
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

5-17-1994

Cramer-Rao Bounds for Discrete-Time Nonlinear
Filtering Problems
Peter C. Doerschuk
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Doerschuk, Peter C., "Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering Problems" (1994). ECE Technical Reports. Paper
189.
http://docs.lib.purdue.edu/ecetr/189

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4948232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages


TR-EE 94-20 
MAY 1994 



Cramer-Rao Bounds for Discrete-Time Nonlinear 

Filtering Problems 

Peter C. Doerschukl 

School of Electrical Engineering, Purdue University 

May 17, 1994 

'Supported by U.  S. National Science Foulldation grant MIP-9110919, a \Vhirlpool Faculty 

Fellowship, and the School of Electrical Engineering, Purdue University. Mailing address: Peter 

C. Doerschuk. 1285 Electrical Engineering Building, Purdue University, 14'est Lafayette, IN 47907- 

1285; Telephone: (317) 494-1742; Fas: (317) 494-6440; Internet: doersc1~u~ecn.purdue.edu. 



Abstract 

A Cramer-Rao bound for the mea.n squa,red error tha,t ca,n be a,chieved with non1inea.r 013- 

servations of a nonlinear p-th order autoregressive (AR) process where both the process a,nd 

observation noise covariailces can be state dependent is presented. The major limita.tion is 

that the AR process must be driven by an additive whitme Gaussia.11 noise process that has a. 

full-rank covariance. A numerica,l example demonstra.ting the tiglltness of' the bound for a. 

particular problem is included. 
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1 Introduction 

This note concerns lower bounds on the mean squared error (MSE) in nonlinear filtering 

problems. Specifically, Cramer-Rao bounds (CRBs) are derived for dynarnical systems that 

are more genera,l than those used previously [5,2]. Such bounds give an ind.ication of whether 

accuracy requirements are realistic before a design effort is undertaken a,nil, during a design, 

aid in determining whether further design effort may not be fruitful. This note concerns only 

discrete time problems which, while much less discussed than continuous time problems, are 

of great practical importance. 

The nonlinear filtering problem is to causally estima.te the n-diinen;jional state xk of 

a source or message model described by a non1inea.r stocha,stic difference equatioil given 

m-dimensional measuremeilts yk t.hat are a stocl~ast,ic non1inea.r trailsforillatioil of s k :  

where w and v are white Gaussian noise sequences. Let ? k ,  a function of yo, y1, ..., yk, be the 

estima.te of 21;. If the estiinator is chosen to minimize the MSE ex. = E [ ( T , ~  - ?);)l(xk - ?);)I 
then the optimal estimator (denoted i;) is the conditional mean 2: = E[n.k(y,,n~ 5 k:] and 

the resulting MSE is e; = E[(xk - i:)l(x); - ?;)I. Fix some time J4. The CRB is a lower 

bound on EL. -4 wide class of lower bounds 011 the MSE in parameter estimation problems 

were recently reviewed a.nd unified [I].  Those hounds appropriat'e for iloilliilear filtering 

problems were also recently reviewed [7, 3, 81. Additiona,l work not cited iin Ref. [7] incl ucles 

Refs. [11, 41. 

In this paragraph we summarize the nota.tion used in this note. The function Z(e) is 1 

if e is true and 0 otherwise. The real numbers are 'R. The Gaussian prol~ability clensit~ 

function (pdf) with mean m and covariance P is N(IIZ, P). The n x 12 ideilt'it'y (zero) ma'tris 

is In (0,). E denotes expectation. The abbreviation i.i.d. nlea,lls independent and ident'ically 

distributed. Prime (i.e., I )  denotes transpose. If z is a. sequence indexed by t.he integers tl-lei1 



Z? is the vector (z ( ,  z;+, , ..., zk)'. V 4  = d 4 ; / d a j  (4  : RnX1 -+ RmX1) .  Occasiona,lly we write 

a matrix by giving its general entry a.s a function of the indices a and ;3. 

The remainder of the note is organized in the followiilg fashion. The new CRB is described 

in Section 2, an example is given in Section 3, and coilclusions follow in Section 4. 

2 Cramer-Rao Bounds 

The model is a nonlinear p-th order AR process driven by additive Gaussian noise with 

state-dependent gain of which nonlinear ol~servations are made in the pieseilce of additi1.t 

Gaussian noise with state-dependent gain: 

where 2 k ,  y k  E R n ;  the range of f k  and hk is R."; the range of q k ,  ( l k ,  r l ; ,  ancl t ' k  is R1'X' l :  Ek 

is i.i.d. N ( 0 ,  Izn); v k  is i.i.d. N ( 0 ,  I,); (.I-;, . . . , T;-,)' is po(ao, . . . , .rl-p) wl~ich is never zero: 

J ,  22 and (xb, . . . , xi-p)' are independent; the covariance C k  definecl by 

is full rank (i.e., 2n) for k = 0 , .  . . Ii-1; a,nd the cova.ria.nce Rk defined by Rk(.rk, .  . . , ~:max(li-p+l,l-ll)) = 

rkrk is full rank (i.e., IZ) for k = 1 -p, . . . , -1 and k = I<. Define the IZ x 11 1)lock componeiits 

of C k  and C,': 

The  assumption that s l ;  and y k  have the same diineiisioii does iiot entail a loss of geiieralitj- 

since f or h can be used to compensate. The major assumptioil is that S is full rallli. BJ. 



state augmentation the AR model can be repla.ced by a nonlinear state equation model but 

the additive noise will then have a covariance that is not full rank. 

Previous work [5] is restricted to  the ca.se (1) p = 1, (2) qk(xk , .  . . , ~ : k - ~ + l )  = qk inde- 

pendent of x and full rank, (3) rk(xli,. . . , = rk independent of rr and full rank, and 

(4) dk(xk, .. . , x ~ - P + I )  = ek(xk,. . . , xk-,+l) = 0. The geuera~liza.tioi1 described here is worth- 

while for two reasons: (1) State equations derived from system identification procedures 

typically have p > 1. (2) Discretization of second-order differentid equations of mathenmti- 

cal physics, when driven by a random process, ilaturally have p = 2, a,ilcl soilletimes require 

qk to  be a function of .c. Allowing rk to be a, function of .t. ancl i~~clucliilg: nonzero dk a~icl e k  

can then be done with very little additiona.1 c,omplexity. 

Some, but not all, state equations with Qk less than full rank ca,n 1 ~ .  rewritten as AR. 

process

e

s with Q t R  full rank. For insta.nce, consider a linear tiine-invari;tnt state ecluatioil 

( f i (xi)  = F r r k )  with n components where Qk(xI;-p+I) = Q is ra,~ll< 1 a,ild hence ca,n 11r 

written Q = qq' where q E RnX ' .  If (F, q) is controllable then a. siinilarity transformation 

exists which transforms the system to ca,noilical controllable form [9, Section 1.91 which is 

exactly the form of a n-th order sca1a.r AR. process with Q t R  = 1. 

Application of the standard CRB to the entire t,ra,jector~ .rp;, of the non1inea.r AR 

process gives the basic bound used in this note and Refs. [5, 21. Define tlie trajectory error 

covariance A E with blocks Al-li E RnXn given by = E{(:l:r-;i.;)(:rk-if) ') .  

Define the Fisher informatioil ma.tris J by, under appropria.te regularity itssumptioils, J = 

E{VZFVZii l n p ( y ~ ~ p ,  xt-,)) where p is the joint pdf on the r ancl I, trajectories. Then, since 

2;  is unbiased, the sta,ndard multivariate CRB is A - J-' > 0 where > mea,ns positive 

semi-definite. The estimation error a.t time I< is AIc,Ii SO the clesirecl CRB is 

There are two difficulties in applying Eel. 1. The first difficulty is that fol a long trajectorj, 

the matrix J is large and it is difficult to coinput,e J-'. This problem is circ:un~vented in this 



note and Refs. [5,2] by finding a linear Gaussian system that ha.s the same Fisher information 

matrix as the nonlinear system of interest. The linear Gaussian system used in this note will 

be a p-th order AR process and an observation equation where the observatioi~ at time b 

depends on the AR process at times k, k- 1, ..., k-p+1. This systenl can be transformed l ~ y  

state augmentation into a linear Gaussian state-variable system. In tlle sta.te-variable syst'enl 

 state can be computed exactly and without excessive computatioil by the I(a1man filter and 

furthermore the CRB is satisfied with equality so the known va.lue of A$$: is the desired 

bound on the performance of any estimator for the nonlinear system. The secoilcl difficulty is 

that the computation of J typically requires iluinerical computation of espectations. lV11ile 

the approach of this note a,nd Refs. [5 ,  21 still requires such conlput.a.tions, the approa.ch 

organizes the computations so that they can be clone by sim~~lat ion of the nonlinea'r A R  

process alone (i.e., not also t,he observation equation). 

The linear Ga.ussia,n system used in this note is a specia.1 ca.se of tlle nonlinear system 

with 

k ( x P + )  = pk for k = O,...,Ii- 1 independent o f r  

k 
Rk ('max(k-p+l.l-y) ) = R~ for b = 1 - p,  . . . , - 1 and k = I\' indel)endent of .r 

where Po (Ptl) has n x n blocks Pi,, (Pi-i) for i and j in 0,. . . , 1 - p and 

For k = 0,. . . , K - 1 and I = 0, . . . , p - 1 define 



For later convenience, define 

+ j~ {tr [xi (12E'1 ] + v,,v,~ lndet L; - dn-l,pdxk,a 

A , ,  = E {o,, ~ : R F ~ v , ,  hi 1 + -E  1 { t r  [ Ri ,x:>rk,a] + v.,v.. 1 1  det ~i 

These formulae simplify when, for example, c ~ ( x ~ - ~ + ~ )  is indepeildent of x. In order to 

determine the linear Gaussia,n system the user must give values for A:,?.,, Ll:,k,l, h k , , .  r k ,  and 

E{V,,V,, In po) in the nonlinear system. C:oinputation of the first four will likely require 

Monte Carlo simula.tion unless f is linear and yo is Gaussian or. for rr,. the gain for the 

process noise is state independent. The exact ra,nge of i, k ,  ancl 1 recluiretl is deterillined 11y 

Eq. 13. 

We now derive the equations which illust be satisfied by A, C ,  Po, 2, and R. The imtural 

logarithm of the joint pdf for the .L. and y trajectories is 

1 Ii-1 

Inp = l - { z i  2i-p+~) + - 1  &i (~ i -~+l)z i (~i ! :+~)  i + 111 det 2 i (~: - ,+l  
2 i=o 

I) 

where Kl is a constant. By equating E {V,,V,, lnp) for the non1inea.r and the 1inea.r- 

Gaussian systenls we derive a system of eciuations that A, C ,  Po, %. ancl R must sa,tisfy. It. is 



only necessary to consider 1 5 k because V,,V,, lnp = V,,V,, lnp'. The ecluat,ions, derived 

in Appendix A, are 

Define in sequence the followiilg quantities: 

p'vk = -E{V,,V,, lnp,) for k = 1 - p ? .  . . ? 0 ;  I = 1 - p ? .  . . . k. (8)  

Ak,k-1 - f l f ; l ~k . ,  for k = 0 , .  . . , I (  - 1 ;  1 = k - p + 1 , .  . . . k. (10) 

Rk t arbitra.ry positive definite lna,tris for = 1 - p, . . . , I<. ( 1 2 )  

for k = 1 - p, .  . . , Ir'; 1 = max(k - p, 1 - p ) ,  . . . , I;. (13) 



Use these definitions in Eqs. 6 and 7 to get 

min(l+p-1 , K )  k = 2 - p  , . . . , I < :  
C c!~!,~-~ RT' c;,;-~ = for 
i=k 1 = ina.x(k - p ,  1 - p ) ,  . . . , k - 1 

In spite of being quadratic in Citj, Eqs. 14 and 15 can be solved recursively for Cij. The 

procedure, with control structures written in tlie C ]~rogra~mming langua,ge, is: 

where 'I2 are matrix square roots ( R  = R ' / ~  (R' /~) ' .  RTI2 = (R1/')'). 011ce A, C. Po, 9. 

and R have been determined by the procedure describecl a.bove then the d a t e  augmentation 

a.nd Kalman filter co~nputations needed in order to deternline the hound are standard. 

Evaluation of these equations for p = 1 with d = e = 0, Q ~ ( X ~ - ~ + ~  ) and R ~ ( x ~ ~ ~ ( ~ - ~ ~ + ~ , ~  1 

independent of x, a,nd R~ = Rk recovers the results of Ref. [ 5 ] .  (There is a, 1,ypogra~hical error 

in [5, Eq. 7f] which rea.ds Po = V, ,  V,,p,, (zo) but shoulcl read - P;' = E {77,, V , ,  In I?,, (.ro)} ) .  

More generally, for any 11 = 1 problem, the ecluations f o ~  k # 1 are sat.isfiec1 by t.he choice of 

A so the inner loop of the algorithm vanishes. Further~nore, in tllc outer loop, tlie sums o\,rr 

quadratic forms in the Cs are einpty and therefore the outer loop ca.n l ~ e  executed in a,njr 

order. Therefore each Ck,0 ca.n 11e chosen independently of all other C,'kl,o for A:' # k .  The 

generalization from p = 1 to 11 > 1 is the ma.in contribution of this note. Another interesting 



special case is the case of d = e = 0 for which the definition of DL,/ simplifies to 

where 

3 Example 

In this section we consider a.n example est,iination problem i n  older tcl c1emonstra.te the 

computations involved and that the bound is tight a.t 1ea.st for soille estima.tion problems. 

(Please contact the author for copies of the software). The physical sy:;tem is a cla.n~pecl 

pendulum driven by a randorn torque where noisy mea.surements are made of the horizonta.1 

component of the penduluin bob's location and the goal is to esti~na.te the angular locat.ion 

of the pendulum (mea.sured froin the nega.tive-going vertical). This sys.t,enl denlonstra.t,es 

y = 2 and no~llinear stake and observation ecluations. After discretization the equations a.re 

for 12 = 0 , .  . . , K - I 

where 1 is the length of the pendulum, 172 is the nlass of the bob, 7 is the coefficient of friction, 

y is the acceleration due to gravity, T is the sa.mpling int-,erval, T is the random applied torclue 

( n / ( O ,  a:)), and v is the observa.tion noise (,4f(O, a:)).  Tlle hlSE of the optimal filt,er wa's 

underbounded by the CRB developed in this note ailcl overbounded by the performance 

of the Extended ICalrna~l Filter (EI<F). When coi~lputing espect.a.tions for the CR.B and 

the EI<F by Monte Carlo methods, the sta.te trajectories used wese icle~lt,ica.l. Monte C'arlo 

evaluation of the performance of the EIiF must, ho~rever, also include rea.lizations of the 

observation trajectory. We consider three cases and for each case compute the CRB and the 



MSE for the  EI<F at  each point in a Ir' = 500 point tra.jectory for a, va.riety of a,. Notice 

that  only one set of expectations need be computed for the CRB in order to  determine the 

bound for any a,. The  parameters are I = 1, nl = 1, 3. = 1, y = 10. and '1" = .01. 

In the first and second cases, the pdf on t'he initial condition is joiiltly G;tussian: ~ ( d - ~ ,  4,) = 

N ( 0 ,  a:)(#-l)N(O, o;)((do - d- l ) /T )  with 04 = .2 and am = 2. In the first case (Figure l a ) ,  

where the  bound is tight, a, = 15 and the expectations were computed by summing over 

lo3 s ta te  trajectories. This case is weakly nonlinear since the sa.mple mean and standard 

deviation of maxk=-1,...,500 l#kl is 0.7.55271 f 0.271391. In the second ca.se 1:Figure Ib ) ,  where 

the bound is loose, a, = 20 and the expectations were computed I,y sumnling over lo5 sta.te 

trajectories. This case is modera.t'ely non1inea.r since the saillple mean ancl :;ta.ndard deviation 

of maxk,-1,...,500 Idk/ is 0.97351 f 0.363154. With these parameters the EI.\F inakes rare but, 

1a.rge errors analogous t,o cycle slips in a pha,se-loclied loop so a, larger nun~be r  of t.ra.ject,ories 

were used to  evaluate its performance than in the first ca.se. Fina.lly, in  [:he third case? the 

system is very nonlinea'r and the SNR is poor. This problem, rn~otlelecl a.fter a.ccluisition in 

a phase locked loop, has a nearly uniformly distributed initial colldit~ioil on the angle and 

a large variance process noise. Specifically, a, = 25 a.nd the pdf on the initia.1 colldition 

is p(#-1,#0) = [ l r ( l i )  * J \ ~ ( O ,  ap2)](Q-l)N(0, - qL1)/T) where 1T(x)  is t,he uniform 

distribution on the interval [-x, +XI, * is convolution, a,nd a, = .5 and 04 = 2. This ca,se 

is strongly nonlinear since the sa.mple mea,n a.nd sta.ncla.rd devia.t,ion of 111a.x1;=-1,...,500 J $ k l  is 

2.55681 f 2.21283. Though the EI<F performa,nce is poor and is not shown, the CR.B ca.n 

still be  computed without d i f i c ~ l t ~ y ,  a,s shown in Figure I c  ba.sed on 10%sta,te tra,jectories. 

4 Conclusions 

A Cramer-Rao bound for the mean squared error that can be aclliei.ed lvith iloillinear ob- 

servations of a nonlinear p-th order AR process where both the p r o ~ e s ~ i  ailcl observation 

noise covariances can be s ta te  dependent is presented. The  major liinitation is that the AR 



Figure 1: Comparison of CR.B (solid line) and EIiF estimation variance (dotted line) for a 

range of measurement noise variance: c ~ ,  E {.  1, .2, .5,1, 2,3,5? 10,100). ( i t )  Gaussian initial 

conclition, a, = 15. (b)  Gaussian initial condition, a,,, = 20. ( c )  Neatly unifor~n initial 

condition, a, = 25. 



process must be driven by an additive white Gaussian noise process that has a full-ranli 

covariance. The bound is a genera.lization of the results of Refs. [.5. 21 to i,he case p > 1 and 

state-dependent noises. In addition, its computation requires different methods, specifically 

the solution of a systeill of quadratic equations for which a recursive method is descril~ed. 

Relaxation of the full-rank condition on the process noise covariance will probably require 

constrained CRB tools [ l o ,  61. The merger of the constrained C R R  tools with the dynamical 

system approach of this note and Refs. [5 ,  21 does not appear to Ile straightforward. 

A Derivation of Eqs. 6 and 7 

A part of the derivation of Ecls. 6 and 7 concerns espectatioils of ~nixecl second partial 

derivatives of quadratic forms. Let C : RnX1 x RnX1 i 72"""'"" ~vitli Y' = Y ,  o . . , R ~ X I  x 

RnX1 + RmX1. + : RnX1 x RnX1 i R, and $I = ;d1Y-'d. Let s r  E R T i X 1  with coilll)oilellt~ 

~ k , ~  and likewise for xl. It is straightforward to show that the a,$ elerneut of V,,V,.,(I', is 

Consider k = 1 - p, . . . , -1 a,nd k = I(,  define 

1 i i 

+("Lax(i-p+l,l -p) I = 5 [ ~ i  - h~i(~max(i-p+l,~-~~~)I'R~l ( ~ ~ ~ a ~ ~ i - ~ + l  ,1-7,~ [?/i - ""(x:nax(i-T>+~,~-Tj)~'I 

where i is such that b and 1 are in {max(i - p + 1 , l  - p) ,  . . . , i) , and coillpute E {V,,V,, 11') 

using Eq. 16. The second, third, and fifth terllls of Eq. 16 are each the p1.ocl11ct of (1) a, rancloill 

. . 
vector pi = yi - h ; ( : ~ i ~ , , ( ~ - ~ + ~ , ~ - ~ , ) )  wIlic11, collclltlo~lal 011 I : ~ ~ ~ ~ ( ~ - ~ + ~  ,, 7 , , ,  Iias 111ea.n zero a,~lcl 

cova'riance ~ ; ( r ~ , ~ ~ ( ~ - , + , , ~ - ~ , ) )  and (2) a function; call i t  V ;  of rherefore. t,lie 

expectation of these terins is zero, for example, 



(Ee denotes conditional expectation). The expectastion of the fourt,ll terrri need not vanish: 

In this and other instances, 

Therefore, 

Now consider k = 0 , .  . . , I< - 1, clefine 

and redefine $: 
1 
7. x2.+1 $(x:T;+l) = p( d z-p+l)lz:l (~:-~+~)zi(x::;+l) 

where i is such that k and 1 are in {i - + 1? . . . , i + 1).  The calculatioll of E{O,, O,, $ 1 ) .  

which is omitted, is similar to the calculation leading to 17 with one complica~tion: if 

k = i + 1 then VZttl  [xi+l - f i ( ~ j - ~ + ~ ) ]  = O i Z t l ~ i + l  = In. Vr , t l  [ ~ i  - hi(~blas(i-y+l,l-p))I = 0. 

and all second derivatives d2z;' ( X ~ - , + , ) / ~ Z ~ ~ ~ ~ X ~ , ~  a,nd ~ ~ z ; ( x i ? ~ + ,  ),j/O~iBdri.B a,re zero 

(and likewise for 1 = i + 1). 

We now use these expectation formu1a.e to derive Eqs. G and 7. The na~,tura.l logarithill of 

the joint pdf for the x and y trajectories is 

1 I<-1 
i+l IF-1  '+' + 111 clet E ~ ( Z - ~ + ~ ) }  l n p  = ICl - - {zi(ri-p+l) di (xi-p+l)zi(xi-p+i 

2 i=, 



where is a constant. The  part of l n p  that depends on xk for X: = 1 - p,  . . . , I< is 

where Z(e) is 1 if e is true and 0 otherwise. Using Eq. 17 (ancl a.na.logous results) ancl Eqs. 2, 

3, and 5 we find tha.t. 

( I S )  

where the fact that z ~ - ~ ( x ~ I : )  does not depend on xk was used in the term. 

There are terms in l n p  that depend simultaneously on xk and X, for 1 < k only for the 

range I = ma,x(k - p, 1 - p)? . . . , k - 1 in which case the terms are 



Using Eq. 17 (and analogous results) and Eqs. 2, 3, and 4 we find that 

where the fact that C~-~(X;I:)  does not depend on xk was used in the i \ ~ . - ~ , ~  term. 

Finally, Eq. 6 (Eq. 7) follows by equating Eq. 19 (Ecl. 1s) for the nolllillear and linea,r 

systems. Evaluation of the formu1a.e for the linear Gaussian system uses the following results 

for the linear Gaussian system: 
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