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ABSTRACT 

For hyperspectral data classification, the avoidance of singularity of covariance 

estimates or excessive near singularity estimation error due to limited training data is a 

key problem. This study is intended to solve problem via regularized covariance 

estimators and feature extraction algorithms. A second purpose is to build a robust 

classification procedure with the advantages of the algorithms proposed in this study but 

robust in the sense of not requiring extensive analyst operator skill. 

A pair of covariance estimators called Mixed-LOOCs is proposed for avoiding 

excessive covariance estimator error. Mixed-LOOC2 has advantages over LOOC and 

BLOOC and needs less computation than those two. Based on Mixed-LOOC2, new 

DAFE and mixture classifier algorithms are proposed. 

Current feature extraction algorithms, while effective in some circumstances, have 

significant limitations. Discriminate analysis feature extraction (DAFE) is fast but does 

not perform well with classes whose mean values are similar, and it produces only N-1 

reliable features where N is the number of classes. Decision Boundary Feature Extraction 

does not have these limitations but does not perform well when training sets are small, A 

new nonparametric feature extraction method (NWFE) is developed to solve the 

problems of DAFE and DBFE. NWFE takes advantage of the desirable characteristics of 

DAFE and DBFE, while avoiding their shortcomings. 

Finally, experimental results show that using NWFE features applied to a mixture 

classifier based on the Mixed-LOOC2 covariance estimator has the best performance and 

is a robust procedure for classifying hyperspectral data. 
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CHAPTER 1: INTRODUCTION 

1.1 Statement of the Problem 

As new sensor technology has emerged over the past few years, high dimensional 

multispectral data with hundreds of bands have become available. For example, the 

AVIRIS systemi gathers image data in 210 spectral bands in the 0.4-2.4 ym range. 

Compared to the previous data of lower dimensionality (less than 20 bands), this 

hyperspectral data potentially provides a wealth of information. However, it also raises 

the need for more specific attention to the data analysis procedure if this potential is to be 

fully realized. 

Among the ways to approach hyperspectral data analysis, a useful processing model 

that has evolved in the last several years [I] is shown schematically in Figure 1.1. Given 

the availability of data (box I ) ,  the process begins by the analyst specifying what classes 

are desired, usually by labeling training samples for each class (box 2). New elements 

that have proven important in the case of high dimensional data are those indicated by 

boxes in the diagram marked 3 and 4. These are the focus of this work and will be 

discussed in more detail shortly, however the reason for their importance in this context 

is as follows. Classification techniques in pattern recognition typically assume that there 

are enough training samples available to obtain reasonably accurate class descriptions in 

quantitative form. Unfortunately, the number of training samples required to train a 

classifier for high dimensional data is much greater than that required for conventional 

data, and gathering these training samples can be difficult and expensive. Therefore, the 

assumption that enough training samples are available to accurately estimate the class 

quantitative description is frequently not satisfied for high dimensional data. There are 

i Airborne Visible and Infrared Imaging Spectrometer system, built and operated by the NASA Jet 
Propulsion Center. 
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many types of classification algorithms used on such data. Perhaps the most common is 

the quadratic maximum likelihood algorithm. 

r ,  I I 
5 Feature 

1 - 

4 Class Conditional + 
Feature Extraction 4' Selection 6 Classifier 

1 I, 
2 Label Training 

Samples 

Figure 1.1 A schematic diagram for a hyperspectral data analysis procedure. 

In the stochastic approach, the characteristics of a class are modeled with a set of 

parameters, which are estimated based on some prior knowledge, often in the form of 

pre-labeled samples. The pre-labeled samples used to estimate class parameters and 

design a classifier are called training samples. The accuracy of parameter estimation 

depends substantially on the ratio of the number of training samples to the dimensionality 

of the feature space. As the dimensionality increases, the number of training samples 

needed to characterize the classes increase as well. If the number of training samples 

available fails to catch up with the need, which is the case for hyperspectral data, 

parameter estimation becomes inaccurate. 

Consider the case of a finite and fixed number of training samples. The accuracy of 

statistics estimation decreases as dimensionality increases, leading to a decline of the 

classification accuracy (Figure 1.2(b)). Although increasing the number of spectral 

bands (dimensionality) potentially provides more information about class separability 



(Figure 1.2(a)), this positive effect is diluted by poor parameter estimation. As a result, 

the classification accuracy first grows and then declines as the number of spectral bands 

increases (Figure 1.2(c)), which is often referred to as the Hughes phenomenon (or the 

peaking phenomenon). 

I Dimensionality, n - Dimensionality, n 

(a) High dimensionality (the number of (b) With a finite and fixed number of 
spectral bands) potentially provides samples, the accuracy of statistics 
better class separability. estimation decreases as dimensionality 

increases. As the number of training 
samples, denoted by N, increases, 
statistics estimation improves. 

I 

I Dimensionality, n 4 

(c) The peaking phenomenon results from the combination 
of the two opposite effects shown in (a) and (b). 

Figure 1.2 Conceptual presentation of classification accuracy vs. measurement 
complexity in finite and fixed training cases (The Hughes phenomenon). 



There are several ways to overcome this difficulty. In 121, these techniques are 

categorized into three groups: 

a. Dimensionality reduction by feature extraction or feature selection, 

b. Regularization of sample covariance matrix (e.g. 131, [dl), and 

c .  Structurization of a true covariance matrix described by a small number of 

parameters [2]. 

The objectives of this research are 

1. To improve the major steps of hyperspectral data classification (box 3, 4 and 6 

of the Figure 1.1). 

2. To find a robust and easy classification process for users. 

1.2 Organization of This Report 

Chapter 2: Two regularized covariance estimators with the advantages of LOOC [5], [6] 

and BLOOC [7] are developed. The results of several experiments with 

computer generated data and AVIRIS data sets are presented that test their 

performances. 

Chapter 3: Discriminate analysis feature extraction (DAFE) is improved in this chapter 

by using one of the regularized covariance estimators developed in Chapter 2. 

The improved DAFE relieves one of the limitations of DAFE that total 

training sample size should be greater than the dimensionality. Different 

combinations of feature extraction methods and classifiers are tested by using 

AVIRIS data sets. 

Chapter 4: Gaussian mixture classifiers with different parameter estimation and model 

selection methods are improved in this chapter by using one of the regularized 

covariance estimators developed in Chapter 2. The results of several 

experiments with computer generated data and AVIRIS data sets are presented 

that test their performances. 



Chapter 5: A nonparametric feature extraction method is developed to solve those 

problems in DAFE. The results of several experiments with computer 

generated data and AVIRIS data sets are presented that test its performance. 

Chapter 6: The performances of combining feature extraction (DAFE and NWFE) and a 

mixture classifier based on Mixed-LOOC2 procedures are tested in this 

Chapter. The results of several experiments with computer generated data sets, 

AVIRIS data sets, and HyMap data sets are presented that test its 

performance. 

Chapter 7: General conclusions and potentials for future research development future 

research are suggested in this chapter. 





CHAPTER 2: MIXED LEAVE-ONE-OUT COVARIANCE 
ESTIMATOR 

2.1 Introduction 

For a quadratic classifier, the mean vector and covariance matrix of each class are 

the parameters that must be estimated from training samples. Usually the ML estimator is 

used. When the dimensionality of data exceeds the number of training samples, the ML 

covariance estimate is singular and cannot be used, however even in cases where the 

number of training samples is only two or three times the number of dimensions, 

estimation error can be a significant problem. 

The purpose of this chapter is to define an improved regularized covariance estimator of 

each class that is invertible and with the advantages of LOOC [ 5 ] ,  [6] and BLOOC [7] 

(box 3 of Figure 1.1). 

2.2 Background and Previous Works 

The decision rule in a quadratic classifier is to label the (p by 1 )  vector x as class k 

if the likelihood of class k is the greatest among the classes: 

x E class k, ij arg maxv(mi , X i  ( x) J= k 
i 

where mi is the mean vector, and Z, is the covariance matrix. Usually in practice the true 

values of the mean and covariance are not known and must be estimated from training 



1 samples. The mean is typically estimated by the sample mean rt, = - t x , ,  , where xij 
N; j = 1  

is sample j from class i. The covariance matrix is typically estimated by the maximum 
1 N. 

likelihood covariance estimate S, = -g (xi,  - m, x .  . - mi . 
N, j=1 

X I , ,  

The maximum likelihood mean and covariance estimates have the property that 

they maximize the joint likelihood of the training samples, which are assumed to be 

statistically independent. 

N, Ni 

mi =a rgmaxnf@, , ,  l m , ~ , )  and S, =argmax nfGi,, l m , , ~ ) .  
m j = l  j=1 

2.2.1 Regularized Discriminant Analysis (RDA; [2]) 

Regularized discriminant analysis (RDA) is a two-dimensional optimization over 

four-way mixtures of the sample covariance, common covariance, the identity matrix 

times the average diagonal element of the common covariance, and the identity matrix 

times the average diagonal element of the sample covariance. 

where 

The criterion function that is maximized is the leave-one-out classification error. 

Since the criterion function depends on the covariance estimates of the other classes, the 

same values of the mixing parameters are used for all classes. 
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2.2.2 Leave-One-Out Covariance Estimator (LOOC; [4],[5] ) 

l L  

where S =  T E ~ ,  

1 N' The mean of class i, without sample k, is mi lk  = Ex,, , where the notation /k 
N; -1 j, 

j+k 

indicates the quantity is computed without sample k. The sample covariance of class i, 

without sample k, is 

and the common covariance, without sample k from class i, is 

The proposed estimate for class i, without sample k, can then be computed as follows: 

The mixing parameter a, is determined by maximizing the average leave-one-out 

log likelihood of each class: 
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2.2.3 Bayesian Leave-One-Out Covariance Estimator (BLOOC; [61) 

LOOC was found to work well for well trained classifiers, however, it was sensitive 

to outliers. In practice this frequently occurs in cases where the class list is not 

exhaustive, such that the missing classes constitute outliers to the defined classes. Thus 

the following scheme was devised. 

2, (a,  = {(2 - a , ~ ,  + (a,  - l)s;(t) l s a ,  < 2  

where p is the dimensionality and A = Ni - 1, 

The criterion function of BLOOC is the same as that of LOOC. BLOOC tends to 

mitigate the outlier problem. 

2.2.4 The Comparison of Performances of RDA, LOOC, and BLOOC 

Table 1 is a summary of demonstrations in [5] and [6]. The following are the rules 

and notation of this summary. 

1. Compute the differences of the performances of RDA vs. LOOC in [5] and LOOC vs. 

BLOOC in [6]. 

2. If the difference is greater or equal than the standard deviation of LOOC, then round to 

the hundreds' and display in Table 2.1 in the form x(y). x(y) means that, in case x, the 

accuracy of this method is y% better than that of other method. 

3. Blank cells in two methods mean that both methods have the same performance in this 

situation within one standard deviation. 

4. ExpiE means Experiment i with equal sample size design. ExpiU means Experiment i 

with unequal sample size design. Reali means real data set i. 



In Expl-6 and T3.2-3.8 
a: dim=6 
b: dim=lO 
c: dim=20 
d: dim=40 
In Reall: Cuprite Site and 
Real2: Indian Pine Site 
a: dim=lO 
b: dim=50 
c: dim=100 
d: dim=191 

Table 2.1. The Summary of Hoffbeck and Tadjudin's Research Experiments 

In Real3: Jasper Ridge site 
a: dim=lO 
b: dim=50 
c: dim=100 
d: dim=193 
In Real4: Indian Pine site (small segment), dim=200 
a: training sample size =1% of labeled data 
b: training sample size =5% of labeled data 
c: training sample size =8% of labeled data 
d: training sample size =lo% of labeled data 

From Table 2.1, we see that 

Hoffbeck(1995) 

1 .  LOOC results are better than RDA in most situations. 

Experiment 
Exp 1 
Exp2 
Exp3 
Exp4 
Exp5 
Exp6 
Real 1 
Real2 
Real3 

Tadjudin(1998) 

2. In simulation data, BLOOC is only better than LOOC in experiment 2 (both 

equal and unequal case). 

Experiment 
ExplE 
ExplU 
Exp2E 
Exp2U 
Exp3E 
Exp3U 
Exp5E 
Exp5U 
Real4 

In addition, computation time is decreasing in the order RDA, BLOOC, and LOOC. 

According to both accuracy and computation, LOOC is a better choice than the others. 

However, BLOOC has an advantage of being more resistant to outliers in the training set. 

RDA(%) 

d(2) 

2.3 Mixed Leave-One-Out Covariance (Mixed-LOOC) Estimators 

LOOC(%) 

b(4)c(l l)d(22) 

a(7)b(l l)c(9)d(7) 
a(3)b(4)c(6)d(5) 

d ( 1 ) 

LOOC(%) 

b(12)c(17)d(23) 
b(3)c(5)d(8) 

a(13)b(14)c(19)d(21) 
b(4)c(3)d(3) 

LOOC and BLOOC are the linear combination of two of the three matrices, and in 

some situations, BLOOC is better than LOOC, elsewhere LOOC is better. The difference 

between LOOC and BLOOC is in those matrices that they use to formulate the 

BLOOC I(%) 

c(12)d(20) 
d(8) 

c(22) 



regularized covariance estimator. So we know that only using some of the six matrices 

will not get good results in all situations. The basic idea of Mixed-LOOC is to use all six 

matrices to gain the advantages of both LOOC and BLOOC. Hence the first proposed 

regularized covariance estimator, Mixed-LOOC1, is 

where a, +b, +c,  + d , + e ,  +f, = 1 and i=l,2y...yL 

L : number of classes 

p : number of dimensions 

Si : covariance matrix of class i 

S :common covariancematrix (pooled) 

The mixture parameters are determined by maximizing the average leave-one-out 

log likelihood of each class: 

Since using Mixed-LOOC1 is computationally intensive, finding a more simplified 

estimator will be more practical. Appendix A shows that given two known matrices, the 
ML estimate of mixture parameters in LOOC and BLOOC are at the end points ( X i  =0, 1, 

2, or 3). Figures 2.1, 2.2, 2.3, and 2.4 illustrate the relationship between LOOL and the 
mixture parameter, a,. The first three figures are generated from simulated data sets; 

Figure 5 is based on a real data set. The detail information about simulated and real data 

set is in experiment design (section 2.4). In the case of Figure 2.1, the sample size is 

greater than the dimensionality. For Figure 2.2, 2.3, and 2.4, the sample sizes are less 

than the dimensionality. Figure 2.2, 2.4, and 2.4 show that when the ML covariance 

estimator is singular, the optimal choice of LOOC parameter under LOOL criteria is 

around the boundary points. 



Figure 2.1 -LOOL of class1 in experiment 10 (p=10) and the minimum of -LOOL occurs 
at alpha= 0 

Figure 2.2 -LOOL of class2 in experiment 10 (p=30) and the minimum of -LOOL occurs 
at alpha=3 



alpha 

Figure 2.3 -LOOL of class3 in experiment 10 (p=60) and the minimum of -LOOL occurs 
at alpha= 2.97 

Figure 2.4 -LOOL of class 6 in DC data (p=191) and the minimum of -LOOL occurs at 
alpha= 2.99 

Since a closed form solution for the parameter ai under the LOOL criteria is not 

available, and based on the above observations, one of the six support matrices is chosen 
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to be the covariance estimator to reduce the computation time. The Mixed-LOOC2 is 

proposed as the following form: 

t r ( S  ) t r ( s  
w hereA = -I, diag(S,), S,,  2, diag(S), or S , B = S,  , or diag(S) and ui is 

P P 
closed to 1. B = S , ,  or diag(S) is chosen because if a class sample size is large, S, will 

be a better choice. If total training sample size is less than the dimensionality then the 
common (pooled) covariance S is singular but has much less estimation error than S, . 
For reducing estimation error and avoiding singularity, diag(S) will be a good choice. 

The selection criteria is the log leave-one-out likelihood function: 

The algorithm to decide the Mixed-LOOC2 of each class is to compute LOOL of the 12 

covariance estimator combinations, then choose the maximal one. This method needs less 

computation time than the LOOC proposed in [5]. 

2.4 Experiment Design for Comparing LOOC, Mixed-LOOC1, and Mixed-LOOC2 

In the following experiments, the grid method is used to estimate the mixture 
parameters of LOOC and Mixed-LOOCI. The range of the parameter a in LOOC is from 

0 to 3 and the grids are a = [O, 0.25,0.5, . .., 2.75, 31. There are six parameters in Mixed- 

LOOCl and the ranges of them are from 0 to 1. The grids of Mixed-LOOC1 are [O, 0.25, 
0.5, 0.75, 11. For Mixed-LOOC2, the parameter a is set to 0.05. In the simulation 

experiments, performances of all three covariance estimators are compared. Based on 

computational consideration, only the performances of LOOC and Mixed-LOOC2 are 

compared for the real data experiments. 

Experiments 2.1 to 2.12 are based on simulated data sets. Experiments 2.1 to 2.6 

and experiments 2.7 to 2.12 are generated from the same normal distributions 

respectively. The mean vectors and covariance matrices of experiments 2.1 to 2.6 (and 

2.7 to 2.12) are the same as those six experiments in [2] Their mean vectors and 

covariance matrices are in Appendix B. The only difference between these two set 



experiments is that experiment 2.1 to 2.6 are with equal training sample sizes in each 

class but experiments 2.7 to 2.12 are with different sample sizes in each class. Training 

and testing sample sizes of these experiments are in Table 2.2. Ther

e 

are three different 

dimensionalities, p=10, 30, 60, in every experiment. At each situation, 10 random 

training and testing data sets are generated for computing the testing sample accuracies of 

algorithms, and the standard deviations of the accuracies. 

There are four different real data sets, the Cuprite site, which is an area of geologic 

interest, Jasper Ridge, an ecological site, Indian Pine, an agricultural/forestry site, and 

DC Mall, an urban site, in experiment 2.13 to 2.16 respectively. All real data sets have 

191 bands. There are 8, 6, 6, and 7 classes used in the Cuprite site, Jasper Ridge site, 

Indian Pine site, and DC Mall, respectively. There are 20 training samples in each class. 

At each experiment, 10 training and testing data sets are selected for computing the 

accuracies of algorithms, and the standard deviations of the accuracies. 

2.5 Experiment Results 

1. In Table 2.3(a), (b), (c), the shadow parts indicate that the differences of 

performances of LOOC and Mixed-LOOC2 are larger than the standard deviation of 

Mixed-LOOC2. If the difference is smaller than the standard deviation, we assume 

that the performances of these methods have no significant difference. 

2. All the experiments with significant differences (the shadow parts) indicate that 

Mixed-LOOC outperformed LOOC. 

3. The results of shadow parts show that the differences between Mixed-LOOC and 

LOOC increase as the number of dimensions increases. 
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4.  When the training sample sizes of classes are unbalance, Mixed-LOOC performed 

better than LOOC in more situations. 

5.  Significant differences most often occurred in experiments 2.2, 2.7, and 2.8. Those 

are the situations in which BLOOC has better performances than LOOC. Since the 

Mixed-LOOCs are the union version of LOOC and BLOOC, based on these findings, 

we conclude that the Mixed-LOOCs have advantages over LOOC and BLOOC and 

can avoid their disadvantages. 

6. In most of the experiments, the standard deviations of the Mixed-LOOCs are less than 

those of LOOC. This suggests Mixed-LOOCs are more stable than LOOC. 

7. The results of experiment 2.13 (Cuprite Site) show that Mixed-LOOC2 outperforms 

LOOC very much. The results of experiment 2.13 and 2.14 (Jasper Ridge site) show 

that the performances of Mixed-LOOC2 is more stable than those of LOOC 

8. The computation time decreases in the order Mixed-LOOC1, LOOC, and Mixed- 

LOOC2. 



Table 2.3(a) The Accuracy of Experiments (p=10) 

Table 2.3(c) The Accuracy of Experiments (p=60) 
I Experiment 1 LOOC I Mixed-LOOC 1 I Mixed-LOOC2 I 

Experiment 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Table 2.3(b) The Accuracy of Experiments (p=30) 
Experiment 

1 
2 
3 
4 
5 
6 

I t '  7 ' 

8 '  
9 

10 
11 
12 

LOOC 
0.8630 (0.0425) 
0.7753 (0.0481) ' $  ' 
0.8948 (0.0241) 
0.8875 (0.0309) 
0.9860 (0.0283) 
0.9885 (0.0033) 
0.8500 (0.0286) 
0.8433 {0.0410) 11 $ 8  

> l  

0.9021 (0.0230) 
0.8928 (0.0247) 
0.9883 (0.0064) 
0.9841 (0.0076) 

LOOC 
0.8317 (0.0227) 
0.7263 (0.05 10) " 

0.8 162 (0.0220) 
0.7978 (0.0619) 
0.9993 (0.0014) 
0.9990 (0.0021) 

' ' ' 0.8239 (0.0345) $1 ' $ 2  ' 
' 0.8718 (0.0311) " "" 

0.8228 (0.0274) 
0.8326 (0.0162) 
0.9976 (0.0021) 
0.9953 (0.0059) 

Mixed-LOOC 1 
0.8632 (0.0243) 

' ,, . 0.%3?3'(0~~180) ' 
0.8915 (0.0251) 
0.8893 (0.0263) 
0.9822 (0.0361) 
0.9833 (0.0085) 
0.8622 (0.0252) 
0.5750 (0.0289) ' 2  

0.9041 (0.0183) 
0.8948 (0.0204) 
0.9920 (0.0041) 
0.9830 (0.0075) 

Mixed-LOOC2 
0.8602 (0.0466) 

* 0.8450,(0.0224) 
0.8992 (0.0265) 
0.8837 (0.0386) 
0.9858 (0.0282) 
0.9885 (0.0036) 
0.8641 (0.0249) 
0.8392 (0.0250) 
0.9041 (0.0203) 
0.8940 (0.0245) 
0.9872 (0.0065) 
0.9827 (0.01 16) 

Mixed-LOOC 1 
0.8285 (0.0196) 

., 0.8700 (0.0205) 3 

0.8 142 (0.0223) 
0.7955 (0.0609) 
0.9975 (0.0037) 
0.9945 (0.0087) 

'i  Q.8469'(0.0154) " ' s i  

0.921CI'(Oklt30) ' i 

0.8343 (0.0206) 
0.8370 (0.0186) 
0.9994 (0.0008) 
0.999 1 (0.0007) 

Mixed-LOOC2 
0.8267 (0.0213) 

2 0.88 13 (0.0204)' ;I 

0.8 152 (0.0237) 
0.7972 (0.0612) 
0.9993 (0.0014) 
0.9992 (0.0016) 

, 0.8504 (0.0171) 
.I' '0.9189 (0.0118) z 

0.8241 (0.0268) 
0.83 13 (0.0156) - 

0.9984 (0.0018) 
0.9978 (0.0047) 



CHAPTER 3: Discriminate Analysis Feature Extraction Based on 
Mixed-LOOC2 

3.1 Discriminate Analysis Feature Extraction (DAFE) 

The purpose of DAFE is to find a transformation matrix A such that the class 

separability of transformed data Y=ATX is maximized. Usually within-class, between- 

class, and mixture scatter matrices are used to formulate the criteria of class separability. 

A within-class scatter matrix is expressed by [8]: 

where L is the number of classes and Pi and mi are the prior probability and mean vector 

of the class i, respectively. 

A between-class scatter matrix is expressed as 

L L-1 L 

Sb = z pi (m, - m,)(m, - m,)' =z z 6 ~ , ( m ,  - m ,)(mi - m , )  T 

i =l i=l j=i+l 

where m, represents the expected vector of the mixture distribution and is given by 

~ e t  Y = A ' X  ,then we have 

S  = A1SbXA Swy = A 1 S W x A  and 

The optimal features are determined by optimizing the criterion given by 

J ,  = w,; SbY 



The optimum A must satisfy 

This is a generalized eigenvalue problem [9] and usually can be solved by the QZ 

algorithm. But if the covariance is singular, the result will have a poor and unstable 

performance on classification. In this section, the ML covariance estimate will be 

replaced by Mixed-LOOC when it is singular. Then the problem will become a simple 

eigenvalue problem. 

3.2 Comparison of DAFE and DAFE Based on Mixed-LOOC2 

For convenience, denote DAFE based on ML estimators as DAFE and DAFE based 

on NILOOC2 as DAFE-Mix2, Gaussian classifier based on ML estimators as GC, and 

Gaussian classifier based on MLOOC2 estimators as GC-Mix2. Experiments 3.1 to 3.3 

are for determining the performances of DAFE-Mix2. The classification process in 

experiment 3.1 is to use DAFE then GC, in experiment 3.2 use DAFE-Mix2 then GC, 

and in experiment 3.3 use DAFE-Mix2 then GC-Mix2. The sample sizes of experiment 

3.2 and 3.3 are the same as those of experiments 2.13 to 2.16 (Ni=20). Since using those 

sample sizes in DAFE will cause very poor results, we increase the sample size of each 

class in Cuprite, Jasper Ridge, Indian Pine, and DC Mall data sets up to 40. The results of 

those experiments are shown in Table 3.1. 

Table 3.1 The Results of DAFE Based on ML Estimators and MLOOC2 
Exp3.3 (Ni=20) 

DAFE-Mix2 -GC-Mix2 
0.9627 (0.0196) 
0.9876 (0.0036) 
0.7562 (0.0191) 
0.8600 (0.0345) 

Real Data Set 
Cuprite 

Jasper Ridge 
Indian Pine 
DC Mall 

Exp3.1(Ni=40) 
DAFE -GC 

0.8943 (0.0205) 
0.9 127 (0.0243) 
0.5727 (0.0156) 
0.7392 (0.0530) 

Exp3.2(Ni=20) 
DAFE-Mix2 -GC 
0.9474 (0.0194) 
0.9782 (0.0120) 
0.7547 (0.0316) 
0.8691 (0.0282) 



Exp 3.1 DAFE+GC 
(Ni=40) 
Exp 3.2 DAFE-Mix2+GC 
(Ni=20) 

~l Exp 3.3 DAFE-Mix2+GC- 
Mix2 (Ni=20) 

Cuprite Jasper Indian DC Mall 
Ridge Pine 

Figure 3.1 The Mean Accuracies of Three Classification Procedures 

From above results we find: 

1. Using DAFE-Mix2 provides higher accuracy and, in most cases, smaller standard 

deviation than using only DAFE. 

2. Comparing Table 2.3(d) and Table 3.1, we find that in all data sets except the DC 

Mall sets, using DAFE-Mix2 then GC or GC-Mix2 have similar results with only 

using GC-Mix2. But the results for DC Mall show that using DAFE-Mix2 then 

GC or GC-Mix2 gave a significant improvement. 

3. From Table 3.1 and Figure 3.1, DAFE-Mix2 -GC-Mix2 looks like the best choice. 



3.3 Concluding Comments 

The singularity or near-singularity problem often occurs in the case of high 

dimensional classification. From the above discussion, we know that finding a suitable 

regularized covariance estimator is a way to mitigate this problem. Further, Mixed- 

LOOC2 has advantages over LOOC and BLOOC and needs less computation than those 

two. The problems of class statistics estimation error resulting from training sets of finite 

size grows rapidly with dimensionality, thus making it desirable to use no larger feature 

space dimensionality than necessary for the problem at hand, and therefore the 

importance of an effective, case-specific feature extraction procedure. Usually DAFE 

cannot be used when the training sample size is less than dimensionality. The new 

procedure, DAFE-Mix2, overcomes this shortcoming, and can provide higher accuracy 

when the sample size is limited. 



CHAPTER 4: GAUSSIAN MIXTURE CLASSIFIER BASED ON 
MIXED-LOOC2 

4.1 Introduction 

The normal mixture density, which models the density as the sum of one or more 

weighted Gaussian components, is a compromise between Gaussian and non-parametric 

densities. It allows more flexibility than the Gaussian density, yet requires fewer 

parameters to be estimated than non-parametric densities. Most methods in this area 

usually assume that if one class can be divided by several normal distributed subgroups 

then the sample size of each subgroup should not be less than the dimensionality. The 

purpose of this section is to provide the evidence that we can divide one class into some 

subgroups whose sample sizes may be less than the dimensionality, and the classification 

result could be improved by this way. 

There are two steps to design a quadratic mixture classifier. The first is parameter 

estimation and the second is model selection. In this study, NM (nearest means or K- 

mean) clustering and EM (expectation-maximization) clustering are used in the parameter 

estimation part. There are many indices for model selection. In this research, only the 

performances of AIC, BIC, NEC, and ICL-BIC, described below, are tested. 

4.2 Parameter Estimation Methods 

4.2.1 Normal Mixture Density 

In order to model non-Gaussian classes, consider the quadratic mixture density, 

which is the weighted summation of L Gaussian density functions: 



Each term in the summation of (4.1) is called a component of the normal mixture density. 

The weights ak ,  which must sum to unity, are a priori probabilities of' the components. 

In practice the parameters of the density function (L, a, mk, and C, for k = 1, 2, . . .L) are 

usually not known and must be estimated from the training samples. Multimode classes 

can be represented by a mixture density with one or more components representing each 

mode. Since the covariance matrix of each component should be invertible, ordinarily the 

sample size of each component should not be less than the dimensionality of the data. In 

this section, the new mixture classifier will relieve this limitation. 

4.1.2 Nearest Means Clustering 

The nearest means clustering algorithm, which requires the number of clusters to be 

specified, is used and proceeds as follows [8]: 

Step 1. Choose an initial classification of the samples into L clusters and compute the 

mean of each cluster. 

Step 2. Reclassify each sample to the cluster with the lowest Euclidean distance between 

the mean of the cluster and the sample. 

Step 3. If the classification of any sample has changed, calculate new mean vectors and 

return to step 2; otherwise stop. 

4.1.3 EM clustering 

The EM (expectation-maximization) algorithm consists of two major steps: an 

expectation step, followed by a maximization step. The expectation is with respect to the 

unknown underlying variables, using the current estimate of parameters and conditioned 

upon the observations. The maximization provides a new estimate of the parameters. It is 

an iterative method for computing the maximum likelihood estimates of the mean vector, 

covariance matrix, and a priori probability of the components in a normal mixture. It can 



correctly identify clusters that have the same mean vectors but different covariance 

matrices. The number of components L must be specified at the outset. The method 

proceeds as follows [a]: 

Step 1. Choose an initial classification of the samples into L clusters. 

Step 2. Estimate the a priori probability a; , the mean vector mi , and the sample 

covariance zi of each cluster. 

Step 3. Compute q i ,  , which is the a posteriori probability of class i given sample j: 

Step 4. Compute new estimates of the a priori probability, mean vector, and sample 

covariance of each cluster: 

where N is the total number of samples to be clustered. 

Step 5. If any 41,~ changed, repeat steps 3-4, otherwise stop. 

4.3 Model Selection Indices 

In the multivariate normal mixture model, data X 1 y . . . y X n  in R P  are assumed to be a 

sample from a probability distribution with density (4.1) 



where the ak 's are the mixing proportions (O < ak < 1) for all k = I,.. ., L and C;=,ak = 1 

and @(x,  ak ) denotes the p-dimensional Gaussian density with mean mk and covariance 

matrix x k  with ak=(mk,xk) . The maximized log likelihood of 

= ((a, ,a, ),-..,(a,, a, )) for the sample cl ,..., x, is denoted 

with d k  and 6, denoting the maximum likelihood estimates of the corresponding 

parameters. 

Various criteria to be minimized have been proposed to measure a model's 

suitability by balancing model fit and model complexity. 

4.3.1 Akaike information criterion (AIC ) 

The Akaike information criterion (AIC; [lo]) is defined as 

AIC(Y) = -2L(Y) + 2v(Y) 

where v(Y) is the number of free parameters in the mixture model '%' . 

It was observed that AIC is order inconsistent and tends to overfit models [ l l ] .  In the 

mixture context, that means that AIC trends to overestimate the true number of 

components [12], [13]. 

4.3.2 Bayesian information criterion (BIC) 

The Bayes factor for one model against another model is the posterior odds for that 

model against the other when neither model is favored over the other a priori. It is equal 

to the ratio of marginal or integrated likelihood for each model. In [14], the integrated 
likelihood of the data d = (X, ,..., Xn)  g iven the model is 

where P(0 I Y) is the prior density of"  . A classical way to approximate the integrated 

likelihood consists in using the Bayesian information criterion 1151. Noting $ the 
w 

maximum likelihood estimate of , this approximation is 



Thus the Bayesian information criterion (BIC) is given by 

BIC(Y) = -2L(Y) t v(Y) logn. 

4.3.3 Normalized Entropy Criterion and Classification Likelihood Criterion 

Classification Likelihood Criterion (CLC) was proposed by [17], Normalized 

Entropy Criterion (NEC) was proposed by [13] and modified by [16]. It was derived from 

a relation emphasizing the differences between the likelihood and the "fuzzy" 

classification likelihood of the mixture or, in the same manner, between the likelihood 

and the classification likelihood of the mixture [17]. Let 

be the estimated conditional probability that 'i rises from the kth mixture component. 

The fuzzy classification likelihood criterion is defined as 

and the entropy is defined as 

Then we have 

LLc(Y) is related to the fuzzy classification matrix '=(**) . If the mixture 

components are well-separated, then"tY) = " . Otherwise, "tY) will have a large value. 

Thus, "tY) can be regarded as a measure of the ability of the L-component mixture 
model to provide a relevant partition of the data ('I,...' ' n  ) . The relation shows that the 

classification likelihood term CLC jy) can be regarded as a compromise between the fit 



of the data to the mixture model, measured with the log likelihood L(y) , and the ability 

of the mixture model to provide a classification in well-separated clusters, measured with 
the entropy term E(y )  [18]. 

As a consequence, the entropy of the classification matrix t gives raise to several 
classification criteria [13], which are E(Y) , its normalized version 

where LI(M) denotes the maximized log-likelihood for a single Gaussian distribution. In 

[13], the entropy term is equal to 0 when the number of components (nc) is 1. According 

to [16], setting NEC=l when nc = 1 corrects for the tendency of original version to prefer 

nc > 1 when the true nc = 1. 

4.3.4 Integrated Classification Likelihood Criterion 

The Integrated Classification Likelihood Criterion was proposed in [18] and is an 

attempt to overcome the shortcomings of BIC and CLC. There are two versions of this 

index [19]. The full version is 

were P = v ( ~ )  - ( L  is the number of free parameters in and 

In [19], is set as -. When the sample size of each component is large enough, the 

Gamma function can be replaced by Stirling's formula 

u+ 
1 1 

(u) = u pexp(-u)(2n) 

On setting " = ' and neglecting terms of order "tl) , we have 
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Then we can get the reduced version of ICL and it is named ICL-BIC in (191 

ICL- BIC(Y) = -2L(Y) + 2 E ( Y )  +v(y)logn 

4.4 Gaussian Mixture Classifier Based on Mixed-LOOC 

One of limitations of the above model selection indices is that the component 

sample size should be greater than the dimensionality. The new algorithms based on 

Mixed-LOOC will release this constraint. 

4.4.1 Mixture Classifier Using Mixed-LOOC and Nearest Means Clustering 

The algorithm of a mixture classifier using Mixed-LOOC2 and nearest means (NM) 

clustering is 

Step 1. Compute Mixed-LOOC2 of each class and for each class, use nearest means 

clustering to find the components. 

Step 2. Compute Mixed-LOOC2 of each component in classes. 

Step 3. Compute the model selection index using Mixed-LOOC2 to replace ML 

covariance estimate. 

Step 4. If the number of components in classes is 1, then use the Mixed-LOOC2 of this 

class as its covariance estimator. 

Step 5. Compute the mixture density function to form the Bayesian mixture classifier. 

4.4.2 Mixture Classifier Using Mixed-LOOC and EM clustering 

The algorithm of mixture classifier using Mixed-LOOC2 and EM clustering is 

Step 1 Compute Mixed-LOOC2 of each class and for each class. 

Step 2 Use EM clustering to find the components. But, in the estimating covariance steps 

of EM clustering, the ML estimator should be replaced by Mixed-LOOC2. 
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Step 3 Compute the model selection index using Mixed-LOOC2 to replace ML 

covariance estimate. 

Step 4 If the number of components in classes is 1, then using the Mixed-LOOC2 of this 

class as its covariance estimator. 

4.5 Simulated and Real Data Experiments 

4.5.1 Simulation Data Experiment Design 

In simulation experiment, the performances of mixture classifiers based on NM and 

EM clustering with model selection indices AIC, BIC, NEC, ICL-BIC and their Mixed- 

LOOC versions are compared. 

In classification problems, there are two kinds of mixture situations. One is the 

components of each class are grouped together and do not mix with those of other 

classes, like Figure 4.l(a). The other is that the components of different classes mix 

together, like Figure 4.l(b). In first case, the mixture classifier may have performance 

similar to the a simple quadratic classifier if the class sample sizes are large enough. But 

when the class sample is small then the performance of a mixture classifier may not be as 

good as that of Gaussian quadratic classifier due to estimation error. In second case, the 

mixture classifier would be expected to do a better job when the class sample sizes are 

large enough, but if class sample is small then the mixture classifier may have more 

severe problems. 

The simulation study will focus on the second situation and try to find out which 

combination of parameter estimation and model selection will give a better result. The 

class sample sizes and the class mean vectors and covariance matrices of simulated data 

are in Table 4.l.(a). The clustering algorithm used in experiments 4.1 and 4.2 is NM 

clustering and that used in experiments 4.3 and 4.4 is EM clustering. Five different 

dimensionality (2,4,10,20,60) and three different class sample sizes are tested. In each 

situation (Table 4.l(b)), 10 random training and testing data sets are generated for 

computing the accuracies of algorithms, and the standard deviations of the accuracies. 



Class 1 
1 -  

I \  

Class2 ', class2 

Figure 4.l(a) Class 1 is not between subcomponents of class 2 

Class2 Class 1 Class2 

Figure 4.l(b) Class 1 is between subcomponents of class 2 

Table 4.l(a) The class mean vectors and covariance matrices of simulated data 
I 



4.5.1 Real Data Experiment Design 

Table 4.l(b) Dimensionality and class sample size of situation 1 to 15 

Hyperspectral data from the Washington, DC Mall is used in real data experiments, 

and the better clustering algorithm, chosen from the results of simulation studies, is used. 

Two different class sample sizes (20 and 100) and two different dimensionalities (20 and 

7) are used in Experiment 4.5. There are 191 bands in the DC Mall image data and every 

10-th band and 30-th band, which begins from the first one are selected, for the 20 and 7 

bands cases. At each situation, 10 random training and testing data sets are generated for 

computing the testing sample accuracies of algorithms, and the number of 

subcomponents in each class.. 

4.6 Experiment Results 

Situation 
Dim 
Ni 

For connivance, denote the mixture classifier built on the original model selection 

index as the index itself (for example: AIC) and the mixture classifier built on the model 

selection index based on Mixed-LOOC2 as the index itself with a "Mix" suffix in tables 

and figures. 

14 
20 
60 

4.6.1 Simulation Experiment Results 

1 
2 

30 

15 
60 

300 

The results of experiments 4.1 to 4.4 are displayed in tables 4.2(a), (b), (c), (d) and 

figures 4.2(a), (b), (c), (d). The results displayed in the figures are the accuracies using 

BIC-Mix in situations 1 to 15 (from top to bottom of the tables). They show that 

1.  Generally speaking, the mixture classifier BIC-Mix gave better performance 

than the others. 

2. The shadow parts in tables indicate those cases that the performance of mixture 

classifier BIC-Mix is significantly better than that of the simple quadratic 

2 
4 

60 

4 
20 
30 

3 
10 
300 

5 
60 
60 

6 
2 

300 

7 
4 
30 

8 
10 
60 

9 
20 

300 

11 
2 
60 

10 
60 
30 

12 
4 

300 

13 
10 
30 



classifier. In those unmarked situations, these two classifiers have equivalent 

performances. 

3. From tables 4.2(a), (b), (c), (d), the performance of the mixture classifier using 

NM clustering was better than that of the mixture classifier using EM clustering. 

4. The tables 4.2(a) and (b) (NM cases) show that if the subcomponents are well 

separated (1-0.11 case) then mixture classifiers (withlwithout using 

Mixed-LOOC2) have advantages in low dimensionality situations. When the 

dimensionality goes up, only the mixture classifiers using Mixed-LOOC2 can 

have similar results with a Gaussian classifier. Those not using Mixed-LOOC2 

yield poorer results due to estimation error increasing. If the subcomponents are 

well separated (1-1 case) then increasing the dimensionality will help the mixture 

classifiers using Mixed-LOOC2 to obtain better performance but will reduce 

the accuracy of those not using Mixed-LOOC2. 

5. For estimating subcomponents, BIC-Mix is still a better choice than the others. 

4.6.2 Real Data Experiment Results 

The simulation study suggested that NM clustering is a better choice to build a 

mixture classifier, so NM clustering is used on real data experiment. The results are in 

Table 4.3. It shows that BIC-Mix still has the better performance than others in all cases. 

4.7 Concluding Comments 

The above results show that, sometimes, an original mixture classifier outperforms 

a Gaussian classifier but sometimes not. The proposed mixture classifier using BIC-Mix 

has the advantages of both classifiers and outperforms those two in some situations. 

Before classifying hyperspectral image data, feature extraction is usually a preprocessing 

step. The effect of combining feature extraction and mixture classification will be 

discussed in Chapter 6. 



- 34 - 

Table 4.2(a) Results of experiment 4.1 (1-0.11 case) using NM clustering 
Accuracy 

Model Selection I 1 mode 1 AIC I AIC Mix 1 BIC I BIC Mix 1 NEC I NEC Mix I ICLBIC 1 ICLBIC Mix 



Table 4.2(b) Results of experiment 4.2 (1-1 case) using NM clustering , . 
Accuracy 

Model Selection I 1 mode 1 AIC ( AIC-Mix I BIC I BIC-Mix 1 NEC I NECMix 1 ICLBIC 1 ICLBIC-Mix 
Dimensionality 1 Sample Size 1 I I I I I I I I 



Table 4.2(c) Results of experiment 4.3 0-0.11 case) using EM clustering 



Table 4.2(d) Results of experiment 4.4 (1-1 case) using EM clustering , 



1  2  3  4  5  6 7 8 9  1 0 1 1 1 2 1 3 1 4 1 5  

Different Situations 

Figure 4.2(a) Some results of experiment 4.1 (1-0.11 case) using NM clustering 

1 2  3  4  5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Different Situations 

Figure 4.2(b) Some results of experiment 4.2 (1-1 case) using NM clustering 



Figure 4.2(c) Some results of experiment 4.3 (1-0.11 case) using EM clustering 

I Different Situations 

Figure 4.2(d) Some results of experiment 4.4 (1-1 case) using EM clustering 



Table 4.3 Results of DC Mall real data :xperiments using NM clustering 
I 

Accuracy 

Model Selection 1 1 mode 1 AIC lA1CVMi 1 BIC BIC-Mix I NEC I NEC-Mix I ICLBIC~ ICLBIC-Mix 1 
Dimensionalitv 1 Samole Size 1 I I I 

- - 

orients 

lCLBIC ICLB IC-Mix 

I I 
Model Selection I 

Dimensionality Sample Size I Class 



CHAPTER 5: Nonparametric Weighted Feature Extraction 

5.1 Introduction 

Discriminant Analysis Feature Extraction (DAFE, or Linear Discriminant Analysis; 

LDA) is often used for dimension reduction in classification problems. It is also called 

the parametric feature extraction method in [a], since DAFE uses the mean vector and 

covariance matrix of each class. In [20], DAFE is shown to be equivalent to finding the 

ML estimators of a Gaussian model, assuming that all classes discrimination information 

resides in the transformed subspace and the within-class distances are equal for all 

classes. The advantage of DAFE is that it is distribution-free but there are three major 

disadvantages in DAFE. One is that it works well only if the distributions of classes are 

normal-like distributions [a]. When the distributions of classes are nonnormal-like or 

multi-modal mixture distributions, the performance of DAFE is not satisfactory. The 
second disadvantage of DAFE is the rank of the within-scatter matrixSb is number of 

classes (nc) -1, so generally only nc-1 features can be extracted. From [8], we know that 

unless a posterior probability function is specified, nc-1 features are suboptimal in a 

Bayes sense, although they are optimal based on the chosen criterion. In real situations, 

the data distributions are complicated and not normal-like, therefore only using nc-1 

features is not sufficient for real data. The third limitation is that if the within-class 

covariance is singular which usually occurs in high dimensional problems, DAFE will 

have a poor performance on classification. In this paper, a new nonparametric feature 

extraction method is developed to solve those problems. 
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5.2 Previous W o r k s  

5.2.1 Discriminant Analysis Feature Extraction (DAFE) 

The purpose of feature extraction is to find a transformation matrix A such that the 

class separability of transformed data (Y) is maximized. A common approach and the one 

used in DAFE is for within-class, between-class, and mixture scatter matrices to be used 

to formulate the criteria of class separability. A within-class scatter matrix is expressed 

by P I :  

where Pi means the prior probability of class i, mi is the class mean and C, is the class 

covariance matrix. A between-class scatter matrix is expressed as 

L L-I L 

s, = z p , ( m i  -mo) (mi  - m o ) T  =x E < p , ( m ,  -mj ) (mi  - m i l T  
r=l  j= i+I  

(5 .2)  
i =l 

where mo represents the expected vector of the mixture distribution and is given by 

Let Y = AX, then we have 

s,, = AS, A'' and s,, = AS, A' 

The optimal features are determined by optimizing the Fisher criteria given by 

J ( A )  = tr(S,L,S,, ) 

The optimum A must satisfy 

(s ;&sbx)A1 = A' ( S ; i S b y )  
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This is a generalized eigenvalue problem [3] and usually can be solved by the QZ 

algorithm. 

5.2.2 aPAC Linear Dimension Reduction (aPAC-LDR) 

The approximated Pairwise Accuracy Criterion Linear Dimension Reduction 

(aPAC-LDR) [21] can be seen as DAFE weighted contributions of individual class pairs 

according to the Euclidian distance of respective class means. The major difference 

between DAFE and aPAC-LDR is that the Fisher criteria is redefined as 

T 1 S. =(mi - m,)(mi - m,) , w(A,  ) = 4 1 f ( ~ %  , where I /  
2A, 

mi - m,)' Sil(m; - m,) (5.8) 

The above weighted Fisher criteria is the same as (5.5) by redefining the between- 

class scatter matrix as 

Hence the optimization problem is the same as DAFE. 

There are one simulated and one real data experiments in [21]. They show that the 

advantages of this method are 

1. It can be designed to confine the influence of outlier classes on the final LDR 

transformation. 

2. aPAC-LDR needs fewer features to reach the optimal accuracy of DAFE, but the 

best accuracy of aPAC-LDR is almost the same as that of DAFE 



aPAC-LDR is the same as DAFE using the mean vector and covariance to formulate the 

scatter matrix; hence it still suffers from those three major disadvantages of D M .  

5.2.3 Decision Boundary Feature Extraction (DBFE) 

Decision Boundary Feature Extraction (DBFE) [22] is an alternative feature 

extraction method using boundary information. The following procedure in [22] for the 

2-class case has been proposed to determine the transformation needed to find the desired 

minimal set features (intrinsic discriminant dimensions). 

1, Let ,hi and 2, be the estimated mean and covariance of class mi. Classify the training 

samples using full dimensionality. Apply a chi-square threshold test to the correctly 

classified training samples of each class and delete outliers. In other words, for class 
4, retain X only if (X - ,hi)' 2: (X - ,hi ) < R,, . In the following steps, only correctly 

classified training samples that passed the chi-square threshold test will be used. Let 

{XI, X,, . ..XL,) be such training samples of class o, and {Y,, Y,, . ..YL2) be such 

training samples of class 6.1,. 

2. Apply a chi-square threshold test of class o, to the samples of class o2 and retain Yj 
only if (Y -&)'E;'(Y -PI) < q 2 .  If the number of the samples of class o, which 

pass the chi-square threshold test is less than L,,, retain the L,, samples of class w2 
that give the smallest values. 

3. For Xi of class o , ,  find the nearest samples of class o2 retained in STEP2. 

4. Find the point Pi where the straight line connecting the pair of the samples found in 

STEP 3 meets the decision boundary. 

5. Find the unit normal vector, N,, to the decision boundary that can be calculated based 

on training samples at the point Pi found in STEP 4. 

6. By repeating STEP 3 Through STEP 5 for Xi, I=l,. . ., L,, L, unit normal vectors will 

be calculated. From the normal vectors, calculate an estimate of the effective decision 
boundary feature matrix from class o, as follows: 
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Repeat STEP 2 through STEP 6 for class o,, 

7 .  Calculate an estimate of the final effective decision boundary feature matrix as 

follows: 

For multiple classes problem, 

After EDBFM is estimated, the intrinsic discriminant dimension can be estimated and the 

new features can be extracted to achieve the full accuracy at the subspace spanned by 

these features. 

There are a few advantages of DBFE. First, it focuses directly on classification 

accuracy rather that a surrogate to it. Second, it shows directly how many features are 

needed to achieve full accuracy and it provides evidence as to which original features 

were the most important. Finally, it is able to directly treat the problem of outliers. 

However, there are some shortcomings of this approach. First, it demands a large number 

of training samples to perform well, which is unfortunately limited in most of practical 

applications. When the training samples size is not large enough, the performance of 

DAFE is frequently a little better than that of DBFE. Second, L,, is usually decided by 

"trial and error". Finally, LDBFE needs much computational time. 

5.2.4 Nonparametric Discriminant Analysis (NDA; [8:1,[23]) 

Nonpararnetric Discriminant Analysis (NDA) is proposed to solve the problems of 

DAFE. In NDA, the between-class scatter matrix is redefined as a new nonparametric 
between-class scatter matrix (for the 2 classes problem), denoted 3 . as 



1 
whereM,(X,)= is called the local kNN mean, X:2N is the jth the nearest 

k j=1 

neighborhood (NN) from mi to the sample X p  , and X' ' )  refers to samples from class i 

(a, ). If k = Ni, [8] shows that the features extracted by maximizing tr(S,'Sb ) must be the 

same as the ones from tr(Si'S, ). Thus, the parametric feature extraction obtained by 

maxirnizing tr(S'Sb) is a special case of feature extraction with the more general 

nonparametric criterion tr(Si1Sh ). 

Class 1 

1 

Class 2 

Figure 5.1 The relationship between sample points and their local means. 

Further understanding of 5 is obtained by examining the vector (Xf - M l ( X p )  ). 

Figure 5.1 shows the importance of using boundary points and local means. Pointing to 

the local mean from the other class, each vector indicates the direction to the other class 

locally. If we select these vectors only from the samples located in the classification 
boundary ('1 , '39'49'5 ), the scatter matrix of these vectors should specify the subspace in 



which the boundary region is embedded. Samples that are far away from the boundary 
(v2 ) tend to have large magnitudes. 

These large magnitudes can exert a considerable influence on the scatter matrix and 

distort the information of the boundary structure. Therefore, some method of de- 

emphasizing samples far from the boundary seems appropriate. To accomplish this, [8] 
uses a weighting function for each (Xe - Mi ( X I )  ). The value of the weighting function, 

denoted as wt , for Xe is defined as 

where a is a control parameter between zero and infinity, and d(X, ,x% ) is the 

distance from Xr to its kNN from wt . 

The final discrete form for % is expressed by 

where = N ~ +  N 2  , and the expectations of (5.10) are replaced by the sample 

means and I: by N i I N  

The disadvantages of NDA are 

1 .  Parameters k and a are usually decided by rules of thumb. So the better result usually 

comes after several trails. 

2. ' w  is still with a parametric form. When the training set size is small, NDA will have 

the singularity problem. 

For solving the above problems, a new feature extraction method is proposed below 
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5.3 Nonparametric Weighted Feature Extraction (NWFE) 

In this section, a new feature extraction method called nonparametric weighted 

feature extraction (NWFE) is proposed. From NDA (and from DBFE), we know that the 

"local information" is important and useful for improving DAFE. The main ideas of 

NWFE are putting different weights on every sample to compute the "local means" and 

defining new nonparametric between-class and within-class scatter matrices to get more 

features. In NWFE, the nonparametric between-class scatter matrix is defined as 

I(,?J) where xf) refers to the k-th sample from class i. The scatter matrix weight r is 

defined as: 

where dist(a, b, means the distance from a to b. 

. 
and Mj (x:') is the local mean of r in the class j and defined as: 

w ( i , ~ )  ($)I = dist(x',", x,"))-' 
where 1 

~ d i s t ( x f ) , x ~ ) - '  ' 

I=1 

The nonparametric between-class scatter matrix is defined as 
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The optimal features are determined by optimizing the criteria given by 

J = tr (X'Sb ) 

To reduce the effect of the cross products of between-class distances and prevent the 
singularity, we will replacesw by 

Finally the NWFE algorithm is 

1. Compute the distances between each pair of sample points and form the distance 

matrix. 

w('.i) 2. Compute I using the distance matrix 

w ( ~ . j )  3. Use to compute local means Mj(xY') 

4. Compute scatter matrix weight a:'"' . 

5. Compute Q and sw . 

6. Select the m eigenvectors of Q1Sb , bv19y29"'9V~ , which correspond to the m 

largest eigenvalues to form the transformation matrix Am = [ ~ 1 9 ~ 2  9 . . . 9 V m  1 

5.4 Simulated and Real Data Experiments 

In this section, the simulated and real data set performances of four methods, 
DAFE, NWFE, aPAC-LDR, and NDA using 1NN and 5NN based on the a = 2 ,  will be 

compared under several experiment designs. 

5.4.1 Simulation Data Experiment Design 

Two different designs (experiments 5.1 and 5.2), and three different dimensionality 

cases (30, 60, 120) are tested. One is that all 6 classes are distributed with normal 

distributions whose covariance matrices are the same but mean vectors are different. The 



other is that all 6 classes are d.istributed with mixture normal distributions and each class 

contains two normally distributed components. Their mean vectors, covariance matrices, 

training and testing sample sizes are in Tables 5.l(a) and 5.2(b). At each situation, 10 

random training and testing data sets are generated for computing the accuracies of 

algorithms, and the standard deviations of the accuracies. 

Table 5.l(b) Design of Experiment 5.2 for mixture distributions 

5.4.2 Real Data Experiment Design 

Dim=30,60,120 

Mean Vector 

Covariance 

Training Sample Size 

Testing Sample Size 

There are four different real data sets, Cuprite, which is a site of geologic interest in 

western Nevada, Jasper Ridge, a site of ecological interest in California, Indian Pine, a 

mixed forest/agricultural site, and DC Mall, an urban site, in experiment 5.3. There are 8, 

6, 6, and 7 classes in Cuprite, Jasper Ridge, Indian Pine, and DC Mall data sets 

respectively. There are 40 training samples in each class of Cuprite, Jasper Ridge, and 

Indian Pine experiments, and 50 training samples in the DC Mall experiments. At each 

experiment, 10 training and testing data sets are selected for computing the testing sample 

accuracies of algorithms, and the standard deviations of the accuracies. 
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5.5 Experiment Results 

5.5.1 Simulation Experiment Results 

The results of experiment 5.1 are displayed in tables 5.2(a), (b), (c), and figures 

5.2(a), (b), and (c). The results of experiment 5.2 are displayed in Table 5.3(a), (b), (c), 

and Figures 5.3(a), (b), and (c). They show that 

1. NWFE performs better than the other methods uniformly in both experiments. 

2 .  The differences between NWFE and the other methods increase as the 

dimensionality of original space increases. And the increasing dimensionality of 

original space has only a small impact on accuracy of NWFE. 

3. When the number of extracted features is greater than nc-1, the performances of 

DAFE and SAC-LDR decease rapid.ly, but NWFE and NDA do not. 

4. In mixture distribution data, NWFE is much better than the other methods 

whether the dimensionality is large or not. 

5. Figure 5.3(c) shows that nc-1 features may not be a best choice. Using NWFE, 

more features can be extracted, and better results are obtained. 



Normal Distributions (NC=6, Ni=40, Dim=30: 

Table 5.2(a) Mean and standard deviation of accuracies (normal and dim=30) 

I I I I I I I I I I I I I I 

1 2  3 4  5 6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5  

Number of Features 

13 
14 
15 

Figure 5.2(a) Mean of accuracies using 1-15 features (normal and dim=30). 

0.2894 
0.3128 
0.3214 

0.0428 
0.0424 
0.0489 

0.7542 

0.7405 
0.7215 

0.0165 

0.0164 
0.0177 

0.2638 

0.2897 
0.3065 

0.0873 

0.0955 
0.0842 

0.7083 

0.696 
0.6818 

0.0143 
0.0148 
0.0128 

0.7058 
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0.0109 
0.0113 
0.0124 



Normal Distributions (NC=6, Ni=40, Dim=60: 

--c NWFE 

+ DAFE 

4 NDA-5NN 

Number of Features 

Figure 5.2(b) Mean of accuracies using 1-15 features (normal and dim=60). 



Table 5.2(c) Mean and standard deviation of accuracies (normal and dim=120) 

Normal Distributions (NC=6, Ni=40, Dim=l20 

I NWFE 

+ DAFE 

+ NDA-5NN 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of Features 

Figure 5.2(c) Mean of accuracies using 1-15 features (normal and dim=120). 



Mixture Distributions (NC=6, Ni=40, Dim=30) 

Table 5.3(a) Mean and standard deviation of accuracies (mixture and dim=30) 

+ DAFE 

--t-- aPAC 

I . .  NDA-INN 

& NDA-5NN 

13 

14 

15 

Number of Features 

Figure 5.3(a) Mean of accuracies using 1-15 features (mixture and dim=30). 
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Table 5.3fb) Mean and standard dc viation of accuracies (mixture and dim=60) 

Mixture Distributions (NC=6, Ni=40, Dim=60) 

0 I 1 I I I I I I I I I I I I 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of Features 

Figure 5.3(b) Mean of accuracies using 1-15 features (mixture and dim=30). 
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Mixture Distributions (NC=6, Ni=40, Dim=l20) 
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+ DAFE 

I aPAC 
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Figure 5.3(c) Mean of accuracies using 1-15 features (mixture and dim=120). 



5.5.2 Real Data Experiment Results 

The results of experiment 3 are displayed in tables 5.4(a), (b), (c), (d), figures 

5.4(a), (b), (c), and (d). Figure 5.5(a) shows a simulated color IR image of a portion of 

the DC Mall area for reference. Figure 5.5(b), and (c), are the classified DC Mall maps 

for DAFE and NWFE respectively. These figures show that 

1. For all real data experiments, NWFE has better performance than the other 

methods. 

2. When the number of extracted features is greater than nc-1, the performances of 

DAFE and aPAC-LDR decease rapidly, but NWFE and NDA does not. 

3. Figure 5.4(c) shows that if only 5 (nc-1) features are used then the accuracies of 

DAFE and aPAC-LDR are 57.27% and that of NWFE is 86.16%. But if 7 

features of NWFE are used then the accuracy increases to 91.57%. This shows 

that only using nc-1 features is not enough in this real situation. DAFE cannot 

do this due to the restriction of the rank of the between-class scatter matrix. 

NWFE does not have this restriction. 

4. Comparing Figure 5.5(b) and 5.5(c), one sees that the performance of NWFE is 

better than that of DAFE in almost all classes. 



Table 5.4(a) Mean and standard deviation of accuracies of Cu~rite data sets 

Cuprite (NC=8, Ni=40, Dim=l91) 

Features 

1 
2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of Features 

NWFE 

+ DAFE 

+ NDA-5NN 

Figure 5.4(a) Mean of accuracies of Cuprite data sets using 1-15 features 

DAFE 
Mean 

0.4297 
0.6026 

Std 
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0.0569 

NWFE 
Mean 
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0.6019 
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~PAC-LDR 
Mean 
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Table 5.4(b) Mean and standard deviation of accura , 
I I DAFE 1 NWFE I aPAC-LDR 

:ies of Jasper Ridge data sets 
NDA-INN NDA-5NN , Mean Std Mean Std 

0.2941 0.0557 0.2941 0.0553 
0.6041 0.0433 0.602 0.0425 
0.8135 0.0466 0.8106 0.047 
0.8471 0.0509 0.8444 0.051 

Jasper (NC=6, Ni=40, Dim=191) 
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Figure 5.4(b) Mean of accuracies of Jasper Ridge data sets using 1-15 features 



Table 5.4(b) Mean and standard deviation ( 
LDR - 

' Std 
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:ies of Indian Pine data sets 
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Figure 5.4(c) Mean of accuracies of Indian Pine data sets using 1-15 features 



Table 5.4(d) Mean and standard deviation of accuracies of DC Mall data sets 
I 

DC Mall (NC=7, Ni=40, Dim=l91) 

Number of Features 

Figure 5.4(d) Mean of accuracies of DC Mall data sets using 1-15 features 



Figure 5.5(a) A color IR image of a portion of the DC data set. (In Color) 

Figure 5.5(b). The thematic map resulting from the classification of the area of Figure 
5.4(a) using DAFE features. (In Color) 



Figure 5.5(c). The thematic map resulting from the classification of the area of Figure 
5.4(a) using NWFE features. (In Color) 

5.6 Concluding Comments 

The volume available in high dimensional feature spaces is very large, making 

possible the discrimination between classes with only very subtle differences. On the 

other hand, this large volume makes increasingly challenging the problem of defining 

adequate precisely the desired classes in terms of the feature space variables. The 

problems of class statistics estimation error resulting from training sets of finite size 

growls rapidly with dimensionality, thus making it desirable to use no larger feature space 

dimensionality than necessary for the problem at hand, and therefore the :importance of an 

effective, case-specific feature extraction procedure. 

The NWFE algorithm presented here is intended to take advantage: of the desirable 

characteristics of DAFE and DBFE, while avoiding their shortcomings. DAFE is fast and 

easy to apply, but its limitation of nc-1 features, its reduced performance particularly 

when the difference in mean values of classes is small, and the fact that iit is based on the 

statistical description of the entire training set, making it sensitive to outliers, limit its 

performance in many cases. DBFE does not have these limitations. It focuses the 

attention on training samples near the needed decision boundary, lbut it is a long 

calculation and does not produce effective results when training sets are small. 

NWFE does not have any of these limitations. It appears to have improved 

performance in a broad set of circumstances, making possible substantially better 

classification accuracy in the data sets tested, which included sets of agricultural, 



geological, ecological and urban significance. This improved performance is perhaps due 

to the fact that, like DBFE, attention is focused upon training samples th~at are near to the 

eventual decision boundary, rather than equally weighted on all training pixels as with 

DAFE. It also appears to provide feature sets which are relatively insensitive to the 

precise choice of feature set size, since the accuracy versus dimensionality curves are 

relatively flat beyond the initial knee of the curve. This characteristic would appear to be 

significant for the circumstance when this technology begins to be used by general 

remote sensing practitioners who are not otherwise highly versed in signal processing 

principles and thus might not realize how to choose the right dimensionality to use. 





CHAPTER 6: Using Mixture Classifier Based on Mix-LOOC2 after 
Feature Extraction 

6.1 Cntroduction 

From Chapter 4, we know that a mixture classifier based on Mix-I,OOC2 is a good 

choice for classifying data in the original space. But using that mixture classifier in hyper 

dimensional data is not efficient and will suffer from the Hughes phenomenon more 

seriously. Before classifying hyper dimensional data, feature extraction is usually used to 

transform data from the original hyper dimensional space into a lojwer dimensional 

feature space. This section is to explore the performances of combining feature extraction 

and the mixture classifier based on Mixed-LOOC2 procedures. 

6.2 Experiment Design 

In this section, the performances of the following four classification procedures are 

compared. 

1. Using DAFE features applied to the Gaussian quadratic classifier (DAFE+GC). 
This is the previous, conventionally used approach and serves as a baseline for 
comparison. 

2. Using DAFE features applied to the mixture classifier based on BIC and Mixed- 
LOOC2 covariance estimator (DAFE+MC-Mix2). 

3. Using NWFE applied to the Gaussian quadratic classifier (NWFE+GC). 

4. Using NWFE features applied to a mixture classifier based on BIC and Mixed- 
LOOC2 covariance estimator (NWFE+MC-Mix2). 

The experiment data are again in two parts, simulated and real data. Ten simulated 

data sets in Experiment 5.2 with 30 and 60 dimensions and mixture distributions are used 



in Experiment 6.1 to compute the average accuracy of four different procedures. Ten 

ranldomly sampled DC Mall and Purdue campus data sets are used in Experiment 6.2 to 

conlpute the average accuracy of four different procedures. The dimensionality of the DC 

Mall data sets is 191 and that of the Purdue campus data sets is 126. 'The class training 

sarrlple sizes of all real data experiments are 40 pixels 

6.2 Experiment Results 

The results of experiment 6.1 are displayed in tables 6,l(a), (b), and figures 6.l(a), 

(b). The results of experiment 6.2 are displayed in tables 6.2(a), (b)., (c), and figures 

6.2(a), (b), and (c). They show that 

1. Figures 6,l(a) and (b) show that using 2 features from NWFE: and the mixture 

classifier based on Mixed-LOOC2 yields the best performance. It implies that 

NWFE may preserve the original data distribution situation bletter than DAFE 

does. 

2. Figure 6.2(a) shows that the performances of NWFE+GC and NWFE+MC- 

Mix2 are similar. When the number of features is greateir than nc-1, the 

performance of DAFE+GC will decrease rapidly but DAFE+MC-Mix2 can 

improve the situation. 

3. Figure 6.3(b) shows that the performances of NWFE+GC and NWFE+MC- 

Mix2 are similar but the performance of DAFE+MC-Mix2 is imuch better than 

that of DAFE+GC. 

4. Figure 6,3(c) shows that the performances of DAFE+GC and I)AFE+MC-Mix2 

are similar but the performance of NWFE+MC-Mix2 is better than that of. 

NWFE+GC. 

5 .  Generally speaking, using the procedure NWFE+MC-Mix2 yielded better 

results and reduced the Hughes phenomenon but it needs more computation 

time. 



Table 6.1 (a) Mean and standard deviation of accuracies of simulated data sets (dim=30) - 
- DAFE DAFE+Mixture NWFE NWFE+Mixture 

Features Mean Std Mean Std Mean Std Mean Std 1 - 
- 1 0.3405 0.022 0.3501 0.0383 0.5145 0.0114 0.6928 0.017 

- 2 0.3822 0.0329 0.3866 0.0423 0.8194 0.0118 0.9922 0.003 

Mixture Distributions (NC=6, Ni=40, Dim=30) 
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Figure 6.1 (a) Mean of accuracies of simulated data sets (dim=30) 



T,able 6.1. (b) Mean and stanc ard deviation of accuracies of simulated data sets (dim=60) 

Mixture Distributions (NC=6, Ni=40, Dim=60] 
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Figure 6.1 (b) Mean of accuracies of simulated data sets (dim=60) 



Table 6.2(a) Mean and standard deviation of accuracies of Indian Pine data sets 
(dim=191) 

Indian Pine (NC=6, Ni=40, Dim=191] 

Number of Features 

pe DAFE 

Figure 6.2(a) Mean of accuracies of simulated data sets (dim=60) 



Table 6.2(b) Mean and standard deviation of accuracies of DC Mall data sets (dim=191) - 
- DAFE Dm+Mixture  NWFE NWFE+Mixture 

Features Mean Std Mean Std Mean Std - 
- 1 0.4994 0.0895 0.5082 0.0844 0.6934 0.0928 0.7053 0.0813 

DC Mall (NC=7, Ni=40, Dim=l91) 
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Figure 6.2(b) Mean of accuracies of DC Mall data sets (dim=191) 



Table 6.2(c) Mean and standard deviation of accuracies of Purdue campus data sets 

7 
(dim= 126) . 

Purdue Campus (NC=6, Ni=40, Dim=126: 
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Figure 6.2(c) Mean of accuracies of Purdue campus data sets (dim=126) 



6.;3 Concluding Comments 

It has long been known that modeling each class in a data set with a single mode 

Gitussian density is rarely a good model. The use of "Gaussian subclasses" to provide a 

better class model has long been in use, and has shown itself to be an effective way to 

proceed. This is basically what has been called here a mixture classifier. The problem has 

been that deciding just how many "subclasses" to use for each class and how to train each 

has been a substantial challenge to the analyst, Devising an effective scheme for doing 

this should be a significant aid to the analyst. 

The performances of combining feature extraction (DAFE and NWFE) and the 

mixture classifier based on Mixed-LOOC2 procedures are tested. The simulated and real 

da1:a results show that using NWFE then the mixture classifier based on nearest mean 

clu.stering and BIC-Mix index is a robust classification procedure for hyperspectral data. 



CHAPTER 7: CONCLUSIONS 

7.l Summary 

In Chapter 2, Mixed-LOOCI and Mixed-LOOC2 are defin'ed and retain the 

advantages of LOOC and BLOOC. 

In Chapter 3, Mixed-LOOC2 is used with DAFE. Experimental results show that 

this proposed feature extraction not only can avoid the singularity problem in DAFE but 

also can get a better result by using fewer training samples. 

In Chapter 4, Mixed-LOOC2 is used with parameter estimation and model selection 

steps of mixture classifiers. Experimental results show that the proposed mixture 

classifier using nearest mean clustering and BIC-Mix has the advantages of both 

quadratic and original mixture classifier and outperforms those two in some situations. 

In Chapter 5, the proposed nonparametric feature extraction method, NWFE, is 

defined and takes advantage of the desirable characteristics of DAFE and DBFE, while 

avoiding their shortcomings. 

In Chapter 6, the performances of combining feature extraction (DAFE and NWFE) 

ancl the mixture classifier based on Mixed-LOOC2 procedures are tested. The simulated 

and real data results show that using NWFE then the mixture classifier based on nearest 

mean clustering and BIC-Mix index is a robust classification procedure for hyperspectral 

data. 

Based on above summary, in feature extraction step, if the total sample size is less 

than the dimensionality, then DAFE based on Mixed-LOOC2 is suggested; otherwise 

NMTFE is the best choice. In designing classifier step, the mixture classifier based on NM 

clustering and BIC with Mixed-LOOC2 seems to be the best choice. 
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In [24], a list of significant factors affecting classification performance includes, 

1. The classes of interest and the number of training samples available for each 

class, 

2. The algorithm available by which to estimate especially the covariance 

matrices. 

3. The feature extraction process, 

4. The classifier algorithm complexity, and 

5. The analyst's skill. 

This thesis provides a robust classification procedure that helps the anallyst avoid troubles 

from item 2, 3, and 4. 

7.2 Suggestions for Further Work 

1. Combine the adaptive classification procedure [26] and the algorithms proposed 

in this thesis. 

2. Find the method to decide how many features should be extracted in NWFE. 



.APPENDIX A: THE MAXIMUM LIKELIHOOD ESTIMATOR OF 
MIXTURE PARAMETER IN LOOC AND BLOOC 

The maximum likelihood estimator of the mixing parameter of LOOC or BLOOC 

will be derived. 

Let 

0 = 4 ( 4 ) = 6 , A i + ( 1 - 6 , ) B i  , ~ h ~ ~ ~ A , a n d B ,  aresymmetric 

where 

is the likelihood function of ' i , k  is the k-th observation in class i, c is the number of 

classes andAl and B~ are known P P matrices. 

Since 

For an m by n matrix = Lxs  1 , let 



- 7 8 -  

vecX =vec(X)=[x,,  x2, ... x,, x12 x,, ... xm2 ... xmnIT 

From [25] p.176, we know that 

af(x) a/(x) , where f : R mn -t R vec(\ = ax &ec(X) 

B:y the chain rule, the first derivative of L, (ai ) can be written as 

Then we have 

aL, ( a , )  1 aiog 1 H~ ( 
T = - T F  2Ni ,., 
,. 

Since Hi = 2,' is symmetric, 

and 

Therefore, 

And 



aH.  a k l  A 

= -= 4;' (A; - ~ ; ) k , - ~  
aa, aa, 

Since 

vec ( X  ) vec(Y) = tr(XY) = tr(YX) , where X : m x n and Y : n x  m 

then we have 

~inceA,  and B1 are not the same in LOOC and BLOOC, 
8 4  (a, 
aa, is not equal to 0 for all 

a, . Therefore, we know that the optimal solution of the mixture pararneter occurs at one 

of the end points. 





APPENDIX B: THE INFORMATION ABOUT SIMULATION DATA 
SETS AND REAL DATA SETS 

B.l Experiment Design of Simulation Studies 

The experiments 1 to 12 are three-class problems. 

B.1.1 The Mean Vector and Covariance Matrix 

The followings are some notations used in this study. 

Mi: the mean vector of class i; 

Pi, : The j-th element of Mi, i=1,2,3. 

Covi: The covariance matrix of class i; 

a,,, : The j-th diagonal element of Covi 

p: number of dimensions 

Ni : the training sample size of class I; N =pi  

[Experiment 2.1 and 2.71 

M1=[0,.. .,0]; M2=[0,3,0 ..., O];M3=[0,0,3,0,. ..,0] , 

Cov l=Cov2=Cov3=I; 

[Experiment 2.2 and 2.81 

Ml=[O,. ..,0]; M2=[0,3,0.. .,O];M3=[0,4,0,0,.. .,0] , 

Covl=I; Cov2=21; Cov3=31; 
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[Experiment 2.3 and 2.91 

Experiment 2.4 and 2.101 

[Experiment 2.5 and 2.111 

p = p  = & .  = O  
I,i 2,r .I 9 



[Experiment 2.6 and 2.121 

All covariance matrices are the same as those in Experiment 5 and 11. 

B.2 Dimensionality and Sample Size of Real Data Sets 

B.2.1 Cuprite, Nevada scene data 

Cuprite, Nevada covers an interesting geological feature called a hydrothermal 

alteration zone, which is exposed due to sparse vegetation. A total of 2744 samples and 

191 bands (0.40-1.34, 1.43-1.80, 1.96-2.46 pm) are used. 

Table B. 1 Labeled Sam~le  Sizes of Cuurite Data Set 

Kaolinite I 232 1 
Ouartz 385 

Alunite 
Buddingtonite 

Labeled Samples 
729 
71 

I Total Samples 1 2744 

. 
Alluvium 

Playa 
Tuff 

B.2.2 Jasper Ridge Data 

689 
252 
293 

This is a biological preserve in San Mateo County, California. In all, 3207 labeled 

samples are used. The 191 spectral bands (0.40-1.34, 1.43-1.80, and 1.95-2.47 pm) 

outside the water absorption bands are used. 



Table B.2 Labeled Sam~le  Sizes of Jasver Ridee Data Set 

Serpentine I 202 
Green-stone 1 810 

( Labeled Samples 1 
Evermeen 

Deciduous I 495 
Cha~arral 592 

900 

I 

B.2.3 Indian Pine Data 

Water 

This is a mixed forest/agricultural area in Indiana. The water absorption bands (104- 

108, 150-163,220) have been discarded, 

208 

Table B.3 Labeled Sarnvle Sizes of Indian Pine Data Set 

I Corn/Bean Residue I 372 
BeansINo Residue 490 

BeansICorn Residue 
CornNo Residue 

Cordwheat Residue I 388 
WheatINo Residue 301 

Labeled Samples 
520 
450 

I 
- - ~  - - - - - -  ~- 

I 

Total Samples I 252 1 

B.2.4 DC Mall Data 

DC Mall image data is an airborne hyperspectral data flighline over the Washington 

DC mall, which was collected with the HYDICE system. There were 210 bands in the 0.4 
to 2.4 pm region of the visible and infrared spectrum. In the experiments, the water 

absorption bands are removed and 19 1 bands are used. 

Table B.4 Labeled Samvle Sizes of Cuvrite Data Set 

" I 

Road 680 I 
( Labeled Samples 

Path I 616 
Lawn 1928 I 

Building 3834 

I Total Samples I 9422 I 

- - 

Tree 
Water 

Shadow 

919 
1224 
22 1 
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