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Putting the Automatic Back into AD:
Part I, What’s Wrong (CVS: 1.1)
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Avenue, West Lafayette IN 47907-2035 USAqobi@purdue.edu
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Summary. Current implementations of automatic differentiation are far from automatic.
We survey the difficulties encountered when applying four existing AD systems,ADIFOR,
TAPENADE, ADIC, andFADBAD++, to two simple tasks, minimax optimization and control of
a simulated physical system, that involve taking derivatives of functionsthat themselves take
derivatives of other functions.ADIC is not able to perform these tasks as it cannot transform
its own generated code. UsingFADBAD++, one cannot compute derivatives of different orders
with unmodified code, as needed by these tasks. One must either manuallyduplicate code for
the different derivative orders or write the code using templates to automate such code du-
plication.ADIFOR and TAPENADE are both able to perform these tasks only with significant
intervention: modification of source code and manual editing of generated code. A companion
paper presents a new AD system that handles both tasks without any manual intervention yet
performs as well as or better than these existing systems.

Key words: Nesting, multiple transformation, forward mode,ADIFOR, TAPENADE, ADIC,
FADBAD++

1 Introduction
The hallmark of Automatic Differentiation is that it is—or at least should be—automatic. One
wishes to take derivatives of unmodified programs with minimal, and ideallyno, manual in-
tervention. In this paper, we demonstrate how far we are from this ideal. (See [9] for another
viewpoint.) We present two simple mathematical tasks, collectively coded inunder 300 lines,
code both tasks in FORTRAN, C, andC++, and relate our experiences in getting them to run
with ADIFOR [2], TAPENADE [4], ADIC[3], and FADBAD++[1]. We were able to run these
programs underADIFOR and TAPENADE only by modifying the source code in different fash-
ions that are specific to each preprocessor and with significant manualediting of the output of
TAPENADE. We discovered that usingFADBAD++ one cannot compute derivatives of different
orders with unmodified code, as needed by these tasks. One must eithermanually duplicate
code for the different derivative orders or write the code using templates to automate such
code duplication. Finally, we discovered that it is not possible to perform either of these tasks
with ADIC at all.

The central limitation discovered in all of these systems in the inability to nest. Nesting is
fundamental to programming: one expects to be able to nest conditionals inside conditionals,
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do loops inside do loops, etc. In the context of AD, this corresponds to taking derivatives of
functions that take derivatives. In Sect. 2 we give two realistic tasks where such nesting is cru-
cial: minimax optimization to find a saddle point of a function, as is done in gametheory, and
determining an optimal value of a control parameter for a simulated physical system, as is done
in automatic control. See [5] for another recent application of nesting. For transformation-
based AD systems, likeADIFOR, TAPENADE, and ADIC, such nesting is accomplished by
transforming the transformed code produced by the preprocessor,i.e., passing code through
the preprocessor multiple times. For overloading-based AD systems, likeFADBAD++, such
nesting is accomplished by overloading the overloaded operators.

ADIFOR, TAPENADE, and ADIC all provide a mechanism to allow the user to change
the naming convention of differentiated components of programs. It appear that this feature
was included in these systems precisely to support nesting, i.e., transformation of transformed
code. It is necessary to avoid conflating the tangents of different derivatives as could otherwise
potentially occur when nesting derivatives [7, 8]. We know of no other use for this feature.
While we make crucial use of this feature in the tasks in Sect. 2, this feature alone is not
sufficient to support transformation of transformed code.

The authors the above systems are aware of the issues involved with nesting. A paper [2]
on ADIFOR states on p. 18:

While we currently can just process theADIFOR-generated code [. . .]

The TAPENADE FAQ athttp://www-sop.inria.fr/tropics/ states:

For example, one can use the forward mode twice, to get directional second deriva-
tives. We know of some people who have tried that with TAPENADE, and apparently
it worked.
[. . .]
However this requires a bit more interaction with the end-user.
[. . .]
The idea to obtain second derivatives is to apply Automatic Differentiation twice.
Starting from a procedureP in file p.f that computesy = f (x), a first run of
TAPENADE e.g., in tangent mode through the command line:

$> tapenade -d -head P -vars "x" -outvars "y" p.f

returns in filep_d.f a procedureP_D that computesyd= f ′(x).xd. Now a new run
of TAPENADE on the resulting file e.g., in tangent mode again through the command
line:

$> tapenade -d -head P_D -vars "x" -outvars "yd" p_d.f

returns in filep_d_d.f a procedureP_D_D that computesydd = f ′′(x).xd.xd0.
Specifically if you callP_D_D with inputsxd= 1.0 andxd0 = 1.0 in addition to the
currentx, you obtain in outputydd the second derivativef ′′(x).
[. . .]
Doing this, you might encounter a couple of simple problems that you will need to
fix by hand like we usually do:
• The first multi-directional differentiation creates a program that includesa new

file DIFFSIZES.inc, containing information about array sizes. Precisely, the
include file must declare the integer constantnbdirsmax which is the maxi-
mum number of differentiation directions that you plan to compute in a single
run. nbdirsmax is used in the declarations of the size of the differentiated
arrays. You must create this fileDIFFSIZES.inc before starting the second
differentiation step. For instance, this file may contain
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integer nbdirsmax
parameter (nbdirsmax = 50)

if 50 is the max number of differentiation directions. If what you want is the
Hessian, this max number of differentiation directions is the cumulated sizesof
all the inputsx.

• The second multi-directional differentiation requires a new maximum size value
nbdirsmax0, which isa priori different fromnbdirsmax. For the Hessian
case, it is probably equal tonbdirsmax. What’s more, TAPENADE has inlined
the 1st level include file, so what you get is a strange looking piece of declara-
tions:

. . .
INCLUDE ’DIFFSIZES.inc’

C Hint: nbdirsmax should be the maximum . . .
INTEGER nbdirsmax
PARAMETER (nbdirsmax=50)
. . .

We suggest you just remove theINCLUDE ’DIFFSIZES.inc’ line, and
hand-replace each occurrence ofnbdirsmax0 by eithernbdirsmax or even
50!

We reported one of the issues discussed in Sect. 5 relating toADIC and received this Email
from Paul Hovland in response:

This is a known issue, but not one that we’ve thought very hard abouthow to work
around because we haven’t had a compelling application. I think we can come up
with a workaround, but we’ll need to discuss it for a while. One of us will try to get
back to you later in the week.

TheFADBAD++ web site athttp://www2.imm.dtu.dk/∼km/FADBAD/ states:

Combinations of automatic differentiation
One of the very unique things ofFADBAD++ is the ability to compute high order
derivatives in a very flexible way by combining the methods of automatic differentia-
tion. These combinations are produced by applying the templates on themselves. For
example the typeB< F< double > > can be used in optimisation for computing
first order derivatives by using the backward method and second order derivatives by
using a backward-forward method.

The remainder of this paper demonstrates the distance between the abovedesiderata and cur-
rent practice. A companion paper presents a new language and a new compiler that can process
both of the tasks presented without any manual intervention and which generates code that is
as fast as or faster than the above mentioned systems.

2 Tasks
We use two tasks to illustrate the nesting issues that arise with current AD implementa-
tions. Variants of both tasks appear in other papers, coded in differentlanguages for differ-
ent AD systems. For this paper, we coded each task in FORTRAN, C, and C++, for use by
ADIFOR, TAPENADE, ADIC, andFADBAD++. The variants in the different languages differ
only in ways specific to the language and the AD implementation. They share the same al-
gorithms, structure, order, naming conventions, etc. In the next foursections, we use these
two tasks as a running example to illustrate the nesting issues that arise with current AD
implementations. For each task and each AD system, we went through a number of vari-
ants as we attempted to get the task working. Figure 1 gives the essence ofthe first vari-
ant for FORTRAN with ADIFOR. Length restrictions preclude including all variants of all
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tasks for all AD systems in this paper. However, all of these variants areavailable from
http://www.bcl.hamilton.ie/∼qobi/tr-08-02/. That web site contains arun
script for each variant that replicates the issues involved along with a filerun.text giving
the output of that script for each variant. We recommend that the reader make use of the ‘Try’
entries in that web site to follow the discussion in the next four sections.

Figure 1(a) gives the essence of the common code shared between these tasks. It omits the
subroutinesvplus andvminus that perform vector addition and subtraction, the subroutine
ktimesv that multiplies a vector by a scalar, the subroutinesmagnitude_squared and
magnitude that compute the magnitude of a vector, and the subroutines
distance_squared anddistance that compute theL2 norm of the difference of two
vectors. The subroutinemultivariate_argmin implements a multivariate optimizer us-
ing adaptive näıve gradient descent. This iteratesxi+1 = η∇ f xi until either ‖∇ f x‖ or
‖xi+1−xi‖ is small, increasingη when progress is made and decreasingη when no progress
is made.

Figure 1(b) contains the essence of the first task,saddle, that computes the saddle point
of a function:

min
(x1,y1)

max
(x2,y2)

(x1
2 +y1

2)− (x2
2 +y2

2)

(It omits the code forgradient_outer as this code is analogous to the code for
gradient_inner.) This task is a variant of an example from [6], differing in that it uses
forward AD instead of reverse AD to compute gradients and naı̈ve gradient descent instead of
gradient descent with a line search.

Figure 1(c) contains the essence of the second task,particle, a variant of an example
from [8] where the textbook Newton’s method for optimization has been replaced with näıve
gradient descent. (It omits the code forgradient_p andgradient_naive_euler as
this code is analogous to the code forgradient_inner.) This task models a charged par-
ticle traveling nonrelativistically in a plane with positionx(t) and velocityẋ(t). The particle
is accelerated by an electric field formed by a pair of repulsive bodies,

p(x;w) = ‖x− (10,10−w)‖−1 +‖x− (10,0)‖−1

wherew is a modifiable control parameter of the system, and hits thex-axis at positionx(t f ).
We optimizew so as to minimizeE(w) = x0(t f )

2, with the goal of finding a value forw that
causes the particle’s path to intersect the origin. We use Naı̈ve Euler ODE integration:

ẍ(t) = − ∇x p(x)|x=x(t)

ẋ(t +∆ t) = ẋ(t)+∆ t ẍ(t)

x(t +∆ t) = x(t)+∆ t ẋ(t)

to compute the particle’s path. We use linear interpolation to find the point where the particle
hits thex-axis:

Whenx1(t +∆ t) ≤ 0

let: ∆ t f = −x1(t)/ẋ1(t)

t f = t +∆ t f

x(t f ) = x(t)+∆ t f ẋ(t)

Error:E(w) = x0(t f )
2

We minimizeE with respect tow usingmultivariate_argmin.
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subroutine multivariate_argmin(n, f, g, x, x_star, fx)
include ’common.inc’
integer n, i, j
double precision x(n), x_star(n), fx
double precision gx(size), eta, t(size), x_prime(size), fx_prime
double precision s
external f, g
call f(x, fx)
eta = 1d-5
i = 0
do j = 1, n

x_star(j) = x(j)
enddo
call g(x, gx)

1 call magnitude(n, gx, s)
if (s.le.1d-5) return
if (i.eq.10) then

eta = eta*2d0
i = 0
goto 1

endif
call ktimesv(n, eta, gx, t)
call vminus(n, x_star, t, x_prime)
call distance(n, x_star, x_prime, s)
if (s.le.1d-5) return
call f(x_prime, fx_prime)
if (fx_prime.lt.fx) then

do j = 1, n
x_star(j) = x_prime(j)

enddo
fx = fx_prime
call g(x_prime, gx)
i = i+1
goto 1

endif
eta = eta/2d0
i = 0
goto 1
end

subroutine f(x, r)
include ’saddle.inc’
double precision x(4), r
r = (x(1)*x(1)+x(2)*x(2))-(x(3)*x(3)+x(4)*x(4))
end

subroutine inner(x2, r)
include ’saddle.inc’
double precision x2(ninner), r, x(ntotal), s, x1c(nouter)
common /closure/ x1c
x(1) = x1c(1)
x(2) = x1c(2)
x(3) = x2(1)
x(4) = x2(2)
call f(x, s)
r = -s
end

subroutine gradient_inner(x, g)
include ’saddle.inc’
double precision x(ninner), g(ninner), g_x(ninner, ninner), y
integer k, l
do k = 1, ninner

do l = 1, ninner
g_x(k, l) = 0d0

enddo
g_x(k, k) = 1d0

enddo
call g_inner(x, g_x, y, g)
end

subroutine outer(x1, r)
include ’saddle.inc’
double precision x1(nouter), r, x2(ninner), x2_star(ninner), s
double precision x1c(nouter), g_x1c(ninner, nouter)
common /closure/ x1c
common /g_closure/ g_x1c
integer k
external inner, gradient_inner
x1c(1) = x1(1)
x1c(2) = x1(2)
do k = 1, ninner

g_x1c(k, 1) = 0d0
g_x1c(k, 2) = 0d0

enddo
x2(1) = 1d0
x2(2) = 1d0
call multivariate_argmin
+ (ninner, inner, gradient_inner, x2, x2_star, s)
r = -s
end

C subroutine gradient_outer(x, g)

program main
include ’saddle.inc’
double precision x1_start(nouter), x2_start(ninner)
double precision x1_star(nouter), x2_star(ninner), r
double precision x1c(nouter), g_x1c(ninner, nouter)
common /closure/ x1c
common /g_closure/ g_x1c
integer k
external outer, gradient_outer, inner, gradient_inner
x1_start(1) = 1d0
x1_start(2) = 1d0
x2_start(1) = 1d0
x2_start(2) = 1d0
call multivariate_argmin
+ (nouter, outer, gradient_outer, x1_start, x1_star, r)
x1c(1) = x1_star(1)
x1c(2) = x1_star(2)
do k = 1, ninner

g_x1c(k, 1) = 0d0
g_x1c(k, 2) = 0d0

enddo
call multivariate_argmin
+ (ninner, inner, gradient_inner, x2_start, x2_star, r)
print *, x1_star(1), x1_star(2), x2_star(1), x2_star(2)
end

subroutine p(x, r)
include ’particle.inc’
double precision x(dims), r, charge(dims), s
double precision charges(ncharges, dims)
common /closure/ charges
integer k, l
r = 0d0
do l = 1, ncharges

do k = 1, dims
charge(k) = charges(l, k)

enddo
call distance(dims, x, charge, s)
r = r+1d0/s

enddo
end

C subroutine gradient_p(x, g)

subroutine naive_euler(w, r)
include ’particle.inc’
double precision w(controls), r
double precision x(dims), xdot(dims), delta_t, g(dims)
double precision xddot(dims), t(dims), x_new(dims)
double precision delta_t_f, x_t_f(dims), charges(ncharges, dims)
double precision g_charges(dims, ncharges, dims)
common /closure/ charges
common /g_closure/ g_charges
integer j
delta_t = 1e-1
charges(1, 1) = 10d0
charges(1, 2) = 10d0-w(1)
charges(2, 1) = 10d0
charges(2, 2) = 0d0
do j = 1, dims

g_charges(dims, 1, 1) = 0d0
g_charges(dims, 1, 2) = 0d0
g_charges(dims, 2, 1) = 0d0
g_charges(dims, 2, 2) = 0d0

enddo
x(1) = 0d0
x(2) = 8d0
xdot(1) = 0.75d0
xdot(2) = 0d0

1 call gradient_p(x, g)
call ktimesv(dims, -1d0, g, xddot)
call ktimesv(dims, delta_t, xdot, t)
call vplus(dims, x, t, x_new)
if (x_new(2).gt.0d0) then

do j = 1, dims
x(j) = x_new(j)

enddo
call ktimesv(dims, delta_t, xddot, t)
call vplus(dims, xdot, t, xdot)
goto 1

endif
delta_t_f = -x(2)/xdot(2)
call ktimesv(dims, delta_t_f, xdot, t)
call vplus(dims, x, t, x_t_f)
r = x_t_f(1)*x_t_f(1)
end

C subroutine gradient_naive_euler(x, g)

program main
include ’particle.inc’
double precision w0(controls), w_star(controls), r
external naive_euler, gradient_naive_euler
w0(1) = 0d0
call multivariate_argmin
+ (controls, naive_euler, gradient_naive_euler, w0, w_star, r)
print *, w_star(1)
end

(a) (b) (c)

Fig. 1. The essence of the baselineADIFOR code for thesaddle andparticle tasks. (a) The common code shared between the tasks. (b) The code
for thesaddle task. (c) The code for theparticle task.
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3 ADIFOR
Forsaddle, we first try to perform the first transformation to generate the code forg_inner
(Try 1). We get the error:

Procedure g_inner undefined: required by procedure gradient_inner in module saddle.f.

Procedure h_outer undefined: required by procedure gradient_outer in module saddle.f.

despite the fact that we specifiedAD_TOP=inner and none ofg_inner, h_outer,
gradient_inner, andgradient_outer, are reachable frominner. So we add
g_inner andh_outer toAD_EXCLUDE_PROCS for the first transformation (Try 2). Now
we get the error:

Recursive procedure set:
multivariate_argmin.f.2
outer
multivariate_argmin

despite the fact that there really is no recursion, since the nested call to
multivariate_argmin is to a transformed variant. So we add
multivariate_argmin to AD_EXCLUDE_PROCS for the first transformation and the
first transformation succeeds. We then try to perform the second transformation to generate
the code forh_outer. This compiles successfully (Try 3), but gives the wrong answer:

1. 1. 8.24632483E-06 8.24632483E-06

Inspection ofh_saddle.f reveals thatADIFOR generated incorrect derivative code for
h_outer. We conjecture that it may be confused by the nested calls to
multivariate_argmin. So we manually copy the code to make two versions of
multivariate_argmin so that there is no potential for confusion. This compiles suc-
cessfully (Try 4) and gives the correct answer, but does so only accidentally, as inspec-
tion of h_saddle.f reveals thatADIFOR has still generated incorrect derivative code for
h_outer. We conjecture that it may be confused by the indirect subroutine call in the variant
of multivariate_argmin that is differentiated. Se we manually specialize that variant
to eliminate the indirect subroutine call. Again, this compiles successfully (Try 5) and gives
the correct answer, but does so only accidentally, as inspection ofh_saddle.f reveals that
ADIFOR has still generated incorrect derivative code forh_outer. So we splitsaddle.f
into three files:saddle1.f, which will be transformed in the first pass,saddle2.f, which
will be transformed in the second pass, andsaddle.f, which will not be transformed.
Now we see thatADIFOR has generated correct derivative code that yields the correct answer
(Try 6):

8.24632483E-06 8.24632483E-06 8.24632483E-06 8.24632483E-06

Forparticle, we first try to formulate the program as a single file, as this task requires
no differentiation through nested or indirect subroutines calls. We rely onour experience with
saddle and start by addingg_p andh_naive_euler to AD_EXCLUDE_PROCS for the
first transformation andh_naive_euler to AD_EXCLUDE_PROCS for the second trans-
formation. This compiles successfully (Try 1), but gives the wrong answer:

0.

Inspection ofh_particle.f reveals thatADIFOR has generated incorrect derivative code
for h_naive_euler. So we again rely on our experience withsaddle and split
particle.f into three files. Now we see thatADIFOR has generated correct derivative code
that yields the correct answer (Try 2):

0.207191875
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4 Tapenade
For saddle, we start with the same code as for the initialADIFOR version, differing
only in the naming and calling conventions for differentiated subroutines. First, we per-
form the first transformation to generate the code forinner_gv. Then, we create the file
DIFFSIZES.inc as required by the output of the first transformation. Then, we perform
the second transformation to generate the code forouter_hv. Then, we augment the file
DIFFSIZES.inc as required by the output of the second transformation. However, despite
issuing no errors or warnings, TAPENADE generates code that gives compiler errors (Try 1).
Inspection ofsaddle_hv.f reveals that TAPENADE generated incorrect derivative code for
outer_hv. We conjecture that, likeADIFOR, it may be confused by the indirect subroutine
call in the variant ofmultivariate_argmin that is differentiated. Se we again manu-
ally specialize that variant to eliminate the indirect subroutine call. Again, the TAPENADE-
generated code gives compiler errors. Thus, we create ased script to fix these errors, as
discussed in the above TAPENADE FAQ entry and find that TAPENADE has now generated
correct derivative code that yields the correct answer (Try 2).

For particle, we again start with the same code as for the initialADIFOR version,
differing only in the naming and calling conventions for differentiated subroutines, perform
the first transformation to generate the code forp_gv, create the fileDIFFSIZES.inc,
perform the second transformation to generate the code fornaive_euler_hv, augment the
file DIFFSIZES.inc, and create ased script to fix the errors in the TAPENADE-generated
code. This compiles successfully (Try 1), but gives the wrong answer:

0.

Inspection ofparticle_hv.f reveals that TAPENADE generated incorrect derivative code
for naive_euler_hv because our code contains a subroutine call that modifies aliased
arguments. While this violates the FORTRAN 77 standard,ADIFOR andG77 were nonetheless
able to generate correct code for this task. Furthermore, while TAPENADE issued a warning,
the TAPENADE FAQ only discusses how this affects reverse mode, not forward modeas used
in this task. We modify our code to eliminate the aliasing violation, modify thesed script
accordingly, and find that TAPENADE has now generated correct derivative code that yields
the correct answer (Try 2).

5 ADIC
For saddle, we start with a straightforward translation of the FORTRAN code used for the
initial ADIFOR version intoC. Since we will need to transformcommon.c as part of the
second transformation, we first try to transform this code. Compiling this code (Try 1) yields
syntax errors. Inspection ofcommon.ad.c indicates thatADIC has generated incorrect code
for the transformation ofmultivariate_argmin:

void multivariate_argmin(int n,
void (*f)(double *, double *),
void (*g)(double *, double *),
double *x,
double *x_star,
double *fx) {. . .}

void g_multivariate_argmin (int n,void (*f)(DERIV_TYPE *,DERIV_TYPE *);
void (*g)(DERIV_TYPE *) {. . .}

We conjecture that, likeADIFOR and TAPENADE, ADIC cannot differentiate code with indirect
function calls. Thus we again manually specializemultivariate_argmin to eliminate
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the indirect function call. Furthermore, sinceADIC does not use flow analysis to determine
what code needs to be differentiated, and thus differentiates everythingin a file, this necessi-
tates splittingsaddle.c into three files, as before. However, unlike before, the unspecialized
version ofmultivariate_argminmust be moved fromcommon.c tosaddle.c since
we will need to differentiatecommon.c.

We next try to transformsaddle1.c twice, as is needed by this task. However, the
output of the first transformation uses variables declared to be of typeDERIV_TYPE and this
is defined by the generated filead_deriv.h to be:

typedef struct {
double value;
double grad[ad_GRAD_MAX];

} DERIV_TYPE;

Note thatADIC failed to prefix many of the above identifiers, despite the fact that we spec-
ified prefix, var_prefix, andtype_prefix. It also failed to control the file-name
prefixes. Thus we rename the files appropriately and create ased script to edit the code gen-
erated byADIC to manually prefix the unprefixed identifiers. Furthermore, sinceADIC cannot
process much of its own generatedad_deriv.h, we make a variant that contains just the
bare essentials. The second transformation attempt, however, is unsuccessful (Try 2). Since
saddle1.c contains only two extremely simple functions, we conjecture thatADIC is not
able to transform transformed code and abandon our attempt at running our two tasks inADIC.

We also point out a further difficulty we have encountered in transforming transformed
code withADIC. With ADIFOR and TAPENADE, the driver code is straight FORTRAN. (See the
code forgradient_inner in Fig. 1(b).) WithADIC, the corresponding driver code must
use primitives likeDERIV_val, ad_AD_SetIndepArray, ad_AD_SetIndepDone,
andad_AD_ExtractGrad:

void gradient_inner(double *x, double *g) {
g_DERIV_TYPE g_x[INNER], y;
int k;
for (k = 0; k<INNER; k++) DERIV_val(g_x[k]) = x[k];
ad_AD_SetIndepArray(&g_x[0], INNER);
ad_AD_SetIndepDone();
g_inner(&g_x[0], &y);
ad_AD_ExtractGrad(&g[0], y);}

Nesting requires transforming such drivers and we have not been successful in doing so.
This also affects global variables which are written and then read acrossdifferentiation

boundaries. In our tasks, the functionouter must initialize the tangents ofx1c to zero and
the functionnaive_euler must initialize the tangents ofcharges to zero. This is done
using the primitivead_AD_ClearGrad. However,outer andnaive_euler must be
transformed and a similar problem arises.

6 FADBAD
For FADBAD++, we describesaddle andparticle jointly. Our initial FADBAD++ vari-
ants are similar to the initialADIC variants, differing primarily in that the functions
magnitude_squared, magnitude, distance_squared, distance,
multivariate_argmin,f,inner,outer,p, andnaive_euler, return results rather
than modify arguments passed by reference, use ofC++ I/O, and formulating the imple-
mentation of the driversgradient_inner, gradient_outer, gradient_p, and
gradient_naive_euler to use theFADBAD++ API instead of theADIC API (Try 1).
These variants, however, cannot be run, since they don’t implementg_inner, h_outer,
g_p, andh_naive_euler.



Automatic AD: Part I 9

One way of providing these is to manually simulate the behavior of a preprocessor
like ADIFOR, TAPENADE, or ADIC. We do this by making a copy of all of the functions
in common.cpp, prefixing all function identifiers in this copy withg_ and changing all
instances ofdouble in this copy toF<double>. We also manually apply such a pro-
cess to selected portions ofsaddle.cpp and particle.cpp, making prefixed, type-
lifted copies of certain functions and global variables, namelyf, x1c, inner, charges,
andp. This simulates the first transformation. To simulate the second transformation, we
make copies of all of the functions incommon.cpp, including the ones created by the first
transformation, prefixing all function identifiers in this copy withh_ and changing all in-
stances ofdouble in this copy toF<double>. This creates some identifiers prefixed with
h_g_ and some instances of the typeF<F<double>> (which must be manually changed
to the typeF<F<double> >). We also manually apply such a process to selected portions
of saddle.cpp andparticle.cpp, including the portions created by the first trans-
formation, namelyf, x1c, inner, g_f, g_x1c, g_inner, gradient_inner, outer,
charges, p, g_charges, g_p, gradient_p, andnaive_euler. This compiles suc-
cessfully, and gives the correct answer (Try 2). However, this is both inelegant and labor
intensive. Thus we rewrite the code from Try 1 using templates. This compiles successfully,
and gives the correct answer (Try 3). Note that this also requires modification of our original
code.

7 Conclusion
The goal of AD is to be able toautomaticallytake derivatives ofunmodifiedprograms. We
are far from this goal, at least when considering nesting, i.e., taking derivatives of functions
that take derivatives of other functions. All the systems that we have tried require manual
modification of either the source code, the automatically generated code, or both. ADIFOR

requires manual partitioning of the code into different files to be transformed different num-
bers of times. TAPENADE requires manual specialization of subroutines to eliminate indirect
subroutine calls and manual post-editing of code that has been transformed multiple times.
FADBAD++ requires either manual simulation of a transformation process or writing code
using templates. AndADIC is not able to handle such nesting at all. Furthermore, along the
path to solving these tasks, we encountered situations with both tasks using both ADIFOR and
TAPENADE where incorrect derivative code was produced without warning or error, some-
times leading to subsequent compiler errors and sometimes, but not always, leading to incor-
rect computational results.

In this paper, we have rationally reconstructed the minimal path from our original intent
to the solution of each task using each AD system. The actual process of producing these vari-
ants was very labor intensive and involved the exploration of many blind alleys that have been
omitted. For example, before we specifiedAD_EXCEPTION_FLAVOR = performance,
we needed to addehsfid andehufDO to AD_EXCLUDE_PROCS. Even then, transforming
transformed code withADIFOR yielded incorrect code that gave compiler errors due to redun-
dant declaration ofg_ehfid. And with long file names,ADIFOR generates calls toehsfid
with long Hollerith constants that extend past column 72, again giving compiler errors. We
had to createsed scripts to post-edit theADIFOR-generated code to remove these flaws. Sim-
ilarly, TAPENADE generates pedantic warnings about code that compares floating point values
for equality. But it itself generates code that triggers such warnings upon subsequent transfor-
mation of transformed code.

Even ignoring the flaws encountered, the documented mode of use for these systems is far
from automatic, requiring manual specification, through script files, include files, and com-
mand line parameters, of things like the files to scan, the functions and variables to include or
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exclude from the transformation process, the prefixes to use, and the dimensions of generated
arrays. Furthermore, much of this information is specific to a particular AD system. Both the
official mode of use, as well as the specific source-code changes and post-editing steps we had
to employ to achieve success, vary significantly betweenADIFOR and TAPENADE despite the
fact that they both apply to FORTRAN77. The same occurred betweenADIC andFADBAD++,
despite the fact that our initial code for both of these systems was written in vanilla C(except
for use ofC++ I/O). (FADBAD++ can handle functions that return real values whileADIC

requires returning results by mutating values passed by reference, much like ADIFOR and
TAPENADE can only transform subroutines, not functions.) This is all further complicated by
the fact that the different AD systems needed different code (inouter, naive_euler, and
themain for saddle) to handle the initialization of the tangents of the variablesx1c and
charges that were implemented as common variables in FORTRAN and global variables in
C/C++.

Our companion paper describes a novel language and a novel compiler that addresses the
shortcomings described in this paper. We hope that this paper clarifies why we believe that the
work described in the companion paper is novel and significant and addresses issues that are
not addressed by current AD implementations.
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