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A Selective Committee Architecture for Time Series Prediction and Pattern
Classification

Antonio G. Thome and Manoel F. Tenorio
Parallel Processing Laboratory
School of Electrical Engineering

Purdue University

Abstract:

In this report we describe a novel technique to generate acommittee architecturefor time series
prediction. The algorithm, here named Selective M ultiplePrediction Network, consists of three
steps: a systematic partition of the input hyperspace, a selectivetraining of many agentsand a
flexible combining strategy. Potencially uncorrelated agentsare generated which improvesthe
combination process. The proposed architectureis easily extended to the class of classification
problems.

Key words: Committe Architecture, Team Prediction, Combining Predictions

1. INTRODUCTION

System |dentificationand Linear Prediction are two very important topicsin thefield of System
Theory, and are widely applied to many diverse areas such as Signal Processing, Control, and
Forecasting. System Identification is the process of estimating an unknown structure by the
knowledge of only itsinput / output pairs. Linear Prediction, on the other hand, is the process
of estimating a future system response based only on the knowledge of its present and past
responses.

The emphasis on creating a predictor relies on the identification of underlying patterns, and on
the estimation of the model parameters. Historical data analysis and pattern consistency, i.e.,
time series stationarity, are respectively the mgjor resource and the major underlying
assumption. It may be intuitive the understanding that more complex the problem the more
difficult is the underlying patterns identification, and even more difficult is the estimation of a
single model able to satisfactorily cover the entire problem.

A largeclass of prediction problemscan be better solved by decomposingthe origina problem
into severa subproblems and then combining the multiple predictions. This approach leadsto a
higher accuracy than solving the problem with a single and global predictor. Our committee
approach has a simple architecture (fig. 1) and consists basicaly o threesteps asfollows:

« decomposition of the original problem into severa (ideally digoint) subproblems;

« parald estimation of the parametersfor each model (agent); and

« combination strategies.
The first step, partition of the original problem, relies on the believe that for those complex
problems, a better result may be achieved through a divide and conquer approach. A

transformation is applied to the original time series and spacial similaritiesof the state-space
vector are exploited by the use of an unsupervisedclustering procedure.

In the second step, many agentsare trained in parallel, on the subsets created by the clustering
procedure. To each cluster there is a corresponding agent that can be seen as an expert on a



particular view of the underlying structure. Uncorrelated agents are expected to result from this
training scheme.

Each agent providesits own prediction, and the network or committee final predictionis then
obtained through the combination of the individual conmbutions. Three different combining
strategies are proposed.

2. COMBINING TECHNIQUES

In aseminal paper [Bat69], Bates and Granger showed that a ssimple linear combination of
distinct predictions generally outperforms the individual predictions. A stream of papers
followed thisinitial work. Clemen and Winkler [Cle86] and Clemen [Cle89] provide excellent
summaries and extensive bibliographic references.

The field has so far been dominated by works in statistical decision theory, with particular
emphasis on optimal linear combination and on Bayesian inference. Recently, connectionist
researchers have begun to show a strong interest in the subject in the form of network
committees, agent teams, stacked generalization, and others. Some of the major conmbutions
can becited asfollows:

» Simple averaging procedures can be found in works done by Doyle and Fenwick
[Doy76], Makridakis[Mak82], Makridakis and Winkler [Mak83], and Kang [Kan86];

- Minimization of the error cross-covariance matrix can be found in Bates and Granger
[Bat69], Newbold and Granger [New74], Winkler and Makridakis [Win83], and Kang
[Kan86];

- Historical weights, where each agent is weighted by one minus the ratio of its own
MSE to the overall team M SE, isfound in Doyle and Fenwick [Doy76];

« Ordinary least squareregression, either resmcted to the weights adding up to one, for
the case where the individual s agents are known unbiased, and unresmcted in the contrary, can
be found in Granger and Ramanathan [Gra84], Bopp [Bop85], Clemen [Cle86], and Trenkler
and Hiski [Tre86];

- Bayesian methods, based on the gosterlor probability, ae found in Bunn
[Bun75/77/811, Winkler [Win81], Bordley [Bor82/86], Guptaand Wilson [Gup87], and Chen

and Anandaligan [Che87].
Among the connectionistsit can be cited the following recent contributions:

- The weighted majority algorithm, where Nick Littlestone and Manfred Warmuth
[Lit91] use an weighted voting scheme to combine a team of agents. They claim that the
algorithm is robust with respect to noise and that the misclassification boundsfor the pool are
closaly related to the error bounds of the best algorithmsin the poal.

+ Uwe Beyer and Frank Smieja [Bey93] suggest acombination that takes into account a
degree of selfconfidence, named reflection, where each mode estimates the correctness of its
own predictions.



« Partitions of the learning set are also implicit in Wolpert's stacked generalizers
[WolS2], Schapire's boosting technique [Sch89], and Ersoy and Hong's self organizing
networks [Ers89, Hon91].

« Mackay [Mac93], winner of the 1993 energy prediction contest, uses a simple
averaged combination of the "k" best models ranked by their performance on the validation set.
He observes that athough the committee's validation error was significantly better than any
single model, the same improvement did not extend to the test set. Mackay says, however, that
in adaptive on-line schemes, the committee may aways outperform asingle model.

« Hybrid systemsare found in [Zha92], winner of the protein prediction contest, and in
[Yos90] where a combination of neural network agents and hidden markov models is
suggested for a speech-recognition task.

3. THE COMBINING PARADIGM

fCcl)lmbi ning is theoretically no worse than any of the individua agents, which can be shown as
ollows:
Let A, and Ag be two distinct agents working on information sets |, and Ig,

and let f; and f'F‘, be their corresponding predictionsfor time step n.

If the predictionsare optimal with respect to their respectiveinformation sets,
and hence, they can be written in terms of posterior expected values, i.e.

fa=E(Xallg}, M
and

fe=E{Xn/Ip}. @
The optimal prediction, based on al possibleinformation is then known to be

fr=E(Xa/Ir), Ir=I,Ulp (3)

This compl ete estimation problem is normally very complex and computationally expensive. A
particular subset of {Ir} that can be considered for example, is a linear combination of the
individual predictions

C= oy fy + 02 fy - @

Itisexpected that o; or o should go to zero whenever fz or f 'E, is optimal with respect to the

global information set {Ir-}. If neither one is optimal then a; and o are expected to be

different from zero. In general, C" and fn are not equal, which clearly indicates that the
combination will not be optimal too, although a superior result to each of the original
predictionsis expected.

Although showing potential for performanceimprovement, combining techniques present some
weak points. The combined performance is highly dependent on the estimation error cross-
correlation, serial correlation, and bias. The mogt effective combinationsare achieved with no




positive cross-correlation between individual model errors. When negative: correlation occurs,
which is quite rare, the gains can be spectacular. However, with high positive cross-correlation
itisof'ten difficult to achieve even asmall improvement. Moreover, if an unstable optimization
technique is used, the results may be even worse than those of using equal weights or of
selecting the apparently best model.

4. A THEORETICAL ANALYSIS

Mean squared error (MSE), is the most straightforward way to combine multiple predictions
from a connectionist point of view. Linear and even non-linear regressions can be easily
implemented. Unconstrained regression with the use of an intercept (bias) can be shown to be
theoretically the best alternative [Gra84].

For clarity, the following notation will be adopted:

Methods

A unconstrained regression without bias
B constrained regression

C unconstrained regression with bias

Terminology
X= (X1,X20eeunnn xw)T; nx 1 vector of values to be predicted

fi=( fJ , sz ________ ff] )T n x 1 vector of predictions provided by the ji agent
F= (f1,f2.......... fk); n X k matrix of predictions
I=[1 1. 11T, vector of "1's" of appropriate dimension

o= (01 ®2......04)7T; k x 1 vector of combining weights.

Method A: X =Fo+ec

The mean squared optimization ( ";:"(eé’) ), leads to the critical solution

a* = (F F)1FT X. (5)

The resulting optimal quadratic error Qa will be taken as the standard for comparisons.
Thequadratic error is given by

*

Qa= (XX (X-X) = XX - X Fax. ©6)

This unconstrained optimization scheme can be shown to be unbiased only if the
indiviclual models are unbiased and the combining weights add up to one. Let the prediction
error be given by

ec=X - x:= X - Fa*. 0

For the average error (lTec) to equal zero, it isrequired that (1TX= 1TFox).



Assuming every individual agent is unbiased, then
(X - ) =0, Vi
which, in matrix notation gives
" x1=1"F.
Multiplying both terms by (a*) gives
aT.x).lo* = 17 Fox.

Hence, the sufficient conditionsfor an unbiased combination are:

a) fi, is unbiased Vj ;
b) 1o+ = 1, i.e. the weights must sum to 1.

Method B: X =FB +e
subject to
B=1
Using Lagrange multipliersthe optimization problem can be transformed into
mBi“ (X-FR)TX-FB) + 21(7B-1)}. @)
Thefirst order necessary conditions
FI(X-FB)- Al =0
1B =1
lead to the following critical values
Br=o* -4 (FP11
= Tox - DATER L
Where a* = (FTF)'lFTX is the optima weight vector from method A

The quadratic error .

*\T
QB= (X-xg) (X-xp),

reduces, after some algebra, to
Qe=Qat (M 1(FR™1

Which shows that Qg = Qa, i.e., unconstrained without bias is superior to the
constrained approach.

MethodC: X =F8+1'8) +e,

M SE optimization yelds the normal equations:

FT(X - F8- 8,) = 0



IT(X - F3 - ;1) = 0.
This leads to thefollowing critical values:

s =a* - F'FLFs,

¥ le
5, =2,
0 nr

where
r=1"f@Em1A
ea istheerror vector using method A.

*
The quadratic error Q. = (X-x:)T(X-xc ) reduces, after some algebra, to

T 2
QC = QA - ——_(ln?IA“) n-I'> O

Thus Q. £ Qa and hence unconstrained MSE with biasis theoretically optimal among
the three alternatives.

In summary it can be said that combining multiple predictions has an intuitive appeal.
The subject has been throughly studied and theoretical analysis suggestsit is no worse than the
best individual model. Error cross-correlation and bias are the two main concerns for
successful results. The major issue for committee models is therefore the generation or
selection of agents, ideally uncorrelated or even better, complimentary biased. Requirements
that are very difficult to be achieved in practice.

In the rest of this report, a new approach is described. It tries to generate distinct
models by training similar networks on different subsets of the input vector space. These
subsets are defined through an unsupervised clustering procedure which groups together those
vectors with similar properties or spatial characteristics. The number of distinct cluster defines
the number of networks, which can be seen as experts, each on a particular region of theinput
space.

5. THESELECTIVE MULTIPLE PREDICTION NETWORK

To train agentsover distinct subsets of the full training set is not a new idea. Wolpert [Wol92]
uses arbitrarily selected partitions to train the first layer of generalizers; Schapire [Sch89]
adopts a residual scheme in which every new agent is trained only on those vectors which
previous agents have disagreed on. Ersoy's paralel, self-organizing, hierarchical neura
networlts [Ers89, Hong91], can also be seen as a kind of residual partition where new agents
are trained on transformed versions of those samples rejected by previous agents. In SMP a
different scheme to partition the input data set is used. A clustering algorithm is adopted to
subdivide the original problem into sets of more homogeneous and easier subproblems, which
may eventually lead to learning and prediction improvements.

The major motivation for the SMP approach comes from the observation that many time series
problems present certain underlying spatial patterns. These patternsif captured and exploited



by the network certainly help to improve prediction accuracy. In this present implementation,
any stationary signa is a potential candidate for the successful use of thisapproach.

The Selective Multiple Prediction Network (fig. 1) involves three distinct processing steps and
a number of distinct agents working in parallel. These agents can form a hybrid or a
homogeneous structure depending on how they differ from one another. In our studies we only
considered homogeneous systems in which each agent is a neural network.

5.1 Processing Steps

Pattern. matching, function approximation, and a combining strategy are the most important
components of the selective multiple prediction task. Pattern matching involves feature
selection and unsupervised learning; function approximation involves selective supervised
learning, where each neural network is trained to become an expert on specific views of the
entire environment; and the combining strategy generates thefinal prediction. Figure 2 shows a
block diagram of these steps.

(@) ©) ©
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Figure 2- SMP Processing Steps block diagram, (a) pattern matching; (b) function
approximation; (c) combining strategy.

The selection of relevant featuresis thefirst and one of the most important steps. In univariate
time series this selection process can be thought of in terms of defining different embedding
dimensions, i.e., the number of past values to be used in the model. Feature: selection [The&9,
Hsu93, Lap86] is generally a very time consuming and complex task. Here we favored the use
of a spread ratio measure rs (egn 10) to select those possible embeddings leading to a more
consistznt unsupervised partition of the input space. The model for a time series is generally
expressed as

Y= f(X) tE, 9)
where

X=[x(t) x(t-T) x(t-27) ... X(t-(m-D)D)]"
Y=x(+T)

T is the sampling period
m is the embedding size
T is the prediction horizon (lead time).

The spread ratio measure is defined as
ry= mean (r; r‘fj ,
where

mean(oiz)
=", (10)



is the data consistency term,

o2 is the outcome variancefor the input vectors belonging to cluster i

1

o2 is the outcome variancefor the whole training vectors, and

, mean(d,,)
r

3 mean(d};) ’
is the Fisher descriminator term,

(11)

oD
di = nl Efuxj-viuz (Vj/X;e Clusteri}
]J=

i 1
dg= 7 Z||Vj-vi||2.
g1

Once the embedding m is determined, the time series can be rewritten as a collection of input
vectors X, also known as state vectors, and their corresponding outcome Y. By ignoring the
time dependence among these vectors, the regression problem can be viewed as a pattern
association of pairsof vectors

Xl — Yl
X2 > Y?

X" — Y7,

This transformation is the key to instance-based approaches [AkaS1, Hsu93] in which the
outcome prediction for the current state vector is based on a number of past state vectors found
using a look-up search.

Here, in the selective multiple prediction approach, a smilar transformation is applied to the
time series to subdivide the original problem into a set of more homogeneous subproblems.
The fuzzy locally sensitive clustering, described in [Tho%3a], and also a K-means agorithm
were used to partition the training set for several different embeddings. The two previousy
mentioned performance criteria were then applied to identify those embeddings resulting in
more consistent and better shaped partitions. The cluster centroids of the best partition were
then taken as class representatives for the pattern matching and selective function
approximation phases.

Each cluster defines an associated agent that is trained only on those samples that are classified
to the corresponding partition. Three strategies for learning and combining the individual
predictionsto form the committee prediction were evaluated. The first and simplest one, named
winner-take-all, selectsasingle agent & every time step to perform the prediction. The selected
agent is the one whose corresponding cluster centroid is closest to the current input vector. The
second approach, called fiu!l committee, is at the other extreme, where al agents are taken into
consideration. Each agent contributes and is trained on a percentage of the final prediction. The
percentages or weights add up to one and correspond to the degree of membership of the



current input vector in each cluster. The third approach, called windowed-committee, isin
between the two others, since it takes into consideration a subset of the available agents. A
temporal window is used as a selection criterion to induce time continuity or time similarity.
The combination of spatial and temporal similarities has special appeal in time series
applications.

5.2 - Learning Procedures
The Quickprop algorithm [Fah88] with adaptive region of nonlinearity, as described in
[Tho93b], was used in all experiments. All training data sets were 1500 or more samples|ong,
and the agents were trained in parallel accordingly to each combining strategy. Batch training
with afixed number of epochs upper bounded at 1000, was used.
casea) Winner-take-all procedure
step 1- classify current input vector
step 2- select winning agent
step 3- estimate desired outcome
step 4- train selected agent through error backpropagation
case b) Full-committee procedure

step 1- compute degree of membership for current input vector

exp(-\/ X-Vl(X-vy) '
é:lexp(-\/ X-V)T(x-vy) )

i=

step 2- estimate the outcome for all agentsin parallel

Ji= FOXWi); i=1,c
step 3- generate the committee prediction by combining the individual outcomes
c
y= ;Hi ¥is

step 4- train each agent by backpropagating its contribution to the overall error

A
€ET=Yd- Y,
and
€i= UieT
case ¢) windowed-committee procedure
step 1- classify current input vector

step 2- select winning agent



step 3- insert a tag of winner at the head of the time-window queue (FIFO) and
eliminate the oldest tag

WD= [Tgo Tg.i ..... Tgx+1]s window of sizek

step 4- estimate the outcomes for the agents belonging to the time-window
queue

%i= FIX,WY), i=1k

step 5- combineindividual outcomes

k
/)>= 211 §'\n
i=1
where
_ B
A= . 0<B<l
2B
i=1
and

k
Sa=1, is the time weight decay

step 6- train each agent by backpropagating its contribution to the overall error

€T= vd - Q
and

ei= Ajer.

Observe that the number of different agents within the window varies from 1 to k; the smoother
the time series is, the smaller this number will be. For classification problems this dynamic
window can be thought of as a subset of the full set of agents which provide a normalized

degree of membership above acertain threshold, as for example B st
max (i)

5.3 - SMP Properties and Drawbacks

SMP provides a powerful architecture to deal with complex real world problems. A set of
specialized networks are used, rather than asingle large network which must accommodate all
aspects and underlying dynamics of the problem. Specialization, team cooperation, and truly
parallel operation are the key issues In SMP. Robustness, complexity and learning effort
reduction, and prediction accuracy improvement are the major goals.

Major properties:

- transforms complex problems into a set of more homogeneous and easily treated
subproblems;

« uses smaller individual networks which reduces dimensionality problems and
improves learning time;

10



« exploits spatial and temporal similarity of the input vector which is intuitive and
appealing for many real world time series applications;

« combines instance based with parametric approaches without the memory and recall
time overhead of the former:

« adopts either hybrid or homogeneous structure, with a flexible combining strategy;

« generates potentially distinct agents by training them on different partitions of the
training set.

Observed Drawbacks:

« requires large training sets to avoid situations where an agent is trained on a very
small number of patterns;

« requires frequent full retraining and input space partitioning :if applied to non-
stationary time series;

« may present overfitting problemssince the number of training epochsis set equal for
all agents and each agent hasits own distinct training set. The training sets :may have different
sizes and degrees of complexity.

6. EMPIRICAL RESULTS

The Mackey-Glass chaotic time series was chosen for this benchmark due to its common use
among connectionist researchers. The purpose behind the use of Mackey-Glass time serieswas
not to .show improvements of current estimates that are already at practica limits. Further
improvement is of little practical value. Rather, our purpose was to use a chaotic system
defined. by a continuous orbit, which by nature does not have clearly definable clustersin the
state space. If a reasonable prediction can be attained with this thecnigue, functions that are
clearly decomposabl e into multiple mappings can therefore, more easily be dzalt with.

The Mackey-Glass equation was first proposed as a model of white blood cell production
[Mac77] and subsequently popularized in the nonlinear field due to its richness in structure
[Far82]. It isatime-delayed differential equation stated as follows:

8x  ax(t-A) ]
St [1+x°(t-A)]

bx(t). )

Which :in discrete time domain can be rewritten as:

X
1)=————- (b-1 X 10
x(t+1) (o)) (b-1x(D) (10

—



The constants are often taken as: a= 0.2, b= 0.1, and c¢= 10. The delay coefficient A
detennines the nature of the chaotic behavior displayed by the time series. This chaotic

behavior, as studied in [Far82], is presented in table 1. There are two valuesof A (17, 30) that
are commonly used for benchmarking predictions. Choosing A = 17 yields a chaotic behavior,
and a strange attractor with the fractal dimension = 2.1. Even for the same 4, different initial
vaues "x(0)" generate different dynamics. Choosing A = 30 yields astrange attractor with the
fractal dimension = 3.5. The phase space of this system is infinitedimensional.

At A = 17, x(1) appears quasiperiodic and the power spectrum is broadband with numerous
spikes due to the quasiperiodicity. Figure 3 shows the phase portrait and the time dynamics of
the Mackey-Glass time series when generated with the standard values of parametersa, b, and
c, A = 17, x(0)= 0.9. For prediction it is commonly taken an embedding of six (m=6), a

sampling rate of 6 (1=6), and alead time (prediction horizon) of 6 or 85 (T== 6 or 85).
In Mackey-Glass benchmarks, it is commonly avoided to draw conclusions based solely on
direct numerical comparisons with other published results. This is because of the differences

that can arise from the use of different integrators, initial conditions, sampling rate, and
transient elimination. In our study, al results are reported in terms of Nrmse.

Table 1 - Mackey-Glassdynamicsas afunction of A

A <453 agtable fixed point atractor

453 <A <133 agable limit cycleattractor
133<A <1638 period of limit cycle doubles

A >16.8 chaotic atuactor characterized by A

6.1 Input SpacePartition

According to Takens [Tak81], achaotic time series x(z) can be predicted T time steps in the
future by using only m number of equally spaced past samples of the time seriesitself. The
prediction value is then obtained as follows:

x(t+T)= F {x(1),x(t-7),x(t-27), ..... , X(t-(m-1)7} (11)

where ¥, under suitable assumptions, is a nonlinear continuous function. The choice of an
embedding scheme for a benchmark means the determination of the three parameters T, mand

1 for the time series. In our experiments we adopted the most widely used values, i.e. m= 6,
=6 and T= 6 and 85.

Using the above parameters, many distinct partitionsof atraining set with 700 samples were
evaluated. A K-means clustering agorithm was used for several values of ¢ (number of

12



clusters), and the performancecriterion rs (egn 10) was evaluated for each resulting partition.
Theresults as shown in figure 4, indicates a systematic partition improvement as the number of
clustersincrease. Other observation is that the quality of the partition deteriorates as the lead
time T goesfurther in the future. Thisis because of the chaotic nature of the series.

6.2 Learning

Winner- take-al full-committee and windowed-committee schemes were evaluated on different
partition Sizesfor lead times of 6 and 85. Each mode (neura network structure) was defined
with a single hidden layer (5 units for the T=6 case and 7 units for the T=85 case) and one
output unit, hyperbolic tangent with ARON wes adopted for al units. Tables 2 and 3 show
somed the obtained results.

Table 2 - Mackey-Glass Committee Training Performancein Nrmse

Committee Num. Clusters T=6 T= 85
WTA 09 .1962 4309
WTA 23 .0773 .3403

Windowed 09 .1904 4233

Windowed 23 .0728 .3194

Full-committee 23 1221 3752

Table 3 - Mackey-GlassWTA-Committee Training/Prediction for T= 85 (Cls- cluster number,
No - cluster training Nrmse, cluster testing Nrmse; partition Size of 23 clusters)

Cls No Ns Cls No Ns Cls | No Ns

01 1182 | 1117 09 2285 | .2742 17 .1551 2677
02 5304 | .3842 10 .6292 | .6807 18 3656 [ .3961
03 2167 2912 11 0660 [ .0712 19 5488 .6979
04 .7403 .1614 12 7720 | .6555 20 3548 | .4264
05 1727 .1471 13 2011 .2296 21 5299 | .4234
06 3123 .1949 14 2516 | .1834 22 2752 | .2823
(014 3374 | 3371 15 3698 | .3582 23 5284 | .3587
08 2821 2876 16 .1447 | .1548 | WTA || .3403 .3694

The architecture of SMP provides the flexibility to customize and individually tune each Agent.
Therefore, in this experiment for example, Agents with poor training performancecould, in the
WTA scheme, be selected for individua retraining and fina accuracy may eventudly improve.

6.3 Committee Prediction

Table 4 and figure 5 show the committee prediction resultsfor a partition size of 23 clusters.
Observe that the prediction provided by the WTA scheme shows very good performance on



turning points, with aimost no lag, with may be of great interest for some rea world
applications.

Table 4 - Mackey-Glass CommitteePredi ction Comparison

Committee T=6 T=85
WTA .0825 3694

Windowed .0835 .3653
Full 1123 -

7. CONCLUSIONS

The Selective Multiple Prediction Network provides avery flexibleand powerful architectureto
handle those more complex problems, where a single and global model is very unlikely to
exist. Decomposing the original problem into more homogeneous subproblems leads to
potentialy uncorrelated and simpler Agents. Less demanding training effort, and customized
tuning according to the requirements of each subproblem are some of the characteristicsof this
approach. This proposed architecture can also be seen as a structure to combine neural
networks (prediction module) with more sophisticated schemes of expert systems (selection
module?)
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