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Abstract 

 

In modern architectures, memory access latency is an increasingly performance-limiting 

factor. To reduce this latency, we propose concepts and implementation of a new technique that 

uses an in-memory processor to precompute future, critical load addresses and forward the 

computed values to the main processor. The acronym for this technique is IMPT for In-Memory 

Precomputation-based forwarding Threads. IMPT combines the advantages of precomputation-

based techniques with the low memory access latency of processing-in-memory. To evaluate 

IMPT, we use a cycle-accurate simulation of an aggressive out-of-order processor with accurate 

simulation of bus and memory contention. The results show a performance gain of up to 1.47 

(1.21 on average) over an aggressive superscalar processor. The average load access latency 

decreases by up to 55% (32% on average).  
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1. Introduction 

Memory latency is by far the largest overhead incurred by modern processors. Prefetching is a 

common technique to hide latency. It has traditionally been based upon prediction. However, 

memory-bound applications have large data working sets and complex data access patterns that 

defy address prediction. Therefore, to hide the memory latency: accurate address generation and 

early prefetches are needed.   

Precomputation-based prefetching approaches this goal by pre-executing the code that 

generates complex irregular addresses. The program main thread initiates an address 

precomputation code slice on a precomputation thread when it expects a future load miss. 

Recently proposed precomputation-based prefetching techniques include Collins et al.’s 

Speculative Precomputation [4], Luk’s Software Controlled Pre-Execution [16], Roth and Sohi’s 

Speculative Data Driven Multithreading [20,21], Zilles and Sohi’s Speculative Slices [24], Liao 

et al.’s Software-based Speculative Precomputation [15], and Kim and Yeung’s Compiler 

Algorithms for Pre-execution [13]. While these approaches show significant gains, they also 

exhibit key shortcomings. Dynamic slice selection [4] incurs significant hardware cost, manual 

slice selection [16,24] is not feasible for real applications, the use of profiling feedback for slice 

construction [13,15] or instruction traces [20,21] depends on highly specialized profiling 

hardware, and source level analysis [13,16] does not allow fine tuning of the constructed slices. 

Our approach overcomes all of these shortcomings. We are the first that propose in-memory 

precomputation-based forwarding. In-memory pre-execution has the advantage of direct access 

to all data in memory at low latency. Moreover, by placing the precomputation thread in 

memory, it avoids the increase in fetch and execution resource contention typical of 

precomputation mechanisms in the main processor. Memory-side forwarding has also been 

proposed by Solihin et al.’s [22], however, they are prediction based. 

We refer to our technique as in-memory precomputation threads (IMPT). The memory 

processor fetches a program slice from memory, executes it, and forwards the resulting load 

value to the main processor. Precomputation consists of four critical components: 

precomputation-slice generation (selection), trigger insertion, slice filtering, and slice 

prioritization. Slice generation selects the instructions for pre-execution. Trigger insertion adds 

to the program code a trigger instruction that invokes the precomputation. Slice Filtering decides 
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whether to execute a slice. Slice Prioritization ranks the slices. Instead of implementing the 

precomputation components in either software or hardware, IMPT proposes a hybrid technique. 

The first two components are implemented in software, whereas the last two are implemented in 

hardware. This design keeps the hardware complexity on the processor side low, while achieving 

high performance. 

In this paper we make three main contributions: 1- We introduce precomputation techniques 

that execute on the memory side. 2- We propose a compiler algorithm for automatic slice 

selection and trigger insertion. 3- We present a new dynamic technique for slice filtering and 

prioritization based on Earliest Deadline First (EDF) scheduling.  

IMPT uses a fully automated compiler algorithm that marks instructions for slice selection 

and trigger insertion. Since IMPT constructs slices and inserts trigger instructions statically at the 

assembly level, no dynamic trace information is needed. We study both static and profile based 

critical load selection. We simulate a cycle-accurate aggressive out-of-order processor with 

accurate bus and memory contention to evaluate IMPT. The simulation results show that IMPT 

achieves a performance gain of up to 1.47 (1.21 on average) on Olden [3] and SPEC CPU2000 

benchmarks over a superscalar processor running fully optimized code. Our results also show a 

reduction of the load latency by up to 55% (32% on average).  

The rest of the paper is organized as follows: Section 2 describes the key concepts of IMPT. 

In Section 3, we present details of IMPT hardware. Sections 4 and 5 discuss the experimental 

methodology and the results, respectively, and Section 6 discusses related work.  Finally, 

conclusions are provided in Section 7. 
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2. Key Concepts of In-Memory Precomputation-based Forwarding Threads 

This paper proposes a hybrid architecture-compiler approach to hide the memory access 

latency. The IMPT architecture precomputes program sections in memory and forwards data to 

the main processor prior to its use. Figure 1 shows the proposed IMPT microarchitecture. It 

consists of a general-purpose memory-processor (precomputation thread), an interface to the 

DRAM (Buffered-DRAM), a trigger history table (THT, described in Section 3.3) and an 

optional load Instruction Validation Table (IVT, described in Section 3.3) used to store the 

forwarded load values. The memory processor can reside on a DRAM chip or in the memory 

controller. Both cases are considered in our results. The memory processor forwards load-values 

to the main processor, which the IVT validates. If valid, a value is directly moved into the 

destination register of the load instruction. Otherwise, the instruction performs a normal load 

operation. Therefore, IMPT hides L2 miss latencies, as well as L1 miss latencies of loads whose 

values are in memory (non-dirty in the L2 data cache). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: IMPT system microarchitecture (described in detail in Section 3). Highlighted components correspond to 

changed parts of the uni-processor microarchitecture. The system uses an IVT table only if forwarding to the main 

processor IVT and not to the cache (we study both cases). 

IMPT differs from main-processor side pre-execution in the following aspects. 1- Memory-

side execution is decoupled from main-processor side execution. Fetch units, caches, etc. are not 
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shared between the two threads and, therefore, do not cause resource contention. 2- Instead of 

prefetch requests, trigger requests are sent to memory. 3- A trigger request is sent per code slice 

instead of per load address. The number of requests sent to memory is reduced, as the slices tend 

to contain multiple loads. 4- Due to the memory-side low data access latency, IMPT leads to 

faster generation of load addresses that depend on other loads missing in the cache.  

The following subsections describe the main tasks of the IMPT architecture. They include the 

identification of performance-critical loads (Section 2.1), Slice generation (Section 2.2), Trigger 

insertion (Section 2.3), and Slice Filtering and Slice Prioritization (Section 2.5). The hardware 

support is described in Section 3.  

2.1. Critical Load Identification 

The first step in precomputation-based prefetching or forwarding is the selection of 

performance-critical load instructions. The common method in recent prefetching techniques 

[13,15] is the use of profiling runs to mark the loads causing the majority of cache misses. 

Profiling has the advantage of using accurate run-time information to correctly mark critical 

loads. However, its disadvantage is that it is only guaranteed to be precise for a single input data 

set. This paper investigates both the profile approach and a purely static approach. 

The profile approach marks loads that cause 99% of the cache misses. By contrast, the static 

compiler approach classifies load instructions based on their addresses. Our experiments have 

shown that loads whose address is a register (not a stack, frame or global address) cause the 

majority of L1 cache misses (99% on average). This is the case because complex and irregular 

addresses (e.g. pointer-chasing, etc.) are register loads. Therefore, our static algorithm marks all 

register loads as critical.  

2.2. Slice Generation  

The second step of the IMPT compiler algorithm selects the instructions that generate the 

address of each critical load. These instructions are referred to as the precomputation slice (they 

have also been called p-slices, p-threads and data-driven threads). IMPT selects the 

precomputation slice through backward data-dependence (register-dependence) analysis at the 

assembly level, starting from the critical load instruction. This method yields precise code slices 

containing only the necessary instructions. 
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The compiler proceeds in two steps. First, it selects slices within basic block boundaries. 

Second, it combines such slices into global slices, spanning multiple blocks. Figure 2(a) shows 

an example of selected basic block slices. The analysis stops at the critical load’s basic block 

boundary. Since the slice is limited to a basic block, it includes no control flow instructions. At 

the end of the slice selection analysis, a set of registers are identified whose values are needed by 

the slice but are not generated within the critical load’s basic block. These registers represent the 

initialization (init_reg) needed by each slice. Using this information, the algorithm generates 

global slices as follows. (1) Slices not requiring initialization are grouped with the preceding 

slice. (2) Subsequent slices that require the same register initialization are combined into a single 

slice. Figure 2(b) shows an example of slice combination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Precomputation slices and triggers generated by our compiler algorithm. (a) Slice selection. I6 is the 

critical load. Highlighted instructions are the address generating slice. (b) Slices combined if sequential and have the 

same initialization register ($3). Therefore, both load instruction slices are combined into a single slice. (c) Trigger 

instruction insertion (trig instruction highlighted) at the assignment of $12. Code is from the mcf benchmark (SPEC 

CPU2000).  

la        $12,perm 
trig  $12,MYLB112 
addu   $10,$7,4       
sll       $11,$2,5 

$L76:    
 lw     $8,24($10)    

        blez     $8,$L75   
        lw    $3,0($7)      
        lw      $4,0($10) 
        lw       $2,12($10) 
        lw       $3,44($3) 
        lw       $4,44($4) 
        move   $9,$0 
        subu    $2,$2,$3 
        addu    $5,$2,$4 
        bgez    $5,$L83 

beq      $8,$14,$L82 
$L83: 
        blez     $5,$L81 
        bne      $8,$13,$L81 
$L82: 
        li        $9,0x00000001          
$L81: 
        beq      $9,$0,$L75 
MYLB112: 

lw       $4,basket_size        
addu    $4,$4,1 
sll    $3,$4,2 
addu    $3,$3,$12 
lw       $2,0($3) 
sw      $7,0($2) 

(c) 

(a) 

I1: beq    $9,$0,$L75 
MYLB112: 

I2: lw      $4,basket_size 
I3: addu  $4,$4,1 
I4: sll      $3,$4,2 
I5: addu  $3,$3,$12 
I6: lw     $2,0($3) 
I7: sw     $7,0($2) 

(b) 

MYLB2: 
    lw      $2,-24($3) 

    beq    $2,$7,$L33 
    lw      $2,0($3) 
    addu  $2,$5,$2 
     : :            : 
     : :            : 
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2.3. Trigger Insertion 

Trigger instructions have two main functions. 1- They spawn (i.e. initiate) pre-execution 

slices in memory. 2- They supply the register initialization values needed by the slice; thus they 

synchronize registers between main and memory threads. For each program slice and each 

init_reg value (from Section 2.2), the algorithm adds a trigger to the program code. The trigger is 

placed after the register’s most recent definition, using the following steps. First, the algorithm 

builds a full, inter-procedural program control flow graph. Second, the algorithm traverses this 

graph backwards from the critical load’s basic block, locating the init_reg’s last definition point. 

As several paths may be traversed, several insertion points may be found. At each point, the 

algorithm adds a trigger instruction identifying the needed register (as shown in Figure 2(c)) and 

the point’s offset from the targeted program slice. The distance of the trigger instruction from the 

corresponding load is not limited by loop or subroutine boundaries.  

2.4. Slice Optimization 

Loop Unrolling: To include several loop iterations within the slice (and therefore critical loads 

from several iterations of the loop), IMPT uses loop-unrolling as a pre-step prior to slice 

selection (Figure 3(e)). Loop-unrolling generates several instances of each critical load within a 

loop and combines these iteration instances into one slice. This allows a single trigger instruction 

to spawn several iterations of the loop including all inter-iteration dependencies.  

The final code generated by the IMPT compiler is the same as the original program code with 

slices marked through instruction annotation and trigger instructions added. Four annotations are 

used; start, end, and part of slice, as well as critical load. 

Comparison with Induction Unrolling and Chaining: Other slice optimization techniques 

include induction unrolling [4] and chaining [4,15]. Induction unrolling updates the loop 

induction variable multiple times to target a critical load multiple iterations ahead, Figure 3(c). 

However, the slice only targets a single iteration. By contrast, chaining targets multiple loop 

iterations. A chaining slice spawns multiple instances of itself, Figure 3(d). Loop-unrolling, 

Figure 3(e), is similar to chaining in targeting several loop iterations and therefore, critical loads. 

Chaining allows the number of loop iterations to be altered dynamically; however, it requires 

special hardware to limit the number of chain-calls, as well as compiler or hardware generation 

of the slice. Software-based chaining [15] requires the use of profiling information. By contrast, 
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loop-unrolling executes a smaller slice, has the advantage of being readily available in most 

compilers, and does not require any extra hardware or profiling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of different slice optimizations. 

2.5. IMPT Execution, Slice Filtering and Prioritization 

Main-Processor Execution of Trigger Instructions: The execution of a trigger instruction by 

the main processor sends a precomputation request to the memory processor. The request 

contains the value of the initialization register (specified in the trigger instruction) and the 

address of the program slice (trigger instruction offset+PC). The request also contains a lead 

time, which is the difference (in cycles) from the trigger to the start of execution of the 

corresponding program slice in the main processor. The lead time is computed using the trigger 

history table, described next. It is used for two purposes. (1) The memory processor decides 

which precomputation request to take (or drop) from its queue based on the request’s lead time 

(Slice Prioritization and Slice Filtering). (2) The main processor suppresses triggers that have a 

lead time of less than a threshold (Slice Filtering).  

loop: 
I1: lw $1, ($2) 
I2: addu  $3,$3,$1 
I3: subu  $6,$3,100 
I4: addu $2,$2,4 
I5: addu $1,$4,$1 
I6: lw $5, ($1) 
I7: add  $5,$1,1 
I8: sw  $5, ($1) 
I9: blt $6, loop 

 
(a) Original Code 
 

Slice size = 3 instructions 
1 critical load 
(b) Unoptimized Slice 

I1: lw $1, ($2) 
I2: addu $1,$4,$1 
I3: lw $5, ($1) 

I1: addu $2,$2,4 
I2: addu $2,$2,4 
I3: addu $2,$2,4 
I4: addu $2,$2,4 
I5: lw $1, ($2) 
I6: addu $1,$4,$1 
I7: lw $5, ($1) 

Slice size = 7 instructions 
1 critical load 
(c) Induction Unrolling 
Slice (4 iterations) 

Slice size = 20 instructions 
4 critical loads  
(d) Chaining Slice (4 iterations) 
Calls itself 4 times through I5 
 

chain: 
I1: lw $1, ($2) 
I2: addu $1,$4,$1 
I3: lw $5, ($1) 
I4: addu $2,$2,4 
I5: j chain 

I1: lw $1, ($2) 
I2: addu $1,$4,$1 
I3: lw $5, ($1) 
I4: lw $1, 4($2) 
I5: addu $1,$4,$1 
I6: lw $5, ($1) 
I7: lw $1,8 ($2) 
I8: addu $1,$4,$1 
I9: lw $5, ($1) 
I10: lw $1, 12($2) 
I11: addu $1,$4,$1 
I12: lw $5, ($1) 

 
Slice size = 12 instructions 
4 critical loads 
(e) Loop Unrolling Slice  
     (4 iterations) 
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The trigger history table (THT) determines the trigger lead time. An entry in the trigger 

history table consists of the trigger’s PC, the corresponding program-slice entry PC (generated 

from the trigger instruction, as described above), a trigger flag, the last trigger-time and a trigger 

deadline (lead time). When a trigger instruction is executed, the THT clears the trigger flag and 

updates the last trigger-time. As the main processor executes a start of program slice, the THT 

sets the corresponding trigger flag and updates the deadline (which equals the difference between 

the program-slice start time and the last trigger-time). As the trigger instruction is re-executed, if 

the trigger flag is set, its corresponding program-slice had been executed the previous instance 

and therefore this trigger instruction should be executed. In order to target the most promising 

triggers, THT uses a deadline threshold of 50 cycles for executing triggers. Triggers with 

deadlines less than the threshold are not executed. Slice Filtering is based on a cycle trigger-to-

load lead time (deadline) rather than an instruction count. This allows IMPT more precision to 

include small slices that contain several dependent critical loads, exclude large slices with small 

execution time and abort queued slices whose deadlines have expired. 

Memory-Processor Handling of Trigger Requests: Trigger requests arriving at the memory 

processor contain the program-slice address, a register number and initialization value, and a 

deadline. The memory processor queues and executes the trigger requests according to an 

Earliest-Deadline-First (EDF) scheduling scheme.  Alternatively to spawning slices in order, 

EDF optimizes slice ordering by allowing newer and more urgent triggers to initiate their slices 

first. The memory processor discards requests whose deadline has expired. It combines requests 

for the same program-slice but with different initial registers by initializing both registers. The 

memory processor executes a trigger request by loading the initial register value and starting the 

execution at the program-slice address. Execution proceeds until it reaches the end-of-slice mark. 

All loads within the slice are executed and forwarded.  
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3. Hardware Support for IMPT 

3.1. Memory Processor Architecture 

The memory processor is a general-purpose processor that executes the instructions marked 

by the compiler. These instructions never contain branches, stores, and floating point operations 

(except floating point critical loads). The processor does not need to support these operations nor 

speculative execution. We study both in-order and out-of-order memory-processor organizations. 

The memory-processor includes a data cache, which it reads but never writes. This cache is 

updated when a memory write occurs from the main processor to an address that this cache 

contains. No other cache coherence operations are needed. The memory processor cache contains 

values that are in the memory only and therefore is not linked to the main processor caches. 

Memory could potentially contain stale values that are dirty in the main-processor caches. Using 

such a value in an address precomputation leads the IVT to discard the corresponding load value. 

No correctness issues arise. 

Program slices executed by the memory processor are the same code executed by the main 

processor and therefore generate a virtual load-address. We use a mechanism similar to [7] for 

virtual to physical address translation.   

3.2. Managing Memory Access in the Memory Processor 

In the proposed microarchitecture, the memory processor interfaces to the DRAM through 

two extra SRAM buffers (ISRAM and DSRAM) as shown in   Figure 4 (ESDRAM [5,8] and low 

latency DDR2 [6] use a similar approach to save an SRAM row for further accesses). These 

buffers decouple memory-processor requests from main-processor requests. Each buffer is a 

direct-mapped, single SRAM cache line, the size of the row buffer. ISRAM is used as an 

instruction cache for the memory processor. DSRAM is used as an interface between the 

memory-processor data cache and the DRAM. All requests made by the memory processor to the 

DRAM cause a memory page to be read in either the ISRAM or the DSRAM, but do not affect 

the value in the SRAM row cache. Therefore, this configuration preserves the value in the 

original SRAM buffer from reads generated by the memory processor. Main-processor requests 

are given a higher priority in both the DRAM and the memory bus than memory-processor 
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requests. We refer to this microarchitecture as Buffered DRAM (BDRAM). It is shown in   

Figure 4. 

 

 

 

 

 

 

 

 

Figure 4: Buffered DRAM microarchitecture (BDRAM). The components added to a conventional DRAM are 

highlighted. 

3.3. Value Verification and Trigger History Table in the Main Processor 

In most main-processor prefetching architectures, cache lines are directly prefetched into the 

L1 or L2 caches [1,4,16,22,23,24]. Forwarding into the cache can also be used with IMPT. The 

performance of this option is discussed in the results section. In this case, forwarded cache lines 

are discarded if already available in the cache. The alternative is to forward load values directly 

to the main processor, to an Instruction Validation Table (IVT), by-passing the cache. This 

approach has no effects on the caches and the value is available directly in the main processor. 

While this approach requires extra hardware, it yields better performance and uses less 

bandwidth, as shown in Section 5. 

The memory processor forwards load-values together with their addresses. The main 

processor stores the load value in the IVT, if it is not stale. The value is stale if its address exists 

dirty in the L1/L2 caches or in the Load-Store Queue. Store instructions also update values kept 

in the IVT. 

Each entry in the IVT consists of: a valid bit, the load-value address, the load value and the 

load instruction address. The IVT is indexed using the load value address, as this access is in the 

critical path and requires 1 cycle access time (similar to a 2-way L1 cache). Updating the IVT is 

not in the critical path. An IVT update indexed by the load’s PC is done through a table giving 
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the IVT location. As the main processor generates the address of a marked load instruction, it is 

checked against the address in the IVT. If a valid match occurs, the load value in the IVT is 

directly transferred to the destination register of the load. The THT is implemented similar to the 

IVT where it is indexed using the trigger’s PC (critical path access). Updating the THT is not in 

the critical path and is indexed by the program slice’s entry PC through a table giving the 

location in the THT. 

As instruction cache lines are removed from the instruction cache, the IVT entries that refer to 

PCs in these cache lines are considered no longer needed and are thus removed. Owing to this 

mechanism, the size of the IVT can be kept small even with a large number of critical load 

instructions. 
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4. Experimental Methodology 

To study the performance of IMPT, we developed a cycle-accurate simulator based on 

SimpleScalar 3.0a [2]. We added major enhancements to the simulator to implement accurate 

bus and memory contention. To this end, we have changed the buses and memory models of 

SimpleScalar into event driven models. The system consists of an aggressive out-of-order 

superscalar main processor and the microarchitecture shown in Figure 1. Table 1 shows the 

simulation parameters. Recent advances in DRAM technology motivate the choice of memory 

processor speed, where the integration of a processor running at the same speed as a logic only 

chip seems possible [10,11]. For comparison, we also study a slower memory processor. The 

latency of a memory access by the memory-processor is the same as for ESDRAM [8].  

Instructions are annotated through extra bits in the SimpleScalar ISA. 

To evaluate the performance of IMPT, we use the full Olden [3] suite and five SPEC 

CPU2000 benchmarks shown in Table 2. We concentrate on pointer-intensive C benchmarks that 

can run on our compiler and simulator. All benchmarks are run either to completion or for 1 

Billion committed instructions. SPEC CPU2000 benchmarks are fast-forwarded for 2 Billion 

instructions. The extra instructions inserted by our compiler algorithm are not included in the 

count. 

We compiled all benchmarks using the SimpleScalar version of gcc 2.6.3 with –O3 –funroll-

loops compiler optimizations. This allows us to compare the results of IMPT against a fully 

optimized code including loop-unrolling. 
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Table 1: Simulated microarchitecture parameters 

Module Parameter Value 
Main Processor Frequency 

Issue width 
Functional Units 
Branch Prediction 
Round-Trip memory latency 
I/DTLB miss latency 

1GHz 
Out-of-order, 4 issue 
4Int+4FP+4Ld/St  
2level 
79 cycles (row miss) , 67 cycles (row hit) 
60 cycles 

L1 Instruction/Data caches Size 
Latency 
Associativity 
Line size 
Write Strategy 
MSHRs 

Split 16KB/16KB 
1 cycle 
2-way set associative 
32 Byte 
Writeback 
16 

L2 cache Size 
Latency 
Associativity 
Line size 
Write Strategy 

Unified 512KB 
16 cycles 
4-way set associative 
32 Byte 
Writeback 

Memory Processor Frequency 
Issue Width 
Functional Units 
Branch Prediction 
Round-Trip memory latency 

1GHz & 500MHz 
Out-of-order  & inorder, 4 issue 
4Int+no FP+4Ld/St 
no branch prediction 
23 cycles (row miss) , 11 cycles (row hit) 

Memory Data cache Size 
Latency 
Associativity 
Line size 

32KB 
1 cycle 
2-way set associative 
64 Byte 

System Bus Speed 
Width 

500MHz 
64bits 

Memory Controller Latency 30ns 
Memory Banks 

Page Size 
4 
4KBytes 

 

Table 2: Benchmarks simulated 

Suite Benchmark Input  
Mst 1024  
Bh 8192  
Bisort 300000 
Em3d 25K 
Health 5 500 1 
Perimeter 12  
Power 1 
Treeadd 20  
Tsp 150000 

Olden 

Voronoi 80000 
Mcf train/input/inp.in 
Parser 2.1.dict -batch < train.in 
Bzip2 input.source 58  input.graphic 58 input.program 58 
Vpr train/input/net.in arch.in place.in -nodisp -route_only                   

-route_chan_width 15 -pres_fac_mult 2 -acc_fac 1                      
-first_iter_pres_fac 4 -initial_pres_fac 8 

SPEC CPU 2000 

Gzip input.combined 32 
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5. Experimental Results 

5.1. Performance of IMPT 

In this section we present simulation-based performance evaluation of the IMPT system. 

The baseline in our comparison uses the same main-processor as IMPT, but no memory 

processor. This system, referred to as original, runs fully optimized, unmodified code. All 

performance results in this paper are normalized with respect to the original system.  

Execution Time: Figure 5 shows the performance results of IMPT using profile-based vs. static 

critical load selection for memory-bound benchmarks. All programs show speedups. Profile-

based IMPT produces better performance in all benchmarks except mcf and bzip2. However, our 

results show that IMPT also produces good performance improvements (up to 1.34, 1.15 on 

average) with the conservative static load selection criteria. The rest of this paper will 

concentrate on the profile-based approach. IMPT improves performance by up to 1.47 (1.21 on 

average). IMPT does not cause any performance degradation for non memory-bound 

applications such as power, gzip and voronoi. Instead, only a modest performance improvement 

is noticed, up to 2%. 
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Figure 5: IMPT speedup using profile-based vs. static critical load selection.  

Breakdown of Critical Load Memory Accesses:    Figure 6 shows the breakdown of critical 

load memory accesses with and without IMPT. Accesses are satisfied by both the memory 

hierarchy and the IVT and are divided into five categories based on their latencies: L1 hit (1 

cycle), L1 partial (2-15 cycles), L2 hit (16-21 cycles), L2 partial (22-66 cycles) and memory (67 
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cycles and larger). When compared to the original system, the use of IMPT reduces the 

percentage of memory accesses in all simulated benchmarks. This reduction is considerable in 

highly memory-bound applications.  
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Figure 6: Breakdown of critical load memory accesses with and without IMPT. 

Load Latency: Figure 7 compares the normalized average load latency, measured from the load 

issue time to the load write-back time. Eight benchmarks show a latency reduction of more than 

30%. IMPT reduces the average latency by up to 55% (32% on average). 
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Figure 7: Normalized average load access latency.  

Trigger Lead Time: The dynamic distance (number of 1GHz cycles) between the trigger 

instructions and the corresponding critical load issue on the main thread is a measure of the 

system’s ability to initiate the precomputation thread early. This lead time and its distribution are 

characterized in Figure 8. On average, 57% of possibly sent triggers (as limited by THT deadline 

threshold at 50 cycles described in Section 2.5) have a lead time of 100 cycles or more. 
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Figure 8: Dynamic percentages of triggers with different leads (number of cycles) from trigger to load instruction. 

The categories are as follows: less than 10 cycles (<10), 10 to less than 20 cycles (10-20), and so on, and finally 150 

cycles and above.  

Address-slice Analysis: Table 3 shows the number of slices selected in each benchmark. On 

average, 47% of the intermediate loads of a slice are also critical. Critical loads that depend on 

such other critical loads have a compounding impact on performance, when both loads miss in 

the cache. This is because the prefetch or forward of the dependent load cannot be issued until all 

earlier load values have been received from memory. Executing these chains of load instructions 

directly in memory leads to significantly shorter latencies, compared to precomputation on the 

main processor side. This effect is key to the superior performance of IMPT. 
 

Table 3: Address slice, THT and IVT analysis 

(x indicates no intermediate loads) 
Benchmark 
 
 

Number 
of slices 
 

Percentage of 
intermediate loads 

that are critical 

Max. No. of 
THT entries 

 

Max. No. of 
IVT entries 

 
mst 5 x 9 9 
bh 8 x 15 12 
bisort 12 x 27 34 
em3d 18 55% 29 37 
health 10 100% 18 24 
perimeter 11 x 38 20 
treeadd 4 x 4 5 
tsp 8 x 15 11 
mcf 41 50% 51 61 
bzip2 42 x 86 40 
vpr 158 6% 48 46 
parser 266 25% 906 161 
average 48.58 47% 103.83 38.33 
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IVT and THT Table Sizes: Table 3 shows the maximum size (number of entries) of the 

Instruction Validation Table (IVT) and the Trigger History Table (THT) needed and used by our 

simulations. On average, the IVT needs 39 entries, and the THT needs 104 entries.  The size of 

the THT table indicates the dynamic number of unique trigger instructions in the program. The 

size of both tables is dependent upon the number of unique loads identified as critical in each 

benchmark.  

Bus Bandwidth and DRAM Utilization: As in all prefetching techniques, IMPT hides 

memory-access latency at the expense of using more bandwidth. IMPT gives main-processor bus 

and DRAM requests a higher priority and therefore uses idle bus and DRAM cycles. Our 

simulation results show that, on average, extra requests caused by IMPT consume 20.2% of the 

total available bandwidth and 8.3% of the total DRAM time. The original system uses on 

average 10.2% of the total available bandwidth and 13.2% of the total DRAM time. 

5.2. Effect of Memory-Processor Speed and Complexity on IMPT Performance 

The sensitivity of IMPT performance on memory processor parameters is an important 

consideration. The experiments presented so far used a 1GHz out-of-order memory processor. 

This section investigates the effect of reducing the memory-processor speed to 500MHz and 

using a simpler in-order memory processor. As shown in Figure 9, using an in-order and lower-

speed memory-processor has only a small effect on IMPT performance (4% on average). This is 

because the precomputation occurs early enough to allow the system to mask the extra latency. 
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Figure 9: 500MHz in-order vs. 1GHz out-of-order memory-processor IMPT performance. 
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5.3. Forwarding to Cache vs. to IVT 

The presented IMPT mechanism forwards load values to the IVT on the main processor. 

Alternatively, it could forward directly to the L1 cache. The first approach requires the IVT 

hardware but uses less bandwidth, as only the load value is forwarded from memory. The second 

approach requires no IVT addition to the main processor. It forwards the whole cache line and, 

therefore, requires more bandwidth and could potentially pollute the cache. Figure 10 studies the 

effects of both alternatives on performance. Forwarding to the cache gives noticeably better 

performance only in health, bisort, tsp and bzip2. In all other cases IVT performs better.  

5.4. Effects of Off-chip Data Accesses on IMPT Performance 

IMPT results presented so far are using a memory-processor integrated on a single DRAM chip. 

In this section, we investigate the effect of the location of the memory processor on IMPT 

performance. In a memory organization with several DRAM chips, with one containing the 

memory processor, data could be located off-chip. The same would apply if the memory 

processor were located in the memory controller. This configuration would increase the latency 

from the memory processor to memory (an increase by 18 cycles, approximately doubling the 

latency) and reduce the bandwidth (a factor of 16 reduction), using a similar memory bus as the 

system bus in Table 1. The results of a system with all data accesses being off-chip (worst-case) 

are shown in Figure 11. There is an average performance difference of 3% between these two 

extreme cases. We attribute this to the tolerance of the extra latency by most precomputations. 
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Figure 10: IMPT Speedup when forwarding to IVT vs. to L1 cache. 
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Figure 11: Effect of Off-chip data latency on IMPT performance. 
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6. Related Work 

Memory-Side Forwarding: Memory-side prediction-based forwarding has been presented by 

Solihin et al. [22]. A user-level helper thread executes correlation prediction code in memory and 

forwards L2 cache lines. By contrast, IMPT is precomputation-based and runs actual program 

slices. Therefore, it is more capable of handling irregular data accesses. In addition, IMPT 

forwards data-values directly to the main processor, addressing both L1 and L2 data-cache 

misses that are available in memory. Yang and Lebeck [23] propose a push model that adds a 

prefetch controller to each level of the memory hierarchy (L1 and L2 caches, and memory) to 

target linked data structures. The prefetch engines execute linked list traversal kernels. By 

contrast, IMPT is general and targets all applications, including those that use linked data 

structures. IMPT uses memory-side precomputation of program instructions that are directly read 

from memory. No processing is performed in the caches.  

Main-processor Precomputation-based Prefetching: Annavaram et al. [1] proposed data 

prefetching by dependence-graph precomputation that is generated by a separate engine located 

in the main processor from the instruction fetch queue. By contrast, IMPT forwards data from 

memory, employing memory-side precomputation. IMPT uses the compiler for Slice Generation 

eliminating run-time and hardware overheads of this step.  

In simultaneous multithreading (SMT) processors, Luk [16] proposes software-controlled 

precomputation-based prefetching in idle threads of an SMT processor. Based on a C-source 

analysis, pre-execution instructions are manually inserted in the code to identify slices. The 

analysis targets the pre-execution of a pointer chain or a procedure call, etc., and the scheme is 

dependent on the application under study. Collins et al.’s [4] Speculative Precomputation uses 

hardware to analyze, extract and optimize instructions for precomputation in an SMT processor. 

Automated software Speculative Precomputation based on profiling feedback is proposed by 

Liao et al. [15]. Zilles and Sohi [24] target loads and branches by manually selecting and 

optimizing the precomputed instruction slices in an SMT processor. Roth and Sohi [20,21] 

propose Data Driven Speculative Precomputation as well as a framework for pre-execution based 

on instruction traces. Kim and Yeung [13] propose an automated C source level compiler 

algorithm for pre-execution. In contrast to SMT approaches, IMPT executes on a single thread 



 

22 

processor in memory. Program analysis is performed automatically at the assembly level by the 

compiler.  

Processing In Memory: Several processing-in-memory (PIM) architectures have been 

proposed, Active Pages [18], FlexRAM [12], IRAM [19], DIVA [7,9], Smart Memories [17] as 

well as others [14,22]. Other than the approach [22] described in the previous subsection, these 

architectures use distributed processing by dividing the code between all the processors. This is a 

very different approach from IMPT and can be viewed as complementary.  
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7. Conclusion 

In this paper we present a hybrid architecture-compiler approach to hide memory-access 

latency. Our approach makes use of In-Memory Precomputation-based Threads (IMPT), which 

forward data values from memory to the main processor, prior to their use. Memory-side 

precomputation decouples memory pre-execution of load-address code slices from main-

processor fetch and execution, and takes advantage of the low memory access latency and full 

access to memory data. We propose a fully automated compiler algorithm for Slice Generation 

and Trigger insertion, as well as hardware techniques for Slice Filtering and Slice Prioritization. 

To the best of our knowledge, this paper is the first that studies memory-side precomputation 

threads with the goal of data forwarding. Our results show that IMPT improves performance 

over a fully optimized superscalar processor by up to 1.47 (1.21 on average) and reduces the load 

latency by up to 55% (32% on average). Our work shows good results for in-memory 

precomputation-based forwarding, improving in all benchmarks over superscalar performance.  
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