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Abstract The atomistic simulations of electronic struc-
tures, using a tight binding model with millions of atoms,
require solution of very large sparse Hermitian eigenvalue
problems. To obtain the eigenpairs of interest in the interior
of the spectrum, we must take advantage of the most effi-
cient parallel numerical algorithms. Several methods have
been developed and implemented in Nanoelectronic Mod-
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eling software package NEMO-3D, including (P)ARPACK,
(Block) Lanczos and Tracemin. In this paper, the perfor-
mance and tradeoffs of these algorithms for realistic models
are discussed. The effectiveness of code optimization tech-
niques such as SSE2 vectorization is also presented.

Keywords Lanczos · PARPACK · Tracemin · Eigenvalues ·
Atomistic · Tight binding · Quantum dot · NEMO-3D

1 Introduction

The atomistic description of the electronic structure [4]
leads to the Hermitian eigenvalue problem

H� = E� (1)

where H ∈ C
n×n, � ∈ C

n×p and the scalar E ∈ R.
The eigenvalue spectrum λ1 ≤ λ2 ≤ · · · ≤ λn of the

Hamiltonian matrix H in (1) describing the physical system
is typically dense, spans the energy range of [−20 eV,20 eV]
and has a gap in the interior of the spectrum in the range of
[−1 eV,2 eV]. Usually a small set of eigenpairs is sought,
immediately above and below the gap. The eigenvalues
correspond to energy levels in the conduction and valence
bands, while eigenvectors correspond to electron and hole
wavefunctions. These wavefunctions (states) are often spa-
tially confined to a small region of the overall device. Spin
or Valley degeneracies may introduce multiplicities (degen-
eracies) in the energy levels. Magnetic fields, lack of crystal
symmetry, atomic disorder or piezoelectric effects may split
the degeneracies.

Different physical conditions and simulation goals deter-
mine how accurate the eigenvalue calculations need to be.
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It may be sometimes good enough to know the energy lev-
els irrespective of their multiplicities and without the states,
other times the degeneracies and wavefunctions must be
known.

In the following sections we explore various algorithms
available in NEMO-3D. We let Hermitian matrix A ∈ C

n×n,
Hermitian positive definite matrix B ∈ C

n×n, set of p vec-
tors U = [u1, . . . ,up] ∈ C

n×p , diagonal matrix � ∈ R
p×p ,

diag(.) denote the diagonal elements, R(.) denote the range
of a subspace and ei denotes the i-th column of the identity
matrix I .

2 (P)ARPACK

(P)ARPACK is a software package that implements the Im-
plicitly Restarted Arnoldi method [5]. The Arnoldi factor-
ization constructs orthogonal Vk ∈ C

n×k and upper Hessen-
berg Hk ∈ C

k×k such that

AVk = VkHk + hk+1,kvk+1eT
k (2)

Let p be the number of approximate eigenvalues of inter-
est and corresponding eigenvectors of Hk that are stored in
diag(J ) and W ∈ Ck×p , respectively. Then, p approximate
eigenvalues and corresponding eigenvectors of A are given
by diag(J ) and U = VkW , respectively. Due to memory lim-
itations k can not be very large and if at a fixed k the norm
of the residual ||ri || = ||Aui − λui || for i = 1, . . . , p is not
good enough, the process is restarted. Finally, it is worth to
mention that since A is Hermitian, Hk is a symmetric tridi-
agonal matrix and this method reduces to restarted Lanczos
algorithm.

3 (Block) Lanczos

We can avoid the restarting due to memory limitations if in-
stead of storing all vectors Vk , we recompute them when
forming the eigenvectors U . Thus, generalizing to the block
form, we compute a symmetric block tridiagonal Tk = [T̄i,j ]
and orthogonal Vk = [V̄1, . . . , V̄k] using the three term re-
currence

AV̄k = V̄k−1T̄
∗
k+1,k + V̄kT̄k,k + V̄k+1T̄k+1,k (3)

T̄k,k = V̄ ∗
k AV̄k (4)

where at every k-th iteration we only store Tk , V̄k−1, V̄k and
V̄k+1 [1, 2]. Once it is estimated that a good approximation
to the p eigenpairs of interest has been obtained, we form
U = VkW by recomputing V̄i , performing the multiplica-
tion by a part of W of appropriate size and adding to the
previously stored result, for i = 1, . . . , k.

4 Tracemin

The Trace Minimization algorithm [6, 8] finds the p small-
est (algebraically) eigenvalues and eigenvectors of the Her-
mitian generalized eigenvalue problem

AU = BU� (5)

The main idea behind this scheme is that finding p smallest
eigenpairs of (5) is equivalent to finding B-orthogonal X

that minimizes the tr(X∗AX):

min
X∗BX=I

tr(X∗AX) = tr(U∗AU) =
p∑

i=1

λi (6)

In practice, starting with an initial guess X0 ∈ C
n×p and let-

ting � be a diagonal matrix, the k-th iteration of Tracemin
is described by the following two steps:

• Compute a section Xk of A, in other words, X
∗
kAXk = �

and X
∗
kBXk = I .

• Find Xk+1 = Xk − D where D is determined s.t.
tr(X∗

k+1AXk+1) < tr(X∗
kAXk).

To find the update D we solve the linear system
(

A BXk

X
∗
kB 0

)(
D

L

)
=

(
AXk

0

)
(7)

Letting D = (I − P)D for some D and orthogonal pro-
jector P = BXk(X

∗
kB

2Xk)
−1X

∗
kB , we rewrite (7)

(I − P)A(I − P)D = (I − P)AXk (8)

where (I − P)A(I − P) is Hermitian positive semi-definite
matrix. Since, it can be shown [6] that Conjugate Gradi-
ent (CG) residual rk ∈ R(P )⊥ and search directions pk ∈
R(P )⊥, we can use CG to solve (8).

Recalling that we are interested in the interior eigenpairs,
we modify the original eigenvalue problem (1) using one of
two mappings:

(i) QTracemin
Let the shift δ be the point in the interior of spectrum
around which we want to find p eigenvalues. We apply
Tracemin to solve the standard Hermitian eigenvalue
problem

(H− δI )2� = (� − δI )2� (9)

where the system (8) is solved (approximately) using
the CG method. This mapping is also called spectrum
folding [11].

(ii) CTracemin
Let the intervals [c, d] and [a, b] contain the whole
spectrum and p interior eigenvalues of interest, respec-
tively. A quadratic function Q(x) [7] can be used to map
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eigenvalues in (a, b) to the interval (1,∞), while map-
ping other eigenvalues into the interval [−1,1].
Using Chebyshev polynomials to accelerate conver-
gence, we apply Tracemin to solve the generalized
eigenvalue problem

I� = H̃��̃−1 (10)

where H̃ = Tk(Q(H)) + ηI , �̃ = Tk(Q(�)) + ηI , Tk

is the Chebyshev polynomial of degree k and η > 0 is a
small shift parameter that ensures positive definiteness
of H̃.

It is worth to mention that when A = I in (5), there is
no need to solve the linear systems at every iteration of
Tracemin, since it can be shown [6] that

Xk − D = BXk

(
X

∗
kB

2Xk

)−1 (11)

5 Numerical experiments

To compare the performance of the eigenvalue solvers de-
scribed above two small quantum dots (QDs) with slightly
less than 300,000 atoms were simulated using NEMO 3D
[3, 4].

The first electronic structure, shown in Fig. 1a, is a
dome shaped self-assembled InAs quantum dot on a wet-
ting layer inside GaAs substrate. The electronic domain is
21 × 20 × 10 nm3 and is comprised of 268,800 atoms. Con-
sidering spin, two-fold degeneracy is expected in the con-
duction band.

The second electronic structure is an impurity quantum
dot, shown in Fig. 1b, comprised of a single P atom in the
middle of 17.3 nm3 Si cube, made up of 238,328 atoms.
There are up to six degeneracies in the first four ground state
energy levels.

The Dome Shaped QD and P Impurity QD experiments
are performed on Pete (Linux Cluster, Xeon Dual Core
2.33 GHz, Gigabit Ethernet) and Lear (Linux Cluster, Xeon
3.2 GHz, Gigabit Ethernet), respectively. Time in hours (T),
relative time (RT), number of matrix-vector multiplications

Fig. 1 Quantum dot electronic structures

in thousands (MVP), relative MVP, memory in GB (M) and
number of obtained eigenvalues, with multiplicity in paren-
thesis, are reported. Memory requirements for the Dome
Shaped QD experiment are skewed due to calculation of
strain in preliminary phase of the simulation. If experiments
fail to finish in three days the respective columns/rows are
marked with †.

For this particular application (P)ARPACK has not per-
formed well on both examples (Tables 1, 2). Specifically,
it missed certain eigenvalues and did not always return the
correct multiplicity (Table 3). Moreover, it failed to finish
within three days in the P impurity QD experiment.

Table 1 Dome Shaped QD: Performance on 32 proc. of Lanczos
(LAN), Lanczos w/block size 2 (BL2), PARPACK (PAR), QTracemin
(QTR) and CTracemin (CTR)

Alg. T RT MVP RM M # Eig.

LAN 0.428 1.0 10.9 1.0 2.64 20(1)

BL2 1.385 3.2 11.8 1.1 2.77 8(2)

PAR 18.04 42.2 59.3 5.4 2.64 8(2),4(1)

QTR 15.71 36.7 317.0 29.1 2.77 10(2)

CTR 13.70 32.1 528.8 48.5 2.64 10(2)

Table 2 P Impurity QD: Performance on 28 proc. of Lanczos (LAN),
Lanczos w/block size 6 (BL6), PARPACK (PAR), QTracemin (QTR)
and CTracemin (CTR)

Alg. T RT MVP RM M # Eig.

LAN 1.11 1.0 25.1 1.0 0.09 14(1)

BL6 2.22 2.0 19.4 1.5 0.28 3(2,6,4)

PAR † † † † † †

QTR 64.5 58.3 1200.0 47.8 0.50 3(2,6,4)

CTR 63.4 57.4 1935.2 77.1 0.50 3(2,6,4)

Table 3 Dome Shaped QD: Spectrum between 1.0–1.3 (eV) and the #
of eigenvalues obtained by the eigensolvers

Eigenvalues LAN BL2 PAR QTR CTR

1.0361 1 – – 2 2

1.0969 1 2 – 2 2

1.0976 1 2 1 2 2

1.1624 1 2 2 2 2

1.1645 1 2 2 2 2

1.1748 1 2 2 2 2

1.2304 1 2 2 2 2

1.2312 1 2 2 2 2

1.2445 1 2 2 2 2

1.2448 1 – 2 2 2

1.2975 1 – 2 – –
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Table 4 P Impurity QD: Spectrum between 1.0–1.13 (eV) and the #
of eigenvalues obtained by the eigensolvers

Eigenvalues LAN BL6 PAR QTR CTR

1.0858 1 2 † 2 2

1.0978 1 6 † 6 6

1.0991 1 4 † 4 4

1.1246 1 – † – –

Fig. 2 Electronic calculation time comparison between SSE opti-
mized and native C code on a single node of Pete

The Lanczos method is easy to implement, however as
(P)ARPACK it does not have a proof of convergence and
spurious eigenvalues can arise in the computation. Nonethe-
less, in the conducted experiments it has performed remark-
ably well (Tables 1, 2). The inability of Lanczos to find
eigenpairs with correct multiplicity was addressed using its
block variation (Tables 3, 4).

Although the Tracemin algorithm has obtained the cor-
rect multiplicity (Tables 3, 4) it has performed slower than
Lanczos for this particular application (Tables 1, 2). It is also
worth to mention that its full potential was not realized due
to the lack of matrix-block-vector multiplication routine in
NEMO-3D.

Since Tracemin has a theory of convergence, if reliability
is of the major concern, it should be considered as an op-
tion. On the other hand, if the resolution of degeneracies is
not important Lanczos can be used. Block Lanczos seems
to provide a middle ground, resolving degeneracies and pro-
viding faster computation.

It is worth to mention that authors also had limited ex-
perience with other eigenvalue solvers. For instance, we fol-
lowed an approach similar to [10] using PRIMME software
package [9] to find the desired eigenvalues. However, for
this particular application we did not observe any clear ad-
vantage in using it over Tracemin.

Fig. 3 Electronic calculation time comparison between optimized and
unoptimized NEMO-3D running in recompute mode on four nodes of
Pete

6 Performance optimizations

Optimizing the code also plays a significant role in perfor-
mance enhancement.

First, converting the native C code to the SSE instruc-
tion set helps to speed up complex arithmetic. Also, in a
memory limited system, NEMO-3D efficiently recomputes
the Hamiltonian elements by explicitly listing the necessary
calculations between interacting orbitals and avoiding dupli-
cate calculations of spin states. The resulting enhancement
in performance is shown on Figs. 2 and 3.
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