
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

5-1-2000

Hardware Support for Data Dependence
Speculation in Distributed Shared-Memory
Multiprocessors Via Cache-block Reconciliation
Renato J. 0. Figueiredo
Purdue University School of ECE

Jose A.. B. Fortes
Purdue University School of ECE

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Figueiredo, Renato J. 0. and Fortes, Jose A.. B., "Hardware Support for Data Dependence Speculation in Distributed Shared-Memory
Multiprocessors Via Cache-block Reconciliation" (2000). ECE Technical Reports. Paper 21.
http://docs.lib.purdue.edu/ecetr/21

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages

HARDWARE SUPPORT FOR DATA

DEPENDENCE SPECULATION IN

DISTRIBUTED SHARED-MEMORY

MULTIPROCESSORS VIA CACHE-
BLOCK RECONCILIATION

TR-ECE 00-6
MAY 2000

Hardware Support for Data Dependence
Speculation in Distributed Shared-Memory

Multiprocessors Via Cache-block
Reconciliation

Renato J. 0. Figueiredo and Jos4 A. B. Fortes
School of Electrical and Computer Engineering

1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285
{figueire,fortes)@purdue.edu

'This work was partially funded by the National Science Foundation under grants CCR-9970728 and EIA-9975275
Renato Figueiredo is supported by a CAPES grant.

Contents

1 Introduction 1

2 Dependence speculation methods 2

3 Programming and execution models 3

4 DDSM speculation methods 5
4.1 Speculative buffers . 5
4.2 Ordering violation detection . 7
4.3 Task commits . 9
4.4 Task squashes . 10
4.5 Checkpointing . 10
4.6 Forwarding optimization . 10
4.7 Event ordering and consistency . 11
4.8 Cache replacements . 11

5 Experimental methodology 11
5.1 Machine model and configuration . 11
5.2 Workloads and simulation model . 12

6 Performance Analysis 15
6.1 Kernel performance . 16
6.2 Performance of speculative benchmarks . 18

7 Related Work 19

8 Conclusions and outlook 21

List of Tables

Summary of methods required t o support memory dependence speculation. . .
DDSM support to enable da ta dependence speculation. Methods 1 through 5
are described in detail in Sections 4.1 through 4.5
Speculative states encoded in the SP-bits of a DDSM cache line.
Speculative messages of DDSM L2 caches.
Actions performed by the cache controller for speculative reads/writes to sub-
word i of block B (Flush, Commit and Squash requests apply t o the entire block
B) .
DDSM software interface.
Model parameters (all caches have 64B blocks).
Benchmarks used in the performance analysis.
Minimum and maximum window size, state size, task/state size ratio, and flush
overheads (N nodes).
Comparison of different data dependence speculation proposals in terms of the 5
methods summarized in Table 1. HW and SW entries correspond to hardware and
software solutions, respectively; H/SW corresponds to hybrid solutions.

List of Figures

Data dependence speculation example: a) sequential program; b) successful
speculation; c) data dependence violation.
Example of sequential code speculatively executed in parallel by each of the 4
processors.
Overview of DDSM speculation: 0 extensions to L2 cache allow for buffer-
ing of speculative shared-memory data; Q upon receipt of a speculative write
request (Ge tSW) , the directory checks the list of read sharers for RAW vi-
olations. When a violation occurs, the data-dependent tasks are squashed 0
4 : speculative cache blocks transition to the squashed state, and the processor
context - checkpointed a t the beginning of speculation @ - is restored. At the
end of speculation, caches flush committed speculative blocks to the directory,
which employs a reconciling function @to commit the program-order version of
speculative blocks to memory.
State machine for speculative L2 cache blocks.
Extended DDSM state machine for cache blocks a t the directory. Extended
states and transitions are shown in boldface.
Machine model: each node (N) has a memory bus connecting a single processor
(P) with on-chip Ll+L2 caches ($), memory (M), directory controller (DSM)
and network interface (NI).
Partial inlining of recursive calls to expose subroutine parallelism across 4 pro-
cessors (c). The combine step of the recurrence uses partial-sum reductions (a)
or explicit serialization (b).
16-processor parallel speedup for Ssm.
8-processor parallel speedup for Ssm.
4-processor parallel speedup for Ssm.
Minimum/maximum F,, for Ssm..
8-processor DDSM speedup for two different data distribution policies: random

. andmanual .
16-processor DDSM speedup for two different data distribution policies: random
and manual. Turb3d-z8 uses speculation across only 8 processors in the zfft 0
loop to avoid false-sharing violations.

Abstrac t

Data dependence speculation allows a compiler to relax the constraint of data-independence
to issue tasks in parallel, increasing the potential for automatic extraction of parallelism from
sequential programs. This paper proposes hardware mechanisms to support a data-dependence
speculative distributed shared-memory (DDSM) architecture that enable speculative paralleliza-
tion of programs with irregular data structures and inherent coarse-grain parallelism. Efficient
support for coarse-grain tasks requires large buffers for speculative data; DDSM leverages cache
and directory structures to provide large buffers that are managed transparently from appli-
cations. The proposed cache and directory extensions provide support for distributed specula-
tive versions of cache blocks, run-time detection of dependence violations, and program-order
reconciliation of cache blocks. This paper describes the DDSM architecture and presents a
simulation-based evaluation of its performance on five benchmarks chosen from the Spec95
and Olden suites. The proposed system yields simulated speedups of up to 12.5 xn a 16-node
configuration for programs with coarse-grain speculative windows (millions of instructions and
hundreds of KBytes of speculative data).

1 Introduction

Modern high-performance computers exploit parallelism across instructions of a sequential stream
(instruction-level parallelism), as well as parallelism across tasks executing in distributed processing
units (thread-level parallelism). The former type of parallelism - ILP - is often achieved transpar-
ently from a programmer via compiler and hardware techniques. The latter - TLP - is currently
achieved either via explicit parallel programming, or with the aid of parallelizing compilers [5 , 41.

Currently, parallelizing compilers must assume that tasks are data-dependent when a compile-
time analysis cannot prove data-independence for all possible dynamic (run-time) instances of the
tasks. This assumption is conservative, since tasks that cannot be proven to be 'data-independent
statically may indeed be independent at run-time. The availability of system hardware and/or soft-
ware to support data dependence speculation allows a compiler to relax the constraint that parallel
tasks must be provably data-independent, thus increasing the potential for automatic extraction of
TLP from sequential codes [17, 211.

The main contribution of this paper is a hardware-based data dependence spec~llation scheme for
distributed shared-memory (DSM) multiprocessors that (1) requires no application-managed buffer-
ing for speculative data and (2) uses a distributed, directory-based protocol to detect and recover
from dependence violations in speculatively parallelized programs. The proposed mechanism allows
for automatic extraction of TLP from sequential programs with irregular data structures and inher-
ent coarse-grain parallelism that cannot be detected statically.

Hardware-based data dependence speculation solutions have been proposed in previous work for
tightly-coupled designs [8, 101. However, these techniques do not apply efficienlly to distributed
multiprocessors, since they rely on the availability of a low-latency interface to speculative versions
of blocks across all processing units (on-chip bus).

Previous work on data dependence speculation for coarse-grain parallelism in DSMs has consid-
ered distributed solutions [23], under the assumption of software-controlled buffering: the compiler
must be able to explicitly copy all speculative data prior to the beginning of speculative execution.
However, this assumption limits the scope of programs that may be automatically parallelized to
those that operate on static, regular data structures (such as arrays) that can be identified and
copied by a compiler. Programs with dynamic data structures (such as pointel*-based trees and
linked lists) are difficult to be parallelized automatically under this model, since addresses are not
generally known at compile time.

Concurrently with the research presented in this paper, related hardware solutic~ns for speculative
distributed systems have been proposed [2, 201. These architectures rely on the design of dedicated
hardware data structures to hold part of the speculative state; in [2], memory disambiguation tables
(LMDT, GMDT) are used to enforce sequential ordering of speculative accesses, while in [20] an
ownership buffer (ORB) is used to track speculatively modified blocks. In contrast, the solution
proposed in this paper encodes the speculative state entirely in cache blocks and directory entries,
leveraging existing hardware mechanisms of buffering data in coherent cache blocks (potentially
backed up by main-memory node caches [6]) to provide large speculative buffers for coarse-grain
tasks.

This paper proposes novel extensions to existing L2 caches and directory protocols to support
a hardware-based Data Dependence Speculative DSM - DDSM. The proposed extensions to L2
caches include extra per-block state and coherence messages. The proposed directory protocol ex-
tensions implement a priority-encoding reconciling function [12] to commit speculative versions of
cache blocks to main memory, and provide run-time detection of data dependence violations. These
extensions allow DDSMs to handle accesses issued by speculatively-parallelized programs, in addi-
tion to supporting conventional DSM accesses to shared-memory (issued by non-speculative code).

This paper describes the DDSM architecture and presents a simulation-basecl evaluation of its
performance for a set of five speculatively parallelized programs from the Spec95 (191 and Olden [I]
benchmark suites. These Fortran and C programs operate on both static and pointer-based data
structures (integer and floating-point). Similarly to chip-multiprocessor designs, speculative thread-
level parallelism is obtained from loop iterations and subroutine calls [1.5].

@ commit @ commit

Figure 1: Data dependence speculation example: a) sequential program; b) successful specu-
lation; c) data dependence violation.

The performance analysis presented in this paper is based on a modified version of the RSIM
simulator [16] that models a DDSM with up to 16 out-of-order ILP processing nodes. The analysis
shows that the system delivers speedups of up to 12.5 for the studied programs. It also determines
how its performance is affected by the size of the speculative window, number of processors, and
mis-speculation frequency for a sparse matrix-based kernel.

This analysis shows that DDSMs with up to 16 processors efficiently support coarse-grain win-
dows with millions of inst.ructions and speculative data sets of hundreds of kilobytes, for applications
with low occurrence (N 10%) of dynamic data dependence violations. While tightly-coupled designs
target fine-grain tasks with hundreds to thousands of instructions and few kilobytes of speculative
data, DDSMs must provide larger speculative buffers to allow execution of coarser-grain windows
and tolerate the large menlory access lat.encies of distributed multiprocessors.

The rest of this paper is organized as follows. Sect.ion 2 introduces a classification of five basic
mechanisms to support data dependence speculation. Sect.ion 3 describes the DDSM programming
and execution models. Section 4 describes t.he DDSM structures that implement the methods of
Section 2 and support the models of Section 3. Section 5 describes the experimental methodology
used in the performance analysis; t.he results of this analysis are summarized in Section 6. Section 7
compares the DDSM approach with previous work, and Section 8 presents conclusions.

2 Dependence speculation methods

This section presents a classification of five mechanisms necessary to support data-dependence spec-
ulation in multiprocessors. The goal of t,his classification is to provide a reference for the description
of the DDSM design, and for the comparison with related work.

Consider the series of memory operations of the sequential program shown in Figure la) . In
this example, the program stores the contents of register rO to memory location A, and later (in
sequential order) reads from memory location B to r l . It then copies the contents of r l to memory
location C . Without loss of generality, assume that one wishes to execute this sequence in parallel
using two processors: Po executes the first store, while PI executes the other two instructions.

Addresses A, B, and C may not be known a t compile time. Hence, the dependences among
these instructions may not be known statically. During execution, however, the dependences among
these instructions are determined. If the addresses A, B, and C correspond to different memory
locations, the instructions may be executed in parallel. If two or more of the instructions access the
same location, they become data-dependent, and need to be synchronized [14] to enforce the original
sequential semantics of the program.

Assume that A = B # C ; hence, there is a read-after-write (RAW) dependence between the

M e t h o d I Descript ion
1 I Buffer speculative data

Table 1: Summary of methods required t o support memory dependence speculation.

2
3
4
5

M e t h o d
1

buffer
2

de t ec t
3

commi t
4

squash
5

checkpt

Check for dependence violations
Commit data from buffers to memory
Discard squashed data from buffers
Checkpoint speculative tasks

U n i t s
L2 cache

Directory

L2 cache/
Directory
L2 cache

CPU,
software

Actions
Request and hold speculative
blocks from directory.

Serialize access to memory
blocks; enforce ordering

Cache flushes spec. blocks,
directory reconciles, commits.

Cache gang-invalidates
squashed blocks

System calls mark begin/
end of speculation.

Table 2: DDSM support t o enable da ta dependence speculation. Methods 1 through 5 are
described in detail in Sections 4.1 through 4.5

first store and the load. Two possibilities arise with respect to the dynamic ordering of these two
instructions.

First, if Po completes the store before PI executes the load (Figure lb)) , the sequential order is
preserved, as long as there is a mechanism to forward the stored value from Po to PI. However, if
Pl executes the load prior to Po's store, there is a RAW data dependence violation: Pl has used
a value before its definition (Figure lc)) . In order to preserve the sequential semantics, Pl must
re-issue the load, as well as all subsequent data-dependent operations that have already executed.

This example shows the necessity of five basic mechanisms to support data dependence specula-
tion across multiple processors. These are summarized in Table 1.

Method 1 ensures that a value speculatively stored does not overwrite non-speculative data, until
it is known that the value is no longer speculative and is safe to be written to memory (method 3).
Method 2 is necessary to detect when a data dependence violation occurs, in order to trigger the
re-issue of dependent instructions (checkpointed by method 5) and the squashing of all incorrectly
generated speculative data (method 4). Table 2 presents an overview of the methods provided
by a DDSM to support data dependence speculation, following the convention of Table 1. Section 4
presents a detailed description of the data structures and actions associated with each method, and
Section 7 compares DDSMs to related approaches based on the classification of Table 1.

3 Programming and execution models

The programming model assumed for DDSMs in this paper extends the single-program, multiple-
data (SPMD) model to support speculative accesses to shared-memory. In SPMD, processors execute
the same program on multiple data during parallel execution, and communicate and synchronize via
shared-memory accesses. Parallel tasks in SPMD may be identified manually by a programmer, or
automatically by a compiler; they must be data-independent to ensure correct execution. The SPhlD
model is currently supported by extensions to existing programming languages, such as OpenMP [3]

iolated=l ;

Task(My1d);

\ < ' \ _ ' \ _ '

..
while(Myldl=Head) (spin()];
End-Spec();

Speculative window Head++;

Barrier();
Flush-Commit();

Figure 2: Example of sequential code speculatively executed in parallel by each of the 4
processors.

for Fortran and C, and by parallelizing compilers [4, 51.
Data-dependence speculation allows a compiler or programmer to relax the constraint of data-

independence to issue SPMD tasks in parallel. Speculatively parallelized tasks are able to safely
access shared-memory in parallel, since mechanisms to detect and recover from data dependence
violations are provided.

The execution model supported by many speculative multiprocessor designs proposed to date 18,
10, 21 is based on a hierarchical enforcement of sequential semantics 1181: intra-task sequential
ordering of memory accesses is enforced by each execution unit, independently, while inter-task
sequential ordering is enforced by an arbiter that tracks accesses to global memory. To facilitate
the bookkeeping of data-dependent tasks, proposed implementations of this model conservatively
assume that all instructions in a task are data-dependent on the first instruction of the task.

Figure 2 shows an example of a speculatively parallel execution under the hierarchical execution
model. Consider a window of instructions consisting of four tasks of a sequential program. Assume
that control-flow dependences known at compile-time among tasks 0 through 3 imply the sequential
order of execution shown to the left of the figure. Tasks 0 through 3 may be speculatively executed
in parallel: if the tasks in the speculative window are data-independent, their parallel execution
preserves the original sequential semantics. If they are not data-independent, the dependence viola-
t i on (~) must be detected, and the violated tasks must be re-issued to preserve sequential ordering.

In the DDSM realization of the hierarchical execution model, speculative tasks are issued in
parallel, commit in sequential order, and are synchronized via a barrier at the end of the speculative
execution. Speculative tasks that violate dependences during speculative execution are blocked by
software and are re-executed in sequential order. Sequential order is implied by the unique identifiers
of the processors executing speculative tasks. During speculative execution, the H t ~ a d task is defined
as the earliest task (in sequential order) that has yet to commit.

The program segments that are amenable to speculative parallelization under the DDSM model
include loops and sequences of subroutine calls 1151 with statically known control dependences.
These segments are assigned to speculative execution through the addition of prologue and epilogue
wrappers to the source code (Figure 2) . Section 4.5 describes the DDSM software interface in detail.

Figure 3: Overview of DDSM speculation: 0 extensions to L2 cache allow for buffering of
speculative shared-memory data; @upon receipt of a speculative write request (Get S W) , the
directory checks the list of read sharers for RAW violations. When a violation occurs, the
data-dependent tasks are squashed @ : speculative cache blocks transition to the squashed
state, and the processor context - checkpointed a t the beginning of speculation @- is restored.
At the end of speculation, caches flush committed speculative blocks to the directory, which
employs a reconciling function Q to commit the program-order version of speculative blocks
t o memory.

Table 3: Speculative states encoded in the SP-bits of a DDSM cache line.

4 DDSM speculation methods

This section describes the support provided by DDSMs to implement the dependence speculation
methods summarized in Table 2. Figure 3 presents an overview of the five DDSM speculation
mechanisms.

4.1 Speculative buffers

Speculative data in DDSMs is buffered in L2 caches. The motivations are twofold: first, hardware-
based buffering simplifies the programming model and allows speculation across dynamic data struc-
tures. Second, caches are used in existing DSM implementations; their design can be leveraged to
also hold speculative data.

In order to leverage conventional cache organizations to hold speculative data, extra state infor-
mation must be appended to the state of conventional cache blocks, and the cache controller must be
extended to handle speculative accesses. The novel state extensions proposed in this paper encode
the speculative state of a memory block in two bits (SP-bits).

A cache block in DDSM may be in one of the following four states, with respect to its speculative
status (Table 3). A block is in the S P l N state if it has been accessed speculatively by a task, and

the block has not been squashed nor committed. A block is in the SP-CO state if its contents
are safe to be committed to main memory. A block is in the S P S Q state if it has been squashed.
A block is in the S P n O state if it is not speculative1. Figure 4 shows the state diagram for
speculative DDSM cache blocks. Transitions in the diagram are triggered by speculative reads and
writes (Sreads, Swrites) , commit, squash and flush requests.

In addition to SP-bits, each cache block has an SL bit (flags that the block has been speculatively
loaded), and a Fwd bit (flags that the block has been forwarded to one or more later tasks).

Each DDSM cache block also has a write mask. The mask allows for accesses at is finer granularity
than a cache block [8, 10 , 21: it determines which words of the block have been speculatively written.
This information is required to reduce the occurrence of speculative false-sharing, and to allow the
reconciliation of multiple speculative versions by the directory. The resulting cache block is depicted
in Figure 3 0 .

Although the buffering of speculative state takes place in L2 cache blocks, DDSMs must allow
caching of speculative data in L1 caches for high performance. For conventional write-through L1
caches, only the S P and SL bits need to be added to the state of cache blocks, since all writes are
seen by the L2 cache. Interfacing with write-back L1 caches requires that write masks and the Fwd
bit be also present in L1 blocks. For simplicity, this paper assumes a write-through L1 cache.

The SP-bits allow the cache controller to determine whether speculative accesses must generate
messages to the home node of a block. Tables 4 and 5 show how speculative memory accesses to a
sub-word i of a cache block B are resolved by the cache controller. The first speculative read (write)

'Conventional cache-coherent block states, such as shared-clean and dirty, apply to non-speculative (SPNO)
blocks.

SPSQ SP-IN
Sread,

Swrite Swrite
Flush

Figure 4: State machine for speculative L2 cache blocks.

Message
G e t S R

GetSW

Recflush

Recsquash

Description
Request spec. block from directory,
which marks requester as reader

Request spec. block from directory,
which marks requester as writer

Flush spec. block to directory
to be reconciled

Request a partially reconciled
copy of block from directory

Table 4: Speculative messages of DDSM L2 caches.

access to B triggers the sending of a Get-SR (Get-SW) message to B's home node. A first-read is
detected by testing the value of SL; a first-write is detected by testing the result of' an OR operation
across the block's write-mask bits.

The first-read/write messages are used by the directory to dynamically build a record of all
speculative readers and writers of a block and track dependence violations. If a block is both read
and written speculatively, the cache will notify the directory of both first-read and first-write events.
Subsequent reads and/or writes are satisfied by the L2 cache without notifying the directory, until
the end of speculative execution.

There are two special cases that need to be handled by the controller. First, if a speculative read
is to a word previously written speculatively by the same processor, the home node is not notified;
according to the hierarchical execution model, this read access cannot violate inter-task dependences.
Second, if a speculative write accesses a forwarded block, the system squashes subsequent speculative
tasks. Section 4.6 describes this special case in detail.

4.2 Ordering violation detection

Out-of-order memory accesses issued by DDSM may violate data dependences imposed by the se-
quential semantics of a program. In order to detect violations, the system must keep track of the
ordering of accesses to memory. A DDSM maintains ordering information of speculative data at a
coherence block granularity at the directory.

The main motivation for using the directory to track memory ordering and detect memory viola-
tions stems from the fact that accesses to a memory block are serialized by the directory controller.
Zhang et al. [23] first proposed the use of this property of directories to track ordering violations
in DSMs. However, their approach detects violations on explicit shadow copies of speculative data
structures, while DDSM detects violations on arbitrary shared-memory blocks.

The DDSM directory extends conventional CC-NUMA protocols with extra states and transac-
tions to track memory access ordering. Conventional protocols store the state ancl one read-sharers
bit-vector for each memory block [13]. The DDSM directory protocol uses two bit-vectors to record
both speculative readers and speculative writers of a block, and defines one extra block state (Spec-
ulative). Figure 3 (Directory) depicts the format of the directory entry for a mem.ory block.

The DDSM protocol operates with blocks that can be either non-speculative or speculative.
Blocks become speculative when the directory receives any Get-SR or Get-SW request. Blocks

Table 5: Actions performed by the cache controller for speculative reads/writes to sub-word i
of block B (Flush, Commit and Squash requests apply to the entire block B) .

Access

Sread

(B[il)

Swrite

(B[il)

Flush
Commit
Squash

SP-bits
SPlVO
S P l N

S P S Q
S P A 0
S P l N

S P S Q
SP-CO
S P I N
S P l N

Action
Send G e t S R to home(B)
If SL = 1 or Mask(B[i]) = 1,
request is satisfied by L2;
else, send G e t S R to home(B)

Send Recsquash to home(B)
Send Get S W to home(B)
If Fwd = 1, multicast violation;
else, if OR(Mask) = 1, then
request is satisfied by L2;
else, send G e t S W to home(B)

Send Recsquash to home(B)
Send Recflush to home(B)
Change B's state to SP-CO
Change B's state to S P S Q

fetch-invalidate from ow
write-back to memory

add to readers1
writers vector

Figure 5: Extended DDSM state machine for cache blocks at the directory. Extended states
and transitions are shown in boldface.

become non-speculative only after a reconciling request (Rec-flush) is satisfied by the directory. The
extended protocol transactions are summarized in the state-machine diagram of Figure 5.

When a speculative request for a non-speculative block is received by the DDSM directory con-
troller, all sharers of the block are invalidated. If the block is exclusive (dirty), it is written back
to main memory. The block then becomes speculative, and its memory contents are sent to the
requester's cache. Subsequent speculative accesses to the block are serialized by the directory con-
troller, and the requester's identifier is recorded in the readers/writers bit-vectors. The directory
includes the memory contents for the block in the reply, unless the request requires forwarding.

Blocks in the Speculatitle state may be modified in the L2 caches of multiple processors; DDSM
produces a single, consistent version of the block at the end of speculation (Section 4.3). This
support for multiple writable copies across distributed caches allows for automatic privatization of
speculative blocks. Output- and anti-dependences (WAW, WAR) are resolved via this renaming
mechanism, and thus do not cause data dependence violations. Violations of true (RAW) data de-
pendences, however, are detected and trigger recovery mechanisms.

The directory checks for a RAW violation every time a speculative write (Get-SW) request
is received. The check consists of comparing the processor identifier of the writer (Wid) to the
identifier of the earliest speculative reader that may be data dependent on the writer (Rid =
min{Readers[(Wid + I) , ..., N])) . If Wid < Rid, a RAW violation is detected, and the directory
multicasts a squash message to all processors with identifiers greater than or equal to Rid (Figure 3
@I.

Table 6: DDSM software interface.

4.3 Task commits

The DDSM directory protocol allows multiple outstanding writable copies of a shal-ed-memory block
to reside in L2 caches during speculative execution. At the end of speculative execution, however,
there should only be one program-order consistent copy of the block. The DDSM directory applies
a reconciliation operation to all speculative versions of a block at the end of speculative execution
to commit the program-order version of the block to main memory.

Committing speculative data to global memory is performed in two steps, initiated by system
calls issued by the speculative application. In the first step, all SP-bits of speculative cache blocks are
marked as committed (SP-CO) in the L2 cache, similarly to the gang-commit operation in SVC [8].
This operation is local to a node and does not require the sending of write-back messages to the
distributed directories. This step is performed in sequential order with respect t,o the speculative
tasks.

In the second step, SP-CO blocks across distributed caches are globally reconciled to produce the
program-order version of each block. This step is performed in parallel by the caches and directory
controllers.

The current implementation of the second step requires that caches flush SP-CO blocks to their
respective home nodes. When the home node directory controller receives the first reconciliation
request for a given block, it allocates a temporary buffer to hold all possible speculative versions of
the block. The controller then multicasts fetch-and-invalidate requests to the speculative sharers of
the block. It also sets a reply counter with the expected number of replies.

When a remote cache receives a fetch-and-invalidate request, it replies with the block's contents
and its write mask, and invalidates the block. For each such reply received by the directory, the
block's contents and mask are copied to the temporary buffer at the position given by the sender's
identifier. When all versions are received (i.e., the reply counter reaches zero), a priority encoding
operation, equivalent to the one performed by Hydra [lo], produces the final version of the block.
The priority encoding enforces that the final version of each sub-word of a block is the one written
by the latest processor (in sequential order).

An example of the reconciling protocol transaction is discussed next and illustrated in Figure 3.
The transaction is based on the read-exclusive operation to a shared block of existing directory-
based protocols [13], where multiple invalidations are sent to read-sharers of a block. It begins when
a reconciling request (Rec-flush) is received from a remote cache (node i + 2, (A.)) . The directory
handler then allocates a buffer for this transaction, copies contents and mask of the requester to the
buffer, and multicasts fetch-invalidate request to the sharers of the block (B). When the directory
receives all outstanding replies for the block (C) , the priority encoding function is applied to the
reconciling buffer (D) and the final version of the block is committed to memory. The hardware
requirements to support the extended reconciling transaction are that (1) fetch-and-invalidate ac-
knowledgments be appended with contents and write mask for the block, (2) space for a data buffer
indexed by processor identifiers be allocated by the directory at the beginning of reconciliation, and
(3) a priority-encoding function be programmed in the directory controller (Figure 3).

4.4 Task squashes

The DDSM caches are responsible for squashing all data produced by a speculative task that has
violated a data dependence. Squashing is achieved by globally setting all SP-bits of speculative
cache blocks to the state S P S Q , and resetting the respective Fwd, SL and Mask bits, as shown in
Figure 3@. When a restarted task accesses a S P S Q block, the cache controller requests a partially
reconciled copy of the block from the directory (Rec-squash, Table 5). The partial reconciliation
transaction is similar to the one described in the previous section, except that it only reconciles
versions produced by earlier tasks than the requester i in program order (i.e. tasks 0, ..., i - 1).

When a task is squashed due to a data dependence violation, its execution is restarted by
recovering the processor context (saved in the checkpoint phase at the beginning of speculative
execution) via an interrupt. Restarted tasks execute in sequential order.

4.5 Checkpointing

The DDSM softwarelhardware interface is provided by a set of system calls (Table 6). The interface
requires two extensions to the CPU. First, the processor must be able to save its context before
speculation begins, and retrieve it when a violation interrupt is received. Second, the instruction
set needs to support speculative instances of all memory operations. This can be achieved by
assigning one bit in the instruction opcode to determine whether the access is speculative or not.
This bit is not used during the decoding of memory instructions; it is passed on to the data cache
controllers to determine whether the access is subject to the conventional directory-based protocol
(non-speculative) or to the DDSM reconciling protocol (speculative).

When a compiler for DDSMs speculatively parallelizes a sequence of tasks, it (1) generates
prologue code to set up the beginning of speculation, (2) marks the memory instructions inside the
body of the task as speculative, and (3) generates epilogue code to set up the end of speculation.
The prologue and epilogue consist of barriers, the system calls of Table 6, accesses to a local variable
(violated), and non-speculative accesses to a shared-memory variable that stores the identifier of the
Head task, as shown in Figure 2'.

The prologue code initializes the Head variable and enforces that the re-issue of violated tasks is
performed sequentially. The epilogue code enforces in-order commits of speculative blocks to local
L2 caches (End-Spec, synchronized by Head) and initiates the global reconciliation of committed
blocks to main nlemory (Flush-Commit, synchronized by a barrier) as described in Section 4.3.

4.6 Forwarding optimization

Some dynamic RAW dependences can be resolved via data-forwarding without incurring violations,
as long as the writer and the reader are appropriately synchronized [14]. The basic DDSM recon-
ciling directory does not provide automatic support for data forwarding. However, full support for
forwarding across distributed nodes can substantially increase protocol complexity. This subsection
presents a mechanism that extends the basic DDSM speculation system to provide support for a
simple form of forwarding, denominated write-violate forwarding. The implemer~tation of this ex-
tension is based on existing cache-to-cache transactions of conventional DSM directory protocols.

The write-violate forwarding scheme allows a processor Pi to forward a speculatively written
block to later processor(s) (in sequential order) via cache-to-cache transactions, as long as the for-
warded block is not re-written speculatively by Pi. Forwarding of a block is initiated by the directory
controller (upon receipt of a speculative Get-SR or Get-SW request) if there is any earlier (program-
order) writer recorded in the block's bit vector. The latest of such writers provides the data for the

2Since a vendor compiler was used in this paper, the distinction between speculative and "on-speculative memory
operations was not implemented in the generated instruction set , but emulated via a CPU state bit that is set/reset
via system calls. Accordingly, the non-speculative Head variable was represented as a special CPU register in the
simulations, with access time equal to the average latency of incrementing a global variable with 16 processors.
The performance impact of this simplification is negligible for the coarse-grain speculative wirldows of the studied
benchmarks.

cache-to-cache transaction.
If a forwarded block is speculatively re-written by a task, all later tasks are squashed and

restarted. The implementation of this scheme relies on the Fwd flag introducecd in Section 4.1.
This flag determines whether a speculative block has been forwarded or not to 'other speculative
tasks. Speculative reads are allowed to complete without generating violations, independently of the
value of this flag; speculative writes to forwarded blocks, however, trigger the restart of later tasks.

4.7 Event ordering and consistency

In DDSM, a speculative load observes the effect of speculative stores from other tasks only when a
block is forwarded. In this case, any further stores to the forwarded cache block squash all dependent
loads, and force them to re-execute sequentially. Speculative writes issued by a processor are thus
observed in sequential order by other processors.

The DDSM techniques apply to multiprocessors that support out-of-order menlory accesses and
relaxed consistency models such as release-consistency [7]. For release-consistent machines, the
End-Spec system call is preceded by a memory fence. Such fence ensures that all squashes initiated
by a task's speculative write are acknowledged (globally performed) before the task commits.

4.8 Cache replacements

The reconciliation operation requires that blocks from all speculative writers be available in their
respective caches to generate the program-order version of the block [12]. When a speculatively
written block is replaced from a cache, it cannot be written back to memory, since it is not guaranteed
to be valid; nor can it simply be discarded, since its contents are needed to perform reconciliation.
Therefore, a DDSM must conservatively squash all tasks data-dependent on a I-eplaced block to
ensure that the block's contents are re-generated.

When the DDSM directory receives a replacement request for a speculatively written block B
from processor i, it multicasts squash requests for processor i and all later processors. The tasks
executing in these processors are restarted sequentially; when t,hey access squashed blocks, they
request a partially reconciled, program-order copy of the block from the directory (Rec-squash,
Table 4).

Blocks that are re-generated sequentially by squashed tasks are guaranteed to be program-order
consistent, and are safe to be committed to main memory without generating violations in the event
of a cache replacement, These blocks can be identified by the directory via an additional per-block
bit (R) that is set upon receipt of a Rec-squash request.

Since the replacement of speculatively written lines causes false dependence invalidations and
performance degradation, it is important to reduce the probability of their occurrence. Although
not studied in this paper, the use of main-memory node caches, in addition to 1L2 caches [6, 121,
can potentially provide a large, associative cache for speculative data and reduce the probability of
capacity- or conflict-induced restarts. Since speculative state encoding is restricted to cache blocks
and directory entries, existing node-caching mechanisms can be leveraged in the design of speculative
node caches for DDSMs.

5 Experimental methodology

5.1 Machine model and configuration

The machine model assumed in this work is a release-consistent CC-NUMA multi-processor with
hardware support for DDSM speculation. The system consists of up to 16 identical nodes connected
by a 2-D mesh network. Each node has a memory bus connecting a single processor with on-chip
L1 and L2 caches, main memory, directory controller and network interface (Figure 6).

Table 7 shows the parameters assumed for processors, caches and memory inside each node of
the machine. The average simulated remote vs. local memory read latency ratio between adjacent

Figure 6: Machine model: each node (N) has a memory bus connecting a single processor
(P) with on-chip L l + L 2 caches ($), memory (M), directory controller (DSM) and network
interface (NI).

Table 7: Model parameters (all caches have 64B blocks).

Bench.
Turb3d
Health
Power
Perimeter
TreeAdd
Ssm

Working set
32x32~32, 3 iter.

1 7 levels, 24 iter.
3200 customers
4K x 4K, 8 levels
256K nodes
1K-64K integers

Tasks
loop/subr.
recursive subr.
loop/subr.
recursive subr.
recursive subr.
loop iter.

Table 8: Benchmarks used in the performance analysis.

nodes is 2.8. The assumed configuration of the L2 cache allows the studied speculative programs to
execute without the occurrence of replacement-induced restarts.

5.2 Workloads and simulation model

The performance analysis of Section 6 is based on the simulation of the speculatively parallelized
benchmarks listed in Table 8 (with respective working sets) from the Spec95 and Olden suites, in
addition to a sparse-matrix kernel developed by the authors for this study.

Turb3d is a benchmark from the Spec95 suite that simulates isotropic, homogeneous turbulence
in a cube3. Turb3d has available parallelism across procedures that compute Fast-Fourier Trans-
forms (FFTs) along distinct dimensions. Data dependence speculation allows parallelization across
F F T subroutine calls without the need for inter-procedural analysis.

The Olden benchmarks Health, Power, Perimeter and TreeAdd are written in C and repre-

3This benchmark's dataset has been scaled down from its original 64x64~64 size because the base RSIM simulator
is not able to simulate more than 2 billion processor cycles; with the original dataset, RSIM reaches this maximum
before the conclusion of the first iteration.

sent codes with dynamic data structures, where parallelism is hard to be detected automatically
at compile-time. Olden benchmarks are distributed in two versions: the sequential version, and a
hand-parallelized version based on futures [9]. Hand-parallelized Olden programs have been studied
previously in systems without data dependence speculation [I]. In contrast, this paper begins with
the sequential version of the Olden programs.

The sequential version of these programs are manually prepared for speculative parallelization in
this paper, due to the unavailability of a speculative parallelizing compiler. Speculative paralleliza-
tion of the sequential programs of Table 8 for DDSMs consists of the addition of prologue/epilogue
wrappers, partial inlining of procedures and reduction of summation variables. The reduction tech-
niques performed manually in this study are supported by existing compilers [5, 411; the support for
inlining of existing compilers can be extended to allow partial inlining.

The benchmark Power solves a power system optimization problem. Parallelism in Power is
difficult to detect automatically, due to the pointer structures that are used in its computation.
However, Power can be speculatively-parallelized in the outermost loop, as long as reduction is ap-
plied to two summation variables (tmp.P and tmp.Q).

The Health benchmark simulates the Columbian health care system. Health utilizes pointer-
based lists with elements that are dynamically inserted/removed, and traversed recursively. It is
speculatively parallelized by partially inlining recursive calls and speculating across. subroutine calls.

TreeAdd is a benchmark that computes the summation of values in a tree. Perimeter computes
the perimeter of a set of quad-tree encoded raster images. Both TreeAdd and Perimeter use pointer-
based tree structures. Similarly to Health, partial inlining is used in these two benchmarks to expose
subroutine-level parallelism to the speculation engine.

For systems without hardware support for speculative buffering [23], it is difficult to speculatively
parallelize the programs that operate on dynamic data structures. Systems with fine-grain support
for speculative parallelization [8, 101 nlay not be able to parallelize these benchmarks in the outer-
most loops and procedure calls due to the limited space available for speculative buffering. DDSM
allows speculative parallelization of these programs due to its large, hardware-based speculative L2
buffers.

Procedure calls provide a potential source of speculative parallelism [Is]; except for Ssm, all
benchmarks under study exploit this type of parallelism. Procedure-level parallelism is exploited
in the benchmarks with recursive subroutine calls (Health, TreeAdd, and Perimeter) by applying
partial inlining (Figure 7).

Conventional compilers use inlining to both reduce procedure call overhead and enlarge the
window of operations that can be inspected for global optimizations. In DDSM, partial inlining
does not target either of these goals: it is used to expose speculative parallelism by increasing the
number of procedure calls.

During speculative execution, these procedures are issued in parallel (Figure 7c)). After their
execution have completed, the "combine" phase of the recursion may require either code serialization
(Figure Ta)), or, when applicable, a reduction (Figure 7b)) to avoid data depen.dence violations.
Serialization at the end of the recursion is applied to Health, while reductions are applied to TreeAdd
and Perimeter.

The remaining benchmark, Ssm, is a kernel that models indirect addressing of array elements.
The pseudo-code for this kernel is as follows:

for(i=O;i<Niterations;i++)
for(j=O;j<Nitems;j++)

Array [j] += Array [i n d i r e c t (i . j)] ;

This program is not parallelizable automatically unless all data dependences implied by the
i n d i r e c t () funct,ion are known at compile time. However, it can be speculatively parallelized across
the j loop. This program is used to study the behavior of DDSMs under several speculative window
sizes (controlled by the parameter ~ i t e m s) , mis-speculation frequencies (function i n d i r e c t ()) and
number of processors.

Divide0 {
a=Divide();
b=Divide();
return a+b;

1 barrier

I PO spec. task 1

P i waits for PO

P3 waits for P2

P3 waits for
PO, P I

1 barrier

Figure 7: Partial inlining of recursive calls t o expose subroutine parallelism across 4 processors
(c). The combine step of the recurrence uses partial-sum reductions (a) or explicit serialization
(b).

I

window
size

[siq
I---160K

0.0% 5.0% 10.0% 15.0% 20.0%

Violation frequency
2

Figure 8: 16-processor parallel speedup for Ssm.

All programs are compiled with Sun's Workshop C Compiler4, version 4.2, with optimization

4The benchmark Turb3d is converted from Fortran to C with f2c.

14

level -x04. Two versions of each program are simulated: the sequential version (without speculation
and synchronization code, executing in a single node) and the speculative version. Speedups are
measured as execution time ratios (sequential/parallel) after data initialization.

The programs are simulated by a modified version of the RSIM simulator [16:1 that models the
DDSM methods described in this paper. The original RSIM simulator models a release-consistent
DSM with out-of-order uniprocessor nodes. The modifications applied to the original simulator
provide support for: data buffering on L2 caches; processor context saving and recovery; reconciling
directory operations, and cache flushing.

6 Performance Analysis

The performance analysis is divided in two parts. In the first part, the DDSM performance for
the Ssm kernel is studied in detail. The second part analyzes the performance of the remaining
benchmarks of Table 8. The following terms are used throughout the performance analysis of this
section:

Window size: total number of instructions, executed by the original sequential program, that
are speculatively executed in parallel.

Task size: number of instructions executed speculatively by a task - approximately (window
size/number of tasks) for load-balanced tasks.

State size: maximum amount of data stored in speculative L2 cache blocks of a single node.

Violation frequency: ratio of restarted speculative tasks versus total number of tasks.

Flushing overhead (F,,): ratio of stall time due to flushing over total execution time for a
speculative task.

window
size

0.0% 5.0% 10.0% 15.0% 20.0%

Violation frequency
2

Figure 9: 8-processor parallel speedup for Ssm.

I 1 I I I I I

0.0% 5.0% 10.0% 15.0% 20.0%

Violation frequency

window
size I

Figure 10: 4-processor parallel speedup for Ssm.

6.1 Kernel performance

In this analysis, the performance of DDSMs for the benchmark Ssm is analyzed as a function of
the following parameters: number of speculative tasks (4 , 8 , and 16); window size (160K, 630K,
2.5M, and 10M instructions); st.ate size (256 Bytes - 128 KBytes); and violation frequency (0% -
20%). This program implements the algorithm described in Section 5.2; in this study, the shared
data structure Array [O. . N i t e m s 1 is block-mapped onto the distributed memories.

Figures 8, 9 and 10 show plots of parallel speedup versus violation frequency fc~r 16, 8 and 4 pro-
cessors, respectively, and four window sizes. These plots show that DDSMs achieve good speedups
for large task granularities and 0% violation frequency. The plots also show that, as window sizes
decrease and violation frequencies increase, performance degrades.

The performance degradation due to bot,li smaller windows and larger number of violations is
more severe for DDSMs with larger numbers of processors. A window size reduction from 2 .5M to
630I< instructions yields speedup reductions of 55% and 9% for 16 and 4 processors, respectively.
At 10% violation frequency, the performance degradations for the largest window size and 16 and 4
processors are 63% and 38%.

In addition to window sizes and violat.ion frequency, the speculative state size irnpacts the perfor-
mance of applications executing on DDSMs. In particular, a t the end of the execution of a window,
where all speculative blocks are flushed and reconciled.

Figure 11 plots the minimum and maximum flushing overhead for different speculative window
sizes (and respective state sizes) and number of processors. The figure shows that the flushing over-
heads decrease as the speculative stat,e size increases; the directory controllers can overlap a larger
number of flushed blocks with increased efficiency via pipelining. For the largest window size, the
maximum overhead is below 10%. The figure also shows that, for a given window size, the maximum
flushing overhead increases as t.he number of processors increase.

In summary, this analysis shows that, for the Ssm kernel, the DDSM machine under study de-
livers parallel efficiency of 50% or more for up to 16 processors (i.e. speedups of 8 or more with

1 4 processors I 16 processors 1
!

Window size, Minstructions (max. state size, Kbytes)
-

Figure 11: Minimum/maximum F,, for Ssm.

Turb3d Health Perimeter Power TreeAdd ~
Figure 12: 8-processor DDSM speedup for two different data distribution policies: random
and manual.

Turb3d-116 Turb3d-z8 Health Perimeter Power TreeAdd ~
I

Figure 13: 16-processor DDSM speedup for two different d a t a distribution policies: random
a n d manual. Turb3d-z8 uses speculation across only 8 processors in t h e zff t ;O loop t o avoid
false-sharing violations.

respect to the unspeculative sequential code), if speculative windows sizes are of the order of millions
of instructions and if the restart frequency is 4% or less. Configurations with smaller number of
processors deliver better parallel efficiency for smaller window sizes and/or larger violation frequen-
cies (50% efficiency at 10% violation frequency for 4 processors). The analysis allso shows that the
overhead of speculative state flushing is small for speculative windows of the order of millions of
instructions.

6.2 Performance of speculative benchmarks

In this subsection, the remaining benchmarks of Table 8 are analyzed. The goal of this analysis is to
determine the performance of DDSMs for applications with dynamic data structures and inherent
coarse-grain parallelism - the speculative tasks of these applications have large window sizes and do
not violate true data dependences.

The DDSM support for speculative parallelization allows for the distribution of code across
processors. However, the distribution of data across memories also impacts the performance of
distributed-memory machines. The techniques presented in this paper are ort,hogonal to data-
distribution schemes: DDSMs can leverage proposed user-transparent locality enhancement tech-
niques applied to conventional DSM mechanisms, such as migration [22] and prediction/specnlation [Il l .

None of these techniques are used in the simulations presented in this paper. In order to study
the sensitivity of DDSM performance for different data distributions, two different scenarios are
considered. In the first scenario, data is distributed randomly across memories, modeling a naive,
user-transparent distribution. In the second scenario, data is distributed manually via program
annotation5. The results presented for the second scenario provide an estimate of the potential
performance benefits of improved da ta distribution.

'Both distributions are implemented at a cache block granularity in the RSIM simulator.

18

Benchmark

Turb3d
Hea l th
P e r i m e t e r
Power
T reeAdd

Window size
(instruct ions)

21.5M - 45.0M
895K - 1.36M
20M
2.3M
5.0M

S t a t e size
(KBytes)

N=8
210
106 - 662
559 - 731
86
525

Task/s ta te size
(instr . /Byte)

N=8
12.8 - 26.7
0.26 - 1.06
3.42 - 4.47
3.35
1.19

Table 9: Minimum and maximum window size, state size, task/state size ratio, and flush
over heads (N nodes).

Figure 12 shows the parallel speedups of an 8-processor DDSM. Except for Health, all programs
achieve speedups in excess of 6.0 under the manual distribution scenario. On average, the random
and manual speedups across the five benchmarks are 4.4 and 6.0, respectively.

Figure 13 shows the parallel speedups of a 16-processor DDSM . For this configuration, two
different speculatively parallelized versions of the benchmark Turb3d are studied: one where all
speculative windows are executed in parallel by 16 processors (Turb3d-zl6), and a second version,
where the 16-processor assignment applies to all windows, except for the FFT calcillations along the
z dimension (zffto), which is executed by 8 processors only (Turb3d-z8).

The poorer performance of Turb3d-zl6 is due to speculative false-sharing. Although the tasks in
Turb3d are data-independent, they operate on sub-words of cache blocks. When speculative tasks
are distributed across 16 processors, some accesses to different sub-words of the same cache block
are issued by different tasks during speculative execution of zfft() calls. The pattern of these ac-
cesses yields multiple read-write operations, which are not supported by the write-violate forwarding
optimization. The DDSM protocol must conservatively squash and restart tasks sequentially. This
access overlapping does not occur when speculation of the FFTs across the z dimension is performed
by 8 tasks.

The analysis of the Ssm kernel in Section 6.1 shows that both state size and window size impact
the performance of DDSMs. Table 9 shows a summary of the speculative window and state sizes for
each benchmark simulated with 8 processors.

These applications exhibit coarse-grain speculative windows of the order of rr~illions of instruc-
tions, and speculative states of the order of hundreds of kilobytes. The simulatioll data shows that
the speculative state of the coarse-grain tasks amenable to speculative parallelization in DDSM is
unlikely to fit in L1 caches.

Table 9 also shows that Health and TreeAdd have the smallest ratios of speculative task size
versus state size. These programs perform less computation per speculative block fetched from the
memory system, and therefore are more sensitive to data placement.

Table 9 also shows the minimum and maximum flushing overheads (as defined in Section 6.1)
for the benchmarks under study. With the exception of Health, the execution time overheads due
to flushing range from 1% to 11%.

7 Related Work

Related data-dependence speculative designs have been recently proposed in the literature for several
target architectures: chip-multiprocessors (CMP), ILP processors, and DSM machines. On-chip
designs exploit fine-grain parallelism by relying on aggressive hardware support and low-latency
communication. Distributed designs target coarser-grain parallelism, since inter-processor latencies
are orders-of-magnitude larger. Table 10 presents a summary of how the five speculation methods
of Table 1 are enforced in some of the related designs.

S t a m p e d e
Fine-grain CMP

E e cache ctrl

cache writeback
H/SW gang-c:lear
H/SW handlers

D D S M
Coarse-grain DSM

caches+directory
reconciliation
cache flush

1
2
3
4
5

1
2
3
4
5

Table 10: Comparison of different data dependence speculation proposals in terms of the 5 meth-
ods summarized in Table 1. HW and SW entries correspond to hardware and software solutions,
respectively; H/SW corresponds to hybrid solutions.

A related speculative solution for Multiscalar [18] processors manages speculative data on modi-
fied L1 caches, called Speculative Versioning Caches (SVC [8]). In SVC, speculative data is buffered
in the processor cache and co-resides with unspeculative data. A centralized hardware structure, the
Versioning Control Logic (VCL), tracks dependence violations among blocks across the L1 caches of
multiple processing units.

The methods for buffering speculative data and enforcing access ordering in DDSM bear similari-
ties with the SVC approach. As is SVC, a DDSM cache contains both unspeculati\e and speculative
data, which are differentiated via extra state information, and memory access ordering is enforced
by hardware mechanisms.

Although the state extensions to cache blocks proposed for DDSM are similar to those of SVC,
there are two main differences among the two designs: DDSM uses a simpler, 2-bit encoding of the
state, and uses the L2 cache as a speculative buffer. SVC employs a more complex encoding of
speculative state information to support on-demand, per-word commits.

The Hydra [lo] design targets CMPs and speculatively parallelized thread-based code. DDSM
uses a priority encoding function similar to Hydra to commit speculative blocks to main memory.
However, unlike Hydra and other on-chip designs, DDSM employs a distributed structure to track
memory access ordering.

The solution proposed by the IACOMA group in [23, 241 targets DSMs and (coarse-grain, par-
tially parallel loops. Hardware support is provided for the detection of data dependence violations,
while software explicitly manages buffering of speculative data in shadow memory copies.

The DDSM design proposed in this paper also targets coarse-grain tasks with low occurrence of
mis-speculations. However, DDSM differs from the IACOMA solution in a very important aspect.
In DDSM, the software overhead of maintaining shadow copies of speculative data is removed by
using caches as buffers. This simplifies the programming interface, specially whlen speculation is
performed on irregular data structures, since no explicit copying is required in the application code.

Concurrently with the research presented in this paper, related hardware solutions for distributed
systems have been proposed in [2] and [20]. Both solutions consider systems with a small number of
chip-multiprocessor building blocks and target fine-grain speculative parallelism. 111 contrast, DDSM
supports efficient speculative execution of coarse-grain speculative windows for machine with larger
number of distributed nodes.

The use of reconciling functions to allow loosely-coherent copies of shared-mernory data (LCM)

Multiscalar- S V C
Fine-grain ILP

HW
HW
HW
HW
H/SW

H y d r a
Fine-grain CMP

L1 cache
VCL
on-demand
gang-clear
task descriptor

HW
HW
HW
HW
H/SW

spec. buffers
cache ctrl
buffer draining
gang-clear
co-proc. handlers

I A C O M A
Coarse-grain DSM

SW
HW
SW
H/SW
H/SW

shadow copies
directory
copying
gang-clear
unspecified

was proposed in [12]. Although the LCM scheme allows for buffering and reconciliation of shared-
memory data, it does not provide speculation mechanisms to support data-dependence violation
detection and recovery (methods 2, 4 and 5 of Table 1).

8 Conclusions and outlook

This paper proposes and evaluates a novel hardware-based approach for data-dependence speculation
in DSM multiprocessors. The proposed DDSM architectural support allows for autc~matic extraction
of speculative coarse-grain, thread-level parallelism from codes with dynamic data structures and
statically unanalyzable shared-memory data dependences.

The architecture is based on hardware extensions to the cache coherence communication layer of
DSMs that allow buffering of speculative data of large windows in L2 caches, and violation detection
and reconciliation of speculative versions of memory blocks a t the directory.

The simulation-based performance analysis presented in this paper shows paallel speedups of
up to 6.5 and 12.5 for speculatively parallelized benchmarks with dynamic, pointer-based data
structures, executing in 8- and 16-node configurations, respectively. It also shows that the design
efficiently supports coarse-grain speculative windows (of the order of a million i:nstructions) and
state sizes (hundreds of KBytes per processor) when the frequency of data dependence violations is
low (up to 4% for 50% parallel efficiency).

The DDSM hardware support for data dependence speculation is based on conventional, directory-
based cache coherence transactions. It may be possible to optimize the base design described in this
paper in order to improve overall system performance, a t the expense of more complex protocol sup-
port. Research directions for optimizations include support for on-demand, per-block reconciliation
(to eliminate the necessity of a global flushing operation) and use of main-memor;y node caches to
hold speculative data.

References
[I] Carlisle, M. and Rogers, A. Software caching and computation migration in Olden. In Proc. 5th

ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 29--38,
1995.

[2] Cintra, M., Martinez, J . F., and Torrellas, J . Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. In To appear, Proceedings of the 27th Annual
International Symposium on Computer Architecture, 2000.

[3] Dagum, L. and Menon, R. OpenMP: An industry-standard API for shared-memory program-
ming. IEEE Computational Science &' Engineering, 5(1), 1998.

[4] Blume, W . et al. Parallel Programming with Polaris. IEEE Computer, Dec 1996.

[5] Hall, W. W . et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE
Computer, pages 84-89, Dec 1996.

[6] B. Falsafi and D. A. Wood. Reactive numa: A design for unifying S-COMA and CC-NUMA.
In Proc. 24th International Symposium on Computer. Architecture, 1997.

[7] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., and Hen.nessy, J . Mem-
ory consistency and event ordering in scalable shared-memory multiprocessors. In Proc. 1 7 ' ~ ~
International Symposium Computer Architecture, June 1990.

[8] Gopal, S. , Vijaykumar, T . N., Smith, J . E., and Sohi, G . S. Speculative versioning cache. In
Proc. 4th International Sy.mposium on High-Performance Computer Architecture, Feb 1998.

[9] R. H . Halstead Jr. Multilisp: A language for concurrent symbolic computation. ACM Trans.
on Programming Languages and Systems, 7(4):501-538, Oct. 1985.

[lo] Hammond, L., Willey, M., and Olukotun, K . Data speculation support for a chip multiproces-
sor. In Proc. of the 8th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 58-69, Oct 1998.

[l l] Lai, A-C. and Falsafi, B. Memory sharing predictor: The key to a speculative coherent DSM.
In Proceedings of the 26th Annual International Symposium on Computer Architecture, 1999.

[12] Larus, J. , Richards, B., and Viswanathan, G. LCM: memory system support for parallel
language implementation. In Proc. Sixth Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 208-218, 1994.

[13] Lenoski, D., Laudon, J. , Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J. , Horowitz, M.,
and Lam, M. The Stanford DASH Multiprocessor. IEEE Computer, Mar 19!)2.

[14] Moshovos, A., Breach, S., Vijaykumar, T., and Sohi, G. Dynamic speculat,ion and synchrc-
nization of data dependences. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 181-193, 1997.

[15] Oplinger, J . T., Heine, D. L., and Lam, M. S. In search of speculative thread-level parallelism.
In Proceedings of the 1999 International Conference on Parallel Architecture:: and Compilation
Techniques, Oct 1999.

[16] Pai, V. S., Ranganathan, P., and Adve, S. V. The impact of instruction-level parallelism on
nlultiprocessor performance and simulation methodology. In Proc. 3rd International Symposium
on High-Performance Computer Architecture, Feb 1997.

[17] Rauchwerger, L. and Padua, D. The LRPD test: Speculative run-time parallelization of loops
with privatization and reduction parallelization. In ACM Press, editor, Proc. SIGPLAN'95,
pages 218-232, 1995.

[18] Sohi, G. S., Breach, S. E., and Vijaykumar, T . N. Multiscalar processors. In Proceedings of the
22nd Annual International Symposium on Computer Architecture, pages 414--425, June 1995.

[19] Standard Performance Evaluation Corporation. Spec newsletter, Sep 1995.

[20] Steffan, J . G., Colohan, C. B., Zhai, A., and Mowry, T . C. A scalable approach to thread-
level speculation. In To appear, Proceedings of the 27th Annual International Symposium on
Computer Architecture, 2000.

[21] Steffan, J.G. and Mowry, T. C. The potential for using thread-level data speculation to fa-
cilitate automatic parallelization. In Proc. 4th International Symposium on High-Performance
Computer Architecture, Feb 1998.

[22] Verghese, B., Devine, S., Gupta, A, , and Rosenblum, M. Operating systern support for im-
proving data locality on CC-NUMA compute servers. In Proc. 7th Intl. Conf. on Architectuml
Support for Programming Languages and Operating Systems (ASPLOS), 1996.

[23] Zhang, Y. , Rauchwerger, L., and Torrellas, J . Hardware for speculative run-time parallelization
in distributed shared-memory multiprocessors. In Proc. 4th International Symposium on High-
Performance Computer Architecture, Feb 1998.

1241 Zhang, Y. , Rauchwerger , L., and Torrellas, J . Hardware for speculative parallelization of
partially-parallel loops in DSM multiprocessors. In Proc. .!jth International Symposium on High-
Performance Computer Architecture, Feb 1999.

	Purdue University
	Purdue e-Pubs
	5-1-2000

	Hardware Support for Data Dependence Speculation in Distributed Shared-Memory Multiprocessors Via Cache-block Reconciliation
	Renato J. 0. Figueiredo
	Jose A.. B. Fortes

