
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

9-1-1992

VLSI Implementation of Discrete Cosine
Transform Based on the Shared-Multiplier
Algorithm
Sze-Po Hung
Purdue University School of Electrical Engineering

Wen-Zen Shen
Purdue University School of Electrical Engineering

O. K. Ersoy
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hung, Sze-Po; Shen, Wen-Zen; and Ersoy, O. K., "VLSI Implementation of Discrete Cosine Transform Based on the Shared-Multiplier
Algorithm" (1992). ECE Technical Reports. Paper 274.
http://docs.lib.purdue.edu/ecetr/274

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4948238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages

VLSI IMPLEMENTATION OF

DISCRETE COSINE TRANSFORM

BASED ON THE SHARED-MULTIPLIER

ALGORITHM

TR-EE 92-40
SEPTEMBER 1992

VLSI Implementation of Discrete Cosine Transform
Based on the Shared-Multiplier Algorithm

Sze-Po Hung, Wen-Zen Shen and O.K. Ersoy

Purdue University
School of Electrical Engineering

West Lafayette, IN 47907

Abstract

In this paper a new algorithm for discrete cosine transform (DCT) is proposed. This algorithm

is especially efficient for VLSI implementation because each multiplier in @e 1-D DCT is shared by two

constants rather than one. This greatly reduces the chip area, and the high speed characteristics are still

retained. Based on this algorithm, we have developed the corresponding bit-parallel, fully-pipelined

architecture for the size-8 DCT. The core area of the chip is only 8.6mm x 8.5mm, using 1.2um

double-metal single-poly CMOS technology. This chip is simulated for operation at the maximum

speed of 100 MHz which far exceeds the speed requirement of the HDTV system (70 MHz).

I. Introduction

The applications of the digital speech and image signals are more and more extensive today than

ever before. They usually go through compression before transmission to reduce the bandwidth. The

discovery of the discrete cosine transform (DCT) in 1974 [I] provided a significant impact on DSP

field. It is believed to be one of the most powerful data compression tools. Consequently, DCT is

extensively used in visual communications.

In the past decade many papers have been published concerning about reducing the computation

complexity, especially the number of multiplications, of DCT. Most of them are efficient with software

implementation, but unfortunately due to their irregular structure and complex routing, these algorithms

are not suitable for VLSI implementation. Our goal is to design a high speed 8x8 DCT chip suitable for

the application in HDTV system. Aimed at this, we derived an algorithm suitable for VLSI

implementation. This algorithm is referred to as " the shared-multiplier algorithm.

In Section 11, we demonstrate the derivation of our algorithm. In Section 111, several well-

known DCT computation algorithms are compared. The flow-graph of 8x1 DCT based on our

algorithm is also shown in Section 111. In Section IV, we introduce a bit-parallel, fully-pipelined

architecture for size-8 DCT. The layout of the final circuit is shown in Section V. Conclusions are

given in Section VI.

11. Shared-multiplier algorithm

The one-dimensional DCT can be expressed as

where c(k)= 1 fi k=O

= 1 otherwise

and N is assumed to be even.

Defining u(n)=x(n)+x(N-n- 1)

v(n)=x(n)-x(N-n- 1)

where n+, 1, .. . ,N/2- 1.

Eqn(1) can then be divided into two parts --- odd and even terms as follows:

where k=0,2, ..., N-2

where k=1,3, ... ,N-1

Look at the following derivation:

- -w(-')92"+l)k
4N

where w;=exp(j2nkn:/~)

Defining

for k=0,2, ... ,N/2

Assuming the input sequence is real, then

=Y (k)

While

Therefore

for k=0,2, ... , N/2

Similarly

for k=1,3, ... , Nl2-1

Assuming 4 is a factor of N,eqn(l 1) can be rewritten as

Letting m=Nl4- I-n, we have
Nl4- 1

wk Changing the variable and factoring out 4N, we have

Y(k)+jY(N-k)=c(k) I (15)

Introducing a new variable d(n,k)

d (n , k) = u (2 n) + ~ i h (~ / 2 - 1-2n) = ~ (2 n) + (- l) ~ u (~ / 2 - 1 - 2 n) ,for even k (1 6)

Eqn(l5) can then be written as
N/4- 1

Y(~)+~Y(N-k)=c(k)wtN x d (n , k) ~ : ~
n=O , for k==0,2, ... , N12

For the case that k is odd, we define a similar variable d'(n,k) by

d'(n,k)=~(2n)+j(-l)(~+l)'v(N/2- 1 -2n)

Then eqn(l2) can be written as
N/4- 1

Y(~)+~Y(N-k)=c(k)w& x d ' (n , k) ~ : ~
n=O , for k=1,3, ..., Nl2-1

Eqns(l7) and (19) are the desired expressions for implementing DCT. But from eqn(l7) we see that for

the case k=O and k=N/2 the real part is equal to the imaginary part which leads to hardware

redundancy. We,therefore, want to derive an expression for Y(O)+jY(Nl2). We proceed as follows.

From eqn(l7), we have

After some arrangements - and assuming 8 is a factor - of N, we have

Eqns(17),(19) and (22) are the final expressions used to implement 1-D DCT.

1II.Flow-Graph and Comparison

Since complex multiplication is involved in our algorithm, we would like to adopt a trick [2] to

reduce the number of multiplication from 4 to 3. Therefore the number of real multiplication in the 8x1

DCT is only 9 in our algorithm. The flow graph of the 8x1 DCT based on our algorithm is shown in

Fig. 1.

In order to evaluate the performance of our algorithm several well-known DCI' algorithms are

compared. Table I and 11 list the number of multipliers and adders in a 1-D DCT. We can see that

our method is quite good. It is only slightly inferior to the Hou's algorithm [8]. Although Hou's

method has lower computation complexity, it generates only 2 outputs at a time, while ours is four.

Therefore, our method is believed to be more competent for high speed computation.

Table I. Comparison of number of multipliers of 1 -D DCI'.

N

chen [12]

Wang [Id]

Lee [I31

Vetterli [lo]

4

6

5

4

8

16

13

12

12

1 6

44

35

32

32

32

116

91

80

80

64

292

227

192

192

@ is a multiplier shared by 2 constants

Fig. 1. The flow graph of the 8x1 DCT based on the shared-multiplier algorithm.

Table 11. Comparison of number of adders of 1 -D DCT.

-
N

chen [I 21

Wang [14]

Lee [131

Vetter li[l 0]

Suehiro [I 51

Hou [lG]

our method
- .

4

8

9

9

9

7

8

26

29

29

29

29

18

21

16

74

83

81

81

81

41

48

32

194

219

209

209

209

88

100

64

482

547

51 3

51 3

51 3

183

204

1V. Architecture

The 8x8 DCT can be implemented via 2 8x1 DCT and a transposition memory. The block diagram of

the 8x8 DCT is depicted in Fig.2. Due to the limitation on pin numbers, the data sequence is word-

parallelly sent into the input buffer of the front-end DCT. The word length of the input data is 8 bits;

after the transformation, the computation results are coded with 12 bits , which meets the

specifications of MPEG. The transformed sequence occurs also in natural order.

front -end
DCT

Fig.2. The block diagram of 2-D DCT.

back-end
DCT

The front-end DCT and back-end DCT in Fig.2 are almost the same. The differences lie in the

word-length of their UO and the design of their output buffers. Based on our algorithm, each 1 -D DCT

can be divided into several functional blocks shown below.

transformed

data

sequence C

serial-to- Butterfly compute
parallel

input buffer routing u(n) & v(n)

To transposition memory (for front-end DCT)

sequence

I

or out of chip (for back-end DCT)

Fig.3. The functional blacks of 1-D DCT based on our algorithm.

Now we would like to explain the clacking strategy of the whole system. Please refer to Fig.4.

The clock signal CK-1 is externally provided, while CK-4 and CK-8 are internally generated. CK-4

and CK-8 are used to pipeline the system, and CK-1 is synchronised with the input data. Each 8-

point data block is computed within one CK-8 period. The complements of these clock signals are also

generated by our circuit.

Fig.4. The clocks used in the system.

Let us go back to Fig.3. Since the input sequence appears in natural order and is serially fed

into the system, a serial-to-parallel input buffer is therefore required to convert the input data to the

parallel form. As shown in Fig& after the whole block (8 data) has entered the buffer, they are then

parallelly shifted into shift registers. In Fig.6 we explain how to obtain the intermediate variables u(n)

and v(n) form the input data. Since the additions and subtractions performed in this stage can be done

within 8T which is well enough, the simple ripple-carry adders/subtractors are used in order to save

area. With HSPICE simulation, the worst-case delay of the 8-bit adder is simulated to be less than

1711s. The 1 I-bit adder is the largest adder in the whole system and its worst-case delay is simulated to

be not longer than 22ns. In fact, throughout the system, all the additions and subtractions are allowed

to be performed within 8T or 4T. Thus we do not intend to use fast adders/subtractors in our system.

-
t8

Input signal
I

CK 8 -

Fig. 5. The serial-to-parallel input buffer of the front-end DCT.

Fig.6. The Butterfly routing and adders/subtractors used to calculate u(n) and v(n).

From the u(n)'s in Fig.6 we can compute the even terms of the output Y(k)'s; The v(n)'s are

then used to calculate the odd terms of the coefficients Y(k)'s. The block diagrams for finding even and

odd terms of Y(k)'s are given in Fig.7 and Fig.8 respectively. Note that the values listed in the blocks

of multipliers are the values of cos0+sin0, cos0 and toss sin0 where 0 corresponds to an angle

associating with a certain n. If the control signal is 011, the operation or the value abovelunder the slash

is involved in the computation. Thus, we obtain Y(O),Y(4),Y(l) and Y(7) during the former 4T; while

Y(2),Y(6),Y(3) and Y(5) are calculated during the latter half of a data period.

CK-4

SUB
011 + +

4
011 latch

control=O + output = Y(O)+jY(4)
control =1+ output = Y(2)+jY(6)

Fig.7. The block diagram for calculating the even part of output.

Fig.8. The block for finding the odd part of the output.

-1 8-

The designs of the output buffer for the front-end DCT and back-end DCT are quite different.

Since the data written from the front-end DCT to the transposition memory can be in decimated order,

the output buffer of the front-end DCT is much simpler. It is merely a multiplexer which arbitrates the

data to appear in the order of Y(O),Y(4),Y(l),Y(7),Y(2),Y(6),Y(3),Y(5) for each data cycle as shown

in Fig.9.

The occurring order of Y(k) :

The lowest 2 bits of the 7-bit RAM counter n

Fig.9. The parallel-to-serial output buffer of the front-end Dm.

The output buffer of the back-end DCT is much more complex than that of the front-end

because the data from the back-end DCT are to be sent out of the chip. They, therefore, have to appear

in the natural order. As shown in Fig.10. we fvst extend the data into fully parallel form which is done

by controlling the clock signal to the DFF via a demultiplexer. The clock signal CK-1 is connected to

one and only one DFF for each T cycle. After that all 8 data have arrived, they are then chosen by a

multiplexer to occur from k=O to 7.

,. DFF Y(l)

DFF ? 2 b Y(2)

OD DFF . . b y(3)
12

12
DFF , , + DFF +b Y(6)

A2 A 1 A 0
The lowest 3 bits of the 7-bit RAM counter

Fig. 10. The output buffer of the back-end DCT.
-23-

a
final output

V. Hardware Implementation

From the HSPICE simulation results we know that the critical path in our system is the 2's

complement multiplier. As one can see in Fig.7 and Fig.8 that an interval of 4T is allowed to perform

a multiplication, the multiplier itself need not to be very fast ,but its area must be as small as possible.

Our multiplier is based on the modified Booth algorithm with the area of approximately lmm x

0.85mm. It is simulated to have the worst case delay of &s, i.e. 4T=40ns. We thus have T=lOns.

This means that our DCT chip can operate at the maximum speed of lOOMHz The layout of the whole

system is shown in Fig.11. The layout is drawn by way of fully custom design with the 1.2um

double-metal single-poly CMOS technoology. The area is 8.6rnm x 8.8mm. The total pin number is

34. The function of the whole system, including the transposition, has been verified with IRSIM (a

layout simulation tool) to be correct.

Fig. 1 1. The layout of the 8x8 DCI' based on the shared-multiplier algorithm.

VI. Conclusions

This chip is a prototype which proves that it is feasible to implement the 8x8 DCT on a single

chip with data rate over the speed requirement of the HDTV system. Two major improvements can be

made to reduce the circuit area significantly. First, better floor planning may reduce the circuit area by

10%. Both the routing and space area can be reduced Second, refining the design of the multiplier can

reduce the circuit area by another 10%. With these impromentsmentioned above, the core area can

approximately be shrunk to only 7mm x 7mm.

The sharing of multipliers in computing DCT is a brand new attemp and it is proven to work

efficient, even better than our expectation. If some application requires the data rate to be higher than

lOMI-Iz, one simly has to enhance the speed of the multipliers. If the delay time of the multiplier is

reduced from 40ns to 30x1s which does not increase the circuit area very much, the overall data rate can

be increased from 1 OOMHz to 133MHz.

	Purdue University
	Purdue e-Pubs
	9-1-1992

	VLSI Implementation of Discrete Cosine Transform Based on the Shared-Multiplier Algorithm
	Sze-Po Hung
	Wen-Zen Shen
	O. K. Ersoy

