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Sébastien Ferré?
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Abstract. Knowledge graphs offer a versatile knowledge representation,
and have been studied under different forms, such as conceptual graphs
or Datalog databases. With the rise of the Semantic Web, more and
more data are available as knowledge graphs. FCA has been successful
for analyzing, mining, learning, and exploring tabular data, and our aim
is to help transpose those results to graph-based data. Previous FCA ap-
proaches have already addressed relational data, hence graphs, but with
various limits. We propose G-FCA as an extension of FCA where the
formal context is a knowledge graph based on n-ary relationships. The
main contributions is the introduction of “n-ary concepts”, i.e. concepts
whose extents are n-ary relations of objects. Their intents, “projected
graph patterns”, mix relationships of different arities, objects, and vari-
ables. In this paper, we lay first theoretical results, in particular the
existence of a concept lattice for each concept arity, and the role of rela-
tional projections to connect those different lattices.

Keywords: Formal Concept Analysis, Knowledge Graph, Semantic Web,
Graph Pattern, Relation, Projection

1 Introduction

Since the dawn of artificial intelligence, graphs have been used to represent
knowledge as a set of interlinked entities. Notable formalisms are semantic net-
works, conceptual graphs [5], description logics [2], and more recently the Se-
mantic Web [11]. In the last ten years, the number and size of knowledge graphs
has exploded with the development of the Semantic Web, and its W3C stan-
dards (e.g., RDF, SPARQL). Its open side, called Linked Open Data (LOD),
is now made of more than 1000 datasets [17], which contain about 70 billions
semantic links (called triples). This effort has been joined by Web giants such
as the Google Knowledge Graph or Facebook Graph Search.

Formal Concept Analysis (FCA) [10] is concerned with the definition of con-
cepts from factual data, and their organization into a generalization ordering,
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the concept lattice. It serves many purposes such as knowledge discovery, ma-
chine learning, information retrieval, or software refactoring. It seems therefore
important to investigate the application of FCA to knowledge graphs. Only a
few works consider its direct application to graphs. A power context family [18]
is a form of knowledge graph, but there is a distinct concept lattice for each re-
lation arity. Relational Concept Analysis (RCA) [16] defines concepts that mix
unary and binary relationships, but only in tree-shaped patterns. Graphs have
also been used as object descriptions (e.g., for molecules) as an application of
pattern structures [9,13], but we do not consider those as knowledge graphs be-
cause graph nodes (e.g., individual atoms) are not formal objects. In all thoses
approaches, only unary concepts are defined, i.e., extents are sets of objects, not
relations. Concept lattices of relational structures [12] is an approach based on
category theory that shares with us the use of n-ary relations, and relations as
extents. However, the representation of an extent is not self-contained because it
shares variables with the intent. Similarly, in RCA, an intent contains relational
attributes that refer to other concepts, and so on, possibly in a circular way.

In this paper, we propose an extension of FCA, called Graph-FCA (G-FCA
for short), that is directly applicable to knowledge graphs. Graph entities play
the role of FCA objects, and graph relationships play the role of FCA attributes.
The consequence is that the incidence relation relates tuples of objects (with var-
ious arities) to attributes, rather than single objects to attributes. A key novelty
of our proposal is that an extensional representation is not a set of objects, but
a set of tuples of objects, i.e. a n-ary relation. The particular case of unary rela-
tions corresponds to sets of objects. An intensional representation is defined as
a projected graph pattern (PGP), i.e. as a graph pattern plus a projection tuple.
The projection tuple can have any arity, and the graph pattern can mix rela-
tions with various arities. Both extensional and intensional representation are
self-contained. A G-FCA concept is a pair (extent, intent) where the extent is
an object relation, and the intent is a PGP. This significantly extends previous
FCA approaches because power context families do not mix arities in concept
definitions, and RCA only defines unary concepts based on unary and binary
relations. In fact, PGPs are analogous to Datalog (non-recursive) predicate def-
initions [4], and to SPARQL queries. It suggests that G-FCA could be the basis
for discovering or learning n-ary predicate definitions, and for querying knowl-
edge graphs. The former is akin to Inductive Logic Programming (ILP) [15],
and for the latter, we have already worked out a solution [6]. This paper aims
at providing a formal basis and starting point for those applications.

After some technical preliminaries (Section 2), we formalize knowledge graphs
as graph contexts (Section 3). We then introduce projected graph patterns (PGP)
and object relations, and define mappings from one to the other based on PGP
inclusion and PGP intersection (Section 4). From those definitions, we organize
PGPs into a bounded lattice, and object relations into a complete lattice, from
which we prove the existence of a concept lattice for each concept arity (Sec-
tion 5). We relate the different concept lattices through projections (Section 6).
Finally, we conclude and discuss future work on G-FCA (Section 7).



2 Tuples, Substitutions, and Projections

A tuple is noted x = (x1, . . . , xk), where |x| = k is its arity. To avoid confusion
with other kinds of indices, x[i] can be used as an alternate notation for xi. The
set of all k-tuples over a domain E is noted Ek. The set of all tuples is defined
by E∗ =

⋃
k≥0E

k. There is only one 0-tuple, denoted by (). We use 1..k to
denote the set of integers from 1 to k.

We assume an infinite set of variables V, and we use letters to denote them
(e.g., x, y). A substitution σ ∈ ΣE is a mapping from variables to elements of E.
A substitution σ can be applied as a function to any structure, and returns that
same structure with any variable x in it replaced by σ(x). For example, given
the substitution σ = {x 7→ 1, y 7→ z}, we have σ((x, y, z)) = (1, z, z). The
empty substitution is denoted by id , and the composition of two substitutions is
denoted by σ2 ◦σ1, where (σ2 ◦σ1)(x) = σ2(σ1(x)). Given two k-tuples x, y, the

notation σyx denotes the substitution that maps xi to yi, for every i ∈ 1..k, and
any other variable not in x to itself. It is only well-defined when y is compatible
with x, i.e. for all i 6= j ∈ 1..k, xi = xj ⇒ yi = yj , and for all i ∈ 1..k,
xi /∈ V ⇒ yi = xi.

A projection π ∈ Π l
k is a function from target indices 1..l to source in-

dices 1..k. The projection π1 = {1 7→ 3, 2 7→ 1} can be more concisely repre-
sented by the tuple (3, 1). Projections are used to map a tuple to another tuple
according to the following formula: π(x)[i] = x[π(i)], i.e. the i-th element of a
projected tuple is the element at index π(i). The identity projection is denoted
by idk ∈ Πk

k , and the composition of two projections is denoted by π2 ◦ π1,
where (π2 ◦ π1)(x) = π2(π1(x)) (i.e., (π2 ◦ π1)(i) = π1(π2(i))). A permutation is
a bijective projection π, and has an inverse projection π−1 that is the inverse
permutation. Note that the combined applications of a substitution σ and a
projection π commute, i.e. π(σ(x)) = σ(π(x)) for every substitution σ, projec-
tion π ∈ Π l

k, and tuple x ∈ Ek.

3 Knowledge Graphs as G-FCA Contexts

The first step is to formalize a knowledge graph as a formal context, which we
call a graph context. The only difference with the classical FCA definition lies in
the use of object tuples (O∗) instead of objects (O) in the incidence relation.

Definition 1 (graph context). A graph context is a triple K = (O,A, I),
where O is a set of objects, A is a set of attributes, and I ⊆ O∗ × A is an
incidence relation between object tuples and attributes. The maximum cardinality
of incidences is denoted by |K|.

Figure 1 shows the graphical representation of a small graph context about
USA presidents. It uses a notation similar to conceptual graphs, using rectangles
for entities, and ellipses for relations [5]. A graph context is a directed multi-
hypergraph, where each node is labelled by an object o ∈ O (e.g., “Obama”,
“Hawaii”, “2009”), and where each directed hyperedge is an incidence (o, a) ∈ I.
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Fig. 1. Graphical representation of a graph context about USA presidents.

A hyperedge connects a number of objects o in a fixed order, and is labelled
by an attribute a ∈ A (e.g., “has president”, “is a country”). If |o| = 2, it is
equivalent to a classical edge linking two nodes: e.g., ((USA,Obama), president).
If |o| = 1, it is equivalent to a classical node labelling: e.g., ((USA), country).
The advantage of this definition is therefore to treat uniformly classical node
labels and edge labels, and to support hyperedges, i.e. n-ary relationships: e.g.,
((Obama,PeaceNobelPrize, 2009 ), awardInYear). Hyperedges are directed such
that each position in the tuple of objects o corresponds to a particular role in
the relationship: e.g., ((USA,Hawaii), state) holds while ((Hawaii ,USA), state)
does not. Nothing forbids to use the same attribute with different arities, but
this amounts to have different relationships with the same name1.

Graph contexts can easily be translated to/from other well-known relation-
based representations. For example, a graph context is equivalent to the union
of all elements of a power context family. The main limit when translating to
other representations is for n-ary relationships with n ≥ 2. That limit can be ad-
dressed by reifying hyperedges as nodes. In the Semantic Web, objects are RDF
nodes (URIs, literals, and blank nodes), attributes are class and property URIs,
and incidences are triples. In relational databases, objects are keys and values,
attributes are table names, and incidences are table rows. In Inductive Logic
Programming and Datalog, objects are Prolog atoms, attributes are predicates,
and incidences are background knowledge facts. In RCA, objects are objects,
attributes are either context attributes or relation names, and incidences are ei-
ther ((o), a) when o has attribute a in some context, or ((o1, o2), r) when (o1, o2)
are in relation r.

1 Similarly to Prolog where predicates are identified by their name and arity.



4 Projected Graph Patterns and Object Relations

In this section, we introduce the intensional and extensional representations of
G-FCA, as an extension of the sets of attributes and sets of objects of FCA. Sec-
tion 4.1 defines projected graph patterns as an extension of the sets of attributes
of FCA. Section 4.2 defines object relations as an extension of the sets of objects
of FCA. Section 4.3 then defines a mapping from projected graph patterns to
object relations, and Section 4.4 defines an inverse mapping from object rela-
tions to projected graph patterns. The two mappings are shown to form a Galois
connection in Section 5.3, and are the basis of G-FCA concept lattices.

4.1 Projected Graph Patterns as Intensional Representations

A concept intent is an intensional representation that describes everything that a
set of objects have in common. As a particular case, the intent of a single object
is the description of that object. Depending on the FCA variant, an intensional
representation can be a set of attributes, a logical formula [7], or a structure [9].
So, in order to identify G-FCA intensional representations, we may start by
asking what is an adequate object description in G-FCA. An object (e.g., USA)
should at least be described by its adjacent hyperedges (e.g., having a president)
and adjacent objects (e.g., Obama). Then, if adjacent objects are interlinked
(e.g., USA’s president and USA’s first lady are married), this should also appear
in the description. Similarly, the descriptions of adjacent objects (e.g., Obama
being born in Honolulu) should be included as they indirectly impact what the
object is (e.g., USA having a president born in Hawaii).

All in all, this implies that the description of an object is the entire knowledge
graph, or at least the connected component it belongs to if the knowledge graph
is disconnected. Given that knowledge graphs, like the Web, are generally not
disconnected, this seems to imply that all objects have the same description! In
fact, it is like if all objects were represented by the same knowledge graph, the
same world, but each from a different point of view. The different points of view
can be interpreted as different phrasings of the same information: e.g., “Obama
is the president of USA, and was born in Honolulu”, and “Honolulu is the birth
place of the president of USA, Obama”. Therefore, the description of an object o
in a graph context K = (O,A, I) can be defined as the couple (o, I).

It is possible to generalize descriptions from objects to tuples of objects.
For example, the description of the 2-tuple (Honolulu, USA) should contain the
properties of each object, and the relationships (direct and indirect) that link
them (e.g., Honolulu “is the capital of a state of” USA, Honolulu “is the birth
place of a president of” USA). Similarly to single objects, the description of a
tuple of objects o can be defined as (o, I).

Object descriptions need to be generalized to form concept intents shared
by several objects, or several tuples of objects. For instance, we want to de-
scribe what Obama and Clinton have in common, or what (Honolulu, Hawaii)
and (Houston, Texas) have in common. Like in ILP, generalization is obtained
in two ways: (1) replacing objects by variables, and (2) removing hyperedges.



This leads us to the following definitions of a graph pattern as a generalized
incidence relation, and of a projected graph pattern (PGP) as a generalized de-
scription. In the following definitions, we use X = O∪V to denote the domain of
nodes in graph patterns, which can be objects or variables. We assume a graph
context K = (O,A, I) that defines objects and attributes.

Definition 2 (graph pattern). A graph pattern P ⊆ X ∗ × A is a set of
directed hyperedges with variables and/or objects as nodes, and attributes as
labels. Substitutions are extended to patterns: σ(P ) = {(σ(v), a) | (v, a) ∈ P}.

Graph patterns have the same type as incidence relations, only allowing
variables in addition to objects as nodes. For instance, the pattern Pex =
{((x, y), president), ((y,Honolulu), birthPlace)} describes any situation where
“some entity x has as a president another entity y, which has birth place Hon-
olulu”. Every graph pattern can be seen as a small graph context, abstracted over
some objects by variables. We are primarily interested in connected patterns, but
disconnected patterns are not excluded.

Definition 3 (projected graph pattern). A projected graph pattern (PGP)
is a couple Q = (x, P ) where P is a graph pattern, and x ∈ X ∗, called projection
tuple, is a tuple of variables and possibly objects. |Q| = |x| denotes the arity
of the PGP. We note Q the set of PGPs, and Qk the subset of PGPs having
arity k. Projections are extended to PGPs: π(Q) = (π(x), P ).

A projection tuple can be seen as a tuple of objects abstracted with variables.
For instance, the PGP Qex = ((x), Pex ) using the above pattern describes “any
entity x having a president born in Honolulu”. Pattern hyperedges can be seen
as constraints on variables. A variable that occurs in the projection tuple but not
in the pattern is unconstrained, and can take any object as value. A variable that
occurs in the pattern but not in the projection tuple is existentially quantified
with respect to projected variables. In Qex , there must exist an entity y that the
president of x and is born in Honolulu, but which one and how many does not
matter.

Objects and duplicates in the projection tuple x define equality constraints
between the indices of x.

Definition 4 (equality constraints). Let x be a projection tuple of arity k.
Its set of equality constraints is defined by

Eq(x) = {(i, j) | i < j ∈ 1..k, xi = xj} ∪ {(i, o) | i ∈ 1..k, o ∈ O, xi = o}.

A set of equality constraints generates an equivalence relation between projection
tuple indices and objects, and is confused with it in the following.

For example, the set of equality constraints of the projection tuple (x, o, x, y) is
{(1, 3), (2, o)}, and generates three equivalence classes: {1, 3}, {2, o}, and {4}.
Equality constraints come in addition to hyperedge constraints from the graph



pattern P . By allowing objects in projection tuples, we allow object descrip-
tions in the form (o, I) to act as fully instantiated PGPs. By allowing du-
plicates, we allow a single entity to play different roles, like when searching
a common PGP between the pairs (Canberra,Sydney) and (Paris,Paris): e.g.
((x, y), {((z),Country), ((z, x), capital), ((z, y), biggestCity)}).

As said above, PGPs are an extension of the sets of attributes of
FCA. For instance, the set of attributes {a, c, d} corresponds to the PGP
((x), {((x), a), ((x), c), ((x), d)}), where x is a variable. Indeed, in FCA, {a, c, d}
covers all objects that have at least attributes a, c, d. In G-FCA, this can be ex-
pressed as a node labelled by a, c, d, hence the introduction of the variable x. In
general, a set of attributes Y corresponds to the PGP ((x), {((x), a) | a ∈ Y }).

PGPs are comparable to non-recursive predicate definitions, and to SPARQL
ASK/SELECT conjunctive queries. For example, the definition of the ’uncle’
predicate

uncle(x, y) :⇔ ∃z.parent(x, z) ∧ brother(z, y)

is equivalent to the PGP ((x, y), {((x, z), parent), ((z, y), brother)}). Similarly,
the SPARQL SELECT query

SELECT ?x ?y WHERE

{ ?x a :Film . ?x :genre :ScienceFiction . ?x :director ?y }

is equivalent to the PGP ((x, y), {((x),Film), ((x,ScienceFiction), genre),
((x, y), director)}). The SPARQL ASK queries (yes/no questions) correspond
to PGPs whose arity is zero (x = ()).

4.2 Object Relations as Extensional Representations

In our introduction of PGPs as intensional representations, we made a shift from
single objects to tuples of objects. That implies that extensional representations
are sets of tuples of objects. With the constraint that all member tuples have
the same arity, we obtain that extensional representations are object relations.

Definition 5 (object relation). An object relation is a set R ⊆ Ok, for some
arity |R| = k, of object tuples. We note R the set of object relations, and
Rk the subset of relations having arity k. Projections are extended to relations:
π(R) = {π(o) | o ∈ R}.

R0 has only two relations: {()} and {}. It can be seen as the Boolean type,
with the two relations meaning “true” and “false” respectively. R1 has one rela-
tion for each set of objects X ⊆ O. It therefore corresponds to FCA extensional
representations. For instance, the set of objects {o1, o3, o4} corresponds to the
object relation {(o1), (o3), (o4)}, simply embedding each object into a 1-tuple.
In general, a set of objects X corresponds to the object relation {(o) | o ∈ X}.
Object relations are comparable to the interpretations of a predicate in classical
logic, and to SPARQL query results.



4.3 From Patterns to Relations

We here define a mapping from PGPs to object relations, i.e. from intensional
representations to extensional representations. It defines for each PGP its exten-
sion, i.e. its set of instances in a given graph context. An instance is a tuple of
objects whose description (o, I) “contains” the PGP modulo a substitution.

Definition 6 (PGP inclusion). Let Q1 = (x1, P1), Q2 = (x2, P2) be two
PGPs with same arity: |Q1| = |Q2|. Q1 is included in Q2, or equivalently Q2

contains Q1, which is denoted by Q1 ⊆q Q2 iff there exists an substitution σ s.t.
σ(x1) = x2 and σ(P1) ⊆ P2.

Q1 ⊆q Q2 :⇔ ∃σ ∈ ΣX : σ(x1) = x2 ∧ σ(P1) ⊆ P2

That definition is careful to account for variable renamings by introducing
a substitution from Q1-variables to Q2-nodes. Indeed, like in logical formulas,
variable names are irrelevant to the meaning of PGPs.

Definition 7 (extension). Let K = (O,A, I) be a graph context. The extension
of a k-PGP Q = (x, P ), denoted by ext(Q), is defined by

ext(Q) := {o ∈ Ok | Q ⊆q (o, I)}

The above definitions say that for every occurence of the pattern P in the
graph context (σ(P ) ⊆ I), there is an instance of Q (σ(x)). Conversely, if o is an
instance of Q, then Q = (x, P ) must be a generalization of its description (o, I),
i.e. replacing some objects by variables and relaxing some constraints.

For example, in the graph context of Figure 1, the PGP ((x, y),
{((USA, x), president), ((x, z), birthPlace), ((USA, y), state), ((y, z), city)}) has
the following extension: {(Obama,Hawaii), (Clinton,Arkansas)}. That PGP re-
trieves the list of USA presidents along with the state of their birth place.

The above definition is compatible with the interpretation of a predicate
definition in classical logic: our incidence relation I corresponds to a model, and
our substitution σ corresponds to a variable assignment. It is also compatible
with SPARQL query results: our incidence relation I corresponds to a RDF
graph, and our substitution corresponds to a solution mapping. Finally, it is
consistent with classical FCA in the case where only 1-tuples are used, i.e.,
when Q = ((x), {((x), a) | a ∈ Y }) for some set of attributes Y ⊆ A. Indeed,
by casting 1-tuples to their element, and picking σ = {x 7→ o}, we obtain the
classical FCA definition: ext(Y ) = {o ∈ O | ∀a ∈ Y : (o, a) ∈ I}.

Note that substitutions used in PGP inclusion are homomorphisms, and not
isomorphisms, because two different variables can be substituted by a single
node. This departs from previous work in graph mining and FCA [19,13] which
are based on isomorphisms, but this follows classical logic and SPARQL querying
as explained above.



4.4 From Relations to Patterns

We here define a mapping from object relations to PGPs, i.e. from extensional
representations to intensional representations. It defines for each object relation
its intension as the “PGP intersection” of the description of all tuples o ∈ R.

Definition 8 (PGP intersection). Let {Qi = (xi, Pi)}i∈1..n be a finite and
non-empty collection of n PGPs of same arity k. Let ν be a fixed bijection from
Xn to X s.t. ν(x, . . . , x) = x for all x ∈ X . The PGP intersection ∩q{Qi}i∈1..n
is the PGP Q = (x, P ) of arity k, where:

– x = (x1, . . . , xk), where for all j ∈ 1..k, xj = ν(x1[j], . . . , xn[j]),
– P = {((ν(v1), . . . , ν(vk)), a) | k ∈ 1..|K|,∀j ∈ 1..k : vj ∈ Xn, a ∈ A,

∀i ∈ 1..n : ((v1[i], . . . , vk[i]), a) ∈ Pi}.

Definition 9 (intension). Let K = (O,A, I) be a graph context. The intension
of a non-empty object relation R ∈ Rk, denoted by int(R), is defined by

int(R) = ∩q{(o, I)}o∈R

The idea of PGP intersection is to define a node ν(vj) for every possible
alignment of n-nodes {vj [i]}i∈1..n, one from each PGP Qi of the collection. Then,
if an hyperedge holds at every position i ∈ 1..n of k alignment nodes (v1, . . . , vk),
then it is a shared structure and it belongs to the pattern of the PGP intersection.
The projection tuple is then derived from the alignment of the projection tuples
of the collection. In practice, the connected components of the graph pattern P
that do not contain any element of the projection tuple can be omitted (reduced
intension) because they do not affect the extension of the PGP intersection. For
the same reason, hyperedges that are in the incidence relation I can be omitted.

For example, in the graph context of Figure 1, the object relation R =
{(USA,Hope), (USA,Honolulu)} has the following reduced intension: ((USA, x),
{((USA, y), state), ((y, x), city), ((USA, z), president), ((z, x), birthPlace)}).
The obtained variables are derived from the following alignments:
x = ν(Hope,Honolulu), y = ν(Arkansas,Hawaii), z = ν(Clinton,Obama).
Through alignments, PGP intersection does not only provide a common
PGP, but also an explanation of how each instance relates to the oth-
ers. PGP intersection also applies to PGPs with variables. For exam-
ple, the intersection of Q1 = ((x1), {((x1, y1), a), ((x1, z1), c), ((y1, z1), b)})
and Q2 = ((x2), {((x2, y2), a), ((x2, y2), c), ((y2, y2), b)} is Q =
((x), {((x, y), a), ((x, z), c), ((y, z), b)}), which is isomorphic to Q1. Here,
both y1, z1 are aligned with y2, hence generating two variables y = ν(y1, y2)
and z = ν(z1, y2). Note that Q is not subgraph isomorphic to Q2. Indeed,
under isomorphism, PGP intersection would be the problem of Maximum
Common Subgraphs (MCS). A drawback of MCS is that there is generally not
a unique solution, so that sets of graph patterns have to be used for intensional
representations [13]. Moreover, the MCSs can be less specific. For example, the
MCSs of Q1 and Q2 patterns are {((x, y), a)} and {((x, z), c)}.



The above definitions of PGP intersection and intension are consistent with
classical FCA, where only unary relations (sets) are used. In this case, every PGP
needs only one variable. Therefore, given a set of objects X = {oi}i∈1..n ⊆ O,
the intension of X has one projected variable x = ν(o1, . . . , on), and a graph
pattern like P = {((x), a) | a ∈ A,∀i ∈ 1..n : ((oi), a) ∈ I}. By casting 1-tuples
to their element, we obtain the classical FCA definition: int(X) = {a ∈ A | ∀o ∈
X : (o, a) ∈ I}.

5 A Family of Graph Concept Lattices

In order to prove that (ext , int) forms a Galois connection, and hence the ex-
istence of a graph concept lattice for each concept arity, we first define partial
orderings for each arity, over both PGPs and object relations. We also show that
PGPs form a bounded lattice, and object relations a complete lattice.

5.1 Lattices of k-PGPs

The partial ordering over PGPs should correspond to a generalization order-
ing over them. Intuitively, a PGP Q1 is more general than a PGP Q2 if
Q1 is included in Q2: Q1 ⊆q Q2 (see Definition 6). Indeed, assume Q2 =
((x, y), {((x), country), ((x, y), president)}) representing the relationship between
countries and their president. Then, Q1 = ((x, y), {((x, y), president)}) repre-
senting the relationship between different kinds of organizations and their pres-
ident is more general than Q2 because it relaxes the constraint saying that the
organization should be a country. Generalization by constraint relaxation is also
found in ILP to define subsumption between learning hypotheses.

Recall that PGP inclusion is defined modulo a substitution, and that a sub-
stitution can map two different nodes in Q1 to a single node in Q2. The latter
corresponds to adding an equality constraint between two entities, which is in-
deed a specialization. It enables to have

((x, y), {((x, y), president), ((x′, y), president)}) ⊆q ((x, y), {((x, y), president)}),

by mapping both x, x′ to x. Note that the first PGP does not state that y is the
president of two organizations, but rather states twice that y is a president, which
is equivalent to the second PGP. As the reverse inclusion trivially holds, the two
PGPs are equivalent representations of the same thing. We note Q1 ≡q Q2 when
Q1 ⊆q Q2 and Q2 ⊆q Q1. PGP inclusion is compatible with inclusion between
sets of attributes in FCA. Indeed, as a single variable is involved in FCA,the
substitution must be the identity function, and the definition of Q1 ⊆q Q2 boils
down to P1 ⊆ P2.

We prove that ⊆q is a preorder, and hence that a partially ordered set is
obtained for patterns by considering equivalence classes of PGPs modulo ≡q.

Lemma 1. PGP inclusion ⊆q is a preorder over PGPs.



Proof. reflexivity. Given a PGP Q, it suffices to take σ = id to verify σ(P ) ⊆ P
and σ(x) = x, and hence Q ⊆q Q.

transitivity. Assume PGPs Q1, Q2, Q3 s.t. Q1 ⊆q Q2 and Q2 ⊆q Q3.
Hence, there exists two substitutions σ1, σ2 s.t. σ1(P1) ⊆ P2, σ2(P2) ⊆ P3,
σ1(x1) = x2, and σ2(x2) = x3. Then, it suffices to take σ = σ2 ◦ σ1 to verify
σ(P1) = σ2(σ1(P1)) ⊆ σ2(P2) ⊆ P3, and also σ(x1) = σ2(σ1(x1)) = σ2(x2) = x3.
Hence Q1 ⊆q Q3. �

Before showing that the pre-ordering over k-PGPs forms a bounded lattice
modulo ≡q, for every arity k, we first need to define PGP union to act as a
supremum. To this purpose, we need to introduce an additional maximal PGP,
denoted by Ωq, that is defined as containing all PGPs (∀Q : Q ⊆q Ωq), and only
included in itself (∀Q : Ωq ⊆q Q⇒ Q = Ωq). It can therefore be used to extend
the definition of PGP intersection to empty collections: ∩q∅ := Ωq.

Definition 10 (PGP union). Let {Qi = (xi, Pi)}i∈1..n be a finite collection
of n PGPs of same arity k, using disjoint sets of variables. The PGP union
∪q{Qi}i∈1..n is either the PGP (x, P ) of arity k verifying

– Eq(x) =
⋃
i∈1..n Eq(xi)

– P =
⋃
i∈1..n{σxxi

(Pi)}

when Eq(x) has no two different objects in a same equivalence class; or else Ωq.

The assumption that PGPs do not share any variable is there to avoid vari-
able capture. It entails no loss of generality because variable can be renamed
freely. PGP union corresponds to add both equality and edge constraints of all
PGPs Qi, and is logically equivalent to a conjunction. When a projection tuple
that satisfies all equality constraints can be formed, it is used as a projection
tuple of the PGP union, and also to merge variables (σxxi

) from the different pro-
jection tuples xi in the collection of PGPs. Given a set of equality constraints,
e.g. {(1, 3), (2, o)}, a projection tuple is formed by using a single node for all
indices of an equivalence class (e.g., 1 and 3), and by choosing as a node the
object in the equivalence class if there is one (e.g., o for 2), or a fresh variable
otherwise (e.g., x for 1 and 3). The case where several objects belong to a same
equivalence class corresponds to a contradiction between the differents PGPs,
and the maximal PGP Ωq is used to denote such a contradiction. The extension
of Ωq is always the empty relation because it is only included in itself, and not
in any object tuple description. The PGP union of an empty collection corre-
sponds to an empty set of constraints, and defines the minimal PGP ∅q = (x, ∅),
where x is a tuple of k distinct variables. Finally, PGP union is compatible with
the union of sets of attributes in FCA.

We first prove two lemmas stating that ∪q and ∩q are respectively the supre-
mum and infimum of k-PGPs, before stating the main theorem about bounded
lattices of k-PGPs.

Lemma 2. Let Q1, Q2 be two PGPs. Their PGP union Q1∪qQ2 is their supre-
mum relative to query inclusion ⊆q.



Proof. Let Q = Q1 ∪q Q2. To prove that Q is an upper bound, it suffices to
prove that it contains both Q1 and Q2. If Q = Ωq, then it contains both Q1

and Q2 by definition. Otherwise Q = (x, P ). To prove Q1 ⊆q Q, it suffices to
choose σ1 = σxx1

, which is well-defined because Eq(x1) ⊆ Eq(x), and to prove
σ1(x1) = x and σ1(P1) ⊆ P . This is easily obtained from the definition of Q.
The proof of Q2 ⊆q Q is identical with σ2 = σxx2

.
To prove that Q is the least upper bound (the supremum), we have to prove

that every PGP Q′ that contains both Q1 (via σ1) and Q2 (via σ2) also con-
tains Q. If Q′ = Ωq, then Q ⊆q Q′ by definition of Ωq. Otherwise, Q′ = (x′, P ′).
From hypotheses σ1(x1) = x′ and σ2(x2) = x′, we obtain that Eq(x1) ⊆ Eq(x′)
and Eq(x2) ⊆ Eq(x′). Then, we have Eq(x) = Eq(x1) ∪ Eq(x2) ⊆ Eq(x′), and
hence that σ = σx

′

x is well-defined. We can then easily prove that σ(x) = x′ and
σ(P ) ⊆ P ′, and hence that Q ⊆q Q′. �

Lemma 3. Let Q1, Q2 be two PGPs. Their PGP intersection Q1 ∩q Q2 is their
infimum relative to query inclusion ⊆q.

Proof. To prove that Q1 ∩q Q2 is a lower bound, it suffices to prove that Q
is included in both Q1 and Q2. To prove Q ⊆q Q1, it suffices to choose the
substitution σ1(x) = (ν−1(x))[1], and to prove that σ1(x) = x1 and σ1(P ) ⊆ P1.
This is easily obtained from the definition of Q. The proof of Q ⊆q Q2 is identical
with σ2(x) = (ν−1(x))[2].

To prove that Q1 ∩q Q2 is the greatest lower bound (the infimum), we
have to prove that every PGP Q′ that is included in both Q1 (via σ1)
and Q2 (via σ2) is also included in Q. To that purpose, it suffices to choose
σ(x′) = ν(σ1(x′), σ2(x′)), and to prove that σ(x′) = x and σ(P ′) ⊆ P . This can
be obtained from the definition of Q, and from the hypotheses σ1(x′) = x1,
σ1(P ′) ⊆ P1, σ2(x′) = x2, and σ2(P ′) ⊆ P2. �

Theorem 1. For every arity k, the algebraic structure (Qk,⊆q,∩q,∪q, Ωq, ∅q)
forms a bounded lattice, module ≡q.

Proof. The proof follows immediately from above lemmas and definitions. �

5.2 Complete Lattices of Object k-Relations

The partial ordering over object relations should be consistent with the partial
ordering on PGPs if we are to obtain concept lattices. Therefore, it should cor-
respond to a form of generalization at the extensional level. A PGP can be made
more general by relaxing constraints, which entails a larger extension. As object
relations are sets of object tuples, we simply use set inclusion to partially order
them. Given that Rk is the powerset of Ok, the poset (Rk,⊆,∩,∪, Ok, ∅) is a
complete lattice, with set intersection ∩ as infimum, set union ∪ as supremum,
full relation Ok as top, and empty relation ∅ as bottom.



5.3 Lattices of Graph k-Concepts

In order to prove the existence of a concept lattice for each arity, it suffices to
prove that the two mappings between extensional and intensional representations
form a Galois connection.

Theorem 2 (Galois connection). Let K = (O,A, I) be a graph context. For
every arity k, the pair of mappings (ext , int) forms a Galois connection between
(Rk,⊆) and (Qk,⊆q), i.e. for every object relation R ∈ Rk and PGP Q ∈ Qk,

R ⊆ ext(Q)⇐⇒ Q ⊆q int(R)

Proof. R ⊆ ext(Q) ⇐⇒ ∀o ∈ R : o ∈ ext(Q)
⇐⇒ ∀o ∈ R : Q ⊆q (o, I) (Definition 7)
⇐⇒ Q ⊆q ∩q{(o, I)}o∈R (Lemma 3)
⇐⇒ Q ⊆q int(R) (Definition 9) �

Corollary 1. From (ext , int) being a Galois connection and from
(Rk,⊆,∩,∪, Ok, ∅) and (Qk,⊆q,∩q,∪q, Ωq, ∅q) being lattices, we have the
following propositions for every relations R,R1, R2 ∈ Rk, and every PGP
Q,Q1, Q2 ∈ Qk, for any arity k:

(1a) Q1 ⊆q Q2 ⇒ ext(Q1) ⊇ ext(Q2) (1b) R1 ⊆ R2 ⇒ int(R1) ⊇q int(R2)
(2a) Q ⊆q int(ext(Q)) (2b) R ⊆ ext(int(R))
(3a) int(R) ≡q int(ext(int(R))) (3b) ext(Q) = ext(int(ext(Q)
(4a) int(R1 ∪R2) ≡q int(R1) ∩q int(R2) (4b) ext(Q1 ∪q Q2) = ext(Q1) ∩ ext(Q2)
(5a) int(∅) ≡q Ωq (5b) ext(∅q) = Ok

From the Galois connection, graph concepts can be defined and organized into
concept lattices, like in classical FCA, with one concept lattice for each arity k.

Definition 11 (graph concept). Let K = (O,A, I) be a graph context. A
graph concept of K is a pair (R,Q), made of an object relation (the extent)
and a PGP (the intent), such that R = ext(Q) and Q ≡q int(R). The arity of a
graph concept is the arity of its extent and intent, which have to be equal.

Theorem 3 (graph concept lattices). The set of graph k-concepts Ck, par-
tially ordered by ≤, which is defined by (R1, Q1) ≤ (R2, Q2) :⇐⇒ R1 ⊆ R2 ⇐⇒
Q2 ⊆q Q1, forms a bounded lattice (Ck,≤,∧,∨,>,⊥) where:

1. (R1, Q1) ∧ (R2, Q2) = (R1 ∩R2, int(ext(Q1 ∪q Q2)),
2. (R1, Q1) ∨ (R2, Q2) = (ext(int(R1 ∪R2)), Q1 ∩q Q2),
3. > = (Ok, int(ext(∅q))),
4. ⊥ = (∅, Ωq).

In the example context of Figure 1, the most interesting graph
concept has as an extent the set of triples (president, city, state):
{(Obama,Honolulu,Hawaii), (Clinton,Hope,Arkansas)}. Its intent is the
PGP ((p, c, s), {((USA, p), president), ((p, c), birthPlace), ((USA, s), state),
((s, c), city)}). Other graph concepts are either projections of it (see Section 6),
concepts with singleton extents (having one tuple), the top concepts (having all
tuples), and the bottom concepts (having no tuple).



6 Projections Between Concept Lattices

In the previous section, we have shown the existence of a family of graph concept
lattices, one for each arity k ≥ 0. This is analogous to previous work with power
context families [18], with the important difference that each k-concept has as an
intent a PGP that may combine relationships of different arities. As FCA lattices
are generally used as search spaces for knowledge discovery, it is useful to relate
concepts from different lattices, i.e. having different arities. To that purpose,
we use projections, a fundamental operation in relational algebra (see Section 2
for definitions and notations). A projection enables to permute, duplicate, and
remove columns in relations and PGPs. Our projections differ from those of
pattern structures, which are used to simplify graph patterns [9].

We first demonstrate that the set of all concept extents is closed by projec-
tion because the projection of the extension of a PGP is the extension of the
projection of the PGP.

Lemma 4. For all Q ∈ Qk, and π ∈ Π l
k, we have: π(ext(Q)) = ext(π(Q)).

Proof. π(ext(Q)) = π({o | ∃σ : σ(x) = o ∧ σ(P ) ⊆ I})
= {π(o) | ∃σ : σ(x) = o ∧ σ(P ) ⊆ I} = {o′ | ∃σ : π(σ(x)) = o′ ∧ σ(P ) ⊆ I}
= {o′ | ∃σ : σ(π(x)) = o′ ∧ σ(P ) ⊆ I} = ext((π(x), P )) = ext(π(Q)) �

Theorem 4. Let π ∈ Π l
k be a projection. For every k-concept (R,Q),

(π(R), int(ext(π(Q)))) is a l-concept. The latter is called the π-projection of
concept (R,Q), denoted by π(R,Q).

Proof. From Lemma 4, we have π(R) = π(ext(Q)) = ext(π(Q)), so
that π(R) is a l-concept extent. The corresponding l-concept intent is
int(π(R)) = int(π(ext(Q))) = int(ext(π(Q))). �

For example, let P = {((x), country), ((x, y), president)} be a graph pat-
tern relating a country to its president. The PGP Q = ((x, y), P ) returning pairs
(country,president) can be projected to the PGP ((y), P ) returning all presidents
of a country, or to the PGP ((x), P ) returning all countries having a president.
In the particular case where k = l, the two concepts belong to the same lattice.
For example, the PGP ((y, x), P ) is a permutation of Q. Therefore, there may
be up to k! permutations of a single k-concept in the same concept lattice. As
those permutations are equivalent from the point of view of knowledge discovery,
a concept lattice could in principle be made smaller by retaining only one of the
permutations. Note that a concept can sometimes be equal to some of its permu-
tations. For example, The query ((x, y), {((x, z), parent), ((y, z), parent)}), which
defines the sibling relationship, has the same extension as its permutation (y, x).
This equality comes from a symmetry in the PGP.

The existence of a projection between two concepts defines a pre-ordering ≤π
on the set of all concepts C =

⋃
k≥0 Ck. Indeed, it satisfies transitivity (by com-

posing projections), reflexivity (by using the identity projection), but not an-
tisymmetry (consider a permutation and its inverse). Two concepts are then



equivalent (=π) if they are a permutation one of the other. The example con-
cept from Section 5.3, which contains triples (president, city, state), has 6 distinct
permutations, and 2× 3 projections of arity 2, and 3 projections of arity 1. The
fact that all those projections have the same number of instances as the example
concept reveals functional dependencies from any column to the others. For in-
stance, the president determines the city and state. The functional dependency
from state to president would be violated if two presidents in the concept extent
were associated to the same state. This example suggests that the partial order-
ing ≤π can support the discovery of functional dependencies, and may generalize
previous work on multi-valued contexts [1].

7 Conclusion and Future Work

We have proposed an extension of FCA, G-FCA, where objects are replaced by
tuples of objects. In G-FCA, the context is a knowledge graph, concept intents
are projected graph patterns (PGP), and concept extents are object relations. A
set-like algebra of PGPs is defined with inclusion, intersection, and union. PGP
inclusion is related to graph matching, and hence to query answering. PGP inter-
section is related to finding common subgraphs under homomorphism, and hence
to data mining and machine learning. The constructive definitions of PGP opera-
tions already allow for a direct implementation, but more efficient algorithm have
to be devised for practical use. Another objective is to clarify the relationship
between G-FCA and previous FCA works, notably power content families and
concept graphs [18], Relational Concept Analysis [16], EL-implication bases [3],
and concept lattices of relational structures [12].

The results presented in this paper have yet a limited utility, and it remains
to show how FCA applications can be transposed to G-FCA. The most common
application is to compute and visualize concept lattices. The main difficulty is the
huge number of graph patterns, even closed ones [19]. Restrictions can be applied
to PGPs (e.g., fully connected patterns, bounded arity, graph isomorphism), but
those will probably not be enough in practice due to the combinatorial explosion
of graph patterns. Another common application is the discovery of implication
rules. In G-FCA, this would correspond to unsupervised ILP, but limited to ex-
act rules. Given how costly ILP is in the supervised setting, the computation of
all implication rules could be a challenge. Alternately, those implications could
be computed on the need, specifically for each (tuple of) object(s) to be classi-
fied [8,14]. Yet another application is to use the concept lattice as a search space
for information retrieval. In fact, we have already formalized and implemented
such an application [6], and it was the inspiration for the current work.
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1. Allard, P., Ferré, S., Ridoux, O.: Discovering functional dependencies and associa-
tion rules by navigating in a lattice of OLAP views. In: Kryszkiewicz, M., Obiedkov,
S. (eds.) Concept Lattices and Their Applications. pp. 199–210. CEUR-WS (2010)



2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

3. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite
model. In: Medina, R., Obiedkov, S.A. (eds.) Int. Conf. Formal Concept Analysis.
pp. 46–61. LNCS 4933, Springer (2008)

4. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

5. Chein, M., Mugnier, M.L.: Graph-based knowledge representation: computational
foundations of conceptual graphs. Advanced Information and Knowledge Process-
ing, Springer (2008)
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