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ABSTRACT 

A flat symmetric object viewed under perspective (orthographic) projectiorl yields a conver- 

gent (skew) symmetry. Unlike skew symmetry where the axes constrain the orientation of 

the underlying object to lie on a hyperbola in the gradient space, for convergent symme- 

try the object orientation can be uniquely determined from the axis and convergent point 

except for some special cases. However, detection of the axis and convergent point of a 

convergent symmetry has not yet received much attention. We present a technique which 

can detect the axis and convergent point of a convergent symmetric contmour in an image 

using distinguished points such as bitangents, corners, and inflection points on the contour. 

In addition to  recovering the orientation of an object directly from the axis and convergent 

point of its convergent symmetry, when a model database is available, our technique is also 

able to recognize and locate the object by using the cross ratio as an indexing function. 

The orientation information is also used for verification purposes. Our technique is simple, 

efficient, and accurate. It is also robust to noise and partial occlusion. Experimental results 

on real images are shown. 



I Introduction 

Since many man-made and natural objects have flat bilaterally symmetric contours, sym- 

metric features can be useful cues for recovering the 3-dimensional shape of an object from 

its image. In addition, symmetric features can be used as indexing functions for model-based 

object recognition. However, when symmetric figures are projected (orthographically or per- 

spectively) onto an image, they do not remain symmetric. Therefore, recovery of symmetric 

features in a projected image is an interesting problem which has been investigated by many 

researchers. 

The concept of a skewed symmetry, obtained from a flat symmetric object viewed from an 

oblique direction assuming orthographic projection, was introduced by Kaiiade [I]. Unlike 

traditionally defined symmetry where the symmetric axis and transverse axis are perpendic- 

ular to each other, skewed symmetry relaxes this condition a little, i.e., the skewed transverse 

axis is not necessarily perpendicular to the skewed symmetric axis, but at a fixed angle to it 

(see Figure 1). Kanade showed that the parameters (axes) of skewed symme1,ry constrain the 

orientation of an underlying object to lie on a hyperbola in gradient space and successfully re- 

covered the 3-D shape of some objects from a single image by combining this constraint with 

other heuristics. Since then, many researchers have reported different techniques for finding 

axes of skewed symmetry [2, 3, 4, 51 and for resolving the remaining gradient ambiguity in 

order to recover the orientation of the object uniquely [6, 7, 81. 

A flat symmetric object, when viewed under perspective projection, yiellds a convergent 

symmetry. This concept was introduced by Ulupinar and Nevatia [9] based on the fact that 

the perspective projection of any set of parallel lines that are not parallel to the image plane 

converge to a point, called the convergent (vanishing) point (see Figure 2). They showed 

that by using the axis and convergent point of a convergent symmetry, one can uniquely 

determine the orientation of an object (except for some special cases). However, practical 

methods to find the axis and convergent point of a convergent symmetry were not described 

in their paper. 

Several methods for detection of vanishing points have been reported [lo, 11, 12, 131. Most 

of these methods are based on line segments extracted from the images; vanishing points are 



Figure 1: A symmetrical tree pattern and its skewed symmetry. 

then determined by finding the intersection points of the supporting lines of the extracted 

line segments. These methods do not work for curved objects and are substantially different 

from the method for detecting convergent (vanishing) points described in this paper. 

Glachet et al. [14] recently developed a method for detecting a convergent symmetry. They 

used a prediction-verification scheme based on the detection of straight lines on the convex 

hull of an extracted closed contour from the image to find the axis and convergent point. 

They also pointed out that the special case stated in Ulupinar and Nevatia [9], in which the 

orientation of an object cannot be determined from the convergent symmetry, can be ex- 

tended. They found that as soon as the plane passing through the optical center and the axis 

of convergent symmetry is orthogonal to the lines of symmetry of the object, the orientation 

of the object cannot be determined from the convergent symmetry. One assumption they 

made in trying to find the location of an object is that the height of the object is known. 

This is not usually true in practice. For instance, they used this method in their work on 

recovering the scaling function of a straight homogeneous generalized cylind~er (SHGC) from 

a single perspective view [15]. In their work, they assumed that the base of' a SHGC which 

is symmetric is visible, and claimed that the localization of the SHGC can he made by us- 

ing this method. However, it is not clear how they can automatically solve the localization 

problem without knowing the dimension of the base. 

After invariant properties of SHGCs were reported by Ponce, Chelberg, and Mann [16], many 



Figure 2: The convergent symmetry of the tree in last figure. 

methods for detecting the projection of the axis of SHGC have been develo'ped [17, 18, 191. 

Liu et al. [19] described a technique for finding the projection of the axi:; of rotationally 

symmetric surfaces. The cross-ratio of four collinear points is then used as an indexing 

function to  recognize those surfaces. They also showed that the recognitioi~ system can be 

extended to  recognize Straight Homogeneous Generalized Cylinders. However, they claimed 

that it is extremely hard to arrange the camera such that lines joining corresponding pairs 

of distinguished points are more than a few degrees away from parallel, anti used a parallel 

constraint in determining corresponding bit angent s. This explicitly exclctdes the case of 

convergent symmetry. By replacing the parallel constraint with an ordering constraint which 

will be described later, we are able to  find the axis and convergent point of convergent 

symmetries and recover the orientation of the object. Using the cross-ratio as an indexing 

function together with the orientation information, we can recognize flat symmetric objects 

efficiently and accurately. 

The contributions of this paper are as follows: (1) A new robust method for detecting conver- 

gent symmetries is proposed. With this method, the orientation of an observed flat symmetric 

object can be recovered from a single perspective image; (2) An efficient and accurate object 

recognition process using the cross ratio as an indexing function and orientation information 



for verification has been developed. When a model database is available, an observed flat 

symmetric object can be recognized and its location can be uniquely deterimined. 

This paper is organized as follows: in section 2 we define the notations, terms, and properties 

used in this paper. In section 3 we describe the technique for finding the axis and convergent 

point of a convergent symmetry. In section 4 we show how a flat symmetric object can 

be recognized and located from a single perspective image using cross-ratio and orientation 

information. In section 5 ,  some experimental results for real images taken by a camera are 

shown. 

I1 Notations, terms, and properties 

In this section we introduce the notations, terms, and properties which are used in this 

paper. Most of the properties here have been reported in the literature and are indicated 

accordingly. 

A Perspective Projection 

Throughout this paper we use a viewer (camera) centered coordinate system with the x-axis 

to  the right, the y-axis upward, and the z-axis pointing toward the viewer (i.e., a right- 

handed coordinate system). The optical center of the camera (0)  is at the origin. With this 

convention, the z components of the coordinates of points in front of the camera are negative. 

The image plane is parallel to the xy-plane at a distance f from the origin allong the negative 

z-axis (i.e., z = - f ) .  Therefore, an object point (x, y ,  z) is perspectively projected onto the 

image point (u, v) ,  where u = -x f /z  and v = -y f /z ,  which is the point at which a line 

through the origin and (x, y ,  z) intersects the image plane. Note that any iniage point (u, v) 

is also a point (u, v, - f )  in the x-y-z coordinate system (see Figure 3).  

Some properties of perspective projection are used in this paper. 

Property 1. Let S be a plane having plane normal (P, q, 1) and intersecting the z-axis at 

z = D (i.e., the plane is defined by px + qy + z - D = 0). Let P = (u, v) ble a point in the 

image; it must correspond to some point Q on plane S. Suppose the image of Q is P, then 

Q = (au ,av , -af )  for some value a. Since Q lies on S, p(au) + q(av) + (- af)  - D = 0. 



Figure 3: Perspective projection model. 

Solving this equation for a yields a = D/(pu  + qv - f )  and 

Q is sometimes called the back-projection of image point P onto plane S [20]. We will use 

this property to project some pairs of corresponding distinguished points on the image plane 

back to 3-D space and check whether the corresponding projected points are symmetric with 

respect to some back projected axis in 3-D. A measure of symmetry will be described in 

section 111. Since we are only interested in the measure of symmetry, once the plane normal 

of S is known, the value D can be selected arbitrarily. That is, we do not have to know the 

depth of an object in order to compute the measure of symmetry. 

Property 2. Distinguished points, such as corners, inflection points, and bitangents, are 

invariant under perspective projections and can be located before and afteir projection (see 

Mundy et al. [21]). These distinguished points will be used as invariant descriptors in our 

approach for finding the axis and convergent point of a convergent symmetry. 

Property 3. Let ( p l ,  p2, p3, p4)  be four different collinear points. The cross-ratio of the four 



points is defined by: 

where D(plp3) denotes the distance from pl to ps. The cross-ratio is well known to be 

invariant under perspective projection, and can be used as indexing function for object 

recognition. Though the cross ratio T depends on the order of points in the argument list, 

there exists a rational function of T which is independent of the order of .the points. This 

function is the j - invariant [22], defined by 

Using the j - invariant function can simplify the process of object recognition. 

Property 4. Given: (1) four pairs of corresponding model (planar object) and image points, 

(2) the distance between the optical center and the image plane, and (3) the image center, the 

3-D location of the optical center relative to the coordinate system of the object plane can be 

uniquely determined [23]. The consistency between the orientation obtained by this property 

and that obtained by the axis and convergent point of a convergent symmetiry is a constraint 

used in our verification process for confirming the correctness of object recognition. 

B Convergent Symmetry 

Given a point, P,, on the boundary of a flat symmetric object, there exists a corresponding 

symmetric point, Q,, on the boundary of the object which is the reflection of P, with respect 

to a line, called the axis of symmetry (A).  The line connecting P, and Q;, called the line of 
- 

symmetry, intersects A at point M,, the middle of segment P,Q,, and is ortlhogonal to A. It 

is well known that, under perspective projection, lines remain lines, and a set of parallel lines 

that are not parallel to the image plane converge to a point. Therefore, uinder perspective 

projection, the lines of symmetry project to a set of lines, called lines of convergent symmetry, 

which converge to a point, called the convergent (vanishing) point (v) .  The axis of symmetry 

remains a line, called the axis of convergent symmetry (S), which is no longer the locus of 

the midpoints of the lines of convergent symmetry in the image (see figure 4). However, 



Figure 4: An example of convergent symmetry. Note that MI and M2 elre rnidpoints of 
segments PIQ1 and P2Q2, but ml and m2 are not midpoints of segments plq, and p2~2, 
respectively. 

some useful properties exist and allow us to find 6 and v .  

Figure 5 (a) shows a flat symmetric object, where (PI, Q1) and (P2, Q2) are two pairs of 

symmetric points. Figure 5 (b) shows a convergent symmetry of (a), in which (pl, ql)  and 

(p2, q2) are the projections of (PI, Q1) and (P2, Q2), respectively. 

Property 5. Given that (PI, Q1) and (P2, Q2) are two pairs of symmetric points, the 

intersection points, Al and A2, of the two pairs of lines (PIP2, Q1Q2) and (P1Q2, P2Q1) will 

lie on the symmetric axis A. Since the intersection points are invariant under perspective 

projection, the projections of the two pairs of lines, (plp2, q1q2) and (plq2, p2q1), also intersect 

at two points, al  and a2,  along the axis 6 of convergent symmetry [14]. 

Property 6. Since lines PIQ1 and P2Q2 are parallel, their projections plql and p2qz intersect 



Figure 5: Determination of the axis and convergent point of a convergent symmetry from 
paired segments. 

at the convergent point v [14]. 

Definition Two image points (p, q) resulting from the perspective projection of two symmet- 

ric points (P, Q) of S will be called paired points. Furthermore, two segments plpz and qlqz 

joining points of two pairs of paired points (pl, ql) and (p2, 42) will be called paired segments. 

Property 7. Since the boundary of a flat symmetric object can be represented by a sequence 

of points, a number can be assigned to each boundary point according to its position in the 

sequence. For instance, if the boundary points are stored in an array, then the index of 

the array corresponding to  each point can be used as the number. With th.is identification, 

any two pairs of symmetric distinguished points (pi,qi) and (pj,qj), represented by their 

associated numbers (il, i2) and (jl, j2), must satisfy the following ordering; constraint: the 

numbers i l  and i2 should be either both inside the range from jl to  j2 or 130th outside the 

range (see Figure 6). This constraint is used in finding the correspondiiig distinguished 

points (paired points) of a convergent symmetry. 



Figure 6: An ordering constraint. The numbers associated with the distinguished points 
(corners) of the tree patterns are roughly assigned clockwise. The difference between (a) 
and (b) is the position of the initial point with number 0 (the initial point is not fixed 
when corresponding contours are extracted from images). In both (a) and (b) ,  all pairs of 
symmetric distinguished points satisfy the ordering constraint described in property 7. For 
instance, in (a) (30,230) and (85,175) are two pairs of symmetric distinguished points and 
they satisfy the ordering constraint because 30 and 230 are both outside the range from 85 
to 175, and 85 and 175 are both inside the range from 30 to 230. 

Once the axis S and the convergent point v of a convergent symmetry have been found, the 

orientation of the underlying object can be uniquely determined. 

Property 8. Let u be the direction vector of the axis A, and II be the plane passing through 

the optical center 0 and the axis S (note that II also passes through A). a and b are two 

distinct points on S ,  and Ov is the direction of the lines of symmetry. Since u is ort hogornal 

to the lines of symmetry, u is also orthogonal to O v .  As A is in the plane II, u is orthogonal 

to Ov and Oa x Ob. If Ov is not orthogonal to II, then direction u can be obtained by 

Ov x ( O a  x O b )  and the orientation of the object is completely determined by u x Ov; 

otherwise, O v  x (Oa x Ob) is null, and the orientation of the object cannot be recovered 

from the axis and convergent point of the convergent symmetry [14]. Not,e that the focal 

length (i.e., the distance from optical center to image plane) has to be known in order to 



obtain O v .  

Based on the above properties, let us consider a flat symmetric object having some distin- 

guished points. Since the object is symmetric, the distinguished points are paired and will 

be projected as paired points in the image. If we can find the distinguished points in the 

image and determine the paired points and paired segments, then the axis and the convergent 

point of the convergent symmetry can be estimated. That is, the orientation of the object 

can be recovered, except for some special cases described in property 8. Moreover, by using 

the cross ratio of the intersection points of the paired segments as an indexing function for 

a model database, we have developed an efficient method for recognizing flat symmetric 

objects. 

I11 Finding the axis and convergent point of a convergent symmetry 

In this section we present a technique for finding the axis S and convei:gent point v of 

a convergent symmetry. The first step involves finding the distinguished points (including 

bit angent s, corners, and inflection points) of the image contour. Points and segments are then 

paired together using a Hough transformation subject to the ordering constraint described 

previously. Finally, a symmetric measurement based on back projecting paired points to  3-D 

space is performed in order to obtain the best estimation of S and v. 

A Finding distinguished points 

There are many methods available for finding distinguished points of an image contour 

[24, 25, 26, 27, 191. The method in [19] uses a Hough transformation to  map the tangent 

line at each contour point into (0,y) Hough space, where 0 is the orientation of the line 

and y is the distance from the image center to the line. It then checks the Hough space 

for cells containing more than one line, which are bitangents. Since this method is very 

efficient, we use it to find bitangents of the contour. A method based on multiscale contour 

approximation [24] is used to find corners and inflection points. The complexity of this 

method is proportional to the number of scale levels used. 

Since the method of finding bitangents is more efficient than that of finding corners and 



inflection points, the bitangents of an image contour are located first. I[f the number of 

bitangents found is sufficient for estimation of the axis S and convergent point v of convergent 

symmetry and for object recognition, other distinguished points do not have to be located. 

Though one pair of paired segm,ents is necessary and sufficient to determine S and v, we want 

more pairs in order t o  perform object recognition (described in section IV). 

B Determining paired points and paired segments 

After finding the distinguished points of a contour, we are ready to  determine paired points 

and paired segm,ents. For each pair of segments p;pj and qiqj, where p;, pj, gi, and qj are dis- 

tinguished points, one possible axis of convergent symmetry can be compute:d using property 

5 .  We then vote the computed axis onto (6, y)  Hough space, where 6 is the orientation of the 

axis and y is the distance from the image center to the axis. Each cell in ,the Hough space 

contains two lists: listl and list2. These lists contain the corresponding pizirs of segments. 

When the computed axis is voted to a cell, the corresponding pair of segments is checked 

with the pairs of segments already in listl to see whether the pair satisiies the ordering 

constraint (property 7). If it does, then it is pushed into listl. Otherwise it is pushed into 

list2. After the voting process is done, the cell with longest listl determines 6 and v. 

The ordering constraint effectively prevents false axes from clustering in t:he Hough space. 

However, it may happen that some pairs of segments which are not paired segments are 

pushed into the listl which is supposed to  contain only paired segm,ents. Pis a result, some 

 aired segments appearing later cannot enter the list. That is why pairs of segments which 

do not satisfy the ordering constraint are kept in list2. The misclassified paiored segments will 

be selected from list2 and added to  listl during the verification step. 

C Verifying the axis and convergent point of a convergent symnnetry 

We know that one pair of paired segments is sufficient for finding the axis 2; and convergent 

point v of a convergent symmetry. However, since there are always some errors and ambi- 

guities resulting from segmentation and finding distinguished points, the pairs of segments 

in the longest listl might not be perfect paired segm,ents, and should be verified in order 



to select the best paired segments .  This paired s e g m e n t s  is then used to compute the axis 

and convergent point of the convergent symmetry by properties 5 and 6, thus recover the 

orientation of the observed object by property 8. 

For each pair of segments p,p, and q;qj in the longest listl, we compute the corresponding S 

and u by properties 5 and 6. Then the estimated orientation of the observed object can be 

calculated by property 8. Knowledge of the estimated orientation of the object enables us to 

project those pairs of segments in the longest listl and the computed axis S black to 3-D space 

by property 1. We then measure whether the back projected pairs of segments are symmetric 

with respect to the back projected axis in 3-D space. Recall that by definition in section 11, 

paired s e g m e n t s  are the perspective projections of a pair of symmetric segments with respect 

to some symmetric axis in 3-D space. Therefore, when we back project paired s e g m e n t s  to 3- 

D space, the resulting segments should be symmetric with respect to the back projected axis. 

To see how close to symmetric a pair of corresponding segments is, we need only to compute 

a symmetric measure of its corresponding end points. That is the actual symmetric point 

of an end point with respect to the axis is calculated, the distance ( d )  between the actual 

symmetric point and the other corresponding end point is then computed a,nd is considered 

as an error measurement. The measure of the error of symmetry of a pair of segments is 

then defined as: 

where n is the number of pairs of segments in the longest list 1. In fact, the more accurate the 

estimated orientation, the smaller the measure of the error of symmetry. Since we are only 

interested in this measure of symmetry, the depth of the object in property 1 can be chosen 

arbitrarily as long as the value is fixed for the entire verification process. Thus, a pair of 

segments which is closer to paired segments will have a more accurate estimated orientation 

of the object; as a result, its measure of error of symmetry will be smaller. Upon finishing 

the verification process, the pair of segments with the highest symmetry measure, i.e. the 

lowest measure of error of symmetry, gives the best estimation of the axis and convergent 

point of convergent symmetry, and the orientation of the object. 

Actually, the location of the axis and convergent point can be further refined by using a 



weighted average method given by: 

where n is the number of pairs of segments remaining in the longest listl after the verification 

process; m; stands for the axis and the convergent point corresponding tcl the i th element 

in the listl; w; = (J-)' and ei denotes the measure of error of symmetry of the i th element 

of the listl. Currently, r = 2 is used. We have tested this parameter for values from 1 to 

10. According to our experiments, the results obtained from this method are always better 

than that obtained from the pair with minimum error of symmetric measurement. 

As we mentioned previously, it might happen that some pairs of segments in the longest 

listl are incorrectly paired. This might cause some pairs of  aired segment:? appearing later 

to fail the ordering constraint and be pushed into list2 of the cell in the Hough space. This 

situation can be refined as follows: 

We can adjust the resolution of the Hough space so that false pairs will not be mapped to 

the cell in which paired s e g m e n t s  are supposed to be. However, increasing the resolution 

of the Hough space might cause paired s e g m e n t s  to be spread over several neighboring 

cells. Therefore, we have to check the 8-neighbors of the maximum cell in order to get 

all the paired s e g m e n t s .  

The false pairs of segments in the longest listl are eliminated in the verification step 

because the errors of their symmetric measurement are very large. Afteir those false pairs 

of segments are eliminated, the pairs of segments in list2 will be added to listl if they 

satisfy the ordering constraint and their measure of error of symmetry are sufficiently 

small. 

If distinguished points of a convergent symmetry are properly located, the longest listl 

in the Hough space is always the correct one containing paired segmen. ts  because of the 

ordering constraint. However, when noise and occlusions are present in the image, the 

distinguished points may not be located properly. As a result, the loingest listl in the 

Hough space may not be the one containing correct information. In this case, we can 



collect all the listl in the Hough space with length exceeding some given threshold, and 

perform the verification process for all the collected list 1 to determine the correct list 1. 

Since the number of distinguished points of a contour is relatively small and the verifi- 

cation process described above is very efficient, the time for verifying all the collected 

listl is reasonably small. By performing this search, we are able to detect multiple axes 

of convergent symmetry by sorting the verification results of all the collected listl and 

choosing ones with smaller errors. 

IV Recognizing and locating a flat symmetric object from a single perspective 

image 

After the verification process, the pairs of segments in the longest listl, having small errors 

of symmetric measurement, are likely to be the correct paired segments, and are selected for 

object recognition. Since they are paired segments, the two intersection points (al and a2 in 

Figure 5 )  of each pair are likely to lie on the axis 6 of convergent symmetry by property 5 ;  

therefore, those intersection points can be used to calculate cross ratios by property 3. Since 

the cross ratios are invariant under perspective projection, if we create a model database 

with the cross ratios described above as an indexing function, we will be able to recognize 

flat symmetric objects efficiently. 

A Computing the indexing function 

In our approach we use two pairs of paired segments to obtain a j - invariant cross ratio 

because each pair gives two intersection points along 6. In this way we can recognize flat 

symmetric objects so long as they have at least two pairs of paired segments. Note that one 

pair of paired segments cannot be used to get a unique cross ratio. Though there are two 

other points (ml and mz in Figure 5 )  on 6 that can be obtained from each paired segments 

(i.e., the intersection points of the lines joining two pairs of corresponding paired points and 

the axis 61, the cross ratios of the four points obtained this way will be the same for every 

pair of segments. 



B Model acquisition 

In our recognition system, models are acquired directly from images (they may also be 

acquired from CAD models). For each object, an image is taken under tlne situation that 

the object is not occluded and is parallel to the image plane. The cross ratios described 

above are computed and stored as keys in the indexing database. Associated with each 

cross ratio, only a small amount of information is required to be stored in the indexing 

database, such as the name of the object, the two pairs of paired s e g m e n t s  which generate 

the cross ratio, and the height of the object (the distance between the intersection points of 

the axis of symmetry and object boundary). The two pairs of paired  s e g m e n t s  are used for 

hypothesis verification, while the height of the object is used for locating the object after 

it is recognized. Note that each paired s e g m e n t s  is stored in a special order so that the 

correspondence between model and image paired s e g m e n t s  can be easily established in the 

verificatioil step. For instance, the segments are ordered according to their positions with 

respect to the line defined by their intersection points, while the positions of the distinguished 

points connected by the two segments can be ordered by the intersectioin point (not the 

one obtained by cross construction) of the two segments. The degenerate case where two 

segments are ~aral le l  should be handled differently. 

C Hypothesis generation and verification 

Given an image of an object to be recognized, the same procedure is used. to compute the 

cross ratios of the image. For each cross ratio, we match it against those in the database. 

Every time it matches a model with the same cross ratio, a hypothesis is formed. Ideally, 

the cross ratios computed from the corresponding two pairs of paired s e g m e n t s  should be 

the same. However, in practice there are always errors and ambiguities resulting from image 

formation, segmentation, and locating of distinguished points. These uncertainties propagate 

during the calculation of cross ratios. For instance, when paired segments are nearly parallel, 

a small amount of error in the positions of distinguished points will cause a big variation 

in the position of intersection point which in turn will affect the accuracy of the computed 

cross ratio. Thus, some error tolerance should be given for matching. Currently, a 5 percent 



error bound is used. 

As the number of models increases, the cross ratios from different models may be simi- 

lar or the same. This results in some degree of ambiguity during the matching process, 

Although the final identification may be made by voting for the object with the greatest 

number of matches, objects with a small number of cross ratios (i.e., they do not have many 

distinguished points) may be misclassified. Therefore, some verification process should be 

performed in order to get correct recognition results. 

In [19], it was stated that the matching process was implemented by using a hash-table 

technique and that the final identification was made by voting for the object with the greatest 

number of returns from the hash-table. We believe that the reason for small errors in the 

presented method is because the image contours of a rotationally symmetric surface do not 

have high perspective effects. In our case, the recognition results are always incorrect if we 

match each computed cross ratio with two nearest neighbors in the indexing database, and 

vote for the object with the greatest number of matches. 

Our verification of generated hypotheses is based on orientation consistency checking. Recall 

that one pair of paired segments is sufficient for recovering the orientation. of the observed 

object. Moreover, the orientation of an object can also be recovered by using four pairs 

of corresponding model and image points (by property 4). Typically, each cross ratio is 

computed from two   airs of paired segments where each pair has four distinguished points. 

A correspondence between model and image points can be obtained by careful arrangement 

as described in section B. Therefore, by associating the paired s e g m e n t s  obtained from the 

image with that stored in the indexing database, we can check whether the orientation of 

the object recovered by paired segments is consistent with that recovered by the four pairs 

of corresponding model and ima.ge points during the matching process. This constraint 

effectively eliminates false matches, and improves the accuracy of the final identification. 

These associated paired s e g m e n t s  of images and models can also be used to locate objects 

after objects have been recognized. 



Figure 7: A method for locating the object. Let il = ( XI ,  yl, - f) and 412 = ( 5 2 ,  y2, - f) 
be two intersection points of a paired segments of an image, and ml = t-[(xl, y l ,  - f) and 
m2 = t2(x2, y2, - f) be two intersection points of the corresponding paired segments of the 
corresponcling model. Let the line represented by point ml and direction v'be the intersection 
of two planes: one is the plane determined by point,s 0, il , and 22; the other is z = tl * (- f). 
Since the length and the orientation of ii = mz - ml are known, we have t'he following two 

4 4 

equations: cos6 = Im2 - mil = liil. The above equations can be solved for tl  and t2, 
thus the location o IT t e ' object can be completely determined. 

D Locating the flat symmetric object 

As we have mentioned, the orientation of an observed flat symmetric object can be deter- 

mined from the axis and convergent point of its convergent symmetry by property 8. After 

the object has been recognized, the information available from the model database enables us 

to locate the object. For instance, the distances of two intersection points of the correspond- 

ing image and model paired segments allow us to recover the depth inforrnation(see figure 

7). Thus the location of the object is completely determined. According to our experiment, 

the location obtained this way is more accurate than that obtained by using property 4. 



V Experimental results 

The algorithm was implemented on a DEC 5000/200 workstation using the Common LISP 

programming language. Some flat symmetric objects (some of them are similar to those used 

in [14]) were drawn by hand. The images of these objects were taken from diflferent viewpoints 

using a SONY XC-711 camera. A Canny edge operator and curve tracking program were 

used to extract contours from these images. Note that the input of our algorithm does not 

have to be a closed contour. A sequence of edges (with some small gaps in between) which 

make up a convergent symmetric contour will do. 

Figure 8 presents an example showing that the axis of a convergent symmetry may not be 

correctly found without using the ordering constraint. Figure 9 shows that our technique is 

able to detect multiple axes of a convergent symmetry. Some images of a curved object taken 

from different viewpoints were processed. The results of the orientation recovery are shown 

in Table 1. From this table, one can see that the error is within 5 degrees. We are currently 

improving the calibration process of our experimental environment in order to increase the 

accuracy of our results. 

The figures of four objects are shown next. Figures 10-(a), 1 1-(a), 12- (a), and 13-(a) are 

the images of the curve, club, butterfly, and leaf objects. Figures 10-(b), 11-(b), 12-(b), and 

13-(b) show the extracted contours from the images in Figures (a) and the correctly detected 

axes. The darker contours in figures 10-(c), 11-(c), 12-(c), and 13-(c) are (obtained by back 

projecting (based on the result of recognition and localization processes) t'he corresponding 

image contours to  3-D space, rotating the normals of the objects so that their normals 

coincide with the z-axis, and orthographically projecting the resulting objects to the image 

plane. The dashed contours in the figures are the corresponding model contours from the 

model database. One can see that the reconstructed contours have almost the same shapes 

as those of the original objects. Figures 15 and 14 show that our approach of finding S and 

v is robust to  noise and partial occlusion as long as some pairs of corresponding distinguished 

points can still be located. 

Tables 2 and 3 show typical results of recognition using only the four objects just shown. 

The difference between the two tables is that Table 2 is obtained when the inflection points 



and corners of the leaf object are included in the process while Table 3 is obtained when those 

are excluded. The information in the two tables show that voting for the object with the 

greatest number of matches is not always correct, even for a database containing only four 

objects. However, the constraint checking of whether the orientation of object recovered 

from 6 and v is consistent with that recovered by four pairs of correspo~lding model and 

image points, effectively eliminates those false matches, and the correct identification is 

always made. There are still some false matches after the orientation consistency checking. 

However, these false matches do not affect the final identifications, and can be completely 

eliminated by comparing the reconstructed contours and the corresponding identified model 

contours as shown in figures 10-(c), 11-(c), 12-(c), and 13-(c). 

Figure 16-(a) is an image of a box which has some letters on its surfaces. Figure 16-(b) is 

the result after a Canny edge operator is applied on the image. The box was intentionally 

overexposed so that the three intersection lines between three visible surfaces are not visible 

in the image. However, our technique is able to extract the symmetric letters on the surfaces 

and estimate the locations of the corresponding surfaces (see figure 17). From the recovered 

orientations of the three visible surfaces, we calculate three angles between surface normals. 

The results are 87.5g0, 89.33", and 89.27" which are very similar to the actual angles of the 

box (all 90"). 

VI Further Enhancements 

As mentioned in section IV, we use two pairs of paired s e g m e n t s  to compute a j - i n v a r i a n t  

cross ratio as an index for an object. However, when the number of paired s e g m e n t s  increases, 

the number of the indices of an object will increase exponentially. As can be seen from Table 

2, the number of the indices of the leaf object is much larger than that of other objects. 

This is because the number of distinguished points and paired s e g m e n t s  of the leaf object 

is large. Matching complexity can be greatly reduced if the cross ratio can be computed 

from one paired s e g m e n t s  instead of two. In the next paragraph, we describe a method for 

accomplishing this task. 

Suppose that we have already found the axis of convergent symmetry. There are always two 



intersection points between the axis and the convergent symmetric contour. If there are more 

than two intersection points, we can choose the two points which are furthest apart. These 

two points together with the two intersection points computed from each paired segments  

enable us to obtain a cross ratio. Besides reducing the complexity of the object recognition 

process, this method also increases the class of objects which can be recognized by the 

recognition system. This increase is due to the fact that the number of paired segments  

required for an object to be included in the model database has been reduced to one. The 

disadvantage of this method is that if an object is occluded so that the intersection points 

of the axis and the contour cannot be correctly located, incorrect recognition may occur. 

VII Conclusion 

We have presented a technique for finding the axis 6 and convergent point v of a convergent 

symmetry and for recognizing and locating flat symmetric objects. The ordering constraint 

and symmetric measurement make the process of finding 6 and v efficient and accurate. 

Furthermore, the orientation consistency checking improves the results of object recognition. 

After objects have been recognized, the information of the corresponding objects allows us 

to recover the depth information which is missing when the images of ithe objects were 

taken. Therefore, the localization problem can be solved. Our technique of recognizing flat 

symmetric objects can also be used in 3-D object recognition, since many 3-D objects contain 

planar shapes which may themselves be symmetric or contain symmetric figures. We are 

now investigating methods for recognizing and locating more general 3-D objects. 
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Table 1: Orientation recovered from curved images taken from different viewpoints. Some 
images of the curved object are taken from different viewpoints. Actually, ure fix the camera 
and rotate the object about the x and y axes of the camera coordinate. The first column 
contains the rotated angles (in degree) about x and y axes when we took the images. The 
second column contains the recovered angles computed from the pair of segments with min- 
imum error of symmetric measurement, whereas the third column contaiins the recovered 
angles by using the weighted average method. 

Rotation about 
x and y axes 

X-15 y-15 
X-30 y-30 
X-45 y-45 
X-30 y-60 
X-60 y-60 

Table 2: The results of recognition when the inflection points and corners of the leaf object 

Recovered angles 

(1) 
X-11.5 y-20.2 
x-28.8 y-32.8 
X-44.8 y-41.7 
X-33.3 y-54.9 
X-61.9 y-56.0 

- 

are included in the process. The first column contains the names and identi~fication numbers 
of the objects corresponding to image contours to be recognized. The cross ratios generated 

Recovered angles 

(2) 
X-12.7 y-17.5 
x-30.1 y-31.1 
X-44.5 y-43.3 
X-30.0 y-59.8 
X-62.3 y-56.1 

(101 3) curve 

(102 4) 
(103 2) 

(104 12) 

Image contour 
curve 

(101) 
club 

( lo2> 
butterfly 

(103) 
leaf 

(lo41 

from those image contours were matched with the pre-created cross-ratio database. The 
resulting matched lists are contained in the second column. The elements in the list are 

Matched list 
(101 9) (102 11) 
(103 25) (104 54) 
(101 38) (102 70) 

(103 168) (104 286) 
(101 29) (102 24) 

(103 72) (104 167) 
(101 279) (102 331) 

(103 1049) (104 2115) 

the identification number of an object and the number of matches corresponding to the 
object. The third column contains the lists after matches which do not satis-€y the orientation 
consistency checking are eliminated from the matched lists. The last column shows the results 
of recognition. 



- 
I Image contour I Matched list I Filtered list I Result 

Table 3: The results of recognition when the inflection points and corners of the leaf object 
are excluded in the process. See Table 2 for more information. 

- 
curve 

(101) 
club 

(102) 
butterfly 

(103) 
leaf 

(104) 

(101 9) (102 11) 
(103 25) (104 11) 
(101 38) (102 70) 
(103168)(10410)  
(101 29) (102 24) 
(103 72) (104 20) 
(101 51) (102 57) 

(103 128) (104 37) 

(101 4) 

(102 4) 
(1032)  
(103 3) 

(104 1) 

- 
curve 

- 
club 

butterfly 

- 
leaf 



Figure 8: An example showing the results of the detection of the axis of a convergent 
symmetry. (a) and (b) The detected axis and the histogram of the corre:sponding Hough 
space when the ordering constraint is applied. The highest peak in the histogram corresponds 
to the detected axis. (c) and (d) The results without using the ordering constraint. 



Figure 9: An example showing that multiple axes of convergent symmetry can be found. (a) 
The image of an object. (b) The histogram of Hough space. Two peaks in the histogram 
correspond to the two axes of the convergent symmetry which are shown in (c) and (e). 
(d) and ( f )  show the reconstructed contours based on the recovered orienitations from the 
corresponding axis and convergent point. 



('4 
Figure 10: A curve image. 

(a> ('4 (c> 

Figure 11: A club image. 

(a> ('4 (c> 

Figure 12: A butterfly image. 



(b) 

Figure 13: A leaf image. 

(b) (4 
Figure 14: A partly occluded leaf image. 

(b) 

Figure 15: A leaf image with noise. 
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Figure 16: An image of a box with some letters on the surfaces. 



(el (f l 
Figure 17: Letters with their axes of convergent symmetries and back projections. 
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