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Abstract. In this work we consider simple extensive-form games with
two players, Player A and Player B, where Player B can make announce-
ments about his strategy. Player A has then to revise her preferences
about her strategies, so as to better respond to the strategy she believes
Player B will play. We propose a generic framework that combines meth-
ods and techniques from belief revision theory and social choice theory
to address this problem. Additionally, we design a logic that Player A
can use to reason and decide how to play in such games.

1 Introduction

Communication between players is a notion that arises naturally in a variety
of contexts in game theory, and that led to the theory of games where players
can communicate [4,5,11]. We are interested in non-cooperative games with two
players, say Player A and B, in which Player B makes announcements about his
strategy, before the game starts. Just as the cheap talks in [4], this preliminary
communication round does not directly affect the payoffs of the game.

We illustrate our research problem with a classic example from [11] in which
communication between players improves the payoff of both players. The exten-
sive form game is described in Figure 1. Player A can go left or right. If A goes
left, she gets 1$ and B gets 0$. If A goes right, player B can in turn choose to go
left or right. If B goes left, he gets 100$ and A gets 0$, if B goes right both get
99$. The solution given by the classic backward induction algorithm, which relies
on the hypothesis that players are rational, is the following: A thinks that if she
goes right, B will go left to maximize his payoff, and A will get 0$. Therefore,
A prefers to move left, and gets 1$.

On the other hand, let us assume that the players communicate and trust
each other, and that B tells A: “If you move right, I will move right”. As a
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Fig. 1: Motivating example

consequence, A thinks she would better move right since she would collect 99$
instead of 1$: as such, A has revised her preferences about her own strategies.

Notice that in this example, B’s announcement could have been reflected
by pruning the game, in the spirit of Public Announcement Logic [9]: we could
have removed the moves (in the example, just one) of B that do not conform
to his announcement, in this very case by ruling out his left move, and have
recomputed a strategy of A by backward induction in the pruned game.

However, the pruning technique, although attractive in practice, has some
serious limitations. First, we cannot guarantee that in any game, every an-
nouncement of B amounts to pruning the game, in particular those relying on
conditional statements. Second, B can make a series of successive announce-
ments, possibly conflicting each other. In that case, A will need to aggregate
these announcements in order to revise her beliefs on what B will play. This
phenomenon cannot be represented straightforwardly by means of a series of
destructive prunings of the game, and we propose to work on the level of B’s
strategies instead.

Preliminary announcements can be motivated by various reasons, such as
trying to coordinate with the other player or to mislead him in order to get a
better payoff. After these announcements, Player A needs to revise her strategy
so as to better respond to what Player B pretends to play. Notice that depending
on the context, the confidence Player A has on Player B’s commitment about
his annoucements varies widely. In this work, like in belief revision theory [6], we
assume that Player A always trusts Player B’s last announcement, which has
also priority over the previous announcements.

The question we consider is the following:

How can Player A take into account the announcements of Player B
about his strategy in order to update her preferences on her strategies?

This question can be decomposed into:

Question 1: How can Player A revise her beliefs about Player B’s prefer-
ences on his strategies?
Question 2: How can Player A update her preference about her strategies
on the basis of these beliefs?



Regarding Question 1, we propose to apply classical belief-revision tech-
niques5 to represent what A believes about B’s strategy and update these be-
liefs when B makes announcements. There exist several ways to perform this
update/revision, but our approach aims at remaining as general as possible by
not selecting a particular one, and by leaving the choice to peak the update
mechanism that reflects how trustworthy B’s announcements are considered.

The main originality of our contribution lies in the solution we offer for
Question 2, by combining techniques and methods from game theory and from
social choice theory [2]: informally, each possible strategy of B is seen as a voter,
who votes for strategies of A according to the payoff A would obtain in the play
defined by both strategies. Individual votes are then aggregated to define the
new preferred strategy of A. Here again we do not choose a particular type of
ballot nor a precise aggregation method, but rather leave it open and free to be
set according to the kind of strategy one wants to obtain: for instance, one that
has best average payoff against B’s most plausible strategies, or one that is most
often a best response.

The paper is organized as follows. In Section 2, we set up the mathemati-
cal framework we use to model games and communication/announcements. In
Section 3, we develop the solution to the revision of beliefs, and in Section 4 we
expose our proposal for the revision of preferences. Based on the developped set-
ting, we propose in Section 5 a logic that Player A can use to reason and decide
how to play. Section 6 illustrates our framework on a more complex example.

2 Games and announcements

We consider two-player extensive-form games in which at each decision node two
distinct moves are available. A finite rooted binary tree (simply called tree from
now on) is a prefix-closed finite set T ⊂ {0, 1}∗. Elements of T are called nodes,
ε is the root, if w · a ∈ T , with a ∈ {0, 1}, then w is called the parent of w · a and
w ·a is called the left (resp. right) child of w if a = 0 (resp. a = 1). If a node has
no child, it is a leaf, otherwise it is an interior node. A tree is called complete if
every interior node has exactly two children. If T, T ′ are trees such that T ⊆ T ′,
we say that T is a subtree of T ′.

A game between A and B is a tuple G = (T, νA, νB) where T is a complete
tree, and if we note L ⊆ T the set of leaves of T , then νA : L → N is the
utility function for A, νB : L → N is the utility function for B. Interior nodes
are partitioned between nodes of A (NA) and those of B (NB), such that T =
NA ]NB ] L.

Given a game G = (T, νA, νB), a strategy6 for A (resp. B) is a subtree σA
(resp. σB) of T such that every node in σA ∩ NA (resp. σB ∩ NB) has exactly

5 Typically, A initially believes that B will play one of the strategies given by the
classical backward-induction algorithm. Then B may announce a piece of information
that is in contradiction with this belief, which thus needs to be revised.

6 To be precise these are reduced strategies, but they are sufficient for what we present
here.



one child, and every node in σA ∩NB (resp. σB ∩NA) has exactly two children.
Two strategies σA and σB define a unique path, hence a unique leaf in the tree
T , that we shall write ˆσAσB. We note ΣA and ΣB the set of all strategies for A
and B, respectively.

For a strategy σA ∈ ΣA, we define its value val(σA) as the minimum utility
it can bring about for A: val(σA) := minw∈L νA(w). The value of a strategy for
Player B is defined likewise.

The language Player B uses to make the announcements about his strategies
is the bimodal language L2, the syntax of which is:

ψ ::= p | ¬ψ | ψ ∧ ψ | ♦iψ

where p ∈ {turnA, turnB} and i ∈ {0, 1}.
For i ∈ {0, 1}, we write > for ¬(p∧¬p), �iψ for ¬♦i¬ψ, �ϕ for �0ϕ∧�1ϕ,

and movei for ♦i>, meaning that the strategy at this point chooses direction i.

Example 1. For instance, in the example of Figure 1, the strategy of B consisting
in playing the action leading to 99, 99 is ♦1♦1>.

Given a game G = (T, νA, νB), a strategy σ can be seen as a Kripke structure
with two relations (one for left child, one for right child). The valuations of
propositions turnA and turnB are given by the partition between positions of
Player A and Player B. Formally, the truth conditions are defined inductively
as follows:

σ,w |= turna if w ∈ Na, a ∈ {A,B}
σ,w |= ¬ψ if σ,w 6|= ψ
σ,w |= ψ ∧ ψ′ if σ,w |= ψ and σ,w |= ψ′

σ,w |= ♦iψ if w · i ∈ σ and σ,w · i |= ψ

3 Belief revision: from announcements to beliefs

We now represent the beliefs A has about what B is more likely to play, and
how these beliefs evolve as B makes new announcements.

From a purely semantic point of view, the framework of belief revision theory
[1,7] can be roughly described as follows. Given a universe U of possible worlds,
a player ranks each possible world via a ranking function κ : U → N, also called
belief state, such that κ−1(0) 6= ∅. This ranking induces a plausibility preorder
between possible worlds: among two possible worlds, the one with the lowest
rank is considered to be more plausible than the other by the player. Given a
ranking function κ, the set of most plausible worlds for the player is the set
κ−1(0).

The impact of a new piece of information on these beliefs is modelled by a
revision function which takes a ranking function together with the new informa-
tion, and returns the revised ranking function that induces the new belief state of
the player. Many such revision functions exist in the literature, that correspond
amongst other things to various degrees in the trust put in the received informa-
tion, the reluctance to modify one’s beliefs, etc (see e.g. [10]). Formally, if one



chooses say formulas of propositional logic PL to represent new pieces of infor-
mation, a revision function is a binary function ∗ : (U → N)× PL→ (U → N),
and given F ∈ PL, a belief state κ is changed into κ ∗ F .

In our framework, the universe U = ΣB is the set of Player B’s strategies,
and the new pieces of information are modal formulas of L2, representing B’s
announcements about his strategy. For a belief state κ, κ−1(0) is then what A
believes B is the most likely to play. Initially, we assume that A has an a priori
belief, represented by κ0, that may for example arise from the very values of the
strategies:

κ0(σB) := max
σ′
B∈ΣB

val(σ′B)− val(σB) (1)

The revision function signature is now (ΣB → N)×L2 → (ΣB → N), and we
can use any kind of revision function. For example here, we present the classic
moderate revision [8,10], written ∗m, and defined by: for κ, ψ ∈ L2 and σ ∈ ΣB,

(κ ∗m ψ)(σ) =


κ(σ)−minσ′|=ψ κ(σ′) if σ |= ψ

maxσ′|=ψ κ(σ′) + 1 + κ(σ)

−minσ′ 6|=ψ κ(σ′) if σ 6|= ψ

The moderate revision makes all the possible worlds that verify the announce-
ment ψ more believed than those which do not; it preserves the original order
of preference otherwise.

4 Voting: from beliefs to preferences

The belief Player A has about B’s strategy induces some preference over A’s
strategies. We describe a mechanism that, given a belief state κ, computes a
preference set Pκ ⊆ ΣA. This preference set is made of all the strategies that
should be preferred by A if she believes that B will play a strategy in κ−1(0).
This mechanism relies on voting systems.

A plethora of different voting systems have been proposed and studied [3],
verifying different properties one may want a voting system to verify (majority
criterion, Condorcet criterion etc). Since we are interested in quantitative out-
comes, we argue that a relevant choice is to use a cardinal voting system [12].
In a cardinal voting system, a voter gives each candidate a rating from a set of
grades; we take here grades in N. Take a set of n candidates, C = {c1, . . . , cn},
and a set of m voters, V = {v1, . . . , vm}. A ballot is a mapping b : C → N and
a voting correspondence is a function rC : (C → N)m → 2C\{∅} that takes a
vector (b1, b2, . . . , bm) of ballots (one for each voter) and returns a nonempty set
of winning candidates7. In this work we take as an example the range voting
system, but the method is generic and any other cardinal voting system can
be used. Range voting works as follows: for each candidate, we sum the grades
obtained in the different ballots, and the set of winners is the set of candidates

7 It is called a voting rule if there is a unique winner.



who share the highest overall score: if bi is voter i’s ballot, for i ∈ {1, . . . ,m},
rC is defined by

rC(b1, . . . , bm) := argmax
c∈C

m∑
i=1

bi(c).

We aim at electing the strategies of Player A that she should prefer with regard
to the most plausible strategies of Player B. Therefore, the set of candidates
consists in Player A’s possible strategies (C = ΣA), and each of Player B’s
most plausible strategie is seen as a voter (V = κ−1(0)). We assume that Player
A prefers strategies that in average give her the best payoff, which leads us
to define ballots as follows. For each strategy σB ∈ κ−1(0), we let bσB

be the
ballot that assigns to each σA ∈ ΣA the payoff of A in the play ˆσAσB, that is
bσB

(σA) = νA( ˆσAσB). In other words, each voter ranks the candidates according
to the corresponding payoff for Player A. The voting system aggregates these
“individual” preferences in order to obtain a “collective” preference Pκ against
all strategies of κ−1(0), defined by:

Pκ := rC(bσ1
B
, . . . , bσm

B
), whenever κ−1(0) = {σ1

B, . . . , σ
m
B }.

Remark 1. Note that we could use more of the information we have by letting
all strategies in ΣB vote, and weigh their votes according to their respective
plausibility.

5 A logic for strategies, announcements and preferences

We present the formal language LSAP , where SAP stands for “Strategies, An-
nouncements and Preferences”, to reason about Player A’s preferences concern-
ing her strategies, and how these evolve while Player B makes announcements
about his strategy. The syntax of LSAP is the following:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | PAϕ | [ψ!]ϕ

where ψ ∈ L2.
The formula PAϕ reads as ‘ϕ holds in all the preferred strategies of Player

A’; [ψ!]ϕ reads as ‘ϕ holds after Player B announces that her strategy satisfies
ψ’.
LSAP formulas are evaluated in models of the form (κ, σA), where κ is the

belief state of Player A and σA ∈ ΣA is the strategy A is considering. The truth
conditions are given inductively as follows:

(κ, σA) |= ψ if (σA, ε) |= ψ
(κ, σA) |= ¬ϕ if (κ, σA) 6|= ϕ
(κ, σA) |= ϕ ∧ ϕ′ if (κ, σA) |= ϕ and (κ, σA) |= ϕ′

(κ, σA) |= PAϕ if for all σ′A ∈ Pκ, (κ, σ′A) |= ϕ
(κ, σA) |= [ψ!]ϕ if (κ ∗m ψ, σA) |= ϕ
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Fig. 2: Second example game

6 Example

Consider the game in Figure 2. By backward induction, we get that B chooses r,
A thus chooses γ, B chooses L, and finally A chooses Γ , obtaining 60$ while B
gets nothing. B would therefore like A to change her mind and play ∆ on the first
move, so that he can play L and get 100. The problem is that if he announces that
he will do so, then A will stick to her strategy, as she will know that changing
it will give her a payoff of 50 instead of 60. So B announces, instead, that he
commits to play either L, or R and then ` (we note this strategy R`), but not
Rr. This announcement can be described by the following L2-formula:

ψ = �(turnB → move0) ∨���(turnB → move0)

Consider now the following LSAP -formula:

ϕ = turnA ∧ PAmove0 ∧ [ψ!]PAmove1

ϕ expresses that it is Player A’s turn to play, and that in all her preferred
strategies she goes left (i.e. she plays Γ ), but in case Player B announces ψ,
Player A prefers to play differently, namely moving right.

Now, considering this game, moderate revision, range voting, with the initial
belief ranking κ0 of Equation (1) on Page 5, and any strategy σA ∈ ΣA, one can
check that indeed we have:

(κ0, σA) |= ϕ

This is because going right ensures A a better mean-payoff against B’s most
plausible strategies after the announcement ψ, which are L and Rl. However,
consider now the classic plurality voting system, where each voter only gives one
voice to its preffered candidate (here, the one that ensures A the best outcome),
and where the winner is the one with most votes for him. This amounts to



electing A’s strategy that is most often a best response against B’s most plausible
strategies. Using this instead of range voting system, one can verify that after
the announcement, the vote results into a tie, with strategy Γ of A obtaining
one vote (from B’s strategy L), and strategy ∆δ receiving the other one (from
strategy Rl). Therefore, PAmove1 does not hold in the state resulting from the
announcement, so that we have:

(κ0, σA) 6|= ϕ

7 Conclusion

Our work contributes to the study of games with communication. We have de-
fined a generic framework that uses belief revision techniques to take into account
communication, and voting for choosing strategies to play. A specific revision
function and voting system may characterize the behavior of Player A (trustful,
optimistic, etc), and the kind of strategies she wants (best mean payoff, most
often best-response. . . ). Investigating the theoretical properties of the agent’s
behavior in terms of combinations of revision and voting mechanisms is left for
future work.
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