φk − φk+2

φk

]
= 1 −

x(k)TE
[
W̃ T W̃

]
x(k)

x(k)Tx(k)

=1 − x(k)T Kx(k)

x(k)Tx(k)
≥ 1 − λ2(K) > 0, (3)

whereλ2(K) is thesecond largesteigenvalue of the matrixK defined by

K = E
[
W̃ T W̃

]

=
∑

(gk,gk+1)

∑

i,j

Pgk,gk+1

n2
(W gk+1,jW gk,i)T (W gk+1,jW gk,i).

In the above,Pgk,gk+1
= P (gk)P (gk+1|gk) is the probability that the graph of roundk is gk and the

graph of roundk+1 is gk+1. So, the lower bound on the expected convergence rate after two consecutive
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rounds is

γ2 = 1 − λ2(K) > 0.

Note that the algebraic connectivitya(G) in Lemma 3 is thesecond smallesteigenvalue of the Laplacian

matrix of a fixed graph; while hereλ2(K) is the second largesteigenvalue of a compound matrixK.

Also, the largest eigenvalue ofK is always one so thesecond largesteigenvalueλ2(K) < 1 since the

two possible graphs are jointly connected.

Theorem11: For the SHSHDRG, j.c. with an arbitrary initial value distributionv(0) and the initial

potential φ0, with high probability (at least1 − ( ε
2

φ0
)σ−1 ; σ > 2), the average consensus problem

can be solved by the DRG algorithm within anε > 0 accuracy, i.e.,|vi − v| ≤ ε for all i, in

O
(
σ logλ2(K)(

ε2

φ0
)
)

rounds.

Proof: Similar toHDRG, i.i.d., to meet the accuracy criterion, after2τ rounds ofHDRG, j.c., by (3), we

needE[φ2τ ] ≤ (1− γ2)
τφ0 = (λ2(K))τφ0 ≤ ε2, from which we getτ ≥ logλ2(K)(

ε2

φ0
). ReplacingZ by

λ2(K) in the proof of Theorem 8, we haveτ = O
(
σ logλ2(K)(

ε2

φ0
)
)

to meet the accuracy criterion. Hence,

we need2τ = O
(
2σ logλ2(K)(

ε2

φ0
)
)

=O
(
σ logλ2(K)(

ε2

φ0
)
)

rounds for the DRG algorithm to converge

within an ε accuracy.

Similar procedures can be carried out to obtain the convergence rate for network graphs randomly

switching among a set of individually disconnected but jointly connected graphs consisting of more

than two graphs. In the following section, we provide an effective way to compute the compound matrix,

K, for two useful families of individually disconnected but jointly connected graphs.

VI. COMPUTATION OF MATRIX K

As we see from the above, the compound matrixK is a key element in the upper bound of the running

time of the DRG algorithm. Here we introduce an effective wayto compute the compound matrixK

when n and |Q| are large. Given a sequence of graphs each withn nodes, by exploiting the sparsity

of matricesW (k), we analytically obtain the associated̃W T W̃ in terms of the number of nodesn. We

then obtain the compound matrixK by averaging̃W T W̃ over all possible graph sequences determined

by the graph changing pattern.

As an example to illustrate our computation method, we consider a set of individually disconnected

but jointly connected graphs. The possible graphs are from aset ofh = n− 1 graphs each withn nodes

positioned as a linear array and with only one edge connecting two consecutive nodes. Shown in Fig. 4(a)

is a possible graph with an edge between nodem and nodem + 1, and in Fig. 13(c) is an example

set of all possible graphs withn = 4. Because of the extreme sparsity of each graph, a time-varying
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network graph randomly switching among these graphs is among the worst cases for the DRG algorithm

to converge. However, since these graphs are jointly connected, the DRG algorithm will converge to the

global average. In each round, we assume that only one of then nodes becomes the group leader with

the probability4 1/n. As a result, unless one of the two end nodes of the only edge becomes a leader,

the transition matrixW (k) is the identity matrixI of ordern. For example, suppose that the network

graph isGm in Fig. 4(a) at roundk. When nodem or nodem+ 1 becomes the group leader,

W (k) = WGm,m = WGm,m+1 =




Im−1 0 0

0
1/2 1/2

1/2 1/2
0

0 0 In−m−1




; (4)

when the other nodes become the leader,W (k) is the identity matrix of ordern, i.e.,W (k) = WGm,i/∈{m,m+1} =

In. For convenience, we define two mutually independent sequences: the graph sequence,Λ = {gk}hk=1,

namely the realization of the randomly switching network graph over roundsk = 1, . . . h, and the leader

sequence,l = {lk}hk=1, wherelk is the leader node for the randomly switching network graphgk at round

k. The leader sequencel = {lk}hk=1 is an i.i.d. sequence where eachlk is of the uniform distribution

over alln nodes. We re-write

K = E
[
W̃ T W̃

]

=
∑

Λ

P (Λ)E
[
W̃ T W̃

∣∣∣ Λ
]

=
∑

Λ

P (Λ)KΛ.

The graph sequenceΛ andP (Λ) depend on the graph changing pattern; and the matrixKΛ ≡ E
[
W̃ T W̃

∣∣∣ Λ
]

is the compound matrix for a given graph sequenceΛ. Since the computation ofKΛ is the key to

computingK, in the following, we illustrate the computation ofKΛ through an example.

4Since each node becomes a group leader in probability1/n, the expected number of leaders in the whole network is 1.

When n is large, it is easy to show by Markov inequality that the probability that the number of leaders in a round is larger

than 1 is very small.
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BecauseW (k)T = W (k) and the group leaders in different rounds are chosen independently, we have

KΛ =E
[
W̃ T W̃

∣∣∣Λ
]

= E

[
h∏

k=1

W (k)

h∏

k=1

W (h− k + 1)

∣∣∣∣∣ Λ

]

=
∑

l

P (l = {lk}hk=1|Λ)W g1,l1 · · ·W gh,lh ·W gh,lh · · ·W g1,l1

=
∑

l

P (l1|Λ) · · ·P (lh|Λ)W g1,l1 · · ·W gh,lh ·W gh,lh · · ·W g1,l1

=
∑

l

P (l1|g1) · · ·P (lh|gh)W g1,l1 · · ·W gh,lh ·W gh,lh · · ·W g1,l1 ,

whereW gk,lk is theW (k) decided bygk and lk at round k. Note thatW gk,lk appears twice on the right

hand side. Since we assume that there is only one leader in each round,P (lk|gk) = 1/n, 1 ≤ k ≤ h.

EachW (k) = W gk,lk is a basic computation block of the computation ofKΛ and can be represented

as a bipartite graph. An example of this basic computation block for W (k) = W gk,lk = [wgk,lk
ij ] on the

graphgk = Gm of Fig. 4(a) is shown in Fig. 4(b). Specifically, corresponding to each entrywgk,lk
ij of

W (k), there is a link with weightwgk,lk
ij connecting the upper node (entry node)i and the lower node

(exit node)j of the bipartite graph. Those links with zero weight (wgk,lk
ij = 0) are omitted since they

will not contribute to the computation ofKΛ. For the example of Fig. 4(b), with probability2n , when

either of nodem or m+ 1 becomes the leader,a = b = 1
2 , i.e.,W (k) is given by (4); with probability

n−2
n , a = 1, b = 0, i.e.,W (k) will be the identity matrix of ordern. To computeKΛ these computation

blocks are cascaded as in Fig. 5. The computation blocks are mirror symmetric across the horizontal line

in Fig. 5: the first and the last computation blocks are the same, etc.

As an example, we show how to computeKΛ for a graph sequenceΛ = {gk}hk=1 in which gk has

only one edge connecting nodesk and k + 1 (i.e., m = k in Fig. 4(a)). Corresponding to the graph

sequenceΛ, the computation blocks are cascaded in a way as in Fig. 5 for the casen = 4, i.e., h = 3.

We define a pathψ := (s1, . . . , sf , . . . , s2h+1) to be a possible node sequence starting from the entry

node s1 of the top (first) computation block to the exit nodes2h+1 of the bottom (last) computation

block. Each intermediate nodesf is the entry node of thef -th computation block and the exit node

of the (f − 1)-th computation block. Fig. 5 illustrates the possible paths for computingKΛ(1, 1) and

KΛ(2, 3) whereKΛ(1, 1) has four different paths andKΛ(2, 3) has three different paths. In general, the

number of possible pathsNA(i, j) for computingKΛ(i, j) is

N(i, j) = n− max(0, max(i, j) − 2).

Furthermore, denote a path with the first nodes1 = i and the last nodes2h+1 = j by ψ(i, j), and the
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. . . .. . .1 2 m m+1 n

(a) An example graphGm of linear array with only

nodesm andm + 1 connected.

1 aba b 11

m nm+1

m m+1 n

1i

1j

. . . .

2

2

. . .

(b) The computation block forW (k) on the graphGm,

where with probability2

n
, a = b = 1

2
and with probability

n−2

n
, a = 1, b = 0.

Fig. 4. An example graph of linear array and its corresponding computation block for computingKΛ.

set of all possibleψ(i, j) by Ψ(i, j) = {ψ := (s1, . . . , s2h+1)|s1 = i, s2h+1 = j}. In the example of

Fig. 5(a), the number of possible paths forKΛ(1, 1) is N(1, 1) = |Ψ(1, 1)| = 4.

Define theaverage weightof a pathψ as

w̄(ψ) =
∑

l

h∏

k=1

P (lk|gk) · wgk,lk
sksk+1

· wgk,lk
s2h−k+1s2h−k+2

=

h∏

k=1

∑

l

P (lk|gk) · wgk,lk
sksk+1

· wgk,lk
s2h−k+1s2h−k+2

, (5)

wherewgk,lk
sksk+1 is the(sksk+1) entry of the matrixW gk,lk = W (k) of roundk. Also, the last equality in

the above equation follows from the fact thatl = {lk}hk=1 is an i.i.d. sequence. Each entry ofKΛ, i.e.,

KΛ(i, j), therefore can be computed by summing the average weights ofall possible paths connecting

the entry nodes1 = i on the top to the exit nodes2h+1 = j at the bottom:

KΛ(i, j) =
∑

ψ∈Ψ(i,j)

w̄(ψ).

Take the possible pathψ1 := (a = 1, b, c, d, e, f, g = 1) of Fig. 5(a) for example. With probability

2/n, the weights of link(a, b) and(f, g) are both1/2; with probability (n− 2)/n, they are both 1. All

the other links on this path are always of weight 1 (with probability 1). Hence by (5) the average weight

of pathψ1 is

w̄(ψ1) =
2

n
· 1

2
· 1

2
+
n− 2

n
· 1 · 1 =

2n− 3

2n
,
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(a) paths forKΛ(1, 1)
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1 2 3 4

1 2 3 4j

i

b

a
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e

d

(b) paths forKΛ(2, 3)

Fig. 5. The un-solid lines are the possible paths (multiplication combinations) for an entry of the matrixKΛ.

wheren = 4 in this example. As another example for the possible pathψ2 :=(a = 2, b, c, d, e, f,

g = 3) in Fig. 5(b), with probability2/n, the weight of(a, b) is 1/2 and the weight of(f, g) is 1, while

with probability (n − 2)/n, both the weights of(a, b) and (f, g) are 1. (Hence, the weight of(f, g) is

always 1 in this case.) In order for the link(e, f) to have nonzero weight, node 2 or node 3 must be the

leader of round 2, which occurs with probability2/n. In this case, the weights of(b, c) and (e, f) are

both 1/2. The average weight of this path is therefore

w̄(ψ2) =

(
2

n
· 1

2
· 1 +

n− 2

n
· 1 · 1

)(
2

n
· 1

2
· 1

2

)
=
n− 1

n

1

2n
.

In the above equation, we only need to consider two rounds, since at round 3, the links(c, d) and(d, e)

are of weight 1 with probability 1.

From these cascading computation blocks, we obtain the analytical expression ofKΛ as follows. Let
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(b) The trend ofKΛ in logarithm axes, whenn is

creasing from 4 to 10. Three typical entries ofKΛ are

shown.

Fig. 6. Properties ofKΛ.

r = 1
2n . Then

KΛ(i, j) =




(1 − 3r)1−rh

1−r + rh, i = j = 1;

r + (1 − 3r)2 1−rn−i

1−r + (1 − 3r)rn−i, 1 < i = j ≤ n;

(2r)x−1(r + r(1 − 3r)1−rn−x−i

1−r + rn+1−x−i), i = 1, j = 1 + x,

1 ≤ x ≤ n− 1;

(1 − 2r)(2r)x−1(r + r(1 − 3r)1−rn−x−i

1−r + rn+1−x−i), 1 < i ≤ n, j = i+ x,

1 ≤ x ≤ n− i;

KΛ(j, i), i > j.

Note thatKΛ is a double stochastic matrix which can be easily verified from the above expression.

The computedKΛ is shown in Fig. 6(a) forn = 4 and in Fig. 6(b) forn = 4, . . . 12. It can be seen

from Fig. 6(b) that the matrixKΛ will approach the identity matrix of ordern whenn is large, i.e., if

n → ∞, thenr → 0, KΛ(i, i) → 1 andKΛ(i, i + x) ∼ 1
nx . An intuitive explanation of this observation

is that when the numbern of nodes is very large, the graph becomes very sparse and the probability

that any one of the two end nodes of the only edge in each graph becomes a DRG group leader is rare,

diminishing the chance to reduce the potentialφ through the DRG iterations.
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Fig. 7. The second largest eigenvalue of compound matrixK, λ2(K), and convergence rate,γ = 1 − λ2(K) vs the number

of nodes,n, in the jointly connected linear graphs, under a deterministic graph changing patternΛ.

If the graph sequenceΛ occurs with probability 1, i.e., if the graph changing pattern is deterministic

(a special case of the general random switching setting), then K = KΛ can be directly obtained from

the above computation ofKΛ. Taking this case as an example to discuss the convergence trend of the

DRG algorithm on such a set of graphs, we show the second largest eigenvalueλ2(K) = λ2(KΛ) and

the convergence rate of the DRG algorithmγ2 below in Fig. 7 forn = 4, . . . , 12. It can be seen that

the larger the numbern, the smaller the convergence rateγ, implying a slower convergence of the DRG

algorithm while computing the aggregates on such kind of graphs. The reason is straightforward. Only

when an end node of the only edge of each graph becomes a group leader will the DRG averaging process

really take effect to reduce the value variations on nodes. When the number of noden becomes large,

the chance of the two end nodes of the only edge independentlybecoming a leader dwindles, slowing

down the convergence process.

Running the DRG algorithm on such a set ofh = n − 1 possible graphs, the convergence rateγ is

the minimal ratio of the expected potential decrementE[δφ] afterh rounds of the DRG algorithm to the
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(known) original potential, i.e.,

γ ≤ E

[
φk − φk+h

φk

]
.

For fair comparison, we also show in Fig. 7 the normalized parameterλ∗2 = h
√
λ2 and normalized

convergence rateγ∗ = 1 − λ∗2 which indicates the minimal ratio of the expected potentialdecrement

E[δφ] after a round of the DRG algorithm to the potential at the beginning of that round of the DRG

algorithm, following from the relationshipE[φk+h|φk] ≤ λ2φk = (λ∗2)
hφk.
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Fig. 8. The star topology, disconnected star graphs and their corresponding computation blocks.

Another useful graph topology is the star topology, which isalso a common topology for networks.

We illustrate a simple example forn = 4 nodes in Fig. 8. The graphG at the top right of Fig. 8

is the joint connected star graph with four nodes. For convenience we can rearrange graphG into a

linear topology as grapĥG shown belowG. Actually, by a proper numbering of nodes, any graph can

be rearrange into a linear array. We consider the graph sequence Λ = {G1, G2, G3}, which is of the

equivalent representationΛ = {Ĝ1, Ĝ2, Ĝ3}. From the linear arrangement of nodes, it becomes clear

that the principle of cascading computation blocks in the previous example of linear array can also be

applied again here. We show the corresponding computation blocksB1, B2, B3 at the bottom of graphs

Ĝ1, Ĝ2, Ĝ3. Similar to the previous example of linear array, to computeKΛ, we cascade the computation

blocks in a way in Fig. 9 where Fig. 9(a) illustrates the possible paths forKΛ(1, 1) and Fig. 9(b) show

those forKΛ(2, 3).
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Fig. 9. The un-solid lines are the possible paths (multiplication combinations) for an entry of the matrixKΛ in star topology.

To generalize this star topology, we number the center node as node ’1’, which sequentially connects

to sorely one another node in each round, i.e. there is only one edge in each round. We number the node

connected in roundk as nodek − 1. There will be totalh = n− 1 rounds. Letr = (n−1
n )2, by Fig. 9,

we obtain, for star topology withn nodes, the compound matrix

KΛ(i, j) =




rh + 1
n2 (

1−rh

1−r ), i = j = 1;

1
nr

1

2
(2n−j−1) + r

1

2
(j−1)( 1

n + 1
n3

1−r(n−j)

1−r ), i = 1, 1 < j ≤ n,

r + r(n−i)

n2 + 1
n4

1−r(n−i)

1−r , 1 < i = j ≤ n;

r
1
2
(j−i)

n2

[
1 + r(n−j) + 1

n2
1−r(n−j)

1−r

]
, 1 < i < j ≤ n;

KΛ(j, i), i > j.

Fig. 10 shows the the matrixKΛ for a star topology with four nodes, i.e.,n = 4. Each sub-figure presents

a row of the matrixKΛ. It is also easy to verify that theKΛ is a double stochastic matrix by Fig. 11.

Every column ofKΛ is depicted by a distinct color whereas the values on each roware summed up
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together to be 1. Note thatKΛ is a symmetric matrix.
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Fig. 10. TheKΛ of a star topology.

We also compare the the normalized convergence rateγ∗ = 1 − λ∗2 of the DRG algorithm on linear

topology with that on star topology. It is shown in Fig. 12 that with larger normalized convergence rate

the DRG algorithm will converge faster in star topology thanin the linear topology of the same size. This

is because, in the star topology, the center node is always connected to be a bridge for data exchange,

providing a better connection. Meanwhile, the diameter of the star topology is only two whereas the

diameter of the linear topology will go up toh = n − 1. Any two nodes in the star topology need at

most two edges to exchange data but in the linear topology they may require at mosth edges.

We also see from Fig. 12 that both the normalized convergencerates of two topologies (at least)

decrease exponentially fast with the number of nodesn. (Note that the y-axis of bottom sub-figure is in

log-normal scale.) The normalized convergence rate of the linear topology drops faster than that of the

star topology. We can use the slope of each line in the bottom sub-figure of Fig. 12 as thescalability

indicator of a set of switching graphs of the same size to run the DRG algorithm—-for the extreme

example, the slope close to zero indicates a constant normalized convergence rate of the DRG algorithm

regardless of the size of the graph. So given a thresholdns, thescalability ζns
of the DRG algorithm on

a set of switching graphsG is

ζns
(G) = max

n>ns

( −n
ln γ∗(n)

)
.
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VII. N UMERICAL RESULTS

We now present some numerical results on the convergence rate of the DRG algorithm on the randomly

graph-changing models studied in Section V. Recall that, inthis case, there are a total ofh possible graphs

for the network, each of which is disconnected. As a family, however, theh graphs are jointly connected.

A lower boundγh on theh-step convergence rate is given byγh = 1 − λ2(K), whereK = E
[
W̃ T W̃

]

andW̃ = W (k + h− 1) · · ·W (k + 1)W (k).

In Fig. 13, four cases under study are plotted. In case I and case III, the union of possible graphs forms

a linear array with three and four nodes, respectively. In case II and case IV, the union of possible graphs

forms a ring with three and four nodes, respectively. The Markov chains (the randomly graph-changing

model) describing the transitions among possible graphs are shown in Fig. 14: Fig. 14(a) for case I;

Fig. 14(b) for case II and case III; and Fig. 14(c) for case IV.We computeγ2 for case I,γ3 for case II

and III, andγ4 for case IV, under different transition probabilitiesp andq.

Fig. 15(a) plots the computedλ2(K) of case I as a function of the transition probabilitiesp andq. It can

be seen that, asp andq both approach0, λ2(K) achieves its minimum; henceγ2 = 1− λ2(K) achieves

its maximum, implying the fastest convergence rate of the DRG algorithm. This is understandable as, in

this case, the transitions between the two possible graphs are the most frequent and occur in each round,

remedying the slow convergence caused by the individual disconnected graph. On the other hand, by

requiring thatp+ q = 1, λ2(K) becomes a function ofp only, and is plotted in Fig. 15(b). Note that the

plot in Fig. 15(b) is a slice of the plot in Fig. 15(a) along theline p + q = 1. As can be seen from the
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plot, the minimumλ2(K), hence the maximal convergence rateγ2, occurs atp = q = 0.5 when the two

graphs have identical stationary probability 0.5. For all other choices ofp and q satisfyingp + q = 1,

the transitions have a tendency of staying in one graph longer, which slows down the convergence of the

DRG algorithm.

Fig. 15(c) compares the convergence rates of the DRG algorithm for these four cases as well as an

additional case of the ring topology that is of five disconnected graphs,h = 5. The computed convergence

rateγh for these five cases are plotted in Fig. 15(c) as functions of the transition probabilityp (in case

I, we setq = p). We observe that, the larger the number of nodes, the slowerthe convergence rate. In

addition, with the same number of nodes, the case whose uniongraph is a linear array has the slower

convergence rate than the corresponding case whose union graph is a ring. This is because on a linear

array each of the two end nodes has only one direction to spread out its value whereas all nodes in a

ring have two.
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VIII. A N APPLICATION: SLEEP/AWAKE SCHEDULING

One of the efforts to save energy consumption in sensor network is to let some sensor nodes sleep (in

power saving mode) from time to time without affecting the correctness of the execution of the algorithm

but possibly with some acceptable degradation on the performance of the algorithm. In our example,

the network graph may become disconnected when some nodes sleep. This is especially true for sparse

network graphs. However, from the results of previous sections, we know that the DRG algorithm still

converges as long as the time-varying network graph is jointly connected. In this section we discuss

the DRG’s performance on several sleep/awake scheduling sequences and try to find the best controlled



30

0
0.5

1

0

0.5

1
0.4

0.6

0.8

1

p

The second largest eigenvalue 

q

λ 2

(a) λ2(K) for the two-mode model.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p    (p+q)=1

λ 2 &
 γ

2 λ2
γ2

(b) λ2(K) and γ2 for the two-mode model

whenp + q = 1.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
Linear array

p

γ

0 0.5 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ring

p

γ

3 nodes
4 nodes
5 nodes

3 nodes
4 nodes

o 

o o 

o 

o γ3 

γ4 

γ3 

γ4 

γ5 

(c) Lower bound γ for different types of

graphs.

0 0.5 1
0.2

0.4

0.6

0.8

p

γ 3

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
4 nodes

p

γ 4

linear array
ring

linear array
ring

3 nodes 

(d) γ for various graphs with the same number

of nodes.

Fig. 15. Numerical results

(a) (b) (c) (d) (e) (f)

Fig. 16. Connection graphs for sleep/awake scheduling

graph sequence in terms of both energy saving and convergence time.

We consider a sparse graph: a linear array with 4 sensor nodesin a row. The network graph “e” of

Fig. 16(e) is the connected graph while all four nodes are awake. Other graphs in Fig. 16 are disconnected

because some sensor nodes are in sleep mode, e.g., in graph “a” (Fig. 16(a)) node 3 and node 4 are

in sleep mode. When a node sleeps, its CPU is at power saving mode and its radio components are

deactivated. We compare nine different periodic graph sequences (i.e., different sleeping schedules for

sensor nodes):Λ1 = {e}, Λ2 = {abc}, Λ3 = {abcb}, Λ4 = {abce}, Λ5 = {dc}, Λ6 = {df}, Λ7 =
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{adefc}, Λ8 = {edef}, Λ9 = {eaebec}, where{abc} means that the network graph repeats in “abc”

pattern periodically, i.e., in first round the network graphis Fig. 16(a), the second round Fig. 16(b), the

third round Fig. 16(c) and the fourth round Fig. 16(a) again ... etc. Since the graphs in each sequence

are joint connected, the DRG algorithm will converge for these graph sequences.

Running the DRG algorithm on ann-nodes linear array withmk awake nodes, we model the expected

energy consumption in the roundk of the DRG algorithm as follows.

EDRG =
2

n
(3Etx + 2(Er/w + ECPU−active))

+
mk − 2

n
(4Etx + 3(Er/w + ECPU−active))

+
mk

n
(ECPU−idle + Erx)

=
mk

n
(3E0 + Etx + E1) −

2

n
E0,

whereE0 = Etx +Er/w +ECPU−active andE1 = ECPU−idle +Erx; Etx is the energy for transmitting

a message andErx is for nodes to listen to MAC channels and receive messages. In a round of the

DRG algorithm, the CPU of an awake node consumesECPU−active or ECPU−idle when it is busy or

idle, respectively.Er/w is the total energy required for an awake node to read/ write information from/to

its EEPROM in a round of the DRG algorithm. Except the number of awake nodesmk, all the other

parameters in the above equation are constants in rounds of the DRG algorithm. (For detail energy

quantities consumed by a sensor node, we refer to [34].) The total energy consumptionEDRG in a round

of the DRG algorithm is a linear function of the number of awake nodesmk which may vary by rounds.

To compare the average energy consumed in a round for different graph sequences, we take the average

number of awake nodesE∗
DRG(Λ) =

∑
k∈Λmk/|Λ|, where|Λ| is the number of graphs of a sequence

pattern, as the normalized energy index for the sequenceΛ, e.g., for{dc} the normalized energy index

is E∗
DRG({dc}) = (3 + 2)/2 = 2.5.

From Theorem 2, givenφ0 andǫ, the running time is proportional to−|Λ| log−1(λ2(KΛ)). Thus, we

define the normalized index for running time of the DRG algorithm T ime∗(Λ) = − log−1(λ∗2(KΛ)) =

−|Λ| log−1(λ2(KΛ)).

Fig. 17 shows our simulation results for the nine graph sequences mentioned previously. The x-axis is

the normalized index for running time; the y-axis is the normalized energy indexE∗
DRG(Λ). The sequence

Λ1 = {e} where nodes never sleep consumes the most energy but converges fastest. In contrast, the

sequenceΛ3 = {abcb} where two nodes sleep in turn round by round consumes least energy but converges

the slowest. There will be always a tradeoff between these two performance indices. To incorporate
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both energy consumption and convergence time into the performance assessment, we can minimize the

combined indices:

min(α ·E∗
DRG(Λ) + β · T ime∗(Λ)),

where α + β = 1. Two extreme cases are(α = 1, β = 0) and (α = 0, β = 1), representing

the consideration of only energy consumption and only convergence time correspondingly. By linear

programming on the convex hull of Fig 17, we can find the propergraph sequence for a desired pair of

α andβ. For example, the sequenceΛ5 = {dc} should be used when we set0.0982 < β
α < 0.2926.

IX. CONCLUSION AND FUTURE WORK

To guarantee the correctness and precisely bound the running time of an algorithm developed on a

sensor network, we need to consider one of the senor network’s salient nature: a frequently changing

graph. In this report, we model the execution of the Distributed Random Grouping (DRG) algorithm

for computing the average aggregate on a sensor network withrandomly changing graphs by stochastic

hybrid systems (SHSs). Criteria are given for the convergence of the DRG algorithm on a randomly

changing graph; for several typical random graph-changingmodels, the lower bounds on the convergence

rate and the upper bounds of running time are presented.
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This work can be extended in several ways. For example, specifying other stochastic graph changing

patterns, we can evaluate in more detail the performance of the DRG algorithm. The SHSs framework

can also be applied to model and analyze other algorithms running on a randomly changing graph.

Furthermore, tools for SHSs, e.g. optimization of SHSs, canbe used to develop algorithms that are most

efficient w.r.t. certain criteria for a sensor network with arandomly changing graph.
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