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Abstract 

This paper is concerned with utilizing neural networks and analog circuits 

to solve constrained optimization problems. A novel neural network architec- 

ture is proposed for solving a class of nonlinear programming problems. The 

proposed neural network, or more precisely a physically realizable approxima- 

tion, is then used to solve minimum norm problems subject to linear con- 

straints. Minimum norm problems have many applications in various areas, 

but we focus on their applications to the control of discrete dynamic processes. 

The applicability of the proposed neural network is demonstrated on numerical 

examples. 
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1. Introduction 

The idea of using analog circuits to solve mathematical programming 

problems seems to have been first proposed by Dennis (1959). Since then, vari- 

ous types of "neural" networks have been proposed to obtain solutions to con- 

strained optimization problems. In particular Chua and Lin (1984) developed 

the canonical nonlinear programming circuit, using the Kuhn-Tucker condi- 

tions from mathematical programming theory, for simulating general nonlinear 



programming problems. Later Tank and Hopfield (1986) developed an optimi- 

zation network for solving linear programming problems using general princi- 

ples resulting from the basic collective computational properties of a class of 

analog-processor networks. Practical design aspects of the Tank and Hopfield 

network along with its stability properties were discussed by Smith and Port- 

mann (1989). An extension of the results of Tank and Hopfield to more gen- 

eral nonlinear programming problems was presented by Kennedy and Chua 

(1988). In addition, they noted that the network introduced by Tank and 

Hopfield could be considered to be a special case of the canonical nonlinear 

programming network proposed by Chua and Lin (1984), with capacitors 

added to account for the dynamic behavior of the circuit. Lillo et. al. (1991) 

have shown that the above discussed approach implicitly utilizes the penalty 

function method. The idea behind the penalty method is to approximate a 

constrained optimization problem by an unconstrained optimization problem - 

see Luenberger (1984, Chp. 12) for a discussion of this approach. 

In this paper we use the penalty function method approach to synthesize a 

new neural optimization network capable of solving a general class of con- 

strained optimization problems. The proposed programming network is dis- 

cussed in section 2 along with its circuit implementation. We show that the 

penalty function approach allows one to better control the effects of the physi- 

cal constraints of the network's building blocks than the previously proposed 

approaches. Our proposed architecture can be viewed as a continuous non- 

linear neural network model. For a historical account of nonlinear neural net- 

works, the reader may consult Grossberg (1988). In section 3 we discuss appli- 

cations of the proposed neural optimization network to solving minimum norm 

problems of the form: 



minimize I I x(l 

subject to Ax 2 b 

where p = 1, 2, or oo. The minimum norm problems are important, for exam- 

ple, in the context of the control of discrete processes (see Cadzow (1971) or 

LaSalle (1986, Chp. 17) for more information related to the issue). The 

behavior of the proposed networks are then tested on a numerical example and 

computer simulations are given in section 4. Conclusions are found in section 

5. 

2. Networks for Constrained Optimization 

In this paper we are concerned with finding minimizers of constrained 

optimization problems. We consider the following general form of a con- 

strained optimization problem 

minimize f(x) 

subject to 

g(x) 2 0 

h(x) = 0, 

where xERn , f:Rn + R,  g = [%1,%2,...,gqlT : Rn -+Rq and 



h = [hl , h2, ..., h,lT : Rn +Rm are vector valued functions of n variables with 

dimensions q and m respectively. Since we are dealing with physical devices it 

is reasonable to restrict the functions f,g, and h to be continuously 

differentiable. 

Chua and Lin (1984), and later Kennedy and Chua (1988), proposed 

canonical nonlinear programming circuits for simulating the constrained 

optimization problems of the above type (see Fig. 1 ). They analyzed the case 

Figure 1. Dynamical canonical nonlinear programming circuit of Kennedy 

and Chua (1988). 

when only the inequality constraints are present. Their development was 

based on the Kuhn-Tucker conditions from mathematical programming theory 

(see for example Luenberger (1984) for more information on the Kuhn-Tucker 

conditions). The functions dj, j = 1, ...,q, on the left side of Fig. 1 are defined 



by: 

-cI if I 2 0 v = $j (I) = 
if 1 < 0  . 

Thus the pj terms have the form: 

gj (x)c if g, (x) 5 0 
~j =$j(-gj(x)) = if g, (x) > 0 

j = 1, ...,q. 

Now applying Kirchhoff's current law (see for example Halliday and Resnick 

(1978, p. 702)) to the circuit on the right side of Fig. 1 we obtain 

dxk 
Solving for - we obtain 

d t 

Note that if c +ca then, in the steady state, the Kuhn-Tucker conditions are 

satisfied. 



In this paper we examine the case where we have equality constraints as 

well as inequality constraints. An equality constraint hj(x) = 0 can be 

represented in terms of inequality constraint(s) in one of the following ways: 

However, to  implement equality constraints in terms of inequality constraints 

would be inefficient as will be seen later. In this paper we propose an alterna- 

tive circuit which has a more efficient implementation of equality constraints 

and a general form which more readily lends itself to implementation. This 

alternative approach utilizes the penalty method. Utilizing the penalty 

method, a constrained optimization problem considered in this paper can be 

approximated by an unconstrained problem of the form: 

minimize f(x) + CP(X)) , I 
where c > 0 is a constant, often referred to as a weight, and P(x) is a penalty 

function. A penalty function is a continuous non-negative function which is 

zero a t  a point if and only if all constraints are satisfied at  that point. In this 

paper we consider penalty functions of the form: 



where g i  (x) = -min (O,gj (x)). If we consider an equality constraint as two ine- 

quality constraints, then the penalty function can be rewritten as: 

where 

gjl(x) =hj(x)  and gjz(x) = -hj(x) . 

The above penalty function P(x) is often referred to as an exact penalty func- 

tion because for a sufficiently large finite value of c the penalty method 

approximation, with the above P(x), yields the same global minimizers as the 

constrained problem. The exact penalty functions have the drawback that 

they are not usually differentiable. Having reviewed the pena1t.y method we 
- 

now introduce the proposed network. The functions S,,B and S7 in Fig. 2 are 

smooth versions of the saturation functions S,,B defined by: 

I -a for x < - p  

a 
Sa,,(x) = for -p 5 x I P 

a f o r x > p .  



Figure 2. The proposed network for constrained optimization. 

- 
When a = P, we write S , , ,  as S,. We assume that a > 7. The li, and ij 

terms are defined as: 

i, = ic, (h, (x)) . 

When < is small, the F, and $, terms can be approximated as: 



j-J. = C C 
j - -sgn(gj (x)) - 2 2 

- 
Aj csgn(hj (x)) . 

Remark 

The Pj terms differ from the ,uj terms in the the canonical dynamical circuit of 

Kennedy and Chua (Fig. 1) in that their values are bounded. This 

modification was made in order to accommodate the saturation limits of the 

op-amps used in implementing the functions. As a result of replacing the ,uj 

terms, it is necessary to replace the linear current sources of the dynamical 

canonical circuit with nonlinear current sources in order to effectively enforce 

the constraints. 

Applying Kirchhoff's current law to the circuits on the right hand side of 

Fig. 2 yields: 

Substituting for & and X j ,  we have 



where J is the index set of violated inequality constraints. In the region where 

the gradient of P(x) is defined , this equation can be rewritten as 

Note that if 

and 

- 
then the term S,,@ saturates. If we assume the trajectory is in a region where 

ap (4 c- 
A k  

> p, then by the design assumption that a > y, we obtain: 



In addition, since Ck > 0, we conclude that if 

Thus 

c- have opposite signs. Hence, if 
h k  

This implies that whenever go,8 saturates and the trajectory is in the region 

c- 
h k  

where P(x) is differentiable, then P(x) is decreasing along that trajectory. Note 

dxk > p, then - and 
d t 

C-- 

h k  

that the set of points where P(x) is not differentiable has an n-dimensional 

> p, then 

Lebesgue measure zero and that the circuits are designed so that P is small and 

thus go,@ will be saturated at  almost all points outside the feasible region. 

Thus, one would expect that the penalty function P(x) would decrease along 

the trajectories outside the feasible region. Note that if So,@ operates in the 

saturated mode, then the bound for the rate of decrease of the penalty function 

P(x) is independent of the form of the objective function. 



It should be noted that if the initial condition is such that the system tra- 

jectory reaches the feasible region, then the circuit dynamics are governed by 

the equations 

Having examined the dynamical behavior of the circuit in Fig. 2, we will 

now consider it's implementation. For the case of quadratic programming 

problems subject to linear equality and inequality constraints the circuit shown 

in Fig. 2 could be implemented using a neural network with the structure dep- 

icted in Fig. 3. The implementation of the pnode is the same as was proposed 

by Kennedy and Chua (1988) and is shown in Fig. 4. The implementations for 

the h and x nodes are depicted in Fig. 5 and 6. It should be clear from the 

implementation of the various nodes that to represent an equality constraint in 

terms of inequality constraints would be rather inefficient since an inequality 

constraint node requires more hardware than an equality constraint node. We 

would like to note that one may also use switched-capacitor circuits to imple- 

ment neural optimization networks (Cichocki and Unbehauen (1991)). 



Figure 3. Neural network for solving quadratic programming problems sub- 

ject to linear constraints. 

Having given an implementation corresponding to the general case of .qua- 

dratic programming we will now examine how a network of this basic structure 

can be used to solve some minimum norm problems of interest. 



Figure 4. Circuit implementation for an inequality constraint node. The 

unlabled resistances are chosen in such a way that IPj = -gj(x) 

mi. 

Figure 5. Circuit implementation for an equality constraint. The values of 

the unlabled resistors are chosen so that Ili = -hj(x) mA. 



*a+ IF - 
*+ 

* Fl- IP 1 OKR 

*ip"' 

Figure 6. Circuit implementation for an x node. The values of the unl- 

abled resistors are chosen so that IF = d and 
h k  

3. Networks for Solving Minimum Norm Problems 

In this section we show how the previously proposed neural network archi- 

tecture can be applied to control discrete dynamic systems modeled by the 

equation 



where ckdRrn,ukeIR1, for k = 1, 2, ..., and F ,  G are constant matrices with 

appropriate dimensions. If we iteratively apply the previous equation we 

obtain 

We assume that our system is completely controllable (Kailath (1980)). This 

implies that we can drive the system to an arbitrary desired state, cd, from an 

arbitrary initial state, to. Thus for sufficiently large N, ( N  2 m )  we can find 

a sequence of inputs ( uo, ul , ..., U N - ~  ) such that 

In the case where N > m there are an infinite number of input sequences which 

would drive the system to the desired state. This can be seen more clearly if 

we rewrite the previous equation using the following definitions: 

T T T A = [G, FG ,..., FNd2G, FN-'G] , xT = [uNPl, UN-2,  ..., uo I. 

With these definitions, we have 



c d = ~ ~ t o + A x  7 

c d - ~ N c O = ~  . 

If we let b = Ed - FNc0 then we have 

A x = b .  

If we define n = 1N then A is mxn ,  b is m x  1 and x is n x  1. Since the system is 

completely controllable, N > m the rank of A is m and the null space of A has 

dimension n - m > 0. From this it should be clear that the system of equa- 

tions Ax = b  is underdetermined ( i.e. there is an infinite number of possible 

solutions ). Since there are many possible solutions, secondary criteria are often 

used to determine which of the input sequences satisfying the constraints 

should be used. Often it is desirable to find the solution which in some sense 

minimizes the input x. This is the reason we consider the following con- 

strained optimization problem 

minimize 1 1 xll 

subject to A x  = b , 

where p = 1,2, or m. The solutions corresponding to these problems are 

referred to as the minimum fuel, minimum energy, and minimum amplitude 



solutions respectively. Because of the importance of these problems they have 

been studied fairly extensively (see for example Cadzow (1971,1973), Kolev 

(1975)~ or LaSalle (1986)). For the case of p=2, there are algorithms based on 

linear algebra which solve this problem. When p = 1 or p = oo, the problems 

are somewhat more complex. There are algorithms based on results from func- 

tional analysis which have been proposed to solve these problems (Cadzow 

(1971,1973)). In applications such as real time control the speed a t  which a 

solution can be obtained is of the utmost importance. I t  is for this reason that 

we propose the use of analog circuits, or neural networks, which are capable of 

obtaining solutions on the order of a few time constants. 

We will now examine how the quadratic programming i~nplementation 

given in the previous section can be applied to solving the problems of interest. 

The first thing we notice with all these problems is that the constraints are 

linear. Thus in the case where p = 2, since the objective function of the 

equivalent problem can be expressed as a quadratic, the network given in the 

previous section can be used to solve the problem. 

For the case of p = 1, the objective function cannot be expressed as a qua- 

dratic. However, as shown below, the components of the gradient of the objec- 

tive function are still simple functions of the variables x l ,  . . . , x,: 

This being the case, a component of the gradient of 1 1  xll can be approximated 

by the circuit depicted in Fig. 7. 



Figure 7. Implementation for approximating a component of the gradient 

of the objective function for the case where p = 1. 

The x-nodes would then be modified as shown in Fig. 8. 

For the case p = oo the objective function cannot be expressed as a qua- 

dratic. In addition, we can see from the equation below that the components 

of the gradient of the objective function cannot be expressed in a simple 

manner as was the case when p = 1. They have the form 

otherwise 

Rather than try to implement this problem directly by building a circuit to 

approximate the components of the gradient of the objective function given 

above, we transform the problem into an equivalent one which can be 



simulated by a network of the form given in section 2. To understand how 

this is done, consider the level surface 1 1  xllm = a, where a > 0. This level 

surface corresponds to the boundary of the closed hypercube: 

Thus the problem can be viewed as finding the smallest value of a > 0 such 

that the constraint Ax = b is satisfied and x is an element of the set H,. If we 

let xn+, = a and x* = [xl,x2, ..., xnlT then the problem can be written as: 

minimize x n + ~  

subject to 

h(x) = Ax* - b = 0 

g1(x) = Xn+l 2 0 

gll(x) =xn+1 -x1 2 0 

g12(~) = Xn+l + XI 2 0 

g21(x) ==Xn+l -X2 2 0 

g22 (x) = xn+1 + x2 2 0 



We have transformed the original problem into a linear programming problem 

and the quadratic programming network introduced in the previous section can 

be used to solve this problem. 

Figure 8. Implementation for an x node for the case where p = l .  The 

i3.P (4 unlabled resistances are chosen so that the current Ip = -- 
h k  

For some other interesting applications of neural networks for quadratic 

minimization the reader may consult Sudharsanan and Sundareshan (1991). 



4. Case Study 

In order to test the ideas presented in this paper, simulations of the pro- 

posed implementations were performed on a digital computer. The simulations 

are based on the following differential equations (see section 2): 

where SalP and S, are as defined in Section 2 with a = 12, ,b' = 0.5, and 7 = 6. 

we use c = 1000 in the definitions of the variables jij , j  = 1, ..., n and 
- 
Xj , j = 1, ...,q. We approximate the signum function sgn(x) by 

The problem which we choose to simulate is taken from Cadzow (1973) and 

has the form: 



minimize ( I xl I 

subject to Ax = b 

where p = 1, 2, or m, and 

The variables xj, j = 1, ..., n, are constrained to be in the interval [-12,121, The 

results of the simulations for p = 1, 2 and co are given below. 

For p = 1, as shown in Fig. 9, the trajectories converged to the point 

which gives Ilx(l = 1.36. 

For p = 2, as shown in Fig. 10, the trajectories converged to the point 

which gives llxll = 0.769. 

For p = m, as shown in Fig. 11 and 12, the trajectories converged to the 

point 



which gives 1 1  xll oo = 0.372. 

The analytical solutions to the three problems are 

Thus the results of the simulations closely correspond to the analytical solu- 

tion. 

Another important consideration is the speed with which the network con- 

verges to the correct solution. This depends on the value of the time constants 

and the initial condition of the network. In the above simulations we assumed 

there is no initial charge on the capacitors in the networks. This corresponds to 

the condition x, = 0, j = 1, ..., n. From the following plots of the trajectories of 

the variables for the three problems we can see that the network converged to 

the solution within a few time constants. 



I-Norm case 

time ( time constants > 

1-Norm case 

0 .ooo 
0.0 1.0 2.0 3.0 9 .0  

time ( time constants > 

1-Norm case 

time ( time constants ) 

time ( time constants.) . 

1-Norm case 
.?561- 

.5670 - 

.3780 - 

.I890 - 

time ( time constants 

Figure 9. Trajectories corresponding to the case p=l. 



2-Norm case  - .-I9 - 2-Nora case 

. E l 0 9  - 

% .1YS9 - 

time ( time constants > time ( time constants ) 

2-Norm case 

\ 
2-Norm case  

.SO28 - 

.377 1 - 

. i?s lV-  

. I257 - 

time ( time canstants > time ( time constants ) 

2-Norm case  
m 

0.000 ! I 
0 .0  1.0 2.0 3.0 r.o 

time ( time constants  ) time ( time constants ) 

Figure 10. Trajectories corresponding to the case p=2. 
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Figure 11. Trajectories corresponding to the case p=oo. 



time ( time constants 

Figure 12. Trajectory of the augmented variable for the case p=m. 

5 .  Conclusions 

A general form of a network was given which can minimize a function 

subject to both equality and inequality constraints. An implementation was 

given for the case of quadratic programming with linear equality and inequal- 

ity constraints. Next the minimum norm problems were introduced and it was 

shown how the previously introduced implementation could be used and 

modified to solve the various minimum norm problems of interest. The net- 

works were then simulated on a digital computer and successfully tested on a '  

benchmark problem. 
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