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ABSTRACT

For hyperspectral data classification, the avoidance of singularity of covariance
estimates or excessive near singularity estimation error due to limited training datais a
key problem. This study is intended to solve problem via regularized covariance
estimators and feature extraction algorithms. A second purpose is to build a robust
classification procedure with the advantages of the algorithms proposed in this study but
robust in the sense of not requiring extensive analyst operator skill.

A pair of covariance estimators called Mixed-LOOCs is proposed for avoiding
excessive covariance estimator error. Mixed-LOOC2 has advantages over LOOC and
BLOOC and needs less computation than those two. Based on Mixed-LOOC2, new
DAFE and mixture classifier algorithms are proposed.

Current feature extraction algorithms, while effective in some circumstances, have
significant limitations. Discriminate analysis feature extraction (DAFE) is fast but does
not perform well with classes whose mean values are similar, and it produces only N-1
reliable features where N is the number of classes. Decision Boundary Feature Extraction
does not have these limitations but does not perform well when training sets are small, A
new nonparametric feature extraction method (NWFE) is developed to solve the
problems of DAFE and DBFE. NWFE takes advantage of the desirable characteristics of
DAFE and DBFE, while avoiding their shortcomings.

Finally, experimental results show that using NWFE features applied to a mixture
classifier based on the Mixed-LOOC2 covariance estimator has the best performance and
isarobust procedurefor classifying hyperspectral data.

—
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CHAPTER 1. INTRODUCTION

1.1 Statement of the Problem

As new sensor technology has emerged over the past few years, high dimensional
multispectral data with hundreds of bands have become available. For example, the
AVIRIS system' gathers image data in 210 spectral bands in the 0.4-2.4 um range.
Compared to the previous data of lower dimensionality (less than 20 bands), this
hyperspectral data potentially provides a wealth of information. However, it also raises
the need for more specific attention to the data analysis procedure if this potential is to be
fully realized.

Among the ways to approach hyperspectral data analysis, a useful processing model
that has evolved in the last several years{1] is shown schematically in Figure 1.1. Given
the availability of data (box 1), the process begins by the analyst specifying what classes
are desired, usually by labeling training samples for each class (box 2). New elements
that have proven important in the case of high dimensional data are those indicated by
boxes in the diagram marked 3 and 4. These are the focus of this work and will be
discussed in more detail shortly, however the reason for their importance in this context
is as follows. Classification techniquesin pattern recognition typically assume that there
are enough training samples available to obtain reasonably accurate class descriptionsin
quantitative form. Unfortunately, the number of training samples required to train a
classifier for high dimensional data is much greater than that required for conventional
data, and gathering these training samples can be difficult and expensive. Therefore, the
assumption that enough training samples are available to accurately estimate the class
quantitative description is frequently not satisfied for high dimensional data. There are

i Airborne Visible and Infrared Imaging Spectrometer system, built and operated by the NASA Jet
Propulsion Center.
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many types of classification algorithms used on such data. Perhaps the most common is
the quadratic maximum likelihood algorithm.

"

z

5 Feature

4 Class Conditional | .
. Selection

Feature Extraction

L e

gt

Figure 1.1 A schematicdiagramfor a hyperspectral data analysisprocedure.

In the stochastic approach, the characteristics of a class are modeled with a set of
parameters, which are estimated based on some prior knowledge, often in the form of
pre-labeled samples. The pre-labeled samples used to estimate class parameters and
design a classifier are called training samples. The accuracy of parameter estimation
depends substantially on theratio of the number of training samplesto the dimensionality
of the feature space. As the dimensionality increases, the number of training samples
needed to characterize the classes increase as well. If the number of training samples
available fails to catch up with the need, which is the case for hyperspectral data,
parameter estimation becomes inaccurate.

Consider the case of afinite and fixed number of training samples. The accuracy of
statistics estimation decreases as dimensionality increases, leading to a decline of the
classification accuracy (Figure 1.2(b)). Although increasing the number of spectral
bands (dimensionality) potentially provides more information about class separability
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(Figure 1.2(a)), this positive effect is diluted by poor parameter estimation. As aresult,
the classification accuracy first grows and then declines as the number of spectral bands
increases (Figure 1.2(c)), which is often referred to as the Hughes phenomenon (or the
peaking phenomenon).

Accuracy of g
Statistics Estimation

Separability —»

Dimensionality,n —m= Dimensionality, n >

(@) High dimensionality (the number of (b) With afinite and fixed number of
spectral bands) potentially provides samples, the accuracy of statistics
better class separability. estimation decreases as dimensionality

increases. Asthe number of training
samples, denoted by N, increases,
statistics estimation improves.

Accuracy —»

Classification

Dimensionality,n ——=
(c) The peaking phenomenon results from the combination
of the two opposite effects shownin (@) and (b).

Figure 1.2 Conceptual presentation of classification accuracy vs. measurement
complexity in finite and fixed training cases (The Hughes phenomenon).



There are several ways to overcome this difficulty. In [2], these techniques are
categorized into three groups:

a. Dimensionality reduction by feature extraction or feature selection,
b. Regularization of sample covariance matrix (e.g. [3], [4]), and

c. Structurization of a true covariance matrix described by a small number of
parameters|2].

The objectives of thisresearch are

1. Toimprove the mgjor steps of hyperspectral data classification (box 3, 4 and 6
of theFigure 1.1).

2. Tofind arobust and easy classification processfor users.

1.2 Organization of ThisReport

Chapter 2: Two regularized covariance estimators with the advantages of LOOC [5], [6]
and BLOOC [7] are developed. The results of several experiments with
computer generated data and AVIRIS data sets are presented that test their
performances.

Chapter 3: Discriminate analysis feature extraction (DAFE) is improved in this chapter
by using one of the regularized covariance estimators developed in Chapter 2.
The improved DAFE relieves one of the limitations of DAFE that total
training sample size should be greater than the dimensionality. Different
combinations of feature extraction methods and classifiers are tested by using
AVIRIS data sets.

Chapter 4: Gaussian mixture classifiers with different parameter estimation and model
selection methods are improved in this chapter by using one of the regularized
covariance estimators developed in Chapter 2. The results of several
experiments with computer generated data and AV IRIS data sets are presented
that test their performances.



Chapter 5: A nonparametric feature extraction method is developed to solve those
problems in DAFE. The results of several experiments with computer
generated dataand AVIRIS data sets are presented that test its performance.

Chapter 6: The performancesof combining feature extraction (DAFE and NWFE) and a
mixture classifier based on Mixed-LOOC2 procedures are tested in this
Chapter. The results of several experimentswith computer generated data sets,
AVIRIS data sets, and HyMap data sets are presented that test its
performance.

Chapter 7. General conclusions and potentials for future research development future
research are suggestedin this chapter.






CHAPTER 2: MIXED LEAVE-ONE-OUT COVARIANCE
ESTIMATOR

2.1 Introduction

For a quadratic classifier, the mean vector and covariance matrix of each class are
the parameters that must be estimated from training samples. Usually the ML estimator is
used. When the dimensionality of data exceeds the number of training samples, the ML
covariance estimate is singular and cannot be used, however even in cases where the
number of training samples is only two or three times the number of dimensions,
estimation error can be a significant problem.

The purpose of this chapter is to define an improved regularized covariance estimator of
each class that isinvertible and with the advantages of LOOC [5], [6] and BLOOC [7]
(box 3 of Figure1.1).

2.2 Background and PreviousWorks

The decision rulein aquadratic classifier is to label the (p by 1) vector x as class k
if the likelihood of classk isthe greatest among the classes:

x€ classk, if argmax|f(m,,%, | x)]=k

/A

fleim,z)=___ |exp[:;(x—m,)fz:l(x—m,>J

where m; is the mean vector, and Z, is the covariance matrix. Usually in practice the true
values of the mean and covariance are not known and must be estimated from training



N.
samples. The mean is typically estimated by the sample mean », = LE"

., » wherex;;

i J=l

issample j from class i. The covariance matrix is typically estimated by the maximum

. . . 1 &
likelihood covariance estimate S, = N_Z G, -mk., -m) .

» Jj=1

The maximum likelihood mean and covariance estimates have the property that
they maximize the joint likelihood of the training samples, which are assumed to be
statistically independent.

m, = argmaxﬂf(t,,j Im,Z,) and S, =argmax ﬁf(‘r,, |mi>z)-
m J= J=1

2.2.1 Regularized Discriminant Analysis(RDA; [2])

Regularized discriminant analysis (RDA) is a two-dimensional optimization over
four-way mixtures of the sample covariance, common covariance, the identity matrix
times the average diagona element of the common covariance, and the identity matrix
times the average diagonal element of the sample covariance.

) ) tr(i,.(x))
LA =>10-yZ M) +y — I 0<y<I

where

(1 -A)N, -1)S, + AN - L)S,
T=A)N, T AN

$.(4) = ,0<A<1

1 L
S, = N, -DS,
o= e NS,

i

The criterion function that is maximized is the leave-one-out classification error.
Since the criterion function depends on the covariance estimates of the other classes, the
same values of the mixing parametersare used for al classes.
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2.2.2 L eave-One-Out CovarianceEstimator (LOOC; [4],[5])

(- a,)diag(S,)+ a5, O0<a <1
2(0) =12 -a)S, +(a, - 1)S 1<a, <2
(3-a,)S + (0, — 2)diag(S) 2<a, <3

L
where §= iZS,.
LS

I .
x, ., where the notation /k
N;—MZ‘ "

 +k

The mean of classi, without samplek, ism,,, =

indicates the quantity is computed without sample k. The sample covariance of classi,

without samplek, is
1 N;
= N_:_2_J=21 (xiJ M Xxi,j - mi/k)

1]
J*k

and the common covariance, without sample k from classi, is

1 ¢ 1
S = o+ X,
/k Z—; J Z_ /k

J#i

The proposed estimate for classi, without sample k, can then be computed as follows:

(l—ai)diag@i/k )"'aiii/k 0=a, =1
Ci/k(ai)z (2 Y )S:i/k +(ai _l)gi/k l<o; <2
(3_ai)si/k+(ai_2)‘ﬁag(suk) 2<a;<3

The mixing parameter a, is determined by maximizing the average |eave-one-out

log likelihood of each class:

Loor, = | iln[ flx, |m, ., C, (@]
i N— k i1k>™ ik i

i k=l
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2.2.3Bayesian L eave-One-Out Covariance Egimator (BLOOC,; [6])

LOOC wasfound to work well for well trained classifiers, however, it was sensitive
to outliers. In practice this frequently occurs in cases where the class list is not
exhaustive, such that the missing classes constitute outliers to the defined classes. Thus
thefollowing scheme was devised.

-0y ias 0<a, <1
P

Z,@)={2-a)S, +(@, - DS 1) 1<a, <2

G-a)S+@ -2 2<q <3
; 2

where p isthedimensiondity and f, = N, -1,

S;(t)=[2 J 1]2 1

i fitt—-p- = fitt—-p-1

The criterion function of BLOOC is the same as that of LOOC. BLOOC tends to
mitigatethe outlier problem.

2.2.4 The Comparison of Performancesof RDA, LOOC, and BLOOC

Table 1isasummary of demonstrationsin [5] and [6]. The following are the rules
and notation of thissummary.

1. Compute the differences of the performancesof RDA vs. LOOC in [5] and LOOC vs.
BLOOC in [6].

2. If the differenceis greater or equal than the standard deviation of LOOC, then round to
the hundreds and display in Table 2.1 in the form x(y). x(y) means that, in case X, the
accuracy of this method is y% better than that of other method.

3. Blank cdlls in two methods mean that both methods have the same performancein this
situation within one standard deviation.

4. ExpiE means Experiment i with equal sample size design. ExpiU means Experiment i
with unequal sample size design. Reali means real dataset i.



Table 2.1. The Summary o Hoffbeck and Tadjudin's Research Experiments

Hoffbeck(1995) Tadjudin(1998)
Experiment | RDA(%) LOOC(%) Experiment LOOC(%) BLOOCI1(%
Expl ExplE
Exp2 ExplU
Exp3 b(4)c(11)d(22) Exp2E <(12)d(20)
Exp4 Exp2U d(8)
Exp5 a(Nb(11)c(9)d(7) Exp3E b(12)c(17)d(23)
Exp6 a(3)b(d)c(6)d(5)_|__Exp3U b(3)c(5)d(8),
Red 1 Exp5SE a(13)b(14)c(19d(21)
Real2 d2) Exp5SU b(4)c(3)d(3)
Real3 da) Real4 c(22)
In Expl-6 and T3.2-3.8 In Real3: Jasper Ridge site
a dim=6 a dim=10
b: dim=10 b: dim=50
c: dim=20 ¢ dim=100
d: dim=40 d: dim=193
In Reall: Cuprite Site and In Real4: Indian Pine site (small segment), dim=200
Real2: Indian Pine Site a training samplesize =1% of labeled data
a dim=10 b training sample size =5% of labeled data
b: dim=50 C: training samplesize =8% of labeled data
c: dim=100 d: training sample size=10% of labeled data

d: dim=191

From Table 2.1, we see that
1. LOOC reaultsare better than RDA in most situations.

2. In simulation data, BLOOC is only better than LOOC in experiment 2 (both
equal and unequal case).

In addition, computation timeis decreasing in the order RDA, BLOOC, and LOOC.
According to both accuracy and computation, LOOC is a better choice than the others.
However, BLOOC has an advantage o being more resistant to outliersin the training set.

2.3 Mixed Leave-One-Out Covariance (Mixed-LOOC) Estimators
2.3.1 Mixed-LOOC1

LOOC and BLOOC are the linear combination of two of the three matrices, and in
some situations, BLOOC is better than LOOC, elsewhereLOOC is better. The difference
between LOOC and BLOOC is in those matrices that they use to formulate the



regularized covariance estimator. So we know that only using some of the six matrices
will not get good results in all situations. The basic idea of Mixed-LOOC isto use all six
matrices to gain the advantages of both LOOC and BLOOC. Hence the first proposed
regularized covariance estimator, Mixed-LOOC1, is

- tr(S. S
X, (a,b,,c,,d e, f)= a, &)_[+b,,diag(S,.)+c,S, +d, ti_)1+e,diag(S)+ 1S
P D

where a, +b,+c, +d,+e, +f,=1 and i=12,..,L
L : number of classes
p - number of dimensions
S, :covariancematrix of classi
S :common covariancematrix (pooled)

The mixture parameters are determined by maximizing the average leave-one-out
log likelihood of each class:

1 & B
LOOL, = A—[—Eln[f(xk 7, 145 2, (6,))] , where?, =(a,,b,,¢,,d,, e.f)

i k=l

2.3.2 Mixed-LOOC2

Since using Mixed-LOOCI is computationally intensive, finding a more simplified
estimator will be more practical. Appendix A shows that given two known matrices, the
ML estimate of mixture parametersin LOOC and BLOOC are at the end points (*i =0,1,
2, or 3). Figures 2.1, 2.2, 2.3, and 2.4 illustrate the relationship between LOOL and the
mixture parameter, o,. The first three figures are generated from simulated data sets;
Figure 5 is based on areal data set. The detail information about simulated and real data
set is in experiment design (section 2.4). In the case of Figure 2.1, the sample size is
greater than the dimensionality. For Figure 2.2, 2.3, and 2.4, the sample sizes are less
than the dimensionality. Figure 2.2, 2.4, and 2.4 show that when the ML covariance
estimator is singular, the optimal choice of LOOC parameter under LOOL criteria is
around the boundary points.
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Since a closed form solution for the parameter o, under the LOOL criteria is not
available, and based on the above observations, one of the six support matrices is chosen
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to be the covariance estimator to reduce the computation time. The Mixed-LOOC?2 is
proposed as the following form:

S.(@)=aA+(-a)B

(S

_ (S
whered = TS0, diag(S), S, T diag(S), or 5 , 8= S, 0r dag($) and % is

closed to 1. B = S, or diag(S) is chosen becauseif aclass samplesizeislarge, S, will
be a better choice. If total training sample size is less than the dimensionality then the
common (pooled) covariance S is singular but has much less estimation error than S; .
For reducing estimation error and avoiding singularity, %iag(S) will be a good choice.

The selection criteriais the log leave-one-out likelihood function:

1 & A
LOOL, = N_Zln[f(xk 7,11 2 (©))
i k=l

The algorithm to decide the Mixed-LOOC?2 of each class is to compute LOOL of the 12
covarianceestimator combinations, then choose the maximal one. This method needs less
computation time than the LOOC proposed in [5].

24 Experiment Designfor Comparing LOOC, Mixed-LOOC1, and Mixed-LOOC2

In the following experiments, the grid method is used to estimate the mixture
parametersof LOOC and Mixed-LOOCI. The range of the parameter @ in LOOC isfrom
0to3 and thegridsare a =[0, 0.25, 0.5, ..., 2.75, 3]. There are Six parametersin Mixed-
LOOCI1 and the ranges of them are from 0 to 1. The grids of Mixed-LOOC1 are [0, 0.25,
0.5, 0.75, 1]. For Mixed-LOOC2, the parameter a is set to 0.05. In the simulation
experiments, performances of al three covariance estimators are compared. Based on
computational consideration, only the performances of LOOC and Mixed-LOOC2 are
comparedfor the real data experiments.

Experiments 2.1 to 2.12 are based on simulated data sets. Experiments 2.1 to 2.6
and experiments 2.7 to 2.12 are generated from the same normal distributions
respectively. The mean vectors and covariance matrices of experiments 2.1 to 2.6 (and
2.7 10 2.12) are the same as those six experiments in [2] Their mean vectors and
covariance matrices are in Appendix B. The only difference between these two set



experiments is that experiment 2.1 to 2.6 are with equal training sample sizes in each
class but experiments 2.7 to 2.12 arewith different sample sizes in each class. Training
and testing sample sizes of these experiments are in Table 2.2. Ther are three different
dimensionalities, p=10, 30, 60, in every experiment. At each situation, 10 random
training and testing data sets are generated for computing the testing sampl e accuracies of
algorithms, and the standard deviationsof the accuracies.

Table 2.2 The Design of Sample Size
Expertments 2.1 ~ 2.6 Experiments 2.7 ~ 2.12
Sample Size | Class | Class { Class | Class | Class | Class
1 2 3 1 2 3
Training 10 10 10 30 10 5
Testing 200 200 200 600 200 100

There are four different real data sets, the Cuprite site, which is an area of geologic
interest, Jasper Ridge, an ecological site, Indian Pine, an agricultural/forestry site, and
DC Mall, an urban site, in experiment 2.13 to 2.16 respectively. All real data sets have
191 bands. There are 8, 6, 6, and 7 classes used in the Cuprite site, Jasper Ridge site,
Indian Pine site, and DC Mall, respectively. There are 20 training samplesin each class.
At each experiment, 10 training and testing data sets are selected for computing the
accuraciesof algorithms, and the standard deviations of the accuracies.

2.5 Experiment Results

1.In Table 2.3(a), (b), (c), the shadow parts indicate that the differences of
performances of LOOC and Mixed-LOOC2 are larger than the standard deviation of
Mixed-LOOC2. If the difference is smaller than the standard deviation, we assume
that the performancesof these methods have no significant difference.

2. All the experiments with significant differences (the shadow parts) indicate that
Mixed-L OOC outperformed LOOC.

3. The results of shadow parts show that the differences between Mixed-LOOC and
LOOC increase as the number of dimensionsincreases.
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. When the training sample sizes of classes are unbalance, Mixed-LOOC performed
better than LOOC in more situations.

. Significant differences most often occurred in experiments 2.2, 2.7, and 2.8. Those
are the situations in which BLOOC has better performances than LOOC. Since the
Mixed-LOOCs are the union version of LOOC and BLOOC, based on these findings,
we conclude that the Mixed-LOOCs have advantages over LOOC and BLOOC and
can avoid their disadvantages.

. In most of the experiments, the standard deviations of the Mixed-LOOCsare less than
those of LOOC. This suggestsMixed-LOOCs are more stable than LOOC.

. The results of experiment 2.13 (Cuprite Site) show that Mixed-LOOC2 outperforms
LOOC very much. The results of experiment 2.13 and 2.14 (Jasper Ridge site) show
that the performancesdf Mixed-LOOC2is more stable than those of LOOC

. The computation time decreases in the order Mixed-LOOC1, LOOC, and Mixed-
LOOC2.
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Table2.3(a) The Accuracy of Experiments (p=10)

Experiment LOOC Mixed-LOOCI Mixed-L OOC2

1 0.8630 (0.0425) 0.8632 (0.0243) 0.8602 (0.0466)

2 0.7753(0.0481) - » '| . . 0.8373(0.0180) ' ‘| - 0.8450(0.0224)

3 0.8948 (0.0241) 0.8915 (0.0251) 0.8992 (0.0265)

4 0.8875(0.0309) 0.8893(0.0263) 0.8837 (0.0386)

5 0.9860 (0.0283) 0.9822 (0.0361) 0.9858(0.0282)

6 0.9885(0.0033) 0.9833(0.0085) 0.9885 (0.0036)

7 0.8500 (0.0286) 0.8622 (0.0252) 0.8641 (0.0249)

8 0.8433 (0:0410) » + |~ 0.8750(0.0289) 0.8792 (0.0250)

9 0.9021 (0.0230) 0.9041 (0.0183) 0.9041 (0.0203)
10 0.8928 (0.0247) 0.8948 (0.0204) 0.8940 (0.0245)
11 0.9883(0.0064) 0.9920 (0.0041) 0.9872 (0.0065)

12 0.9841 (0.0076) 0.9830 (0.0075) 0.9827 (0.0116)
Table2.3(b) The Accuracy of Experiments(p=30)
Experiment LOOC Mixed-LOOC1 Mixed-LOOC2

1 0.8317 (0.0227) 0.8285 (0.0196) 0.8267 (0.0213)

2 0.7263 (0.0510) " * ._0.8700(0.0205) .0.8813(0.0204)

3 0.8162 (0.0220) 08142 (0.0223) 0.8152 (0.0237)

4 0.7978 (0.0619) 0.7955 (0.0609) 0.7972(0.0612)

5 0.9993(0.0014) 0.9975 (0.0037) 0.9993(0.0014)

6 0.9990(0.0021) 0.9945 (0.0087) 0.9992 (0.0016)
7 - 0.8239(0.0345) . # * 0.8469(0.0154) * [ 08504 (0.0171)

8"  0.8718(0.0311) * * 0.9210000130) “ * [ # '0.9189(0.0118) -

9 0.8228(0.0274) 0.8343(0.0206) 0.8241 (0.0268)
10 0.8326 (0.0162) 0.8370(0.0186) 0.8313 (0.0156)

11 0.9976(0.0021) 0.9994 (0.0008) 0.9984 (0.0018)
12 0.9953 (0.0059) 0.9991 (0.0007) 0.9978 (0.0047)

Table2.3(c) The Accuracy of Experiments(p=60)
1 O0OC Mixed-1 OOC] Mixed-1 O0OC2
0.7378 (0.0540 0.7607 (0.0259 0.7605 (0.0287
L 06578(0.063D). o | 08792(0.0213) . .}  .0.8882(0.0175)
0.7632 (0.0265) 0.7615 (0.0235) 0.7583 (0.0281)
0.7483 (0.0324) 0.7473 (0.0308) 0.7435 (0.0288)
1.0000 (0.0000) 0.9998 (0.0005) 1.0000 (0.0000)
____1.0000 (0.0000) 1.0000 (0.0000 1.0000 (0.0000
‘0.7820400327 i i 08093 0.0229) . L 0.8120(0.0192)
, 0.8876100219) 09401 (0.0075) . . 0.9400 (0.0073) .
0.7947 (0.0216) 0.8024 (0.0150) 0.7958 (0.0203)
0.7802 (0.0302) 0.7932 (0.0277) 0.7837 (0.0275)
0.9988 (0.0021) 0.9997 (0.0011) 0.9997 (0.0011)
1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

Table 2.3(d) The Accuracy of Real Data Sets (p=191)

Real Data Set
o cupnite L 0077 1372
0.9864 (0.0042)

Mlxed LOOC2

0.9349 (0.00 19)

Jasper Ridge
Indian Pine 0.7612 (0.0127) 0.7625 (0.0144)
DC Mall 0.7831 (0.0455) 0.7858 (0.0431)
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CHAPTER 3: Discriminate AnalysisFeatur e Extraction Based on
Mixed-L OOC2

3.1 Discriminate Analysis Feature Extraction (DAFE)

The purpose of DAFE is to find a transformation matrix A such that the class
separability of transformed data Y=ATX is maximized. Usually within-class, between-
class, and mixture scatter matrices are used to formulate the criteria of class separability.
A within-class scatter matrix is expressed by [8]:

S = iRE{(X-mf)(X-m,»)T |w,} = EL)EZ,.

i=

whereL is the number of classes and P, and m, are the prior probability and mean vector
of theclassi, respectively.

A between-class scatter matrix is expressed as

5. =3 7 o -y 5 5 2 m-m -

i=l j=i+1
wherem, representsthe expected vector of the mixturedistribution and is given by

m, = E{X}= Pm,
i=1

Let Y =4"X then we have
Sy =A'S,x A and Sy = A4' Sy A4

The optimal features are determined by optimizing the criterion given by
']1 :tr(S;;’SbY)



The optimum A must satisfy

(S;}(be)A = A(S;}'Sb}')

This is a generalized eigenvalue problem [9] and usually can be solved by the QZ
algorithm. But if the covariance is singular, the result will have a poor and unstable
performance on classification. In this section, the ML covariance estimate will be
replaced by Mixed-LOOC when it is singular. Then the problem will become a simple
eigenvalue problem.

3.2 Comparison of DAFE and DAFE Based on Mixed-LOOC2

For convenience, denote DAFE based on ML estimators as DAFE and DAFE based
on MLOOC?2 as DAFE-Mix2, Gaussian classifier based on ML estimators as GC, and
Gaussian classifier based on MLOOC?2 estimators as GC-Mix2. Experiments 3.1 to 3.3
are for determining the performances of DAFE-Mix2. The classification process in
experiment 3.1 is to use DAFE then GC, in experiment 3.2 use DAFE-Mix2 then GC,
and in experiment 3.3 use DAFE-Mix2 then GC-Mix2. The sample sizes of experiment
3.2 and 3.3 are the same as those of experiments 2.13 to 2.16 (N,=20). Since using those
sample sizes in DAFE will cause very poor results, we increase the sample size o each
classin Cuprite, Jasper Ridge, Indian Pine, and DC Mall data sets up to 40. The results of
those experiments are shown in Table 3.1.

Table 3.1 The Results of DAFE Based on ML Estimators and MLOOC2

Exp3.1(Ni=40) Exp3.2(Ni=20) Exp3.3(Ni=20)
Redl Data Set DAFE -GC DAFE-Mix2-GC DAFE-Mix2-GC-Mix2
Cuprite 0.8943 (0.0205) 0.9474(0.0194) 0.9627 (0.0196)
Jasper Ridge 0.9127 (0.0243) 0.9782 (0.0120) 0.9876 (0.0036)
Indian Pine 0.5727 (0.0156) 0.7547(0.0316) 0.7562 (0.0191)
DC M4l 0.7392 (0.0530) 0.8691 (0.0282) 0.8600 (0.0345)
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Figure 3.1 The Mean Accuraciesof Three Classification Procedures

From above results we find:

1. Using DAFE-Mix2 provides higher accuracy and, in most cases, smaller standard
deviation than using only DAFE.

2. Comparing Table 2.3(d) and Table 3.1, wefind that in all data sets except the DC
Mall sets, using DAFE-Mix2 then GC or GC-Mix2 have similar results with only
using GC-Mix2. But the results for DC Mall show that using DAFE-Mix2 then
GC or GC-Mix2 gave asignificant improvement.

3. FromTable 3.1 and Figure 3.1, DAFE-Mix2 -GC-Mix2 looks like the best choice.



3.3 Concluding Comments

The singularity or near-singularity problem often occurs in the case of high
dimensional classification. From the above discussion, we know that finding a suitable
regularized covariance estimator is a way to mitigate this problem. Further, Mixed-
LOOC2 has advantages over LOOC and BLOOC and needs less computation than those
two. The problems of class statisticsestimation error resulting from training sets of finite
size grows rapidly with dimensionality, thus making it desirable to use no larger feature
space dimensionality than necessary for the problem at hand, and therefore the
importance of an effective, case-specific feature extraction procedure. Usually DAFE
cannot be used when the training sample size is less than dimensionality. The new
procedure, DAFE-Mix2, overcomes this shortcoming, and can provide higher accuracy
when the sample sizeis limited.
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CHAPTER 4. GAUSSIAN MIXTURE CLASSIFIER BASED ON
MIXED-LOOC2

4.1 Introduction

The normal mixture density, which models the density as the sum of one or more
weighted Gaussian components, is a compromise between Gaussian and non-parametric
densities. It allows more flexibility than the Gaussian density, yet requires fewer
parameters to be estimated than non-parametric densities. Most methods in this area
usually assume that if one class can be divided by several normal distributed subgroups
then the sample size of each subgroup should not be less than the dimensionality. The
purpose of this section is to provide the evidence that we can divide one class into some
subgroups whose sample sizes may be less than the dimensionality, and the classification
result could be improved by thisway.

There are two steps to design a quadratic mixture classifier. The first is parameter
estimation and the second is mode selection. In this study, NM (nearest means or K-
mean) clustering and EM (expectation-maximization)clustering are used in the parameter
estimation part. There are many indices for model selection. In this research, only the
performancesaf AIC, BIC, NEC, and ICL-BIC, described below, are tested.

4.2 Parameter Estimation M ethods
4.2.1 Normal MixtureDensity

In order to model non-Gaussian classes, consider the quadratic mixture density,
which is the weighted summation of L Gaussian density functions:
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p(x)=2akf(x|mkazk) 4.1)
where /&1 mE)= o expl =m0 Gom)] (g

) E |

Each term in the summation of (4.1) is called acomponent of the normal mixture density.
The weights oy, which must sum to unity, area priori probabilities of' the components.
In practice the parameters of the density function (L, & m,, and £ _for k=1, 2,...L) are
usually not known and must be estimated from the training samples. Multimode classes
can be represented by a mixture density with one or more components representing each
mode. Since the covariance matrix of each component should be invertible, ordinarily the
sample size of each component should not be less than the dimensionality o the data. In
this section, the new mixture classifier will relieve this limitation.

4.1.2 Nearest Means Clustering

The nearest means clustering algorithm, which requires the number of clustersto be
specified, is used and proceedsasfollows[8]:

Step 1. Choose an initial classification of the samples into L clusters and compute the
mean o each cluster.

Step 2. Reclassify each sample to the cluster with the lowest Euclidean distance between
the mean of the cluster and the sample.

Step 3. If the classification of any sample has changed, calculate new mean vectors and
return to step 2; otherwise stop.

4.1.3EM clustering

The EM (expectation-maximization) algorithm consists of two major steps. an
expectation step, followed by a maximization step. The expectation is with respect to the
unknown underlying variables, using the current estimate of parameters and conditioned
upon the observations. The maximization provides a new estimate of the parameters. It is
an iterative method for computing the maximum likelihood estimates of the mean vector,
covariance matrix, and a priori probability of the componentsin a normal mixture. It can
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correctly identify clusters that have the same mean vectors but different covariance
matrices. The number of components L must be specified at the outset. The method
proceeds asfollows [8]:

Step 1. Choose an initial classification of the samplesinto L clusters.

Step 2. Estimate the a priori probability &:, the mean vector ; , and the sample
covarianceZ; of each cluster.

Step 3. Compute9:, , whichisthea posteriori probability of classi given samplej:
aif(xj |mi>zi)

= “4.3)
;akf&j Imk’zk)

LJ

Step 4. Compute new estimates of the a priori probability, mean vector, and sample
covariance of each cluster:

1 N
7, = N',ST g, (4.4)
1 N
m; = e q;;%, 4.5)
1 N

where N is the total number of samplesto be clustered.

Step 5. If any 9., changed, repeat steps 3-4, otherwisestop.

4.3 Moded Selection Indices

In the multivariate norma mixture model, data*>*>*» in R’ are assumedto be a

samplefrom a probability distribution with density (4.1)

p(x)= Zakf(-’@ @)

—



where the @, ’s are the mixing proportions (0 < @, <1) forall* =1,....L andZj_a, =1
and ¢(x,a,) denotes the p-dimensional Gaussian density with mean m, and covariance
matrix 2, with a,=0m,%). The maximized log likelihood of
Y =((,a)),...(ag,a, ) forthesamplec,,.»x, isdenoted

n L n
L(Y) = Zlog[z Ay f (x5 By, 2]
i=1 k=1
with &, and 4; denoting the maximum likelihood estimates of the corresponding

parameters.

Various criteria to be minimized have been proposed to measure a model's
suitability by balancing model fit and model complexity.

4.3.1 Akaikeinformation criterion (AIC)
The Akaikeinformation criterion (AIC; [10]) isdefined as
AIC(¥) = 2L(¥) T 2w(¥)
where V(*¥) isthe number of free parameters in the mixture model ¥ .

It was observed that AIC is order inconsistent and tends to overfit models [11]. In the
mixture context, that means that AIC trends to overestimate the true number of
components [12], [13].

4.3.2 Bayesan informationcriterion (BIC)

The Bayes factor for one model against another model isthe posterior odds for that
model against the other when neither model is favored over the other a priori. It is equal
to the ratio of marginal or integrated likelihood for each model. In [14], the integrated
likelihood of thedatay = (x ) giventhemodel ¥ is

P(d|¥)= [ P(d|'¥,0)P© | '¥)6

where P(@1'Y) isthe prior density of"* . A classical way to approximate the integrated

likelihood consists in using the Bayesian information criterion [15]. Noting§ the
maximum likelihood estimate of ~ , this approximation is

]



log P(d| ¥) =log P(d | ¥,6) - "(;P_)Logm o).

Thusthe Bayesian information criterion (BIC) is given by

BIC(Y)=-2L(¥Y)+v(¥)logn.
4.3.3Normalized Entropy Criterion and Classification Likelihood Criterion

Classification Likelihood Criterion (CLC) was proposed by [17], Normalized
Entropy Criterion (NEC) was proposed by [13] and modified by [16]. It was derived from
a relation emphasizing the differences between the likelihood and the “fuzzy”
classification likelihood of the mixture or, in the same manner, between the likelihood
and the classification likelihood of the mixture [17]. Let

— &k(p(xi sak)
tik By —

¥a,9(x,.4))

be the estimated conditional probability that *; rises from the kth mixture component.

Thefuzzy classification likelihood criterion isdefined as

creeey =3 S, loglé,9(x .2,

k=1 i=l

and the entropy isdefined as

EW)= _iit«* log, = 0.

k=1 i=l

Then we have

CLC(Y) = L(Y)- E(Y),

CLUWY) s related to the fuzzy classification matrix =&} . If the mixture
components are well-separated, then®(t) =V Otherwise, £(*') will have alarge value.
Thus, £(*) can be regarded as a measure of the ability of the L-component mixture
model to provide a relevant partition of the data¥1>> %) | The relation shows that the

classification likelihood term “““\*) can be regarded as a compromise between the fit



of the data to the mixture mode!, measured with the log  likelihood L(Y') , and the ability

of the mixture model to provide a classification in well-separated clusters, measured with
the entropy term EC¥) [18].

As a consequence, the entropy of the classification matrix f gives raise to severa
classificationcriteria[13], which are E(Y) | its normalized version

E(P)

M ™

where L,(M) denotes the maximized log-likelihood for a single Gaussian distribution. In

[13], the entropy termisequal to 0 when the number of components(nc) is 1. According
to [16], setting NEC=1 when nc = 1 correctsfor the tendency of original verson to prefer
nc > 1 whenthetruenc=1.

4.3.4 Integrated Classfication Likelihood Criterion

The Integrated Classification Likelihood Criterion was proposedin [18] and is an
attempt to overcome the shortcomingsof BIC and CLC. There are two versions of this
index [19]. Thefull versionis

L
ICLC(¥) =-2L(¥)+2E(¥)+ Blogn+2nY &, logd, - 2K(nd, ,---,nd., )
i=1
were B = V()= (L ~1) jsthe number of free parametersin4 and

L
K(n,,»,n,)= Y. T(n, +8)+logT(n+ L§) - Llog I§) +1og (L&

i=1

In [19], 9 s set as _. When the sample size of each component is large enough, the
Gamma function can be replaced by Stirling's formula

1

1
C(U) =u Zexp(—u)(2m)*
On setting® =! and neglecting terms of order Y'Y | we have

L
K(nd,-,nd )= nZdi logd, - 12-£ logn

i=1
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Then we can get the reduced version of ICL and itis named ICL-BICin {19]

ICL~ BIC(¥) = -2L(¥) + 2E(¥) +v(¥)logn

4.4 Gaussian MixtureClassifier Based on Mixed-LOOC

One of limitations of the above model selection indices is that the component
sample size should be greater than the dimensionality. The new algorithms based on
Mixed-LOOC will release this constraint.

4.4.1 MixtureClassfier UsingMixed-LOOC and Nearest Means Clustering

The agorithm of amixtureclassifier using Mixed-LOOC2 and nearest means (NM)
clustering is

Step 1. Compute Mixed-LOOC2of each class and for each class, use nearest means
clustering to find the components.

Step 2. Compute Mixed-LOOC2 of each component in classes.

Step 3. Compute the model selectionindex using Mixed-LOOC2 to replace ML
covariance estimate.

Step 4. If the number of componentsin classesis 1, then use the Mixed-LOOC2of this
class asits covariance estimator.

Step 5. Compute the mixture density function to form the Bayesian mixture classifier.
4.4.2 Mixture Classifier UsingMixed-LOOC and EM clustering

The algorithm of mixture classifier using Mixed-LOOC2 and EM clustering is
Step 1 Compute Mixed-LOOC2 of each class and for each class.

Step 2 Use EM clustering to find the components. But, in the estimating covariance steps
of EM clustering, the ML estimator should be replaced by Mixed-LOOC2.
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Step 3 Compute the model selection index using Mixed-LOOC2 to replace ML
covariance estimate.

Step 4 If the number of componentsin classesis 1, then using the Mixed-LLOOC2 of this
class asits covariance estimator.

4.5 Smulated and Real Data Experiments
4.5.1 Smulation Data Experiment Design

In simulation experiment, the performances of mixture classifiers based on NM and
EM clustering with model selection indices AIC, BIC, NEC, ICL-BIC and their Mixed-
LOOC versions are compared.

In classification problems, there are two kinds of mixture situations. One is the
components of each class are grouped together and do not mix with those of other
classes, like Figure 4.1(a). The other is that the components of different classes mix
together, like Figure 4.1(b). In first case, the mixture classifier may have performance
similar to the a simple quadratic classifier if the class sample sizes are large enough. But
when the class sampleis small then the performance of a mixture classifier may not be as
good as that of Gaussian quadratic classifier due to estimation error. In second case, the
mixture classifier would be expected to do a better job when the class sample sizes are
large enough, but if class sample is small then the mixture classifier may have more
severe problems.

The simulation study will focus on the second situation and try to find out which
combination of parameter estimation and model selection will give a better result. The
class sample sizes and the class mean vectors and covariance matrices of simulated data
are in Table 4.1(a). The clustering algorithm used in experiments 4.1 and 4.2 is NM
clustering and that used in experiments 4.3 and 4.4 is EM clustering. Five different
dimensionality (2,4,10,20,60) and three different class sample sizes are tested. In each
situation (Table 4.1(b)), 10 random training and testing data sets are generated for
computing the accuracies of algorithms, and the standard deviations of the accuracies.
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Figure4.1(a) Class 1 is not between subcomponentsaf class 2

Class?

Classl

Class?2

Figure4.1(b) Class 1 is between subcomponentsof class 2

Table4.1(a) Theclass mean vectors and covariance matrices of simulated data

class 1 class 2
Dim=2,4,10,20,60 component 1 component 1 component 2
Mean Vecior [0,0,...,0] (1,1,...,11 - [-1,-1,...,-1]
. Exp4.1 and 4.3 1 0.11 0.11
Covariance [ and 4.4 I I I
Training Class Sample Size 30, 60, 300 15,30,150 15,30,150
Testing Class Sample Size 30, 60, 300 15,30,150 15,30,150
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Table 4.1(b) Dimensionality and class sample size of situation 1 to 15

Situation | 1 2 3 4 5 6 7 8 9 10 21| 12 | 13| 14| 15

Dim 2 4 10 | 20 | 60 2 4 | 10] 20| 60| 2 4 10| 20| 60

Ni 30 | 60 [ 300 ] 30| 60 | 300 | 30| 60| 300| 30| 60 [ 300 | 30| 60 | 300

4.5.1 Real Data Experiment Design

Hyperspectral data from the Washington, DC Mall is used in real data experiments,
and the better clustering algorithm, chosen from the results of simulation studies, is used.
Two different class sample sizes (20 and 100) and two different dimensionalities (20 and
7) are used in Experiment 4.5. There are 191 bandsin the DC Mall image data and every
10-th band and 30-th band, which begins from the first one are selected, for the 20 and 7
bands cases. At each situation, 10 random training and testing data sets are generated for
computing the testing sample accuracies of algorithms, and the number of
subcomponentsin each class..

4.6 Experiment Results

For connivance, denote the mixture classifier built on the original model selection
index as the index itsalf (for example: AIC) and the mixture classifier built on the model
selection index based on Mixed-LOOC?2 as the index itself with a™Mix" suffix in tables
and figures.

4.6.1 Simulation Experiment Results

The results of experiments 4.1 to 4.4 are displayed in tables 4.2(a), (b), (¢), (d) and
figures 4.2(a), (b), (c), (d). The results displayed in the figures are the accuracies using
BIC_Mix in situations 1 to 15 (from top to bottom of the tables). They show that

1. Generaly speaking, the mixture classifier BIC_Mix gave better performance
than the others.

2. The shadow partsin tables indicate those cases that the performance of mixture
classifier BIC_Mix is significantly better than that of the simple quadratic
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classifier. In those unmarked situations, these two classifiers have equivalent
performances.

3. From tables 4.2(a), (b), (¢), (d), the performanceof the mixture classifier using
NM clustering was better than that of the mixtureclassifier using EM clustering.

4. The tables 4.2(a) and (b) (NM cases) show that if the subcomponents are well
separated (I-0.11 case) then mixture classifiers (with/without using
Mixed-LOOC?2) have advantages in low dimensionality situations. When the
dimensionality goes up, only the mixture classifiers using Mixed_LOOC2 can
have similar results with a Gaussian classifier. Those not using Mixed-LOOC2
yield poorer results due to estimation error increasing. If the subcomponentsare
well separated (I-I case) then increasing the dimensionality will help the mixture
classifiers using Mixed—-LOOC2 to obtain better performance but will reduce
the accuracy of those not using Mixed-LOOC2.

5. For estimating subcomponents, BIC_Mix is still a better choice than the others.
4.6.2 Real Data Experiment Results

The simulation study suggested that NM clustering is a better choice to build a
mixture classifier, so NM clustering is used on real data experiment. The results are in
Table4.3. It showsthat BIC_Mix still hasthe better performancethan othersin all cases.

4.7 Concluding Comments

The above results show that, sometimes, an original mixture classifier outperforms
a Gaussian classifier but sometimes not. The proposed mixture classifier using BIC_Mix
has the advantages of both classifiers and outperforms those two in some situations.
Before classifying hyperspectral image data, feature extraction is usually a preprocessing
step. The effect of combining feature extraction and mixture classification will be
discussed in Chapter 6.
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Table4.2(a) Resultsof experiment 4.1 (1-0.11 case) using NM dustering

Accuracy

M odel Selection

1 mode

AIC

AIC Mix

BIC

BIC Mix

NEC

| NEC Mix

ICLBIC

ICLBIC Mix

Dimensionali

Sample Size

10 30 0j9683 0.9017 0.755 0.9617 | 0.9683] 09517 0.9683 0.95
10 60 0.99 | 0.8075 1 0.8075 0.99 0.99 0.99 0.99 0.99
10 300 0.9945 | 0.9995| 0.9997 | 0.9995] 0.9997 | 0.9975] 0.9997 0.9945 0.9947
20 30 0.945 ] 0.7567] 0985 | 0.7567] 097 0.945 0.97 0.71 0.74
20 60 0.9967 | 0.6892| 0.9933 | 0.7342] 0.9933 | 0.9967] 0.9933 0.8975 0.8958
.
60 | 300 1 I | [ 1
Number of Components
Model Selection AIC | AIC Mix] BIC | BIC Mix| NEC | NEC Mix | ICLBIC | ICLBIC Mix
Dimension [ Sample Size | Class
1 1.1 1 1 1 1 1 1 1
2 30 2 2.4 2 2 2 2 2 1.5 1
1 1 1 1 1 2 1 1 1
2 60 2 2 2 2 2 4 5 1.5 1
1 1 1 1 1 4.5 5 1 1
2 00
3 2 2 2 2 2 6 6 6 6
1 1.8 1 1.4 1 1 1.5 1 1.1
4 30 2 2.9 2 2.9 2 1 3 1 1
1 1 1 1 1 2.5 2.5 1 1
4 60
2 2.7 2 2 2 2 4 1.5 1
1 1 1 1 1 1 2 1 1
4
300 2 2 2 2 2 6 6 6 6
1 1.5 1 1.2 1 1 1.5 1 1
10 30
2 2.1 1.8 1.7 1.3 1 1 1 1
1 2.4 1 2.3 1 1 3 1 1
10 80 2 3 2 2.6 1 1 1.5 1 1
1 1 1 1 1 5.5 1 1 1.
0
10 300 2 2 2 2 2 6 6 1 1|
1 1.3 1 1.3 1 1 1 3.5 3.5
20 30 2 1.3 1.6 1.3 1 1 1 1 1
1 1.4 1 1.4 1 1 1 2 2
20 &0 2 2.6 1 2.1 1 1 1 1 1
1 2 1 2 1 4 1 1 1
20 300 2 2.7 2 2.7 1 2 35 1 1
1 1 1 1 1 1 1 1 5
80 30 2 1.2 1 1.2 2 1 1 1 1
1 1 1 1 1 1 1 1 1
60 80 2 1.1 1 1.1 2 1 1 1 1
1 1 1 1 1 1 1 1 1
60 300 2 2 1 1 1 1 1 1 1
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Table4.2(b) Results of experiment 4.2 (I-1 case) using NM clustering

Accuracy
Model Selection 1mode] AIC | AIC Mix | BIC | BIC_Mix | NEC | NEC_Mix|] ICLBIC| ICLBIC_Mix
Dimensionality] SampleSize
2 30 0.6333 10.6233] 0.645 |06333] 0.6467 | 0.6033 0.64 0.6333 0.6467
2 60 0.6575 | 0.6583| 0.6608 | 0.6575] 0.6575 | 0.6658]| 0.6608 0.6575 0.6575
2 300 0.6773 [ 0.6815] 0.6842 | 0.679 | 0.682 0.6138] 0.6167 0.6773 0.6795
4 30 0.6767 | 0.6983] 0.6933 | 0.6583]| 0.6867 | 0.6767 0.6917 0.6767 0.6867
4 60 0.7358 1 0.7058] 0.7467 | 0.6967) 0.7425 | 0.6767 0.7467 0.73 0.7425
4 300 0.7785 1 0.7848] 0.7887 | 0.7848] 0.7813 | 0.7663 0.7733 0.7823

i

Number of Components

L

0.7785

%

Model Selection Aic | aic mix | Bic | Bic Mix| NEC | Nec_Mix | icLBiC]| ICLBIC Mix
Dimension | Sample Size | Class
5 30 1 1 1 1 1 1.5 1 1 1
2 1.5 1.1 1 1 25 1.5 1 1
5 s 1 1 1 1 1 1 1 1 I
2 1.2 1.1 1 1 2 1.5 1 1
5 300 1 1 1 1 1 55 55 1 1
2 19 1.9 1.4 1.1 1 1 1 1
4 2 1 1.8 1 14 1 1 1.5 1 1
2 29 1.1 2.2 1 1 2 1 1
4 60 1 2 1 2 1 35 1 1 1
2 35 1.3 15 1 45 45 15 1
4 300 i 1 1 1 1 2 2 1 1
2 2 2 2 1.1 1.5 1 1 1|
1 1.7 1 1.7 1 1 1 15 15 |
10 30 -
2 2 1 1.2 1 1 1 1 ]
0 60 1 14 1 14 1 1 3 1 1
2 25 1 18 1 1 3 1 1
0 300 1 1 1 1 1 6 1 1 1
2 22 2 1.9 1 6 6 1 1
20 30 1 13 1 13 1 1 1 1.1 1.1
2 1.5 1 1.5 1 1 1 1 1
” 60 1 1.8 1 1.8 1 1 1 1 1
2 14 1 1 1 1 1 1
1 13 ] 13 1 2 15 1 1
20 300
2 3.1 2 2.4 1 1.5 4 1 1
1
0 0 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1
60 6 i 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1
60 300 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
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Table4.2(c) Resultsof experiment 4.3 (I-0.11 case) using EM clustering

Accuracy(nm)

Mode] Selection

1 mode]

AlC

AIC Mix

BIC

BIC Mix

NEC

NEC_Mix

ICLBIC

ICLBIC Mix

Dimensionali

Sample Siz

09167

sl

0.8983

10 30 0.9683) 0.8717 0.9683 | 09683 § 09283 | 0.9283 0.9683 0.9683
10 60 0.99 | 09567 | 0.9325 0.99 0.99 09658 | 0.9775 0.99 0.99
10 300 0.9945] 09787 | 0.9947 [ 09995 | 0.9988 | 0.9995 0.9992 0.9985 0.9985
20 30 0.945| 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
20 60 0.9967] 09158 ] 09092 ] 09967 ] 09975 ] 0.9617 | 0.9925 0.9967 0.9967
20 300 1 0.9997 | 0.9997 1 1 0.9998 1 1 1

Number of Components
Model Selection AIC AIC Mix| BIC BIC Mix | NEC | NEC Mix | ICLBIC | ICLBIC Mix
Dimension | Sample Size| Class
2 30 1 4.2 5.5 1 1.5 27 2.5 1 1
2 4.3 5.1 2.3 3.3 19 1.9 2 1.9
2 60 1 4.1 4.7 1 1 29 1 1 1
2 4.3 4.8 24 2.3 2 2.1 2.1 2.1
3 300 1 2.7 3.1 1 1 1 1 1 1
2 39 3.1 22 2.4 2 2.1 2.1 1.9
4 30 1 29 5.6 1 1 2.3 2.5 1 1
2 2.9 5 1 2.1 2.1 2.3 1.1 1.1
4 60 1 4 5.5 1 1 32 3.4 1 1
2 3.1 hY 1.8 2.1 2.1 2.4 1.9 1.7
4 100 1 39 5 1 1 1 1 1 1
2 | 39 47 23 2.1 1.9 2 19 21 |
10 30 1 14 16 1 1 14 LS5 1 1 |
2 1.8 1.9 1 1 1.2 1.4 1 1
10 60 1 1.6 3.6 1 1 2.1 2.7 1 1
2 23 3.7 1 1 1.9 2 1 1
10 300 1 1.8 3.2 1 ] 4.1 3.8 1 38
2 29 5.1 2 19 2.1 2.3 1.9 23
20 30 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
20 60 1 1 1.8 1 1.1 1.1 1.3 1 1
2 1.7 2 1 i 14 1.1 1 1
1 1.1 3.5 1 1 1.3 33 1 33
20 300
2 2.5 4.3 1 1 2 2 1 2
1 1 1 1 1 1 3.9 1 1
60 30 2 1 1 1 1 1 2.2 1 1
1 1 1 1 1 1 2.6 1 1
60 60 2 1 1 1 1 1 2 1 1
1 1 1.1 1 1 1 1.8 1 1
60 300 2 1 3.1 1 1 1 1 1 1
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Table 4.2(d) Results of experiment 4.4 (I-I case) using EM clustering

Accuracy(nm)
Model Selection 1 mode AIC | AIC_Mix| BIC | BIC_Mix| NEC | NEC_Mix| ICLBIC] ICLBIC_Mix
Dimensionality| Sample size Size
2 30 0.6333 |]0.5617] 0.5633 | 0.6117] 0.615 0.62 0.6267 0.6267 0.6267
2 60 0.6575 |0.5983] 0.5875 | 0.6575] 0.6575 |0.6333] 0.6383 | 0.6575 0.6575
2 300 0.6773 | 0.6693| 0.6735 ] 0.6802] 0.6802 |0.6773] 0.6773 0.6773 0.6773
4 30 0.6767 |0.6033] 0.7615 §0.6617) 0.7782 |0.6433| 0.782 0.6767 0.7785
4 60 0.7358 | 0.655| 0.6483 ]0.7358] 0.7358 |0.6817| 0.7158 | 0.7358 0.7358
4 300 0.7785 | 0.766] 0.7615 | 0.7782] 0.7782 ]0.7825] 0.782 0.7785 0.7785
10 30 0.71 ]0.6583) 0.625 0.71 0.71 0.66 | 0.6417 0.71 0.71
10 60 0.745 |0.7408] 0.7008 | 0.745] 0.745 0.69 0.6842 0.745 0.745
10 300 0.8735 10.8953] 0.891 |0.8735] 0.8735 ]0.8892| 0.882 0.8735 0.8735
20 30 0.665 | 0.665]| 0.665 ] 0.665]| 0.665 | 0.665 | 0.665 0.665 0.665
20 60 0.7483 |0.7242] 0.7317 ] 0.7483] 0.7483 ]0.6725] 0.6767 | 0.7483 0.7483
20 300 0.8878 [0.9023] 0.9023 | 0.8878] 0.8878 |0.8282] 0.8282 0.8878 0.8878
| 09387 033
Number of Clusters
Model Selection AlIC | AIC_Mix| BIC | BIC_Mix} NEC | NEC_Mix| ICLBIC| ICLBIC_Mix
Dimension Sample Size Class

2 30 1 4.8 5.8 19 1.3 2.7 3.1 1 3.1

2 4.8 5.6 1.1 1.6 2.1 2.6 1.1 2.6
2 60 1 5 5 1 1 1.9 1.7 1 1.7

2 4.6 4.7 1 1 2.7 2.6 1 2.6

1 2.9 2.7 1 1 I 1 1 1
2 300

2 3.2 3.8 1.1 1.1 1 1 1 1
4 30 1 3.5 4.7 1.2 1 2.3 1 1 1

2 3.6 4.5 1 1.2 2.8 2 1 2
4 60 1 3.8 4.8 1.1 1 2.7 2.8 1 2.8

2 4.1 53 1 1 3 2.6 1 2.6
4 300 1 34 4.7 1 1 1.1 1 1

2 4.3 4.5 1.2 1.2 24 2 1 2
10 10 1 1.3 1.6 1 1 1.3 1.7 1 1.7

2 1.4 1.9 1 1 1.1 1.4 1 14
10 60 1 1.1 3.1 1 1 2.1 2.6 1 2.6

2 1.7 3.7 1 1 2.3 2.7 1 2.7
10 300 1 2.4 2.3 1 1 3.4 4 1 4

2 3.2 4.5 1 1 2.5 2.7 1 2.7

1 1 1 1 1 1 1 1 1

0 0

2 3 2 1 1 1 1 1 1 1 1

1 1.3 14 1 1 1.4 1.7 1 1.7
2

0 60 2 14 14 1 1 1.2 1.5 1 1.5

1 1.1 1.1 1 1 3.6 3.6 1 1
20 300

2 1.9 1.9 1 1 2.5 25 1 1

1 1 1 1 1 1 3.9 1 1
60 30

2 1 1 1 1 1 5 1 1

1 1 1 1 1 1 4.1 1 4.1
60 60 2 1 1 1 1 1 3.8 1 3.8

1 1 4.2 1 1 1 2.5 1 1
60 300 2 1 5.1 1 1 2 2.3 1 1
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Figure4.2(a) Someresults of experiment 4.1 (1-0.11 case) usng NM clustering
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Figure4.2(b) Someresultsof experiment 4.2 (I-I case) usng NM clustering
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Figure4.2(d) Someresultsof experiment4.4 (I-I case) using EM clustering
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Table4.3 Resultsof DC Mall real data experiments using NM clustering

Accuracy
Model Selection 1mode| alc |AICMi| BIC | BIC_Mix | NEC | NEC_Mix | ICLBIC| ICLBIC Mix
Dimensionality ] Sample Size
20 100 0.949 109024 | 0.951 | 0925 09475 | 0.7065 | 09199 | 0949 0.9312
7 100 0.7394 | 0.8315 | 0.8365 [ 0.8314| 0.8384 | 07667 | 07503 | 0.7366] 0.7408
20 20 0.4154 | 0.4154 | 07789 | 0.4154] 0.7789 | 0.4154 | 06822 | 04154 06822
7 20 0.7011 | 0.6484| 0.7163 | 0.6959| 0.7163 | 0.7011 | 0.7056 | 0.7011 0.7056
Number of Comporients
Model Sdection AlC [AICMi| Bic | Bic_Mix | NEC | NEC_Mix | ICLBIC] ICLBIC_Mix
Dimensionality| SampleSize Class )
1 22 23 1.1 2.1 35 1 1
2 26 13 1 13 45 4 1 1
3 27 2.7 1.8 2.6 3.5 5.5 1 1
20 100 4 22 2.6 2 2.3 45 4 1 1
5 13 1 1 1 35 6 1 1
6 29 5.1 1.7 43 5 4 1 25
7 26 1.9 1 1.7 45 1 1
1 2.1 23 1 13 5.5 1 1
2 4.1 24 1 1.2 45 6 1 1
3 38 2.7 25 27 4.5 55 1 1
20 100 4 32 29 22 2.7 5.5 5.5 1 1
5 1 11 ] 1 5 2 1 1
6 55 46 32 4.1 5.5 6 2 35
7 52 45 1.2 4.1 6 6 1
1 1 1.1 1 11 1 1 1 1
2 1 1.2 1 1.2 1 1 1 ]
3 1 1.6 1 1.6 1 1 1 I
39 20 4 1 1.5 1 1.5 1 1 1 1
5 1 1.6 1 1.6 1 1 1 1
6 1 25 i 25 1 1 1 1
7 1 1.5 1 15 1 1 1 1
1 17 1.3 1.1 13 1 1 1 1
2 1.4 1.5 1.1 1.5 1 1 1 1
3 1.4 1.9 1.2 19 1 1 1 1
20 20 4 1.5 1.5 1.3 15 1 1 1 1
5 1.5 14 1 1.4 1 1 1 1
6 1.6 19 1.5 19 1 1 1 1
7 1.5 1.3 1.4 13 1 1 1 1




CHAPTER 5: Nonparametric Weighted Feature Extraction

5.1 Introduction

Discriminant Analysis Feature Extraction (DAFE, or Linear Discriminant Analysis;
LDA) is often used for dimension reduction in classification problems. It is also called
the parametric feature extraction method in [8], since DAFE uses the mean vector and
covariance matrix of each class. In [20], DAFE is shown to be equivalent to finding the
ML estimators of a Gaussian model, assuming that all classes discrimination information
resides in the transformed subspace and the within-class distances are equal for all
classes. The advantage of DAFE is that it is distribution-free but there are three major
disadvantages in DAFE. One s that it works well only if the distributions of classes are
normal-like distributions [8]. When the distributions of classes are nonnormal-like or
multi-modal mixture distributions, the performance of DAFE is not satisfactory. The
second disadvantage of DAFE is the rank of the within-scatter matrixS: is number of
classes (nc) -1, so generally only nc-1 features can be extracted. From [8], we know that
unless a posterior probability function is specified, nc—1 features are suboptimal in a
Bayes sense, although they are optimal based on the chosen criterion. In rea situations,
the data distributions are complicated and not normal-like, therefore only using nc-1
features is not sufficient for real data. The third limitation is that if the within-class
covariance is singular which usually occurs in high dimensional problems, DAFE will
have a poor performance on classification. In this paper, a new nonparametric feature
extraction method i s developed to solve those problems.
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5.2 PreviousWorks
5.2.1 Discriminant Analysis Feature Extraction (DAFE)

The purpose of feature extraction isto find a transformation matrix A such that the
class separability of transformed data (Y) is maximized. A common approach and the one
used in DAFE isfor within-class, between-class, and mixture scatter matrices to be used
to formulate the criteria of class separability. A within-class scatter matrix is expressed

by [8]:

L L
S, =Y PE{(X -m)X-m) |o}=3 PZ, (5.1)
i=1

=1

where P, means the prior probability of class i, m; is the class mean and Z, is the class
covariance matrix. A between-class scatter matrix is expressed as

S, =iﬂ(mi = my)(m, ~my)" =i Y PP, (m,=m )m,~m,) (5.2)
i=]

i=l j=i+l
where mq represents the expected vector of the mixture distribution and is given by

my = E{X}= Pm, (5.3)
i =]

Let Y = AX, then we have
Suy = ASWXAT and Spy = ASbXA1 (5.4)

The optimal features are determined by optimizing the Fisher criteria given by
J(A) =tr(SyySsy) (5.5)

Theoptimum A must satisfy
(Sox S A" = A" (SyySyy) (5.6)
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This is a generalized eigenvalue problem [3] and usualy can be solved by the QZ
algorithm.

522 aPAC Linear Dimension Reduction (aPAC-LDR)

The approximated Pairwise Accuracy Criterion Linear Dimension Reduction
(aPAC-LDR) [21] can be seen as DAFE weighted contributions of individual class pairs
according to the Euclidian distance of respective class means. The maor difference
between DAFE and aPAC-LDR isthat the Fisher criteriais redefined as

-1 L

Jo (D=3, Y PPo(A (A4S, A7) (4S,4N)] | (5.7

i=l j=i+]

Y
WhereSi, =(m, _mj)(mi —m’)T 11)(Ay'): —erf( ’ ’
2Aij 2

andQ; = Jm, —m,) S, (m, -m,) (5.8)

The above weighted Fisher criteria is the same as (5.5) by redefining the between-
class scatter matrix as
L=l L

S, =2, 2 EP,0A,)m, ~m )Ym,—m,) (5.9)

i=l j=itl

Hence the optimization problemis the same as DAFE.

There are one simulated and one real data experimentsin [21]. They show that the
advantagesaof this method are

1. It can be designed to confine the influence of outlier classes on the final LDR
transformation.

2. aPAC-LDR needs fewer features to reach the optima accuracy of DAFE, but the
best accuracy of aPAC-LDR is ailmost the same as that of DAFE



aPAC-LDR is the same as DAFE using the mean vector and covariance to formulate the
scatter matrix; henceit still suffersfrom those three major disadvantages of DAFE.

5.2,3 Decison Boundary Feature Extraction (DBFE)

Decision Boundary Feature Extraction (DBFE) [22] is an alternative feature

extraction method using boundary information. The following procedurein [22] for the
2-class case has been proposed to determine the transformation needed to find the desired
minimal set features (intrinsic discriminant dimensions).

L.

Let i, and 2, be the estimated mean and covariance of class w,. Classify the training

samples using full dimensionality. Apply a chi-square threshold test to the correctly
classified training samples of ?ach class and delete outliers. In other words, for class
o, retain X only if (X - )" 2;'(X-4,) <R,,. In the following steps, only correctly
classified training samples that passed the chi-square threshold test will be used. Let
{X,, X,, ...X.,} be such training samples of classw, and {Y,, Y,, ...Y,,} besuch
training samplesof class w,.

Apply achi-square threshold test of class o, to the samples of class o, and retain Y,
only if (Y —f,) (Y - i1,) < R,. If the number of the samples of class w, which
pass the chi-square threshold test is less than L
that give the smallest values.

retain the L, samples of class o,

'min®

For X, of class w,, find the nearest samplesof class w, retained in STEP2.

Find the point P, where the straight line connecting the pair of the samples found in
STEP 3 meets the decision boundary.

Find the unit normal vector, N;, to the decision boundary that can be calcul ated based
on training samples at the point P, found in STEP 4.

By repeating STEP 3 Through STEPS for X,, I=1,..., L,, L, unit normal vectorswill
be calculated. From the normal vectors, calculate an estimate of the effective decision
boundary feature matrix from class w, asfollows:

_IN

1
z EDBFM —

N,N!

1 i=l
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Repeat STEP 2 through STEPG for class w,

7. Calculate an estimate of the final effective decision boundary feature matrix as
follows:

1
_v2)  _ 1 2
Z osrn = Zgppen = é‘(ZEDBFM + Zepsra)

For multipleclasses problem,

ne ne

Ziosm = 2 Zpu P jZ(Ei'g;FM

[ENE
Ji

After EDBFM is estimated, the intrinsic discriminant dimension can be estimated and the
new features can be extracted to achieve the full accuracy a the subspace spanned by
these features.

There are afew advantages of DBFE. Firgt, it focuses directly on classification
accuracy rather that a surrogate to it. Second, it shows directly how many features are
needed to achieve full accuracy and it provides evidence as to which original features
were the most important. Finally, it is able to directly treat the problem of outliers.
However, there are some shortcomings of this approach. First, it demands a large number
of training samplesto perform well, which is unfortunately limited in most of practical
applications. When the training samples size is not large enough, the performance of
DAFE isfrequently alittle better than that of DBFE. Second, L_;_ is usually decided by
"trial and error”'. Finally, LDBFE needs much computational time.

5.2.4 Nonparametric Discriminant Analysis(NDA; [8],[23])

Nonpararnetric Discriminant Analysis (NDA) is proposed to solve the problems of

DAFE. In NDA, the between-class scatter matrix is redefined as a new nonparametric
between-classscatter matrix (for the 2 classes problem), denoted S ,as

S RE{(XY M, (X)X = My (X)) |0}

LR E{(XY = M (X)X - M(X')) |w,} (5.10)



1w vy Ho .
where M, (X, )= FZX}&N is called the local kNN mean, X% is the jth the nearest
=

neighborhood (NN) from ; to the sample X, , and X9 refersto samples from classi
(@,). If k=N;, [8] shows that the features extracted by maximizing tr(S;,'S, ) must be the
same as the ones from te(S,'S, ). Thus, the parametric feature extraction obtained by
maxirnizing tr(S,'S,) is a special case of feature extraction with the more general
nonparametric criterion tr(S;‘Sb ).

Figure 5.1 The relationship between sample points and their local means.

Further understanding of S is obtained by examining the vector (X s = M(X,) ).

Figure 5.1 shows the importance of using boundary points and local means. Pointing to
the local mean from the other class, each vector indicates the direction to the other class

locally. If we select these vectors only from the samples located in the classification
boundary 1,V3>¥4:¥5 ), the scatter matrix of these vectors should specify the subspace in



which the boundary region is embedded. Samples that are far away from the boundary
(V) tend to have large magnitudes.

These large magnitudes can exert a considerableinfluence on the scatter matrix and
distort the information of the boundary structure. Therefore, some method of de-

emphasizing samples far from the boundary seems appropriate. To accomplish this, [8]
uses a weighting function for each (X, — M,(X,) ). The value of the weighting function,

denoted as W, , for X, isdefined as

. = min{d® (XX, X(0,),d" (X, X))
! d(X X euw ) +d5(X . X ik

(5.11)

where ais a control parameter between zero and infinity, and d(X; X ) isthe
distance from X, toits kNN from % .

Thefinal discreteform for § is expressed by

1 N
S =L S w, (XD - My (X ON(XD = M, (X))

£=l

1 N

tyr WX (P~ My(XPNXP - My (X)) (5.12)
£=1

where N =N+ N, and the expectations of (5.10) are replaced by the sample
meansand £ by N,/N
The disadvantages of NDA are

1. Parametersk and aare usualy decided by rules of thumb. So the better result usually
comes after several trails.

2. S istill with a parametric form. When the training set sizeis small, NDA will have

the singularity problem.

For solving the above problems, a new feature extraction method is proposed below
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5.3 NonparametricWeighted Featur e Extraction (NWFE)

In this section, a new feature extraction method called nonparametric weighted
feature extraction (NWFE) is proposed. From NDA (and from DBFE), we know that the
"local information” is important and useful for improving DAFE. The main ideas of
NWFE are putting different weights on every sample to compute the "'locd means” and
defining new nonparametric between-class and within-classscatter matrices to get more
features. In NWFE, the nonparametric between-class scatter matrix isdefined as

&P B0y, SN ;
§=%_— 122%'“():? M (PP ~ M, (xP)) (5.13)
i=l 1 j=1 k=1
i

where X" refersto the k-th samplefrom classi. The scatter matrix weight AT
defined as:

dist(x{), M (x{"))™"

A= , (5.14)

¥ dist(x" M, (x"))

=1
where4ist(a,5) means the distance from a to b.
and M;”) istheloca mean of ¥ in theclassj and defined as
M, () = 3w (O (5.15)
I=1
. i - i) +OUN-1

where ¥ (%) = ﬁdm(xg‘ %) (5.16)

dist(x{), x)!
=1

The nonparametric between-classscatter matrix isdefined as

S, = LAY AN M, — M, (57 (5.17)
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The optimal features are determined by optimizing the criteriagiven by

J=tr(§'S,)

To reduce the effect of the cross products of between-class distances and prevent the
singularity, we will replaceS, by

S, =0.5S, +0.5diag(S,)

Finally the NWFE algorithm is

1. Compute the distances between each pair of sample points and form the distance
matrix.

(i)

2. Compute® ™" using the distance matrix

3. Use %" to compute local means M, (x{)

4. Compute scatter matrix weight o
5. Computesa and S, .

6. Select the m eigenvectors of §/S, , VooWas Wy | which correspond to the m
largest eigenvalues to form the transformation matrix 4n = [W1:¥2> ¥,

5.4 Simulated and Real Data Experiments

In this section, the simulated and real data set performances of four methods,
DAFE, NWFE, aPAC-LDR, and NDA using 1NN and 5NN based on the a=2, will be

compared under severa experiment designs.
5.4.1 Simulation Data Experiment Design

Two different designs (experiments 5.1 and 5.2), and three different dimensionality
cases (30, 60, 120) are tested. One is that all 6 classes are distributed with normal
distributions whose covariance matrices are the same but mean vectors are different. The




other isthat all 6 classes are distributed with mixture normal distributions and each class
contains two normally distributed components. Their mean vectors, covariance matrices,
training and testing sample sizes are in Tables 5.1(a) and 5.2(b). At each situation, 10
random training and testing data sets are generated for computing the accuracies of

algorithms, and the standard deviations of the accuracies.

Table 5.1(a) Design of Experiment 5.1 for normal distributions

Dim=30, 60, 120 class 1 class 2 class 3 class 4 class 5 class 6
Mean Vector [0,...,0] ][1,0,...,0][0,1,0....,0][0,0,1,0,...,0]{1,1,0,...,0)}{1,0,1,0....,0]
Covariance 0.11
Training Sample Size 40 40 40 40 40 40
Testing Sample Size 400 400 400 400 400 400

Table 5.1(b) Design of Experiment 5.2 for mixturedistributions

class1 class2 class3
Dim=30, 60, 120 component 1 component 2 component 1 component 2 component 1 component 2
Mean Vector [2,2,0,...,0] [0,0....,0] [24,..,0] (4,-2,0,...,0] [-2,0,...,0] [6,0....,0]
Covariance 0.11
Training Sample Size 20 20 20 20 20 20
Testing Sample Size 200 200 200 200 200 200
class 4 class 5 class 6
dim=30, 120 component | component 2 component | component 2 component | component 2
Mean Vector [-2,-2,0,...,0] [0.6,...,0] [2,-4,...,0] [-4,2,0,...,01 [2,0....,01 [-6,0....,01
Covariance 0.11
Training Sample Size 20 20 20 20 20 20
Testing Sample Size 200 200 200 200 200 200

5.4.2 Real Data Experiment Design

There are four different real data sets, Cuprite, which isa site of geologic interest in
western Nevada, Jasper Ridge, a site of ecological interest in California, Indian Pine, a
mixed forest/agricultural site, and DC Mall, an urban site, in experiment 5.3. There are 8,
6, 6, and 7 classes in Cuprite, Jasper Ridge, Indian Pine, and DC Mall data sets
respectively. There are 40 training samples in each class of Cuprite, Jasper Ridge, and
Indian Pine experiments, and 50 training samples in the DC Mall experiments. At each
experiment, 10 training and testing datasets are sel ected for computing the testing sample
accuraciesof algorithms, and the standard deviationsof the accuracies.
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5.5 Experiment Results
5.5.1 Simulation Experiment Results

The results of experiment 5.1 are displayed in tables 5.2(a), (b), (c), and figures
5.2(a), (b), and (c). The results of experiment 5.2 are displayed in Table 5.3(a), (b), (¢),
and Figures5.3(a), (b), and (c). They show that

1. NWFE performs better than the other methods uniformly in both experiments.

2. The differences between NWFE and the other methods increase as the
dimensionality of original space increases. And the increasing dimensionality o
original space hasonly asmall impact on accuracy of NWFE.

3. When the number of extracted featuresis greater than nc-1, the performances of
DAFE and aPAC-LDR deceaserapidly, but NWFE and NDA do hot.

4. In mixture distribution data, NWFE is much better than the other methods
whether the dimensionality islarge or not.

5. Figure 5.3(c) showsthat nc-1 features may not be a best choice. Using NWFE,
morefeaturescan beextracted, and better results are obtained.



Table 5.2(a) Mean and standard deviation o accuracies (normal and dim=30)

DAFE NWFE aPAC_LDR NDA_INN NDA_5SNN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.4545 | 0.0124 | 0.4543 | 0.0436 | 0.4477 | 0.0278 | 0.4025 | 0.0085 | 0.4005 | 0.0082
2 0.7253 | 0.0138 { 0.7493 | 0.0117{ 0.7212 | 0.0272 | 0.7033 0.02 | 0.6973 | 0.0185
3 0.8234 | 0.0124 | 0.8387 | 0.0053 | 0.8235 | 0.0081 | 0.8124 | 0.0052 | 0.8078 | 0.007
4 0.8107 | 0.0169 | 0.8318 | 0.0057 | 0.8098 | 0.0074 | 0.8002 | 0.0097 | 0.7951 | 0.0117
5 0.8019 | 0.0167 | 0.8264 | 0.0075 | 0.8019 | 0.0064 | 0.7919 | 0.0124 | 0.7881 ] 0.0134
6 0.5603 | 0.3973 | 0.8213 | 0.0089 | 0.403 | 0.4147 | 0.784 | 0.0088 | 0.7794 | 0.0119
7 0.1762 | 0.2305 | 0.8144 | 0.0077 | 0.1791 | 0.3222 | 0.7712 | 0.0095 | 0.7692 | 0.0156
8 0.1257 { 0.0336 | 0.807 | 0.0075| 0.1275 | 0.2332 [ 0.7638 | 0.0097 | 0.7638 | 0.0114
9 0.1618 | 0.0452 | 0.8006 | 0.0088 | 0.0937 | 0.0547 | 0.7518 | 0.0095 | 0.7517 | 0.0116
10 0.1487 | 0.0486 | 0.7907 | 0.0097 | 0.1301 | 0.0549 | 0.74 0.0078 | 0.7393 | 0.0083
11 0.2033 |1 0.0455 | 0.779 | 0.0135| 0.1775 | 0.0727 | 0.7303 | 0.0107 | 0.7304 | 0.0087
12 0.2497 | 0.0414 | 0.7656 | 00132 | 0.2233 | 0.0782 I 0.7186 | 0.01111 0.71991 0.012
13 0.2894 | 0.0428 | 0.7542 | 0.0165 | 0.2638 | 0.0873 | 0.7083 | 0.0143 | 0.7058 | 0.0109
14 0.3128 | 0.0424 | 0.7405 | 0.0164 | 0.2897 | 0.0955 | 0.696 | 0.0148 | 0.6954 | 0.0113
15 0.3214 | 0.0489 | 0.7215 | 0.0177 | 0.3065 | 0.0842 | 0.6818 | 0.0128 | 0.6833 | 0.0124
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Figure5.2(a) Mean of accuraciesusing 1-15 features(normal and dim=30).



Table 5.2(b) Mean and standard deviation of accuracies (normal and dim=60)

DAFE NWFE aPAC_LDR NDA_INN NDA_SNN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.4309 | 0.0257 | 0.4538 | 0.0259 | 0.4306 | 0.0215 | 0.3789 | 0.0118 [ 0.3751 | 0.0123
2 0.6875 { 0.0137 | 0.7379 | 0.0106 | 0.6848 | 0.0167 | 0.6501 | 0.0261 | 0.6426 | 0.0258
3 0.7622 | 0.0164 | 0.8155| 0.0104 | 0.7618 | 0.0166 | 0.7541 | 0.0175 | 0.7457 | 0.0175
4 0.7464 | 0.0195 1 0.8055 | 0.0155 | 0.7457 0.02 0.7377 | 0.0199 | 0.7318 | 0.022
5 0.7295 | 0.0216 | 0.795 | 0.0169 | 0.7295 | 0.0216 | 0.724 | 0.0211 { 0.7193 | 0.0241
6 0.4442 | 0.3775 | 0.7907 | 0.0197 | 0.5767 | 03021 | 0.7112 | 0.0236 | 0.7077 | 0.0238
7 0.2953 | 0.3642 | 0.7882 | 0.0204 | 0.2866 | 0.3508 | 0.7049 | 0.0273 | 0.6993 | 0.0286
8 0.095 | 0.2103 | 0.7815 | 0.0198 | 0.165 | 0.2732 | 0.6953 | 0.0269 | 0.692 | 0.0272
9 0.1206 | 0.2016 | 0.7745 | 0.0217 | 0.0529 | 0.0395 | 0.6855 | 0.0257 | 0.6838 0.03
10 0.0831 | 0.0444 | 0.7666 | 0.0197 | 0.088 | 0.053 | 0.6766 | 0.0295 | 0.671 | 0.0325
11 0.1134 | 0.0496 | 0.7595 | 0.0203 | 0.118 | 0.0712 | 0.6708 | 0.0297 | 0.6658 | 0.0301
12 0.1472 | 0.0594 | 0.7514 | 0.0234 | 0.144 | 0.0735 [ 0.6581 | 0.0304 { 0.6549 | 0.0293
13 0.173 1 0.0658 | 0.7419 | 0.0226 | 0.1663 | 0.0649 | 0.6471 | 0.0296 | 0.6452 | 0.0298
14 0.1955 ] 0.0677 | 0.7313 | 0.0232 | 0.1857 | 0.0634 | 0.6355 | 0.0322 | 0.6363 | 0.0365
15 0.2074 | 0.055 | 0.7181 | 0.0265 | 0.209 | 0.0547 | 0.6245 | 0.0306 | 0.6233 | 0.0333
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Figure5.2(b) Mean of accuracies using 1-15 features (normal and dim=60).
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Table 5.2(c) Mean and standard deviation of accuracies(normal and dim=120)

DAFE NWFE aPAC_LDR NDA_INN NDA_5NN
Features| Mean Std Mean Std Mean Std Mean Sid Mean Std
1 0.3554 | 0.027 | 0.4091 | 0.0447 | 0.3548 | 0.028 | 0.3377 | 0.0204 | 0.3367 | 0.0186
2 0.5623 | 0.0134 | 0.702 | 0.0143 | 0.5615 | 0.0129 | 0.5326 | 0.0335 | 0.5304 | 0.0236
3 0.635 [ 00169 | 0.786 | 0.0073 | 0.635 | 0.0176 | 0.628 | 0.0203 | 0.623 | 0.0218
4 060771 0.016 | 0.7617 | 0.0114 | 0.6085 | 0.0157 | 0.6054 | 0.0209 | 0.6018 | 0.0198
5 0.5859 | 0.0197 | 0.7493 | 0.011 | 0.5859 | 0.0197 | 0.5892 | 0.025 | 0.5876 | 0.0256
6 0.2957 | 0.2962 | 0.7474 | 0.0109 | 04126 | 0.2748 | 0.581 | 0.0248 | 0.582 ] 0.0245
7 0.0748 | 0.1808 | 0.745 | 0.0119 | 0.1828 | 0.2674 | 0.5741 | 0.0223 | 0.5718 | 0.0242
8 0.017 | 0006 | 0.7421 | 0.0122 | 0.0173 | 0.0045 | 0.5689 | 0.0225 | 0.5614 | 0.0255
9 0.0201 | 0.0063 | 0.7379 | 0.0125 | 0.019 { 0.0056 | 0.5628 | 0.0246 | 0.5529 | 0.0244
10 0.024 | 0.0077 | 0.7342 | 0.0125 | 0.0233 { 0.0073 | 0.5581 | 0.0261 | 0.5455 | 0.0258
11 0.0321 ] 0.0124 | 0.7312 ) 0.012 | 0.0283 | 0.0102 ] 0.5512 | 0.0257 | 0.5397 | 0.0277
12 0.0373 | 0.0095 | 0.7263 | 0.0126 | 0.0342 | 0.0127 | 0.5442 | 0.0268 | 0.5282 | 0.0293
13 0.0455 | 0.0132 | 0.7225 | 0.0102 | 0.0422 | 0.0147 | 0.5384 | 0.0248 | 0.5207 | 0.0308
14 0.0515 [ 0.0133 | 0.7155 | 0.011 | 0.0494 | 0.015 | 0.5302 | 0.0251 | 0.5144 | 0.0304
15 0.062 | 0.0137 | 0.7109 | 0.0115 | 0.055 | 0.0139 | 0.5256 | 0.0258 | 0.5035 | 0.0326
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Figure 5.2(c) Mean of accuraciesusing 1-15 features (norma and dim=120).



Table 5.3(a) Mean and standard deviation of accuracies (mixture and dim=30)

DAFE NWFE aPAC_LDR NDA_INN NDA_SNN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.3648 | 0.0206 | 0489 | 0.006 | 0.3427 | 0.0297 | 0.3621 | 0.0225 | 0.3388 | 0.0259
2 0.3924 | 0.0196 | 0.7936 | 0.0088 | 0.351 | 0.0386 | 0.3977 | 0.0469 | 0.3525 | 0.0441
3 0.3755 | 0.0313 | 0.7979 | 0.0147 | 0.3556 | 0.0335 ] 0.4258 | 0.0606 | 0.3685 | 0.0348
4 0.362 | 0.0319 | 0.7936 | 0.0124 | 0.3561 | 0.0379 | 0.4892 | 0.0414 | 0.4066 | 0.0434
5 0.3688 | 0.0195 | 0.7854 | 0.0142 | 0.3688 | 0.0195 [ 0.5201 | 0.0318 | 0.427 | 0.0284
6 0.3527 | 0.1685 | 0.7811 | 0.0125 | 0.2802 | 0.1855 | 0.5314 { 0.0271 | 0.4523 | 0.0276
7 0.21 ] 02063 | 0.7736 ] 0.0133 | 0.0828 | 0.0279 { 0.5531 | 0.0228 | 0.4625 | 0.0284
8 0.1879 | 0.2041 | 0.7701 | 0.0129 | 0.0985 | 0.0353 | 0.567 | 0.0327 ] 0.4727 | 0.0172
9 0.068 | 0.0391 | 0.7616 | 0.0137 | 0.1091 | 0.0357 | 0.5761 | 0.0325 | 0.4655 | 0.0208
10 0.0688 | 0.0399 | 0.7571 | 0.0117 | 0.0999 | 0.0373 | 0.5731 | 0.0303 | 0.4698 | 0.0266
11 0.0685 | 0.0409 | 0.7542 | 0.013 | 0.1017 | 0.0373 | 0.5674 | 0.0314 [ 0.4781 | 0.0312
12 0.0656 | 0.0328 | 0.7478 | 0.0118 { 0.1057 | 0.0311 | 0.5753 | 0.0271 | 0.4795 | 0.0251
13 0.0675| 0.036 | 0.7395 | 0.0118 0.1 0.0306 0.58 0.0273 | 0.4787 | 0.0253
14 0.0634 | 0.0404 | 0.7311 | 0.013 | 0.0979 | 0.0285 | 05785 | 0.0283 | 0.4768 | 0.0284
15 0.0577 | 0.0387 | 0.7223 | 0.0133 | 0.0948 | 0.0284 | 0.584 | 0.0316 | 0.4758 | 0.0284
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Figure 5.3(a) Mean of accuracies using 1-15 features (mixture and dim=30).




Table 5.3(b) Mean and standard deviation of accuracies (mixture and dim=60)

DAFE NWFE aPAC_LDR NDA_INN NDA_S5NN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.2782 1 0.0236 | 0.456 | 0.0138 | 0.2233 | 0.0349 | 0.2749 | 0.0203 | 0.2511 | 0.0192
2 0.2842 ] 0.016 | 0.6971 | 0.0234 | 0.2457 | 0.025 | 0.2547 | 0.0163 | 0.2479 | 0.0109
3 0.2826 | 0.0107 0.69 | 0.0236 | 0.2697 | 0.0051 | 0.2551 | 0.0181 | 0.2479 | 0.0125
4 0.2782 | 0.0118 | 0.7034 | 0.022 | 0.2728 | 0.0115 | 0.2643 | 0.0098 | 0.2515 | 0.0087
5 0.2715 | 0.0131 { 0.7087 | 0.0163 { 0.2715 | 0.0131 | 0.2699 | 0.0126 | 0.2526 | 0.0053
6 0.2494 | 0.0945 | 0.7129 | 0.0164 § 0.2432 | 0.103 | 0.3165 | 0.0315 | 0.2756 | 0.0221
7 0.1823 1 0.1121 | 0.7104 | 0.0172 | 0.1962 | 0.1144 | 0.3587 | 0.0206 | 0.3053 | 0.0139
8 0.1366 | 0.0782 | 0.7095 ] 0.0195 | 0.1839 | 0.1075 | 0.4022 | 0.0331 | 0.3118 | 0.0206
9 0.115 | 0.0341 | 0.7088 | 0.0192 | 0.1253 | 0.0186 | 0.4147 | 0.0319 | 0.323 | 0.0227
10 0.125 | 0.0299 | 0.7046 | 0.0204 | 0.1353 | 0.0178 | 0.4249 | 0.0279 | 0.3274 | 0.024
11 0.1291 | 0.0285 | 0.6999 | 0.0204 { 0.144 | 0.0196 | 0.4372 | 0.0219 | 0.3279 | 0.0241
12 0.123 | 0.0325 | 0.6952 | 0.0224 | 0.1513 | 0.0229 | 0.4299 | 0.0181 | 0.3295 | 0.0209
13 0.1257 | 0.0366 | 0.6894 | 0.0224 | 0.1505 | 0.0283 | 0.4266 | 0.0192 | 0.3316 | 0.0244
14 0.1245 | 0.0336 | 0.0878 { 0.0243 | 0.1542 | 0.0304 | 0.4257 ] 0.0207 | 0.3267 | 0.0234
15 0.1203 | 0.0363 | 0.6854 ] 0.0224 | 0.155 | 0.0283 | 0.4234 | 0.0149 | 0.3305 | 0.0168
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Figure 5.3(b) Mean of accuracies using 1-15 features (mixture and dim=30).



Table 5.3(c) Mean and standard deviation of accuracies (mixture and dim=120)

DAFE NWFE aPAC_LDR NDA_INN NDA_5NN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.2238 | 0.0151 | 0.3254 | 0.0173 | 0.1879 | 0.024 | 0.2133 | 0.0159 { 0.2078 { 0.0139
2 0.2243 | 0.0107 | 0.3534 | 0.0354 | 0.209 | 0.0171] 0.2122 | 0.0146 | 0.2062 | 0.0172
3 0.228 | 00136 | 0.36 | 0.0245 | 0.2152 | 0.0113 | 0.2113 | 0.0138 | 0.2098 | 0.0167
4 0.2278 | 0.0044 | 0.3529 | 0.0205 | 0.2227 | 0.0083 | 0.2084 | 00112 | 0.2059 | 0.0121
5 0.225 | 0.0067 | 0.3647 | 0.0114 | 0.225 | 0.0067 | 0.2099 | 0.0089 | 0.2052 | 0.0134
6 0.1648 | 0.0602 [ 0.4303 | 0.0191 | 0.2084 | 0.0505 | 0.2085 | 0.0054 | 0.2045 | 0.0074
7 0.157 { 0.0615 | 0.4728 | 0.027 | 0.1467 { 0.0602 | 0.2462 | 0.0085 [ 0.224 | 0.0155
8 0.1294 | 0.0407 | 0.4805 | 0.0251 | 0.1207 | 0.015 | 0.2677 | 0.0245 | 0.2305 | 0.0138
9 0.1147 | 0.0113 | 0.4808 | 0.0262 | 0.1243 | 0.0165 | 0.2815 | 0.0209 | 0.2328 | 0.0117
10 0.1174 | 0.0094 | 0.4814 | 0.0273 | 0.1281 | 0.0164 | 0.2988 | 0.0177 | 0.2372 | 0.0155
11 0.1141 ] 0.0126 | 0.4822 | 0.0271 | 0.1275 | 0.0194 | 0.3084 | 0.0162 | 0.2454 | 0.0177
12 0.1164 | 0.0124 | 0.4803 | 0.028 | 0.1298 | 0.0179 | 0.3087 | 0.0114 | 02465 | 0.015
13 0.1194 | 0.012 | 04822 | 0.0264 | 0.1333 { 0.0214 | 0.3082 | 0.015 | 0.2438 | 0.0166
14 0.1185 | 0.0131 | 0477 | 0.0204 | 0.1317 | 0.0237 | 0.3024 | 0.0157 [ 02471 | 0.015
15 0.1203 1 0.0158 { 0.4763 | 0.0221 | 0.1362 | 0.0234 | 0.303 0.02 | 0.2441 | 0.0148
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Figure 5.3(c) Mean of accuracies using 1-15 features (mixture and dim=120).




5.5.2 Real Data Experiment Results

The results of experiment 3 are displayed in tables 5.4(a), (b), (c), (d), figures
5.4(a), (b), (c), and (d). Figure 5.5(a) shows a simulated color IR image of a portion of
the DC Mall areafor reference. Figure 5.5(b), and (c), are the classified DC Mall maps
for DAFE and NWFE respectively. These figures show that

1. For al real data experiments, NWFE has better performance than the other
methods.

2. When the number of extracted features is greater than nc-1, the performances of
DAFE and aPAC-LDR decease rapidly, but NWFE and NDA does not.

3. Figure 5.4(c) shows that if only 5 (nc-1) features are used then the accuracies of
DAFE and aPAC-LDR are 57.27% and that of NWFE is 86.16%. But if 7
features of NWFE are used then the accuracy increases to 91.57%. This shows
that only using nc-1 features is not enough in thisrea situation. DAFE cannot
do this due to the restriction of the rank of the between-class scatter matrix.
NWFE does not have thisrestriction.

4. Comparing Figure 5.5(b) and 5.5(c), one sees that the performance of NWFE is
better than that of DAFE in amost al classes.



Table 5.4(a) Mean and standard deviation of accuracies of Cuprite data sets

DAFE

NWEFE

aPAC_LDR

NDA_INN

NDA_5SNN

Features

Mean

Std

Mean

Sd

Mean

Sd

Mean Sd

Mean Sd

0.4297

0.0699

0.2592

0.0281

0.3479

0.0295

0.2301 | 0.0631

0.2311 [ 0.0629

0.6026

0.0569

0.6019

0.0234

0,547

0.0358

04234 | 0.0739

04356 | 0.109

0.74

0.0295

0.8686

0.0124

0.7084

0.0327

0.5805 | 0.0434

0.6456 | 0.0464

0.8156

0.0246

0.9439

0.0203

0.8035

0.0281

0.7329 | 0.0231

0.7412 | 0.0327

0.8699

0.0202

0.9671

0.0125

0.8799

0.0176

0.7983 | 0.0167

0.8007 | 0.0205

0.88

0.0252

0.9827

0.0061

0.8835

0.0222

0.8648 | 0.0231

0.8516 | 0.0304

0.8943

0.0205

0.984

0.0062

0.8943

0.0205

0.8731 | 0.0188

0.8492 | 0.0304

0.7076

0.3736

0.9829

0.0054

0.6194

0.4278

0.8786 | 0.0195

0.8488 | 0.0307

0.3537

0.4567

0.9829

0.0047

0.352

0.4546

0.8812 | 0.0201
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0.1816

0.3829

0.9826
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0.8694 | 0.0209

0.8401 | 0.0296
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Table 5.4(b) Mean and sandard deviation of accuracies of Jasper Ridge data sets

DAFE | NWFE aPAC_LDR NDA_INN NDA 5NN
Features| Mean Std Mean Std Mean Std § Mean Sd Mean Std
1 0.4869 | 0.0649 | 0.8253 | 0.0261 | 0.511 | 0.0722 | 0.2941 | 0.0557 | 0.2941 { 0.0553
2 0.7783 | 0.069 | 0.9742 | 0.0037 | 0.7596 | 0.058 | 06041 | 00433 ] 0602 | 00425
3 0.8495 | 0.0587 | 0.9816 | 0.0022 | 0.8047 | 0.0567 | 0.8135 ] 0.0466 | 0.8106 | 0.047
4 0.8971 | 0.0335 | 0.9883 | 0.0041 | 0.8772 | 0.0471 | 0.8471 | 0.0509 | 0.8444 | 0.051
5 0.9127 | 0.0243 | 0.9916 | 0.0022 | 0.9127 | 0.0243 | 0.8901 | 0.0322 | 0.8864 | 0.0342
6 082 [ 02892 | 0993 | 0.0015 | 0.5441 | 0.4687 | 0.9072 | 0.0242 | 0.9037 { 0.0271
7 0.6388 | 0.4414 | 0.9934 | 0.0017 | 02716 | 0.4376 | 09027 | 0.0225 | 0.8998 | 0.0249
8 0.2785 | 0.4484 | 0.9932 | 0.0019 | 0.1857 | 0.3912 | 0.8987 | 0.0231 | 0.8949 | 0.0275
9 0.0937 | 0.2962 | 0.9929 | 0.0023 | 0.1856 | 0.3911 | 0.899 | 0.0252 | 0.8937 | 0.0253
10 0 0 | 09921 ] 0.0035 | 0.1859 | 0.3917 | 0.8893 | 0.0309 | 0.893 | 0.0327
11 0 0 0993 [ 00026 | 0 | 0.0001]| 0.8862 | 0.0351 | 0.8862 | 0.0339
12 0 0 | 09924 | 0.0031 0 0 | 08848 ] 0036 | 08821 | 0.0341
13 0 0 0.9925 | 0.0029 | 0.0001 | 0.0002 | 0.8765 | 0.0386 | 0.8773 | 0.0274
14 0 | 00001 |09921] 00028 o |o00001(| 0872 |00373] 08735 [ 00314
15 0 | 00001 ] 09919 ] 00026 | 0.0001 | 0.0002 | 0.8658 | 0.0338 | 0.8623 | 0.0325
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Figure 5.4(b) Mean of accuraciesof Jasper Ridge data setsusing 1-15 features




Table 5.4(b) Mean and sandard deviation of accuracies of Indian Pine data sets

DAFE NWFE aPAC_LDR NDA_INN NDA 5NN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.3544 | 0.0224 | 0.5298 | 0.0211 | 0.3225 | 0.0494 | 0.2609 | 0.0523 | 0.2609 | 0.0522
2 0.4623 | 0.0334 | 0.7171 | 0.0142 | 0.4317 | 0.0307 | 0.3972 | 00295 | 0.3986 | 0.031
3 0.5044 | 0.0226 | 0.7946 | 0.015 | 0.4921 | 0.0315| 0.468 | 0.0274 | 0.4688 | 0.0219
4 0.5483 | 0.0187 | 0.809 | 0.0177 | 0.5382 | 0.0328 | 0.5081 | 0.0204 | 0.5091 | 0.0207
5 0.5727 | 0.0156 | 0.8613 | 0.0104 | 0.5727 | 0.0156 | 05466 | 0.0247 | 0.5427 | 0.0228
6 0.2859 | 0.3012 | 0.8908 { 0.0128 [ 0.458 | 0.2416 | 0.5606 { 0.0192 | 0.5569 | 0.0189
7 0.1751 ] 0.2816 | 0.9156 ] 0.0048 | 0.2892 | 0.3048 { 0.557 | 0.0241 | 0.5523 ] 0.0135
8 0.0583 | 0.1835 | 0.9114 | 0.0057 | 0.059 | 0.186 | 0.5539 | 0.0221 | 0.5459 | 0.0174
9 0.0583 | 0.1832 | 0.9064 | 0.0078 | 0.0003 | 0.0005 | 0.5457 | 0.0194 | 0.5338 | 0.0203
10 | 0.0585] 0.1839 | 0.9062 | 0.0083 | 0.0003 | 0.0005 | 0.5362 | 0.0218 | 0.5259 | 0,0132
11 0.0004 | 0.0003 | 0.9007 | 0.0083 | 0.0005 | 0.0007 | 0.5299 | 0.0213 | 05172 | 0.0174
12| 0.0004 { 0.0003 | 0.8977 | 0.0078 | 0.0004 | 0.0005 | 0.5279 | 0.0181 | 0.5104 | 0.0151
13 0.0004 | 0.0003 | 0.8944 | 0.008 | 0.0003 | 0.0004 | 0.5176 | 0.0155 | 0.5046 | 0.0192
14 1 0.0004 | 0.0004 { 0.8922 | 0.0075 | 0.0003 | 0.0004 | 0.5117 | 0.016 | 04932 | 0.0191
15 { 0.0004 | 0.0004 | 0.8876 | 0.0084 | 0.0004 | 0.0004 | 0.511 | 0.0217 | 0.4847 | 0.0151
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Figure 5.4(c) Mean of accuraciesof Indian Pine data setsusing 1-15 features




Table 5.4(d) Mean and standard deviation of accuraciesof DC Mall data sets

DAFE NWFE aPAC _LDR NDA_INN NDA_SNN
Features| Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.4976 ] 0.086 | 0.7053 | 0.0813 ] 0.516 | 0.0535 | 0.2739 | 0.0652 | 0.2739 | 0.0648
2 0.6739 ] 0.0485 | 0.853 [ 0.0451 ]| 0.6458 | 0.0354 | 0.5301 | 0.0772 | 0.5262 | 0.0789
3 0.7325 ] 0.0555 | 0.9125 | 0.018 | 0.7273 [ 0.0604 | 0.642 { 0.0491 | 0.6391 | 0.0482
4 0.7437 | 0.0482 | 0.9179 | 0.0174 | 0.7254 | 0.0708 | 0.7009 | 0.0458 | 0.6934 | 0.0459
5 0.7424 | 0.0592 | 0.9206 | 0.0161 | 0.7373 | 0.0643 | 0.7151 | 0.0417 | 0.7054 | 0.0423
6 0.7392 | 0.053 092 | 0.0168 | 0.7392 | 0.053 | 0.708 | 0.0585 | 0.7002 | 0.0585
7 0.3882 | 0396 | 0.9217 | 0.0157 | 0.6197 | 0.3204 | 0.7037 | 0.0537 | 0.6918 | 0.0556
8 0.0866 | 0.2345 | 0.9223 | 0.0132{ 0.2517 | 0.3812 ] 0.6976 | 0.0538 0.7 0.0496
9 0.0122 | 0.0076 | 09219 | 0.0128 } 0.1677 | 0.3274 | 0.6902 | 0.0557 | 0.7238 { 0.035
10 0.0103 | 0.0045 | 0.9213 | 0.0134 | 0.0891 | 0.2498 | 0.6882 | 0.0583 | 0.7315 | 0.0468
11 0.0083 | 0.0043 | 0.9209 | 0.013 | 0.009 | 0.0081 | 0.7086 | 0.062 | 0.7386 | 0.052
12 0.0078 | 0.0045 | 0.9218 ] 0.013 | 0.0095 | 0.0075 | 0.7497 | 0.0402 | 0.7446 | 0.0541
13 0.0065 | 0.0044 | 0.9229 } 0.0144 | 0.0092 | 0.0065 | 0.7667 | 0.0299 | 0.7402 | 0.0553
14 0.0073 | 0.0056 | 0.9233 § 0.0128 | 0.0085 | 0.0065 | 0.7599 | 0.0317 | 0.7343 | 0.0652
15 0.0067 | 0.0049 | 0.9214 | 0.0132 | 0.008 | 0.0058 | 0.7491 | 0.0425 | 0.7291 | 0.0638
DC Mall (NC=7, Ni=40, Dim=191)
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Figure 5.5(b). The thematic map resulting from the classification of the areaof Figure

5.4(a) using DAFE features. (In Color)
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Figure 5.5(c). The thematic map resulting from the classification of the areaof Figure
5.4(a) using NWFE features. (In Color)

5.6 Concluding Comments

The volume available in high dimensional feature spaces is very large, making
possible the discrimination between classes with only very subtle differences. On the
other hand, this large volume makes increasingly challenging the problem of defining
adequate precisely the desired classes in terms of the feature space variables. The
problems of class statistics estimation error resulting from training sets of finite size
grows rapidly with dimensionality, thus making it desirable to use no larger feature space
dimensionality than necessary for the problem at hand, and therefore the :importancedf an
effective, case-specific feature extraction procedure.

The NWFE algorithm presented here is intended to take advantage: of the desirable
characteristicsof DAFE and DBFE, while avoiding their shortcomings. DAFE isfast and
easy to apply, but its limitation of nc-1 features, its reduced performance particularly
when the differencein mean values of classesis small, and the fact that itt is based on the
statistical description of the entire training set, making it sensitive to outliers, limit its
performance in many cases. DBFE does not have these limitations. It focuses the
attention on training samples near the needed decision boundary, but it is a long
calculation and does not produce effective results when training sets are small.

NWFE does not have any of these limitations. It appears to have improved
performance in a broad set of circumstances, making possible substantially better
classification accuracy in the data sets tested, which included sets of agricultural,
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geological, ecological and urban significance. Thisimproved performanceis perhaps due
to the fact that, like DBFE, attention is focused upon training samples that are near to the
eventual decision boundary, rather than equally weighted on all training pixels as with
DAFE. It also appears to provide feature sets which are relatively insensitive to the
precise choice of feature set size, since the accuracy versus dimensionality curves are
relatively flat beyond the initial knee of the curve. This characteristic would appear to be
significant for the circumstance when this technology begins to be used by general

remote sensing practitioners who are not otherwise highly versed in signal processing
principlesand thus might not realize how to choose the right dimensionality to use.
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CHAPTER 6: UsingMixtureClassifier Based on Mix-LOOC2 after
Feature Extraction

6.1 Cntroduction

From Chapter 4, we know that a mixture classifier based on Mix-LLOOC2 isagood
choicefor classifying datain the original space. But using that mixture classifier in hyper
dimensional data is not efficient and will suffer from the Hughes phenomenon more
serioudly. Before classifying hyper dimensional data, feature extraction is usually used to
transform data from the original hyper dimensional space into a lower dimensional
feature space. This section is to explore the performances of combining feature extraction
and the mixture classifier based on Mixed-L OOC2 procedures.

6.2 Experiment Design

In this section, the performances of the following four classification proceduresare
compared.

1. Using DAFE features applied to the Gaussian quadratic classifier (DAFE+GC).
This is the previous, conventionally used approach and serves as a baselinefor
comparison.

2. Using DAFE features applied to the mixture classifier based on BIC and Mixed-
LOOC?2 covariance estimator (DAFE+MC-Mix?2).

3. Using NWFE applied to the Gaussian quadratic classifier NWFE+GC).

4. Using NWFE features applied to a mixture classifier based on BIC and Mixed-
LOOC?2 covariance estimator (NWFE+MC-Mix2).

The experiment data are again in two parts, smulated and real data. Ten simulated
data sets in Experiment 5.2 with 30 and 60 dimensions and mixture distributions are used
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in Experiment 6.1 to compute the average accuracy of four different procedures. Ten
randomly sampled DC Mall and Purdue campus data sets are used in Experiment 6.2 to
compute the average accuracy of four different procedures. The dimensionality of the DC
Mall data sets is 191 and that of the Purdue campus data sets is 126. The class training
sample sizesof dl real dataexperimentsare 40 pixels

6.2 Experiment Results

The results of experiment 6.1 are displayed in tables 6.1(a), (b), and figures 6.1(a),
(b). The results of experiment 6.2 are displayed in tables 6.2(a), (b).,(c), and figures
6.2(a), (b), and (c). They show that

1.

Figures 6.1(a) and (b) show that using 2 features from NWFE and the mixture
classifier based on Mixed-LOOC2 yields the best performance. It implies that
NWEFE may preserve the origina data distribution situation better than DAFE
does.

Figure 6.2(a) shows that the performances of NWFE+GC and NWFE+MC-
Mix2 are similar. When the number of features is greater than nc-1, the
performance of DAFE+GC will decrease rapidly but DAFE+MC-Mix2 can
improve the situation.

Figure 6.3(b) shows that the performances of NWFE+GC and NWFE+MC-
Mix2 are similar but the performance of DAFE+MC-Mix2 is much better than
that of DAFE+GC.

Figure 6.3(c) shows that the performances of DAFE+GC and DAFE+MC-Mix2
are similar but the performance of NWFE+MC-Mix2 is better than that of.
NWFE+GC.

Generally speaking, using the procedure NWFE+MC-Mix2 yielded better
results and reduced the Hughes phenomenon but it needs more computation
time.



Table 6.1(a) Mean and standard deviation of accuracies of simulated data sets (dim=30)
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DAFE DAFE+Mixture NWEFE NWFE+Mixture
Features Mean Std Mean Std Mean Std Mean Std
1 0.3405 0.022 0.3501 0.0383 0.5145 0.0114 0.6928 0.017
2 0.3822 0.0329 0.3866 0.0423 0.8194 0.0118 0.9922 0.003
3 0.3818 0.0269 0.3653 0.0279 0.8167 0.0161 0.8447 0.0627
4 0.3798 0.0254 0.3625 0.0257 0.8143 0.0167 0.7905 0.0173
5 0.3732 0.0234 0.3498 0.0219 0.8069 0.0142 0.7865 0.0142
6 0.3857 0.1265 0.4026 0.0861 0.8034 0.015 0.7835 0.0113
7 0.3716 0.1535 0.3908 0.0646 0.7943 0.0147 0.772 0.0155
8 0.3067 0.1395 0.4183 0.0485 0.7893 0.0144 0.7615 0.0164
9 0.265 0.1028 0.3882 0.074 0.7807 0.0152 0.7457 0.0159
10 0.2379 0.0607 04118 0.0784 0.7735 0.0148 0.7284 0.0135
11 0.232 0.0554 0.4032 0.0958 0.7685 0.016 0.7113 0.0181
12 0.2251 0.0656 04126 0.0732 0.7635 0.0132 .6605 0.0414
13 0.2191 0.0819 0.3906 0.0892 0.756 0.0126 0.6345 0.0379
14 0.2146 0.0856 0.3871 0.0843 0.7483 0.0149 0.6179 0.0204
15 0.203 0.0884 0.373 0.0948 0.7413 0.017 0.6117 0.0173
Mixture Distributions (NC=6, Ni=40, Dim=30)
1
0.9 4
08 Fm-mw g
/! - :ﬁ _;‘~-~.._,\.¥ -——
/ " -
07y —o—DAFE
2 |/ . .
] 06 /’ —a— DAFE+Mixture
g/ u-- NWFE
/
0.5 —+ NWFE+Mixture |
04 -
0.3
02 i T T T T T T T T T B | v

4 5

6 7

Number of Features

8 9 10 11 1213 1415

Figure6.1(a) Mean of accuraciesof simulated data sets (dim=30)
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Table 6.1(b) Mean and stand d deviation of accuraciesof simulated data sets (dim=60)

DAFE DAFE+Mixture NWFE NWFE+Mixture
Features Mean Std Mean Std Mean Std Mean Std
1 0.2898 0.0252 0.2759 0.0314 0.4491 0.0299 0.5425 0.0239
2 0.281 0.0232 0.2753 0.0238 0.7262 0.0293 0.89 0.028
3 0.2743 0.0138 0.2702 0.0134 0.7175 0.0246 0.7553 0.0734
4 0.2725 0.0151 0.2658 0.0154 0.7271 0.0346 0.7076 0.0368
5 0.2688 0.0152 0.2601 0.0124 0.7255 0.0266 0.701 0.0215
6 0.2766 0.0509 0.2713 0.0324 0.7315 0.0302 0.7028 0.0308
7 0.2826 0.0565 0.2729 0.0349 0.7333 0.0302 0.7015 0.0247
8 0.268 0.0328 0.2705 0.0305 0.733 0.0266 0.6933 0.0291
9 0.2679 0.0146 0.2733 0.0288 0.7281 0.0253 0.6692 0.028
10 0.2781 0.0175 0.2721 0.0388 0.7215 0.022 0.6587 0.0256
11 0.2865 0.0192 0.2696 0.0173 0.7202 0.022 0.6479 0.0359
12 0.289 0.0232 0.2837 0.0374 0.7122 0.0213 0.6043 0.0447
13 0.2805 0.0361 0.2715 0.0352 0.7067 0.0218 0.5712 0.0433
14 0.2825 0.0332 0.2916 0.0358 0.702 0.0232 0.5516 0.0175
15 0.271 0.0322 0.2788 0.026 0.6939 0.0225 0.5461 0.0206
Mixture Distributions (NC=6, Ni=40, Dim=60)
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Figure 6.1(b) Mean of accuraciesdf simulated data sets (dim=60)
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Table 6.2(a) Mean and standard deviation of accuracies of Indian Pine data sets

(dim=191)
DAFE DAFE+Mixture NWFE NWFE+Mixture
Features Mean Std Mean Std Mean Std Mean Std
1 0.3539 0.0229 0.3544 0.0226 05162 0.0269 0.5302 0.0213
2 0.4629 0.0331 0.4627 0.0331 0.7066 0.0067 0.7174 0.0142
3 0.5048 0.0231 0.5075 0.0228 0.777 0.0171 0.7943 0.015
4 0.549 0.0185 0.5532 0.0228 0.7963 0.0202 0.8092 0.0157
5 0.5733 0.0155 0.5836 0.0208 0.8583 0.0172 0.8618 0.0099
6 0.2867 0.302 0.576 0.0272 0.8909 0.0138 0.8918 0.0137
7 0.1754 0.282 0.5421 0.0352 09121 0.0067 09161 0.0033
8 0.0584 0.1834 0.558 0.0522 0.9098 0.0065 0.9122 0.0041
9 0.0586 0.1841 0.5634 0.0439 0.905 0.0088 0.9076 0.0059
10 0.0585 0.184 0.5636 0.0399 0.9064 0.0082 0.9078 0.0053
11 0.0004 0.0003 0.5329 0.0842 0.9027 0.0069 0.9023 0.0052
12 0.0004 0.0003 0.5315 0.085 0.9007 0.0067 0.8979 0.007
13 0.0004 0.0003 0.5384 0.0836 0.899 0.0067 0.8865 0.0154
14 0.0004 0.0004 0.5429 0.0606 0.8959 0.0048 0.8717 0.0233
15 0.0004 0.0004 0.5631 0.0237 0.8917 0.0059 0.8635 0.0196
Indian Pine (NC=6, Ni=40, Dim=191)
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Figure 6.2(a) Mean of accuraciesof simulated data sets (dim=60)




-72-

Table6.2(b) Mean and standard deviation of accuraciesof DC Mall data sets (dim=191)

DAFE DAFE+Mixture NWFE NWFE+Mixture
Features Mean Std Mean Std Mean Std pavans | wwa
1 04994 | 00895 | 05082 | 00844 | 06934 | 00928 | 07053 ' 0.0813 |
2 0.6768 0.0477 0.7041 0.0442 0.85 0.0514 0.8525 0.0444
3 0.7355 0.0549 0.7799 0.0395 0.9123 0.0182 09114 0.017
4 0.746 0.0476 0.8029 0.0297 09174 0.0176 0.9165 0.017
5 0.7453 0.058 0.8163 0.0275 0.919 0.0169 0.9196 0.0159
6 0.7413 0.0522 0.8276 0.0288 0.9169 0.0172 09194 0.0163
7 0.3886 0.3965 0.8225 0.0395 0.9151 0.0169 09176 0.0157 |
8 0.0865 0.2344 0.7738 0.0767 0.9141 0.0129 0.9178 0.0155
9 0.0122 0.0076 0.7568 0.06 0.9155 0.0127 09176 0.0154
10 0.0103 0.0045 0.7421 0.1117 09154 0.0136 0.917 0.0153
11 0.0083 0.0043 0.7126 0.1111 0.9162 0.0136 09178 0.0159
12 0.0078 0.0045 0.7019 0.0919 0.9178 0.0134 09173 0.0158
13 0.0065 0.0044 0.6674 0.1475 0.9201 0.0149 0.9164 0.0179
14 0.0074 0.0057 0.7076 0.1187 0.9206 0.0144 0.917 0.018
15 0.0067 0.0049 0.6316 0.1303 0.9192 0.0151 0.9155 0.0177
DC Mall (NC=7, Ni=40, Dim=191)
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Figure 6.2(b) Mean of accuraciesof DC Mall data sets (dim=191)
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Table 6.2(c) Mean and standard deviation of accuraciesof Purdue campus data sets

(dim=126)
DAFE DAFE+Mixture NWFE NWFE+Mixture
Features Mean Std Mean Std Mean Std Mean Std
1 0.495 0.0501 0.4911 0.0458 0.613 0.0362 0.6432 0.0497 |
2 0.5882 0.0639 0.5883 0.0677 0.7557 0.0167 0.7719 0.0205 |
3 0.6913 0.0379 0.6922 0.0321 0.7811 0.0258 0.8113 0.0266
4 0.8052 0.0114 0.8071 0.0099 0.8088 0.0267 0.8422 0.0377
5 0.8182 0.0154 0.8198 0.0167 0.8148 0.0343 0.8438 0.0388
6 0.4971 0.4282 0.8235 0.0174 0.8176 0.0328 0.8573 0.0208
7 0.4236 0.4467 0.8074 0.0481 0.8244 0.0264 0.8539 0.0285
8 0.2542 0.4097 0.8036 0.0487 0.8311 0.0278 0.8563 0.026
9 0.171 0.3608 0.7469 0.1357 0.8428 0.0349 0.8689 0.0297
10 0 0.0001 0.683 0.1496 0.8549 0.0324 0.8731 0.0282
11 0.0001 0.0003 0.6485 0.1565 0.8702 0.0287 0.8854 0.0213
12 0.0001 0.0003 0.6344 0.1339 0.885 0.0256 0.8892 0.0176
13 0.0004 0.001 0.5415 0.2131 0.8877 0.0229 0.8857 0.017
14 0.0006 0.0018 0.5519 0.2014 0.8907 0.0237 0.8845 0.0213
15 0.0004 0.0011 0.5489 0.2097 0.8954 0.0167 0.8849 0.0233
Purdue Campus (NC=6, Ni=40, Dim=126;
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1 2 3 4 5 6 7 8 9 1011 1213 14 15

Number of Features

Figure6.2(c) Mean of accuraciesof Purdue campus data sets (dim=126)
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6.3 Concluding Comments

It has long been known that modeling each class in a data set with a single mode
Gitussian density is rarely a good model. The use of " Gaussian subclasses” to provide a
better class model has long been in use, and has shown itself to be an effective way to
proceed. Thisis basically what has been called here a mixture classifier. The problem has
been that deciding just how many " subclasses” to use for each class and how to train each
has been a substantial challenge to the analyst, Devising an effective scheme for doing
this should be asignificant aid to the analyst.

The performances of combining feature extraction (DAFE and NWFE) and the
mixture classifier based on Mixed-LOOC2 procedures are tested. The simulated and real
data results show that using NWFE then the mixture classifier based on nearest mean
clustering and BIC_Mix index is arobust classification procedure for hyperspectral data.
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CHAPTER 7: CONCLUSIONS

7.1 Summary

In Chapter 2, Mixed-LOOC1 and Mixed-LOOC2 are defined and retain the
advantagesof LOOC and BLOOC.

In Chapter 3, Mixed-LOOC?2 is used with DAFE. Experimental results show that
this proposed feature extraction not only can avoid the singularity problem in DAFE but
also can get abetter result by using fewer training samples.

In Chapter 4, Mixed-LOOC?2 is used with parameter estimation and mode selection
steps of mixture classifiers. Experimental results show that the proposed mixture
classifier using nearest mean clustering and BIC_Mix has the advantages of both
quadratic and original mixtureclassifier and outperformsthose two in some situations.

In Chapter 5, the proposed nonparametric feature extraction method, NWFE, is
defined and takes advantage of the desirable characteristics of DAFE and DBFE, while
avoiding their shortcomings.

In Chapter 6, the performancesaf combining feature extraction (DAFE and NWFE)
and the mixture classifier based on Mixed-LOOC?2 procedures are tested. The smulated
and real data results show that using NWFE then the mixture classifier based on nearest
mean clustering and BIC_Mix index is arobust classification procedurefor hyperspectral
data.

Based on above summary, in feature extraction step, if the total samplesizeisless
than the dimensionality, then DAFE based on Mixed-LOOC?2 is suggested; otherwise
NWEFE is the best choice. In designing classifier step, the mixture classifier based on NM
clustering and BIC with Mixed-LOOC?2 seemsto be the best choice.

H
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In [24], alist of significant factors affecting classification performance includes,

1

4.

5.

Theclasses of interest and the number of training samples available for each
class,

The agorithm available by which to estimate especialy the covariance
matrices.

The feature extraction process,
The classifier algorithm complexity, and

The analyst's skill.

This thesis provides arobust classification procedure that helpsthe analyst avoid troubles
fromitem 2, 3, and 4.

7.2 Suggestionsfor Further Work

1 Combine the adaptive classification procedure [26] and the algorithms proposed

in this thesis.

2. Find the method to decide how many features should be extracted in NWEE.
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APPENDIXA: THE MAXIMUM LIKELIHOOD ESTIMATOR OF
MIXTURE PARAMETERIN LOOC AND BLOOC

The maximum likelihood estimator of the mixing parameter of LOOC or BLOOC
will be derived.

Let
0, =0(4,)=6,4,+(1—-d,)B, _ where 4, and B, aresymmetric
and
1 :
La)=- log fi(x,, | m,,%,
l( l) F"kzzl gfl( l,k| i )
where

[, 5= exp{- ;xx —i) 5 (k=) =120

1
;1276)" 12|

is the likelihood function of *;x is the k-th observation in class i, ¢ is the number of
classes and4: a4 B, gre known P* P matrices.

Since

. 1, e, 1 .
log £,(x,, | 71,5 == log2r - “log|2,| - (x,, —#) £ (x,, — 1,
gf;( l,k' i ) 2_. g 2_ g' ' 2-( Lk ) i ( k )

then

N; n n N; LA
L@)=- ;,_Zlogﬁ(x,-,k | #,,5,) = ;’_mgzn— ;_long:‘ L S, ) 8, — )
i k=1

i i=1

For anm by nmatrix X =1%; ) | let
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T
vec X =vec (X) =[x Xy eon Xy X Xy wee Xy wee X ]

From [25] p.176, we know that

LASONSACY where f :R™ —R

0X  ovee(X)

vec(

By thechain rule, thefirst derivative of Z;(@;) can be written as

L (a,) _ AL(e,) dveco(H,) _
da,  oveo(H,)  oc,

i

oL, (e,)\r. _,OH,
vec(_alr) vec(éa_i_) ,

wheref; = 271 and H, HH !

Then we have

aL(a,)_ _1dloglH,|, 1 <4 0 L7 .
T s {(x,, —m) H(x,,—m,
BH‘ 5 aH‘ 2N, ; H‘. ( ik l) I( ik 1)]

A

. - V-1 . .
Since H; = Ei IS symmetric,

dlog| H, | 4 g 0 2 LR
N =2H" —diag(H ) =22, —diag (X,
— ; g(H") ; g(x,)

i

and

4

d

B%J(x,»,k ) H, (5, =)= (200, = )5y =) = diag(Ce,, =) (5 — 1))

=

bl

1 A A
_ 2N[S, - diag(S)] 5= Z}(x,,k — 7, )%, =)

where

Therefore,

dL,(C'!:) - _ ;_[2(i’ _S,.)—diag(i,- _Si)]

And



-79 -

-1

U goi(a-BE;
da, o,

Since

vec(X 7)) vee(Y) =tr(XY)=tr(¥X), where X :mXn and? :nxm
then we have
aLa(_“) = ved(E, - ) - siag(, - S)1" veelS;'(4, - B)S
al

_or{[®, -8,)- ;_diag(ii “SIE (4, - BYS )

. aLl (al) .
Since4,; and B, gre not the samein LOOC and BLOOC, —g— 'S not equal to 0 for all

&, . Therefore, we know that the optimal solution of the mixture pararneter occurs at one
o theend points.
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APPENDIX B: THE INFORMATIONABOUT SSIMULATIONDATA
SETSAND REAL DATA SETS

B.l Experiment Design of Simulation Studies
The experiments 1 to 12 are three-class problems.
B.1.1 TheMean Vector and CovarianceMatrix
The followings are some notationsused in this study.
Mi: the mean vector of classi;

H;; - Thej-thelement of Mi, i=1,2,3.

Covi: The covariance matrix of classi;

0. : Thej-th diagonal element of Covi

p: number of dimensions
N, : thetraining samplesize of classl; N=2N,
[Experiment 2.1and 2.7]
M1=[0,...,0}; M2=[0,3,0...,0};M3=[0,0,3,0,...,0]
Cov1=Cov2=Cov3=I;
[Experiment 2.2and 281
M1=[0,...,0]; M2=[0,3,0...,0];M3=[0,4,0,0,...,0]

Covl=l; Cov2=2I; Cov3=3I;
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[Experiment 2.3and 2.9]
ty =0, py; =25 1~ P Py =(=1) 'y,

P P_;
2

Cov1=Cov2=Cov3=diag (C1:02>->T, );

93

2
._1) +1} ’ i= 1,2,...,p

whered; =‘:

Experiment 2.4 and 2101

| oi-1 i
=0, gy, =25 2L 1 Ly =Dy,

Covl=Cov2=Cov3=diag (°1>02>9, );

2
where? =[9§_:_1_)_+1] , i=1,2,...,p

[Experiment 25and 2111
My =My = My, =0

9%~ i
=T

Covl =diag @11°F1,2>5%1, ); where? 1 :|: e

o, = %G -1) +1 L
Cov2 =diag @ 21>022-02, ), where” % =T

Z

Cov3=diag (@31°032 303 5 ); where” 2+ = —p-T




-83-

[Experiment 2.6 and 2.12]

14 ; .
B, =0, py = — My, =(-D'l,,, 1=12,.,p |

P

All covariance matrices are the same as those in Experiment 5 and 11.

B.2 Dimensionality and Sample Size of Real Data Sets
B.2.1 Cuprite, Nevada scenedata

Cuprite, Nevada covers an interesting geological feature called a hydrothermal
ateration zone, which is exposed due to sparse vegetation. A total of 2744 samplesand
191 bands (0.40-1.34, 1.43-1.80, 1.96-2.46 1um) are used.

Table B.1 Labeled Sample Sizesof Cuprite Data Set

Labeled Samples

Alunite 729
Buddingtonite 71

Kaolinite 232

Quartz 385

Alluvium 689

Playa 252

Tuff 293
Argillized 93

[ Total Qampl es 2744

B.2.2Jasper RidgeData

Thisis a biological preservein San Mateo County, California. In al, 3207 labeled
samples are used. The 191 spectral bands (0.40-1.34, 1.43-1.80, and 1.95-2.47 um)

outside the water absorption bands are used.
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TableB.2 Labeled Sample Sizes of Jasper Ridee Data Set

L abeled Samples
Evergreen 900
Serpentine 202
Green-stone 810
Water 208
Deciduous 495
Chaparral , 592
Total Samples | 3207

B.2.3Indian PineData

This isamixed forest/agricultural areain Indiana. The water absorption bands (104-
108, 150-163,220) have been discarded,

Table B.3 Labeled Sample Sizesof Indian Pine Data Set

L abeled Samples
Beans/Corn Residue 520
Corn/No Residue 450
Corn/Bean Residue 372
Beans/No Residue . 490
Corn/Wheat Residue | 388
Wheat/No Residue . 301
Total Samples | 2521

B.2.4DC Mall Data

DC Madll image dataiis an airborne hyperspectral dataflighline over the Washington
DC mall, which was collected with the HY DICE system. There were 210 bandsin the 0.4
to 2.4 um region of the visible and infrared spectrum. In the experiments, the water

absorption bands are removed and 191 bands are used.

TableB.4 Labeled Sample Sizes of Cuvrite Data Set

Labeled Samples
Buildi ng 3834
Road ) 680
Path I 616
Lawn 1928
Tree 919
Water 1224
Shadow 221
Total Samples 9422
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