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ABSTRACT 

The distinguishing property of remotely sensed data is the multivariate 

information coupled with a two-dimensional pictorial representation amenable to visual 

interpretation. The contribution of this work is the design and implementation of various 

schemes that exploit this property. 

This dissertation comprises two distinct parts. The essence of Part One is the 

algebraic solution for the partition function of a high-order lattice model of a two 

dimensional binary particle system. The contribution of Part Two is the development of a 

procedural framework to guide multispectral image analysis. 

The characterization of binary (black and white) images with little semantic 

content is discussed in Part One. Measures of certain observable properties of binary 

images are proposed. A lattice model is introduced, the solution to which yields 

functional mappings from the model parameters to the measurements on the image. 

Simulation of the model is explained, as is its usage in the design of Bayesian priors to 

bias classification analysis of spectral data. The implication of such a bias is that spatially 

adjacent remote sensing data are identified as belonging to the same class with a high 

likelihood. Experiments illustrating the benefit of using the model in multispectral image 

analysis are also discussed. 

The second part of this dissertation presents a procedural schema for remote 

sensing data analysis. It is believed that the data crucial to a succc~ssful analysis is 

provided by the human, as an interpretation of the image representation of the remote 

sensing spectral data. Subsequently, emphasis is laid on the design of an intelligent 

implementation of existing algorithms, rather than the development of new algorithms for 

analysis. The development introduces hyperspectral analysis as a problem requiring 

multi-source data fusion and presents a process model to guide the design of a solution. 

Part Two concludes with an illustration of the schema as used in the classification 

analysis of a given hyperspectral data set. 





1. INTRODUCTION 

This dissertation is a composite of various discussions on the usage of spatial 

information, available as image data, in the spectral analysis of remote sensing data. 

Conventional remote sensing data analysis focuses on classifying the datum without 

incorporating information on the spatially adjacent data; i.e. the data is viewed not as an 

image but as an unordered listing of spectral measurements that can be shuffled 

arbitrarily without affecting analysis. There is a need to incorporate the image 

representation of the data in the analysis. Conversely, image processirlg in engineering 

literature is not directed to the analysis of multispectral data. The development of a nexus 

is one of the goals of this work. 

Arguably, while a scientific solution to a given class of problems seeks robustness and 

broad applicability, practical concerns demand a certain level of cusi:omization to the 

solution for every case brought under consideration. Additionally, rennote sensing data 

has the unique ability of being represented as an image. The subjective evaluations 

afforded by this can be used as an interface between the human and the computer - thus 

supplementing numeric data with analyst experience. These inferences are developed into 

a procedural framework, presented in the latter half of this dissertation, to initiate and 

guide the analysis of remote sensing data. 

Part One introduces a model to explain the behavior of binary particle systems as a 

function of the labeling of the constituent elements. The equivalent of the particle system 

in multispectral image analysis is the 'hidden' classification of the spectral data, whose 

discovery is the goal of the analysis. Since the data has an image representation, the data- 

labeling is evident as a multipolar particle system arranged on a rectangular lattice. Part 

Two discusses a process model for the analysis of hyperspectral data. The foundation of 

the latter discussion is the proposition that all analysis is a fusion of diverse 

datalinformation, and the extraction of knowledge is dependent as much on the process 

model as it is on the design of the analysis algorithms. 



There is a clean separation among the propositions of this work, artd the respective 

presentations are divided between Part One (Chapters 2-4) and Part Two (Chapters 5-6). 

1.1 Thesis Organization 

Chapter 2 introduces the problem as the development of a mapping between the 

model parameters and the properties of a two-dimensional binary system. Chapter 3 

proposes a lattice model as a solution to the problem. The model tak:es the form of a 

multi-chained loop with bipolar elements at each link. The system behavior depends on 

the interaction among the particles, as well as the orientations (+I) of the particles. Three 

variants of the proposed model are discussed, and closed form solutions for the associated 

partition functions are found for each case. Based on these solutions, tht: mappings to the 

observable properties of the system are established. For practical implementation in 

software, these mappings are tabulated for use as look-up tables. Section 3.2 lists the 

relevant tables. Chapter 4 discusses a scheme for the implementation of the proposed 

lattice model(s) in the segmentation of spectral data. The link between the lattice 

modeling and multispectral image analysis is clarified in Section 4.1. One usage of the 

modeling is in the simulation of binary images with little or no semantic content. This 

aspect of the modeling is discussed in Section 4.2. The primary usage: of the model is, 

however, in the design of biases for the statistical classification of spectral data. Section 

4.3 discusses this usage. Section 4.4 presents an experiment to justify usage of the lattice 

model in classification analysis. The results of the experiment show that the error in 

classification is significantly reduced through the usage of the lattice model in the 

Bayesian analysis of the data. An explanation of this improvement is proposed in Section 

4.4.2. Section 4.5 concludes Chapter 4 with experiments on real remote :sensing data. 

Chapter 5 discusses recent research on the design of procedural schemata for data 

fusion applications. It is concluded that the optimal engineering analysjs uses the human 

to provide decision support for computer analysis. Chapter 5 also elaborates a process 

model developing on this claim. Some guidelines for the design of a successful data 

analysis are presented. Chapter 6 executes the strategies developecl in the previous 

chapter through a detailed analysis of hyperspectral data collected for a flightline over 

Washington D.C. 
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The Appendices contains code for select software used in this work. 





PART ONE 





2. LATTICE MODELS 

Statistical mechanics is the study of the statistical properties of systems comprising a 

large number of interacting elements. As opposed to the microscopic behavior of the 

system elements, the study focuses on the measurable macroscopic (visually perceptible) 

properties of the system. It is believed that, through certain assumptions; on the system at 

the particle level, it is possible to algebraically model the  macroscopic^ behavior of the 

system. The discovery of an algebraic mapping that adequately models a two- 

dimensional binary system is the goal of this work. 

The systems of our interest are in the form of a two-dimensional lattice, and are binary in 

nature, i.e. the state space for the system elements is (-1, 1) .  A visual representation of 

such a system would be a black and white image. Correspondingly, the macroscopic 

properties of the system are considered to be homogeneity1 (or the nearest neighbor 

correlation), and the ratio of black to white pixels in the image. Chapter 3 presents a 

lattice model, and the function mapping the model parameters to the me(asurements of the 

system observables. 

Applications of the proposed model to remote sensing data analysis are presented in 

Chapter 4. Remote sensing data analysis seeks to classify data based on the respective 

energy spectra. A popular solution of the problem is based on the assumption of the 

multivariate Gaussian distribution of the data [I] [2 ] .  Such an analysis assesses each 

datum independent of the remainder of the data. However, spatially adjacent data 

elements have a strong likelihood of being functionally similar in spite of noise induced 

differences in the associated energy spectra. The failure to incorporate such prior 

knowledge in the analysis leads to data classification that is 'speckleti'. Regularization 

theory [3] proposes that the solution of the problem should be smoothed via a bias in 

favor of more-likely configurations of the system. If the physics of the scene can be 



simulated via an analytically tractable model, it becomes possible to bias the 

classification in favor of a spatially homogeneous (and realistic) configuration. Hence 

analysis can be directed via model 'priors'. The design of such priors is the primary goal 

of this section. It is believed that a single observation on the scene is sufficient to 

accurately estimate the intrinsic homogeneity and class distribution (black-white ratio) in 

the image. Where other models have regarded this as an intractable problem, we believe 

that the proposed model provides an exact and practical solution. 

A discussion of other work in the area of system modeling is presented in Section 2.1. 

Note that the present discussion is in the area of low-level image modeling where we do 

not expect to see or to model macrostructure (content with a semantic description). Thus, 

a distinction may be made between time-series models [4] [5] [6] and random field 

models [7]. While adequate for modeling image texture, time-series imodels generally 

demonstrate directionality and periodicity, and are inappropriate for our application. A 

survey of various image models in different contexts is provided in [8]. The emphasis of 

this thesis is on Markov field models of images. 

The actual model is presented in Chapter 3. The design and the implementation in regard 

to multispectral classification analysis are presented in sub-sections. Simulations 

demonstrating the efficacy of this implementation are presented in Section 3.3. 

Experiments with the model for the analysis of remote sensing data are described in 

Chapter 4. 

2.1 Previous Work 

A lattice model for interacting particle systems was first investigated by Ising as 

an explanation for ferromagnetism [9] [lo]. The model proposed the magnetic crystal as 

consisting of a large number of points arranged on a long one-dimensional lattice (like a 

chain), with a positive or a negative spin associated with each point. In spite of various 

modifications and enhancements to the modeling, the general scheme has been 

propagated under Ising's name. Since the early days, the Ising model has been recognized 

'Visually, a black and white image with high homogeneity is perceived as containing large clusters of black 
andlor white pixels. Correspondingly, low homogeneity implies an image of granular appearance, with 
little clustering among pixels of any color. 



as a stochastic process and, outside of statistical physics [9] [lo] [ l l] ,  is commonly 

known as a Markov Random Field (MRF) [12] [7]. In engineering applications, MRFs 

have gained popularity as a technique for image modeling [13] [14] [IS] [16] [17] [18]. 

The proposed usage of the proposed lattice model is in a similar vein, albeit for remote 

sensing data analysis. 

From a fundamental postulate in classical statistical mechanics, the probability 

distribution associated with the space of lattice configurations is directly proportional to 

the exponential of the 'energy' (in a manner of speaking) of that particular configuration 

[19], i.e. a Gibbs distribution. If X is a lattice configuration, or a given arrangement of 1's 

and -1's on the lattice, the probability of occurrence of this particular arrangement is 

given as 

where Z is a normalizing constant known as the partition function, and El(*) is the 'energy' 

function operating on the space of all lattice configurations. A probability measure on the 

space of lattice configurations enables the image classification to be biased towards the 

configurations that have a high probability of occurrence. In pattern analysis literature 

various variants of this technique have been proposed. However, most of these 

applications have been deficient in a key respect. The energy of a lattice configuration is 

dependent on the value of the parameters of the energy function E(*). :In most cases the 

parameter values are determined empirically 1201 [21], or are approximated via a gradient 

search [16][17]. The presentation in Chapter 3 identifies the exact funct:ion-map between 

the model parameters and the measurable system properties; the measurements being 

obtained from a single observation of the system state. 

Picard [22] discussed the problem of parameter inference for binary discrete 

Markov fields for equally likely classes. Although the solution is incomplete, the 

discussion in the article is representative of the issues associated with this problem. 

Geman and Geman [14] have demonstrated a computationally intensive method to 

calculate the model parameters via a stochastic gradient algorithm. However, the popular 

scheme for estimating distribution parameters is the method of m.aximum pseudo- 

likelihood [16] [17] [23] [24]. Another practical scheme has been proposed by Derin and 



Elliott [25], and has been re-applied with modifications by Gurelli and Onura1[26]. The 

latter scheme estimates the model parameters via the solution of a system of linear 

equations. Other solutions to the problem discard the pixel based approach in favor of 

that using ordered groups of pixels, cf. the window-based model [27]., the line-process 

model of objects in the image [28], and the connected components model [29]. [30] have 

proposed an evolutionary approach to solving the model. Of interest also is the work of 

Tjelmeland and Besag [31], who design a Markov random field with higher order 

interactions. 

As evident from the sampling above, the literature on Markov field application to 

image processing is quite extensive. Usually, parameter estimation is based on a search 

algorithm, and the solution is an approximation. This is largely a result of the lack of a 

closed form expression for the partition function (2 of Equation 2.1) for the two- 

dimensional Ising model. The breakthrough approximation for the partition function was 

the solution for the two dimensional Ising model provided by Onsager [:32], who received 

the Nobel Prize in Physics for that work. Onsager's work was a great achievement in 

Physics in that it was the first explanation of phase transitions from order to disorder as a 

function of temperature. While critical to understanding ferromagnetism, the relevance of 

phase transitions to image modeling is unclear. The ability to model long-range order is 

also cited as a reason for favoring the two-dimensional Ising model over the one- 

dimensional Ising model. While the one-dimensional model can not model phase 

transitions, and does not exhibit long range order, it is much simpler to solve than higher 

dimensional models. The proposed model is a variant of the one-dimensional model. 

Experiments in Chapters 3 and 4 on real and simulated data show that this model 

performs adequately in the context of engineering image processing applications. It 

should also be mentioned that the desirable properties of the two-dimensional Ising 

model, are exhibited only asymptotically. It is unlikely that infinitely long lattices are 

appropriate models for remote sensing data analysis. 

The proposed model takes the form of multiple chains with elemental interactions 

among neighbors within a chain, and with neighbors in the adjacent chain(s). A similar 

model was proposed by Qian and Titterington [33] and was described as a 

multidimensional Markov chain model. The said model performed adequately in 



simulations of binary images. A survey of various models and their respective abilities to 

simulate images was presented in [34]. It should however be emphasized that a system 

model is not intended to exactly reproduce a system observation, but rather to replicate its 

properties. In the present discussion, the focus will be on replicating the macroscopic 

properties of various binary systems in their simulations. 

While hyperspectral data has been quite adequate to the task of scene 

segmentation [2], it is believed that superior results can be obtained by incorporating 

spatial information on the data in the analysis [35]. [36] and [37] have proposed 

techniques that group data and grow regions based on spectral similarity. Markov fields 

have also been used in remote sensing analysis [38] [39] [40]. The implementation in this 

presentation is similar, the chief contribution being the use of the new model in the 

analysis. A limitation of the new model is its restriction to binary scenes, where data is 

labeled one of two classes. Direct application of this model is of 1im:ited value to real 

data. A solution to this issue is a hierarchical implementation of the solution. A coarse 

segmentation of the scene is used as input to the application, and the data with a given 

label is separated into two sub-classes. Such a scheme has alternately been proposed as 

decision tree type algorithms [41] [42] or multiple resolution segmentation [43] [44], in 

the analysis of image data. 





3. PROPOSED LATTICE MODEL 

The following analysis presents a model, or rather three variants of a central 

theme, for a binary particle system arranged on a lattice. The three variants differ in the 

design of particle interactions. A schematic presentation of each of the models is 

followed by an analysis of the respective properties. The analysis assumes a finite lattice 

structure in the form of a chain. 

The notation used in this section is as below. 

- N : Number of elements in lattice; equivalently, the number of links in the chain. 

- L : Number of states possible for an element in the lattice. Unless specified 

otherwise, L is 2. Correspondingly, the state space for a lattice element will be 

denoted A (={-I, 1) unless specified otherwise). 

- X : The system, an ordering of binary random variables. An observation of the 

system X is an arrangement of -1's and 1's on a lattice, and can be visualized as a 

black and white image. For ease of notation, X will represent both the stochastic 

process and the observation of the system state. 

- q : The inter-particle attraction among nearest neighbors in the lattice. The 

magnitude of q determines the amount of coagulation or clustering seen in the image. 

- h : The external field acting on the system. The sign and the magnitude of h 

determine the proportion of black (or white) content in the image. 

- E(.): Given an observation of the system X, the energy of the configuration is 

measured as E(X). E(.) is a function of q and h. 

- Z : The partition function. Following the Hammersley-Clifford theorem [15] and 

Boltzmann [9], the probability distribution over the space of lattice configurations is 

Gibbsian. The density function is correspondingly given as 

1 - W X )  Px (X) = - e 
Z 

Z is the partition function, a normalizing factor, obtained as below. 



The summation in Equation 3.2 is over all possible realizations of the system. The 

issue of the energy function E(e) is critical to a model and the design is dependent on the 

system being modeled. The three models considered here, differ in the type of particle 

interaction, and thus in the choice of the energy function. 

It can be shown that for a given lattice of length N, the partitio:n function can be 

calculated as 

where A is the transfer matrix representative of the system model, and Tr(e) is the trace 

function2 on matrix operators. Details on the transfer matrix, and its relation to the 

partition function can be found in Thompson [Chapter 5, 101. 

It follows that the partition function can be obtained using the eigenvalues of A. If 

{ l j )  is the set of eigenvalues of A then 

Later development will show that A is symmetric for the models considered. 

Consequently, the largest (principal) eigenvalue of A is unique. For large N, a good 

estimate of the partition function is thus obtained by examining the principal eigenvalue. 

By design, the energy function E(e) is a polynomial of first degree in q and h. It is 

easily shown (Equations A.l-2 - Appendix A.8, [45][22]) that (expected) pair-correlation, 

also called the internal energy per particle, C can be written as 

Likewise, the (expected) magnetization per particle, M, can be computed as 

The system model is thus the map 

f : (q,h) + (C,M). 

The trace of a matrix is the sum of its diagonal elements, or equivalently the sum of its eigenvalues. 



Note that C and M are averages with respect to the distribution P,. It follows that 

C and M can be estimated as sample averages from various observations on the given 

system. In the context of a black and white image, C is a measure of the granularity (large 

correlation translates to larger clumps of same-colored pixels), and M is a measure of the 

number of black pixels relative to that of the white pixels (or vice versa, depending on the 

notation). Given a tabulation of the function in Equation 3.5, these estimates can be used 

to infer q and h. Thus a parameterization at the pixel level (q, h) translates to macroscopic 

properties (C, M) of the system. The models presented here are for lattices of sizes IxN, 

2xN and 3xN respectively (refer Figures 3.1-3). Note that the Nth column is coupled to 

the first for each of the models. Each chain, p, in the system X is (composed of the 

elements pi for i=l ,  ..., N. Each element pi is a binary ( f l )  random variable, and 

interaction is restricted to nearest neighbors. The vertical bars represent interaction 

between elements in adjacent chains (if any). 

The applicability of these lattice models to two dimensional image data systems 

will be examined in Chapter 4. 

, chain 

Fig. 3.1: The 1xN lattice model 



- link 

coupled chains 

Fig. 3.2: The 2xN lattice model 

coupled chains 

Fig. 3.3: The 3xN lattice model 

3.1 Model Solutions 

As stated earlier, the motivation of this work is the discovery of a closed form 

representation of the partition function Z, and thus, formulae for C and M in q and h. 

In Figures 3.4-6, the first set of solutions is presented for the three models under the 

assumption that the external field is zero, i.e. h=O. This is equivalent to imposing equally 

likely states ({-I, 1))  on the bipolar elements. In Figure 3.7, this constraint on h(=O) is 

removed, and a general solution is arrived at for the 2xN lattice model. Unfortunately, a 

similar analysis for the 3xN lattice requires the solution of fifth order polynomials and 

can not be carried through. 

The procedure for the solution(s) is as below. 



The chain p is defined. Additional chains, as per the model, art: identified using 

one or more quotation marks (I). The system is represented in terms of one or 

more p chains, as per the chosen model. 

The interaction among the elements is designed for each model, based on q (and h 

for Figure 3.7). 

The energy function E(X) is formulated for each model. 

The corresponding transfer matrix A is found. (Recall that 2=Tr(AN) [lo]). 

The characteristic polynomial for each transfer matrix is calculated, and 

factorized using Maple [46]. In cases where Maple returned con~plex roots of the 

characteristic polynomial, the method of Tartaglia [47] is used to manually 

compute the solutions for cubic polynomials. These solutions are the eigenvalues 

{li} of the transfer matrix A. 

Z is approximated in terms of the principal eigenvalue of A [lo]. 

The correlation C is calculated using Equation 3.3. 

The magnetization M is calculated using Equation 3.4. 

Note: In Figures 3.4-7, subscripts are used with the notation for partition function, 

correlation and magnetization, to identify the expression with the respective model. For 

instance, Z,, denotes the partition function for the 1xN model. 



Fig. 3.4: Solution of the 1xN lattice model for external field h=O - transfer matrix 
A, eigenvalues li. 



Fig. 3.4 (contd.): Solution of the 1xN lattice model for external field h=O - partition 
function Z,, ., correlation C,,. 



Fig. 3.5: Solution of the 2xN lattice model for external field h=O - transfer matrix A. 



Fig. 3.5 (contd.): Solution of the 2xN lattice model for external field lz=0 - principal 
eigenvalue I,, partition function Zz,, and correlation C,,,. 



Fig. 3.6: Solution of the 3 x N  lattice model for external field h=O - transfer matrix A. 



Fig. 3.6 (contd.): Solution of the 3 x N  lattice model for external field h=O. 



Fig. 3.6 (contd.): Solution of the 3xN lattice model for external field 12=0 - principal 
eigenvalue I,, partition function Z3,N, and correlation C3,. 



Fig. 3.7: General solution of the 2xN lattice model - transfer matrix A. 



Fig. 3.7 (contd.): General solution of the 2xN lattice model - principal eigenvalue I,. 



Fig. 3.7 (contd.): General solution of the 2xN lattice model - partition function Z2,& 
correlation C,,, and magnetization M,,,. 



3.2 Tabulation 

Although convenient, the expressions derived in Figures 3.4-7' can not be used 

directly in any practical application. 

Table 3.1 lists the q-C map for the 2xN model for h=O, as obtained in Figure 3.5. 

Tables 3.2-3 respectively list the C and M over a range of (q, h), as obtained via the 

formulae in Figure 3.7. While C and M can not be calculated exactly, they can be 

estimated as sample averages over a set of observations ({ V}) over the lattice system. The 

set of observations is composed of several different realizations of chains over the image 

lattice. For a given observation on a binary 2xN lattice chain, using nsotation consistent 

with the previous section, C and M are be estimated as below. Note the use of 

normalizing constants to restrict the estimates to [0, 11. 

The accuracy of these estimators is discussed in Appendix A.8. 

Given the estimates of magnetization and correlation for a given system, the 

tables can be used to look up (estimates of) the corresponding q and h. 



Table 3.1 
Average correlation per pixel, C,, (for h=O) 2xN model. 



Table 3.2 
Average correlation per pixel, C2,N, for general 2xN model 
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Table 3.2 (contd.) 
Average correlation per pixel, C,,, for general 2xN model 



Table 3.2 (contd.) 
Average correlation per pixel, C,,, for general 2xN model 



Table 3.2 (contd.) 
Average correlation per pixel, C,,, for general 2xN modlel 
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Table 3.3 (contd.) 
Average magnetization per pixel, M,,, for general 2xN model 



Table 3.3 (contd.) 
Average magnetization per pixel, M2,N, for general 2xN model 



Table 3.3 (contd.) 
Average magnetization per pixel, M2,N, for general 2xN model 
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4. MODEL IMPLEMENTATION 

4.1 Preamble 

Conventional analysis of remote sensing data proceeds in the following -way. 

The element to be classifiedJlabeled is identified. 

The multispectral data on the element is input to a decision rule. 

The output of the decision rule is observed and the element is labeled accordingly. 

The schema on the left in Figure 4.1 is a representation of the above process. The data for 

the unlabeled element, in gray, is fed to the rule whose decision identifies the pixel as 

'black' or 'white'. In the schema on the right in Figure 4.1, it is assumed ithat analysis prior 

to the current stage has labeled (as 'black') two of the neighbors of the pixel under 

consideration (shown in gray). It may be surmised that the labeling of the neighbors 

influences that of the analyzed element, and that the decision rule can be biased to favor a 

'black' labeling for the case under consideration. The right side schema in Figure 4.1 is an 

illustration of this reasoning. 

Fig. 4.1 : Schemata illustrating remote sensing data classification, with 
and without knowledge of neighborhood. 



Though simplistic, the above discussion indicates that remote sensing data is not an 

unordered collection of spectral measurements, and that spatial infoirmation can be a 

useful adjunct to the spectral data. This chapter will present a scheme to use the labeling 

of the analyzed element's neighborhood to bias the multispectral classifjcation of the said 

element. The identification of the magnitude and the direction of the applied bias is thus 

the critical issue. Consider Figure 4.2. Starting at the top left and going clockwise around 

the figure, the four peripheral images may be characterized as below: 

Mainly 'white', with isolated instances of 'black'. 

Mainly 'black', with isolated instances of 'white'. 

Even distribution of 'black' and 'white' in large clusters of pixels. 

Even distribution of 'black' and 'white' pixels with little clustering. 

In each case, the element to be labeled is shown in gray and has two of its 

neighbors pre-labeled as black. (For clarity in presentation, this example focuses only on 

the immediate neighbors to the North and to the West of the said pixel). The image in the 

center is an isolated representation of the pixels relevant to the analysis. 

Fig. 4.2: Central image illustrates a case where the pixel under analysis has 
two neighbors pre-labeled as 'black'. The four peripheral images present 
scenarios that could possibly yield the situation depicted in the center. 



The classification of the gray pixel in each image is sought via the relevant multispectral 

data and the labeling of its two identified neighbors. As reasoned previously, the 

observation of 'black' neighbors to the examined pixel should result in a biasing of the 

decision rule to favor a 'black' classification. However, from Figure 4.2  it may be 

rationalized that the bias is small for the images at the top left and at the bottom right. 

This reasoning is based on the fact that there appears a relatively sniall likelihood of 

'black' pixels to occur as clusters for these images; hence, having two 'black' neighbors 

has little meaning in the labeling of the gray pixel. Thus, a quantitative characterization 

of the images is needed. The biasing of the classification can then be based on this 

quantification. 

The goal of Chapter 4 is the design of a practicable scheme that links the development of 

the lattice models in Chapter 3 to the biasing scheme discussed above. 

Section 4.2  presents the algorithm to simulate binary images using the 2xN model (with 

hzC1), and Section 4.3  presents a usage of the proposed model in the analysis of 

multispectral data. In Section 4.4, the model is applied to data for which the performance 

bounds on conventional classification analysis are known. The improvement in 

performance through use of the 2xN model in the analysis justifies the model 

development. Finally, some results on the analysis of real multispectral data are presented 

in Section 4.5. 

Of the three models considered previously, the 2xN model is pursued for the following 

reasons: 

While the 1xN model is analytically tractable for the case when the external field 

h is non-zero, and for application to k-ary systems, it models interactions only 

along a single direction. 

The 3xN model does not have a solution for the non-zero h case. 

In previous literature, models such as the ones proposed here have been presented as 

Markov chains (cf. [ 3 3 ] ) .  However, this is an inaccurate representation. In the present 

context, the models can not be fashioned after time-series, and do not have a definition of 

'past' and 'future' pixels. 



4.2 Model Simulation 

This section illustrates the procedure to implement the model to simulate a binary system 

with a given q and h on a two dimensional lattice of arbitrary size. 'This is important 

because the corruption induced in a computer simulation can produce marked deviations 

from the predicted behavior of the system. While the model is precise, the 

implementation is, at best, a close approximation. 

4.2.1 Monte Carlo simulation 

The goal of this section is a demonstration of a technique to output a binary system (black 

and white image) with the desired values of correlation and magnetization for the 

corresponding q and h input to the algorithm. 

Recall Equation 3.1, the distribution for the lattice system - 

Also recall that correlation C and magnetization M are macroscopic properties of the 

binary image computed as averages with respect to the above distribution (cf. Equations 

3.3-4). Given the values (desired of the output image) of C and M, the tables of Chapter 3 

can be used to look up corresponding values of q and h for the 2xN model. Thus the 

target distribution Px can be identified (cf. Figure 3.7 for the relevant details.) 

The theory underlying the procedure is sketched below. The software for the simulation 

is included in Appendices B, D. 

The Monte Carlo method [48] [49] is used in the simulation of the sf.ochastic process, 

with P, as the unique equilibrium distribution. The observations on the said process 

possess the desired values of C and M. 

A dynamic Monte Carlo method is used to simulate the stochastic process on the 

computer starting from an arbitrary initial configuration. The process' attainment of 

equilibrium is accompanied by the convergence of sample averages of correlation and 

magnetization, 2 and M to the respective Px-averages C and M. In practice, the opposite 

tack is taken. Equilibrium is said to have been attained by the process when successive 

observations of the process return minor changes in readings of 2 and .M. This approach 



has performed adequately in most test-simulations (refer to Section 4.2.5 for 

experimental results). 

For the simulation, the stochastic process is designed to have the Markov property3. It 

conlprises a sequence of random variables X,, X,, X,, . . . , with the sub-script being used to 

represent the time index. Each of the random variables assumes statles from the state 

space corresponding to the binary 2xN chain system of Chapter 3. 

This stochastic process is uniquely determined by the initial distribution P(X,) and the 

transition probabilities P(Xt+,IXt). Assume that the process satisfies the following two 

conditions. 

Irreducibility - P(X,+,=y(Xt=x) > 0 for every x, y in the relevant state space. 

Detailed balance - i.e. 

px(xt = x)P(x,+, = y ( xt = x) = px(xt = y)~(xt+l = x 1 X, = y). 

Under the above two conditions, it can be guaranteed [50] that the stochastic process 

converges as t + = to the equilibrium distribution Px regardless of the jnitial distribution 

P(X,), and thus k* C ,  M 4 M. [48] discusses these issues in detail. The pertinent 

material is extracted from the text and presented here. 

Let a, be probability that the stochastic process sees a transition from state x to state y. It 

can be shown that the principle of detailed balance is satisfied if the following condition 

holds. 

where F(*) is any function mapping the non-negative real line to the unit interval, and 

satisfying 

that satisfies the property F(z)=z. By definition of the distribution P,, 

Two propositions for the function F are as below: 



Metropolis [5 I] - F(z)=min(l, z). 

Hastings [52] - F(z) = z/(l+z). 

Irreducibility can be ensured by sweeping through the entire lattice in ;a random fashion 

and proposing changes in the system state by altering a single site in the lattice at a time. 

Thus successive observations on the process differ at most in a single link on the 2xN 

chain. 

The ideas of the above presentation are the foundation of the algorithm for simulation4, 

presented below. 

STEP 1. Assign labels randomly to each element in the lattice. 

STEP 2. Construct a 2xN looped chain through the lattice. The elements comprising 

the chain may be chosen randomly or selected from a look-up table. (See Figure 

4.3 below for an illustration). 

STEP 3. For each link in the chain - 

STEP 4. Select a new configuration for the link; 

STEP 5. Compute the difference in energies5 between the old and the new 

configuration; 

STEP 6.Use the Metropolis/Hastings algorithm [48] [5 11 [5 21 to decide on 

transition. 

STEP 7. Assess system for convergence. If not converged, re-do process from STEP 2. 

STEP 8. Terminate. 

3 ~ h e  Markov property cited above implies that the process is 'memoryless', i.e. P(X,+,IX,., X,.,,. . .)=P(X,,IX,) 
[50] .  Though 'Markov chain' is the term by which the process is recognized in literature, this usage is 
foregone to prevent confusion with the definition of the 2xN chain in this monograph. 

The above presentation is an aggressive condensation of a deep theory, intended as a background to the 
algorithm presented here. A rigorous treatment is beyond the scope of this dissertation, itnd can be accessed 
in the works of [48]  [49:1 [5 11 and [ 5 2 ] ,  among others. 

The usage of the term 'energy' as a descriptor of system state is for historical reasons, and reflects the 
origins of this theory in the statistical mechanics explanation of the thermodynamic behavior of multi- 
particle systems. In the present context, the energy of a system state will be in the sense of the usage in 
Chapter 3, as a measure of the coherence in the configuration vis-2-vis the labeling. 



Fig. 4.3: A sample looped 2x12 chain through the given 5x7 lattice system. 

Though the method is simple in principle, there are several issues that need to be 

addressed, namely 

Construction of chain for each of the models. 

Energy computation for a given link configuration. 

Choice of random number generator. 

Each of the issues above is assessed individually in the remainder of Sec:tion 4.2. 

4.2.2 Construction of chain 

The simulation calls for the construction of a looped chain through the two-dimensional 

lattice as in Figure 4.3. The design has to be easily implemented, and yet satisfy the 

minimum requirements for each of the models. 

The designed algorithm selects a number of nodes randomly in the two-dimensional 

lattice and connects them with straight lines in the order of the selection. The first node in 

the chain is linked to the last to complete the loop. All elements that are nodes of the 

chain or lie on the straight lines connecting the nodes become links on the chain. Though 

not essential in practice, to prevent self intersecting chains, the number of nodes can be 

restricted to three. The algorithm is sketched in pseudo-code in Figure 4.4, and the 

software in C programming language is included in Appendices C, E. 



int chainqath(int row-count, int column-count) 
{ 
N=min(row-count, column-count); 
chain = assign-memory(1, row~count*column~count); 
link-number=l; 
itemp = jtemp = choose-random-number (1, row~count*column_count); 
chain [link-number] = j temp; 

/*N nodes are randomly selected in the 2D lattice. the nodes are joined with 
straightlines. The chain comprises the nodes + the pixels lying on  the lines. 
Define temporary variables - jtemp, ktemp as nodes on the chain, itemp as an 
element on the line joining jtemp and ktemp*/ 

for index = 1 to N-1 
{ 
ktemp = choose-random-number(1, row~count*column.~count); 
do { 

j temp=itemp; 
link-number ++; 

/*find the slope between the nodes and find next element along the straight line 
joining the two nodes*/ 

slope = f ind-slope (j temp, ktemp) ; 
itemp = find-next-location(jtemp, slope); 
chain[link-number] = itemp; 
}while (itemp ! =  ktemp); 

1 
itemp=jtemp=chain[link-number]; 
ktemp=chain [l] ; 
/*finish loop by taking the last node in the chain as the first one*/ 
do { 

j temp=itemp ; 
1 ink-number ++ ; 
slope = find-slope (jtemp, ktemp) ; 
itemp = find-next-location(jtemp, slope); 
chain [link-number] = itemp; 
}while (itemp ! =  ktemp); 

Fig. 4.4: Pseudocode for generation of chain through two-dimensional lattice. 



For the 2xN, and the 3xN models, the algorithm of Figure 4.4 is modified to generate 

looped chains running parallel to the side(s) of the chain. For the 2xN model, the output 

chain looks like the example shown in Figure 4.3. 

While adequate, the above technique can be computationally expensive. Instead of 

creating a chain through the image, it was realized that a localized representation of the 

chain would be adequate. Such a representation would enable an irnplementation in 

which each element in the lattice could be examined in a raster scan., Experimentally, 

substantially fewer iterations are needed for convergence. Figure 4.5 illustrates the 

implementation for the 2xN model. As suggested by the pointer in the representation, the 

algorithm proceeds in raster scan down the image. The scheme consists of randomly 

selecting one of the elements in the eight-element neighborhood of thr: examined pixel, 

thus completing the chain-link whose state is considered for change:. The next stage 

requires the identification of the neighbors whose states affect th~e energy of the 

configuration. As before, this is done through random selection in the respective eight- 

element neighborhoods of the two link-pixels. Note that the algorithm requires 

uniqueness of neighbors for each of the link-pixels, but the four neighbor elements need 

not be distinct. Refer to Figure 4.6 for the algorithm pseudo-code. 

Fig. 4.5: Four steps in the localized representation of a 2xN chain. The pointer indicates 

the element in respect to which the relevant chain links are constructed. The shaded 
elements represent the elements whose states are considered for alteration as per the 

Metropolis/Hastings algorithm. 



pseudo-link(int pointer, int row-count, int column_count:) 
I 
/*Initialize the neighboring pixels of 'pointer'*/ 
IQ=E=W=S=NE=NW=SE=SW=O; 

/*Examine the eight neighbors of 'pointer' for existence and assign index values to 
the corresponding variable- Note that index-value ranges from 1.. .row-count x 
columncount*/ 
set-neighbor-indices(pointer, N,E,W,S,NE,NW,SE,SW); 

/*Randomly select neighbor of pointer, thus completing the chain-lin:k*/ 
link-tosointer =choose-valid-neighbor(N,E,W,S,NE,NW,SE,!SW); 

/*Select two distinct neighbors of pointer*/ 
do { 
neighbor~to_pointer~EAST=choose~va1id~neighbor(N,E,W,S,Nl3,NW,SE,SW); 

}while(neighbor-to-p~inter~EAST==link~to~ointer); 
do I 
neighbor~toqointer~WEST=choose~valid~neighbor(N,E,W,S,Nl3,NW,SE,SW); 

}while(neighbor~to_pointer~WEST==neighbor~to_pointer~E2ST)OR 
(neighbor-tosointer-WEST==link-tosointer); 

/*Select two distinct neighbors of link-to-pointer*/ 
do I 
neighbor~to~link~EAST=choose~va1iddneighbor(N,E,W,S,NE,MM,SE,SW); 

}while(neighbor-to-link-WEST==index) 
do I 
neighbor~to~~ink~WEST=choose~valid~neighbor(N,E,W,S,NE,MM,SE,SW); 

}while(neighbor-to-link-WEST==index)OR 
(neighbor-to-link-WEST==neighbor-to-link-=ST); 

I* At the end of the above steps, the program should have the locatiorls for a pixel, 
its neighbor, and their respective 'EAST' and 'WEST' links. Note that the four 
'EAST', 'WEST' links need not be distinct. The pseudo-link looks like 

neighbor-toqointer-EAST -- pointer --neighbor-to-pointer-WEST 
I 

neighbor-to-1 ink-EAST-- link-togointer--neighbor-t,o-link-WEST 
The metropolis algorithm computes energy difference based on flips to the pixels 
located at pointer and link-to-pointer. Consequently, only the bonds of relevance to 
the energy difference are shown.*/ 

Fig. 4.6: Pseudocode for generation of a pseudo-link to a given element in a finite two- 
dimensional lattice. 



4.2.3 Energy computation and the Metropolis algorithm 

The Monte Carlo Markov Chain technique [48] [49] is a general method for the 

simulation of stochastic processes. While it is hard to simulate statistically independent 

realizations of the stochastic process, it is possible to achieve an approximation through 

an iterative procedure. At every iteration, an alternate system-state is proposed, and the 

proposed state is accepted on the basis of a probability rule [51] [52] applied to the 

energy difference between the old and the new system configurations. After a suitable 

number of iterations, the successive system realizations are in accordance to the desired 

stationary distribution. In this section, the probabilistic transition from one state to the 

next will be discussed. 

The system, in our simulation, is pre-assigned a random configuration. Once a 2- chain 

has been created in the lattice, a given link is chosen, and its configuration is altered. The 

change in energy of the system, AE, is computed (cf. E(X) in :Figure 3.7). The 

computation is illustrated in Figure 4.7 below (the Up-arrow denotes the state of +1, and 

the Down-arrow denotes the state of -1). Note that the elements whosle orientations are 

altered are enclosed in the double-bordered boxes. The computation shown in Figure 4.7 

is in regard to the orientations of only these elements since the configuration of the 

remainder of the chain is irrelevant to the change in the energy. Conrespondingly, the 

elements outside the scope of interaction with the chosen link are grayed out in the 

representations. 

1. Original state 

2. Candidate state 

Fig. 4.7: AE = E,-E, = -q[(-3) - 31-h[O - 21 = 69 + 2h. 



The transition of chain to the candidate state is done with the probab:ility min[l, exp(- 

&):I [5 11, or exp(-AE)l[l+ exp(-AE)] [52]. 

4.2.4 Random number generator (RNG) 

In any Monte Carlo simulation, the choice of the random number generator (RNG) is 

critical. A variety of techniques have been proposed in various literature [48] [53], some 

better than others. The choice of the RNG in the present work is that of a one-step 

multiplicative congruential linear recurrence generator [49]. This choice is based not only 

on the appearance of sufficient irregularity (or 'randomness') in the output, but also on 

computational efficiency of the algorithm. The latter point is important from the point of 

view of implementation, since any Monte Carlo simulation can comprise several 

thousand runs of the algorithm. 

For the one-step multiplicative congruential generator, there are two parameters 

governing the output, the multiplier a and the period T. For a particular seed V, input to 

the RNG, the output of the algorithm is as below. 

y=ay- , (modT)  Vi=1,2,3 ,..., 

Uifs are the output of the RNG, comprising a set of independent uniform deviates from 

the unit interval [0, 1). A critical property of this class of RNGs is the periodicity of the 

output, as determined by T. The size of the period thus governs the design of the RNG. 

However, the size of the period is limited by the representation of a long integer in the 

computer. Ignoring the sign bit, it follows that the largest integer capable of 

representation on most desktop computers is 231-l. It has been found ithat the choice of 

the primary roots of T [49] for the multiplier a ensures that the RNG attains full period 

(=T). The selection of the primary root a should be such as to induce irregularity in the 

output. It should be noted that irregularity in a single dimension does not imply 

irregularity in the output in two or higher dimensions. Hence, though a is frequently 

chosen to be 16,807, the performance of the thus designed RNG is inferior to that 

designed with the primary roots 48,271 or 69,261, especially in dimensions higher than 



one. This assertion follows from results of the spectral test for randomness [pp. 615,491 

on the RNG. 

The RNG used in this work uses the modulus T= 231-1, and primary root a=48,271. 

4.2.5 Experimental results 

This section demonstrates the simulation algorithm. For the purpose of illustration, three 

'natural' images were obtained from various sources [54] [55] and thre:sholded (at gray- 

level 100) to convert the grayscale image to a pure black-white binary form. The 

correlation and the magnetization for each of the images were estimated., and mapped to q 

and h via Tables 3.2-3 for the 2xN model. These values of q and h .were input to the 

algorithm to generate the respective simulations. The original iimages and their 

simulations are presented overleaf. For a quantitative evaluation of the performance, the 

correlation and the magnetization of the original and the generated ima.ges are presented 

in Table 4.1. 

As may be apparent from the tabulated results, and the subjective evaluations of the 

figures on the next page, the algorithm works reasonably well for simulating 'PlasticBubs' 

and 'BrodatzBeachSand'. Note that the algorithm is not intended to replicate the input 

images, but rather induce the input correlation and magnetization i~n the simulation. 

Furthermore, the subspace of images possessing the given values of C and M is quite 

large. The output of the algorithm is statistically unlikely to reproduce the parent image. 

Table 4.1 
Measurements of correlation (C) and magnetization (M) for sample binary images, and 

for their respective simulations. 
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4.3 Application to Multispectral Analysis 

This section presents a technique for the incorporation of the proposed 2xN 

looped chain model in multispectral data analysis. Section 4.3.1 will present the problem 

and the various assumptions generally used in the analysis of multispectral (remote 

sensing) data. Section 4.3.2 will present the algorithm used in Sections 4.4-5 for the 

segmentation of multispectral/multidimensional data. The software for the 

implementation is included in Appendix C at the end of the text. 

4.3.1 Problem description and implementation assumptions 

Satellite sensors gather data by measuring the energy reflected off the Elarth's surface [I]. 

The data is spatially quantized into pixels, and radiometrically quantized into discrete 

'brightness' levels at each of several wavelengths. Remote sensing data is thus different 

from the common notion of an image in that each of the sampling wavelengths can be 

represented as a distinct image (in the visual sense). In this respect., the pixel in the 

context of remote sensing data analysis is a vector of length equal to that of the number 

of spectral samplings. The task of the analyst is to identify the land cover associated to a 

given pixel. 

For the remainder of Section 4.3, the following notation will be used in regard to the data. 

The data will be denoted Y=b,, y,, . . . , y,), with N being the total number of pixels in the 

image. Each y, will denote a vector of length p (also termed the dimt:nsionality of the 

data). To each y, we seek to assign a class-label x,, taking values from a. finite state space 

A={-1, 11, such that the class assignment to Y will be (x,, ..., x,)= XciAN. The ensuing 

discussion will incorporate the 2xN chain model of Chapter 3 to model the distribution 

of the system state X. 

A useful assumption for analysis is that they, are multivariate normal random variables 

[I] [2], with distribution parameters dependent on the respective label a.ssignment x,. The 

analysis is best illustrated through the following example. 

LetX,,,= (x ,,..., x,=l,xm+,=l,..., x,) andX,,=(x, ,..., xm=l,x,,,=-1 ,..., x,), with 

the task being to determine which of the two label assignments is tlhe more accurate 

labeling, given the multivariate data Y on the scene. (x,, x,+,) may be viewed as a link in 

the 2xN model, in the sense of Section 4.2. The goal of the analysis is the determination 



of the scene classification/configuration X that is the best fit to the spectral data Y. 

Bayesian analysis [56] suggests that the decision should be made on the basis of the 

following decision rule - 

Xold 
P(X0, 9 Y) : P(XWW 3 Y ) .  (4.3) 

Xmw 

Here, P(X{,,, ,,,, Y)6 represents the joint probability of occurrence of th~e spectral data Y, 

and the corresponding classification X (the sub-script added as per r'equirement). The 

decision rule in expression 4.3 chooses the configuration that maximizes the respective 

probability of occurrence. The joint probabilities in expression 4.3 can be represented in 

terms of conditional probability distributions of IIX [57] (sub-script added as per 

requirement). The representation of the associated density functions is a:; p(IIX{o,d, 

Simplification of expression 4.3 yields 

Xold 

The above simplifications are based on the following assumptions - 

Given the labeling X1old,,w,, they, are multivariate Gaussian random variables. 

Given the labeling X{ol,new,, they, are statistically independent. 

The system state X,old,,w, has a Gibbsian distribution [16][9], a function of q and 

h. Thus, as in Equation 2.1 

Taking the natural logarithm on both sides of the above expression, the decision rule 

reduces to 

For ease of representation, no notational distinction is made between the random variable and its 
observation. 



-E(xold) + ~(Xne, ) + 1' 

Xnew 

Using AE to represent the difference in the 'energy' functions above, and r(*) for the 

remainder of the expression, the above decision rule is re-written as 

X0,d 
AE+r(Ym.Ym+1) : 0. (4.4) 

Xnew 

If q and h are known, AE can be computed by observations ol' the states of the 

neighbors to xm and xm+,(cf. Figure 3.7, and Section 4.2.2 for details). The function r(*) 

can be computed via the Gaussian assumption on the spectral data. Briefly, the 

classification analysis of spectral data using the schemes developed so far is as below: 

The binary image system (or scene-classification) is scanned in raster fashion. 

A 2xN chain is simulated on the initial classification map for the data, as in 

the illustration of Figure 4.5. 

The correlation C and magnetization M are estimated, and 'Tables 3.2-3 used 

to estimate the corresponding values of q and h for the system. 

An alternate configuration for the classification map is suggested by changing 

one or more element states in the analyzed pixel pair. 

The two choices of configurations are compared to obtain NZ using the values 

of q and h estimated earlier. 

The decision rule suggested by expression 4.4 is used to decide the best 

configuration. 

A critical deviation from the rule however, is that the probabilistic transition 

rule of [51] [52] is incorporated. This is required because the state space for 

all classification maps {X) is enormous, and an exhaustive search for the 

configuration that maximizes the probability P(X, Y) is impractical. The 

Monte Carlo method [48] [49] is invoked, and used in the manner of [14] [58]. 

It is believed that successive iterations in the implementation lead to the 

discovery of a (near-)optimal classification map for the system. [51] suggest 



that the change in link configuration be made with probability min(1, 

exp[-(fi+r(y, ,Y,+, I)]). 
The next section details the algorithm for implementation. 

4.3.2 Algorithm for implementation 

The estimation of distribution parameters (mean and covariance) is based on 

previous work by [18] and the Expectation Maximization (EM) algorithm7 [59] [60]. The 

details of that work will not be included here, but can be found as comments to the code 

for the implementation included in Appendix C. 

STEP 1. Input multispectral data Y, binary system labeling X. Y comprises data drawn 

from either one of two multivariate normal distributions. 

STEP 2. Using the class assignment to each element in Y, estimate mean and 

covariance for each of the said normal distributions using the EM algorithm. These 

are used to compute the r e )  function of expression 4.4. 

STEP 3. Measure the inter-pixel correlation, and magnetization of the system from X. 

Estimate q, h using Table 3.2. 

STEP 4. Select pixels in raster order. For each pixel: 

STEP 5. Construct a chain link as per the scheme of Section 4.22. 

STEP 6. Select a pair configuration different from the present one. 

STEP 7. Compute AE+r(*) as the link energy differential (refer expression 4.4). 

STEP 8. If the energy differential favors the new configuration (of lower 

energy), then enforce the new labeling on the link pair. Otllenvise, make the 

transition with a probability exp[-(AE+r(*))] [48] [51]. 

STEP 9. Repeat from STEP 2 until convergence is observed. 

The development of the 2xN model is justified by STEP 3. However, the above 

algorithm is of seemingly limited utility, given that most systems of interest in remote 

'Statistical analysis of remote sensing data centers on the accurate estimation of the contiitional 
distributions YJX. Under the Gaussian assumption, stated earlier, the estimation requires the computation of 
sample means, covariances for input to the analysis. The EM algorithm is used here in the manner of [60] 
[90] to improve the estimation accuracy. 



sensing data analysis are classified as multipolar (more than two classe:~) thematic maps. 

Given data Y with a multipolar labeling X, analysis may proceed in on'e of two ways - 

It could be surmised that one of the scene classes used in the labeling X ,  

possesses sub-classes, the knowledge of which would be informative (see the 

experiment on the HYDICE data in Section 4.5). In this case, all data labeled the 

class of interest is extracted as Y. This data can be labeled to one of two classes 

using a simple segmentation algorithm such as ISODATA [61] to provide a 

bipolar classification map X. 

In the other case, it could be observed that due to spectral similarity among the 

spectral signatures for two of the scene classes, there is significant confusion in 

the classification of the corresponding data. In this scenario, all data classified as 

either of the two classes can be extracted as Y, and the respective labelings 

retained as X for input to the algorithm. The experiment detailed in Section 4.5 on 

the D.C. flightline data uses this scheme to separate GRASS from TREES. 

Hence, given spectral data Y and an associated multipolar labeling X ,  Y c  and the 

corresponding bipolar labeling ~ c x a r e  obtained. These Y and X car1 now be used as 

input to the algorithm 



4.4 Rationale for Usage - An Experimental Evidence 

In this Section, the justification for the spatial-spectral scheme is presented via an 

experiment. In general, in the analysis of remote sensing data, it is hard to quantify 

improvements in accuracy in the absence of ground truth. To verify 1:hat the proposed 

technique is of practical worth, the following experiment was conducted. 

4.4.1 Experimental design 

Fix p, the dimension of the generated multivariate data. 

Fix q as a vector of size p, and all elements equal to 100. 

Fix I,, as the pxp identity matrix. 

Generate 10,000 data as a sample from a multivariate Gaussian process [62] with 

mean q, and covariance 100~Ipxp. These data will subsequently be referred to as 

Dl. 

Distribute the generated data on the top half of a 400x500 1attic:e - i.e. to each of 

the 10,000 elements in Dl assign a distinct location on the top half of the lattice. 

Generate 10,000 data as a sample from a multivariate Gaussian process [62] with 

mean q, and covariance 400.1pxp. These data will subsequently be referred to as 

D2. 

Distribute D, on the bottom half of the 400x500 lattice. 

If Dl and D, are labeled classes I and I1 respectively, a visual representation of the class 

distribution on the lattice is the black and white image in Figure 4.11. This classification 

map however, is hidden and must be inferred from the p dimensional data on the image. 

A representation of the data for p=2 is shown as a two color scatter plot in Figure 4.12. 

Note that Dl, on account of the smaller variance per channel, has a lesser spread than D, 

across the plot. 



0 Class I 
Class I1 

Fig. 4.11: Pictorial representation of class-label assignment for designed data. 

20 1 I 
20 40 60 80  100 120 140 160 180 

Fig. 4.12: (For p=2) Scatter plot for Dl (as red triangles) and D, (as black dots). 



The above presentation is an idealized representation of most applications in 

remote sensing data analysis. However, due to knowledge of the underlying class- 

conditioned distributions in this experiment, it is possible to compute the performance 

bound for conventional analysis of the data. 

Since the two scene classes are equally likely (by construc:tion), the Bayes 

decision rule 1561 for classification of the data is obtained - 

Here, y is the p-dimensioned data on the element to be classified, and 77 is the mean, as 

designed for the experiment. Statistically, the Bayes rule designed above is the best 

possible decision rule for the separation of the data into the two underlying classes. The 

corresponding errors in classification can be computed as 

c: = ~ r ( 1 . 5 ~ :  + pln2 > 0), 

4:: = ~ r ( 0 . 3 7 5 ~ :  + pln 2 < 0). 

xp2 is the Chi-squared random variable, with p degrees of freedom. 

In Equations 4.5-6 Pb, is the proportion of D, that were wrongly identified in the mixture 

of D, and D,. Likewise, P,; is the proportion of D, in the mixture that were misclassified. 

P,z8 is the Bayes error in the analysis, averaged from P,', and as; in Equation 4.6. 

These errors can be analytically computed. Table 4.2 lists the Bayes e~rors over a range 

of data-dimensions p. Note that the error decreases with increase in p. 

Next, fifteen sets of test data are generated for each of several selection!; of p in the range 

2-15. The analysis scheme of Section 4.3 using the 2xN model is implemented. Since the 

underlying classification map is known (by design), the error in classification can be 

obtained for each analysis output. For every selection of p, the fifteen values of obtained 

classification-error are averaged and tabulated in Table 4.2 under 'Experimental error'. 

The results of Table 4.2 are also plotted in Figure 4.13. 



Table 4.2 
Tabulation of classification performance of proposed algorithm on simulated data, with 

corresponding values of theoretical Bayes error listed alongside for comparison. 



Average classification error in separation of 
designed data 

2 4 6 8 10 12 14 

Dimension p 

Fig. 4.13: Classification performance on experimental data. 'Bayes error' plots the 
theoretical best-case performance of analysis without use of spatial information. 

'Experimental error' plots the results for the classification performance, averaged over 15 
test runs for select values of p, for analysis using the 2xN lattice model. 



4.4.2 Results interpretation 

Theoretically, it is not possible to do better than the result predicted by the Bayes 

decision rule of Equation 4.3 - if each element is classified solely on the basis of the 

associated multispectral data. However, from Figure 4.13 it is evident that the use of the 

2xN model is an improvement over conventional classification analysis. 

It can be concluded that the improvement is a result of the spatial adjacrency information 

incorporated with the 2xN model. Logically, the decision should favor classification that 

is consistent with the labeling of the pixel's neighbors; i.e. if a given pixel has 

neighboring pixels that are labeled (say) Class I, there is a high likelihood the identified 

pixel should be labeled Class I as well. The decision rule should thus be biased in favor 

of labeling a pixel the same as its neighbor(s). This is precisely the notj.on of the prior in 

Bayesian analysis and the 2xN model is used to compute the magnitudle of the bias. The 

discussion in this section attempts to estimate the improvement in the classification as a 

function of the pixel correlation in the image. 

For ease of notation, the following presentation fixes the dimensionality of the 

data as p=2. Figure 4.14 plots the probability density functions for eac.h of the operands 

in the decision rules of Equations 4.5. Note that - 

f-r 1 plots the density function for r,=1.5~:+ 21n 2. 

f-r2 plots the density function for r,=0.375~;+ 21n 2. 

The density function plots intersect at the decision threshold :zero. 

The area under f-r2 to the left of the decision threshold is ~,,,"(=0.371). 

The area under f-rl to the right of the threshold is ~,,'(=0.156). 
I The 'Bayes error' entry in Table 4.2 for p=2 is the average: of P,, and P,," 

(=0.264). 



Probability densities for decision functions 
in Equations 4.5 for p=2. 

Fig. 4.14: Plots for the probability density functions for the operands of the decision rules 
in Equations 4.5, forp=2. 



Recall the Bayes decision rule for separating the designed data. 

The incorporation of the spatial model biases the decision rule8 as below. 

The sign of the bias depends on the label of the pixel's neighbor. The magnitude of the 

bias in the decision rule reflects the amount the computed statistic should be altered to 

incorporate information on the examined pixel's neighborhood. For instance, if the two 

neighbors of the examined element are labeled as Class I1 (belonging to D,), the decision 

rule will be biased by +2q favoring a classification as Class 11. Expressiton 4.7 is however 

an idealized case in which both neighbors of the analyzed element are labeled the same. 

For the given data, the q for the black and white image of Figure 4.11 is 1.44 (cf. 

Appendix A.7). The effect on the corresponding class conditioned distributions is a 

lateral shift, of magnitude 2q, away from the decision threshold, zero. 

Note that the direction of the shift depends on the class assignment to the 

neighbors of the examined pixel. For instance, in the ideal case, any pi.~el in the top half 

of the image lattice will have neighbors classified as 'white' (Figure 4..11). However, in 

practice, the classification map can be corrupted and mislabeled data can lead to an 

inaccurate bias. In other words, if the said pixel, in the top half of the lattice, has 

neighbors (mis-)classified as 'black', the decision rule will be biasled incorrectly in 

labeling the analyzed data-element as 'black'. If the neighborhood is an inaccurate bias to 

the pixel's identification, the shift will corrupt the classification significantly. This point 

will be illustrated with the help of Figures 4.15-16. Recall that X: represents a random 

variable with the Chi-squared distribution, with two degrees of freedom. 

Some comments on Figure 4.15 are listed below. 

The bias corresponds to the AE term as presented in expression 4.4. In this case, the: neighborhood of the 
examined element is assumed to be labeled the same, and the total bias is +2q (refer to Figure 4.7 for an 
example of hE computation). Note also, that h is assumed to be zero in this case, on account of equal 
distribution of the two classes. 



The plots show density function plots for 1.5~,2+ 21n 2, 1.5~,2+ 21n 2+29, and 

1.5~,2+ 21n 2-29, according to the bias applied to the decision rule. 

The error in classification of D, for each of the biasing schemes is the area 

under the curve to the right of the decision threshold (=O). 

Clearly, the best performance is observed for the bias -29, which, as per 

expression 4.7, reflects the neighborhood of the examined element being 

populated by Class I data. 

If the neighborhood is incorrectly labeled, the penalty of t:he wrong bias is 

severe - note the error under the density function for l.5x2;'+21n 2+29 to the 

right of the decision threshold. 

Probability densities for decision functions r(y) to identify 
Class I data (p=2). 

Bias -29 

Bias 0 

Bias +29 

Fig. 4.15: Density function plots for 1.5~,2+ 21n 2 + (0, -29,291. Note that the area under 
the curves to the right of the decision threshold (shown as the vertical line) corresponds 

to the respective errors in classification of the data D,. 



Some comments on Figure 4.16 are as below. 

The plots show density function plots for 0.375~,2+ 21n 2, 0.375~,2+ 21n 2+2q, and 

0.375~,2+ 21n 2-2q, according to the bias applied to the decision rule. 

The error in classification of D, for each of the biasing schemes is the area under the 

curve to the left of the decision threshold (=O). 

Clearly, the best performance is observed for the bias +2q, which, as per Equation 4.7, 

reflects the neighborhood of the examined element being populated by Class I1 data. 

If the neighborhood is incorrectly labeled, the penalty of the wrong bias is severe - note 

.the error under the density function for 0.375~,2+ 21n 2-2q to the left of the decision 

threshold. 

Probability densities for decision functions r(y) to identify 
Class I1 data (p=2). 

Fig. 4.16: Density function plots for 0.375~,2+ 21n 2 + (0, -2q, 2q}. Note that the area 
under the curves to the left of the decision threshold (shown as the vertical line) 

corresponds to the respective error in classification of the data D,. 



As has been pointed out, there is a heavy penalty for an incorrect bias;. In general, it is 

believed that a neighborhood is strongly representative of the elemental classification. 

Additionally, if the correlation in the image is small, i.e. the image is highly granular and 

the possibilities of incorrect biasing is high, then the q is small; thus the bias-induced 

error is small as well. 

The remainder of this section attempts an analytical modeling of the performance 

of the proposed algorithm, on the designed data, as listed in Table 4.2. 

Figures 4.15-16 and the associated explanations have demonstrated that 

classification error over the designed data is a function of the bias appli'ed to the decision 

rule. The proposed algorithm incorporates spatial information on the c:lassification map 

and thus improves on the conventional analysis (as indicated by the entries under Bayes 

error in Table 4.2). However, it is also evident from Figures 4.15-16 that an incorrect bias 

can severely deteriorate performance. In general, the neighborhood labeling is a correct 

indicator of a pixel's classification; and thus the overall performance: of the proposed 

scheme is improved. In modeling the classification accuracy of the proposed algorithm, 

the incorrect biasing has to be incorporated into the calculatior~s. Consider the 

classification map below. 
# * ' .I 

0 Class I 
* .  

Class I1 . 
" I  

Fig. 4.17: A sample classification output of the proposed algorithm implemented on the 
designed data. 

The classification error in the output above, manifest as 'speckle', has a direct role 

in classification performance of the algorithm. The speckle errors in the classification 

map induce incorrect biases that lead to further deterioration in performance. 



Consider Table 4.3, presented below, in the context of the fifteen test runs of the 

proposed algorithm on the designed data for different values of dimensionality p. 

The dimensionality of the designed data for each set of experiments is entered 

under p. 

Given the fifteen sets of data available for each selected p, the listed values of 

scene correlation (C) are averaged over the observed correlation-values of the 

respective outputs. 

Table 3.1 is used to estimate q mapped by the C obtained as above (h  is 

assumed to be zero). 

The estimated values of q are used to bias the relevant decision functions - 

r,=1.5~:+ p In 2, and r2=0.375xP2+ p In 2 

Errors in classifying D, using the decision rule r, using the biases from {0, 2q, 
I -2q) are entered under the corresponding columns for Pew.  

Errors in classifying D2 using the decision rule r2 using the biases from {O,2q, 
I1 -2q) are entered under the corresponding columns for Pew . 

Table 4.3 
Listing of experimental readings of scene correlation C (each averaged over fifteen 
iterations), respective estimates of q, and classification errors for different biasing 

schemes, for select values of p. 

Given the nature of the (hidden) ideal classification map of the designed data, the 

performance of the algorithm can be adequately modeled by consideri~ig a vertical two- 

pixel wide strip representative of the image. Consider Figure 4.18 for the ideal 



classification map, and a sample representation of the algorithm output (with 

misclassifications). 

map (desired output). 

from algorithm 
implementation. 

Neighborhood 
with good bias 

Neighborhood 
with bad bias. 

Neighborhood 
with null bias 

Fig. 4.18: Illustration of the influence of the neighborhood in biasing the decision rule. 

Note that scene correlation is a function of transitions observed jn a sample of the 

image. For the designed 100x100 image, the number of transitions or flip-count can be 

calculated from the observed scene correlation as (refer Appendix A.7 for details) 

flip - count = round[2 99 (1 - correlation)]. 

Based on this estimate, the error can be apportioned to the good--bias, the no-bias, 

and the bad-bias decision functions. The rule designed for the distribution takes the 

following logic - 

For the ideal classification, the pixels running horizontally along the center of 

the image receive no bias. The proportion of the pixels in the image that 

receive bias is thus, 98%. 

There are 2.99 - 1 potential transitions in the vertical strip a hundred pixels 

long. Of these, the ideal classification map sees a single transition, for the 

designed experiment. 



Every misclassification results in two flip-counts. 

Thus we have 

'bad-ratio' is the proportion in the 98% of the pixels that receive bias, that have 

'bad' neighborhoods on account of misclassifications and receive biases in the 

wrong direction. good-ratio=l-bad-ratio, and its definition follows a similar 

logic. 

Thus estimated-Per,' is calculated as 

0.98*(good-ratio*P,r,'~with~good~bias+bad-ratio*P,r~~with~bad~bias) 

+ 0.02*~,,'-with-no-bias. 

The values of P,,'for the respective biases can be read from Table 4.3. 

P,," can be estimated using an argument parallel to the above. 

Consider an example for p=2. The observed correlation (averaged over 15 test 

runs) is 0.765. The number of transitions, or the flip-count', is estimated as 47, and the 

corresponding bad-ratio is approximately 11.7%. It is estimated that in identifying 98% 

of the Class I data (corresponding to the non-transition pixels), the bias is good for 

approximately (100-11.7)=88.3%, and bad for the remaining 11.7%. ;!% of the Class I 

data receive no bias at all. 
I Then the entry for p=2 for the P,,, using the values from Table 4.3, can be re- 

calculated as 

0.98 (0.883 0.0274 + 0.1 17 0.8866) + 0.02 0.1564 == 0.1283. 

The remainder of Table 4.4 is computed in a similar fashion. 

Admittedly, the development above is a conjecture. However, the algorithm 

performance does depend on the biasing scheme. The magnitude and sign of the biasing 

depends on the classification output itself. The above heuristics attempt to relate the 

accuracy with the correlation observed for the output image. The results of Table 4.4 

have been plotted in Figure 4.19, and appear consistent with the experimental 

observations on classification performance. 



Table 4.4 
Predicted error in separation of the designed data, as a function of observed scene 

correlation C. 

I p ( C ( 'flip' count I Error prediction 

Average error in designed experiment - Experimental 
observation, and analytical prediction 

I e Pred. ~ r r o r l  

Dimension p 

Fig. 4.19: Plot of classification errors in separation of designed data - ex:perimental values 
and analytical predictions. 



4.5 Experiments on Remote Sensing Data 

The scheme is implemented on two sets of data. In this section, emphasis will be 

laid on illustration of the concept. Part Two of this dissertation comprises a 

comprehensive analysis of one of the datasets (the D.C. flightline) presented here, and the 

results shown here, will be presented again with more procedural d.etai1, and with a 

quantitative assessment. 

4.5.1 DC flightline data 

The data was collected for a flightline over the Washington D.C. mall. The 

HYDICE scanner was used, and spectral data was collected over 210 channels (0.4-2.4 

ym.). The data was rectified at the School of Civil Engineering, Purdue University before 

being made available for research. The rectified data comprised 1,310 rows and 265 

columns of (=347,150 data elements). A three color representation of the data is shown in 

Figure 4.20. Training data was compiled on the data [63], as in Figure 4.21 and 

maximum likelihood classification was carried out. The classification yielded a result that 

had confusion among classes GRASS (or LAWN) and TREES, as observed in Figure 4.22. 

Since the proposed algorithm operates only on a binary system, the implementation 

isolated the data with the target class-labels (LAWN and TREES) for segmentation as in 

Figure 4.23. The segmentation results are shown in Figure 4.24. The text output of the 

program is included as Figure 4.25 to illustrate the convergence of the algorithm. 





Fig. 4.22: Representation of classification output using training data shown in Figure 4.21. Note the 
confusion in distinguishing GRASS (in light green) from TREES (in dark green) in the section at the far right. 

Fig. 4.23: Representation of data isolated as either class LAWN or TREES (in green) as produced in 
the hierarchical scheme of analysis. 



Fig. 4.24: Output of the spectral-spatial scheme with the 2xN model used for the separation of 
classes LAWN and TREES. 



Enter data-file name : DC1-63.32D 
Enter clus-file name : NODE2.GIS 
Enter number of rows : 265 
Enter number of cols : 1310 
Enter number of data : 347150 
Enter number of dims : 32 
Enter number of features extracted : 32 
Enter number of iterations : 8 
Enter number of classes : 9 
Enter i/p datatype ASCII (0) or Binary (1) : 1 
Enter class number left unmasked (1 - 9) , 0 to terminate: 1 
Enter class number left unmasked (1 - 9) , 0 to terminate: 3 
Enter class number left unmasked (1 - 9) , 0 to terminate: 0 

xxxxxxx binary .pgm file 0UT.mask created xxxxxx 
Total number of data left unmasked is 185638 

xxxxxxx binary .pgm file 0UT.cl created xxxxxx 
Flag 1 :All OK . . .  

k-stat : 0.857 -> q : 0.728 
mag : -0.034 -> h : -0.002 

Flag 2 :All OK . . . 
k-stat : 0.860 -> q : 0.730 

mag : 0.078 -> h : 0.005 
Flag 3 :All OK . . . 

k-stat : 0.861 -> q : 0.731 
mag : 0.078 -> h : 0.005 

Flag 4 :All OK . . .  
k-stat : 0.861 -> q : 0.730 

mag : 0.079 -> h : 0.005 
Flag 5 :All OK . . .  

k-stat : 0.861 -> q : 0.730 
mag : 0.081 -> h : 0.005 

Flag 6 :All OK . . .  
k-stat : 0.860 -> q : 0.730 

mag : 0.082 -> h : 0.005 
Flag 7 :All OK . . .  

k-stat : 0.860 -> q : 0.730 
mag : 0.082 -> h : 0.005 

Flag 8 :All OK . . .  
k-stat : 0.860 -> q : 0.730 

mag : 0.083 -> h : 0.005 

I xxxxxxx binary .pgm file 0UT.cap created xxxxxx I 
xxxxxxx binary .pqm file 0UT.comp created xxxxxx I 

Fig. 4.25: Text output of program implementing the proposed scheme for spectral-spatial 
analysis on the DC data. The algorithm is presumed to have converged when successive 

iterations return little or no change in estimated values of q and h. 



4.5.2 Forest data 

This data was also collected using a HYDICE scanner over 210 spectral channels. 

However, for the purpose of this analysis, only six channels were chosen for post- 

processing of the initial classification obtained by [64]. A 200x200 section of the data 

was selected, and the class SHADOW as identified through maximum likelihood 

classification (cf. Figures 4.26-27) was segmented into two distinct classes. The results of 

the experiment are shown in Figure 4.28. Of note is the discovery that the class SHADOW 

in the original segmentation actually comprises two spectrally distinct sub-classes - 

corresponding to shadows cast by trees on grass, and shadows cast by trees on other trees. 

The text output of the program is included in Figure 4.29. 

Groups 
D* 
rn Grass1 

E'ath 
Grass2 

eslD Grass3 
D- 

Fig. 4.26: Representation of maximum likelihood classification output of analysis on 
Forest data [64]. 



Fig. 4.27: Class SHADOW isolated from the output in Figure 4.26 

Fig. 4.28: Segmentation of the isolated class SHADOW from Figure 4.27' into sub-classes 
using the spectral-spatial analysis. The separation into distinct sub-classes highlights the 

distinction between shadow-on-grass and shadow-on-trees. 



Enter data-file name : HDC-data 
Enter clus-file name : HDC-clus 
Enter number of rows : 200 
Enter number of cols : 200 
Enter number of data : 40000 
Enter number of dims : 6 
Enter number of classes : 9 
Enter number of iters : 10 
Enter choice - Regular (0) or Advanced (1) : 1 
Enter i/p datatype ASCII (0) or Binary (1) : 0 
Enter class selection (1 - 9) : 2 
Select another class, or 0 to ignore : 0 

xxxxxxx binary .pgm file 0UT.mask created xxxxxx 
Total number of data left unmasked is 4855 

xxxxxxx binary .pgm file OUT.cl 
Flag 1 : ALL OK ... 

k-stat : 0.754 -> q : 
mag : 0.000 ->  h : 

Flag 2 : ALL OK . . .  
k-stat : 0.895 -> q : 

mag : 0.172 -> h : 
Flag 3 : ALL OK ... 

k-stat : 0.930 -> q : 

mag : 0.212 ->  h : 
Flag 4 : ALL OK . . .  

k-stat : 0.945 -> q : 
mag : 0.227 ->  h : 

Flag 5 : ALL OK . . .  
k-stat : 0.953 -> q : 

mag : 0.239 ->  h : 
Flag 6 : ALL OK ... 

k-stat : 0.956 -> q : 
mag : 0.249 ->  h : 

Flag 7 : ALL OK ... 
k-stat : 0.959 -> q : 

mag : 0.262 ->  h : 
Flag 8 : ALL OK ... 

k-stat : 0.961 -> q : 
mag : 0.264 ->  h : 

Flag 9 : ALL OK . . .  
k-stat : 0.961 -> q : 

mag : 0.268 -> h : 

created xxxxxx 

xxxxxxx binary .pgm file 0UT.cap created xxxxxx 
xxxxxxx binary .pgm file 0UT.comp created xxxxxx 

Fig. 4.29: Text output of program implementing the proposed scheme for spectral-spatial 
analysis on the Forest data. The algorithm is presumed to have con-verged when 

successive iterations return little or no change in estimated values of q and h. 



PART TWO 





5. INTERPRETING REMOTE SENSING DATA 

Part Two of this dissertation proposes a process model for the analysis of remote 

sensing data. If the input to the analysis is scanner data, and the output is knowledge - the 

key to a successful extraction of knowledge from the data is information provided by the 

analyst. As an example, the visual representation of satellite data provides insights into 

the data that are invaluable to hyperspectral analysis [2]. While the design of such 

analyses may appear task specific, it is believed that the analytical process possesses an 

unchanging modular structure that can be framed as a model. The elaboration of this 

model is the goal of this work. 

In the above context, the analyst is considered a source of data, and the process of 

analysis is a data fusion. The phrase 'data fusion' has been interpreted differently in 

different research. For the present discussion, the definition by Wald [h5] is highlighted 

below as being of greatest relevance - 

". . . data fusion is a formal framework in which are expressed means and tools for 

the alliance of data originating from different sources". 

Finally, it should be noted that the ensuing discussion does not attempt a design of 

leaminglintelligent algorithms. The emphasis lies on the development of a synergy 

between the human and the computer, with a judicious utilization of the strengths of the 

respective sources in the analysis. 

Sections 5.2-3 discuss a process model for the analysis of remote sensing data, 

and Chapter 6 presents a case study incorporating the model. The data used in the 

analysis is the D.C. data-set of Section 4.5.1, and the task is that of the classification of 

the data into the relevant scene-classes. 

5.1 Previous Work 

In the context of remote sensing analysis, data fusion is probably most commonly 

encountered as sensor fusion - the combination of data from various scanner-sources over 



a given scene. This may be attributed to the tendencies of various remote sensing 

consortia around the world to emphasize scanner technologies of relevance to their 

respective needs and geographical locations. For example, the French Satellite Pour 1' 

Observation de la Terre (SPOT) has high-resolution panchromatic scanners, the Canadian 

RadarSat gathers data in the microwave region, and the U.S. Landsat carries the 

Multispectral Scanner (MSS) that emphasizes the visible and near infra-red regions of the 

spectrum [I]. While the respective scanners have attributes peculiar to their usage, there 

has been considerable interest in the fusion of their outputs. F'or instance, the 

panchromatic data is usually gathered at a high resolution, and it is possible to carry out a 

filtering operation to obtain the high spatial frequency characteristics in the image. If this 

information is coupled with that obtained from multispectral data, the analyst can obtain a 

clear demarcation of objects in the scene that comprise spectrally similar pixels. Such an 

approach yields results that have ready visual interpretation, cf. [66] [67]. Further 

enhancements to this approach to sensor fusion have been developed using the Wavelet 

transform [68] [69]. 

Another route to data fusion is that of 'combination of perspectives'. In other 

words, the interpretations of the scene produced by different models are merged to yield a 

composite that is presumed to be more robust against sensor noise or algorithmic 

deficiencies. Representative work in this direction is that of [70] via decision trees, and 

that of [71] via genetic algorithms. [72] regard such a design as a fusion of concepts, and 

present a theory for the combination of N-learners fusion. 

Data fusion has also been discussed at various abstract levels. Consider the 

distinction between computer-based analysis and human thinking at the logical level. 

While computer programs process information with binary (Yes or No) logic, human 

decision-making employs various degrees of belief. Mathematical research in modeling 

the latter has led to various theories on measures of belief. Some examples are the 

Dempster-Shafer evidence theory, and fuzzy logic theory. Bloch [73] has conducted a 

review of these in the context of data fusion. 

Perhaps the best example of data fusion in everyday life is human reasoning. The 

ability of the human to process diverse data into coherent decision-making is remarkable. 

Consequently several researchers have devoted energies to the modeling of systems that 



copy human thinking for 'intelligent' decision making. However, even before an 

intelligent solution can be designed, the problem and the data have to be represented in 

forms suitable for analysis. This is not a trivial task. Some research of relevance are [74] 

[75] [76]. [77] discuss fusion at the query level, and use logical operators for the fusion. 

Although the experimentation does not appear directly relevant to the analysis of 

remotely sensed data, such research is important in that it reveals the thinking of the 

human in the dissection of a problem and the design of its solution. 

As opposed to the design of intelligent algorithms in data fusion, some recent 

work has focused on developing process models that can guide analysis. The philosophy 

of this approach is well described in a work by [78] in the context of military strategizing. 

The paper highlights the division of responsibilities between person and machine. The 

authors state that the task of making tactical decisions in naval operations is too complex 

to be accomplished by humans alone or by computers alone, ancl present several 

examples in support of the statement. They claim that the human uses judgment and 

native intuition to make decisions, whereas the assessment of the physics of the situation 

is a highly mathematical endeavor best left to the computer. 

A fairly comprehensive discussion of the process model for data fusion is 

contained in various articles in the January 1997 issue of the Proceedings of the IEEE. 

Some notable research is described here. [79] present an overview of the subject, discuss 

potential applications and present a taxonomy; [80] presents various fusion architectures 

classified on the basis of I/O and variants thereof; [81] takes the perspec:tive of a database 

specialist, and discusses the role of database management in data fusion. [82] summarizes 

these works and also presents a probability scheme for weighting the distributed outputs 

from various decisions for combination into a single composite decision. While such 

discussions are valuable, they are incomplete for want of definitive examples 

demonstrating the theory. The omissions are probably not accidental on account that most 

of the represented research is supported by United States defence organizations. In this 

regard, the research presented in this dissertation is an important contntbution in that the 

process model is justified by its successful application to a practical problem in remote 

sensing data analysis. 



The May 1999 issue of the IEEE Transactions on Geoscience and Remote 

Sensing is devoted exclusively to research on practical implementatioins of data fusion. 

Of special note is the work of [83] for cartographic feature extraction. 'The methodology 

and the principles guiding the analysis are similar to those for the case study elaborated in 

Chapter 6 .  

5.2 Principles of Data Fusion 

The motivation for instituting a set of rules for remote sensing data analysis stems 

from the highly complex and dynamic nature of the scene whose understanding is desired 

- the Earth's surface. Laboratory models for terrestrial phenomena are usually successful 

only to the extent of the span of a very limited set of observations. The ability of the 

human to learn and adapt analysis to the peculiarities of the problem, is thus invaluable. 

The elaboration of a few, basic principles of data fusion is intended to guide analysis, and 

maximize the benefit of human-machine interaction. 

On the other hand, mathematical modeling on the computei- serves a useful 

purpose, in that the system dynamics can be reduced to the manipulation of a few 

parameters. If applicable, the complexity of the ensuing analysis can be significantly 

reduced, and thus be appropriated by the user into a suite of analysis-routines. The latter 

point is emphasized since the complexity of the processing algorithm and the associated 

performance has to be balanced by the algorithm's understanding and ;icceptance by the 

user. The conclusion being that, when optimizing human-machine interaction, 

ergonomics should be a design consideration. 

Axiom 5.1: Human abilities are different from those of the computer. 

Consider Table 5.1 overleaf, adapted from Schniederman [84]. 



Table 5.1 
The human versus the computer in data analysis. 

Human 

1 adapt decisions to unusual I programmed actions. I 

Computer 7 
Can draw upon experience and 

1 phenomena. I I 

Can perform repetitive pre- 1 

I Output depends on goal I Output conforms to doctrines and I 

Can reason inductively, and process 

hierarchically. 

Can generalize from observations 

1 interpretation. I performance indices - as determined by / 

Can process several items 

simultaneously. 

Can implement the 

I I goal interpretation. I 

computation, and cheap data storage. 2 
A source of datajinformation. 

The conclusion drawn from Table 5.1 is that the inferential aspects of the analysis 

are best relegated to the human. The computer's abilities lie in the implementation of the 

schemes (of analyst design). The goal of this work is not to devellop schemes that 

duplicate human behavior, but to identify rules the use of which optimizes machine- 

human interaction for superior performance in the task at hand. 

Has short response time, high speed of 1 

Axiom 5.2: The machine validates what the user suggests. 

In various applications, the output of the algorithm is a measure of belief in the 

hypothesis posed by the analyst. However, a poor output does not necessarily imply 

algorithmic deficiencies. Failure can be a result of the performance index being 

inadequate to the target task. An analysis is usually directed by the optimization of a user- 

defined performance measure. Incompatibility between this measure artd the objective is 

unlikely to produce the desired results. In regard to analyses that seek a visual 

interpretation of the data, this is an especially important (and often overlooked) issue. 

Algorithms that process data through the optimization of mathematical criteria are often 



sub-optimal in the sense that the output image is cluttered (or fuzzy or noisy) and is 

visually unpleasing. 

Axiom 5.3: Every analysis requires at least one revision. 

The current level of technology precludes the possibility of an iintelligent system 

that operates independent of human input. Usually, analysis colmprises various 

algorithmic 'objects', selected from a suite of procedures, linked in the appropriate 

sequence by the analyst. The optimal selection and ordering of these ol~jects is often not 

known. Occasionally, algorithm parameterization is also dependent on human input. It 

may thus be concluded that most any test run of the process is likely to produce results 

that can be improved upon through experimentation. 

It may also be inferred from the above axiom that a readily interpretable form for 

the application output is highly desirable. 

Definition 5.4: Data fusion is an interface that allows collaboration among data sources to 

execute an analysis, enabling an assessment that is superior to one in which the sources 

are incorporated singly. 

The above definition is an enhancement to the proposition of Willd [65] under the 

belief that definitions of the task and of the associated performance criterion are critical 

to the process of data fusion. 

At this point some examples of data fusion are considered. 

The Gaussian model: Multispectral data can be looked upon as measurements on 

different sensors mapped to disjoint frequency bands. An efficient procedure for 

analyzing such data is to apply the Gaussian assumption, and assume that each 

vector is an observation on a multivariate Gaussian process. Th'e vector elements 

can then be analyzed concurrently, and fusion is implicit. This model has been 

used successfully in various remote sensing data applications [35:1 [I]. 

Bootstrapped averaging (bagging): This technique has been popularized by 

Breiman [85]. Multiple bootstrap samples are drawn from the data, and a different 

model is constructed for each. The results are then combined by simple averaging. 



Decision tree classification: This is an intuitive, and highly popular, scheme for 

the classification of data [86:1 [42] in a hierarchical fashion. Every node of the tree 

is an analytical model that separates the input data into distinct clusters each of 

which form input data to nodes at the next level. The process is continued to the 

extent of separation desired. 

The following proposition is now stated without proof. 

Proposition 5.5: Data fusion can be performed pre- or post- analysis. Th~e performance of 

the former scheme, if implementable, exceeds that of the latter. 

Proposition 5.5 is an attempt at a taxonomy for data fusion algorithms. In the 

example of the Gaussian model, it is evident that fusion is taking place prior to analysis. 

Statistical analysis of multispectral data requires the computation of the mean and the 

covariance per scene-class [2]. The latter set of statistics is in fact, a quantitative 

representation of the interaction among data collected at different \wavelengths. The 

model is thus an example of data fusion, as achieved through the second order statistics. 

Of note is that the fusion is implicit in the input to the analysis. The class of schemes that 

achieve pre-analysis fusion do so through the assumption of a model that links the sensor 

data by an analytic process. Such schemes shall subsequently be referred to as CLASS I - 

see Figure 5.1. 

Source 1 Source 2 ] 7 

Analysis procedure 

Fig. 5.1: CLASS I fusion - Data fusion applied at the input level prior to analysis (e.g. 
Gaussian model, lattice model). 



The example of the 'bagging' [85] scheme is that of a post-analysis data fusion 

(henceforth referred to as a CLASS I1 type scheme) - see Figure 5.2. The data from various 

sensors are input separately to different analyses. The respective output,s are then merged 

separately as the next stage, to yield an output that is believed to be robust against data 

corruption and systemic errors. Herein lies another distinction from Class I type schemes 

in that the former class of analyses is geared towards improving classification accuracy as 

opposed to robust decision-making. Other examples of CLASS 11 data fusion are voting 

schemes and genetic algorithms. 

Fig. 5.2: CLASS I1 fusion - Data fusion applied post analysis at the output level (e.g. 
bootstrapped averaging [85]). Note that every 'procedure' block above, however 

primitive, is an example of a CLASS I fusion. 

Often, analysis is a combination of modules of the two classes of data fusion 

schemes. The complete analysis is thus a hybrid - see Figure 5.3 overleaf. A good 

example of such a hybrid scheme is the decision tree [41][42]. 

The claim that CLASS I fusion is superior to CLASS I1 fusion is a. conjecture based 

on experimental evidence. For instance, the statistical analysis of multispectral data can 

proceed without incorporation of covariance information, in which case, fusion occurs 

post-analysis. It is the use of second order statistics that elevates the ana.lysis to a CLASS I 

type fusion. Experiments by [87] have demonstrated that the usage of' class-covariance 

information can significantly improve hyperspectral analysis provided the statistics can 

be accurately estimated. 



I Source 1 I 

I Procedure 1 I 

Fig. 5.3: Hybrid scheme of data fusion with output of one level input to another (e.g. 
decision tree methodology). 



5.3 A Process Model 

DATA SOURCES 
Sensor data, human input, prior biases, etc. 

HYBRID FUSION 

Thematic map, crop yield, target identifiers, 

e.g. decision 
averaging, 
voting 
schemes. 

Fig. 5.4: Process model for remote sensing data analysis. 



The schema of Figure 5.4 is an intuitively designed procedural guide for data 

fusion. The modules of the schema are explained below. 

TASK DEFINITION - Every engineering problem can be designed a solution 

provided the task is well defined. A rigorous task definition enables a judicious 

selection of the data sources, and a design of the analysis procedure. 

DATA SOURCES - The data sources, though restricted by availability, need to be 

assessed for their utility towards the task at hand, and for the presence of noise. 

The 'scrubbing' stage, as discussed in data-mining [88] literature, is incorporated 

here. 

DATA ANALYSIS- The proposed definition of fusion encompasses all techniques of 

data assessment. Given the task, a CLASS I fusion scheme is used to process the 

input data, and condense information that can be utilized in a CLASS I1 type 

mechanism. The complete structure is thus a hybrid, as per the discussion of the 

previous section. Design considerations include procedural robustness and a well- 

designed performance criterion (Axiom 5.2). 

OUTPUT - The output of the analysis needs to be readily interpretable by the 

analyst (Axiom 5.1). A visually accessible output is especially desirable. The case 

study presented in the next section will illustrate the value of image 

representations in remote sensing data analysis. 

TUNING - Finally, once the output has been assessed, the analyst proposes 

procedural modifications (Axiom 5.3) and redoes the process. 





6. A CASE STUDY - ANALYZING THE D.C. FLIGHTLINE 

The HYDICE scanner gathers data over 210 channels (samplings of the energy spectrum) 

for a region 1310 elements x 265 elements in size. It is believed that the scene is 

constituted of specific scene-classes (such as water, grass, trees, road etc.). The 

identification of a set of scene-classes that comprehensively describes the scene is central 

to this dicussion, and is one of the objectives of this analysis. The spectral data measures 

the energy reflected off the Earth's surface. Thus, it is believed that the spectral 

measurements on a portion of the Earth contain the information from which the 

corresponding terrain-type or land-usage can be identified. The analysis processes the 

available data and assigns a label, from the set of scene-classes, to each of the data. A 

color representation of the output is also known as a thematic map or a classification 

map, the colors used in the representation being a one-to-one map from the set of scene- 

classes. The task may also be viewed as data compression or as knowledge extraction 

from the spectral data. 

At this point, the process model of Section 6.2 is invoked to sketch the procedural design. 

DATA SOURCES - The primary source of data, other than the analyst, is the 

HYDICE scanner. An additional source of information is the Digital Elevation 

Map (DEM) of the scene. The DEM will be discussed later in Section 6.2.6 at the 

point of its usage. 

TASK DEFWITION - Before initiating the analysis, it is important to assess the task. 

The analysis requires the classification of the data into a set of scene-classes that, 

to the extent of the analyst's belief, spans the semantic content of the data. The 

given scene is of an urban nature, and one of the goals is the identification and 

demarcation of buildings in the scene. Given the aerial poirit of view of the 

remote sensing scanner, this goal may be re-stated as the demarcation of building 

roofs in the scene. A point of note is that data elements are better identified as 



rooftops through their functional usage in the scene rather than through the 

material used in their construction (cf. Section 6.2.6 on rooftop extraction). 

DATA ANALYSIS - The various modules available for this analysis are discussed 

individually in Section 6.1 - The Fusion Suite. 

OUTPLT - AS pointed out as an adjunct to Axiom 5.3, it is important to have an 

output that enables a quick and accurate assessment of the algorithm used in 

processing the data. (Past experience has shown Multispec [89] to be a software 

of immense utility in remote sensing data analysis, especially for data 

visualization.) 

TUNING - The tuning process is dependent on the stage at which the output is 

assessed. If the output is deemed to be deficient in a certain aspect, the analysis is 

modified appropriately and re-done. Alternately, a sub-routine may be custom 

designed to counter the problem. In general, it is believed that any engineering 

analysis requiring subjective evaluation can be solved to the extent desired, 

provided the terminal assessments can isolate the problem-spots for subsequent 

tuning. 

A sequential scheme of modular design will be used in the analysis. :Each stage in the 

analysis will be referred to as a node in the process-sequence. Human-computer 

interaction will be emphasized through the analysis, and the analysis at each node will 

depend on the subjective assessment of the output at the previous nocle. A quantitative 

assessment of the analysis will be presented in the synopsis of this chapter, Section 

6.2.12. 

6.1 The Fusion Suite 

The various modules/methodologies used in this analysis are described below. 

6.1.1 Maximum likelihood classification 

The technique comprises the identification of training data -- data representative of each 

of the classes in the set of scene-classes - followed by the construction of decision rules 

for the classification of the data. The analyst input to the algorithm is the identification of 

a comprehensive set of scene-classes, and the selection of training data. The algorithm 

assumes the spectral data are observations on Gaussian processes whose parameters may 



be estimated using the training data. For a given element, the desired output is the 

identification of the generating process, for each of the data. Mathematical details on the 

technique can be found in [56] [2] [I]. 

6.1.2 Unsupervised segmentation using the lattice model 

The technique was first presented in Chapter 4. For usage in this analysis, it is modified 

as per the discussion of Chapter 5. 

An implication of Proposition 5.5 is that a supervised scheme of classification is 

potentially superior to an unsupervised one. The presentation of Chapter 4 was of a latter 

kind, the only input to the algorithm being the identification of the class(es) to be 

separated. It is surmised that superior performance may be obtained by directing the 

segmentation - the statistics for the classes into which separation is desired can be 

estimated beforehand and input to the algorithm. This is done by manually marking out 

training data in the scene, representative of each of the separated classes. The updating of 

the statistics through the iterations of the algorithm proceeds via the EM algorithm, cf. 

[go]. 

6.1.3 Fusion - HYDICE data + Digital Elevation Map @EM) 

At a later stage, the HYDICE spectral data will be fused with the ele\ration map of the 

scene for the purpose of rooftop identification. While a Class I type fusion would be 

preferred, an appropriate design is not known. Consequently, a sequential Class I1 type 

(post-analysis) fusion is used. The method is presented in detail in Section 6.2.6. 

6.1.4 Decision tree (or graph) structure 

As per Axiom 5.3, it is believed that an acceptable solution does not take the form of a 

single algorithm. The optimal scheme for engineering a solution to the problem 

comprises an assessment-analysis cycle repeated as many times as desired. The analysis 

algorithm in each cycle can be modified as per the assessment of the previous stage. If 

the stages making up the final solution are laid out in the order of the:ir occurrence, the 

proposed solution takes the form of a directed graph. A representation of the solution is 

shown at the end of the chapter in Figure 6.28. 



6.1.5 Masking 

As per the decision tree structure, at the end of a stage in the process sequence, it may be 

realized that portions of the data are accurately identified, while others are in error. The 

masking module isolates the data in error for subsequent processing, and excludes the 

remainder of the scene from analysis at the next stage. The selected data are said to be 

'masked out' of the scene. Examples of the usage are in Section 6.2.3- Node 1 and Section 

6.2.4 - Node 2. 

6.1.6 Negative training 

If the analyst has sufficient knowledge of the scene, helshe can conclude that a given 

scene-class is localized to a specific area. In such a case, all data outside the area that are 

labeled that scene-class, can be claimed rnisclassified. These data are then labeled a class 

other than the one under analysis. The ensuing analysis uses a simple re-labeling scheme 

- the scene-class of greatest frequency in the eight-point neighborhood of the 

rnisclassified element is chosen as the new class, provided that the new labeling itself is 

not in error. This process is termed "Negative training", and has been used in Section 

6.2.7 - Node 5 and Section 6.2.8 - Nodes 6,7. 

6.2 D.C. Flightline Analysis 

6.2.1 Scrubbing - Removing bad data 

The 210 spectral channels9 of data need to be examined for conuptio~i. Experience has 

shown that data can be corrupted for various reasons. Judgment on the: data per spectral 

channel can be made by visually examining the output for each [89]. Some causes for 

data corruption are listed below, with examples presented on the next page as Figures 

6.1-2. 

Water absorption bands - an insufficient response over a given bandwidth. It can 

lead to an exaggerated sensitivity to sensor noise. 

 he channel number, as in this usage, signifies a specific wavelength at which the spectrum of energy 
reflected off the Earth has been sampled. Correspondingly, the 210 channels for the HYDICE scanner are 
representative of samples at 210 distinct wavelengths. 



Physical defects in scanner, such as scratches. 

Judgment on the data may be made by visually examining the output for each of the 

channels. Some examples of corrupted channels that were excluded fiom the data are 

shown in Figures 6.1-2. After excluding all such 'bad' data, 104 channels remained of the 

original 210 - Channels 55-100, 108, 113-132, 135, 152-164, 173, 180-201. 





6.2.2 Root Node - Statistical analysis 

A three-color representation of the multispectral data using channels 60, 17 and 

27 (data gathered at wavelengths 0.75p.111, 0.46pm and 0.5p.111 respectively) is shown in 

Figure 6.3. 

The foundation of this study is statistical hyperspectral analysis, as developed and 

refined over the years by various researchers [56II 1871 [35]. Fittingly, the output at this 

stage is called the Root Node. A potential analysis-route for the stage is 

Assessment of the data for an exhaustive list of scene-classes (Analyst 

dependent). 

Selection of training data representative of each of the scene-classes in the list 

compiled above (Analyst dependent). 

Feature selection/extraction from among the 104 spectral channels [87][56] 

(Computer implementation). 

Classification of data using the method of maximum likelihood (Computer 

implementation). 

In the current study, the Root Node comprised the identification of a comprehensive set 

of scene-classes {ROOF, ROAD, SHADOW, TREE, GRASS, WATER, PATH}, the selection of 

(training) data representative of each of the scene-classes, discriminant analysis feature 

extraction [56], and the construction of a maximum likelihood classifier using the 

selected training data. 

In the selection of training data representative of each of the classes, it was realized that 

some of the scene-classes (ROOF and ROAD) are a cumulative of several spectrally 

distinct sub-classes. Consequently, the set of scene-classes was enlarged to   ROOF^, 

ROOF2,  ROOF^,  ROOF^,  ROOF^,  ROOF^,  ROOF^, ROOFS, R0AD1,  ROAD^, SHADOW, TREE, 

GRASS, WATER, PATH}. Figure 6.4 is a representation of the associated training data. The 

results of the classification are shown in Figure 6.5. Note that the sub-classes of ROOF, 

and those of ROAD, have been merged into their respective groups. Subsequent 

representations of the output shall also not distinguish among the sub-classes. 





ROAD classified as 
ROOF + Speckle 
errors 

GRASS 
classified as 
TREE 

Fig. 6.5: Root Node - Scene classification obtained from the use of training data shown in 
Figure 6.4. Note that the sub-classes for each of ROOF and ROAD have been merged into the 

respective groups for the representation. Some of the undesirable elements of the output have 
been flagged above. For a subjective assessment, compare with Figure 6.3. 

WATER 
classified as 
SHADOW 

GRASS 
classified 
as PATH 

Speckle noise + 
ROAD classified as 
ROOF 



The errors in classification are surmised to be a result of spectral similarities among 

various groups of scene classes, namely - 

ROAD, ROOF and PATH; 

WATER and SHADOW; and 

TREE and GRASS. 

Other undesirable traits of the output include speckle classifications (such as isolated 

identifications of ROOF on roads, on account of traffic and debris). Since: the multispectral 

data has been gathered at a high resolution, a visual assessment of the output is a reliable 

means to guide analysis. 

A quantitative assessment of the output is possible, even in the absence of ground 'truth', 

and is presented in the synopsis of this study, Section 6.2.12. 

6.2.3 Node 1 - Separating WATER + SHADOW 

From the output at the Root Node, it is evident that spectral separation between 

WATER and SHADOW can be problematic. It is believed that this is a result of the energy 

absorption by water, which results in a spectral response that is similar (low in 

magnitude) to that of a SHADOW region. 

The tool used in the separation is the technique proposed in Part One, Chapter 4 

for segmentation of data, and presented in Section 6.1.2 as the segmentation module 

using the lattice model. 

It is believed that, though there is confusion in separating WATER from SHADOW, 

the separation of these from other classes is accurate, and complete. Thus, the masking 

scheme of Section 6.1.5 is applicable. 

All data corresponding to either WATER or SHADOW were masked out, and input 

to the segmentation module detailed in Section 6.1.2. The segmentation was initialized 

using class-statistics obtained using the training data identified in the top image in Figure 

6.6. The output of the segmentation is the lower image in Figure 6.6. 

Several experiments with the above scheme were conducted. In each case, the 

separation of class WATER from class SHADOW had some error. The output shown in 

Figure 6.5 was accepted as Node 1 of the process, with a resolution to the problem being 

postponed till a later stage (cf. Section 6.2.9 - Node 8). 





The imperfect analysis at Node 1 highlights a flaw in the segmentation 

algorithm. Recall from Chapter 4, that the lattice model uses neighborhood information 

to bias decisions. However, since the lattice model is applicable only to binary 

classification images, the masking scheme is needed (as discussed in Sections 4.3.2 and 

6.1.5) to isolate certain sections of the data. These data are presumed to comprise (at 

most) two scene-classes, and hence the corresponding classification map is binary. A 

fallout of the masking is that, since the masked spectral data occur as isolated clusters 

with little interaction, the neighborhood information on the data is depleted and the 

lattice model is inconsequential. The applicability of any another kind of segmentation 

scheme is moot, and will be discussed at the next stage, Node 2. 

6.2.4 Node 2 - Segmenting SHADOW 

As at the previous node, the segmentation module of Section 6.1.2 is used. In this 

case separation is desired among all data classified as SHADOW at Node 1 into the 

classes WATER and SHADOW. Figure 6.7 shows all the data identified as SHADOW at 

Node 1 masked out from the remainder. The data used for initializing the seed statistics 

of the output classes are also highlighted in Figure 6.7. The output of the algorithm is the 

lower image in Figure 6.7. 

The experiment was repeated several times. In each case, the performance of the 

algorithm was mediocre, as observed in the output shown in Figure 6.7. This may be 

expected because, even though SHADOW was originally defined as a scene class, it is 

distinguished largely through the low magnitude of its spectral response. In general, 

SHADOW is a composite of sub-classes comprising various low energy responses on 

diverse materials. The assumption of the unimodal Gaussian distribution for the class 

may be a poor modeling for this analysis. 

Though not essential, this output was retained for this study, and is referred to as 

Node 2 subsequently. 
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Fig. 6.7: Node 2 - Data corresponding to scene class SHADOW from Node 1 in Figure 6.6 were 
masked out, and segmented using the scheme incorporating the lattice model of Chapter 4. The 
seed statistics for each of the output classes are initialized using the training data identified in 
the top image (enclosed within black boxes for class SHADOW, and within red boxes for class 

WATER). 



6.2.5 Node 3 - Separating GRASS and TREE 

From the output at the Root Node, it is evident that though well separable, there 

are portions of the scene where there is confusion in classifying between GRASS and 

TREE. 

As before, the segmentation scheme of Section 6.1.2 is used. The top image in Figure 

6.8a shows the data for classes TREE and GRASS masked out from the remainder, along 

with the training data used to initialize the seed statistics. The output of the algorithm is 

the lower image in Figure 6.8a. Note that the separation between GRASS and TREE is 

cleaner, especially around the far right of the scene. Figure 6.8b highlights the 

improvement in the classification. 

This stage is subsequently referred to as Node 3. 
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6.2.6 Node 4 - Extracting rooftops 

One of the goals of this analysis is the extraction of roofs in the scene''. While 

the definition of a roof would generally imply "the cover of any building" [91.], such a 

classification is complicated to implement via spectral analysis. There is an immense 

diversity in the materials used in constructing rooftops, and consequently no single 

spectral response is representative of the class ROOF. At the Root Node, several spectral 

sub-classes of ROOF were identified and merged into one group at the end of the 

analysis. The elements identified as ROOF in Figure 6.5 can be masked from the 

remainder of the data to yield the image in Figure 6.9. Given multispectral data of the 

scene, in this way, it is possible to achieve good separation between the composite class 

ROOF and the other scene-classes. However, this is contingent upon the identification of 

a comprehensive list of ROOF sub-classes, and a well-executed selection of the 

respective training data. An alternate means for the analysis is proposed here based on 

the Digital Elevation Map @EM) of the scene. 

Each pixel in the DEM is representative of the elevation of the corresponding 

region on the ground. By definition, the information content of this data is directly 

relevant to the identification of rooftops in the scene. A grayscale representation of the 

DEM is shown in Figure 6.10. The lighter pixels in the image correspond to elements at 

higher elevations in the scene. 

'O The discussion of this section has also been published elsewhere [92]. 





The DEM provides information on the rise in elevation of a given area-element 

in relation to its neighbor. A gradient operator could be used on the data to identify 

changes in elevation, thereby locating building outlines. A Sobel gradient operator [93] 

was used on the DEM, and a threshold applied to the result to obtain the image of Figure 

6.1 1. 

Figures 6.9, 6.11 are considered representative outputs of the respective 

techniques for identifying roofs and are compared (cf. Figure 6.12): 

Spectral analysis focuses on pixel-wise identification of the class ROOF. Gradient 

operator based analysis identifies the building boundaries. In essence, the latter is 

a scheme to delineate building boundaries, while the other is a pixel 

classification scheme. 

The output in Figure 6.11 shows extremely thick boundaries to the buildings. 

While it is possible to thin the delineated scene objects by setting a higher 

threshold on the output of the gradient operator, this requires extensive analyst 

manipulation, and is inefficient. 

In general, spectral analysis is more robust over an extended scene. For instance, 

should the analyst note a different 'type' of building rooftop in isolation, the set 

of scene-classes can be enlarged and training data included appropriately. On the 

other hand, analysis of the DEM can be complicated by hilly terrain. In Figure 

6.10, note the rise to the Capitol Hill at the right end of the DEM. It is evident 

that this particular section has to be processed in isolation. 

In Figure 6.9 we can observe considerable speckle misclassifications in the 

output. In general there is some confusion in separating ROOF - class data from 

spectrally similar classes ROAD, PATH, and (to some extent) SHADOW. 

In highlighting the shortcomings of the respective analyses, it has been implicit that the 

problems associated with one technique can be alleviated through the use of the other. 



Fig. 6.1 1: Output of high-pass filtering (Sobel operator) the DEM. The outlined section in the image above is extracted and magnified 
in Figure 6.12 for a visual comparison with the output of Figure 6.9. - 

back! 
High. 

Fig. 6.12: Magnified sections from Figure 6.9 (left image above) and Figure 6.1 1 (right image above) for illustration of the differences 
in the techniques generating the respective images. 



The proposed solution takes the following route. The output at various stages of 

the process is displayed in Figures 6.13-15. 

- Given the disparity in the two types of the data, concurrent analysis is infeasible. A 

Class I1 type fusion, as per Section 5.2, is adopted. It is believed that all the rooftops 

in the flightline are contained in the classes ROAD, PATH, ROOF and SHADOW 

identified at the Root Node. The first step in the process is a masking operation on 

the four classes, excluding the remainder of the data from subsequent analysis. 

- Rooftop identification follows via a thresholding operation on the elevations of all 

data elements identified above. The procedure is designed as a Boolean-type 

operation in which all data (identified as one of the four classes listed above) below 

a certain elevation are said to be at ground level; the filtered data are thus identified 

as building-rooftops. 

- Since there is some amount of variation in scene elevation, the elevation threshold 

has to be locally determined. 

- The image is partitioned into several zones, regions of relatively unchanging terrain 

elevation. The identification of these zones is done manually by visually examining 

the DEM in Figure 6.10. Zone centroids are selected in the masked data, as shown in 

Figure 6.13. The respective zones can then be grown outwards from the centroids 

usng the 'city-block' distance metric". The zone for a given centroid comprises all 

pixels that are closer to it than any other centroid. The output of the zoning operation 

for this study is shown in Figure 6.14. 

- For each zone, the median elevation for the pixels classified as ROOF, ROAD, 

SHADOW or PATH is computed. In zones with an insufficient count of rooftop pixels, 

it is clear that threshold will be biased towards data at ground-elevations. The 

threshold for a given zone is thus chosen as the average of the median value and the 

elevation of the zone-centroid. Recall that the zone centroid is manually selected 

from inspection of Figure 6.3 as being a buildinglroof pixel. 

" The city-block distance metric [93] is commonly used in digital image processing applications to 
measure the distance between two pixels in an image. The distance is the sum of the differences among 
their respective horizontal and vertical coordinates. For example, the distance between the top right and 
the bottom left pixels in an image would be the sum of the image's height and width. 



- The thresholds, thus computed, were used to get the result shown in Figure 6.15. 

Note that the identified rooftops are color-coded by their respective zones. 

The result of the ROOF identification operation is assimilated with the results of 

Nodes 1-3 to yield the output displayed in Figure 6.16. Note that data that could not be 

identified as any in the original set of scene-classes is assigned the class ROOF-RESIDUE. 







6.2.7 Node 5 - Negative training on PATH 

Upon close examination of the output at Node 4, it is evident that speckle 

misclassifications compromise quality of the output. 

One way to overcome such errors is to forego the use of the spectral data 

completely in subsequent processing. The reason for this proposition is that spectral 

information may not necessarily reflect the target objective. For instance, spectral data on 

roads is 'corrupted' by presence of gravel, puddles, cars etc. While the statistical spectral 

classification is true to the data, the returned output is likely cluttered with speckle noise. 

To counter such problems, the analyst can make the judgment that a given scene-class is 

isolated to a certain portion of the scene. Figure 6.17 shows the localization of class PATH 

as a smeared region in the classification map from Node 4, and highlights the aberrations 

that are sought to be removed from the output. The Negative-Training module discussed 

previously is employed. The resultant output is displayed in Figure 6.18. It is 

subsequently referred to as Node 5. 





Fig. 6.18: Node 5 - The output of the 'negative training' procedure, as applied to the selected region of Figure 6.17 to clear clutter for 
class PATH. The re-assigned pixels are labeled to the scene class of most frequency in the respective eight point neighborhoods. 



6.2.8 Nodes 6,7 - Negative training on  WATER^, WATER 

At this point, it is desired to remove all erroneous classifications of data as Water 

(or Water2) from the classification map. The Negative Training module is used for the 

purpose, and the process is illustrated in Figures 6.19 through 6.21. 

As in the previous section, it is surmised that the analyst possesses correct 

information on the locations of water bodies in the scene. As before, such regions 

containing all  WATER^ pixels are identified, as in Figure 6.19, and the Negative- 

Training module is implemented. The output, Node 6, is displayed in Figure 6.20. 

The above process is repeated for the class WATER. (Recall that the development 

for Node 2 had yielded a second WATER class). The input information and the results are 

shown in Figures 6.21-22. The output in Figure 6.22 is Node 7 in the process schema. 
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Fig. 6.20: Node 6 - The output of the negative training procedure, as applied to the selected region of Figure 6.19 to clear clutter for 
class  WATER^. The re-assigned pixels are labeled to the scene class of most frequency in the respective eight point neighborhoods. 
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Fig. 6.21: The incorrect identifications of class WATER occur as speckle, too small to be highlighted 
above. However, the smeared regions above are believed to contain all the data of class WATER. 

Fig. 6.22: Node 7 - The output of the negative training procedure, as applied to the selected region of 
Figure 6.21 to clear clutter for class WATER. The re-assigned pixels are labeled to the scene class of 

most frequency in the respective eight point neighborhoods. 



6.2.9 Node 8 - Re-assigning SHADOW (spectral method) 

In the discussion following Node 2, it was noted that distinguishing the class 

SHADOW from the remainder of the data is a difficult task. The original motive for 

identifying SHADOW in the data was to explain the low energy in the spectral readings 

over various portions of the image. Failure to do so had resulted in a poor statistical 

classification of the data. At this stage however, it was concluded that the class SHADOW 

was non-informative, and had to be removed from the set of scene classes. The 

maximum likelihood classification module was used to re-assign labels to all data that 

had been previously classified as SHADOW. The training data for the module were the 

remainder of the data in the scene, labeled as per the classification map at Node 1. The 

output of this process, displayed as the lower image in Figure 6.23, is Node 8. 
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Fig. 6.23: Node 8 - It is concluded that class SHADOW is noise that should be removed. The top image identifies some of the data 
identified as SHADOW. The lower image shows the output after re-assigning the SHADOW pixels to the spectrally closest scene-class 

(which is  WATER^ for most data). 



6.2.10 Node 9 - Negative training on classes WATER +  WATER^ 

As expected, on account of the high spectral similarity between the class 

SHADOW and  WATER^ (or WATER), most of the re-assigned data in Node 8 gets 

classified as WATER. As previously, these are assumed to be incompatible with the 

expected output, and removed using the negative training module. The result is Node 9, 

as shown in Figure 6.25. 
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6.2.11 Node 9b - Reassigning class SHADOW (spatial scheme) 

Instead of the scheme used at Nodes 8 and 9, it may be preferred that the re- 

assignment of the SHADOW pixels is done via a voting scheme on the labels of the 

respective eight point neighborhoods. This assures that the negative training on WATER, 

as per Node 8, is not required. The output is shown in Figure 6.26 as an alternate to Node 

9, and is referred to as Node 9b. 



Fig. 6.26: Node 9b - The output of the negative training procedure, as applied to the Node 7 output of Figure 6.22 to clear clutter for 
class  WATER^. The re-assigned pixels are labeled to the scene class of greatest spectral similarity. 



6.2.12 Synopsis 

Thus far, the assessments at each level in the process have been subjective. To further 

justify the development it is believed that a quantitative assessment of the techniques is 

needed. For this purpose, a set of test data were gathered by a researcher [94] with little 

knowledge of the analysis presented here. Representative samples of each scene-class 

were identified in the flightline. The performance of the scene segmentation at various 

nodes in the analysis can thus be measured as the accuracy of identification of the test 

data in the respective outputs. Figure 6.27 below is a representation of the identified test 

data. The classification performance at Node 9 is tabulated in Table 6.1. For 

comparison, Table 6.1 also lists the classification performance at the Root Node. 
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Fig. 6.27: Representation of test data used in assessing classification performance of 
D.C. data analysis [94]. 

Table 6.1 
A quantitative assessment of classification outputs at Root Node and Node 9. 

12 The scene-class ROOF, has been characterized in the functional sense in Node 9. If scene-class ROOF- 
RESIDUE is merged with ROOF, the number of pixels in Node 9 correctly identified as 'roof is 1 174, and 
the overall classification accuracy improves to 97.19%. 

Scene-class 

ROAD 

WATER 

PATH 

TREE 

GRASS 
ROOF 

All classes 

Number of 
test samples 

1 056 
1 566 

26 1 
450 

1 378 
1 192 
5 903 

Node 9 
Identified 
number 

1016 
1 556 

23 8 
428 

1 270 
1 059 
5 622 

Root Ndde 
% 

accuracy 
96.2 1 
99.36 
91.19 
95.11 
92.16 

88.8412 
94.3 1 

Identified 
number 

1018 
1 456 

246 
429 

1 029 
974 

5 152 

96 "accuracy 

96.40 
92.98 
94.25 
95.33 
74.67 
81.71 
87.28 



The analysis can be condensed into the representation shown in Figure 6.28. It is 

implicit that the output at a terminal node in the directed graph is retained for the final 

output without further processing. 



(svectral scheme) 

Node 9b - Remove SHADOW 

(svatial scheme) Node 9 - Negative train WATER 

Fig. 6.28: Graph representation of the D.C. data analysis. 



Some general conclusions of this study are listed below: 

A hierarchical scheme of analysis can be useful, especially if used to isolate 

problematic data for post-processing independent of the remainder of the data. 

The segmentation scheme using the 2xN model is of limited value if the data 

to be segmented has insufficient neighborhood information. 

The removal of clutter from the classification output can often be handled 

without reliance on the spectral data. 

When setting the design goals for the analysis, scene-classes can be decided 

on the basis of function, or on the basis of composition. For example, in this 

analysis, the Root Node identified eight distinct materials used in constructing 

roofs. However, the goal focused on the identification of roofs according to 

usage, and the final output showed ROOF and ROOF-RESIDLE (the data that 

were spectrally similar to ROOF, but were functionally distinct). 

It should be evident that the procedure followed in this analysis is not unique. It is a moot 

point whether superior results could be obtained using an alternate scheme. Whatever the 

chosen design, it is believed that the axioms of data fusion proposed in Chapter 5 and 

used throughout the development in this Chapter, would be equally applicable. 
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a2=afa; 
a3=a2*a; 
a4=afa*a*a; 
a5=a4*a; 
a6=a5*a; 
a7=a*a*a*afa*a*a; 
a8=a4*a4; 
alO=a5*a5; 
a12=a6*a6; 
a14=a7*a7; 
a16=a8*a8; 
a18=a6*a6*a6; 
a20=a10fa10; 
a22=a10Aa12; 
a24=a12*a12; 
a26=alO*alO*a6; 
a28=a14*a14; 
a30=a18*a12; 
a32=a16*a16; 
a34=a18*a16; 
a36=a7*a8*a7*a8*a6; 
a38=alO*alO*alO*a8; 
a40=a10*a10*a10*a10; 
el= (1-a2-a4+a6) /a3; 
e2= (-1-a2+a4+a6) /a3; 
pl=-12*a16+12*a14+80*a12-12O*a10-120*a8+8O*a6+12*a4-12*a2+8+8*al8; 
q1=12*((3-18*a2+51*a4+12*a8-60*a6+126*a12+84*a10+126*a16+12*a20- 
396*a14+51*a24+3*a28-18*a26-60*a22+84*al8)"0.5)*a2; 
ot= (1/3) *atan (ql/pl) ; 
if (pl<O) 

ot=pi+ot ; 
end 
xl= ( (pl"2+qlA2) " (1/6) ) *cos (ot) ; 
yl=( (pl"2+qlA2) " (1/6) ) *sin(ot) ; 
ml= (a2+1) * (a2-1) / (3*a5) ; 
e3= (xl+l+a2+a4+a6) *m1; 
e7= ( -  (0.5*xl) +a6+a4ta2+1+0.5*ylf (3"O. 5) ) *ml; 
e8= ( -  (0.5*xl) +a6+a4+a2+1-0.5*yl* (3"0.5) ) *ml; 
p2=-36*a22+72*a18-36*a14-36*alO+72*a6-36*a2-96*al6+592*al2- 
96*a8+8*a24+48*a20+48*a4+8; 
q2=12*((3*a40-24*a2+3+84*a4+6*a8-132*a6-306*al2+336*alO+l287*al6- 
2148*a20 -744*a14+1287*a24-306*a28+84*a36+6*a32+336*a30-132*a34-24*a38- 
744*a26+564*a22+564*al8) "0.5 ) *a2; 
ot= (1/3) *atan (q2/p2) ; 
if ( ~ 2 ~ 0 )  

ot=pi+ot ; 
end 
x2= ( (p2^2+q2"2) " (1/6) ) *cos (ot) ; 
y2= ( (p2^2+q2"2) " (1/6) ) *sin(ot) ; 
m2= (a2+1) / (3*a5) ; 
e4=(~2+l+a4+a4+a8)*m2; 
e5= ( -  (0.5*~2)+a8+2*a4+1+0.5*~2* (3"0.5) ) *m2; 
e6= ( -  (0.5*x2) +a8+2*a4+1-0.5*y2* (3"0.5) ) *m2; 
result=[el e2 e7 e8 e5 e6 e3 e4] 
eig (A) ' 



A.3 MATLAB code for generating transfer matrices for L-ary 3xN model 
function A = transfer-D(L) 
%L is the number of classes and gives the order of the transfer matrix 
ord=LA3; 
for p=l:ord, 

for q=l:ord, 
A(q,p) =trans-d ( (p-1) *ord+q-1, L) ; 

end 
end 

function ans = trans-d(a, L) 
l=dec2base (a, L, 6) ; 
ans=O; 
if (1 (1) ==1(2) ) ans=ans+O. 5; 
else ans=ans-0.5; 
end 
if (1(1)==1(3) ) ans=ans+0.5; 
else ans=ans-0.5; 
end 
if (1(4)==1(5)) ans=anst0.5; 
else ans=ans-0.5; 
end 
if (1 (4) ==1(6) ) ans=ans+O. 5; 
else ans=ans-0.5; 
end 
if (1 (1) ==1(4) ) ans=ans+l; 
else ans=ans-1; 
end 
if (1(2)==1(5)) ans=ans+l; 
else ans=ans-1; 
end 
if (1(3)==1(6)) ans=ans+l; 
else ans=ans-1; 
end 

A.4 MATLAB code for computing magnetization M for 2xN model 

function de3 = m-dh(q, h) 
%Input are scalar q, h. 
%Output is corresponding magnetization for 2xN model. 
eq=exp (q) ; 
e2q=eqkeq; 
e3q=e2q*eq; 
e4q=e2q*e2q; 
e5q=e2q*e3q; 
e6q=e3qke3q; 
e7q=e4qke3q; 
e9q=e4qke5q; 
eh=exp (h) ; 
e2h=eh*eh; 
T=[e3qke2h eh eh l/eq; 
eh eq l/e3q l/eh; 
eh l/e3q eq l/eh; 
l/eq l/eh l/eh e3q/e2h]; 
eig (TI ; 
x2=-2*e3q*cosh (2*h) -eq-l/e3q; 



A=6* (-5+e4q) *cosh (2*h) +6*sinh (6*q) - 6*cosh (2*q) -6*e6q*cosh (4*h) - 
12/e2q; 
B=18*cosh (2*h) * (e9q+e5q-eq- (l/e3q) ) +18*cosh (4*h) * (e7q- 
e3q)+l8/e5q+72*e3q-gO/eq+2*~2*~2*~2; 
B=-B ; 
t= (1/18" (1/3) ) * (-9*B+ (81*B*B+l2*A*A*A) W.5)  ̂ (1/3) ; 
e2 bar=A/ (3*t) -t; 
e3-bar=-e2-bar/2 +O. 5* (-4*A-3*e2 - bar*e2_bar) ̂0.5; 
e3z (e3-bar-x2) /3; 
e2= (e2-bar - x2)/3; 
el=eq-l/e3q; 
dAh= 12* (e4q-5) *sinh(2*h) -24*e6q*sinh (4*h) ; 
dx2h= -4*e3q*sinh (2*h) ; 
dBh=36*sinh (2*h) * (e9q+e5q-eq-l/e3q) +72*sinh (4*h) * (e7q- 
e3q)+6*~2*~2*dx2h; 
dB=-dBh; 
dx2 =dx2 h ; 
dA=dAh; 
dt= (-9*dB+ (81*B*dB+18*A*A*dA) /sqrt (81*B*B+l2*A*A*A) ) / (54*t*t) ; 
de2 bar=&/ (3*t) - dt* (1+A/ (3*t*t) ) ; 
de3-bar=-0.5*de2 bar + 0.25* (-4*dA - 6*e2 - bar*de2_bar) /sqrt (-4*A- 
3*e5_bar*e2 bar) f 
de3=de3 bar73 - dx2/3; 
de3=de3/model2 (q, h) ; 

A.5 MATLAB code for computing correlation C for 2xN model 

function de3 = m-dq(q, h )  
%Input are scalar q, h. 
%Output is corresponding correlation for 2xN model 
eq=exp (q) ; 
e2q=eq*eq; 
e3q=e2q*eq; 
e4q=e2q*e2q; 
e5q=e2q*e3q; 
e6q=e3q*e3q; 
e7q=e4q*e3q; 
e9q=e4q*e5q; 
eh=exp (h) ; 
e2h=eh*eh; 
T=[e3q*e2h eh eh l/eq; 
eh eq l/e3q l/eh; 
eh l/e3q eq l/eh; 
l/eq l/eh l/eh e3q/e2hl; 
eig (T) ; 
x2=-2*e3q*cosh (2*h) -eq-l/e3q; 
A=6* (-5+e4q) *cosh (2*h) +6*sinh (6*q) - 6*cosh (2*q) -6*e6q*cosh (4*h) 
12/e2q; 
B=18*cosh (2*h) * (e9q+e5q-eq- (l/e3q) ) +18*cosh (4*h) * (e7q- 
e3q)+18/e5q+72*e3q-9O/eq+2*~2*~2*~2; 
B=-B; 
t=(1/18^ (1/3) ) * (-9*B+ (81*B*B+12*A*A*A) ^O. 5) ̂ (1/3) ; 
e2 bar=A/ (3*t) -t; 
e3-bar=-e2-bar/2 +O. 5* (-4*A-3*e2-bar*eZpbar) ̂O , 5; 
e3z (e3 bar-x2) /3; 
e2= (e2-bar - - x2) /3; 
el=eq-l/e3q; 



dAq=24*e4q*cosh (2*h) +36*cosh(6*q) -12*sinh (2*q) -36*e6q*cosh (4*h) +24/e2q; 
dxZq=-6*e3q*cosh(Z*h)-eq+3/e3q;; 
d~q=18*cosh (2*h) * (g*egq+5*e5q-eq+3/e3q) +18*cosh (4*h) * (7*e7q-3*e3q) - 
9O/e5q+216*e3q+90/eq+6*~2*~2*dx2q; 
dB=-dBq; 
dA=dAq; 
dx2=dx2q; 
dt= (-9*dB+ (81*B*dB+18*A*A*dA) /sqrt (81*B*B+lZ*A*A*A) ) / (54*t*t) ; 
de2 bar=&/ (3*t) - dt* (1+A/ (3*t*t) ) ; 
de3-bar=-0.5*de~-bar t 0.25* (-4*dA - 6*eZpbar*de2-bar) /sqrt (-4*A- 
3*e? bar*eZ_bar) ; 
de3=de3 bar/3 - dx2/3; 
de3=de3/model2(qI h); 

A.6 MATLAB code for performance estimation for 2xN model 

%Refer Chapter 4, Section 4.3 for explanation of this subroutine. 
8 The following are averaged experimental readings on experiments. 
table=[ % dim corr q mag h 

% === ==== ==== ===== ===== 

2 .765 0.652 -0.078 -0.007; 
3 .822 0.716 -0.064 -0.006; 
4 .855 0.760 -0.059 -0.004; 
6 .905 0.842 -0.038 -0.002; 
8 .935 0.910 -0.024 -0.001;; 
10 .955 0,973 -0.018 -0.001; 
12 .968 1.031 -0.016 -0.001; 
14 .975 1.084 -0.008 -O.OOO]; 

plot length=10000; 
d=table (i, 1) ; 
corr = table(i,2); 
queue= table (i, 3) ; 
mag = table(i,4); 
aitch= table (i, 5 )  ; 

num-transitions = round((1-corr)*2*99); 
bad-ratio = 0.5*(num-transitions -1)/(2*99 -1); 
good - ratio = 1- bad - ratio; 

%Bayesian error 
al=3/8; 
a2=3/2; 
b=dxlog (2) ; 
tot_length=2*plot lengthtl; 
fhl=zeros (tot-length! 1) ; 
fh2=zeros (tot length, 1) ; 
ftemp=al* (2^ (0.5*d) ) *gamma (0.5*d) ; 
gtemp=a2* (ZA(0.5*d) ) *gamma(Oo5*d) ; 
for i=l:tot-length, 
t=(i-plot length)/100; 
if ((t+b)>=~) 
fhl (i) = ( (t+b) /al) ̂ (0.5*d-1) *exp ( -  (t+b) / (2*al) ) /£temp; 
fh2 (i)=( (t+b) /a2IA(O.5*d-1) *exp(- (ttb) / (2*a2) ) /gtemp; 
end 
end 
el = sum (fhl ( (l+plot-length) : tot-length) ) * .  01; 



e2 = 1-sum (fh2 ( (l+plot - length) : tot-length) ) * .01; 
[el e2 0.5* (el+e2) 1 
hold off 
plot(O.Ol*( (1:tot length)-plot length), fhl, 'r.', 
0. Ol* ( (1:tot - length) -plot-length), fh2, 'b. ' )  
hold on 
bl=b-2*queue-aitch; 
b2=b+2*queue-aitch;%1.178; 
fhl A=zeros (tot-length, 1) ; 
fh2I~=zeros (tot-length, 1) ; 
fhl B=zeros (tot-length, 1) ; 
fh2-  zeros - (tot length, 1) ; 
for i=l :tot length, 
t= (i-plot length) /loo; 
if ((t+bli>=~) 
fhl-A(i) = (  (t+bl) /al) A (0.5*d-1) *exp(- (t+bl) / (2*al) ) /fternp; 
fh2 A(i)=( (t+bl) /a2) A (0.5*d-1) *exp(- (t+bl) / (2*a2)) /gtemp; 
end- 
if ( (t+b2) >=0) 
fhl-B(i)=( (t+b2) /al) A (0.5*d-1) *exp(-(t+b2) / (2*al)) /£temp; 
fh2_B(i)=( (t+b2) /a2)"(0.5*d-l)*exp(-(t+b2)/(2*a2)) /gtemp; 
end 
end 

% I plot (1:plot length, fhl A, 'm-', 1:plot length, fh2-B, 'g-') 
el-A = sum (fhl-x ( ( l+plot-length) :tot length) ) * .01; 
e2 B = 1-sum (fh2 B ( (l+plot-length) : txlength) ) * .01; 
plot (0.01* ( (1:tot-length) -plot length), fhl-B, 'm-', 
0 .Ol* ( (1:tot-length) -plot-length), fh2 A, 'g-' ) 
el-B = max (sum(fh1-B ( (l+plot-length) :t&length ) * 0 1  0.0) ; 
e2 A = max ( (1-sum(fh2 A( (l+plot - length) :tot - length) ) *.01), 0.0) ; 
[ei - B e2 A 0.5* (el-~+e2p) 1 ; 
ftemp = :.98*el-~ +0.02 * el; 
gtemp = 0.98*e2 A +0.02 * e2; 
[ftemp gtemp 0 .?*ftemp+O. 5*gtemp] 
ftemp = 0.98*(good-ratiotel-B + bad-ratio * el A) +0.02 * el; 
gtemp = 0.98* (good-ratiote2-A + bad-ratio * e2-~) - +0.02 * e2; 
[ftemp gtemp 0.5*(ftemp+gtemp)] 

A.7 Correlation calculation for test images 

For each of the sample images below, it is observed that pixel-label transitions occur in a 

regular fashion. It suffices to examine a sample 2xN chain that contains the 

representative transition to measure the correlation for the image. The applicable 

formula is 

number of transitions 
correlation = 1 - 

number of total pixels in length of 2 x N chain 

For example, the representative chain for the image in Figure A. l  would contain 1 

transition in a chain containing 2.99 pixels. Thus the correlation would be 0.995. The q 

is obtained from Table 3.1 (note that h=O). Note that the above formula can also be used 



to deduce the number of transitions in a given image, from the reading of the image 

correlation. 

Fig. A.l: For given 100x100 image, correlation = 0.995, qz1.44. 

Fig. A.2: For given 200x50 image, correlation= 0.992, q= 1.35. 

Fig. A.3: For given 200x50 image, correlation= 0.9523,q4.987. 

A.8 Model characteristics and performance of estimators 

Recall the terminology of Chapter 3: 

M is an unbiased estimator of the magnetization M; 

is an unbiased estimator of the correlation C; 

P,(X) is the distribution of the system state X and from Eauation 3.1 



Z is a normalizing factor, also known as the partition function calculated as 

N is the number of linked elements in the lattice chain X; 

E(*) is the energy function, and is a measure on the space of system 

configurations X. For the 2xN model for &,u' (see Figure 3.7 for details) 

the energy function is defined as 

Thus 

and 

(A.1) 

The above expression may be interpreted as the expectation (with respect to the 

distribution Px) of the pair-wise correlation C in the lattice. Similarly, the expected value 

of the lattice magnetization M is obtained as 

(A.2) 

The remainder of this section illustrates some properties of the 2xN lattice model. Figure 

A.4 plots the lattice correlation and magnetization over a range of q and h. Note that 

lattice magnetization sees a sharp transition about h=O, for large values of q. However, 

this thesis is not concerned with the usage of the proposed model to explain phase 



transitions in physical systems (cf. [Section 3, 71, [ l l ] )  and further interpretations of 

Figure A.4 in such regard are left to the discretion of the reader. 

Fig. A.4: Variation of lattice magnetization (top) and correlation (bottom) with respect 
to q and h. 

In Section 3.2, it was asserted that lattice correlation and lattice magnetization 

can be estimated as sample averages. It is well-known that the sample-average 

estimators are unbiased, the lower bounds of whose variances can be calculated using 

the Cramer-Rao inequality [pp. 35 1,951. 

As an extension of the Cramer-Rao inequality, it can be stated that [95] if the 

probability distribution is of the form such that 

holds, then the variance of the estimator attains the lower bound. [pp.306-307, 961, 

given as llg,(C). Here, g,(C) is known as the (Fisher) Information on C7. 



Thus 

a c N a q  N a q  

It follows that variance of the estimator is 

1 a210gz 
v a r c  =- ( 1  2 aq2 . 

A similar analysis for the variance of M yields 

The value of Equations A.3-4 is in the provision of a means to assess the accuracies of 

the respective estimators. Note that the respective variances are dependent on the size of 

the chain N. The plots relevant to Equations A.3-4 are presented below in Figure A.5 

(N=l). As stated earlier, the variance of the estimator may equivalently be referred as the 

inverse of the Fisher information on the parameter being estimated. 



Fig. A.5: Variation of (Fisher Information)-' in the estimation of lattice magnetization 
(top) and correlation (bottom) with respect to q and h. 

As evident from the top plot in Figure A.5, the variance of M is especially high 

for h=O, for large q. The difference in the original and the simulated images for 

'NaturalTurbulencet (cf. Section 4.2.5, Figure 4.9) could possibly be a result of 

erroneous estimation of the image magnetization. 

The MATLAB code for the generation of Figures A.4-5 is listed below. 

q=O.O001:0.05:1.5; 
h=0.0001:0.05:2.0; 
h two=h-1.99; 
~=[h-two h] ; 
h=H ; 
M= length (q) ; 
N= length (h) ; 
for i=l:M, 

for j=l:N, 
temp=model2 (q (i) , h (j) ) ; %See Appendix A.l 
Lh(i,j)=m-dh(q(i), h (j ) /temp; %See Appendix A.4 
Lq(i, j)=m-dq(q(i), h(j) )/temp; %See Appendix A.5 

end 
end 
Lh=real (Lh) ; 



Lq=real (Lq) ; 
%plot magnetization and correlation 
subplot (2,1,1) ; 
surfc (h, q, Lh/2) ; 
title('dlogZ/dhl, 'fontsize', 16); 
xlabel('hl, 'fontsize', 14); 
ylabel( 'ql, 'fontsize', 14) ; 
subplot (2,1,2) ; 
surfc(h, q, Lq/3); 
title('dlogZ/dql, 'fontsize', 16) ; 
xlabel('hl, 'fontsize', 14); 
ylabel('ql, 'fontsize', 14); 

figure (2 ) ; 
[Lhh Lhq] =gradient (Lh, HI q) ; 
[Lqh Lqq] =gradient (Lq, H I  q) ; 
% plot variance of estimates (Fisher Information) 
subplot (2,1,2) ; 
surfc(H, q, Lqq) ; 
xlabel ('h', 'fontsize', 14); 
ylabel( 'q', 'fontsize', 14) ; 
title('d210gZ/dq211 'fontsize', 16); 
subplot (2,1,1) ; 
surfc (H, q, Lhh) ; 
xlabel( 'h', 'fontsize', 14); 
title ('d2logZ/dh2', 'fontsize', 16) ; 
ylabel ('q', 'fontsize', 14); 

The remaining Appendices contain detailed listing of computer code. 

They are available from the thesis of the same name and data 

or from the authors. 
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