
HAL Id: hal-01155112
https://hal.archives-ouvertes.fr/hal-01155112v2

Submitted on 14 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extreme geometric quantiles in a multivariate regular
variation framework

Stéphane Girard, Gilles Stupfler

To cite this version:
Stéphane Girard, Gilles Stupfler. Extreme geometric quantiles in a multivariate regular variation
framework. Extremes, Springer Verlag (Germany), 2015, 18 (4), pp.629-663. �10.1007/s10687-015-
0226-0�. �hal-01155112v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49483965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01155112v2
https://hal.archives-ouvertes.fr


Extreme geometric quantiles in a multivariate regular variation

framework

Stéphane Girard(1) & Gilles Stupfler(2)

(1) Team Mistis, Inria Grenoble Rhône-Alpes & LJK, Inovallée, 655, av. de l’Europe,

Montbonnot, 38334 Saint-Ismier cedex, France

(2) Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,

13002 Marseille, France

Abstract. Considering extreme quantiles is a popular way to understand the tail of a distribution.

While they have been extensively studied for univariate distributions, much less has been done for multi-

variate ones, primarily because there is no universally accepted definition of what a multivariate quantile

or a multivariate distribution tail should be. In this paper, we focus on extreme geometric quantiles.

In Girard and Stupfler (2015) Intriguing properties of extreme geometric quantiles, their asymptotics are

established, both in direction and magnitude, under suitable integrability conditions, when the norm of

the associated index vector tends to one. In this paper, we study extreme geometric quantiles when the

integrability conditions are not fulfilled, in a framework of regular variation.

AMS Subject Classifications: 62H05, 62G32.

Keywords: Extreme quantile, geometric quantile, asymptotic behavior, multivariate regular variation.

1 Introduction

Let X be a random vector in R
d. Up to now, several definitions of multivariate quantiles of X have

been introduced in the statistical literature, see Serfling (2002) for a review of various possibilities for this

notion. Here, we focus on the notion of “spatial” or “geometric” quantiles, introduced by Chaudhuri (1996),

which generalizes the characterization of a univariate quantile shown in Koenker and Bassett (1978). For

a given vector v in the unit open ball Bd of Rd, where d ≥ 2, a geometric quantile related to v is a solution

of the optimization problem defined by

argmin
q∈Rd

E(‖X − q‖ − ‖X‖)− 〈v, q〉, (1)
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where 〈·, ·〉 is the usual scalar product on R
d and ‖ · ‖ is the associated Euclidean norm. Any solution q(v)

of the problem (1) is called a v−th quantile. A v−th quantile q(v) ∈ R
d thus possesses both a direction and

magnitude. It can be seen that geometric quantiles are actually special cases of M−quantiles introduced

by Breckling and Chambers (1988) which were further analyzed by Koltchinskii (1997). Such quantiles

have various appealing properties: for any v ∈ Bd, the v−th quantile is unique whenever the distribution

of X is not concentrated on a single straight line in R
d (see Chaudhuri, 1996), geometric quantiles are

equivariant under any orthogonal transformation (Chaudhuri, 1996) and they characterize the associated

distribution, namely, if two random vectors X and Y yield the same quantile function q, then they have

the same distribution (Koltchinskii, 1997). Remark that on the one hand, for v = 0, the well-known

geometric median is obtained, which is the simplest example of a “central” quantile (see Small, 1990) and

can be computed in an efficient way, see Cardot et al. (2013). On the other hand, for v 6= 0, the norm

‖v‖ measures the deviation of the quantile q(v) from the geometric median of the distribution. Since v

has a direction in addition to its magnitude, this immediately leads to a notion of directional outlyingness

of a point (Chaouch and Goga, 2010). Figure 1 provides an illustration on a real data set from the Pima

Indians Diabetes Database1 already considered by Cheng and De Gooijer (2007) and Chaouch and Goga

(2010), among others. It appears that geometric iso-quantile curves tend to give a fair idea of the shape

of the data cloud for moderate values of ‖v‖.

These properties make geometric quantiles reasonable candidates when trying to define multivariate quan-

tiles, which is why their estimation has been studied in several papers. We refer for instance to Chakraborty

(2001) for the introduction of a transformation-retransformation procedure to obtain affine equivariant

estimates of multivariate quantiles. It is stressed that the shape of the transformed quantile contours

corresponds to that of the level sets of the probability distribution function when the underlying distribu-

tion is elliptically contoured, see also Cambanis et al. (1981). Chakraborty (2003) generalizes geometric

quantiles to a multiresponse linear model while Dhar et al. (2013) defines a multivariate quantile-quantile

plot using geometric quantiles. Conditional geometric quantiles can also be defined by substituting a

conditional expectation to the expectation in (1): we refer to Cadre and Gannoun (2000) for the esti-

mation of the conditional geometric median and to Cheng and de Gooijer (2007) for the estimation of

an arbitrary conditional geometric quantile. The estimation of a conditional median when there is an

infinite-dimensional covariate is considered in Chaouch and Laïb (2013).

Our focus in this paper is on extreme geometric quantiles, that is, when ‖v‖ → 1. The estimation of

univariate extreme quantiles, which requires the estimation of the so-called extreme value index, has been

extensively studied, see for instance the monograph by de Haan and Ferreira (2006). In this case, there

is also a growing interest about linking the random variable of interest to a covariate in order to analyze

multidimensional datasets, see Gardes and Girard (2012), Daouia et al. (2013) or Stupfler (2013), among

others. Only a few papers however consider multivariate extreme quantiles. Most of them rely on the

1ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes
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study of extreme level sets of the probability density function of X when it is absolutely continuous with

respect to the Lebesgue measure. See for instance Cai et al. (2011) for an application to the estimation of

extreme risk regions for financial data and Einmahl et al. (2013) who focus on bivariate distributions with

an application to insurance data. We also refer to Chernozhukov (2005) for extreme quantile estimation

in a linear quantile regression model.

Girard and Stupfler (2015) obtained the asymptotics, in direction and magnitude, of the geometric quantile

q(λu) in the limit λ ↑ 1, for any u on the unit hypersphere Sd−1 of Rd. They proved that, if E‖X‖2 < ∞,

then the magnitude of this quantile always behaves asymptotically like (1 − λ)−1/2, and so does the

magnitude of the difference between u and the direction of q(λu). In particular, extreme geometric

quantiles from a vector of independent uniform random variables and from a multivariate Gaussian random

vector have asymptotically the same magnitude, although their probability density functions clearly do

not have the same behavior at infinity. Compared to the univariate theory of extreme quantiles, this is

somewhat surprising since one could expect the quantile to feature the asymptotic decay of the probability

density function of X.

In this study, we provide an equivalent of the direction and magnitude of an extreme geometric quantile

when the integrability condition is violated. To this end, it is assumed that X has a probability density

function f satisfying an hypothesis of multivariate regular variation. As a corollary of our results, it

appears that, in this context, the magnitude of an extreme geometric quantile depends on the index of

multivariate regular variation of f . In other words, when E‖X‖2 = ∞, the magnitude of an extreme

geometric quantile does indeed feature the asymptotic behavior of the probability density function of X,

similarly to the univariate case. Some statistical implications of this result are highlighted: in particular,

it is shown how to derive Weissman type estimators (Weissman, 1978) for extreme geometric quantiles.

The main results of our paper are stated in Section 2 and some numerical illustrations are given in

Section 3. Proofs are deferred to Section 4.

2 Main results

When X has a probability density function f on R
d, d ≥ 2, problem (1) can be rewritten as

argmin
q∈Rd

∫

Rd

(‖x− q‖ − ‖x‖)f(x)dx− 〈v, q〉.

Note that, as Chaudhuri (1996) points out, the integral above is always finite even though ‖X‖ may

not have a finite expectation. In this context, since the distribution of X is not concentrated on a single

straight line, there is a unique solution q(v) of (1) for every v ∈ Bd (see Chaudhuri, 1996 and Theorem 2.17

in Kemperman, 1987): the vector q(v) is called the geometric quantile of X associated with v. Besides,
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in this case, q(v) is the unique solution of the equation

v +

∫

Rd

x− q

‖x− q‖f(x)dx = 0 (2)

with unknown q (here, t/‖t‖ = 0 when t = 0). Moreover, Girard and Stupfler (2015, Proposition 1) proved

that problem (1) has a solution if and only if v ∈ Bd. A direct consequence of this result is that, if v → u

with v ∈ Bd and u ∈ Sd−1, then

‖q(v)‖ → ∞ and
q(v)

‖q(v)‖ → u, (3)

see Theorem 1 in Girard and Stupfler (2015), where the convergence of vector functions is to be understood

elementwise. Their main result (Theorem 2 in Girard and Stupfler, 2015) is reported here for the sake of

self-containedness.

Proposition 1. Let u ∈ Sd−1 and let Πu : y 7→ y − 〈y, u〉u denote the orthogonal projection onto the

hyperplane of Rd having normal vector u.

(i) If E‖X‖ < ∞, then

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)
→ E(Πu(X)) as λ ↑ 1.

(ii) If E‖X‖2 < ∞ and M denotes the covariance matrix of X, then

‖q(λu)‖2(1− λ) → 1

2
(trM − u′Mu) as λ ↑ 1,

where u′ denotes the transpose of the vector u.

The goal of this paper is to obtain results analogue to those of Proposition 1 in the more general setting

where the integrability assumptions are not fulfilled. To this end, we work in a framework of multivariate

regular variation introduced in Cai et al. (2011). Surveys on multivariate regular variation include Jessen

and Mikosch (2006) and the monograph by Resnick (2006). More precisely, the following condition is

considered:

(Mα) The probability density function f of X is a continuous function on a neighborhood of infinity,

such that the function y 7→ ‖y‖df(y) is bounded in any compact neighborhood of 0 and there exist a

positive function Q on R
d and a function V which is regularly varying at infinity with index −α < 0, such

that

∀y 6= 0,

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 and sup
w∈Sd−1

∣∣∣∣
f(tw)

t−dV (t)
−Q(w)

∣∣∣∣→ 0 as t → ∞.

Remark first that in condition (Mα), the function V is determined only up to asymptotic equivalence.

Since V converges to 0 at infinity, we may and will assume in what follows that V is bounded on [0,∞)

and, by Theorem 1.3.3 p.14 in Bingham et al. (1987), continuous on a neighborhood of infinity. Moreover,

if condition (Mα) holds, then Q is a homogeneous continuous function of degree −d− α on R
d \ {0} and

f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + o(1)) as ‖y‖ → ∞, see Lemma 3 in Section 4. Since V is regularly

varying with index −α, the function f is then roughly of order ‖y‖−d−α as ‖y‖ → ∞ and therefore the
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parameter α controls the asymptotic decay of f at infinity. In particular, switching to polar coordinates,

it is easily seen that E‖X‖β is then finite if β < α.

We are now in position to compute the asymptotic direction and magnitude of q(λu) as λ ↑ 1 under the

assumption (Mα). Let us highlight that, when α > 1, E‖X‖ is finite and the asymptotic direction is

provided by Proposition 1(i). Similarly, when α > 2, E‖X‖2 is finite and the asymptotic magnitude is

provided by Proposition 1(ii).

Theorem 1. Let u ∈ Sd−1.

(i) If (Mα) holds with α ∈ (0, 1), then

1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→
∫

Rd

Πu(y)

‖y − u‖Q(y)dy as λ ↑ 1.

(ii) If (Mα) holds with α ∈ (0, 2), then

1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.

Since V is regularly varying with index −α, it follows from Theorem 1(ii) that, in model (Mα), when

α ∈ (0, 2), the norm ‖q(λu)‖ of the extreme quantile behaves roughly like (1 − λ)−1/α as λ ↑ 1. In this

case, we thus see that the magnitude of an extreme geometric quantile does indeed feature the behavior

of X far from the origin.

However, this result excludes the limit cases α = 1 for the asymptotic direction and α = 2 for the

asymptotic magnitude. The method we use to handle these cases is somewhat different; in particular, we

shall work with the functions L : t 7→ tαV (t) and

L : t 7→
∫ t

1

L(r)
dr

r
(4)

(this notation will be retained throughout the paper). Since L is slowly varying as infinity, so is L and

L(r)/L(r) → ∞ as r → ∞, see Proposition 1.5.9a p.26 in Bingham et al. (1987). Furthermore, we define,

if Σ is a positive definite d × d symmetric matrix, the ellipsoid Ed−1
Σ = {x ∈ R

d |x′Σ−1x = 1} and its

related surface measure µΣ given by µΣ(C) = (detΣ)
1/2

σ
(
Σ−1/2C

)
for every Borel measurable subset C

of Ed−1
Σ , where σ is the standard surface measure on Sd−1. Then, for every integrable function h on R

d

and every a < b ∈ [0,∞], we have

∫

Rd

h(x)1l[a,b]

((
x′Σ−1x

)1/2)
dx =

∫ b

a

∫

Ed−1

Σ

h(rw)rd−1dr µΣ(dw). (5)

Our second main result is the following:

Theorem 2. Let u ∈ Sd−1 and Σ be an arbitrary positive definite d× d symmetric matrix.

(i) If (M1) holds and L(t) → ∞ as t → ∞ then

‖q(λu)‖
L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→
∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw) as λ ↑ 1.
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(ii) If (M2) holds and L(t) → ∞ as t → ∞ then

‖q(λu)‖2
L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.

Let us remark that both limits are independent of the arbitrary matrix Σ. A convenient choice is to take

Σ as the identity matrix and thus to integrate on the unit sphere, but it may be interesting to consider

other, nontrivial cases, see the discussion about elliptically contoured distributions in Corollary 2.

It may be seen from this result that, in the particular class (M2) and when L(t) → ∞ as t → ∞ (which

ensures that E‖X‖2 = ∞), the magnitude of an extreme geometric quantile does again feature the behavior

of X far from the origin, through the function L. The influence of L is illustrated in the following example:

Example If L(t) = cβ(log t)
β1l(1,∞)(t), where β > −1 and cβ > 0, then

‖q(λu)‖2(log ‖q(λu)‖)−β−1(1− λ) → c′β

∫

Sd−1

〈Πu(w), w〉Q(w)σ(dw) as λ ↑ 1

where c′β > 0. Lemma 2 (see Section 4) entails

‖q(λu)‖ = Cβ(u)(1− λ)−1/2

[
log

(
1

1− λ

)](β+1)/2

(1 + o(1)) as λ ↑ 1

where Cβ(u) > 0. Consequently, in this case, the larger is β (and thus, the slower f converges to 0 at

infinity), the larger is the order of the extreme geometric quantile.

Collecting the results from Proposition 1, Theorem 1 and Theorem 2, we obtain the following, somehow

unified result:

Corollary 1. Let u ∈ Sd−1.

(i) If (Mα) holds with α ∈ (0, 1), then

1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)

‖y − u‖Q(y)dy

and
1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.

(ii) If (M1) holds and L(t) → ∞ as t → ∞, then for any arbitrary positive definite d × d symmetric

matrix Σ,

‖q(λu)‖
L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw)

and
1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.

(iii) If (Mα) holds with α ∈ (1, 2), then

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)f(y)dy

and
1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.
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(iv) If (M2) holds and L(t) → ∞ as t → ∞, then for any arbitrary positive definite d × d symmetric

matrix Σ,

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)f(y)dy

and
‖q(λu)‖2

L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.

It therefore appears that the norm of an extreme quantile can be asymptotically expanded as

‖q(λu)‖ = [A2,α(u)]
1/min(2,α)B2,α((1− λ)−1) when u ∈ Sd−1 and λ ↑ 1, (6)

for all α > 0, where depending on whether α < 2, α = 2 or α > 2, A2,α(u) is the limiting term in

Proposition 1(ii), Theorem 1(ii) or Theorem 2(ii), and B2,α is a regularly varying function with index

1/min(2, α). The asymptotic direction of an extreme quantile can then be expanded as

q(λu)

‖q(λu)‖ = u+A1,α(u)[A2,α(u)]
−min(1,α)/min(2,α)B1,α((1− λ)−1) when u ∈ Sd−1 and λ ↑ 1, (7)

for all α > 0, where depending on whether α < 1, α = 1 or α > 1, A1,α(u) is the limiting term in

Proposition 1(i), Theorem 1(i) or Theorem 2(i), and B1,α is a regularly varying function with index

−min(1, α)/min(2, α). These expansions emphasize again the particular role of the values α = 1 and

α = 2.

Besides, it is possible to link the expressions of A1,α(u) obtained in the situations α > 1 and α = 1. To

this end, we introduce a particular subclass of (Mα):

(M ′
α) For all x 6= 0, f(x) = Q(x)L((x′Σ−1x)1/2) where Σ is a positive definite d×d symmetric matrix,

Q is a homogeneous continuous function of degree −d− α on R
d \ {0} and L is a slowly varying function

at infinity which is continuous in a neighborhood of infinity and is such that

t 7→ t−αL(t) is bounded,

∫ ∞

0

L(r)
dr

r1+α
< ∞ and

∫ t

1

L(r)
dr

r
→ ∞ as t → ∞.

Noting that, for every positive definite d × d symmetric matrix Σ, the continuous map w 7→ w′Σ−1w is

positive and bounded on Sd−1, the uniform convergence theorem for slowly varying functions (see e.g.

Theorem 1.5.2 p.22 in Bingham et al., 1987) entails that the class of probability density functions (M ′
α)

satisfies the hypotheses of the original model (Mα), with V (t) = t−αL(t). Using (5), it is straightforward

that in this particular model, the hypothesis on L entails that E‖X‖β is finite if and only if β < α.

Remark now that, in the class (M ′
α), α > 1, equation (5) entails:

E(Πu(X)) =

∫ ∞

0

L(r)
dr

rα

∫

Ed−1

Σ

Πu(w)Q(w)µΣ(dw).

Thus, the limiting terms A1,α(u) of Proposition 1(i) and Theorem 2(i) are similar. To link the expressions

of A2,α(u) obtained in the situations α > 2 and α = 2, we work in the subclass of elliptically contoured

distributions:
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Corollary 2. Let u ∈ Sd−1. If (M ′
2) holds and Q is constant equal to 1 on the ellipsoid Ed−1

Σ , then

‖q(λu)‖2
L(‖q(λu)‖) (1− λ) → ad

2d
(detΣ)

1/2
(tr Σ− u′Σu) as λ ↑ 1

where ad := 2πd/2/Γ(d/2) is the surface area of Sd−1 and Γ is Euler’s Gamma function.

This result shows that, when the distribution is elliptically contoured, the limiting terms A2,α(u) of

Proposition 1(ii) and Theorem 2(ii) are similar. In particular, the matrices Σ and M play the same role:

it is indeed well-known that these matrices are closely related when the covariance matrix M is finite, by

the identity

M =

(∫ ∞

0

L(r)
dr

rα−1

)
(detΣ)

1/2 ad
d
Σ. (8)

Finally, (3) and (6) open the door to Weissman type estimators (Weissman, 1978) for extreme geometric

quantiles. Indeed, let λ ↑ 1 and λ′ ↑ 1 such that (1 − λ)/(1 − λ′) → c with 0 < c < 1. Then, (6) entails

that
‖q(λu)‖
‖q(λ′u)‖ =

(
1− λ′

1− λ

)1/min(2,α)

(1 + o(1))

and consequently, from (3), the following asymptotic expansion holds:

q(λu) =

(
1− λ′

1− λ

)1/min(2,α)

q(λ′u)(1 + o(1)).

As in the univariate case, extreme geometric quantiles of large orders can therefore be deduced from

extreme quantiles of smaller orders using an extrapolation factor. The estimation of an extreme geometric

quantile q(λu), for λ arbitrarily close to 1, could thus be based on the estimation of an “intermediate”

geometric quantile q(λ′u) for which λ′ ↑ 1 slowly enough, and on the estimation of the index of regular

variation α. This is the principle of the Weissman estimator. A possible estimate of an intermediate

quantile q(λ′
nu), with λ′

n ↑ 1 and u ∈ Sd−1, is obtained by considering the sample counterpart of the

minimization problem that defines q(λ′
nu),

q(λ′
nu) = argmin

q∈Rd

E(‖X − q‖ − ‖X‖)− λ′
n〈u, q〉,

namely

q̂n(λ
′
nu) = argmin

q∈Rd

1

n

(
n∑

i=1

‖Xi − q‖ − ‖Xi‖
)

− λ′
n〈u, q〉,

where (X1, . . . , Xn) is a sample of independent and identically distributed random vectors. This is a well-

defined problem which almost surely admits a unique solution in our framework, see Chaudhuri (1996).

Besides, the objective (random) function is almost surely finite, convex and continuous. A possible idea to

study the asymptotic distribution of q̂n(λ
′
nu) is to use convex stochastic optimization techniques such as

the results of Geyer (1996) and Knight (1999). Of course, we should expect that this estimate of q(λ′
nu)

will only be consistent provided λ′
n ↑ 1 slowly enough. A detailed study of the properties of such an

estimator is beyond the scope of this paper. Similarly, the estimation of α could be addressed in future

research.
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3 Numerical illustrations

For the sake of illustration, we focus on the bidimensional case d = 2: it is assumed that X follows

a bivariate elliptically-contoured Pareto(α,Σ) distribution, with probability density function f(x) =

Cα(x
′Σ−1x)(−2−α)/21l[1,∞)(x

′Σ−1x), where Cα > 0 is an appropriate normalizing constant. It is then

straightforward to show that f belongs to model (M ′
α), with Q(x) = (x′Σ−1x)(−2−α)/2 and V (t) =

Cαt
−α1l[1,∞)(t).

Let u ∈ S1. Following the results of Section 2, one can obtain asymptotic expansions of the extreme

quantile q(λu) as λ ↑ 1. In the case α < 2, Theorem 1 yields

q(λu) =

(
Cα

1− λ

∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy

)1/α

u(1 + o(1)) as λ ↑ 1. (9)

When α = 2, let h be the inverse of the function t 7→ t2/ log(t) on [
√
e,∞). Corollary 2 then entails

q(λu) = h

(
π (detΣ)

1/2
(tr Σ− u′Σu)

2(1− λ)

)
u(1 + o(1)) as λ ↑ 1. (10)

In particular, from Lemma 2, ‖q(λu)‖ is of asymptotic order (1− λ)−1/2(− log(1− λ))1/2. Finally, in the

case α > 2, Proposition 1 yields

q(λu) =

(
trM − u′Mu

2(1− λ)

)1/2

u(1 + o(1)) as λ ↑ 1, with M = π
Cα

α− 2
(detΣ)

1/2
Σ. (11)

Letting uθ = (cos θ, sin θ) ∈ S1, our goal is to compare the iso-quantile curves Cλ = {q(λuθ), θ ∈ [0, 2π)}
computed by minimizing (1) numerically to the asymptotic ones, i.e. approximated using equations (9),

(10) and (11). The numerical versions of the iso-quantile curves should be considered as the ground truth

here. Results are displayed on Figures 2–6, for α ∈ {1.3, 1.5, 1.7, 1.9, 2, 2.1, 2.3, 2.5, 3, 4} and λ = 0.995

in the particular case where Σ = diag(σ2
1 , σ

2
2) with σ1 = 2 and σ2 = 1/2. These choices yield Cα =

α/(2σ1σ2π) = α/2π.

One can see that the asymptotic approximation works best when |α − 2| is large, e.g. greater than 0.5.

When α < 2, a possible explanation for this phenomenon lies in the proof of Theorem 1. Equations (46)

and (49) imply that the error terms in the asymptotic equivalent of V (‖q(λu)‖) are actually of order

[‖q(λu)‖2V (‖q(λu)‖)]−1 when 1 < α < 2. Moreover, from Theorem 1, the norm of the extreme quantile

‖q(λu)‖ behaves roughly like (1−λ)−1/α as λ ↑ 1, so that the error term behaves roughly like (1−λ)−1+2/α,

whose convergence to 0 becomes slower as α approaches 2.

Let us also remark that, for α = 2, the overall shape of the iso-quantile curve obtained by (10) is very

similar to that of the curve obtained with (11) when α > 2. This may be seen as a consequence of

Corollary 2 and of the link (8) between the matrices Σ and M . The overall shape of the contour line with

the asymptotic equivalent is different from that of the numerically approximated curve for α ≥ 2 though.

In this case, the shape of the asymptotic contour curve is controlled by the function ϕ : u 7→ tr Σ− u′Σu,

9



see (10) and (11). It is straightforward to see that the global maximum of the function ϕ on Sd−1 is

reached at a unit eigenvector umin of Σ associated with its smallest eigenvalue λmin > 0. In particular,

for α > 2, the norm of an extreme geometric quantile is asymptotically the largest in the direction where

the variance is the smallest; in our example it is the largest in the direction of the y−axis. Similarly,

the global minimum of ϕ is reached at a unit eigenvector umax of Σ associated with its largest eigenvalue

λmax > 0, that is, in the direction of the x−axis here. This is why the asymptotic approximation to the

geometric quantile contour curve has a distinctive “8” shape. The shape of the numerical approximation

to the extreme geometric quantile contour curve is more oval, i.e. it is farther from the true value of the

geometric quantile in the direction of the x−axis; a partial explanation lies again in the error terms. When

α > 3, it is a consequence of Lemmas 4 and 5 in Girard and Stupfler (2015) that the error term in the

approximation of the magnitude ‖q(λu)‖ of an extreme geometric quantile by its asymptotic equivalent is

proportional to ‖q(λu)‖−1. In other words, the approximation is best when the magnitude of the extreme

geometric quantile is the highest. Another element is certainly given by considering the numerical problem

defining the geometric quantile for α ∈ [1.5, 2.5]; one can argue that the numerical problems are close when

α varies in this range and thus the true geometric quantile contours should also be close, which is supported

by our simulation study. As a consequence, the shape of the true extreme geometric quantile curve should

evolve rather slowly as α varies. By contrast, the form of the asymptotic equivalent changes from α < 2

to α = 2 and from α = 2 to α > 2, with a drastically different shape from the first form to the second one

and slow convergence rates around α = 2. Both these reasons give an explanation for the differences in

shape between the two curves.

4 Proofs

This section is organized as follows. Paragraph 4.1 provides two preliminary analytical lemmas. Para-

graph 4.2 establishes some properties of multivariate regularly varying functions. Paragraphs 4.3, 4.4

and 4.5 are dedicated to the proofs of the main results: respectively Theorem 1, Theorem 2 and Corol-

lary 2.

4.1 Preliminary results

The first lemma is an analytical result which will reveal useful in the proof of Theorem 2.

Lemma 1. Let h1, h2 : (1,∞) → R be two nonnegative functions such that h1(t) → ∞ and h2(t) → ∞
as t → ∞. Then, for any β > 0, there exists a real function ε : (1,∞) → [0,∞) such that ε(t) → 0,

tε(t) → ∞,

εβ(t)h1(tε(t)) → ∞ and
h2(tε(t))

| log ε(t)| → ∞ as t → ∞.

Proof of Lemma 1. Let us define the function ε as

ε(t) = max

(
1√
t
,

(
inf

u≥
√
t
h1(u)

)−1/2β

, exp

(
−
[
inf

u≥
√
t
h2(u)

]1/2))
.

10



Then, clearly, ε(t) → 0, tε(t) ≥
√
t → ∞ and

εβ(t)h1(tε(t)) ≥
(

inf
u≥

√
t
h1(u)

)−1/2

× inf
u≥tε(t)

h1(u) ≥
(

inf
u≥

√
t
h1(u)

)1/2

→ ∞ as t → ∞.

Similarly, since the logarithm function is increasing, one has for t large enough

1

| log ε(t)| =
1

− log ε(t)
≥
(

inf
u≥

√
t
h2(u)

)−1/2

and therefore

h2(tε(t))

| log ε(t)| ≥
(

inf
u≥

√
t
h2(u)

)−1/2

× inf
u≥tε(t)

h2(u) ≥
(

inf
u≥

√
t
h2(u)

)1/2

→ ∞ as t → ∞

which proves the result.

Lemma 2 is an analytical result needed to illustrate Theorem 2. It is well-known that the inverse of a

regularly varying function with index a > 0 is regularly varying with index 1/a (see e.g. Theorem 1.5.12

p.28 in Bingham et al., 1987). Lemma 2 provides an asymptotic equivalent of the inverse for a particular

class of functions.

Lemma 2. Let a > 0, b ∈ R and define ga,b : t 7→ ta(log t)b on (1,∞). Then ga,b has an inverse ha,b on

a neighborhood of infinity which is such that

ha,b(t) = ab/a
t1/a

(log t)b/a
(1 + o(1)) as t → ∞.

Proof of Lemma 2. Let us remark that ga,b is continuously differentiable on (1,∞) with derivative

g′a,b(t) = ta−1(log t)b−1[a log t+ b] for all t > 1. Clearly, g′a,b(t) is positive for t > e−b/a and thus ga,b has

an inverse on a neighborhood of infinity denoted by ha,b. For all t large enough, one has

t = [ha,b(t)]
a[log(ha,b(t))]

b ⇒ ha,b(t) = t1/a[log(ha,b(t))]
−b/a, (12)

and an iterated use of (12) entails

ha,b(t) = t1/a[log(t1/a[log(ha,b(t))]
−b/a)]−b/a ⇒ ha,b(t) = ab/a

t1/a

(log t)b/a

(
1− b

log log ha,b(t)

log t

)−b/a

. (13)

Since ga,b is increasing on a neighborhood of infinity and tends to infinity at infinity, so does ha,b. Taking

logarithms in (12) entails log t = a log ha,b(t) + b log log ha,b(t) and consequently

log ha,b(t) =
1

a
log t(1 + o(1)) as t → ∞.

This yields

log log ha,b(t)

log t
→ 0 as t → ∞. (14)

Plugging (14) in (13) completes the proof.

11



4.2 Auxiliary results on multivariate regular variation

Let us start with some useful consequences of condition (Mα).

Lemma 3. Assume that (Mα) holds for some α > 0. Then,

(i) Q is a homogeneous continuous function of degree −d− α on R
d \ {0};

(ii) One has f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y)) where θ(y) → 0 as ‖y‖ → ∞.

Proof of Lemma 3. To prove (i), it is enough to note that Q is continuous on Sd−1 as a direct

consequence of (Mα), while the homogeneity follows from the convergences

f(t(ay))

t−dV (t)
→ Q(ay) and

f(t(ay))

t−dV (t)
= a−dV (at)

V (t)

f((at)y)

(at)−dV (at)
→ a−d−αQ(y) as t → ∞,

valid for every a > 0 and y 6= 0. To obtain (ii), observe that

∣∣∣∣
f(y)

‖y‖−dV (‖y‖) −Q

(
y

‖y‖

)∣∣∣∣ ≤ sup
w∈Sd−1

∣∣∣∣
f(‖y‖w)

‖y‖−dV (‖y‖) −Q(w)

∣∣∣∣ .

Therefore, condition (Mα) entails

f(y) = ‖y‖−dV (‖y‖)(Q(y/‖y‖) + θ∗(y)) with θ∗(y) → 0 as ‖y‖ → ∞.

Since Q is positive and continuous on the compact set Sd−1, it is bounded from below by a positive

constant on Sd−1 and thus

f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y)) with θ(y) :=
θ∗(y)

Q(y/‖y‖) → 0 as ‖y‖ → ∞.

The result follows.

The second lemma is a slightly stronger version of some uniform convergence results proved in Lemma 1

of Cai et al. (2011).

Lemma 4. Assume that (Mα) holds for some α > 0. Then for every δ, ε > 0, we have that

sup
‖y‖≥ε

‖y‖d+α−δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 and sup
0<‖y‖≤ε

‖y‖d+α+δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣→ 0 as t → ∞.

Proof of Lemma 4. To prove the first convergence, use the triangle inequality and the homogeneity of

Q to obtain for every y 6= 0

‖y‖d+α−δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣ ≤ ‖y‖−δ

∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖) −Q

(
y

‖y‖

)∣∣∣∣

+
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣ . (15)

For every y such that ‖y‖ ≥ ε > 0, we have on the one hand

‖y‖−δ

∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖) −Q

(
y

‖y‖

)∣∣∣∣ ≤ ε−δ sup
T≥tε

sup
w∈Sd−1

∣∣∣∣
f(Tw)

T−dV (T )
−Q(w)

∣∣∣∣→ 0 as t → ∞. (16)
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On the other hand, for t large enough, using Lemma 3(ii) and the boundedness of the continuous function

Q on the compact set Sd−1 entails:

f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣ = O

(
sup
a≥ε

∣∣∣∣
(at)α−δV (at)

tα−δV (t)
− a−δ

∣∣∣∣
)
.

Remarking that t 7→ tα−δV (t) is regularly varying at infinity with index −δ < 0, a uniform convergence

property (see e.g. Theorem 1.5.2 p.22 in Bingham et al., 1987) yields

sup
‖y‖≥ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dV (t‖y‖)

∣∣∣∣
(t‖y‖)α−δV (t‖y‖)

tα−δV (t)
− ‖y‖−δ

∣∣∣∣→ 0 as t → ∞. (17)

Combining (15), (16) and (17) yields the first part of the result.

We now prove the second convergence. Pick an arbitrary η > 0 and let t0 > 0 be such that

∀t > t0, sup
w∈Sd−1

∣∣∣∣
f(tw)

t−dV (t)
−Q(w)

∣∣∣∣ <
η

2εδ
. (18)

Define a function Ṽ by Ṽ (t) = 1 if 0 ≤ t ≤ t0 and Ṽ (t) = V (t) otherwise. For all t > t0, we have that

‖y‖d+α+δ

∣∣∣∣
f(ty)

t−dV (t)
−Q(y)

∣∣∣∣ ≤ ‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣

+
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

∣∣∣∣∣
(t‖y‖)α+δṼ (t‖y‖)

tα+δṼ (t)
− ‖y‖δ

∣∣∣∣∣ . (19)

Inequality (18) entails

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{t0/t<‖y‖≤ε} ≤ η

2
. (20)

Moreover,

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{0<‖y‖≤t0/t} ≤
(
t0
t

)δ
(

sup
‖z‖≤t0

‖z‖df(z)
Ṽ (‖z‖)

+ sup
w∈Sd−1

Q(w)

)
.

Since y 7→ ‖y‖df(y) is bounded on any compact neighborhood of 0 and Ṽ is equal to 1 on [0, t0] and Q is

bounded on Sd−1, the right-hand side above is finite. One thus obtains for t large enough

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣ 1l{0<‖y‖≤t0/t} ≤ η

2
. (21)

Combining (20) and (21), it becomes clear that

sup
0<‖y‖≤ε

‖y‖δ
∣∣∣∣∣
f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

−Q

(
y

‖y‖

)∣∣∣∣∣→ 0 as t → ∞. (22)

Finally, let us remark that (18) entails

sup
0<‖y‖≤ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

≤ sup
‖z‖≤t0

‖z‖df(z)
Ṽ (‖z‖)

+ 2 sup
w∈Sd−1

Q(w) +
η

2εδ
< ∞
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and therefore, since t 7→ tα+δV (t) is regularly varying at infinity with index δ > 0 and bounded on any

neighborhood of 0, a uniform convergence result (see e.g. Theorem 1.5.2 p.22 in Bingham et al., 1987)

yields, as t → ∞,

sup
0<‖y‖≤ε

f(t‖y‖(y/‖y‖))
(t‖y‖)−dṼ (t‖y‖)

∣∣∣∣∣
(t‖y‖)α+δṼ (t‖y‖)

tα+δṼ (t)
− ‖y‖δ

∣∣∣∣∣ = O

(
sup

0<a≤ε

∣∣∣∣∣
(at)α+δṼ (at)

tα+δṼ (t)
− aδ

∣∣∣∣∣

)
→ 0. (23)

Combining (19), (22) and (23) completes the proof.

4.3 Proof of Theorem 1

Lemma 5 is the essential tool to prove Theorem 1(i).

Lemma 5. Let u ∈ Sd−1.

(i) Assume that (Mα) holds for some α ∈ (0, 1). Let v ∈ R
d and define

I(u, v) =

∫

Rd

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy.

Then I(u, v) is well-defined, finite and

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −I(u, v) as λ ↑ 1.

(ii) Assume that (M1) holds. Then, for any ε > 0,

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= o(‖q(λu)‖ε) as λ ↑ 1.

Proof of Lemma 5. (i) The Cauchy-Schwarz inequality entails, for all y ∈ R
d and w ∈ Sd−1,

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤
∥∥∥∥

y − w

‖y − w‖ + w

∥∥∥∥ ‖v‖.

Besides, ∥∥∥∥
y − w

‖y − w‖ + w

∥∥∥∥
2

= 2

(
1 +

〈
y − w

‖y − w‖ , w
〉)

=
2 (‖y − w‖+ 〈y − w, w〉)

‖y − w‖
so that ∥∥∥∥

y − w

‖y − w‖ + w

∥∥∥∥
2

=
2
(
‖y − w‖2 − 〈y − w, w〉2

)

‖y − w‖(‖y − w‖ − 〈y − w, w〉) .

The numerator of the right-hand side can be bounded from above as follows:

‖y − w‖2 − 〈y − w, w〉2 = ‖y‖2 − 〈y, w〉2 ≤ ‖y‖2.

If moreover ‖y‖ < ‖w‖ = 1, then the denominator can be controlled by applying both the Cauchy-Schwarz

and reverse triangle inequalities:

‖y − w‖(‖y − w‖ − 〈y − w, w〉) = ‖y − w‖2
(
1 + ‖y − w‖ − 〈y − w, y〉

‖y − w‖

)
≥ 2(1− ‖y‖)3.
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As a consequence, if B is the ball centered at the origin having radius 1/2, then

∀y ∈ B,
∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤ 2‖v‖‖y‖, (24)

and the homogeneity property of Q yields

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣Q(y)1lB(y) ≤ 2‖v‖‖y‖−(d−1+α)Q

(
y

‖y‖

)
1lB(y). (25)

The right-hand side of this inequality defines an integrable function in a neighborhood of 0 because

α ∈ (0, 1). Besides, the Cauchy-Schwarz inequality entails for all y ∈ R
d and w ∈ Sd−1

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣ ≤ 2‖v‖. (26)

Consequently, denoting by Bc the complement of B, it follows that

∣∣∣∣
〈y − w, v〉
‖y − w‖ + 〈w, v〉

∣∣∣∣Q(y)1lBc(y) ≤ 2‖v‖‖y‖−(d+α)Q

(
y

‖y‖

)
1lBc(y) (27)

where the right-hand side defines an integrable function in a neighborhood of infinity since α > 0. Combin-

ing (25) and (27) with w = u shows that I(u, v) is finite. The characterization of the geometric quantile (2)

yields

λu+

∫

Rd

x− q(λu)

‖x− q(λu)‖f(x)dx = 0

or equivalently

I1(λ) + I2(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

(28)

with I1(λ) =

∫

B

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dy

and I2(λ) =

∫

Bc

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dy.

Let us also introduce

I ′1(λ) =

∫

B

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy

and I ′2(λ) =

∫

Bc

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy.

To obtain the asymptotic behavior of I1(λ), we first deduce from (24) that:

|I1(λ)− I ′1(λ)| ≤ 2‖v‖
∫

B

{
‖y‖d+α+δ

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d−1+α+δ

where δ = (1−α)/2 > 0 is such that α+ δ < 1. Let us note that since y 7→ ‖y‖−(d−1+α+δ) is an integrable

function in a neighborhood of 0, Lemma 4 entails that I1(λ)− I ′1(λ) → 0 as λ ↑ 1. Recalling (25) with w

replaced by q(λu)/‖q(λu)‖ and applying (3) together with the dominated convergence theorem, we obtain:

I1(λ) →
∫

B

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy as λ ↑ 1. (29)
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Let us now focus on I2(λ): from (26), it follows that

|I2(λ)− I ′2(λ)| ≤ 2‖v‖
∫

Bc

{
‖y‖d+α/2

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+α/2
.

Since α > 0, the function y 7→ ‖y‖d+α/2 is integrable in a neighborhood of infinity. Lemma 4 thus entails

that I2(λ) − I ′2(λ) → 0 as λ ↑ 1. Recalling (27) with w replaced by q(λu)/‖q(λu)‖ and applying (3)

together with the dominated convergence theorem, we get

I2(λ) →
∫

Bc

( 〈y − u, v〉
‖y − u‖ + 〈u, v〉

)
Q(y)dy as λ ↑ 1. (30)

The result follows by combining (28), (29) and (30).

(ii) Since Bd is a relatively compact neighborhood of 0, inequality (24) entails for n large enough

∀x ∈ Bd,

∣∣∣∣
〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉∣∣∣∣ ≤ 2

‖v‖‖x‖
‖q(λu)‖ ≤ 2

‖v‖
‖q(λu)‖

and therefore ∫

Bd

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx = O
(
‖q(λu)‖−1

)
.

Let further A(λ) be the annulus {y ∈ R
d | 1/‖q(λu)‖ < ‖y‖ ≤ 1/2} ⊂ B. Similarly to what was done in

the proof of (i), equation (2) and a change of variables entail

I2(λ) + I3(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉
+O

(
[‖q(λu)‖V (‖q(λu)‖)]−1

)

with I3(λ) =

∫

A(λ)

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

f(‖q(λu)‖y)
‖q(λu)‖−dV (‖q(λu)‖)dy

where I2(λ) is defined in the proof of (i). Since t 7→ [tV (t)]−1 is slowly varying, Proposition 1.3.6(v) p.16

in Bingham et al. (1987) gives [tV (t)]−1 = o(tε) as t → ∞ for any ε > 0. Recall further that (30) was

actually also true for α = 1, so that

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= −I3(λ) + o(‖q(λu)‖ε). (31)

Let us now turn to the control of I3(λ) and introduce

I ′3(λ) =

∫

A(λ)

(∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ , v
〉
+

〈
q(λu)

‖q(λu)‖ , v
〉)

Q(y)dy.

From (24), it follows that as λ ↑ 1,

|I3(λ)− I ′3(λ)| ≤ 2‖v‖
∫

A(λ)

{
‖y‖d+1+ε

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+ε

= o

(∫

A(λ)

dy

‖y‖d+ε

)
= o

(∫ 1

1/‖q(λu)‖

dr

r1+ε

)
= o (‖q(λu)‖ε) , (32)

in view of Lemma 4 and after switching to polar coordinates. Finally, I ′3(λ) is controlled using (25):

I ′3(λ) ≤ 2‖v‖
∫

A(λ)

‖y‖−dQ

(
y

‖y‖

)
dy.
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We can thus use the boundedness of Q on Sd−1 and polar coordinates to obtain

I ′3(λ) = O

(∫ 1

1/‖q(λu)‖

dr

r

)
= O(log ‖q(λu)‖) = o(‖q(λu)‖ε) as λ ↑ 1. (33)

Combining (31), (32) and (33) completes the proof.

Lemma 6 below is the key to the proof of Theorem 1(ii).

Lemma 6. Assume that (Mα) holds for some α ∈ (0, 2). Let u ∈ Sd−1 and set

J(u) =

∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy.

Then J(u) is well-defined, positive and finite, and

1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −J(u) as λ ↑ 1.

Proof of Lemma 6. The Cauchy-Schwarz inequality yields for every y ∈ R
d

1 +
〈y − u, u〉
‖y − u‖ ≥ 1− ‖u‖ = 0

with equality if and only if y and u are linearly dependent. As a consequence, J(u) > 0. Let ϕ :

R
d × [0,∞)× Sd−1 → R be the nonnegative function defined by

ϕ(x, r, w) = r2
(
1 +

〈x− rw, w〉
‖x− rw‖

)
,

and recall that, from Girard and Stupfler (2015, inequality (16)):

ϕ(x, r, w)1l{‖x‖<r} ≤ ‖x‖21l{‖x‖<r}. (34)

Thus, using the homogeneity of Q and applying (34) with r = 1 yield for every y ∈ R
d and w ∈ Sd−1

∣∣∣∣1 +
〈y − w, w〉
‖y − w‖

∣∣∣∣Q(y)1lBd(y) ≤ ‖y‖−(d−2+α)Q

(
y

‖y‖

)
1lBd(y) (35)

with the right-hand side of this inequality being an integrable function in a neighborhood of 0. Besides,

the Cauchy-Schwarz inequality and the homogeneity of Q entail for all y ∈ R
d and w ∈ Sd−1

∣∣∣∣1 +
〈y − w, w〉
‖y − w‖

∣∣∣∣Q(y)1lRd\Bd(y) ≤ 2‖y‖−(d+α)Q

(
y

‖y‖

)
1lRd\Bd(y) (36)

so that the integrand in J(u) is also integrable in a neighborhood of infinity. J(u) is thus positive and

finite. The remainder of the proof follows the lines of the proof of Lemma 5: taking account of (2) and

using a change of variables, we get

J1(λ) + J2(λ) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
(37)

with J1(λ) =

∫

Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖)dy

and J2(λ) =

∫

Rd\Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖)dy.

17



Let us consider

J ′
1(λ) =

∫

Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
Q(y)dy

and J ′
2(λ) =

∫

Rd\Bd

(
1 +

∥∥∥∥y −
q(λu)

‖q(λu)‖

∥∥∥∥
−1〈

y − q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
Q(y)dy.

The asymptotic behavior of J1(λ) is then deduced from (34) with r = 1:

|J1(λ)− J ′
1(λ)| ≤

∫

Bd

{
‖y‖d+α+δ

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d−2+α+δ

where δ = (2 − α)/2 > 0 is such that α + δ < 2. Remarking that y 7→ ‖y‖−(d−2+α+δ) is an integrable

function in a neighborhood of 0, Lemma 4 entails J1(λ) − J ′
1(λ) → 0 as λ ↑ 1. In view of (35), the

dominated convergence theorem leads to

J1(λ) →
∫

Bd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1. (38)

Let us now focus on J2(λ). The Cauchy-Schwarz inequality yields

|J2(λ)− J ′
2(λ)| ≤ 2

∫

Rd\Bd

{
‖y‖d+α/2

∣∣∣∣
f(‖q(λu)‖y)

‖q(λu)‖−dV (‖q(λu)‖) −Q(y)

∣∣∣∣
}

dy

‖y‖d+α/2
.

Since y 7→ ‖y‖d+α/2 is an integrable function in a neighborhood of infinity, applying Lemma 4 shows that

J2(λ) − J ′
2(λ) → 0 as λ ↑ 1. Therefore, recalling (36) and applying the dominated convergence theorem,

we get

J2(λ) →
∫

Rd\Bd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1. (39)

The result follows from (37), (38) and (39).

Proof of Theorem 1. (i) Let (u, v1, . . . , vd−1) be an orthonormal basis of Rd. We may then write

q(λu)

‖q(λu)‖ − u = (b(λ)− 1)u+

d−1∑

k=1

βk(λ)vk (40)

where b(λ) ∈ R and, for all k ∈ {1, . . . , d− 1},

βk(λ) :=

〈
q(λu)

‖q(λu)‖ , vk
〉

= −
〈
λu− q(λu)

‖q(λu)‖ , vk
〉
. (41)

Lemma 5 entails that, for all k ∈ {1, . . . , d− 1},

βk(λ)

V (‖q(λu)‖) = − 1

V (‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , vk
〉

→
∫

Rd

〈y, vk〉
‖y − u‖Q(y)dy (42)

as λ ↑ 1. Besides, since q(λu)/‖q(λu)‖ ∈ Sd−1, it is clear that

b2(λ) +

d−1∑

k=1

β2
k(λ) = 1. (43)
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In view of (3), b(λ) → 1 as λ ↑ 1: it is thus easily seen from (42) that

1

V (‖q(λu)‖) (b(λ)− 1) = − 1

2V (‖q(λu)‖) (1− b2(λ))(1 + o(1))

= −V (‖q(λu)‖)
(
1

2

d−1∑

k=1

β2
k(λ)

[V (‖q(λu)‖)]2

)
(1 + o(1)) → 0 (44)

as λ ↑ 1. Combining (40), (42), (44) and remarking that

Πu(y) =
d−1∑

k=1

〈y, vk〉vk

completes the first part of the proof.

(ii) Let us recall that, if α ∈ (1, 2), then E‖X‖ < ∞. In this case, Lemma 1 in Girard and Stupfler (2015)

shows that, for all v ∈ R
d,

‖q(λu)‖
〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −E〈Πu(X), v〉 as λ ↑ 1. (45)

Thus, Lemma 5 and (45) in the case α ≤ 1 and α ∈ (1, 2) respectively show that for all k ∈ {1, . . . , d− 1}:

β2
k(λ)

V (‖q(λu)‖) =





O(V (‖q(λu)‖)) if α < 1

o(‖q(λu)‖1/2V (‖q(λu)‖)) if α = 1

O([‖q(λu)‖2V (‖q(λu)‖)]−1) if 1 < α < 2





= o(1), (46)

as λ ↑ 1. Now, equation (43) and Lemma 6 yield

1

V (‖q(λu)‖) (λb(λ)− 1) → −J(u) as λ ↑ 1, (47)

and combining (43), (46) and (47) leads to

1

V (‖q(λu)‖)

(
1− λb(λ)− 1

2

(
1− b2(λ)

))
→ J(u) as λ ↑ 1. (48)

Finally, use once again either Lemma 5 if α ≤ 1 or equation (45) if α ∈ (1, 2) to get

1

V (‖q(λu)‖)

∣∣∣∣
〈
λu− q(λu)

‖q(λu)‖ , u
〉∣∣∣∣

2

=





O(V (‖q(λu)‖)) if α < 1

o(‖q(λu)‖1/2V (‖q(λu)‖)) if α = 1

o([‖q(λu)‖2V (‖q(λu)‖)]−1) if 1 < α < 2





= o(1) (49)

as λ ↑ 1 which implies
1

V (‖q(λu)‖) (λ− b(λ))
2 → 0 as λ ↑ 1. (50)

Using (48) together with (50) and the straightforward identity

1− λb(λ)− 1

2

(
1− b2(λ)

)
=

1

2

(
(1− λ)(1 + λ) + (λ− b(λ))2

)

yields the desired result.
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4.4 Proof of Theorem 2

Lemma 7 is the analogue of Lemma 5 when (M1) holds. It is the cornerstone to prove Theorem 2(i).

Lemma 7. Let u ∈ Sd−1. If (M1) holds with L(t) → ∞ as t → ∞ then, for all v ∈ R
d and any symmetric

positive definite d× d matrix Σ,

‖q(λu)‖
L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −
∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) as λ ↑ 1.

Proof of Lemma 7. The proof starts as the beginning of the proof of Lemma 5(ii). Let Ed
Σ = {x ∈

R
d |x′Σ−1x ≤ 1}. Since Ed

Σ is a compact neighborhood of 0, (24) entails, for n large enough,

∀x ∈ Ed
Σ,

∣∣∣∣
〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉∣∣∣∣ ≤ 2

‖v‖‖x‖
‖q(λu)‖

and therefore ∫

Ed
Σ

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx = O
(
‖q(λu)‖−1

)

where the boundedness of the function y 7→ ‖y‖ on the compact subset Ed
Σ of Rd was used. It thus follows

from (2) that
∫

Rd\Ed
Σ

( 〈x− q(λu), v〉
‖x− q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

f(x)dx+

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= O
(
‖q(λu)‖−1

)
.

Let us consider the Karamata representation (see Theorem 1.3.1 p.12 in Bingham et al., 1987) of the

slowly varying function L defined in (4):

L(t) = c(t) exp

(∫ t

1

∆(z)

z
dz

)
(51)

where c is a positive Borel measurable function converging to some positive constant, and ∆ is a Borel

measurable auxiliary function which converges to 0 at infinity. Lemma 1 then shows that there exists a

function ε1 : (1,∞) → [0,∞) such that ε1(r) → 0, rε1(r) → ∞,

ε1(r)
L(rε1(r))
L(rε1(r))

→ ∞ and | log ε1(r)| sup
z≥rε1(r)

|∆(z)| → 0 as r → ∞.

Let η1(λ) = ε1(‖q(λu)‖) for the sake of simplicity. Write further f(y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + θ(y))

where θ(y) → 0 as ‖y‖ → ∞ by Lemma 3. Denote by C1,− (resp. C1,+) the positive and finite infimum

(resp. supremum) of the positive and continuous map y 7→ ‖y‖ on the compact subset Ed−1
Σ of R

d.

Since V can be taken continuous on (C1,−/2,∞), we may assume that θ is bounded on any annulus

{y ∈ R
d|C1,− ≤ ‖y‖ ≤ C}, C > C1,−. In view of L(η1(λ)‖q(λu)‖) → ∞ and (5), one has the expansion:

‖q(λu)‖
L(η1(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

= − ‖q(λu)‖
L(η1(λ)‖q(λu)‖)

(I1(λ) + I2(λ)) + o(1) (52)

with

I1(λ) =

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

r−2L(r)Q(w)(1 + θ(rw))dr µΣ(dw),

I2(λ) =

∫ ∞

η1(λ)‖q(λu)‖

∫

Ed−1

Σ

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

r−2L(r)Q(w)(1 + θ(rw)) dr µΣ(dw).
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Let us start by controlling I1(λ). To this end, a Taylor expansion yields

sup
w∈Ed−1

Σ

sup
z∈Sd−1

∣∣∣∣
1

ρ

( 〈ρw − z, v〉
‖ρw − z‖ + 〈z, v〉

)
− 〈Πz(w), v〉

∣∣∣∣→ 0 as ρ → 0,

and therefore, in view of (3), we obtain

sup
1≤r≤η1(λ)‖q(λu)‖

sup
w∈Ed−1

Σ

∣∣∣∣
‖q(λu)‖

r

( 〈rw − q(λu), v〉
‖rw − q(λu)‖ +

〈
q(λu)

‖q(λu)‖ , v
〉)

− 〈Πu(w), v〉
∣∣∣∣→ 0 as λ ↑ 1

leading to

I1(λ) =
1

‖q(λu)‖

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), v〉r−1L(r)Q(w)(1 + θ(rw)) dr µΣ(dw)

+ o

(
1

‖q(λu)‖

∫ η1(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), v〉r−1L(r)Q(w)(1 + |θ(rw)|) dr µΣ(dw)

)
.

Besides,

1

L(η1(λ)‖q(λu)‖)
sup

w∈Ed−1

Σ

(∫ η1(λ)‖q(λu)‖

1

L(r)

r
|θ(rw)|dr

)
→ 0 (53)

as λ ↑ 1. Indeed, for any C2 > 1, by separating the cases r ∈ [1, C2) and r ≥ C2, it appears that the

left-hand side is less than

L(C2)

L(η1(λ)‖q(λu)‖)
sup

C1,−≤‖y‖≤C1,+C2

|θ(y)|+ sup
‖y‖>C1,+C2

|θ(y)|

which can be made arbitrarily small as λ ↑ 1 by a suitable choice of the constant C2 > 1. Hence the

equality

I1(λ) =
L(η1(λ)‖q(λu)‖)

‖q(λu)‖

(∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) + o(1)

)
. (54)

Let us turn to the term I2(λ), which, recalling (26), can be bounded as follows:

|I2(λ)| ≤ 2‖v‖
∫ ∞

η1(λ)‖q(λu)‖
r−2L(r)dr

∫

Ed−1

Σ

Q(w)µΣ(dw).

The change of variables r = η1(λ)‖q(λu)‖ρ yields

|I2(λ)| ≤ 2‖v‖(η1(λ)‖q(λu)‖)−1L(η1(λ)‖q(λu)‖)
∫ ∞

1

ρ−2L(η1(λ)‖q(λu)‖ρ)
L(η1(λ)‖q(λu)‖)

dρ

∫

Ed−1

Σ

Q(w)µΣ(dw).

Let us introduce the function h1 defined on (0,∞) by h1(ρ) = ρ−1/2L(ρ). Clearly, h1 is regularly varying

with index −1/2 and therefore by a uniform convergence result (see e.g. Theorem 1.5.2 p.22 in Bingham

et al., 1987):

sup
ρ≥1

∣∣∣∣
h1(η1(λ)‖q(λu)‖ρ)
h1(η1(λ)‖q(λu)‖)

− ρ−1/2

∣∣∣∣→ 0 as λ ↑ 1.

Since the function ρ 7→ ρ−3/2 is integrable over [1,∞), it follows that

|I2(λ)| = O
(
(η1(λ)‖q(λu)‖)−1L(η1(λ)‖q(λu)‖)

)
= o(‖q(λu)‖−1L(η1(λ)‖q(λu)‖)), (55)

in view of the properties of η1(λ). Combining (52), (54) and (55) then implies that

‖q(λu)‖
L(η1(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , v
〉

→ −
∫

Ed−1

Σ

〈Πu(w), v〉Q(w)µΣ(dw) as λ ↑ 1.
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Finally, ∣∣∣∣∣

∫ ‖q(λu)‖

η1(λ)‖q(λu)‖

∆(z)

z
dz

∣∣∣∣∣ ≤ | log η1(λ)| sup
z≥η1(λ)‖q(λu)‖

|∆(z)| → 0 as λ ↑ 1

and therefore

L(‖q(λu)‖)
L(η1(λ)‖q(λu)‖)

=
c(‖q(λu)‖)

c(η1(λ)‖q(λu)‖)
exp

(∫ ‖q(λu)‖

η1(λ)‖q(λu)‖

∆(z)

z
dz

)
→ 1 as λ ↑ 1

which completes the proof.

Lemma 8 is the analogue of Lemma 6 when (M2) holds. It will reveal useful to prove Theorem 2(ii).

Lemma 8. Let u ∈ Sd−1. If (M2) holds with L(t) → ∞ as t → ∞ then, for any symmetric positive

definite d× d matrix Σ,

‖q(λu)‖2
L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) as λ ↑ 1.

Proof of Lemma 8. Let us start as in the proof of Lemma 7, whose notation we retain. From (34), one

has ∣∣∣∣1 +
〈

x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉∣∣∣∣ ≤
‖x‖2

‖q(λu)‖2 ,

for n large enough and uniformly in x ∈ Ed
Σ, leading to

∫

Ed
Σ

(
1 +

〈
x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(x) dx = O

(
‖q(λu)‖−2

)
.

In view of (2), it follows that

∫

Rd\Ed
Σ

(
1 +

〈
x− q(λu)

‖x− q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
f(x)dx+

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
= O

(
‖q(λu)‖−2

)
.

Besides, Lemma 1 shows that there exists a function ε2 : (1,∞) → [0,∞) such that ε2(r) → 0, rε2(r) → ∞,

ε22(r)
L(rε2(r))
L(rε2(r))

→ ∞ and | log ε2(r)| sup
z≥rε2(r)

|∆(z)| → 0 as r → ∞.

Let us introduce η2(λ) = ε2(‖q(λu)‖). From (5), and since L(η2(λ)‖q(λu)‖) → ∞, it follows that

‖q(λu)‖2
L(η2(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
= − ‖q(λu)‖2

L(η2(λ)‖q(λu)‖)
[J1(λ) + J2(λ)] + o(1) (56)

with

J1(λ) =

∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
r−3L(r)Q(w)(1 + θ(rw)) dr µΣ(dw),

J2(λ) =

∫ ∞

η2(λ)‖q(λu)‖

∫

Ed−1

Σ

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
r−3L(r)Q(w)(1 + θ(rw)) dr µΣ(dw).

Let us start by controlling J1(λ). A Taylor expansion leads to

sup
w∈Ed−1

Σ

sup
z∈Sd−1

∣∣∣∣
1

ρ2

(
1 +

〈ρw − z, z〉
‖ρw − z‖

)
− 1

2
〈Πz(w), w〉

∣∣∣∣→ 0 as ρ → 0,
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and thus, in view of (3):

sup
1≤r≤η2(λ)‖q(λu)‖

sup
w∈Ed−1

Σ

∣∣∣∣
‖q(λu)‖2

r2

(
1 +

〈
rw − q(λu)

‖rw − q(λu)‖ ,
q(λu)

‖q(λu)‖

〉)
− 1

2
〈Πu(w), w〉

∣∣∣∣→ 0

as λ ↑ 1. This entails

J1(λ) =
1

‖q(λu)‖2
∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

1

2
〈Πu(w), w〉r−1L(r)Q(w)(1 + θ(rw)) dr µΣ(dw)

+ o

(
1

‖q(λu)‖2
∫ η2(λ)‖q(λu)‖

1

∫

Ed−1

Σ

〈Πu(w), w〉r−1L(r)Q(w)(1 + |θ(rw)|) dr µΣ(dw)

)
.

Using (53) yields, as a preliminary conclusion:

J1(λ) =
L(η2(λ)‖q(λu)‖)

‖q(λu)‖2

(
1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) + o(1)

)
. (57)

Let us turn to the term J2(λ), which can be bounded using the Cauchy-Schwarz inequality:

|J2(λ)| ≤ 2

∫ ∞

η2(λ)‖q(λu)‖
r−3L(r)dr

∫

Ed−1

Σ

Q(w)µΣ(dw).

The change of variables r = η2(λ)‖q(λu)‖ρ yields

|J2(λ)| ≤ 2(η2(λ)‖q(λu)‖)−2L(η2(λ)‖q(λu)‖)
∫ ∞

1

ρ−3L(η2(λ)‖q(λu)‖ρ)
L(η2(λ)‖q(λu)‖)

dρ

∫

Ed−1

Σ

Q(w)µΣ(dw).

Let us consider the function h2 defined on (0,∞) by h2(ρ) = ρ−1L(ρ). Clearly, h2 is regularly varying

with index −1 and therefore by a uniform convergence result (see e.g. Theorem 1.5.2 p.22 in Bingham et

al., 1987):

sup
ρ≥1

∣∣∣∣
h2(η2(λ)‖q(λu)‖ρ)
h2(η2(λ)‖q(λu)‖)

− ρ−1

∣∣∣∣→ 0 as λ ↑ 1.

Since the function ρ 7→ ρ−2 is integrable over [1,∞), it follows that

|J2(λ)| = O
(
(η2(λ)‖q(λu)‖)−2L(η2(λ)‖q(λu)‖)

)
= o

(
‖q(λu)‖−2L(η2(λ)‖q(λu)‖)

)
(58)

in view of the properties of η2(λ). Combining (56), (57) and (58) entails

‖q(λu)‖2
L(η2(λ)‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ ,
q(λu)

‖q(λu)‖

〉
→ −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw).

Finally, since

∣∣∣∣∣

∫ ‖q(λu)‖

η2(λ)‖q(λu)‖

∆(z)

z
dz

∣∣∣∣∣ ≤ | log η2(λ)| sup
z≥η2(λ)‖q(λu)‖

|∆(z)| → 0 as λ ↑ 1

it is thus clear that

L(‖q(λu)‖)
L(η2(λ)‖q(λu)‖)

=
c(‖q(λu)‖)

c(η2(λ)‖q(λu)‖)
exp

(∫ ‖q(λu)‖

η2(λ)‖q(λu)‖

∆(z)

z
dz

)
→ 1 as λ ↑ 1

and the conclusion follows.
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Proof of Theorem 2. (i) We follow the lines of the proof of Theorem 1. Recalling the notation introduced

in (40), Lemma 7 yields for all k ∈ {1, . . . , d− 1}:

‖q(λu)‖
L(‖q(λu)‖)βk(λ) = − ‖q(λu)‖

L(‖q(λu)‖)

〈
λu− q(λu)

‖q(λu)‖ , vk
〉

→
∫

Ed−1

Σ

〈w, vk〉Q(w)µΣ(dw)

as λ ↑ 1. The first statement is then proven by mimicking the proof of Theorem 1(i).

(ii) From Lemma 7, and in view of equations (41), (45), it follows that

β2
k(λ) = o(‖q(λu)‖−2L(‖q(λu)‖)) (59)

as λ ↑ 1 and for all k ∈ {1, . . . , d− 1}. Lemma 8 and equation (43) then yield

‖q(λu)‖2
L(‖q(λu)‖) (λb(λ)− 1) → −1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) (60)

as λ ↑ 1. Using once more equation (43), together with (59) and (60) entails

‖q(λu)‖2
L(‖q(λu)‖)

(
1− λb(λ)− 1

2

(
1− b2(λ)

))
→ 1

2

∫

Ed−1

Σ

〈Πu(w), w〉Q(w)µΣ(dw) (61)

as λ ↑ 1. One can thus use (61) to argue along the same lines as in the proof of Theorem 1(ii).

4.5 Proof of Corollary 2

Corollary 2 is a direct consequence of Theorem 2(ii) and of the following result:

Lemma 9. For all u ∈ Sd−1, one has

∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) =
ad
d

(detΣ)
1/2

(tr Σ− u′Σu).

Proof of Lemma 9. The definition of µΣ entails

∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) = (detΣ)
1/2
∫

Sd−1

〈Πu(Σ
1/2w), Σ1/2w〉σ(dw).

Recalling that Πu(y) = y − 〈y, u〉u for any y ∈ R
d, this yields

∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) = (detΣ)
1/2
∫

Sd−1

(
‖Σ1/2w‖2 − 〈Σ1/2w, u〉2

)
σ(dw).

Let us denote by mij the entry in the i−th row and j−th column of Σ1/2. If w = (w1, . . . , wd)
′ and

u = (u1, . . . , ud)
′, one has

‖Σ1/2w‖2 =
d∑

i,j=1

d∑

k=1

mkimkjwiwj and 〈Σ1/2w, u〉2 =
d∑

i,j=1

d∑

k,l=1

mkimljwiwjukul. (62)

Isotropy and symmetry arguments entail, for all i, j ∈ {1, . . . , d} with i 6= j:

∫

Sd−1

w2
i σ(dw) =

∫

Sd−1

w2
jσ(dw) and

∫

Sd−1

wiwjσ(dw) = 0. (63)
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Especially, since w2
1 + · · ·+ w2

d = 1 for all w ∈ Sd−1, it follows that, for all i ∈ {1, . . . , d}:
∫

Sd−1

w2
i σ(dw) =

ad
d
. (64)

Combining (62), (63) and (64) yields

∫

Ed−1

Σ

〈Πu(w), w〉µΣ(dw) =
ad
d

(detΣ)
1/2




d∑

i,k=1

m2
ki −

d∑

i=1

[
d∑

k=1

mkiuk

]2
 . (65)

Let us finally remark that, since Σ1/2 is a symmetric matrix, it holds that

tr Σ =

d∑

i,k=1

m2
ki and u′Σu =

d∑

i=1

(
d∑

k=1

mkiuk

)2

.

Plugging these two equalities into (65) concludes the proof.
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Figure 1: Three geometric iso-quantile curves {q(v), ‖v‖ ∈ {0.5, 0.65, 0.8}} computed on a two-dimensional

dataset extracted from the Pima Indians Diabetes Database. The data set consists of n = 392 pairs

(Xi, Yi), where Xi is the body mass index of the ith individual and Yi is its diastolic blood pressure. Both

variables are centered and standardized.
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Figure 2: Extreme geometric quantiles from the Pareto model, top: α = 1.3, bottom: α = 1.5, dashed

line: asymptotic equivalent, ×: numerical computation.
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Figure 3: Extreme geometric quantiles from the Pareto model, top: α = 1.7, bottom: α = 1.9, dashed

line: asymptotic equivalent, ×: numerical computation.
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Figure 4: Extreme geometric quantiles from the Pareto model, top: α = 2, bottom: α = 2.1, dashed line:

asymptotic equivalent, ×: numerical computation.
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Figure 5: Extreme geometric quantiles from the Pareto model, top: α = 2.3, bottom: α = 2.5, dashed

line: asymptotic equivalent, ×: numerical computation.
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Figure 6: Extreme geometric quantiles from the Pareto model, top: α = 3, bottom: α = 4, dashed line:

asymptotic equivalent, ×: numerical computation.
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