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ABSTRACT 

Increasing use of multimedia data makes it crucial to develop intelligent search 

mec:hanisms for retrieving multimedia data by content. Traditional text-based meth- 

ods clearly do not suffice to describe the rich content of images, voice or video. Digital 

vidseo requires the incorporation of temporal information for any effective content- 

based retrieval scheme. We present a novel technique which integrates object motion 

ancl temporal relationship information in order to characterize the events for subse- 

quent search for "similar" clips. We propose a hybrid mechanism based on object 

motion trails similarity match and interval-based temporal modeling that leads to 

a unique framework for spatio-temporal content based access in digital video. We 

implemented the proposed methods and demonstrated that high-level query formula- 

tion can be achieved for the aforementioned purpose. Development of such technology 

will enable true multimedia search engines that will accomplish what current Internet 

search engines like Infoseek or Excite do today for textual data. 



1. INTRODUCTION 

The Internet has become a huge repository of data that is available to a diverse 

spectrum of users all over the world. Ever since the World Widle Web has been 

incorporated into the Internet, the need to organize, store, search and retrieve data 

has increased tremendously. During the early days of WWW, data, on the Internet 

was confined to textual documents where search by keywords fulfilled much of the 

information retrieval needs of users. However, advances in networking, storage and 

data creation technologies made it possible to support multimediadala both on stand- 

alone and networked environments such as the Web. Today, there is an increasing 

need for robust indexing and search mechanisms over the Web for effective use of 

multimedia data. 

Traditionally, content of multimedia data has been represented either by simple 

textual techniques or low-level image features such as color indices., shape represen- 

tation and transform domain features. However, these features are not sufficient to 

represent the rich semantics of digital video. The temporal information involving the 

relative movements of salient objects in a video must be incorporated in any effec- 

tive content-based video indexing scheme. For example, the quer,y search the web 

for head-on car collisions cannot be answered by indexing techniques based on color 

histograms or keyword annotations, but requires proper indexing of the video based 

on motion information and inter-relationships of the objects (cars) in the video. 

With the rapid proliferation of the Web, it is becoming more desirable to provide 

a common visual query interface for video databases. The popularity of both the 

content and the interface tools of the Web make it a natural choice for accessing large 

repositories of video data to support newly emerging Internet applicsations. In a web 



search system which is expected to  be a real-time application, the need for efficient 

query processing is another reason for the use of indices. Such an indexing scheme, 

however, should not be restricted to pre-assigned keywords or just be simple raw data 

tha.t carries no semantic meaning. In other words, an intermediate model is needed 

tha.t provides enough semantic power while supporting an efficient mechanism for 

content-based access. 

A number of researchers have proposed techniques to model itemporal events. 

Sorne of these techniques rely on modeling the interplay among physical objects in 

time along with spatial relationships between these objects. In [6], spatial and tem- 

poral attributes of objects and persons are modeled through a directed graph model. 

Although a formal method of representing video data is proposed, underlying spatial 

models for motion-based characterization are not provided, imposing severe limita- 

tioins on the system. An approach that uses spatial relations for representing video 

semantics is spatio-temporal logic [3]. A prototype image sequence retrieval system 

is tieveloped, where images are processed and represented by spatio-temporal logic. 

The prototype provides a novel query interface by which query-by-sketch is employed 

to  (query video data. However, due to the limitations of the methodology used in this 

approach, the modeling of higher level concepts, such as spatio-temporal events, is 

not addressed. Moreover, spatial and temporal predicates are manu.ally annotated in 

the database. The framework discussed in [7] defines a set of algebraic operators to  

allow spatio-temporal modeling, as well as video editing capabilities. After extract- 

ing trajectory of a macro-block in an MPEG video, all trajectories of macro-blocks of 

objects are averaged and a spatio-temporal hierarchy is established. for representing 

vid.eo. While providing a robust low-level analysis, this work does not address the 

handling of inter-object relationships which is crucial in video content description. 

Other techniques to model temporal events depend on the semantic classification 

of video content. The video model proposed in [13] allows hierarc:hical abstraction 

of video expressions representing scenes and events, which can provide indexing and 

content-based retrieval mechanisms. It allows users to  assign multiple coexisting 



interpretations to the same video segment and provides functionalities for creating 

video presentations which include nested structures and temporal composition. A 

similar approach is taken to develop an object-oriented abstraction of video data 

in 1101. A video object in this approach is identical to a video expression in [13] and 

corresponds to semantically meaningful scenes and events. An object hierarchy is built 

using IS-A generalizations, and interval inclusion based inheritance is introduced to 

capture the hierarchical flow of information in this model. Since all these models 

are purely semantic-based, they have the inherent limitation of being annotation- 

based and target-user dependent that render their implementation cumbersome and 

dornain-specific. 

VideoQ [4] is one of the very few models that directly address motion-based con- 

tent characterization, but lacks an explicit temporal formalism and comprehensive 

spakial search techniques that can handle different preferences such as translation 

spa tial-scale invariant searches. 

Most of these approaches emphasize the formalism of semantic modeling but lack 

pra,cticality in terms of easy-to-use query interfaces for novice Internet users. In this 

paper, we attempt to  address this deficiency by presenting a novel technique of in- 

dexing video data which will make it possible to  query such data,. The proposed 

technique will alleviate the limitations of keyword-based search techniques and pro- 

vide an efficient Web-enabled video searching capabilities. This technique is based on 

a hybrid approach that effectively captures both the simple and cclmplex semantics 

ant1 introduces a visual query mechanism that allows fuzzy search of video data. 

The remainder of this paper is organized as follows: The next section gives the 

theoretical foundation of our proposed technique that combines a trail-based repre- 

sentation of object motions with a Petri-net model. The Petri-net ]model is used for 

high-level complex event representation as well as imprecise query formulation over 

the Web. Section 3 describes the implementation of our video search engine, and 

section 4 concludes the paper. 



2. THE PROPOSED WEB VIDEO SEARCHIN(G SCHEME 

In our earlier work, we presented a graphical model called Video Semantic Directed 

Graph(VSDG) as a representation scheme for temporal specification of video content 

[ 5 ] .  VSDG provides effective means for inter-object temporal specification that  en- 

ables spatio-temporal content based access t o  the semantics in digital video. Based 

on this foundation, we now present a new scheme that extends the functionality of 

VSDG in two aspects: (1) trail specification support that  enables object movements 

t o  be modeled and queried (2) an effective temporal specification for description of 

more complex scenarios that  involve multiple objects or events. 

Both trail-based spatial specification methods and temporal motleling techniques 

have been subjects of research. Generally, simple events such as a ball which draws a 

spiral are described by simple trajectory representation techniques [7]. However, if the 

events involve multiple objects or consist of several simple events with a more complex 

description, a formal mechanism is needed to characterize the temporal relations that 

are an  important part of the event description. Such a mechanism sh~ould be intuitive 

for common users of the Web and ideally, should not require the Eznowledge of any 

prclprieraty query language. 

We have proposed VSDG as a visual tool that represents the temporal layout of 

the occurrences of the object. A VSDG is a directed graph with a set of circular 

notles (P), a set of rectangular nodes (T), and a set of arcs ( A )  connecting circular 

notles t o  rectangular nodes. A circular node has an attribute describing the duration 

for which an object (person, vehicle, etc.) appears in a video segment. A rectangular 

node corresponds t o  an event in a video clip whenever a new physical object appears. 

In other words, a rectangular node marks the start of a new segment, that  differs 



froin its predecessor segment in terms of appearance of a new physical object. Each 

circular node has exactly one incoming arc and one outgoing arc. 

As a graphical data structure, VSDG offers a visual environment where the tem- 

poral relations can be effectively represented and constructed. For a more complete 

representation scheme, however, the places represented by circular nodes must con- 

tain more information than mere occurrences of objects. In our new hybrid scheme, 

the places contain "events" described by object trajectories. A Pelri-net based for- 

malism can represent the inter-event relationships in order to const,ruct higher-level 

event descriptions. The mechanism of searching for events in such a system involves 

both searching of simple events in the form of object trajectories(circu1ar nodes) and 

their temporal relationships represented by the Petri-net model. This is discussed 

later in this section. 

As an example to  this hybrid framework, refer to Figure 2 . ( a ) - (d ) .  In this 

frainework, a user first defines simple "events" that involve an object tracing a path 

on screen, as in Figure 2.l(a) and 2.l(b). These simple events are then combined in 

a Petri-net based visual model in order to model more complex events for subsequent 

processing that involves searching for similar events in database. For example, if 

the object trails in Figure 2 . l (a)k(b)  represent left-to-right and right-to-left motions 

respectively, their concurrent alignment in Figure 2.l(c) may represent the event 

cross-over for two similar objects, whereas the sequential layout in Figure 2.l(d) may 

refer to  the event bouncing o f  the wall of the same object. 

While we provide effective techniques for both trail and temporal specification 

ant1 searching, their integration within a hybrid framework is a unique scheme and 

stands out as the major contribution of our work. In addition, the following features 

are provided in this framework: 

A simple Web interface that allows the queries to be entered through conven- 

tional browsers with less ambiguity. 



Fig. 2.1. (a)  The  trail for Object 1. (b) The  trail for Object 2. (c )  Parallel layout 
as an  augmented Petri-net refers to the event cross-over. (d) Sequential placement 

represents bouncing 08 the wall 



Efficient search mechanisms for trail-based information (Sectilon 2.1) and tem- 

poral specification represented by Petri-net based visual query model (Section 

2.2). 

It must be noted that the proposed method involves the difficult task of low-level 

processing of video data. Recognition of interesting objects and tracking their motion 

is not trivial in an automated system and has been a major subject of research for 

dec.ades. However, we have demonstrated that using semi-automated methods where 

partial human effort is introduced, content indexing of real video for such a purpose 

is feasible. We have fully implemented the methods proposed in thiz; paper from pre- 

processing of video to the presentation of results. In the next two sections, we cover 

the details of our trail-based spatial and Petri-net based temporal event searching 

techniques for video data. The implementation details are presented in Section 3. 

2.1 Meta-data Models for Event Descriptions by Object T'rails 

In order to process user-sketched queries like give m e  the clips where a n  object 

draws a circle like this(a drawn trajectory),  a similarity measuring mechanism must 

be developed. Experience shows that in order to answer such queries, any similarity 

match between sketched queries and database items has to possess certain features. 

For. example, while being specific enough to return a reasonable set of data items, 

the similarity mechanism should not be too rigid in imposing the matching criteria 

and allow certain flexibility. The nature of query processing in mulltimedia database 

systems is quite different from their traditional counterparts in this regard. We list 

the issues pertaining to the video database retrieval using trail information as follows: 

Fuzziness Given the ability to sketch arbitrary trails, it cannot be assumed 

that the user will sketch the desired scenario exactly. Furthermore, typically 

more than one item is expected to be returned for a query ancl these items will 

not be exact replicas of each other. For these reasons, the similarity criterion 



should provide a fuzzy measure based on a metric scale by which the results 

can be ranked rather than providing yes/no answers. 

Spatial Invariance The queries may specify a translation-invariant trail which 

may be located anywhere in the spatial domain. This capability must be pro- 

vided to the user in order for the queries to be answered regardless of the actual 

location of the motion on the screen. However, in some cases it may be desirable 

to restrict the location to exact coordinates of the spatial domain. Therefore, 

spatial translation invariance should be optional rather than default behavior. 

Temporal(speed) Invariance Similar to the spatial invariance, temporal in- 

variance refers to the flexibility of the speeds of the object movements. Users 

may sketch the trails with arbitrary speeds and may be interested in the trail 

the objects follow rather than exact locations at exact time instances. For this 

reason, the similarity matching mechanism should be able to match trails re- 

gardless of the speeds of the objects when necessary. Similarly, there should 

be a mechanism to externally manipulate the general duration of the queried 

events for the users to have a control over the temporal features of the described 

scenario. 

Efficiency Computational complexity is an important and often underesti- 

mated factor in multimedia database applications. With unrestricted length 

of the database clips, it becomes more important for a trail similarity mecha- 

nism to function with an acceptable complexity for real-time query processing. 

In order to  optimally meet the above criteria, we use a trail-based model that 

captures the motion of salient objects over a sequence of frames. In this method, we 

highlight the areas covered by the queried objects as in Figure 2.2 throughout the 

course of the clip and produce a "picture" of the trajectory for a given clip. In a sense, 

thi;; is equivalent to taking the mosaic image of the object trajectory in a clip. The 

trajectory comparison is then carried out through the trail pictures,, i.e. performing 



Fig. 2.2. Trails used in the trail-based match method 

an image similarity comparison. The objects in Figure 2.2 these clips span similar 

trajectories which can be compared in different ways including spatial invariant or 

absolute, rotation-invariant etc. 

An important factor to  be considered in this method is the impact of the temporal 

len,gth of the clips. When converted to trail images, very long clips will lose their 

trajectory information as the repeated scans of the same area is not reflected in the 

binary trail image representation. For the method to be effectively used, this factor 

has t o  be taken into account at the time of parsing the video data. 

Another important issue is the handling of the camera motion. In our model, we do 

not directly deal with this issue and generally assume that screen is a fixed reference 

frame. However, techniques such as Salient Stills [12] and Mosaicking [ll] offer a 
' 

practical way to  compensate for the camera motion. A still image :representation of 

a clip can be obtained by combining several consecutive frames of a clip which can 

also be used for detecting the movements of the salient objects. 

Temporal invariance in trail-based models is given by default. In essence, time 

is frozen throughout the clip and the speed of the object is not refllected in its trail. 

However, the duration information of each trail is required so that i.t can be utilized 

by the high-level temporal model discussed in the next section. Such. external control 

capability on temporal duration provides a great flexibility in user clescription of the 

complex events. 

Both spatial absolute and invariant searches can be an option, for which a user 

may choose to restrict the starting point of the motion to  what i.s entered in the 
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Table 2.1 TRAIL-SEARCH : Object Motion Search based on trails 

Input: DataTrajectories DT(k),  k = 1 . .  . Number-of -Clips and QueryTrajectory Q T  
Output: Similarity(k) between DT(k) and QT)  
For each DT(k), k = 1 . .  . Number-of-Clips do 

Construct the data and query images D(i,  j), Q(i, j) : (ZM x ZN) + {0,1} 
by assigning 0 to background and 1 to areas covered by trails 

If user-choice = Spatial-Absolute-Search then 
Similarity(k) = sum(D * Q)/.5 * (sum(D) + sum(Q))  

else if user-choice = Spatial-Invariant-Search then 
Compute the Fourier transforms of the images as DF =: F(D)  and QF = F ( Q )  
Similarity ( k )  = m a ~ ( a b s ( F - ~ ( D ~  * QF)))/.5 * (sum(D) + sum(Q)) 

else if user-choice =Scalelnvariant-Search then 
Similarity(k) =SCALE-INV-SEARCH(D,Q) 

query or perform a translation invariant match for the desired trails regardless of the 

exact location on screen. A third case is where spatial scale invariance is introduced. 

The sketched trail in this case is searched independent of the size of the object or the 

dimensions of the trail. For example, a small circle and a big circle can be matched to 

each other and are considered similar in this method. Below, we propose algorithms 

that efficiently compute the similarity between two trails according to all three user 

preferences. 

The algorithm TRAIL-SEARCH summarizes the steps of our trail search algorithm. 

According to the user's choice of the search type, the associated images that represent 

the clip as a motion trail are compared in three different ways. The output of the 

algorithm, Similarity is sorted and the "best N matches" are displayed according to 

the user's choice of the number N. 

2.1.1 Spatial-absolute Search 

For a spatial-absolute search, the user inquires for a motion trail .that occurs in an 

absolute screen location. In this case, two trails such as those in Figure 2.2 are directly 

compared against each other for a pixel to pixel match. The fact that the trail images 



are binary images provides a significant performance advantage, the comparisons are 

merely a bitwise multiplication between the corresponding pixels. The Similarity step 

in the algorithm in this case has a quadratic time complexity O(I\J2), N being the 

width or height dimension of the input trail images, which is generally proportional 

to the screen size. 

2.1.2 Spatial-invariant Search 

Spatial-Invariant match refers to the comparison of two trails in a translation- 

invariant fashion. This involves the comparison of two images for all possible possible 

translations in both dimensions and is computationally intensive. A:3 an efficient way 

to  compare the convoluted images to each other, we use the convolution property of 

the Fourier Transform which can be stated as 

Conv[D, Q] = D * Q = F-' (D . Q*) (2.1) 

With a Fast Fourier Transform(FFT) implementation of the Fourier transform, this 

step can be reduced to an O(N 2 log N) time complexity. 

2.1.3 Scale-invariant Search 

For matching two trails independent of both their starting points on the screen 

ancl the size of the object or the sketched trajectory drawn, we use a Mellin transform 

based scale invariant pattern recognition technique which is summarized in Algorithm 

SCALE-INV-SEARCH [2]. This method provides both spatial (shift) invariance and 

spatial scale invariance, due to the scale-invariant nature of the Mellin transform and 

the convolution scheme used in the algorithm. 

Mellin transform of a discrete-time signal x(k) is given by 

where 3 is the complex variable. Scale invariance of Mellin transform can be easily 

proven by substitution. For x,(k) = x(ak)  

[M (z,)] (u) = (1-ju [M (x)] (u)  



Therefore, 

I[M(xa)l(~:lI = I[M(xt.)I(u:)I 

Another property of the Mellin transform is its close relationship to Fourier trans- 

form. Mellin coefficients can be easily computed from Fourier coeEicients by scaling 

the: input signal by a logarithmic scale. Substituting 1 = log k one can show that 

It is worthwhile to comment on the shift and scale invariance option of the algo- 

ritlim 

TRAIL-SEARCH in more detail. Typical user queries do not specify the desired object 

motion in its exact scale and translation. In other words, it may be desirable to 

retrieve all object movements resembling a specified trajectory regardless of where 

it happens on screen or what the dimensionality of the trajectory is. For example, 

the query give m e  all objects that draw a rectangle will require all clips that involve 

objects that follow a rectangular path be retrieved. The trail images created for clips 

will have "pictures" of rectangles in this case and the shift and scale-invariant image 

match algorithm retrieves them effectively, as demonstrated in Figure 2.3 

2.1.4 Effectiveness of Trai l  Search  Algor i thms 

In order to validate the effectiveness of our proposed trajectory match solutions, 

we have tested each search case in the algorithm TRAIL-SEARCH and obtained the 

results shown in Figure 2.3. For the spatial-absolute and invariant cases our sample 

data set that contains three groups of motions: r u n ,  pass and s lam.  The r u n  

category includes players running from left to right in a football video clip, pass 

represents balls following a parabolic trajectory and s l am refers to reflection of the 

ball as depicted in Figure 2.4. Each group contains an equal number of video clips 

tha.t are pre-classified into the group manually. A member from each group then is 

picked as a query clip and compared against the entire data set. The resulting recall- 

precision graphs in Figure 2.3 indicates that all three algorithms generally provide 



Table 2.2 S C A L E - I N V - S E A R C H ( ~ ~ ,  g 2 )  : Scale-Invariant Trail Search 

Input:  g 1 ( x , y ) , g 2 ( x , y )  : ( Z N  X Z N )  -+ { 0 , 1 )  
Output:  S i m i l a r i t y  between trail images gl and g2 
Sitep 1: Calculate the two-dimensional discrete Fourier transform G;( 

N ;tx7 f f  of the image functions g ; ( x ,  y )  where f,, f ,  = - 2 ,  ..., 0 , l :  ..., , - 
and i = 1 , 2 .  

Sitep 2: Take the absolute value of the transform and normalize all 
values to the maximum value at zero frequency. 

I G t ( f ~ ! f  )I , i = 1 ,  2. 
H i ( f x ,  f y )  = G , ( o , o ~  

Sitep 3: Logarithmically distort Hi in the direction of fx and fy, putting 
the result in D ; ,  i = 1 , 2 .  

Sitep 4: Compute the measure function 

( 
N-1 N-1 

1 [Dl  ( u , v ) - ~ z ( u - k , v - k l l ~  
M ( k )  = u=k  v=k > "  , k = o , l , . . .  , A : - l  

N-1 N-1 c c [DI ( ~ , ~ ) l 2 + [ ~ z ( u , v ) I 2  

S tep  5: Repeat Step 3 4 for either left quadrant or the 

lower right quadrant. 
S tep  6: Compute the S im . i l a r i t y  by inverting the dissimilarity measure D S M  = min(M). 
- 



satisfactory results. In the spatial absolute search, the precision of the run query 

drops rapidly due to the larger size of the associated object (player): as it is easier for 

other objects to  have large overlapping areas with a larger object for other objects. 

Higher precision for run in spatial invariant case in the second diagram indicates the 

importance of this option for better retrieval of the desired behavior. Low precision 

of the pass query in the same diagram is proof that in some cases a more robust 

sea.rch technique will be needed than a mere translation invariance. 

For testing the scale invariant search algorithm, we used a different data set and 

a rnore definitive metric. The data set in this case consists of three user-sketched 

trails in two different sizes that resemble the letters r, L and a rectangle, chosen 

for a better naming convention. The results are quite promising: in each of three 

categories, dissimilarity measure of Algorithm SCALE-INV-SEARCH(D,Q) gives dis- 

tinctively close distance between associated classes(smal1r to b igs  etc.) In general 

terms, this search type gives the most natural and expected results, but has severe 

cornputational disadvantage. For this reason, it is concluded that the spatial-absolute 

and spatial-invariant searches uses should be used as "quick and dirty" searches and 

the scale-invariant algorithm should be deployed for higher precision searches. 

2.21 Meta Model for Petri-Net Temporal Characterization 

In the previous section, we presented the searching of single object trails, and 

prclposed similarity measures to rank the retrieved video clips. 'Video semantics, 

however, may consist of complex events involving the interplay of several objects, as 

dislcussed earlier in this section. A formalism is needed that allows query specification 

of such interplay. Two important considerations are in focus for such formalism to  

be viable. First, it should allow users to  create queries in a sim-ple and intuitive 

manner, without sacrificing the expressive power needed to represent complex events. 

Second, at the time of query evaluation, the search mechanism should be efficient. 

In this section, we propose a unique formalism that satisfies these requirements, and 

prclvides a visual query mechanism suitable for common Web usage.. 
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The proposed formalism is based on Allen's thirteen binary temporal intervals [I], 

that we generalized in [9]. In [8] an equivalence relationship between temporal in- 

tervals and time-augmented Petri-nets has been proposed with an application for 

tennporal integration of multimedia data. Such transformations allow us to use the 

intlzrval-based Petri-net formalism for visual querying of video data. The key features 

of 1;his formalism are as follows: 

It provides a formal procedure to specify temporal relations among trails of 

several objects. In addition, it allows to specify important temporal attributes 

such as durations of object movements, and their relative occurrences over the 

timeline. 

The graphical nature of Petri-net facilitates the usage of icon-based visual for- 

mulation of queries. The temporal layout of a Petri-net provides an intuitive 

and natural abstraction and ordering of events as perceived by the user. 

A search mechanism is provided that allows effective retrieval of data, based on 

object-trail and Petri-net models in an integrated fashion. 

The Petri-net model can be extended to provide a high level I-epresentation of 

temporal relationships among movements of multiple objects. In particular, the trails 

of salient objects are characterized by not only the shapes of their mosaic trails but 

also a temporal interval specifying the approximate duration of movement of objects 

along such trails. 

Formally, a Petri-net based scenario specification for visual querying can be defined 

as Follows: 

Dei'inition 1 A scenario specification consists of a set of places (P), a set of arcs (A) ,  

and a set of transitions (T). An arc connects a transition to a place or vice versa. 

Each place has exactly one incoming arc and one outgoing arc. Additionally, each 

place has the following attributes: 



S : P -+ String, is a mapping from a place to an event associated with the 

mosaic trail of a salient object. 

$ (d) : P -+ $, is a mapping from a place to the user-specified duration of the 

trail. 

A delay place has no symbolic representation. 

Places denoting delays are also used in order to cover the specification of all 

thirteen binary temporal relations [I]. Additional attributes for places can be specified 

by the user to narrow down the search space into a specific domain or object of 

interest. Such features may include color, shape, and texture. As :mentioned above 

the key feature of this formalism is its great flexibility in the range of results that 

may be specified by using a single augmented Petri-net. 

2.2:.1 Example Query 

In order to present a comprehensive and tangible review of our prclposed methodol- 

ogy, we provide an example scenario in this section. In this example, the user describes 

a touch-down event in a football clip from this year's Super Bowl (http://www.nfl.com). 

In i;his clip, Player 4 makes a touch-down pass while the defense player is blocked by 

Player 63. This involves Player 4 running to the right followed by the ball following 

a parabolic trajectory and slammed on the ground that correspond to the three ex- 

ample events in Section 2.1.4. We summarize the major steps that the user takes as 

follows 



"Player 63 moving to 

Represented by P2 

"Player 4 moving to 

Represented by P I  

"Ball passed" 
Represented by P3 

"Ball slammed(score)" 
Represented by P4 

k 3 . 0  sec t=1.5 sec 

P3 00 
t=2.0 sec k4 .5  sec t=1.0 sec 

t=4.5 sec 

Fig. 2.4. An example scenario and the corresponding Petri-net configuration as 
created by the user to query for the touchdown event;. 



Step 1 User sketches an object trail that indicates player 4 moving left  to  right 

and describes the run event. 

Step 2 User sketches another object trail that indicates (' player 63 moving left 

to  right" 

Step 3 User relates the two events as a Petri-net that consists of two places 

connected "concurrently" as in Figure 2.4 

Step 4 User sketches the pass event as a parabolic curve and inserts this in the 

Petri-net sequentially following the two concurrent places of Step 3 

Step 5 User inserts a delay place(D2) in the Petri-net to cou~nt for the falling 

down of the player. This helps differentiate between a touch-down and dropping of 

the ball. 

Step 6 Similar to Steps 1, 2 and 4, user sketches the slam event and places that 

sequentially at the end of the Petri-net 

Note that the durations are entered by the user as approximate and taken into 

account by the Petri-net searching algorithm in a fuzzy manner to allow for tolerance 

in temporal parameters. 

2.2.2 Visual Query Formulation and Evaluation 

Finding a match to a specified visual query is one of the most challenging problems 

in image/video databases. The neighborhood graph has been proposed as a means of 

measuring similarities between images based on the spatial relations between objects 

in these images. Such a measure, however, is too abstract and cannot be used in 

ranking images satisfying the same structure with different distanc.es. Furthermore, 

as can be noted from the example in Figure 2.4, the duration parameters associated 

with places provided by the user may not be exact and can have a wide range of values. 

At query formulation time, this can result in imprecision in the retrieval process and 

hence can overload the user with unwanted output. In order to increase the efficiency 

of retrieval process and to increase performance, it is imperative that an appropriate 

similarity measure should be specified in order to guide the search strategy. Using 



Table 2.3 EVAL-QUERY: Algorithm for Processing a Petri-Net Query 

I n p u t :  Petri-Net Query Q, 
0 u t p u t : M  video clips that best satisfy Q,, where M 2 0 
S t e p  1: Compute the exact starting time of each place in Q,, 
S t e p  2: Retrieve all objects Ol,;that are 'similar' to the 

object(s) represented by the places in Q, with starting time=l 
S t e p  3: For each object(s) O1,; do 

3.1 for each scenario S, fitting Q, with 
object(s) Ol,i at places with starting time = 1 do 
3.1.1 Compute the similarity measure SM(S,) 

S t e p  4: Return the video clips of Scenarios ST with SM(S,) .: 6 

our Petri-Net formalism, we developed algorithms to determine such ranking between 

diflerent Petri-net structures, as well as ranking equivalent structures with different 

user-set parameters. Algorithm EVAL-QUERY in Table 2.2.2 describes the overall 

processing of Petri-Net queries. In order to compute the similarity measure between 

the query and possible scenarios, we have to decide on which parameters to use in 

order to carry out this computation. It is evident that three parameters affect the 

closeness of a scenario to satisfying a query: the similarity of the trajectory of an 

object in the database to that of an object in a Petri-Net place; the: closeness of the 

relative starting time of an object in a scenario to that in a Petri-Net query, and the 

closeness of the duration of an object following its trajectory with its counterpart 

in the query. The similarity measure of the trajectories is obtained through the 

algorithms discussed earlier in this section. Durations of each place in the query are 

specified by the user, whereas durations for objects in a clip can be retrieved from 

the database. Step 1 involving computation of the starting time of each place in the 

petri-net is described in the START-GEN algorithm outlined in table 2.2.2. Step 2 

limits the scope of scenarios to be checked to those containing trail(s) of object(s) 

similar to  the one(s) specified by the user in his/her query having a starting time 

of one. In Step 3, all scenarios that can be formulated and satisfy the condition in 



Step 2 of the algorithm, are examined and assigned a similarity measure. Only those 

scenarios not exceeding a threshold, c, will he returned. 

2.21.3 Similarity Measure Computation 

In the previous section, we introduced the general algorithm for query evaluation 

without mentioning the similarity measure used in comparing different high level 

queries. Based on the identified parameters that play a key role in s:haping scenarios, 

narnely the dis-similarity measure between trajectories, the starting times, and the 

durations of each object trail and the desired query, we propose the following function 

in Equation 2.2 for measuring the similarity between a user query, Q,  and data element 

P. 

where 

1%' : Number of object trails in Q and P, N 2 1 
T,,,,, : Dis-similarity measure between the i t h  trail of Q and P, 0 < T,,,, < 1, i = 1,2,  ..., N 
S,,, : Starting time of i th  trail of Q, S,, 2 1, i = 1,2,  ..., N 
S,,, : Starting time of i th  trail of P, S,, 2 1, i = 1,2,  ..., N 
D,, : Duration of i th  trail of Q, D,, > 0, i = 1,2,  ..., N 
D,, : Duration of i th  trail of P, D,, > 0, i = 1,2, ..., N 
C,ta,t : Cost of error in starting time of a trail in Q and its corresponding trail in P. 
CtiuTation : Cost of error in duration of a trail in Q and its corresponding trail in P .  
0 < Cstar t ,  Cduratzon 5 1, and C s t a r t  $ Cduratzon = 1 

This similarity measure is obviously non-contradictory since it giives a measure of 

1.0 for an exact match of all 3 parameters in all object trails, which is the highest 

rank a scenario can assume. Moreover, the measure can become zero only in the 

case of a total mismatch between the object trails of the query and the video data 

scenario. It is implicitly assumed that scenarios having fewer number of trails to be 

checked are considered of similarity measure zero. It is evident that the measure puts 

great emphasis on the trajectory information, not neglecting the terr~poral scenario of 

events, returning higher matches for similar trails. This conforms with the perception 

of the user who rnay not be able to accurately specify the durations of events, but 



Table 2.4 START-GEN: Evaluates starting time of each place in a Petri-Net 

Input: Petri-Net Query Q, 
Output: Petri-Net Query Q, with each place assigned a starting .t' 1 ime 
Local  Variable: Queue Q initially containing the firing place of the Petri-Net 
While (Q is not empty) do 

place = POP(Q); 
if (place reached through initial transition) then 

place.StartTime=l; 
else 

place.StartTime=place.ComingFromTransition.FireTime; 
end if; 
if ((place.StartTime+place.Duration) > place.GoingToTransition.FireTime) then 

p1ace.GoingToTransition.FireTime = place.StartTime+plizce.Duration; 
if all places going to  transition place.GoingToTransition are 

either in Q or already processed then 
push all places p where 

p.ComingFromTransition=place. GoingToTransition 
into Q; 



tends to remember and/or know the sketch or the trajectory he/she is looking for. 

One advantage of using this metric and not the Euclidean distance rnetric is that our 

metric takes into consideration the relative errors rather than absolute errors, thus 

giving a better ranking. 

In order to verify our claims, we initially classified our data into 5 classes based on 

the Petri-Net structure each data set assumes as shown in Figure 2.2.3. Each instance 

has equal durations for all object trails in that instance. Moreover, these durations 

are used in all five classes. We ran two experiments. In one experiment, we neglected 

the cost of object trail mismatch and considered the Petri-Net structure only, as well 

as the different durations. We chose an instance from the first clas:s, perturbed the 

durations, and ran the EVAL-QUERY algorithm. As can be seen from the precision 

and recall of the algorithm, shown in Figure 2.6, based on the nurnber of retrieved 

instances from the class which the query belongs to, the algorithrr~ performed very 

poorly. This should not surprise us, since the search space we are looking into is 

of high dimensionality, depending on the number of object trails in the query, their 

starting times, and their durations. 

In the second experiment, we included the trajectory mismatch measure informa- 

tion and used the same query instance. We classified the data into three classes based 

on the Euclidean distance of the similarity measure of the object trails from the query 

trails. As the precision and recall values in Figure 2.6(b) show, our second classifica- 

tion gave much better results than the first one. Even when there are differences in 

the temporal interval-based specifications, highly similar trails give better accuracy. 
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Fig. 2.5. Five structurally different Petri-nets: instances from these classes were 
used to evaluate our metric based on different assumptions 
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Fig. 2.6. Recall-Precision graphs for (a) Petri-net structure-based classification and 
(b) Object-trail similarity-based classification. 



3. ARCHITECTURE OF A WEB-ENABLED VIDEO 
SEARCH ENGINE 

We have built a Web-enabled prototype database system that employs the trail- 

based motion indexing and Petri-net based temporal query construction mechanisms 

discussed in the previous section. 

The architectural components of this system is depicted in Figure 3.1. According 

to this model, a user can independently specify trajectories of indivitdual objects and 

the temporal relationships between object trajectories. The temporal relationships 

are modeled as a Petri-net based graphical data structure. Query scenarios repre- 

sented as a Petri-net carry two pieces of information used in the search process: (1) 

Trajectory information represented by object trails and (2) Temporal information re- 

flected by the structure of the Petri-net. The former is included in the Petri-net as 

a circular node and the entire Petri-net is used as a representative of the described 

scenario. 

Query processing involves two steps, the first being the comparisons of individual 

trail representations in three different search types (spatial-absolute, spatial-invariant 

and scale-invariant) using the Algorithm TRAIL-SEARCH. The resulting ranked in- 

dices(simi1arities) between the query trails and trails in the database for the sub- 

sequent temporal processing. In this step, which constitutes the second phase, the 

temporal features of the Petri-net based query is matched against the existing object 

co~npositions in the database using the Algorithm EVAL-QUERY and the final results 

are obtained. Accordingly, a number of clips that are ranked as the best matches are 

returned to  the user. 

In order for the video clips to be accessed by such a system, raw data has to be 

processed first. For this purpose, the existing data clips are first indexed similar to 
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Fig. 3.1. Architectural Components of the Multimedia Web Search Engine 



Fig. 3.2. Video Motion Indexing Tool 

the construction of the sketched queries, and the Object Trail Scherna is constructed 

as discussed in Section 2.1. This schema contains the trails of the salient objects 

much similar to the user sketches and is used in the Trail Matching step to search for 

queried clips based on their image representation. 

We have implemented the above outlined system in Windows platform. The 

overall system consists of two components: The Video Indexing Tool and the Web 

Video Search Engine. In the next two sections, we cover some impleimentation details 

of -these tools and explain their functioning briefly. 

3.1. Video Motion Indexing Tool 

Raw Video Data goes through a pre-processing step where the objects are identi- 

fied and their position and size are specified with a bounding box, Minimum Bounding 

R.ectangle (MBR). Despite their known limitations, MBR.s provide an efficient way 

to represent approximate location of objects on the video coordinate space. During 



the pre-processing step, the MBR of each user-identified object needs to  be deter- 

mined and recorded for each frame. When manually carried out, this is a tedious 

task especially at  high frame rates. Our experience proved that frame sampling used 

with interpolation for "inter-frames" result with noticeably efficient results without 

con~promising accuracy significantly. Therefore, we only index selected key-frames 

ancl interpolate the trajectories for inter-frames. 

Automatic detection and recognition of objects is an extremely challenging task. 

Current technology offers only partially acceptable solutions that can be incorporated 

in a video indexing mechanism. It has been widely accepted that with the current 

state of the art in the technology, software tools can most effectively be used as an 

aid to human users for the purpose of extraction of the "interesting" information, 

bui, totally automated indexing is far from being accomplished. Towards this goal, 

we use a semi-manual object tracking tool for capturing MBRs. For practicality, this 

is done for each intra-frame, typically 2 or 4 frames per second and trajectories are 

interpolated for inter-frames. 

Figure 3.2 shows the interface of the indexing tool we use to  generate MBR- 

based indices in the database. Selected frames of a given clip are loaded one by one 

on the image area and bounding boxes are drawn by the users. 'The name of the 

corresponding object is entered or picked from the list for every MBR created. The 

generated index for each video clip contains the number of objects, {,heir names, sizes 

(width and height), starting frame numbers and the duration lengtlis along with the 

X and Y coordinates at each frame instance which are later used to  construct the 

motion trails in Algorithm TRAIL-SEARCH . 

The requirement of pre-processing of video within the proposed framework is a 

severe shortcoming and is a general handicap in content-based multimedia access. The 

widespread use of the upcoming content-aware video representation standards such 

as MPEG4 or MPEG7 will help facilitate such systems on networlked environments 

such as the Web in the future. 
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