Recent Advances in Robust Coarse Space Construction An ASM type theory for P.L. Lions algorithm Optimized Schwarz Methods

Frédéric Nataf

Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI

```
joint work with
Ryadh Haferssas (LJLL)
Pierre Jolivet (LJLL-ETH Zurich)
```

DD23 2015, Jeju Island, Korea

GOAL: Endow P.L. Lions algorithm (1988) with an "ASM-like" theory

$$
\begin{aligned}
& -\Delta\left(u_{1}^{n+1}\right)=f \quad \text { in } \Omega_{1} \\
& u_{1}^{n+1}=0 \quad \text { on } \partial \Omega_{1} \cap \partial \Omega \\
& \left(\frac{\partial}{\partial n_{1}}+\alpha\right)\left(u_{1}^{n+1}\right)=\left(-\frac{\partial}{\partial n_{2}}+\alpha\right)\left(u_{2}^{n}\right) \quad \text { on } \partial \Omega_{1} \cap \overline{\Omega_{2}}
\end{aligned}
$$

(n_{1} and n_{2} are the outward normal on the boundary of the subdomains)

$$
\begin{aligned}
& -\Delta\left(u_{2}^{n+1}\right)=f \quad \text { in } \Omega_{2}, \\
& u_{2}^{n+1}=0 \quad \text { on } \partial \Omega_{2} \cap \partial \Omega \\
& \left(\frac{\partial}{\partial n_{2}}+\alpha\right)\left(u_{2}^{n+1}\right)=\left(-\frac{\partial}{\partial n_{1}}+\alpha\right)\left(u_{1}^{n}\right) \quad \text { on } \partial \Omega_{2} \cap \overline{\Omega_{1}} .
\end{aligned}
$$

with $\alpha>0$. Overlap is not necessary for convergence.
Parameter α can be optimized for.
Extended to the Helmholtz equation (B. Desprès, 1991) a.k.a FETI 2 LM (Two-Lagrange Multiplier) Method, 1998.

Outline

(1) (Recall) on Additive Schwarz Methods
(2) Optimized Restricted Additive Schwarz Methods

3 SORAS-GenEO-2 coarse space

4 Numerical Results
(5) Conclusion

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

$$
\begin{aligned}
& -\Delta(u)=f \quad \text { in } \Omega \\
& u=0 \text { on } \partial \Omega .
\end{aligned}
$$

Schwarz Method: $\left(u_{1}^{n}, u_{2}^{n}\right) \rightarrow\left(u_{1}^{n+1}, u_{2}^{n+1}\right)$ with

$$
\begin{array}{ll}
-\Delta\left(u_{1}^{n+1}\right)=f \quad \text { in } \Omega_{1} & -\Delta\left(u_{2}^{n+1}\right)=f \quad \text { in } \Omega_{2} \\
u_{1}^{n+1}=0 \text { on } \partial \Omega_{1} \cap \partial \Omega & u_{2}^{n+1}=0 \text { on } \partial \Omega_{2} \cap \partial \Omega \\
u_{1}^{n+1}=u_{2}^{n} \quad \text { on } \partial \Omega_{1} \cap \overline{\Omega_{2}} . & u_{2}^{n+1}=u_{1}^{n+1} \quad \text { on } \partial \Omega_{2} \cap \overline{\Omega_{1}} .
\end{array}
$$

Parallel algorithm.

An introduction to Additive Schwarz

Consider the discretized Poisson problem: $A u=f \in \mathbb{R}^{n}$.

An introduction to Additive Schwarz

Consider the discretized Poisson problem: $A u=f \in \mathbb{R}^{n}$.
Given a decomposition of $\llbracket 1 ; n \rrbracket,\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$, define:

- the restriction operator R_{i} from $\mathbb{R}^{\llbracket 1 ; n \rrbracket}$ into $\mathbb{R}^{\mathcal{N}_{i}}$,
- R_{i}^{T} as the extension by 0 from $\mathbb{R}^{\mathcal{N}_{i}}$ into $\mathbb{R}^{\llbracket 1 ; n \rrbracket}$.

An introduction to Additive Schwarz

Consider the discretized Poisson problem: $A u=f \in \mathbb{R}^{n}$.
Given a decomposition of $\llbracket 1 ; n \rrbracket,\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$, define:

- the restriction operator R_{i} from $\mathbb{R}^{\llbracket 1 ; n \rrbracket}$ into $\mathbb{R}^{\mathcal{N}_{i}}$,
- R_{i}^{T} as the extension by 0 from $\mathbb{R}^{\mathcal{N}_{i}}$ into $\mathbb{R}^{\llbracket 1 ; n \rrbracket}$.
$u^{m} \longrightarrow u^{m+1}$ by solving concurrently:
$u_{1}^{m+1}=u_{1}^{m}+A_{1}^{-1} R_{1}\left(f-A u^{m}\right) \quad u_{2}^{m+1}=u_{2}^{m}+A_{2}^{-1} R_{2}\left(f-A u^{m}\right)$
where $u_{i}^{m}=R_{i} u^{m}$ and $A_{i}:=R_{i} A R_{i}^{T}$.

An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}
$$

An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}
$$

Then, $u^{m+1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} u_{i}^{m+1}$.
RAS algorithm (Cai \& Sarkis, 1999)

An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}
$$

Then, $u^{m+1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} u_{i}^{m+1} . \quad M_{R A S}^{-1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} A_{i}^{-1} R_{i}$.
RAS algorithm (Cai \& Sarkis, 1999)

Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions $\left(u_{m}^{1}, u_{m}^{2}\right)$ RAS algorithm iterates on the global function u^{m}
are equivalent
(Efstathiou and Gander, 2002)
Onorator M-1 $^{-1}$ is usad as a nraconditioner in Krylov methods
for non symmetric problems.

Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions $\left(u_{m}^{1}, u_{m}^{2}\right)$ RAS algorithm iterates on the global function u^{m}

Schwarz and RAS

Discretization of the classical Schwarz algorithm and the iterative RAS algorithm:

$$
U^{n+1}=U^{n}+M_{R A S}^{-1} r^{n}, r^{n}:=F-A U^{n} .
$$

are equivalent

$$
U^{n}=R_{1}^{T} D_{1} U_{1}^{n}+R_{2}^{T} D_{2} U_{2}^{n} .
$$

(Efstathiou and Gander, 2002).
Operator $M_{\text {RAS }}^{-1}$ is used as a preconditioner in Krylov methods for non symmetric problems.

ASM: a symmetrized version of RAS

$$
M_{R A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} A_{i}^{-1} R_{i}
$$

A symmetrized version: Additive Schwarz Method (ASM),

$$
\begin{equation*}
M_{A S M}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i} \tag{1}
\end{equation*}
$$

is used as a preconditioner for the conjugate gradient (CG) method.
Although RAS is more efficient, ASM is amenable to to condition number estimates.
Chronological curiosity: First paper on Additive Schwarz dates back to 1989 whereas RAS paper was published in 1998

Adding a coarse space

One level methods are not scalable.
We add a coarse space correction (aka second level)
Let V_{H} be the coarse space and Z be a basis, $V_{H}=\operatorname{span} Z$, writing $R_{0}=Z^{T}$ we define the two level preconditioner as:

$$
M_{A S M, 2}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}
$$

The Nicolaides approach (1987) is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes:

$$
Z:=\left(R_{i}^{T} D_{i} R_{i} \mathbf{1}\right)_{1 \leq i \leq N}
$$

where D_{i} are chosen so that we have a partition of unity:

$$
\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}=l d
$$

Key notion: Stable splitting (J. Xu, 1989)

Theoretical convergence result

Theorem (Widlund, Dryija)

Let $M_{A S M, 2}^{-1}$ be the two-level additive Schwarz method:

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq C\left(1+\frac{H}{\delta}\right)
$$

where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains	8	16	32	64
ASM	18	35	66	128
ASM + Nicolaides	20	27	28	27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space

GenEO

Strategy

Define an appropriate coarse space $V_{H 2}=\operatorname{span}\left(Z_{2}\right)$ and use the framework previously introduced, writing $R_{0}=Z_{2}^{T}$ the two level preconditioner is:

$$
P_{\text {ASM2 }}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i} .
$$

The coarse space must be

- Local (calculated on each subdomain) \rightarrow parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute
- Robust (must lead to an algorithm whose convergence is proven not to depend on the partition nor the jumps in coefficients)

GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems:
Geneo .EVP per subdomain:
Find $V_{j, k} \in \mathbb{R}^{\mathcal{N}_{j}}$ and $\lambda_{j, k} \geq 0$:

$$
D_{j} R_{j} A R_{j}^{T} D_{j} V_{j, k}=\lambda_{j, k} A_{j}^{N e u} V_{j, k}
$$

In the two-level ASM, let τ be a user chosen parameter:
Choose eigenvectors $\lambda_{j, k} \geq \tau$ per subdomain:

$$
Z:=\left(R_{j}^{T} D_{j} V_{j, k}\right)_{\lambda_{j, k} \geq \tau}^{j=1, \ldots, N}
$$

GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems:
Geneo .EVP per subdomain:
Find $V_{j, k} \in \mathbb{R}^{\mathcal{N}_{j}}$ and $\lambda_{j, k} \geq 0$:

$$
D_{j} R_{j} A R_{j}^{T} D_{j} V_{j, k}=\lambda_{j, k} A_{j}^{N e u} V_{j, k}
$$

In the two-level ASM, let τ be a user chosen parameter:
Choose eigenvectors $\lambda_{j, k} \geq \tau$ per subdomain:

$$
Z:=\left(R_{j}^{T} D_{j} V_{j, k}\right)_{\lambda_{j, k} \geq \tau}^{j=1, \ldots, N}
$$

This automatically includes Nicolaides CS made of Zero
Energy Modes.

Theory of GenEO

Two technical assumptions.
Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl (Num. Math. 2013))
If for all $j: \quad 0<\lambda_{j, m_{j+1}}<\infty$:

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq\left(1+k_{0}\right)\left[2+k_{0}\left(2 k_{0}+1\right)(1+\tau)\right]
$$

Possible criterion for picking τ :
(used in our Numerics)

$$
\tau:=\min _{j=1, \ldots, N} \frac{H_{j}}{\delta_{j}}
$$

$H_{j} \ldots$ subdomain diameter, $\delta_{j} \ldots$ overlap

Numerical results (Darcy)

Channels and inclusions: $1 \leq \alpha \leq 1.5 \times 10^{6}$, the solution and partitionings (Metis or not)

Convergence

Outline

(1)
 (Recall) on Additive Schwarz Methods

(2) Optimized Restricted Additive Schwarz Methods

3 SORAS-GenEO-2 coarse space

4 Numerical Results
(5) Conclusion

P.L. Lions' Algorithm (1988)

$$
\begin{aligned}
& -\Delta\left(u_{1}^{n+1}\right)=f \quad \text { in } \Omega_{1}, \\
& u_{1}^{n+1}=0 \quad \text { on } \partial \Omega_{1} \cap \partial \Omega \\
& \left(\frac{\partial}{\partial n_{1}}+\alpha\right)\left(u_{1}^{n+1}\right)=\left(-\frac{\partial}{\partial n_{2}}+\alpha\right)\left(u_{2}^{n}\right) \quad \text { on } \partial \Omega_{1} \cap \overline{\Omega_{2}},
\end{aligned}
$$

(n_{1} and n_{2} are the outward normal on the boundary of the subdomains)

$$
\begin{aligned}
& -\Delta\left(u_{2}^{n+1}\right)=f \quad \text { in } \Omega_{2}, \\
& u_{2}^{n+1}=0 \quad \text { on } \partial \Omega_{2} \cap \partial \Omega \\
& \left(\frac{\partial}{\partial n_{2}}+\alpha\right)\left(u_{2}^{n+1}\right)=\left(-\frac{\partial}{\partial n_{1}}+\alpha\right)\left(u_{1}^{n}\right) \quad \text { on } \partial \Omega_{2} \cap \overline{\Omega_{1}} .
\end{aligned}
$$

with $\alpha>0$. Overlap is not necessary for convergence.
Parameter α can be optimized for.
Extended to the Helmholtz equation (B. Desprès, 1991) a.k.a FETI 2 LM (Two-Lagrange Multiplier) Method, 1998.

GOAL of this work

(Recap) $A_{i}:=R_{i} A R_{i}^{T}, 1 \leq i \leq N$
(1) Schwarz algorithm at the continuous level (partial differential equation)
(2) Algebraic reformulation $\Rightarrow M_{R A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} A_{i}^{-1} R_{i}$
(3) Symmetric variant $\Rightarrow M_{A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}$
(4) Adaptive Coarse space with prescribed targeted convergence rate
\Rightarrow Find $V_{j, k} \in \mathbb{R}^{\mathcal{N}_{j}}$ and $\lambda_{j, k} \geq 0$:

$$
D_{j} A_{j} D_{j} V_{j, k}=\lambda_{j, k} A_{j}^{N e u} V_{j, k}
$$

GOAL: Develop a theory and computational framework for P.L. Lions algorithm similar to what was done for ASM for a S.P.D. matrix A.

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains \Rightarrow Let B_{i} be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$, define $M_{\text {ORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} R_{i}$, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains \Rightarrow Let B_{i} be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$, define $M_{O R A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} R_{i}$, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007
(3) Symmetric variant \Rightarrow

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains \Rightarrow Let B_{i} be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$, define $M_{\text {ORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} R_{i}$, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007
(3) Symmetric variant \Rightarrow
(1) $M_{O A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{\top} B_{i}^{-1} R_{i}$ (Natural but K.O.)
Adaptive Coarse space with prescribed targeted

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains \Rightarrow Let B_{i} be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$, define $M_{\text {ORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} R_{i}$, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007
(3) Symmetric variant \Rightarrow
(1) $M_{O A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{\top} B_{i}^{-1} R_{i}$ (Natural but K.O.)
(2) $M_{\text {SORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{\top} D_{i} B_{i}^{-1} D_{i} R_{i}$ (O.K.)

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains \Rightarrow Let B_{i} be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$, define $M_{\text {ORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} R_{i}$, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007
(3) Symmetric variant \Rightarrow
(1) $M_{O A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} B_{i}^{-1} R_{i}$ (Natural but K.O.)
(2) $M_{\text {SORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} D_{i} R_{i}$ (O.K.)
(9) Adaptive Coarse space with prescribed targeted convergence rate \Rightarrow

ORAS: Optimized RAS

(1) P.L. Lions algorithm at the continuous level (partial differential equation)
(2) Algebraic formulation for overlapping subdomains \Rightarrow Let B_{i} be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$, define $M_{\text {ORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} R_{i}$, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007
(3) Symmetric variant \Rightarrow
(1) $M_{O A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} B_{i}^{-1} R_{i}$ (Natural but K.O.)
(2) $M_{\text {SORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} D_{i} R_{i}$ (O.K.)
(9) Adaptive Coarse space with prescribed targeted convergence rate
\Rightarrow ???

P.L. Lions algorithm and ORAS

P.L. Lions and ORAS

Provided subdomains overlap, discretization of the classical
P.L. Lions algorithm and the iterative ORAS algorithm:

$$
U^{n+1}=U^{n}+M_{O R A S}^{-1} r^{n}, r^{n}:=F-A U^{n}
$$

are equivalent

$$
U^{n}=R_{1}^{T} D_{1} U_{1}^{n}+R_{2}^{T} D_{2} U_{2}^{n}
$$

(St Cyr, Gander and Thomas, 2007).

- Huge simplification in the implementation: no boundary right hand side discretization
- Operator $M_{O R A S}^{-1}$ is used as a preconditioner in Krylov methods for non symmetric problems.
- First step in a global theory

Outline

(Recall) on Additive Schwarz Methods
(2) Optimized Restricted Additive Schwarz Methods
(3) SORAS-GenEO-2 coarse space
4) Numerical Results
(5) Conclusion

Fictitious Space Lemma

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and H_{D} be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_{D}. Suppose that there exists a linear operator $\mathcal{R}: H_{D} \rightarrow H$, such that

- \mathcal{R} is surjective.
- there exists a positive constant c_{R} such that

$$
\begin{equation*}
a\left(\mathcal{R} u_{D}, \mathcal{R} u_{D}\right) \leq c_{R} \cdot b\left(u_{D}, u_{D}\right) \quad \forall u_{D} \in H_{D} \tag{2}
\end{equation*}
$$

- Stable decomposition: there exists a positive constant c_{T} such that for all $u \in H$ there exists $u_{D} \in H_{D}$ with $\mathcal{R} u_{D}=u$ and

$$
\begin{equation*}
c_{T} \cdot b\left(u_{D}, u_{D}\right) \leq a\left(\mathcal{R} u_{D}, \mathcal{R} u_{D}\right)=a(u, u) \tag{3}
\end{equation*}
$$

Fictitious Space Lemma (continued)

Lemma (FSL continued)

We introduce the adjoint operator $\mathcal{R}^{*}: H \rightarrow H_{D}$ by $\left(\mathcal{R} u_{D}, u\right)=\left(u_{D}, \mathcal{R}^{*} u\right)_{D}$ for all $u_{D} \in H_{D}$ and $u \in H$. Then we have the following spectral estimate

$$
\begin{equation*}
c_{T} \cdot a(u, u) \leq a\left(\mathcal{R} B^{-1} \mathcal{R}^{*} A u, u\right) \leq c_{R} \cdot a(u, u), \quad \forall u \in H \tag{4}
\end{equation*}
$$

which proves that the eigenvalues of operator $\mathcal{R} B^{-1} \mathcal{R}^{*} A$ are bounded from below by C_{T} and from above by C_{R}.

FSL and DDM

FSL lemma is the Lax-Milgram lemma of domain decomposition methods.

In combination with GenEO techniques it yields adaptive coarse spaces with a targeted condition number.

- Additive Schwarz method
- Hybrid Schwarz method
- Balancing Neumann Neumann and FETI
- Optimized Schwarz method

For a comprehensive presentation:
"An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation", V. Dolean, P. Jolivet and F Nataf, https://hal.archives-ouvertes.fr/cel-01100932, Lecture Notes to appear in SIAM collection, 2015.

- $H:=\mathbb{R}^{\# \mathcal{N}}$ and the a-bilinear form:

$$
\begin{equation*}
a(\mathbf{U}, \mathbf{V}):=\mathbf{V}^{\top} A \mathbf{U} . \tag{5}
\end{equation*}
$$

where A is the matrix of the problem we want to solve.

- H_{D} is a product space and b a bilinear form defined by

$$
\begin{equation*}
H_{D}:=\prod_{i=1}^{N} \mathbb{R}^{\# \mathcal{N}_{i}} \text { and } b(\mathcal{U}, \mathcal{V}):=\sum_{i=1}^{N} \mathbf{v}_{i}^{\top} B_{i} \mathbf{U}_{i} \tag{6}
\end{equation*}
$$

- The linear operator $\mathcal{R}_{\text {SORAS }}$ is defined as

$$
\begin{equation*}
\mathcal{R}_{\text {SORAS }}: H_{D} \longrightarrow H, \mathcal{R}_{\text {SORAS }}(\mathcal{U}):=\sum_{i=1}^{N} R_{i}^{T} D_{i} \mathbf{U}_{i} . \tag{7}
\end{equation*}
$$

We have: $M_{\text {SORAS }}^{-1}=\mathcal{R}_{\text {SORAS }} B^{-1} \mathcal{R}_{\text {SORAS }}^{*}$.

Estimate for the one level SORAS

Let k_{0} be the maximum number of neighbors of a subdomain and γ_{1} be defined as:

$$
\gamma_{1}:=\max _{1 \leq i \leq N} \max _{\mathbf{U}_{i} \in \mathbb{R}^{\# \mathcal{N}_{i}} \backslash\{0\}} \frac{\left(D_{i} \mathbf{U}_{i}\right)^{T} A_{i}\left(D_{i} \mathbf{U}_{i}\right)}{\mathbf{U}_{i}^{T} B_{i} \mathbf{U}_{i}}
$$

We can take $c_{R}:=k_{0} \gamma_{1}$.
Let k_{1} be the maximum multiplicity of the intersection between subdomains and τ_{1} be defined as:

$$
\tau_{1}:=\min _{1 \leq i \leq N} \min _{U_{i} \in \mathbb{R}^{\# N \mathcal{N}_{i} \backslash\{0\}}} \frac{\mathbf{U}_{i}^{T} A_{i}^{N e u} \mathbf{U}_{i}}{\mathbf{U}_{i}^{T} B_{i} \mathbf{U}_{i}}
$$

We can take $C_{T}:=\frac{\tau_{1}}{k_{1}}$.
We have:

$$
\frac{\tau_{1}}{k_{1}} \leq \lambda\left(M_{\text {SORAS }}^{-1} A\right) \leq k_{0} \gamma_{1}
$$

Control of the upper bound

Definition (Generalized Eigenvalue Problem for the upper bound)

Find $\left(\mathbf{U}_{i k}, \mu_{i k}\right) \in \mathbb{R}^{\# \mathcal{N}_{i}} \backslash\{0\} \times \mathbb{R}$ such that

$$
D_{i} A_{i} D_{i} \mathbf{U}_{i k}=\mu_{i k} B_{i} \mathbf{U}_{i k} .
$$

Let $\gamma>0$ be a user-defined threshold, we define $Z_{\text {geneo }}^{\gamma} \subset \mathbb{R}^{\# \mathcal{N}}$ as the vector space spanned by the family of vectors $\left(R_{i}^{T} D_{i} \mathbf{U}_{i k}\right)_{\mu_{i k}>\gamma, 1 \leq i \leq N}$ corresponding to eigenvalues larger than γ.

Control of the lower bound

Definition (Generalized Eigenvalue Problem for the lower bound)

For each subdomain $1 \leq j \leq N$, we introduce the generalized eigenvalue problem

$$
\begin{gathered}
\text { Find }\left(\mathbf{V}_{j k}, \lambda_{j k}\right) \in \mathbb{R}^{\# \mathcal{N}_{j}} \backslash\{0\} \times \mathbb{R} \text { such that } \\
A_{j}^{N e u} \mathbf{V}_{j k}=\lambda_{j k} B_{j} \mathbf{V}_{j k} .
\end{gathered}
$$

Let $\tau>0$ be a user-defined threshold, we define $Z_{\text {geneo }}^{\tau} \subset \mathbb{R}^{\# \mathcal{N}}$ as the vector space spanned by the family of vectors $\left(R_{j}^{T} D_{j} \mathbf{V}_{j k}\right)_{\lambda_{j k}<\tau, 1 \leq j \leq N}$ corresponding to eigenvalues smaller than τ.

Two level SORAS-GENEO-2 preconditioner

Definition (Two level SORAS-GENEO-2 preconditioner)

Let P_{0} denote the a-orthogonal projection on the SORAS-GENEO-2 coarse space

$$
Z_{\text {GenEO-2 }}:=Z_{\text {geneo }}^{\top} \bigoplus Z_{\text {geneo }}^{\gamma},
$$

the two-level SORAS-GENEO-2 preconditioner is defined:

$$
M_{S O R A S, 2}^{-1}:=P_{0} A^{-1}+\left(I_{d}-P_{0}\right) M_{\text {SORAS }}^{-1}\left(I_{d}-P_{0}^{T}\right)
$$

where $P_{0} A^{-1}=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}$, see J. Mandel, 1992.

Two level SORAS-GENEO-2 preconditioner

Theorem (Haferssas, Jolivet and N., 2015)

Let γ and τ be user-defined targets. Then, the eigenvalues of the two-level SORAS-GenEO-2 preconditioned system satisfy the following estimate

$$
\frac{1}{1+\frac{k_{1}}{\tau}} \leq \lambda\left(M_{\text {SORAS }, 2}^{-1} A\right) \leq \max \left(1, k_{0} \gamma\right)
$$

What if one level method is $M_{O A S}^{-1}$:
Find $\left(\mathbf{V}_{j k}, \lambda_{j k}\right) \in \mathbb{R}^{\# \mathcal{N}_{j}} \backslash\{0\} \times \mathbb{R}$ such that

$$
A_{j}^{N e u} \mathbf{V}_{j k}=\lambda_{j k} D_{j} B_{j} D_{j} \mathbf{V}_{j k}
$$

Outline

(Recall) on Additive Schwarz Methods

(2) Optimized Restricted Additive Schwarz Methods

3 SORAS-GenEO-2 coarse space

4 Numerical Results

- Comparisons
- Scalability tests
(5) Conclusion

Nearly incompressible elasticity

Material properties: Young modulus E and Poisson ratio ν or alternatively by its Lamé coefficients λ and μ :

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)} \text { and } \mu=\frac{E}{2(1+\nu)} .
$$

For ν close to $1 / 2$, the variational problem consists in finding $\left(\boldsymbol{u}_{h}, p_{h}\right) \in \mathcal{V}_{h}:=\mathbb{P}_{2}^{d} \cap H_{0}^{1}(\Omega) \times \mathbb{P}_{1}$ such that for all $\left(\boldsymbol{v}_{h}, q_{h}\right) \in \mathcal{V}_{h}$

$$
\left\{\begin{array}{cl}
\int_{\Omega} 2 \mu \underline{\underline{\varepsilon}}\left(\boldsymbol{u}_{h}\right): \underline{\underline{\varepsilon}}\left(\boldsymbol{v}_{h}\right) d x & -\int_{\Omega} p_{h} \operatorname{div}\left(\boldsymbol{v}_{h}\right) d x=\int_{\Omega} f \boldsymbol{v}_{h} d x \\
-\int_{\Omega} \operatorname{div}\left(\boldsymbol{u}_{h}\right) q_{h} d x & -\int_{\Omega} \frac{1}{\lambda} p_{h} q_{h}=0 \\
\Longrightarrow A \mathbf{U}=\left[\begin{array}{ll}
H & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u} \\
p
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right]=\mathbf{F} .
\end{array}\right.
$$

A is symmetric but no longer positive.

"Robin" interface condition for nearly incompressible elasticity

(Lube, 1998)

$$
\sigma(\boldsymbol{u}) . n+\mathcal{L}(\alpha) \boldsymbol{u}=0 . \text { on } \partial \Omega_{i} \backslash \partial \Omega
$$

Where \mathcal{L} is constructed from the Lamé coefficient of the material and it is defined as follows

$$
\mathcal{L}(\alpha, \lambda, \mu):=\frac{2 \alpha \mu(2 \mu+\lambda)}{\lambda+3 \mu}
$$

Parameter α in the range (1., 10.).

Comparisons (with FreeFem++)

Figure: 2D Elasticity: Sandwich of steel $\left(E_{1}, \nu_{1}\right)=\left(210 \cdot 10^{9}, 0.3\right)$ and $\operatorname{rubber}\left(E_{2}, \nu_{2}\right)=\left(0.1 \cdot 10^{9}, 0.4999\right)$.

Metis partitioning

Table: 2D Elasticity. GMRES iteration counts

		AS	SORAS	AS+CS(ZEM)		SORAS +CS(ZEM)	AS-GenEO		SORAS -GenEO-2		
Nb DOFs	Nb subdom	iteration	iteration	iteration	dim	iteration	dim	iteration	dim	iteration	dim
35841	8	150	184	117	24	79	24	110	184	13	145
70590	16	276	337	170	48	144	48	153	400	17	303
141375	32	497	++1000	261	96	200	96	171	800	22	561
279561	64	++1000	++1000	333	192	335	192	496	1600	24	855
561531	128	++1000	++1000	329	384	400	384	++1000	2304	29	1220
1077141	256	++1000	++1000	369	768	++1000	768	++1000	3840	36	1971

Numerical results via a Domain Specific Language

FreeFem++ (http://www.freefem.org/ff++), F.Hecht interfaced with

- Metis Karypis and Kumar 1998
- SCOTCH Chevalier and Pellegrini 2008
- UMFPACK Davis 2004
- ARPACK Lehoucq et al. 1998
- MPI Snir et al.
- Intel MKL
- PARDISO Schenk et al. 2004
- MUMPS Amestoy et al. 1998
- PETSc solvers Balay et al.
- Slepc via PETSc

Runs on PC (Linux, OSX, Windows, Smartphones) and HPC (Babel@CNRS, HPC1@LJLL, Titane@CEA via GENCI PRACE)
Why use a DS(E)L instead of C/C++/Fortran / . . ?

- performances close to low-level language implementation,
- hard to beat something as simple as:

$$
\begin{aligned}
\operatorname{varf} \mathrm{a}(\mathrm{u}, \mathrm{v}) & =\operatorname{int} 3 \mathrm{~d}(\operatorname{mesh})\left([\mathrm{dx}(\mathrm{u}), \mathrm{dy}(\mathrm{u}), \mathrm{dz}(\mathrm{u})]^{\prime} *[\mathrm{dx}(\mathrm{v}), \mathrm{dy}(\mathrm{v}), \mathrm{dz}(\mathrm{v})]\right) \\
& \left.+\operatorname{int} 3 \mathrm{~d}(\operatorname{mesh})\left(\mathrm{f}^{*} \mathrm{v}\right)+\text { on(boundary_mesh}\right)(\mathrm{u}=0)
\end{aligned}
$$

Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

(a) Timings of various simulations

200 millions unknowns in 3D wall-clock time: 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors.
Hours provided by an IDRIS-GENCI project.

Strong scalability in two and three dimensions (with FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity problem

			Factorization	Deflation	Solution	\# of it.	Total
\# of d.o.f.							
3D	1024	79.2 s	229.0 s	76.3 s	45	387.5 s	
	2048	29.5 s	76.5 s	34.8 s	42	143.9 s	$50.63 \cdot 10^{6}$
	4096	11.1 s	45.8 s	19.8 s	42	80.9 s	
	8192	4.7 s	26.1 s	14.9 s	41	56.8 s	

Peak performance: 50 millions d.o.f's in 3D in 57 sec .
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a framework in C++/MPI for high-performance domain decomposition methods with a Plain Old Data (POD) interface

Outline

(1) (Recall) on Additive Schwarz Methods

2 Optimized Restricted Additive Schwarz Methods

3 SORAS-GenEO-2 coarse space

4 Numerical Results
(5) Conclusion

Conclusion

Summary

- SORAS preconditioner

$$
M_{\text {SORAS }}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} B_{i}^{-1} D_{i} R_{i}
$$

is amenable to a fruitful theory for OSM

- Using two generalized eigenvalue problems, we are able to achieve a targeted convergence rate for OSM
- Freely available via HPDDM library or FreeFem++

Future work

- Another look at parameter α optimization
- Nonlinear time dependent problem (Coarse space reuse)
- Multigrid like three (or more) level methods

Bibliography

Preprints available on HAL and Software on freefem．org and github：

俥
P．Jolivet，V．Dolean，F．Hecht，F．Nataf，C．Prud＇homme，N．Spillane，＂High Performance domain decomposition methods on massively parallel architectures with FreeFem＋＋＂，J．of Numerical Mathematics， 2012 vol． 20.
宔
N．Spillane，V．Dolean，P．Hauret，F．Nataf，C．Pechstein，R．Scheichl，＂Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps＂，Numerische Mathematik， 2013.

R．Haferssas，P．Jolivet and F Nataf，＂A robust coarse space for Optimized Schwarz methods SORAS－GenEO－2＂， https：／／hal．archives－ouvertes．fr／hal－01100926，2015，submitted．
『
V．Dolean，P．Jolivet and F Nataf，＂An Introduction to Domain Decomposition Methods：algorithms，theory and parallel implementation＂， https：／／hal．archives－ouvertes．fr／cel－01100932，Lecture Notes to appear in SIAM collection， 2015.

P．Jolivet and F Nataf，＂HPDDM：high－performance unified framework for domain decomposition methods＂，https：／／github．com／hpddm／hpddm ，MPI－C＋＋library， 2014.

Bibliography

Preprints available on HAL and Software on freefem．org and github：

國
P．Jolivet，V．Dolean，F．Hecht，F．Nataf，C．Prud＇homme，N．Spillane，＂High Performance domain decomposition methods on massively parallel architectures with FreeFem＋＋＂，J．of Numerical Mathematics， 2012 vol． 20.
茥
N．Spillane，V．Dolean，P．Hauret，F．Nataf，C．Pechstein，R．Scheichl，＂Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps＂，Numerische Mathematik， 2013.

R．Haferssas，P．Jolivet and F Nataf，＂A robust coarse space for Optimized Schwarz methods SORAS－GenEO－2＂， https：／／hal．archives－ouvertes．fr／hal－01100926，2015，submitted．
圊
V．Dolean，P．Jolivet and F Nataf，＂An Introduction to Domain Decomposition Methods：algorithms，theory and parallel implementation＂， https：／／hal．archives－ouvertes．fr／cel－01100932，Lecture Notes to appear in SIAM collection， 2015.P．Jolivet and F Nataf，＂HPDDM：high－performance unified framework for domain decomposition methods＂，https：／／github．com／hpddm／hpddm ，MPI－C＋＋library， 2014.

THANK YOU FOR YOUR ATTENTION！

