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ABSTRACT 17 

Traveling-wave electrohydrodynamic (EHD) micropumps can be incorporated 18 

into the package of an integrated circuit chip to provide active cooling. They can also be 19 

used for fluid delivery in microdevices. The pump operates in the presence of a thermal 20 

gradient through the fluid layer such that a gradient in electrical conductivity is 21 

established allowing ions to be induced. These ions are driven by a traveling electric field. 22 

Such a traveling electric field can be realized in practice only via discrete electrodes upon 23 

which the required voltages are imposed. The impact of using discrete electrodes to create 24 

the traveling wave on the flow rates generated is explored through numerical modeling. 25 

The change in performance from an ideal sinusoidal voltage boundary condition is 26 

quantified. The model is used to explore the widths of electrodes and the intervening 27 

isolation regions that lead to optimized pumping. The influence of the choice of working 28 

fluid on the performance of the pump is determined using an analytical model.  29 
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1. INTRODUCTION 1 

Thermal management of electronic components is of increasing concern in the 2 

development of reliable and portable electronic devices.  The need to reduce package 3 

weight and volume while increasing the functionality has been widely discussed in recent 4 

years.  The reduction in transistor size and the increase in power density necessitate 5 

alternative cooling techniques to replace conventional air-cooled heat sinks.  Among the 6 

alternative strategies for improved thermal management of electronic systems, liquid 7 

cooling using microchannels offers the ability to increase power dissipation while also 8 

maintaining a small form factor.  Contact and spreading resistances can be reduced or 9 

even eliminated by integrating the channels directly on the back side of common flip-chip 10 

designs.  Further, by using liquid cooling, the heat-generation and heat-dissipation 11 

components can be separated, allowing the convective surface area to be unconstrained by 12 

the microprocessor area (Mahajan et al. 2006).  Thus, the heat exchanger in the cooling 13 

loop can be placed at any convenient location in the system.  Typically, desirable 14 

attributes of a pump for electronics cooling are that they provide high flow rates with low 15 

power consumption.  However, high flow rates usually translate to large pumps to drive 16 

the liquid flow.  The prohibitive pumping requirements have limited the application of 17 

microchannel heat sinks in space-constrained electronics (Garimella et al. 2006).  18 

Solutions which integrate micropumps directly into the microchannels thus represent an 19 

important research area to facilitate broader use of liquid cooling in electronic systems. 20 

Additionally, the development of cell analysis tools has recently targeted 21 

microfluidic devices since they can be used to sample, trap, separate, sort, treat and 22 

analyze cells (Andersson and Van den Berg 2003).  Microfluidic devices offer many 23 

attractive benefits for biological handling and analysis.  For example, reducing device 24 

size also reduces sample requirements and reagent volumes, which can reduce overall 25 

cost.  Test chips are often disposable which is important for sterility.  Using microfluidic 26 

chips also allows for a closed system, thus protecting the operator from chemical 27 

exposure.  The small size accommodates parallel operations and thereby reduces cell 28 

sorting, analysis and treatment times.  Combining different functions on a single 29 

microchip is another step toward achieving a completely closed system that can be fully 30 
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automated, reduce contamination, and eliminate human intervention and error (Wolff et 1 

al. 2003).  However, for microfluidic devices to capitalize on all of the above benefits, 2 

integration of the fluid pumping mechanism is imperative.  Early microfabricated cell-3 

sorting devices used electroosmotic flow as the driving mechanism, which resulted in low 4 

sample throughput (Fu et al. 1999).  An increased throughput has been achieved using 5 

pressure-driven alternatives, but at the expense of removing the pumping mechanism 6 

from the chip level (Fu et al. 2002, Wolff et al. 2003).  Regardless, the target flow rates 7 

for pumping biological materials are typically much lower than for convective cooling, 8 

allowing reduced demands on pump operating conditions (such as voltage, power, etc.) to 9 

obtain the desired range of fluid flow. 10 

Recent reviews of possible micropumping mechanisms are available in (Iverson and 11 

Garimella 2008, Laser and Santiago 2004, Singhal et al. 2004).  Although 12 

electrohydrodynamics (EHD) has been studied for many years (Melcher 1966, Melcher 13 

and Firebaugh 1967, Seyed-Yagoobi 2005, Seyed-Yagoobi et al. 1989a, Seyed-Yagoobi 14 

et al. 1989b), it has recently emerged as a potential driving mechanism for micropumps 15 

due to its miniaturization potential (Choi and Kim 1995, Fuhr et al. 1992).  Further, EHD 16 

pumps have the ability to pump a variety of liquids for applications in various research 17 

fields (Crowley et al. 1990).  A particular advantage of these pumps is that for traveling-18 

wave induction EHD pumps, no modifications are necessary to enable pumping of 19 

different types of liquids other than a change in frequency of excitation (Fuhr et al. 1994). 20 

Melcher and Firebaugh (Melcher and Firebaugh 1967), in an early EHD model, used 21 

the electric shear approach to calculate the flow profile due to induction EHD.  This 22 

analytical solution neglected the time and space variation in induced charge density and 23 

assumed quasi-static flow.  Later models have considered a similar approach using the 24 

electric shear stress but have considered developing flow as well (Seyed-Yagoobi et al. 25 

1989a, Seyed-Yagoobi et al. 1989b).  Combining two promising scalable pumping 26 

mechanisms – EHD with nozzle-diffuser elements and vibrating diaphragm actuation – 27 

Singhal and Garimella devised a micropump with the potential for direct integration into 28 

an active chip for heat removal (Singhal and Garimella 2005a, Singhal and Garimella 29 

2005b, Singhal and Garimella 2007).  A force density approach, which can predict the 30 
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induced charge density as a function of both space and time, was used in developing a 1 

numerical model of the pumping scheme such that the transient nature of traveling-wave 2 

induction EHD could be simulated (i.e., charge induction, relaxation, and flow initiation).  3 

Temperature field-controlled induction EHD, in which the temperature gradient is 4 

controlled using Peltier elements, has also been discussed (Felten et al. 2006).  Flow 5 

velocities were shown to increase by increasing the temperature-dependent conductivity 6 

gradient for relatively low applied voltages.  Numerical schemes have been presented for 7 

traveling wave-induced electrothermal fluid flows in which material selection and device 8 

geometry play an important role in driving forces (Perch-Nielsen et al. 2004).  Similar 9 

traveling wave devices, used for dielectrophoresis with conductive fluids, can result in 10 

Joule heating and temperature gradients where electrohydrodynamic forces become 11 

significant when driven at frequencies equal to the charge relaxation frequency.  12 

Illumination methods for experimental characterization of electrothermal flows can also 13 

contribute to temperature gradients and affect results (Green et al. 2001). 14 

Early analytical models have represented the sinusoidally varying voltage at the 15 

boundary as a perfect sinusoid (Melcher and Firebaugh 1967).  Subsequent numerical 16 

models have typically been validated by comparison against these early analytical models.  17 

However, practical implementations of this pumping scheme (as well as numerical model 18 

domains) necessitate a discretization of the voltage boundary.  In the present work, we 19 

consider the impact of the use of such discretized electrode arrays on flow rate in 20 

traveling-wave induction EHD pumps.  The performance achievable with these discrete 21 

electrodes is compared to that obtained with the ideal case of a truly sinusoidal voltage 22 

boundary condition.  Optimization of the respective lengths of the electrode and the inter-23 

electrode spacing as well as the number of phases used for actuation is explored to 24 

increase the flow rate for a given wavelength and dielectric material.  We also discuss 25 

fluid selection considerations and provide flow rates that can be achieved using a range of 26 

fluid types. 27 

2. EHD PUMPING CAPABILITY 28 

EHD pumping has progressively found favor in applications where integration is 29 

paramount.  Past induction EHD studies typically include dielectric fluids (Bohinsky and 30 
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Seyed-Yagoobi 1990) along with selected organic fluids (Crowley et al. 1990).  Here, we 1 

provide a comparison of dielectric fluids (common to the electronics industry) and some 2 

common electrolyte solutions (common to the biological community) using the analytical 3 

treatment developed by Melcher and Firebaugh (Melcher and Firebaugh 1967).  An 4 

approach of this type could easily be adapted to evaluate fluids specific to other 5 

applications. 6 

2.1 Analytical treatment 7 

Induction EHD pumping is generated through the interaction of an electric field with 8 

charges induced in the fluid medium.  Induction of charge in the bulk of a liquid occurs in 9 

the presence of a gradient in the temperature (and corresponding electrical conductivity) 10 

of the liquid through anisotropic heating.  These charges can then be attracted or repelled 11 

by a traveling-wave potential established on the boundary of the channel so that the fluid 12 

moves with the charges due to viscous drag (see Figure 1).  Melcher and Firebaugh 13 

presented a 2D analytical solution of the velocity profile for this pumping mechanism 14 

(Melcher and Firebaugh 1967).  Some important limiting assumptions of their model are 15 

as follows:  effects of charge transport by the fluid are small, the gradient of the electrical 16 

conductivity is uniform (linear), and the traveling wave period is small so that thermal 17 

relaxation can be neglected (resulting in a constant temperature profile) and a time-18 

averaged electric stress can be used.  Under these assumptions, the velocity profile is 19 

described by equation 18 in their paper.  If we further assume that the viscosity is uniform 20 

throughout the channel, the viscosity can be removed from the integration terms and the 21 

velocity profile easily evaluated numerically. 22 

2.2 Working fluid considerations 23 

Using the 2D velocity profile of Melcher and Firebaugh, we compare the fluid flows 24 

generated for several electrolytic fluids.  Each set of conditions is numerically integrated 25 

using equation 18 from their paper with the additional assumption of constant viscosity 26 

(Melcher and Firebaugh 1967).  Table I lists the dimensions and parameters common to 27 

the cases that will be considered in the comparisons.  A wavelength of 54 m was also 28 

used for all fluid comparison calculations of this section.  We select a 10°C temperature 29 
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difference across the channel depth for all cases; alternatively, this comparison could be 1 

conducted for a given imposed heat flux.  For the 10°C temperature difference assumed 2 

here, the corresponding heat flux through a water layer of thickness 50 m (kf,w = 0.6 3 

W/m·K) would be approximately 12 W/cm
2
, neglecting convective effects. 4 

Fluid properties play an important role in determining EHD pump operating 5 

conditions.  The induced charge relaxation time is characterized by the permittivity  6 

and electrical conductivity  of the fluid as  = .  Ideally, the traveling wave frequency 7 

should correspond to the charge relaxation time (fideal = 1/2) such that the charges are 8 

able to fully transit from one electrode to the next, without long residence times before 9 

the voltages assigned to the electrode array change.  If the frequency is much lower, 10 

induced charges reach their equilibrium position opposite the traveling wave quickly and 11 

the tangential shear exerted on the fluid is small.  At high frequencies, the relaxation 12 

process inhibits charge from accumulating at the surface, again reducing the shear stress 13 

(Crowley 1980). 14 

Table II lists important properties for several electrolytic fluids.  Electrolytes are 15 

commonly used in EHD studies with properties tailored by the level of doping in the 16 

aqueous solution.  A range of doping molarities are listed for both KCl and NaCl with 17 

accompanying electrical properties.  As a comparison, water is also included in Table II.  18 

Unless otherwise noted, electrical conductivity values were obtained using a temperature 19 

coefficient () and the following relation based on a known conductivity () at a 20 

reference temperature, T0 (Fuhr et al. 1992). 21 

      0 01T T T T        (1) 22 

For the electrolyte solutions, temperature coefficients depend on the doping 23 

concentration, with higher coefficients for lower doping.  However, this change is 24 

relatively small.  Temperature coeffcients can play a significant role in changing the 25 

conductivity gradient and corresponding velocities.  Further, as doping increases, the 26 

electrical conductivity increases and the dielectric constant decreases.  Thus for higher 27 

concentration solutions, the charge relaxation time significantly decreases and optimum 28 

traveling frequencies extend well into the MHz range.  Using the average velocity at the 29 

ideal frequency as the basis for comparison (Table II), we see that with increasing doping 30 
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concentration of KCl and NaCl, the average velocity decreases slightly.  While the 1 

decrease in velocity does not appear to be significant, the ideal frequency of the traveling 2 

wave does increase considerably to accommodate the increase in electrical conductivity.  3 

One possible unit of fluid comparison that emerges from Melcher and Firebaugh’s 4 

analysis is the term avg, where  is the fluid viscosity.  For electrolytes, this value 5 

does not vary by orders of magnitude, thereby resulting in comparable pumping velocities 6 

(despite changes in frequency).  However, when the temperature coefficient varies 7 

significantly from fluid to fluid it can result in significantly different velocities at a given 8 

fluid’s ideal frequency. 9 

 High concentration electrolyte solutions have the potential of causing significant 10 

Joule heating and have been excluded from the calculations.  However, in some instances 11 

Joule heating may be used as the primary mechanism for establishing the temperature 12 

gradient for induction electrohydrodynamics when heat removal is not necessarily the 13 

target application.  For use in biological fluid systems, the standard 0.01 M phosphate 14 

buffered saline (PBS) commonly used as a biological buffer (0.137 M NaCl, 0.0027 M 15 

KCl) has the potential of being driven without an external heating mechanism since Joule 16 

heating can be considerable at large voltages.   17 

The increase of salt concentration in aqueous solution can cause a corresponding 18 

increase in the electrolysis of water.  Combining Faraday’s law of electrolysis (Serway et 19 

al. 2005) with the ideal gas law, it is possible to estimate the volume of gas generated 20 

from electrolysis.  For the ~0.01 M aqueous solutions in Table II, electrolysis can become 21 

significant as the volume of gas generated begins to fill the pumping volume when left 22 

stagnant.  However, as the liquid is pumped, the gas generated due to electrolysis would 23 

travel with the transported liquid such that buildup of gas in the pump volume could be 24 

mitigated. 25 

3. NUMERICAL MODEL OF EHD PUMPING 26 

To address some of the limitations of the analytical approach to modeling EHD, a 27 

transient numerical model was developed using the force-density approach that can 28 

predict the induced charge density as a function of both space and time.  The geometry 29 

and boundary conditions associated with discrete electrodes are also accommodated. 30 
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A quasi-static analysis is used for modeling the induced fluid motion due to EHD, in 1 

which an electrostatic field is applied to a fluid containing electrically charged particles.  2 

The continuity equation takes the standard incompressible form with velocity , 3 

 0v  . (2) 4 

The incompressible Navier-Stokes equation for conservation of momentum is modified to 5 

account for Coulomb forces acting on the charged particles in the fluid  6 

  ij b

v
v v p F qE

t
 

 
        

 
 (3) 7 

in which  is density, p is pressure,  is shear stress and Fb is body force.  The 8 

electrostatic field E  is given by 9 

 E   . (4) 10 

Gauss’s law may be used to relate the electric potential   to the charge density q, 11 

  q E   (5) 12 

where  is the fluid permittivity.  Thus the Coulomb force is represented as: 13 

 
2 2( ) ( )qE              . (6) 14 

Assuming no species reactions, conservation of charge takes the form, 15 

 0
q

J
t


 


 (7) 16 

where the current density J  is comprised of conduction, convection, and diffusion of 17 

charge (diffusivity D), as 18 

 J E qv D q    . (8) 19 

The resulting fluid transport equations are given below for an incompressible fluid after 20 

incorporating the Coulomb forces and neglecting body forces. 21 

Conservation of mass: 22 

 0v   (9) 23 

Conservation of momentum: 24 

   2

ij

v
v v p

t
    

 
         

 
 (10) 25 

Conservation of charge: 26 



9 

    
q

qv D q
t

 


     


 (11) 1 

The finite element software package FIDAP (Fluent 1998) was used to numerically 2 

model these transport equations.  At each time step the voltage assigned to discrete 3 

electrodes along the boundary (used to provide a spatially varying, sinusoidal voltage 4 

along the wall) is updated using user-defined functions.  Discretization of the boundary is 5 

discussed in more detail in sections that follow.  The magnitude of the assigned voltage 6 

varies sinusoidally with time and with neighboring electrodes offset in time. The 7 

neighboring electrode phase shift depends on the number of electrodes used to represent 8 

the spatially varying, sinusoidal voltage.  Thus, the voltage at the neighboring electrodes 9 

varies continuously in time providing a traveling wave with the neighboring, phase-10 

shifted electrodes.  Both voltage and charge distributions are tracked throughout the 11 

calculation in response to the changing voltage boundary condition.  Figure 2 illustrates 12 

these boundary conditions and computational domain for a 3-phase, repulsion-type, 13 

induction EHD device.   14 

A zero pressure gradient condition is imposed at the inlet and outlet and a subroutine 15 

was used to define and apply the traveling-wave voltage boundary condition.  The voltage 16 

and velocity distributions in the fluid are initially set to zero for transient startup and 17 

application of the boundary conditions.  An imposed temperature difference is applied at 18 

the upper and lower channel walls.  With the top and bottom walls at a uniform 19 

temperature, the temperature field must be fully developed, in which case the energy 20 

equation reduces to a linear temperature profile.  Viscous dissipation can be neglected 21 

since Pr Ec 1 .  The temperature-dependent conductivity varies through the channel 22 

depth in a linear fashion (see also equation 1).  While permittivity also varies with 23 

temperature, we have neglected permittivity variation in the aqueous solution used here 24 

since 
1

T





 
 
 

 is roughly 0.4% K
-1

 and 
1

T





 
 
 

 is roughly 2.2% K
-1

 (Green et al. 2001, 25 

Lide 2001, Perch-Nielsen et al. 2004).  Further discussion of the validation of this model 26 

is provided in (Singhal and Garimella 2005b).  27 
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4. TREATMENT OF DISCRETE ELECTRODES  1 

In electrohydrodynamic devices that incorporate a traveling-wave voltage boundary 2 

condition, the manner in which the voltage is treated in the model has a significant impact 3 

on the behavior of the fluid flow.  A true sinusoidal voltage condition cannot be achieved 4 

at the boundary in practice.  In order to fabricate a boundary used to provide a 5 

sinusoidally varying voltage, an ideal sinusoid must be discretized into a number of 6 

neighboring electrodes with separately assigned voltages; in addition, to avoid shorting, 7 

these neighboring electrodes must be isolated from one another.  The resulting boundary 8 

condition therefore has important differences compared to an ideal sinusoidal voltage 9 

condition. 10 

The basic design considered here is that of a wide, flat channel with electrodes 11 

placed on the underside of the top wall of the channel.  Further, the electrodes cover the 12 

entire width and length of the channel.  While the presence of electrodes on only one side 13 

of the channel renders the domain three-dimensional, 3D models are computationally 14 

prohibitive since very small node spacings are required to resolve the short wavelengths 15 

present in microscale devices.  In the following computations, we assume a 2D 16 

representation of a 50 m deep, 0.8 cm wide, and 1.0008 cm long channel, in view of the 17 

large channel width-to-depth ratio.  A linear temperature profile is assumed through the 18 

channel depth.  For all subsequent numerical calculations, the first electrolytic solution 19 

listed in Table II (2.2 x 10
-5

 M KCl (1)) is used at a driving voltage of 200 V.  This fluid 20 

is characterized by an average conductivity of 5.43 x 10
-4

 S/m and dielectric constant of 21 

80 resulting in a charge relaxation time and frequency of 1.30 s and 122 kHz, 22 

respectively.  For a driving voltage of 200 V, the temperature rise due to Joule heating 23 

can be shown to be minimal using the scaling approach outlined by Ramos et al., but 24 

without neglecting convection effects (Ramos et al. 1998).  Electrolysis can also be 25 

shown to be minimal using the approach suggested in section 2.2.  26 

In attraction-type induction EHD, the fluid at the lowest temperature which has the 27 

lowest electrical conductivity is closer to the electrodes where the most intense electric 28 

field is present in the microchannel (see Figure 1a).  The fluid follows the traveling 29 

potential wave in the same direction as the induced charges are “attracted” towards the 30 
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traveling wave.  In the case of repulsion-type induction EHD, the region of high electrical 1 

conductivity also has a high electric field resulting in charges being repelled in a direction 2 

opposite to that of the traveling wave (see Figure 1b).  In the computations here, we 3 

consider repulsion-type EHD; the computed velocities would be essentially the same for 4 

attraction-type EHD as well.  Increasing the node count from 70,749 to 129,129 resulted 5 

in a difference of less than 5% in the velocity, providing satisfactory mesh independence.  6 

Therefore, the coarser mesh was used in the following computations. 7 

Figure 3 illustrates three possible ways in which the sinusoidal boundary condition 8 

may be approximated.  First, an idealized sinusoid may be used in which each node along 9 

the boundary is assigned a voltage corresponding to V(x) = sin(2x/).  In this 10 

configuration, neighboring electrodes are assumed to operate without any electrical 11 

interference between neighbors.  Such a condition is not achievable in practice since there 12 

would need to be some isolation between neighboring electrodes in a real device.  The 13 

remaining two curves represented in Figure 3 illustrate isolation of neighboring electrodes 14 

with a dielectric for 3-phase representations of a sine curve using a zero voltage and zero 15 

voltage flux (normal to the wall) boundary condition. 16 

4.1 Idealized-sinusoid boundary 17 

Consider first a microscale repulsion EHD case where the voltage boundary condition is 18 

modeled using a discretized sine wave with no spacing between electrodes.  As the 19 

number of nodes increases, this boundary condition approaches the perfect sinusoid 20 

condition commonly used in analytical models.  The idealized-sinusoid boundary 21 

condition is produced using 36 electrodes of 1.5 microns width for a total wavelength of 22 

54 m (case 1 in Table III).  The entire potential wave is divided into 36 phases with a 23 

different voltage applied to each phase/electrode.  The voltage is then updated at each 24 

time step to achieve a traveling potential wave. 25 

The difference in the velocity profiles resulting from the perfect sinusoid boundary 26 

condition from Melcher and Firebaugh’s model and the idealized-sinusoid boundary 27 

condition using the current model (case 1, Table III) is shown in Figure 4.  Integrating 28 

these profiles and dividing by the depth we obtain an average velocity of 1.79 m/s for the 29 

analytical result and 1.66 m/s for numerical case 1, for a difference of 7%.   30 
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Melcher and Firebaugh’s model is designed for re-entrant channel geometries and 1 

limited to steady solutions by using a time-averaged, electric shear stress.  Using the 2 

force-density approach, the current numerical model is capable of re-entrant geometries 3 

or non-zero pressure gradient scenarios.  The model can predict the induced charge 4 

density as a function of both space and time, thus capturing flow transients due to 5 

induction EHD.  Moreover, the effect of different voltage profiles, as well as of the 6 

presence of separate electrodes, can be considered in the present model.  Unlike Melcher 7 

and Firebaugh, convection of charge is also taken into account.  The finely discretized 8 

traveling wave used in our numerical results, although approaching a perfect sinusoidal 9 

condition, is also expected to have some deviation from the analytical solution with a 10 

sinusoidal boundary condition.   11 

The simplified version of the analytical solution presented by Melcher and Firebaugh 12 

further assumes that the wavelength is much larger than the channel depth.  This length-13 

scale limitation in the analytical model and postulation about the variation of the potential 14 

and charge field profiles within the fluid make the current numerical model (using a 15 

force-density approach) applicable to a wider range of device modeling.   16 

However, neither a perfect sinusoid nor the idealized sinusoid of case 1 can be 17 

experimentally achieved.  Fabrication of such devices requires electrical isolation 18 

between neighboring electrodes at different potentials.  Therefore, in practice, further 19 

relaxation of the sinusoidal boundary condition assumption is necessary. 20 

4.2 Discretized-sinusoid boundary with isolation 21 

In a real traveling-wave device, neighboring electrodes are electrically isolated from each 22 

other using dielectric films and/or substrates.  For the same wavelength, inclusion of 23 

isolation regions in the boundary effectively reduces the electrode coverage area and 24 

density as compared to the idealized sinusoid of case 1.  Two possible choices for the 25 

boundary condition in the spacing region between electrodes can be considered.  Either 26 

the voltage can be set to zero, or the flux of voltage normal to the boundary 27 

( / 0ywall
dV dy E   ) can be set to zero.  The former condition implies that there is an 28 

immediate transition to ground state beyond the electrode region, while the latter 29 

condition allows a gradual transition in voltage from one electrode to the next in the x 30 
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direction but restricts any voltage gradient in the y direction.  The zero voltage flux 1 

condition results in a boundary condition that is more like an ideal sinusoid wave than the 2 

zero voltage isolation condition, and also more closely resembles a practical realization of 3 

the boundary comprised of a dielectric material.  The only possible means of achieving 4 

the alternate zero voltage spacing condition would be to insert ground electrodes between 5 

the sinusoidally varying  driving electrodes.  However this is impractical and would also 6 

increase the total wavelength since the driving and ground electrodes would still need 7 

isolation spacing between them. 8 

Figure 5 compares the idealized-sinusoid boundary condition (case 1) with the 3-9 

phase (cases 2-6) and 5-phase (case 7) traveling-wave conditions that include isolation 10 

regions between electrodes and represents the transient startup response after pump 11 

activation through quasi-steady state conditions.  First, consider the comparison of a 3-12 

phase sinusoid in which 6 m electrodes are separated by 12 m isolation spacings (cases 13 

2-3) to the idealized-sinusoid boundary condition (case 1).  With the voltage between 14 

electrodes held to zero for the zero-voltage isolation (case 2), the magnitude of the 15 

average potential (voltage per unit area) at the top wall of the channel is significantly 16 

reduced, resulting in much smaller flow rates.  For the zero voltage flux (case 3), the 17 

transition in voltage from one electrode to the next yields a larger average potential at the 18 

channel top wall, thus increasing charge induction and fluid transport.  This is illustrated 19 

by the comparison provided in the voltage contour plots of Figure 6a and b for the 36-20 

phase boundary condition (case 1) and the 3-phase, zero flux inter-electrode spacing 21 

boundary condition (case 3).  At a given location in the depth of the channel, the 22 

magnitude of the voltage and corresponding electric field are clearly lower for the 3-phase 23 

cases.   24 

4.3 Electrode coverage and density 25 

To modify the electric field so that high volume flow rates can be achieved for the same 26 

total area available for EHD induction, either the voltage can be increased or the electrode 27 

spacing decreased; both are different approaches for increasing the electric field.  In 28 

practice, there is a limit to the reduction in spacing at a given operating voltage that can 29 

be achieved between neighboring electrodes while still isolating them using a dielectric 30 
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material.  Clearly, this limit is dependent on the breakdown electric field of the dielectric 1 

material used for isolation and for the fluid.  Consider cases 3-5 in Table III and Figure 5.  2 

Here the wavelength is held constant but the fraction of the surface area that is covered 3 

with electrodes (electrode coverage area) is varied for the same operating conditions.  The 4 

result is that for wider electrodes in the same three-phase system, the flow rate is 5 

effectively increased.  The total electrode coverage area is increased by decreasing the 6 

total spacing area, resulting in an increased magnitude of the voltage experienced through 7 

the depth of the channel.  Specifically, by widening the electrodes from 3 to 6 m while 8 

keeping the pitch constant at 18 m, the electrode coverage area increases by 16.7% but 9 

results in a 41.8% increase in flow rate.  The increase appears to be roughly linear with 10 

coverage area for a total increase of 78.2% when the electrode width is increased from 3 11 

to 9 m.  Of course, breakdown of the dielectric or fluid due to the presence of very high 12 

electric fields would limit the extent to which the electrode width can be increased at a 13 

fixed wavelength.  Similarly, Joule heating or electrolysis (for aqueous solutions) must 14 

also be considered with an increase in electric field strength. 15 

Another means for increasing the electric field is simply by reducing the wavelength 16 

of the traveling wave while keeping the assigned electrode voltage magnitudes constant.  17 

Case 6 is characterized by an electrode width of 6 m and spacing of 9 m for a 18 

wavelength of 45 m.  Compared to case 3, which has a longer wavelength but the same 19 

electrode width, an increase of 17.6% in net flow rate is observed in Figure 5.  The 20 

increase can be attributed to the denser packing of electrodes yielding greater total 21 

electrode coverage area.  The case 6 flow rate with a 40% coverage area clearly falls 22 

between the results for the 33% coverage in case 3 and the 50% coverage in case 5.     23 

4.4 Phase representation 24 

As seen in Figure 5, the idealized-sinusoidal voltage boundary condition at the wall 25 

produces a much higher flow rate than do the three-phase cases 2-6.  One difference from 26 

case 1 is that cases 2-6 have a decreased potential in the inter-electrode spacing region.  27 

Another difference is the phase representation of the 36-phase design of case 1.  While 28 

designs that exclude spacing between electrodes (as in the idealized-sinusoid case 1) are 29 

not experimentally achievable since electrical isolation between electrodes is required, the 30 
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electrode design can be modified to bring about a more symmetric and sinusoidal 1 

potential at the boundary. 2 

Numerical case 7 (Table III) has a 5-phase electrode configuration with 6 m 3 

electrodes and 6 m spacing.  The 60 m wavelength in this case is slightly larger than 4 

the 54 m for cases 1-5; however, the electrode coverage area is the same as that for case 5 

5 (50%).  Despite the coverage area being identical to that in case 5, the distribution of 6 

the assigned potential is such that the boundary more closely approximates a sinusoidal 7 

condition in case 7 and the flow rate is increased.  This is evident in the comparison of 8 

the voltage contour plot for case 7 (Figure 6c) with that for the 36-phase, idealized-9 

sinusoid (Figure 6a).  Further, comparison with the 3-phase case (Figure 6b) reveals that 10 

the additional two phases significantly alter the magnitude and distribution of the voltage 11 

field.  Of particular note is the fact that even though case 7 has a slightly larger 12 

wavelength (which would decrease the flow rate for the same frequency), the more 13 

sinusoidal-like boundary condition has a more profound effect on the velocity than that 14 

observed by simply changing the coverage area.  For the same coverage area, the flow 15 

rate increases 73.4% from case 5 to case 7 by redistributing the electrode coverage area to 16 

approach a more symmetric boundary condition by employing a higher phase 17 

representation at the boundary. 18 

5. CONCLUSION 19 

Electrohydrodynamic pumping scales favorably as device size is reduced and may 20 

provide a viable option for fluid delivery mechanisms in electronics cooling or 21 

biomedical devices.  The achievable flow rate can be increased through working fluid 22 

selection, device scaling, and increased electrode density, as well as by assigning 23 

electrode potentials in such a way as to approach a symmetric, sinusoidal boundary 24 

condition.  Flow rate appears to increase roughly linearly with an increase in electrode 25 

coverage area.  Further, by using five phases instead of three to represent the sinusoidal 26 

traveling wave (for the same coverage area), an increase in flow rate of approximately 27 

73.4% is observed.  For applications in which the anisotropic heating is a part of the 28 

device environment (as in the case of electronics cooling), the energy required for 29 

establishing the required temperature gradient across the liquid layer would not add to the 30 
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power required for device operation. 1 
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 1 

Table I.  Parameters used in analytical and numerical EHD calculations. 2 

 3 

Symbol Property Value 

h Channel height 50 [m] 

L Channel length 1.0008 [cm] 

T Wall temperature difference 10 [°C] 

 Density 987 [kg/m
3
] 

 Viscosity 5.28 x 10
-4

 [N
.
s/m

2
] 

 4 

5 
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 1 

Table II.  Fluid properties and corresponding average velocities generated with representative liquids at a 2 

driving voltage of 50 V.  Calculation for additional fluids can be similarly carried out following equation 18 3 

from (Melcher and Firebaugh 1967) assuming constant viscosity. 4 

 5 

Fluid 
Temperature 

coefficient 
Average 

conductivity  
Dielectric 
constant  

Average 
velocity 
(at fideal) 

Reference 

  [S/m]  [cm/s]  

Water 2.6 - 3.0% 1.89 x 10
-5

 80 51.6 
(Janssen and 

Warmoeskerken 1987) 

2.2 x 10
-5

 M KCl (1) 0.82%
a
 5.43 x 10

-4
 80 11.2 (Fuhr et al. 1992) 

2.2 x 10
-5

 M KCl (2) 2.11%
b
 5.44 x 10

-4
 80 24.0 (Horiba 2008) 

0.013 M KCl 2.11% 0.2632 77.9 23.4 
(Barthel et al. 1995, Horiba 

2008, Lide 2001) 

0.001 M NaCl 2.19% 0.0206 78.1 24.0 
(Barthel et al. 1995, Horiba 

2008, Lide 2001) 

0.011 M NaCl 2.19% 0.1995 77.7 23.9 
(Barthel et al. 1995, Horiba 

2008, Lide 2001) 
a 

Based on selected conductivity values in the range provided by (Fuhr et al. 1992) 6 
b 

Based on extrapolated data from (Horiba 2008)
 

7 

8 
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 1 

Table III.  Various cases of sinusoidal voltage boundary condition and geometry for repulsion-type EHD 2 

considered in the computations at a driving voltage of 200 V 3 

 4 

Case 
Boundary condition in 
inter-electrode space 

Number of 
phases 

Electrode width / 

spacing [m] 

Wavelength 

[m] 

1 Idealized-sinusoid 36 1.5 / 0 54 

2 Zero voltage 3 6 / 12 54 

3 Zero voltage flux 3 6 / 12 54 

4 Zero voltage flux 3 3 / 15 54 

5 Zero voltage flux 3 9 / 9 54 

6 Zero voltage flux 3 6 / 9 45 

7 Zero voltage flux 5 6 / 6 60 

5 
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 1 

 2 

(a) 3 

  4 

(b) 5 

Figure 1.  Schematic illustration of (a) attraction- and (b) repulsion-type induction EHD configurations for 6 

fluids in which the electrical conductivity increases with temperature. 7 

8 
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 1 

Figure 2.  Computational domain for a representative 3-phase, repulsion-type, induction EHD device. 2 

 3 

4 



23 

 1 

 2 

Figure 3.  Approximate methods of representing an ideal, sinusoidal traveling wave (wavelength 54 m) at 3 

an arbitrary time instant: a discretized 36-phase wave, a 3-phase wave with zero voltage boundary condition 4 

in the inter-electrode dielectric space, and a 3-phase wave with zero voltage flux boundary condition in the 5 

inter-electrode dielectric space.  The curves representing 3-phase waves have 6 m wide electrodes and 12 6 

m wide inter-electrode dielectric spaces.  For the zero flux boundary condition, the transitions in voltage 7 

shown in the dielectric layers are purely schematic. 8 
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 1 

 2 

Figure 4.  Comparison of Melcher’s analytical result with numerical modeling results of a discretized 3 

sinusoidal potential boundary condition with 36 phases (case 1, Table III). 4 
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 1 

 2 

Figure 5.  Calculated net flow rates for cases 1-7, Table III.  Case 1 is an idealized, 36-phase sinusoid; 3 

cases 2-6 are 3-phase sinusoids; case 7 is a 5-phase sinusoid boundary condition. 4 
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 1 

(a) 2 

 3 

(b) 4 

 5 

(c) 6 

Figure 6.  Voltage contour plots over a width of two wavelengths at a time corresponding to a maximum 7 

voltage of 200 V for (a) case 1 with a 36-phase, discretized boundary, (b) case 3 with a 3-phase, zero flux 8 

inter-electrode spacing, and (c) case 7 with a 5-phase, zero flux inter-electrode spacing (see also Table III). 9 
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