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Abstract: 
In this report we describe a novel technique to generate a committee architecture for time series 
predic~ion. The algorithm, here named Selective Multiple Prediction Network, consists of three 
steps: a systematic partition of the input hyperspace, a selective training of many agents and a 
flexible combining strategy. Potencially uncorrelated agents are generated which improves the 
combination process. The proposed architecture is easily extended to the class of classification 
problems. 
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1. INTRODUCTION 

Systerr~ Identification and Linear Prediction are two very important topics in the field of System 
Theory, and are widely applied to many diverse areas such as Signal Processing, Control, and 
Forecasting. System Identification is the process of estimating an unknown structure by the 
knowledge of only its input loutput pairs. Linear Prediction, on the other hand, is the process 
of estiinating a future system response based only on the knowledge of its present and past 
responses. 

The enlphasis on creating a predictor relies on the identification of underlying patterns, and on 
the estimation of the model parameters. Historical data analysis and pattern consistency, i.e., 
time series stationarity, are respectively the major resource and the major underlying 
assumption. It may be intuitive the understanding that more complex the problem the more 
difficult is the underlying patterns identification, and even more difficult is the estimation of a 
single model able to satisfactorily cover the entire problem. 

A large class of prediction problems can be better solved by decomposing the original problem 
into several subproblems and then combining the multiple predictions. This ,approach leads to a 
higher accuracy than solving the problem with a single and global predictor. Our committee 
approach has a simple architecture (fig. 1) and consists basically of three steps as follows: 

decomposition of the original problem into several (ideally disjoint) subproblems; 

parallel estimation of the parameters for each model (agent); and 

combination strategies. 

The first step, partition of the original problem, relies on the believe that for those complex 
problems, a better result may be achieved through a divide and conquer approach. A 
transformation is applied to the original time series and spacial similarities of the state-space 
vector ;are exploited by the use of an unsupervised clustering procedure. 

In the second step, many agents are trained in parallel, on the subsets created by the clustering 
procedure. To each cluster there is a correspondin,a agent that can be seer1 as an expert on a 



particillar view of the underlying structure. Uncorrelated agents are expected to result from this 
training scheme. 

Each agent provides its own prediction, and the network or committee final prediction is then 
obtained through the combination of the individual conmbutions. Three different combining 
strategies are proposed. 

2. COjMBINING TECHNIQUES 

In a seminal paper [Bat69], Bates and Granger showed that a simple linear combination of 
distinct predictions generally outperforms the individual predictions. PL stream of papers 
followed this initial work. Clemen and Winkler [Cle86] and Clemen [Cle8S)] provide excellent 
summaries and extensive bibliographic references. 

The field has so far been dominated by works in statistical decision theory, with particular 
emphasis on optimal linear combination and on Bayesian inference. Recently, connectionist 
researchers have begun to show a strong interest in the subject in the: form of network 
committees, agent teams, stacked generalization, and others. Some of the rnajor conmbutions 
can be cited as follows: 

Simple averaging procedures can be found in works done by Doyle and Fenwick 
Poy761, Makridakis [Mak82], Makridakis and Winkler [Mak83], and Kang [Kan86]; 

Minimization of the error cross-covariance matrix can be found in Bates and Granger 
[Bat69], Newbold and Granger [New74], Winkler and Makridakis [VvTin83], and Kang 
[Kan86]; 

Historical weights, where each agent is weighted by one minus the ratio of its own 
MSE to the overall team MSE, is found in Doyle and Fenwick Poy761; 

Ordinary least square regression, either resmcted to the weights adding up to one, for 
the case where the individuals agents are known unbiased, and unresmcted in the contrary, can 
be fourtd in Granger and Ramanathan [Gra84], Bopp [Bop85], Clemen [Cle86], and Trenkler 
and Hiski [Tre86]; 

Bayesian methods, based on the posterior probability, are: found in Bunn 
[Bun75177/81], Winkler [Wingl], Bordley [Bor82/86], Gupta and Wilson [Gup87], and Chen 
and Anandaligan [Che87]. 

Among the connectionists it can be cited the following recent conmbutions: 

The weighted majority algorithm, where Nick Littlestone and Manfred Warmuth 
[Lit911 use an weighted voting scheme to combine a team of agents. They claim that the 
algorithm is robust with respect to noise and that the misclassification bounds for the pool are 
closely related to the error bounds of the best algorithms in the pool. 

Uwe Beyer and Frank Smieja [Bey931 suggest a combination that takes into account a 
degree of selfconfidence, named reflection, where each model estimates the correctness of its 
own predictions. 



Partitions of the learning set are also implicit in Wolpert's stacked generalizers 
[Wo192], Schapire's boosting technique [Sch89], and Ersoy and Hong's self organizing 
networks [Ers89, Hon91.1. 

Mackay [Mac93], winner of the 1993 energy prediction contest, uses a simple 
averaged combination of the "k" best models ranked by their performance on the validation set. 
He observes that although the committee's validation error was significaritly better than any 
single model, the same improvement did not extend to the test set. Mackay says, however, that 
in adaptive on-line schemes, the committee may always outperform a single model. 

Hybrid systems are found in [Zha92], winner of the protein prediction contest, and in 
[Yos90] where a combination of neural network agents and hidden markov models is 
suggested for a speech-recognition task. 

3. THI: COMBINING PARADIGM 

Combining is theoretically no worse than any of the individual agents, which can be shown as 
follows: 

Let A, and AP be two distinct agents working on information sets I, and 10, 

and let f: and F be their corresponding predictions for time step n. P 

If the predictions are optimal with respect to their respective information sets, 
and hence, they can be written in terms of posterior expected values, i.e. 

and 

f ; ;=E{X./Ip  1. 
The optimal prediction, based on all possible information is then known to be 

" - E ( X n / I r ) ,  I r=IauIp .  f -  (3) 

This complete estimation problem is normally very complex and computationally expensive. A 
particular subset of {Ir) that can be considered for example, is a linear c:ombination of the 
individual predictions 

It is expected that a1 or a2 should go to zero whenever f", or f
n  

is optimal with respect to the P 

global information set { I r ) .  If neither one is optimal then a1 and a2 are expected to be 
different from zero. In general, C" and f" are not equal, which clearly indicates that the 
combiriation will not be optimal too, although a superior result to each of the original 
predictions is expected. 

Although showing potential for performance improvement, combining techniques present some 
weak ~oin t s .  The combined performance is highly dependent on the estimation error cross- 
correlation, serial correlation, and bias. The most effective combinations arle achieved with no 



positive cross-correlation between individual model errors. When negative: correlation occurs, 
which is quite rare, the gains can be spectacular. However, with high positive cross-correlation 
it is of'ten difficult to achieve even a small improvement. Moreover, if an unstable optimization 
technique is used, the results may be even worse than those of using equal weights or of 
selecting the apparently best model. 

4. A THEORETICAL ANALYSIS 

Mean squared error (MSE), is the most straightforward way to combine multiple predictions 
from a connectionist point of view. Linear and even non-linear regressions can be easily 
implemented. Unconstrained regression with the use of an intercept (bias) can be shown to be 
theoretically the best alternative [Gra84]. 

For clarity, the following notation will be adopted: 

Methods 
A unconstrained regression without bias 
B constrained regression 
C unconstrained regression with bias 

Terminology 
x= (XI ,x2... .... x , )~ ;  n x 1 vector of values to be predicted 

j j $= (fl ,f2 ........ f y ;  n x 1 vector of predictions provided by the jfh agent 

F= (f1,f2 .......... fk) ;  n x k matrix of predictions 
1= [l 1 ........ 11 T; vector of " 1's" of appropriate dimension 
a= ( a l  a ~ . . . . - . a ~ ) ~ ;  k x 1 vector of combining weights. 

Method A: X = Fa+ec 

The mean squared optimization ( min(e:) a ), leads to the critical solution 

The resulting optimal quadratic error QA will be taken as the standard for comparisons. 
The quadratic error is given by 

* T  " T T 
QA = ( X-XA) (X-X,) = X X - X Fa*. 

This unconstrained optimization scheme can be shown to be unbiased only if the 
individual models are unbiased and the combining weights add up to one. Let the prediction 
error be given by 

T T -r For the average error (1 e,) to equal zero, it is required that (1 X= 1 '  Fa*). 



Assuming every individual agent is unbiased, then 
lT(x - fl) = 0, V j  

which, in matrix notation gives 
T T 1 .X.1= 1 .F . 

Multiplying both terms by (a*) gives 

(lT.x).la* = l T . ~ a * .  

Hence, the sufficient conditions for an unbiased combination are: 

a) fj ,  is unbiased Vj ; 
T b) 1 a *  = 1, i.e. the weights must sum to 1. 

Method B: X = FP + e, 
subject to 

T 1 p = 1  

Using Lagrange multipliers the optimization problem can be transformed into 

{ (x-FP)~(x-FP) + 2 x(lTp-1) } . P (8) 
The first order necessary conditions 

F ~ ( x - F ~ )  - hi = o 
T 1 b = 1  

lead to the following critical values 
T -1 p* = a *  - h (F F) 1 

T -1 T Where a *  = (F F) F X is the optimal weight vector from method A 

The quadratic error 
* T  * 

QB= (X- xg) (x-xB) , 

reduces, after some algebra, to 
2 T  T -1 QB = QA + (h*) 1 (F F) 1. 

Which shows that QB 2 QA, i.e., unconstrained without bias is superior to the 
cons trained approach. 

T 
Method C: X = F6 + 1 So + e, 

MSE optimization yelds the normal equations: 



This leads to the following critical values: 

T -1 T T *  6* = a* - (F F) F 1 6 ,  

where 
T -1 T T  r = I ~ F ( F  F) F 1 

eA is the error vector using method A. 

* T  * The quadratic error Qc = (X-xc) (X-xc) reduces, after some algebra, to 

Thus Qc I QA and hence unconstrained MSE with bias is theoretica.11~ optimal among 
the three alternatives. 

In summary it can be said that combining multiple predictions has an intuitive appeal. 
The sul~ject has been throughly studied and theoretical analysis suggests it is no worse than the 
best individual model. Error cross-correlation and bias are the two main concerns for 
succes:sful results. The major issue for committee models is therefore the generation or 
selection of agents, ideally uncorrelated or even better, complimentary biased. Requirements 
that are very difficult to be achieved in practice. 

In the rest of this report, a new approach is described. It tries to generate distinct 
models by training similar networks on different subsets of the input ve:ctor space. These 
subsets are defined through an unsupervised clustering procedure which groups together those 
vectors with similar properties or spatial characteristics. The number of distjlnct cluster defines 
the number of networks, which can be seen as experts, each on a particular region of the input 
space. 

5. THE SELECTIVE MULTIPLE PREDICTION NETWORK 

To trairi agents over distinct subsets of the full training set is not a new idea. Wolpert [Wo192] 
uses arbitrarily selected partitions to train the first layer of generalizers; Schapire [Sch89] 
adopts a residual scheme in which every new agent is trained only on thiose vectors which 
previous agents have disagreed on. Ersoy's parallel, self-organizing, hierarchical neural 
networlts [Ers89, Honggl], can also be seen as a kind of residual partition where new agents 
are trained on transformed versions of those samples rejected by previous agents. In SMP a 
different scheme to partition the input data set is used. A clustering algorithm is adopted to 
subdivide the original problem into sets of more homogeneous and easier subproblems, which 
may ev1:ntually lead to learning and prediction improvements. 

The major motivation for the SMP approach comes from the observation tha.t many time series 
problen~s present certain underlying spatial patterns. These patterns if caph~red and exploited 



by the network certainly help to improve prediction accuracy. In this present implementation, 
any sta.tionary signal is a potential candidate for the successful use of this approach. 

The Selective Multiple Prediction Network (fig. 1) involves three distinct p~rocessing steps and 
a number of distinct agents working in parallel. These agents can form a hybrid or a 
homogeneous structure depending on how they differ from one another. In our studies we only 
considered homogeneous systems in which each agent is a neural network. 

5.1 Processing Steps 

Pattern. matching, function approximation, and a combining strategy are the most important 
components of the selective multiple prediction task. Pattern matching involves feature 
selecticm and unsupervised learning; function approximation involves selective supervised 
learning, where each neural network is trained to become an expert on specific views of the 
entire environment; and the combining strategy generates the final prediction. Figure 2 shows a 
block diagram of these steps. 

I  I '  I  I  

IFeature Clustering I Function I 

Selection Combining 
I Approximation 

L , . - - - - - - - - - - -  I  1 -  , , , - - 1 1 -  - , , , , ,I 
Figure 2- SMP Processing Steps block diagram, (a) pattern matching; (b) function 

approximation; (c) combining strategy. 

The selection of relevant features is the first and one of the most important steps. In univariate 
time series this selection process can be thought of in terms of defining different embedding 
dimensions, i.e., the number of past values to be used in the model. Feature: selection [The89, 
Hsu93, Lap861 is generally a very time consuming and complex task. Here .we favored the use 
of a spread ratio measure r, (eqn 10) to select those possible embeddings leading to a more 
consistlznt unsupervised partition of the input space. The model for a time series is generally 
expreszed as 

Y= f(X) + E ,  

where 
(9) 

X= [x(t) x(t-T) x(t-27) ... x(t-(m-l).r)lT 
Y= x(t+T) 
'T is the sampling period 
m is the embedding size 
T is the prediction horizon (lead time). 

The spread ratio measure is defined as 

r,= mean (i ri) , 

where 



is the data consistency term, 

0 is the outcome variance for the input vectors belonging to cluster i 

o2 is the outcome variance for the whole training vectors, and 

is the Fisher descriminator term, 

(b'j / Xj E Cluster i} 

Once !:he embedding m is determined, the time series can be rewritten as a. collection of input 
vectors X, also known as state vectors, and their corresponding outcome Y. By ignoring the 
time dependence among these vectors, the regression problem can be viewed as a pattern 
association of pairs of vectors 

X" + Y". 

This transformation is the key to instance-based approaches [Akagl, H:;u93] in which the 
outcome prediction for the current state vector is based on a number of past state vectors found 
using a look-up search. 

Here, jn the selective multiple prediction approach, a similar transformation is applied to the 
time series to subdivide the original problem into a set of more homogeneous subproblems. 
The fuzzy locally sensitive clustering, described in [Tho93a], and also a ]<-means algorithm 
were used to partition the training set for several different embeddings. The two previously 
mentioned performance criteria were then applied to identify those embeddings resulting in 
more c:onsistent and better shaped partitions. The cluster centroids of the best partition were 
then taken as class representatives for the pattern matching and selective function 
approximation phases. 

Each cluster defines an associated agent that is trained only on those samples that are classified 
to the corresponding partition. Three strategies for learning and combining the individual 
predictions to form the committee prediction were evaluated. The first and simplest one, named 
winner-take-all, selects a single agent at every time step to perform the prediction. The selected 
agent is the one whose correspond~ng cluster centroid is closest to the current input vector. The 
second approach, calledfrlll committee, is at the other extreme, where all aj;ents are taken into 
consideration. Each agent contributes and is trained on a percentage of the fi.na1 prediction. The 
percentages or weights add up to one and correspond to the degree of membership of the 



current input vector in each cluster. The third approach, called windowed-committee, is in 
between the two others, since it takes into consideration a subset of the available agents. A 
temporal window is used as a selection criterion to induce time continuity or time similarity. 
The combination of spatial and temporal similarities has special appeal in time series 
applications. 

5.2 - Learning Procedures 

The Q,uickprop algorithm [Fah88] with adaptive region of nonlinearity, as described in 
[Tho9:3b], was used in all experiments. All training data sets were 1500 or more samples long, 
and the agents were trained in parallel accordingly to each combining strategy. Batch training 
with a fixed number of epochs upper bounded at 1000, was used. 

case a) Winner-take-all procedure 

step 1- classify current input vector 
step 2- select winning agent 
step 3- estimate desired outcome 
step 4- train selected agent through error backpropagation 

case b) Full-committee procedure 

step 1- compute degree of membership for current input vector 

step 2- estimate the outcome for all agents in parallel 

step 3- generate the committee prediction by combining the in~dividual outcomes 

step 4- train each agent by backpropagating its contribution to the overall error 

er= yd - 9, 
and 

case c) windowed-committee procedure 

step 1- classify current input vector 

step 2- select winning agent 



step 3- insert a tag of winner at the head of the time-window queue (FIFO) and 
eliminate the oldest tag 

w D =  [Tgo ..... Tgk+*] ,  window of size k 

step 4- estimate the outcomes for the agents belonging to the time-window 
queue 

step 5- combine individual outcomes 

i =  1 
where 

and 

C h i  = 1, is the time weight decay 
i =  1 

step 6- train each agent by backpropagating its contribution to the overall error 

A 
eT= Yd - Y 

and 

Observe that the number of different agents within the window varies from 1 to k; the smoother 
the time series is, the smaller this number will be. For classification problems this dynamic 
window can be thought of as a subset of the full set of agents which provide a normalized 

pi > T. degree of membership above a certain threshold, as for example - 
m=(p) 

5.3 - SlW Properties and Drawbacks 

SMP provides a powerful architecture to deal with complex real world problems. A set of 
specia1:ized networks are used, rather than a single large network which must accommodate all 
aspects and underlying dynamics of the problem. Specialization, team cooperation, and truly 
parallel operation are the key issues In SMP. Robustness, complexity and learning effort 
reductic~n, and prediction accuracy improvement are the major goals. 

Major properties: 

transforms complex problems into a set of more homogeneous and easily treated 
subproblems; 

uses smaller individual networks which reduces dimensionality problems and 
improvl=s learning time; 



exploits spatial and temporal similarity of the input vector which is intuitive and 
appea1:ing for many real world time series applications; 

combines instance based with parametric approaches without the memory and recall 
time overhead of the former: 

adopts either hybrid or homogeneous structure, with a flexible combining strategy; 

generates potentially distinct agents by training them on different partitions of the 
training set. 

Observed Drawbacks: 

requires large training sets to avoid situations where an agent is trained on a very 
small number of patterns; 

requires frequent full retraining and input space partitioning :if applied to non- 
stationary time series; 

may present overfitting problems since the number of training epochs is set equal for 
all agents and each agent has its own distinct training set. The training sets :may have different 
sizes and degrees of complexity. 

6. EME'IRICAL RESULTS 

The Mackey-Glass chaotic time series was chosen for this benchmark due to its common use 
among connectionist researchers. The purpose behind the use of Mackey-Gl,ass time series was 
not to .show improvements of current estimates that are already at practical limits. Further 
improvement is of little practical value. Rather, our purpose was to use a chaotic system 
defined. by a continuous orbit, which by nature does not have clearly definable clusters in the 
state space. If a reasonable prediction can be attained with this thecnique, functions that are 
clearly decomposable into multiple mappings can therefore, more easily be dealt with. 

The Mackey-Glass equation was first proposed as a model of white blood cell production 
[Mac7?] and subsequently popularized in the nonlinear field due to its richness in structure 
Far821. It is a time-delayed differential equation stated as follows: 

Which :in discrete time domain can be rewritten as: 



The constants are often taken as: a= 0.2, b= 0.1, and c= 10. The de.lay coefficient A 
detennines the nature of the chaotic behavior displayed by the time s,eries. This chaotic 
behavior, as studied in [Far82], is presented in table 1. There are two values of A (17, 30) that 
are commonly used for benchmarking predictions. Choosing A = 17 yields a chaotic behavior, 
and a strange attractor with the fractal dimension = 2.1. Even for the same A, different initial 
values "x(0)" generate different dynamics. Choosing A = 30 yields a strange attractor with the 
fractal dimension = 3.5. The phase space of this system is infinite dimensional. 

At A := 17, x(t) appears quasiperiodic and the power spectrum is broadband with numerous 
spikes due to the quasiperiodicity. Figure 3 shows the phase portrait and the time dynamics of 
the Mackey-Glass time series when generated with the standard values of parameters a, b, and 
c, A =: 17, x(O)= 0.9. For prediction it is commonly taken an embedding of six (m=6), a 
samp1:~ng rate of 6 (2=6), and a lead time (prediction horizon) of 6 or 85 (T== 6 or 85). 

In Mackey-Glass benchmarks, it is commonly avoided to draw conclusions based solely on 
direct numerical comparisons with other published results. This is becaus~z of the differences 
that can arise from the use of different integrators, initial conditions, sampling rate, and 
transient elimination. In our study, all results are reported in terms of Nrmse. 

Table 1 - Mackey-Glass dynamics as a function of A 

a stable fixed point atuactor 

a stable limit cycle atuactor 

period of limit cycle doubles 

1 A > 16.8 I chaotic atuactor characterized by A -.--.A 

6.1 Ir~put Space Partition 

According to Takens [Tak81], a chaotic time series x(r) can be predicted T time steps in the 
future by using only m number of equally spaced past samples of the tim.e series itself. The 
prediction value is then obtained as follows: 

x(t+T)= F {x(t),x(t-z),x(t-2z), ..... , x(t-(m-1)z) (1 1) 

where F, under suitable assumptions, is a nonlinear continuous function. The choice of an 
embed'ding scheme for a benchmark means the determination of the three pixameters T, m and 
z for the time series. In our experiments we adopted the most widely used values, i.e. m= 6, 

z= 6 and T= 6 and 85. 

Using the above parameters, many distinct partitions of a training set with 700 samples were 
evaluated. A K-means clustering algorithm was used for several values of c (number of 



clusters), and the performance criterion r, (eqn 10) was evaluated for each resulting partition. 
The resi~lts as shown in figure 4, indicates a systematic partition improvement as the number of 
clusters increase. Other observation is that the quality of the partition deteriorates as the lead 
time T goes further in the future. This is because of the chaotic nature of the series. 

Winner-,take-all, full-committee and windowed-committee schemes were eval.uated on different 
partitiori sizes for lead times of 6 and 85. Each model (neural network structure) was defined 
with a single hidden layer (5 units for the T=6 case and 7 units for the T=:85 case) and one 
output unit, hyperbolic tangent with ARON was adopted for all units. Tables 2 and 3 show 
some of the obtained results. 

Table 2 - Mackey-Glass Committee Training Performance in Nrmse 

Num. Clusters T= 6 

I 09 .I962 .4309 

Table 3 - Mackey-Glass WTA-Committee Training/Prediction for T= 
:No - cluster training Nrmse, cluster testing Nrmse; partition si 

Cls No Ns Cls No Ns Cls 

0 1 

02 

03 

04 

05 

06 

07 

08 

5 (Cls - cluster number, 
e of 225 clusters) 

The arct~itecrure of SMP provides the flexibility to customize and individually tune each Agent. 
Therefore, in this experiment for example, Agents with poor training performance could, in the 
WTA scheme, be selected for individual retraining and final accuracy may eventually improve. 

6.3 Committee Prediction 

Table 4 and figure 5 show the committee prediction results for a partition size of 23 clusters. 
Observe that the prediction provided by the WTA scheme shows very gooci performance on 



turning points, with almost no lag, with may be of great interest for some real world 
applications. 

Table 4 - Mackey-Glass Committee Prediction Comparison 

7. CONCLUSIONS 

Committee 

WTA 

Windowed 

Full 

The Selective Multiple Prediction Network provides a very flexible and powerful architecture to 
handle those more complex problems, where a single and global model i:s very unlikely to 
exist. Ilecomposing the original problem into more homogeneous subproblems leads to 
potentialy uncorrelated and simpler Agents. Less demanding training effort, and customized 
tuning according to the requirements of each subproblem are some of the characteristics of this 
approach. This proposed architecture can also be seen as a structure to combine neural 
networks (prediction module) with more sophisticated schemes of expert systems (selection 
module:) 
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Figure 1 - SMPN architecture 
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Figure 3 - The Mackey-Glass Time Series, (a) phase portrait, and (b) time dynamics 
(parameters settings: a= .2, b= . I ,  c= 10, A = 17,T = 6, and x(O)= .9) 
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Figure 4 - Mackey-GIass Cluster Analysis (number of partitions x average variance of the 
desired output within partitions) 

time 

Figure 5 - WTA Committee Prediction on Mackey-Glass Time Series T=85 (23 Agents each 
with 7 units in the hidden layer and one output unit) 
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