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 2 

 ABSTRACT 

 

Classification of nonlinearly separable data by nonlinear support vector machines is often a difficult task 

especially due to the necessity of a choosing a convenient kernel type. In this study, we propose a new 

classification method called support vector selection and adaptation (SVSA) that is applicable to both 

linearly and nonlinearly separable data in terms of some reference vectors generated by processing of 

support vectors obtained from the linear SVM. The method consists of two steps called selection and 

adaptation. In these two steps, once the support vectors are obtained by a linear SVM, some of them are 

rejected and others are selected and adapted to become the reference vectors. Classification is next 

carried out by using the K Nearest Neighbor Method (KNN) with the reference vectors. In the first step, 

all support vectors are classified by KNN with respect to the training data excluding the support vectors. 

The misclassified support vectors are rejected, and the remaining support vectors are chosen as the 

reference vectors. In the second step, the reference vectors are adapted by moving them towards to or 

away from the decision boundaries by the Learning Vector Quantization (LVQ) method. At the end of 

the adaptation process, the reference vectors are finalized. During classification, the class of each input 

vector is detected with the minimum distance rule in which the distances are calculated from the input 

vector to all the reference vectors. The SVSA method was experimented with some synthetic and real 

data, and the experimental results showed that the SVSA is competitive with the traditional SVM.     

 

Keywords : SVSA, SVM, data classification, remote sensing, linearly and nonlinearly separable data 

 

 

 

 

 

 

 

 

 

 

 



 3 

1. INTRODUCTION  

Support Vector Machines (SVM) have been widely used and represent a very attractive approach in 

classification of remote sensing data. SVM is based on determining an optimum hyperplane that 

separates the data into two classes with the maximum margin [1]. The hyperplane is obtained from the 

solution of a constrained quadratic programming (QP) problem. With linearly separable data, the 

support vectors exist at the margin. Classification is performed subsequently not by using the support 

vectors further, but by using the hyperplane dependent on the Lagrange coefficients.  

 

In order to achieve classification of nonlinearly separable data, it is necessary to transform input data 

into a higher dimensional feature space by using a nonlinear kernel function, followed by linear SVM. 

The resulting system is called nonlinear SVM. The dot products in this feature space can be computed 

by using the kernel function.  

 

However, there are some difficulties with the nonlinear SVM approach itemized as follows [2]: 

• As the training data grows in size, the constraint part for solving the QP problem becomes large, 

is very memory expensive, and decomposition methods become necessary to decompose an 

application to parts and to solve the corresponding parts iteration by iteration [3].  

• The kernel function represented by a m × m  matrix is fully dense, causing a long CPU time to 

compute with m
2 numbers. Computational complexity depends on m and is O((m +1)

3
) for 

almost any SVM.  

• The choice of kernel function is quite important in order to increase classification accuracy. 

However, it is generally hard to decide which kernel type is optimal to be used with the given 

data, especially if the structure of the data is not known in advance. Model selection techniques 

provide the principal ways to select a proper kernel. Usually, the candidates of optimal kernels 

are prepared using some heuristic rules, and the one which maximizes a given criterion is 

chosen. 

•  In order to get a good classification performance with nonlinear SVM, the parameters of the 

kernel type chosen should also be determined. For this purpose, the cross validation algorithm 

can be used to estimate the best parameters for the kernel type chosen. However, this means that 

the nonlinear SVM needs to be run many times depending on the methods of cross validation 

applied, so this does also take extra time during implementation.  
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In order to overcome or reduce these difficulties, a new method based on support vector selection and 

adaptation (SVSA) is introduced and applied to classification of remote sensing images. Our aim is to 

achieve the classification performance of the nonlinear SVM by using only the support vectors of the 

linear SVM, which can be considered as the most important vectors closest to the decision boundary.  

 

By further selecting the support vectors which are most helpful to classification and adapting the chosen 

support vectors to be used as reference vectors by LVQ for increased classification accuracy, a highly 

accurate learning system is generated for linear as well as nonlinear classification. Subsequent 

classification is based on labeled reference vectors.  

 

In addition, a hybrid SVSA method is generated for classification of certain types of data. In the hybrid 

SVSA, both SVSA and linear SVM are used for classification depending on a given threshold value.  

 

The paper consists of seven sections. Section 1 is introduction. The SVM method is presented in Section 

2. The SVSA and the hybrid SVSA methods are covered in Sections 3 and 4, respectively. The 

experiments done with both synthetic data and remote sensing data are presented in Sections 5, and 6, 

respectively. Conclusions and discussion of future research are presented in Section 7.  
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2. SUPPORT VECTOR MACHINES 

The SVM theory is a new statistical approach and has drawn much attention in recent years. It was 

initially developed by V. Vapnik, especially for classification of separable data [4]. It was further 

generalized to handle nonseparable data. A SVM classifier creates an optimum hyperplane that lies in a 

transformed input space with the property of maximized distance to the nearest class examples. The 

parameters of the solution hyperplane are derived by a constrained quadratic programming optimization 

problem [5]. 

 

For the optimal hyperplane  wx + b = 0,  w ∈ R
N  and b ∈ R, the classification of the testing sample x  in a 2-

class problem is obtained by 

f (x) = sign(wx +b) = sign α imix i .x

i=1

NS

∑
 

 

 
 

 

 

 
 
 

where NS  is the number of support vectors, x i  is the ith  support vector, α i  is the ith  Lagrange multiplier, 

and mi ∈ −1,+1{ } describes which class x belongs to.  

 

In most cases, searching for a suitable hyperplane in the input space of a nonlinear classification 

problem is too restrictive to be of practical use. One solution to this is mapping the input space into a 

higher dimensional feature space and searching for the optimal hyperplane in this feature space. Let 

z =ϕ (x) denote the corresponding feature space vector with a mapping ϕ  from R
N  to a feature space Z . 

The mapping can be indirectly represented by a kernel K (*,*)  which corresponds to the inner product of 

the transformed input vectors in the form.  

 

z i ⋅ z j =ϕ (x i)ϕ (x j ) = K (x i ,x j )  

 

Finally, the decision function becomes 

f (x) = sign α imiK (x i ,x) +b

i=1

NS

∑
 

 

 
 

 

 

 
 
 

 

Functions that satisfy Mercer's theorem [6] can be used as kernels. Typical kernel functions are the 

following: 

Linear kernel: K (x,y) = x ⋅ y  
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Polynomial kernel: K (x,y) = (γx ⋅ y + c)
d  

Radial basis kernel: K(x,y) = exp -γ ⋅ x ⋅y
2( ) 

 

3. SUPPORT VECTOR SELECTION AND ADAPTATION (SVSA) 

A new method called support vector selection and adaptation (SVSA) is proposed and applied to 

classification of remote sensing images. A particular case is the classification of damage after an 

earthquake using satellite images. We used pre and post earthquake satellite images in the city of Bam, 

Iran to extract the ground truth of the damaged buildings.  

 

The SVSA method uses the support vectors obtained from linear SVM [7], eliminates some of them for 

not being sufficiently useful for classification, and adaptively modifies the selected support vectors 

which are next used as reference vectors for classification. In this way, nonlinear classification is 

achieved without needing a kernel. 

 

3.1. Selection and Adaptation 

Let 
  
X = {(x1, x1),K , (xN , x N )}  represent the training data with x i ∈ R p  and the class labels   x i ∈ {1,K ,M } . 

N ,  M and p  denote the  number of training samples, the number of classes and the number of features,  

respectively. After applying the linear SVM to the training data, the support vectors are obtained as 

  

  
S = (si ,s i) (si ,s i) ∈ X    i =1,K ,k{ } 

 

  
T = (t i , t i) (t i , t i) ∈ X \ S    i =1,K ,N − k{ } 

where k  is the number of support vectors, S  is the set of support vectors with the class labels s , and T  is 

the set of training data vectors with the class labels t , excluding the  support vectors. 

 

In the selection stage, the support vectors in the set S  are classified with respect to the set T  by using the 

K-Nearest Neighbor algorithm [8]. The labels of the support vectors are obtained as: 

 

  

si
p
= t l l = arg min

1≤ j≤N−k
si − t j{ },     i = 1,K ,k

 
 
 

 
 
 
 

where s i
p
 is the predicted label of the i

thsupport vector. 
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Then, the misclassified support vectors are removed from the set S . The remaining support vectors are 

called reference vectors and constitute the set R: 

 

  

R = (si ,s i) (si ,s i) ∈ S    and  si
p
= s i     i =1,K ,k{ } 

 

The aim of the selection process is to select the support vectors which best describe the classes in the 

training set. 

 

The reference vectors to be used for classification are next adaptively modified based on the training 

data in a way to increase the distance between the neighboring reference vectors with different class 

labels. The main idea of adaptation is that a reference vector causing a wrong decision should be further 

away from the current training vector, and the nearest reference vector with the correct class should be 

closer to the current training vector. Adaptation is achieved by using the Learning Vector Quantization 

(LVQ) algorithm [9,10] as described below. 

 

Let x j  be one of the training samples with label yj  [11]. Assume that rw (t ) is the nearest reference 

vector to x j  with label yrw
. If y j ≠ yrw

then the adaptation is applied as follows: 

 

rw (t+1) = rw (t )−η(t )(x j − rw (t ))  

 

On the other hand, if rl (t ) is the nearest reference vector to x j  with label yrl
and y j = yrl

then 

 

rl (t+1) = rl (t )+η(t )(x j − rl (t ))
 

 

where η(t)  is a descending function of time called the learning rate. It is also adapted in time by  

 

η(t) = η0e− t /τ
 

 

where η0  is the initial value of η,  and τ  is a time constant.  
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The adapted reference vectors are used for classification of the training and testing sets. For this 

purpose, the K-Nearest Neighbor method is applied to classify the samples with respect to the reference 

vectors. The Euclidian distances from the input vector to the reference vectors are calculated, and 

classification is done based on the majority class of the K nearest reference vectors. 

 

4. THE HYBRID SVSA 

It is known that linear SVM gives the best classification accuracy for linearly separable data. According 

to the results obtained with some experiments done with both SVSA and SVM, it was observed that the 

SVSA as well as nonlinear SVM are not efficient classifiers especially with linearly separable data and 

very nonlinearly separable data in comparison to the linear SVM. Therefore, the hybrid SVSA was 

developed. 

 

During implementation, since the results of the linear SVM are also available, by utilizing this 

information, the hybrid model was generated by using consensus between the results of the linear SVM 

and the results of the SVSA.  

 

For this purpose, the perpendicular distance to the hyperplane obtained by the linear SVM for each data 

sample is calculated based on the Euclidian distance. If the distance is greater than a given threshold, the 

data is classified by the linear SVM; otherwise the SVSA algorithm is applied. The schema for hybrid 

SVSA is shown in Figure 1.     

 

 

 

 

 

 

 

 

 

 

Figure 1. Processing schema for hybrid SVSA. 
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In the hybrid model, the SVSA method is more effective for classification of the data near the separating 

hyperplane, and the linear SVM is effective in the classification of the other data. We obtained 

comparatively good classification accuracy with the hybrid model with most data.   

 

5. EXPERIMENTS WITH SYNTHETIC DATA 

5.1. Data Representation 

In our experiments, we first generated different types of synthetic data with different types of 

nonlinearity in order to compare the classification performance of the proposed method with the SVM. 

Four examples of types of data were banana shaped data and the data created by using given mean 

vectors and covariance matrices in a way to provide nonlinearity [12]. All the datasets are shown in 

Figure 2.  

Figure 2. The synthetic datasets used in the experiments. 

 

The process of forming the training and the testing data is as follows: 

1. The data with two different classes is synthetically created. 

2. The training and testing datasets are randomly chosen from the created dataset with proportions 

40% and 60%, respectively. 

3. Ten different datasets are generated by repeating step 2 ten times.  

4. Then, each classification algorithm is run with both training and testing data over the ten datasets 

in order to classify them.  

5. Afterwards, the classification error for each dataset is computed and averaged over the ten 

datasets.  

 

 

 

 

Dataset A Dataset B Dataset C Dataset D 
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5.2. Scaling Data 

Scaling data before applying SVM is important [13]. The main advantage of scaling is to avoid features 

in larger numeric ranges dominate those in smaller numeric ranges. Another advantage is to avoid 

numerical difficulties during computations. Because kernel values usually depend on the inner products 

of feature vectors, e.g. the linear kernel and the polynomial kernel, large feature values might cause 

numerical problems. In this work, each feature of a data vector was linearly scaled to the range [-1,+1] 

before doing experiments.  

 

5.3. Parameter Tuning 

For nonlinear SVM, cross-validation within the original datasets was utilized to provide a nearly 

unbiased estimate of the prediction error rate. The performance of classifying the datasets was evaluated 

using 10-fold cross-validation [14]. For this purpose, each dataset was divided into ten subsets of 

approximately equal size. Sequentially one subset was tested using the classifier trained on the 

remaining 9 subsets. Thus, each dataset instance was predicted once, and the cross-validation accuracy 

was the average percentage of data which was correctly classified. There are two parameters while using 

RBF kernels: kernel parameter γ  and penalty parameter C . These were also estimated by cross-

validation. 

 

5.4. Implementation with SVSA 

After determining support vectors as illustrated in Figure 3 (a) by the linear SVM, the selection and 

adaptation process is applied with respect to the training data, and adapted reference vectors are obtained 

as in Figure 3 (b). In the selection stage, each support vector is first classified by 1-KNN with respect to 

the training data excluding the support vectors, and then the misclassified support vectors are excluded 

from the reference vector set. During adaptation, the remaining support vectors called reference vectors 

are adapted based on all the training data by means of the LVQ. Figure 3 (b) shows the resulting 

reference vectors and how they are nonlinearly located by the SVSA with respect to the data. 
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Figure 3. (a) The distribution of support vectors obtained by the linear SVM for Dataset B and illustrated with 

blue and red circles (b). The distribution of reference vectors obtained by the SVSA for Dataset B and illustrated 

the same way as in (a). 

 

Afterwards, both training and testing data for dataset B is classified by using 1-KNN with the reference 

vectors, and classification errors of each dataset are calculated. In Figure 4, the classification 

performance of all the classifiers with the banana-shaped data is shown. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 4. (a) The banana-shaped data. (b) The classification errors with respect to all methods for both training 

and testing data. NSVM (1) and NSVM (2) refer to the nonlinear SVM with radial basis kernel type and 

polynomial kernel type, respectively.  

 

 
(a) (b) 

 
(a) (b) 
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As observed in Figure 4, the classification accuracy of nonlinear SVM depends on the choice of the 

kernel type. For example, NSVM (1) with radial basis kernel is better than NSVM (2) with polynomial 

kernel in terms of classification performance in Figure 4. However, in applications, what type of kernel 

is supposed be chosen is not generally known in advance. In such a case, all types of kernel should 

ideally be applied, and then according to their classification accuracy, the method which gives the 

smallest error of classification with the training dataset, especially using cross-validation, should be 

chosen as the method for classification of the testing data. However, this process takes much time 

especially since the solution of nonlinear SVM takes a long time in comparison to linear SVM. In these 

experiments, the classification performance of the SVSA method was competitive with nonlinear SVM 

as shown in Figure 4, and the SVSA does not need choosing any type of kernel.  

 

In synthetic data experiments in which the data was not linearly separable, the distributions of the wrong 

decisions made by the linear SVM were usually found to be near the separating hyperplane. This means 

that the linear SVM caused a lot of misclassified samples with such data near the border of 

classification. Because of this, the classification error of the hybrid model was quite high in comparison 

to SVSA if the threshold value was not sufficiently large. In the experiments, the threshold value was 

chosen as 0.3. At this value the linear SVM contributes to classification performance more than the 

SVSA. The classification performance of the hybrid SVSA can be increased by choosing a bigger 

threshold value in such cases.   

 

All the methods were applied with all the datasets, and the mean values of classification errors for all the 

datasets were obtained by averaging over the ten datasets for both training and testing data. The mean 

values of classification errors of all the methods are summarized in Table 1.  
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Table 1. The mean values of errors with the datasets. 

 

 

 

 

 

 

  

 

 

 

 

 

In dataset B, the threshold value for the hybrid SVSA was chosen bigger than the one used in the 

experiments related to Figure 4. That is why the classification error of the hybrid SVSA in Table 1 is 

less than the classification error of the hybrid SVSA in Figure 4. 

  

According to the results obtained by applying all the algorithms to all the datasets, it was observed that 

the classification performance of the hybrid method was better than all the other methods with linearly 

separable data and with data with extreme nonlinearity. If the data was not linearly separable, the SVSA 

was competitive with the nonlinear SVM and better than the linear SVM in terms of classification 

accuracy.  

 

5. EXPERIMENTS WITH REMOTE SENSING DATA 

5.1 Experiment 1: Earthquake Data 

Pre- and post-earthquake Quickbird satellite images with high resolution (0.6 m) were used to identify 

damage patterns in the city of Bam, Iran during the 2003 earthquake. The ground truth of damaged and 

nondamaged buildings was generated by using the pre- and post- earthquake images from the area of 

interest. The SVSA and the hybrid SVSA were used for the classification of the damaged and 

nondamaged buildings in comparison to linear and nonlinear SVM methods.  

 

METHODS 

Dataset SVM NSVM (1) NSVM (2) SVSA Hybrid 

Training 0.057 0.054 0.060 0.038 0.048 

A 
Testing 0.061 0.062 0.064 0.077 0.060 

Training 0.152 0.007 0.159  0.191 0.019 
B 

Testing 0.162 0.030 0.173 0.041 0.034 

Training 0.275 0.249 0.276 0.191 0.256 
C 

Testing 0.280 0.295 0.280 0.306 0.279 

Training 0.152 0.111 0.157 0.091 0.096 
D 

Testing 0.157 0.127 0.161 0.137 0.135 
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Figure 5. The panchromatic satellite image captured by Quickbird before the Bam earthquake. Each  blue square 

region refers to a  nondamaged building before the Bam earthquake. 

  

 

Figure 6. The panchromatic satellite image captured by Quickbird after the Bam earthquake. The red square 

regions refer to the damaged buildings. The blue ones have the same meaning as in the previous image. 

 

For the evaluation of the methods, after collecting the samples for damaged and undamaged buildings 

from the satellite images as shown in Figures 5 and 6, training and testing data were randomly chosen 

from all collected samples with 40 and 60 percent proportions, respectively. The classification results 

obtained by applying the methods to the datasets are shown in Figure 7.  
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Figure 7. Macro-F Error rates with the training and testing datasets for the urban area of interest in Bam, Iran. 

 

According to these results, the hybrid model gave best classification accuracy in comparison to all the 

methods applied during classification. The SVSA was also better than the nonlinear SVM in this 

experiment in terms of classification performance. 

 

5.2 Experiment 2 : Colorado Dataset  

Classification was performed with the Colorado dataset [15] consisting of the following four data 

sources:  

1. Landsat MSS data (four spectral data chanels) 

2. Elevation data (in 10-m contour intervals, one data channel). 

3. Slope data ( 0− 90
0  in 10 increments, one data channel). 

4. Aspect data (1−180
0 in 10 increments, one data channel). 

 

Each channel comprised an image of 135 rows and 131 columns, and all channels were spatially co-

registered in Colorado. It has ten ground-cover classes which are listed in Table 2. One class is water; 

the others are forest types. It is very difficult to distinguish among the forest types using Landsat MSS 

data alone since the forest classes show very similar spectral response. 
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Table 2. Training and testing samples of the Colorado dataset. 

Class # Information Class Training 

Size 

Testing  

Size 

1 Water 408 195 

2 Colorado Blue Spruce 88 24 

3 Mountane/ Subalpine meadow 45 42 

4 Aspen 75 65 

5 Ponderosa Pine 1 105 139 

6 Ponderose Pine/Douglas Fir 126 188 

7 Engelmann Spruce 224 70 

8 Douglas Fir/White Fir 32 44 

9 Douglas Fir/Ponderosa Pine/Aspen 25 25 

10 Douglas Fir/White Fir/Aspen 60 39 

 Total 1188 831 

 

In this experiment, 45 experiments were done with the Colorado dataset for binary classification and, a 

subset of the binary classification results were selected and are shown in Figure 8.  

 

Figure 8. Colorado dataset results. Each curve corresponds to one experiment with two classes. 

 

We obtained higher classification accuracies with the SVSA in comparison to the nonlinear SVM with 

the RBF kernel and all the other methods. The performance of the hybrid SVSA was also satisfactory as 

seen in Figure 8. The classification accuracies done with all the experiments are also summarized in 

Table 3.  
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Table 3. The classification accuracies of all the experiments with the Colorado dataset. λ  is the threshold value 

for hybrid SVSA. The best results are shown in bold. 

METHODS 

CLASSES 

SVM NSVM (1) NSVM (2) SVSA 
Hybrid 

SVSA 

 

 

λ  

2 100 89.04 100 100 100 1 

3 91.98 94.09 82.7 92.41 92.41 1 

4 98.85 99.62 98.08 99.23 99.62 1 

5 99.4 88.02 98.2 85.93 94.31 1 

6 99.74 98.69 98.96 98.43 98.96 1 

7 99.62 89.43 100 99.62 99.49 2 

8 99.16 89.12 89.12 96.65 96.65 1 

9 88.64 99.09 98.64 99.09 99.09 1 

 

 

 

 

1 

vs. 

 

 

 

 10 100 100 100 100 100 
1 

3 62.12 63.64 54.55 66.67 66.67 2 

4 93.26 97.75 82.02 91.01 92.14 0.1 

5 58.9 68.71 57.06 61.35 61.96 1 

6 83.96 94.34 83.49 83.49 83.46 2 

7 100 100 100 100 100 2 

8 55.88 70.59 51.47 69.12 69.12 1.7 

9 97.96 93.88 91.84 93.88 95.92 1 

 

  

  

2  

 vs. 

  

  

  10 82.54 88.89 74.6 77.78 80.95 0.3 

4 71.03 63.55 78.5 91.59 94.39 2 

5 62.98 23.76 79.56 46.41 61.88 0.1 

6 83.48 28.26 86.52 80.43 90.43 1 

7 100 100 100 97.32 99.11 1.1 

8 67.44 56.98 60.47 66.28 67.44 1 

9 88.06 82.09 89.55 80.6 86.57 0.2 

 

  

  

3  

 vs. 

  

  10 76.54 61.73 74.07 88.89 90.12 1 

5 60.78 63.73 64.22 60.29 60.29 1 

6 66.01 70.75 72.33 69.96 68.77 1 

7 95.56 97.78 66.67 94.07 94.07 1 

8 43.12 46.79 39.45 44.04 44.04 1 

9 36.67 41.11 71.11 48.89 47.78 1.5 

4 

  

  

  

  

  10 68.27 79.81 60.58 81.73 77.88 2 

6 44.65 51.07 61.47 38.84 44.64 0.1 

7 98.56 93.3 97.61 98.56 99.04 1 

8 76.5 72.13 75.96 75.41 75.96 1 

9 74.39 71.34 77.44 73.17 73.17 1 

5 

  

  

  

  10 69.1 55.06 67.42 84.27 83.71 1.5 

7 88.37 96.9 87.21 98.84 95.74 1 

8 70.69 75.43 81.03 74.14 75 1 

9 74.18 74.18 80.28 75.59 75.12 1 

6 

  

  

  10 68.72 85.9 75.33 82.82 82.82 1 

8 87.72 90.35 78.95 92.98 92.98 1 

9 75.79 89.47 73.68 85.26 71.43 1 

7 

  

  10 94.5 97.25 89.91 93.58 97.25 1 

9 65.22 72.46 71.01 76.81 71.01 1 8 

  10 54.22 51.81 51.81 74.7 72.29 1 

9 10 53.13 75 64.06 70.31 71.88 1 

Average 78.39 77.62 78.60 81.34 82.13  

 

 

In summary, the classification performance of the SVSA method is better than the nonlinear SVM in 

some cases, and is quite close to the classification performance of the nonlinear SVM in some other 
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cases as seen in Table 3. Especially with extremely nonlinear data such as classification of class 7 

against class 9 in Table 8, the SVSA method is considerably better than all the other methods. 
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7. CONCLUSIONS AND FUTURE WORK 

In this study, we addressed the problem of classification of remote sensing data using the proposed 

support vector selection and adaptation (SVSA) method and hybrid SVSA method in comparison to 

linear and nonlinear SVM.  

 

The SVSA method consists of selection of the support vectors which contribute most to the 

classification accuracy and adaptation of them based on the class distributions of the data. It was shown 

that the SVSA method gives competitive classification performance in comparison to the linear and 

nonlinear SVM with both synthetic data and real world data.  

 

With linearly separable data, as well as extremely nonlinear data, it was observed the linear SVM is 

better than other methods in terms of classification accuracy. The hybrid model (hybrid SVSA) was 

developed to improve classification performance further with such data. In the hybrid SVSA, both linear 

SVM and SVSA are used to classify the data based on a given threshold value. It was observed that the 

hybrid SVSA is quite effective in classification of such data.  

 

During implementation, it was observed that the classification performance for each class has different 

accuracy in all methods. This is especially related to unbalanced data in which one class is majority 

while the other one represents a rare event. In the future, we plan to implement resampling classification 

strategies for rare event detection and to generalize the methods to multiclass problems.  
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