
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-1-1994

Managing multiple knowledge sources in
constraint-based parsing of spoken language
Mary P. Harper
Purdue University School of Electrical Engineering

Randall A. Helzerman
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Harper, Mary P. and Helzerman, Randall A., "Managing multiple knowledge sources in constraint-based parsing of spoken language"
(1994). ECE Technical Reports. Paper 185.
http://docs.lib.purdue.edu/ecetr/185

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4948231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages


TR-EE 94-16 
APRL 1994 



Abstract 

In this paper, we describe a system which is capable of utilizing a variety of knowledge 

sources to  select the most appropriate parse for a spoken sentence. These knowledge sources 

include syntax, semantics, and contextual information. We discuss one way to utilize contextual 

information when determining a parse for a sentence. Our definition of a context is defined by 

which computer application we wish to  interact with, where our system is capable of interfacing 

with two or more applications, each with a fixed vocabulary, syntax, and semanltics. The user 

is able to  interact through a single interface which uses contextual knowledge not only to  parse 

the query, but also to  select the appropriate application to  interact with. This birings us closer 

to  developing a more general purpose interface for multiple applications. 





1 Introduction 

Developing a computer model capable of understanding language (either spoken or text-based) is a 

difficult problem, made more difficult by the ambiguity inherent in natural languages. Ambiguity 

appears in many forms, including word recognition, syntax, word-sense, ambiguity of reference, 

and quantifier scope. Because they are often interrelated, resolving each type of ambiguity often 

requires that the others be handled at the same time. For example, the syntactic representation of 

a sentence can constrain the possible antecedents for a referential noun phrase, while the antecedent 

of a pronoun can also constrain the sentence's syntactic representation [5]. 

One way to  resolve ambiguity is to  utilize a wide variety of knowledge so.urces. The knowl- 

edge sources commonly used in speech understanding are shown in Figure 1. Effective use of 

multiple knowledge sources plays a key role in human spoken language understanding. It is, there- 

fore, likely that advances in spoken language understanding will require effective utilization of this 

information1. 

To utilize the variety of knowledge sources needed to  disambiguate language, we have con- 

structed a constraint-based system [6, 7, 271 which is an extension to  Constraint Dependency 

Grammar (CDG) parsing as defined by Maruyama [15, 16, 171. This system is; capable of propa- 

gating a wide variety of constraints, including syntactic, lexical, semantic, proso~dic, and contextual 

constraints. The central data structure for this system is a word graph augmented with parse 

related information, called a spoken language constraint network (SLCN). An SLCN represents all 

possible parses for the represented sentence hypotheses in a compact form, ant1 is operated on by 

constraints. 

One of the most difficult knowledge sources t o  incorporate into a computer system is pragmatics. 

Pragmatics is the use of language in context. Often pragmatics deals with aspects of communication 

which go beyond the literal truth conditions of the sentence, as in speech acts. However, here we will 

only consider how context can help disambiguate the meaning of a sentence and identify precisely 

.which context applies for a particular utterance. 

For the purposes of this paper, we equate context with the choice of a computer application. 

As shown in Figure 2, a user's input is processed by the language processor which interfaces with 

two or more applications, each defining its own context. The goal of this systenl is t o  interact with 

'Prosody can help a word recognizer to rule out word candidates with unlikely stress and duration patterns, but 
it can also impact syntactic and semantic modules. Therefore, we depict the prosody module as both a high-level 
and low-level knowledge source. 



Figure 1: Knowledge sources commonly used for spoken language understanding. 
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Figure 2: A language interface to  multiple computer applications. 

the correct application given the user's spoken input. Initially, it analyzes a world graph of sentence 

hypotheses provided by a speech recognizer using general syntactic and semantic. rules. Then, if the 

utterance is still ambiguous, it utilizes context-specific constraints to  further refine the analysis. 

The system utilizes all of the knowledge sources it has access to  in order to  identify the correct 

context. Also by identifying the correct context, the system should be able to  further refine the 

parse of the user's input. This synergy between syntax, semantics, and pragmaitics can be handled 

quite effectively in our constraint-based system. This computer system, once capable of utilizing 

multiple contexts within an evolving picture of what a sentence's parse, can be tlzought of as having 

an imagination. Each hypothesis is subject to  constraints which helps the computer t o  disambiguate 

the input syntactically and semantically while determining which context actuz~lly applies. 

We begin our discussion by introducing constraint dependency grammars as defined by Maruyama 

in section 2. Then in section 3, we describe how that algorithm is extended to  process multiple 

sentence hypotheses in a single constraint network. This same mechanism is utilized to  handle 

not only multiple sentence hypotheses with shared words, but also sentences with multiple parts 

of speech, feature values, and contexts. We initially describe the mechanism for parsing multiple 

sentences, and then describe how it can be used as a general mechanism for processing all ambiguity 

inherent in a sentence, even the ambiguity of selecting the correct computer application with which 



to interact. 

2 The Theoretical Basis of the SLCN Parser 

Our system uses Constraint Dependency Grammar (CDG) grammar, originally defined by Maruyama 

[15, 16, 171, to process sentences. In the following subsections, we will describe the CDG grammar 

formalism, the CDG parsing algorithm, and the benefits of a constraint-based system. 

2.1 Elements of a CDG Grammar 

Maruyama defines a CDG grammar as a four-tuple, ( C, R, L, C ), where: 

C = a f i n i t e  s e t  of preterminal symbols, or l ex ica l  categories. 
R = a f i n i t e  s e t  of uniquely named roles  (or role- ids) = { r l ,  . .  . , r p )  . 
L = a f i n i t e  s e t  of labels = ( 1 1 , .  . . , l q ) .  
C = a constraint aet that an assignment A must aatiafy.  

A sentence s = ~ 1 ~ 2 ~ 3 . .  . w, is a string of finite length n and is an element of C*. All of the roles 

in R are associated with every wi of s yielding n * p  roles for the entire sentence. The sentence s is 

said to be generated by the grammar G if there exists an assignment A which maps role values to 

each of the n * p  roles for s such that the constraint set C is satisfied. A role val.ue is an element of 

the set L x {1,2,. . .,n,nil). In other words, it is a tuple consisting of a label fronn L and a modifiee, 

where a modifiee can be the index of a word in the sentence or nil. Role values will be denoted in 

the examples as label-rnodifiee. L(G) is the language generated by grammar G if and only if L(G) 

is the set of all sentences generated by G. Note that the null string E has no roles and is always 

generated by any grammar according to definition. 

A constmint set is a logical formula in the form: 'd xl 2 2  . . . x, : role (and P1 P2  . . . P,), 

where the xis range over all of the role values in the roles of s. Below is the definition of possible 

components of a subformula P;': 

Variables: XI,  "2, . . . x,. 

Constants: elements and subsets of C U L U R U {nil, 1, 2, . . ., n), where n corresponds to 

the number of words in a sentence. 

Access Functions: 

(pos x) returns the position of the word for role value x. 

2Maruyama uses an infix notation; whereas, we use a prefix notation throughout this paper. 



(rid x)  returns the role-id for role value x. 

(lab x)  returns the label for role value x. 

(mod x)  returns the position of the modifiee for role value x. 

(cat i) returns the category (i.e., the element in C) for the word3 in position i. 

Predicate symbols: 

(eq x y) returns true if x = y, false otherwise. 

(gt x y) returns true if x > y and x, y E Integers, false otherwise4. 

(It x y) returns true if x < y and x, y E Integers, false otherwise. 

(elt x y) returns true if x E y, false otherwise. 

Logical Connectives: 

(& p q) returns true if p and q are true, false otherwise. 

(V p q) returns true if p or q is true, false otherwise. 

(not p) returns true if p is false, false otherwise. 

Each Pi  in C must be of the form (if Antecedent Consequent), where Antecede~zt and Consequent 

are predicates or predicates joined by the logical connectives. A CDG grammar has two associated 

parameters, degree and arity. The degree of a grammar G is the size of R. The arity of the grammar 

corresponds to the maximum number of variables in the subformulas of C. To simplify the examples 

in this section, we use a grammar with a degree of one, that is, with a single :role governor. The 

governor role indicates the function a word fills in a sentence when it is governeld by its head word. 

In our implemented grammars, we also use several needs roles (e.g, needl, needl2) to make certain 

that a head word has all of the constituents it needs to be complete (e.g., a siingular count noun 

needs a determiner to be a complete noun phrase). Maruyama has proven that is grammar requires 

a degree and arity of at least two to be as expressive as a CFG. 

To illustrate the use of CDG grammars, consider a very simple example grammar, GI = ( C1, 

R1, L1, C1 ) in Figure 3, which has a degree of one and an arity of two5. A subformula Pi  is called a 

unary constmint if it contains one variable and a binary constmint if it contains two. For example, 

U-1, U-2, and U-3 are unary constraints because they contain a single variable, and B-1 is a binary 

constraint because it contains two variables. 

'Maruyama uses the access function word rather than cat, though the function accesses the category of the word. 
'For example, (gt 1 nil) is false, because nil is not an integer. 
'The constraints in this grammar were chosen for simplicity, not to exemplify constraints for a wide coverage 

grammar. 



= {dot , noun, verb) 
R1 = {governor) 
L1 = {DET, SUBJ , ROOT) 
C1 = V z  y :  role (and 

; ; [U-l] A det  receives the  l a b e l  DET 
; ; and modifies a word t o  i ts  r i g h t .  
( i f  (eq (ca t  (pos x))  dot)  

(& (eq ( lab  x) DET) 
( I t  (poe x) (mod x) 1) 

;; [U-2) A noun receives the  l abe l  SUBJ 
; ; and modifies a word t o  i t e  r i g h t .  
( i f  (eq (ca t  (poe x))  noun) 

(& (eq ( lab  x) SUBJ) 
( I t  (pos X)  (mod x) 1) 

; ; [U-31 A verb receives the  l abe l  ROOT 
; ; and modifies no word. 
( i f  (eq (ca t  (poe x ) )  verb) 

(& (eq ( lab  x) ROOT) 
(eq (mod x) n i l ) ) )  

; ; [B-l] A DET is governed by a SUBJ . 
( i f  (& (eq ( lab  x) DET) 

(eq (mod x) (pos y ) ) )  
(eq ( lab  y) SUBJ)) 

1 

Figure 3: GI = (XI, R1, L1, C1). 

Figure 4: An assignment for The program runs. 

For G1 to generate the sentence The program runs, there must be an assignment of a role value 

to  the governor role of each word, and that assignment must simultaneously satisfy each of the 

subformulas in C1. Note that each word is assumed to have a single lexical category, which is 

determined by dictionary lookup. Figure 4 depicts an assignment for the sentence which satisfies 

C1. This assignment can be interpreted as the parse graph shown in Figure 14.. 
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2.2 CDG Parsing 

To determine whether a sentence is generated by a grammar, a CDG parser must be able to  assign 

at least one role value which satisfies the grammar constraints to  each of the 1% + p roles, where n 
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Figure 5: Initialization of roles for the sentence The program rtrns. 

is sentence length, and p is the number of role-ids. Because the role values for the role are selected 

from the finite set L1 x {1,2,. . .,n,nil), CDG parsing can be viewed as a constraint satisfaction 

problem over a finite domain. Hence, constraint propagation [14, 19,261 can be used to develop the 

parse of a sentence. A CDG parser generates all parses for a sentence in a com:pact representation 

because enumeration of the individual parses for a highly ambiguous sentence is intractable. The 

steps required for parsing the sentence The program runs are provided to  illustra,te both the process 

of parsing with constraint propagation and the running time of the algorithm. 

To develop a syntactic analysis for a sentence using CDG, a constraint network (CN) of words is 

created. Each of the n words in a sentence is represented as a node in a CN. Fig.ure 5 illustrates the 

initial configuration of nodes in the CN for The program runs example. Notice that associated with 

each node is its word, category, sentence position, and roles (only one for this ex;tmple). Each of the 

roles is initialized to  the set of all possible role values (i.e., the domain). Given GI, the domain for 

the example is L1 x {1,2,3,nil) = {DET-nil, DET-1, DET-2, DET-3, SUBJ-nil., SUBJ-1, SUBJ-2, 

SUBJ-3, ROOT-nil, ROOT-1, ROOT-2, ROOT-3). Since there are q * (n + 1) = O(n) possible 

role values for each of the p * n roles for a sentence (where p, the number of ~aoles per word, and 

q, the number of different labels, are grammatical constants, and n is the number of words in the 

sentence), there are O(p * n * q * (n + 1)) = O(n2) role values which must be initially generated for 

the CN, requiring O(n2) time. 

To parse the sentence using GI, the unary and binary constraints in C1 are! applied to the CN 



Figure 6: The CN after the propagation of U-1 for the sentence The pnymm runs. 

to eliminate the role values from the roles of each word which are incompatible with C1. For a 

sentence to be grammatical, each role in each word node must contain at least lone role value after 

constraint propagation. 

The unary constraints are applied to each of the roles in the sentence to eliminate the role 

values incompatible with each word's role in isolation. To apply the first unary constraint (i.e., 

U-1, shown below) to the network in Figure 5, each role value for every role is examined to ensure 

that it obeys the constraint. 

;; [U-1] A det receives the label  DET 
;; and modifies a word t o  i t s  r ight .  
( i f  (eq (cat (pos x ) )  dot) 

(& (eq (lab x) DET) 
( I t  (pos X)  (mod x ) ) ) )  

If a role value causes the antecedent of the constraint to evaluate to TRUE ant1 the consequent to 

evaluate to FALSE, then that role value is eliminated. Figure 6 shows the remaining role values 

after U-1 has been applied to the CN in Figure 5. 

Maruyama requires that each subformula in a constraint set be evaluated in constant time. 

Because of this restriction, each constraint can only contain access functions and predicates that 

operate in constant time (e.g., access functions and predicates like those defined in Section 2.1). 

So when the unary constraint U-1 is applied to O(n2) role values, it requires O(n2) time. 

To further eliminate role values which are incompatible with the categories of the words in the 

example, the remaining unary constraints (i.e., U-2 and U-3) are applied to the CN in Figure 6, 

producing the network in Figure 7. Given that the number of unary constrain~ts in a grammar is 

a grammatical constant denoted as ku, the time required to apply all of the unary constraints in a 

grammar is O(ku * n2). 

The binary constraints determine which pairs of role values can legally coexist. To keep track 



Figure 7: The CN after the propagation of all the unary constraints. 

w 
Figure 8: The CN after unary constraint propagation and before binary constraint propagation. 

of pairs of role values, arcs connect each role to  all other roles in the network, and each arc has an 

associated arc matriz, whose row and column indices are the role values associated with the two 

roles. The elements of an arc matrix can either be a 1 (indicating that the two role values which 

index the element are compatible) or a 0 (indicating that the role values cannot simultaneously 

exist). Initially, all entries in each matrix are set to  1 ,  indicating that the two role values are 

initially compatible. Since there are (ny) = O(n2) arcs required in the CN, and each arc contains 

a matrix with O((q * (n + I ) ) ~ )  = O(n2) elements, the time to  construct the arcs and initialize 

the matrices is O(n4). Figure 8 shows the matrices associated with the arcs before any binary 

constraints are propagated. Unary constraints are usually propagated before preparing the CN for 

binary constraints because they eliminate impossible role values from each role, and hence reduce 

the dimensions of the arc matrices. 

Binary constraints are applied to the pairs of role values indexing each of the arc matrix entries. 

When a binary constraint is violated by a pair of role values, the entry in the matrix indexed by 



Figure 9: The CN after B-1 is propagated. 

those role values is set to  zero. The binary constraint, B-1, ensures that a DET is governed by a 

SUBJ: 

; [B-I] A DET is governed by a SUBJ. 
(if ( k  (eq (lab x) DET) 

(eq (mod x) (pos y 1)  
(eq (lab y) SUBJ)) 

After the application of this constraint to the network in Figure 8, the element indexed by the role 

values x=DET-3 and y=ROOT-nil for the matrix on the arc connecting the governor roles for the 

and runs is set to  zero, as shown in Figure 9. This is because the must be governed by a word with 

the label SUBJ, not ROOT. Since the constraint must be applied to O(n4) pairs of role values, the 

time to  apply the constraint is 0(n4).  Given that the number of binary constraints in a grammar 

is a grammatical constant denoted as b, the time required to  apply all of the binary constraints 

in a grammar is O(kb * n4). 

Following the propagation of binary constraints, the roles of the CN could still contain role 

values which are incompatible with the parse for the sentence. To determine whether a role value 

is still supported for a role, each of the matrices on the arcs incident to the role must be checked 

to  ensure that the row (or column) indexed by the role value contains at least a single 1. If any 

arc matrix contains a row (or column) of 0s for the role value, then that role value cannot coexist 

with any of the role values for the second role and so is removed from the list of legal role values for 

the first role. Additionally, the rows (or columns) associated with the eliminated role value can be 

removed from the arc matrices attached to  the role. The process of removing any rows or columns 

containing all zeros from arc matrices and eliminating the associated role valueis from their roles is 



I N I {i, j ,  . . .) is the set of all roles, with I NI = p * n. I 

Notation 

( 4  j )  

Meaning 

An ordered pair of roles. 7 

L 

Li 

{a, b, . . .) is the set of role values, with ILI = q * n 

{ala E L and (i, a)  is admissible) 1 
( a ) 

a E Li is supported by b E Lj after binary constraint propagation iff the 
element indexed by [a, b] in the matrix for arc (i, j )  contains a 1. 

( 4  a)  An ordered pair of role i and role value a E Li. I 
M[i, a1 

( j ,  b) E S[i, a] means that role value a a t  role i and b at  j are 
simultaneously admissible. 

M [ i ,  a] = 1 indicates that the role value a is not admissible for (and 
has already been eliminated from) the arc joining roles i and j .  

E 

I Counter[(;, j ) ,  a] I The number of role values in L, which are compatible with a in Li. 1 

All role pairs (i, j) .  

Figure 10: Data structures and notation for the CN arc consistency algoritl~m (i.e., AC-4). 

List 

called filtering. Following binary constraint propagation any of the O(n2) role values may require 

immediate filtering. However, filtering must also be applied iteratively since the elimination of a 

role value from one arc could lead to the elimination of a role value from anoth~er arc. 

The algorithm used for filtering a constraint network is known as arc consis.tency by constraint 

satisfaction researchers. An optimal version of the algorithm, AC-4, was devel.oped by Mohr and 

Henderson [18]. AC-4 builds and maintains several data structures, described in Figure 10, to 

allow it to  efficiently perform this operation. Figure 11 shows the code for iinitializing the data 

structures, and Figure 12 contains the algorithm for eliminating inconsistent role values from the 

domains. This filtering algorithm requires O(ea2), where e is the number of arcs, and a is the size 

of the domain [18]. In the case of CDG parsing, e = ("y), and the domain size is n * q, so the 

running time of the filtering step is O(n4) [15, 161. 

If the role value a at role i is compatible with b at role j, then a supports b. To keep track of 

how much support each role value a has, the number of role values in L j  which are compatible with 

a in L; are counted, and the total is stored in Counter[(i, j), a]. The algorithm must also keep track 

A queue of arc support to  be deleted. I 



1. List:=$; 
2. for i~ N do 
3. for a E Li do 
4. begin 
5. M[i, a] := 0; 
6. S[i, a] := 4; 
7. end 
8. for ( i ,  j) E E do 
9. f o r b E L i d o  
10. begin 
11. Total=O; 
n12. for b E Lj do 
13. if Rd(i, a,  j, b) then 
14. begin 
15. Total=Total+l; 
16. S[j, b] := S[j, b] + {(i, a)); 
17. end 
18. if Total=O then 
19. begin 
20. M[i, a] = 1; 
21. List:=List ~ { ( i ,  a)); 
22. Li = Li - {a); 
23. end 
24. else 
25. Counter[(i, j), a] =Total; 
26. end 

Figure 11: Construction of data structures for CN arc consistency (i.c?., AC-4). 

of which role values that role value a supports by using S[i, a], which is a set o-i arc and role value 

pairs. For example, S[i, a] = {(j, b), (j,c)) means that a in L; supports b and c in Lj. If a is ever 

invalid for L; then b and c will loose some of their support. This is accomplished by decrementing 

Counter[(j, i), b] and Counter[(j, i), c]. For CN arc consistency, if Counter[(i, j ) , a ]  becomes zero, a 

is automatically be removed from L;, because that would mean that a is impossible in any sentence 

parse. When a role value a E i is found to  be unsupported, the algorithm places the ordered pair 

( 2 ,  a )  on List. When (i, a )  is popped off List in the procedure in Figure 12, additional role values 

may loose support and be placed on List. 

Consider how filtering is applied to the CN in Figure 9. The matrix assolciated with the arc 

connecting the and runs contains a row with a single element which is a zero. Because DET-3 

cannot coexist with the only possible role value for the governor role of runs, it cannot be a legal 

member of the governor role of the, and so (1, det-3) is placed on List, and det-3 is eliminated as 

a role value for node 17s governor role. When the role value is eliminated from all arcs associated 

with the role, filtering is complete and the resulting CN is depicted in Figure 13. 

After all the constraints are propagated across the CN and filtering is l~erformed, the CN 

provides a compact representation for all possible parses. Syntactic ambiguity is easy to spot in 



1. while List not empty do 
2. begin 
3. choose (j,  b) from List and remove (j, b) from List; 
4. for (i, a) E Slj, b] do 
5. begin 
6. Counter[(i, j ) ,  a]=Counter[(i, j ) ,  a] - 1 ; 
7. if Counter[(;, j ) ,  a] = 0 and M [i, a] = 0 then 
8. begin 
9. List:=List U{(i, a)); 
10. M [ i ,  a]=l; 
11. Li = Li - {a) 
12. end 
13. end 
14. end 
Figure 12: Algorithm to enforce CN arc consistency (i.e., AC-4). 

Figure 13: The CN after filtering. 



Word = The 
Cat = det 

G = DET-2 

Figure 14: The parse graph for the CN in Figure 13. 

the CN since some of the roles in an ambiguous sentence contain more than a single role value. 

If multiple parses exist, we can propagate additional constraints to  further reline the analysis of 

the ambiguous sentence, or we could just enumerate the parses contained in the CN by using 

backtracking search. For highly ambiguous grammars, the process of enumerating all possible 

parses is intractable, making incremental disambiguation a more attractive option. The parse trees 

in a CN are precedence graphs, which we call parse graphs, and they consist of a compatible set of 

role values (given the arc matrices) for each of the roles in the CN. The modifiees of the role values, 

which point t o  the words they modify, form the edges of the parse graph. Ou-r example sentence 

has an unambiguous parse graph given GI, shown in Figure 14. 

Below we list the steps in the CDG parsing algorithm and their associated running times: 

1. Constraint network construction prior to  unary constraint propagation: O(n2) 

2. Unary constraint propagation: O(k, * n2) 

3. Constraint network construction prior t o  binary constraint propagation: 0 (n4 )  

4. Binary constraint propagation: O(kb * n4) 

5. Filtering (arc consistency): O(n4) 



2.3 Benefits of a Constraint-based Approach 

There are many benefits to  using a constraint based parser, with the primary one being flexibility. 

When a traditional context-free grammar (CFG) parser generates a set of ambiguous parses for a 

sentence, it cannot invoke additional production rules to further prune the analyses. In contrast, 

in CDG parsing, the presence of ambiguity can trigger the propagation of additional constraints to 

further refine the parse for a sentence. A core set of constraints that hold universally can be propa- 

gated first, and then if ambiguity remains, additional, possibly context dependent, constraints can 

be used. We have already developed semantic constraints which are used to eliminate parses with 

semantically anomalous readings from the set represented in the constraint network [7]. Additional 

knowledge sources are quite easy to add given the uniform framework providedl by constraints, as 

we demonstrate in this paper. 

Tight coupling of prosodic [3] and semantic rules with CFG grammar rules typically increases 

the size and complexity of the grammar and reduces its understandability. Semantic grammars 

have been effective for limited domains, but they do not scale up well to  larger systems [I].  The 

most successful modules for semantics are more loosely coupled with the syntactic module (e.g., in- 

terleaved or postprocessing). The constraint-based approach represents a loosely-coupled approach 

for combining a variety of knowledge sources. It differs from a blackboard appro'ach in that all con- 

straints are applied using the uniform mechanism of constraint propagation. Hence, the designer 

does not need to  create a set of functionally different modules and worry about their interface with 

the other modules. Constraint propagation is a uniform method which allows us to focus on the 

best way to order the sources of information impacting comprehension. 

The set of languages accepted by a CDG grammar is a superset of the set of languages which 

can be accepted by CFGs. In fact, Maruyama [15,16] is able to  construct CDG grammars with two 

roles (degree = 2) and two variable constraints (arity = 2) which accept the sa~me language as an 

arbitrary CFG converted to Griebach Normal form. We have also devised an algorithm to map a 

set of CFG production rules into a CDG grammar. This algorithm does not assume that the rules 

are in normal form, and the number of constraints created is O(G). In addition, CDG can accept 

languages that CFGs cannot, for example, anbncn and ww, (where w is some string of terminal 

symbols). There has been considerable interest in the development of parsers for grammars that are 

more expressive than the class of context-free grammars, but less expressive tha~n context-sensitive 

grammars [12, 24, 251. The running time of the CDG parser compares quite favorably to the 



running times of parsers for languages which are beyond context-free. For example, the parser for 

tree adjoining grammars (TAG) has a running time of O(n6). 

CFG parsing has been parallelized by several researchers. For example, Kositraju's method [13] 

using cellular automata can parse CFGs in O(n) time using O(nZ) processors. However, achieving 

CFG parsing times of less than O(n) has required more powerful and less impleinentable models of 

parallel computation than used by [13], as well as significantly more processors. Ruzzo's method 

[22] has a running time of O(logz(n)) using a CREW P-RAM model (Concurrent Read, Exclusive 

Write, Parallel Random Access Machine), but requires O(n6) processors to  achieve that time bound. 

In contrast, we have devised a parallelization for the single sentence CDG parser [9, 81 which uses 

O(n4) processors to  parse in O(k) time for a CRCW P-RAM model (Concurrent; Read, Concurrent 

Write, Parallel Random Access Machine), where n is the number of words in the sentence and 

k, the number of constraints, is a grammatical constant. Furthermore, this algorithm has been 

simulated on the MasPar MP-1, a massively parallel SIMD computer. The MP-1 supports up to 

16K Cbit processing elements, each with 16KB of local memory. The CDG algorithm on the MP-1 

achieves an O(k+log(n)) running time by using 0(n4)  processors. By comparison, the TAG parsing 

algorithm has also been parallelized, and operates in linear time with O(n5) processors [2:L]. 

To parse a free-order language like Latin, CFGs require that additional rilles containing the 

permutations of the right-hand side of a production be explicitly included in the grammar [20]. 

Unordered CFGs do not have this combinatorial explosion of rules, but the recognition problem 

for this class of grammars is NP-complete. A free-order language can easily be handled by a CDG 

parser because order between constituents is not a requirement of the grammatical formalism. 

Furthermore, CDG is capable of efficiently analyzing free-order languages because it is does not 

have to  test for all possible word orders. 

In summary, CDG supports a framework which is more expressive and flexible than CFGs, 

making it an attractive alternative to traditional parsers. It is able to utilize a variety of different 

knowledge sources in a uniform framework to  incrementally disambiguate a sentence's parse. The 

algorithm also has the advantage that is is efficiently parallelizeable. 

3 Parsing Spoken Sentences with Constraints 

The output of a hidden-Markov-model-based speech recognizer is often a list of ithe most likely sen- 

tence hypotheses (i.e., an N-best list) where parsing can be used to  rule out the impossible sentence 
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Figure 15: Multiple sentence hypotheses can be represented in a single word graph. 

hypotheses. CDG constraints can be used to parse single sentences in a CN; however, individually 

processing each sentence hypothesis provided by a speech recognizer is inefficient since many sen- 

tence hypotheses are generated with a high degree of similarity. An alternative representation for 

a list of similar sentence hypotheses is a word graph or lattice of word candida~tes which contains 

information on the approximate beginning and end point of each word. A word graph represents a 

disjunction of all possible sentence candidates that the speech recognizer provides. 

Word graphs are typically more compact and more expressive than N-best s,entence lists. In an 

experiment in [27], word graphs were constructed from three different lists of sentence hypotheses. 

The word graphs provided an 83% reduction in storage, and in all cases, they encoded more 

possible sentence hypotheses than were in the original list of hypotheses. In one case, 20 sentence 

hypotheses were converted into a word graph representing 432 sentence hypotheses. Figure 15 

depicts a word graph containing four sentence hypotheses which was constructedl from two sentence 

hypotheses: *It's hard to recognizes speech and It's hard to wreck a nice beach. If the spoken 

language parsing problem is structured as a graph processing problem, then the constraints used 

to parse individual sentences would be applied to a word graph of sentence hypotheses, eliminating 

from further consideration all those hypotheses that are impossible given the constraints. 

We have adapted the CDG constraint network to handle the multiple sentence hypotheses 

stored in a word graph, calling it a Spoken Language Constraint Network (SLCN). The input to  

the parser is a word graph like the one shown in Figure 15. Each word node in the word graph 

contains information on the beginning and end point of the word's utterance, represented as an 

integer tuple (b, e), with b < e. The tuple is more expressive than the point scheme used for CNs 

and requires modification of some of the access functions and predicates defined for the CN scheme. 

It's a 

It's 

hard nitx 

hard 

to beach wreck 

to recognizes speech 



Notice that  nodes that  can be adjacent t o  one another are joined by directed edges. A sentence 

hypothesis must include one word node from the beginning of the utterance, one word node from 

the end of the utterance, and these two word nodes must be connected by a path of edges. The 

number of sentence hypotheses represented by a graph of n nodes can be exponential in the size 

of n. The goal of our system is t o  utilize constraints t o  eliminate as many impossible sentence 

hypotheses as possible, and then t o  select the best remaining sentence hypothesis (given the word 

probabilities given by the recognizer). 

To apply constraints t o  the word graph, each word node must be annotated with a set of roles. 

Then each role for each'word node is assigned a set of role values, requiring O(n2) time, where n 

is the number of word candidates in the graph. Unary constraints are applied t o  each of the role 

values in the network, and like CNs, require O(k, * n2) time. 

Some of the constraint access functions and predicates must be adapted for SLCN parsing. For 

example, the  access functions ( ~ o s  x) and (mod x) now return a tuple (b, e) which describes the 

position of the word associated with the role value x. Hence, the equality predicate is extended t o  

test for equality of intervals (e.g., (eq (1,2) (1,2)) should return true). Also, the Iless-than predicate, 

(It ( b l ,  e l )  (b2, e2)), returns true if e l  < b2, and the greater than predicate, (gt ( b l ,  e l )  (b2, e2)), 

returns true if b l  > e2. One additional change is needed t o  accommodate multiple words over the 

same time interval. Recall that  in CN parsing a word node has a unique category and position. 

Hence, t o  access the category associated with a role value, Maruyama would use the function (cat 

(pos i)), where (pos i) returns the position of the role value, and its category is accessed by using 

the position of the word in the sentence. For an SLCN, it is not always po!jsible t o  determine 

the category for a role value by using the position of the word in the sentence because some word 

nodes share the same position. We handle this by allowing the role values t o  keep track of their 

part of speech, not just the position of their word node. Hence, the constraints in Figure 3 must 

be rewritten so that  the access function cat operates on a role value rather than on a word node 

addressed by its position. For example, U-1 is rewritten as follows: 

;; [U-11 A det receives the label  DET 
;; and modifies a word t o  i t s  r ight .  
( i f  (eq (cat x) det)  ;; use (cat x) rather than (cat (pas x ) )  

(L (eq ( lab x) DET) 
( I t  (pos X )  (mod x ) ) ) )  

The preparation of the SLCN for the propagation of binary constraints is similar t o  that  for 

a CN. All roles within the same word node are joined with an arc as in a CIS\; however, roles in 



Figure 16: Multiple sentence hypotheses can be parsed simultaneously by propagating constraints 
over an SLCN rather than individual CNs. 

different word nodes are joined with an arc if and only if they can be memb'ers of at  least one 

common sentence hypothesis (i.e., they are connected by a path of directed ed.ges). To construct 

the arcs and arc matrices for an SLCN, it suffices to traverse the graph from beginning to end 

and string arcs from each of the current word node's roles to each of the preceding word node's 

roles (where a node precedes a node if and only if there is a directed edge fro:m the preceding to 

the current node) and to  each of the roles that the preceding word nodes' roles have arcs to. For 

example, there should be an arc between the roles for recognizes and speech in Figure 16 because 

they are located on a path from the beginning to the end of the sentence *It's hard to recognizes 

speech. However, there should not be an arc between the roles for wreck and n:cognizes since they 

are not found in any of the same sentence hypotheses. After the arcs for the SLCN are constructed, 

the arc matrices are constructed in the same manner as for a CN. The time required to construct 

the SLCN network in preparation for binary constraint propagation is O(n4) because there may 

be up O(nZ) arcs constructed, each requiring the creation of a matrix with 0(1a2) elements. Once 

the SLCN is constructed, binary constraints are applied to pairs of role values ,associated with arc 

matrix entries (in the same manner as for the CN), requiring O(kb* n4) time, where n is the number 

of word candidates. 

Filtering in an SLCN is complicated because the limitation of one word's function in one sentence 

hypothesis should not necessarily limit that word's function in another sentence hypothesis. For 

example, consider the SLCN depicted in Figure 16. Even though all the role values for to would 



Figure 17: The AND/OR graph for the CDG parsing algorithm. 

be disallowed by the third person singular verb recognizes, those role values cannot be eliminated 

since they are supported by wreck, an infinitive verb. The SLCN filtering a1gorit:hm cannot disallow 

role values that are allowed by at least one sentence in the network, in contrast to CN filtering 

algorithm. Hence, we must modify the CN filtering algorithm to accommodate word graphs. We 

have developed an algorithm to achieve arc consistency in an SLCN by using the properties of the 

directed acyclic graph representing the word network to filter role values that can never appear 

in any parse [6, 101. This algorithm, described in the next section, operates correctly with single 

sentences as well as word graphs. 

3.1 SLCN Arc Consistency 

When we create a constraint network representing multiple alternative senteilce hypotheses, we 

have changed the logical meaning of the constraint network significantly. A CN can be thought of 

as an AND/OR graph such that the values assigned to the roles of a word account for the only 

OR nodes in the graph, as shown in Figure 17. Hence, for a sentence to have a parse, every role 

in the CN must have a least one role value after filtering. A CN with this semantics is said to be 

an: consistent if and only if for every pair of roles i and j ,  each role value in the domain of i has at 

least one role value in the domain of j for which they both satisfy the binary cconstraints. 

On the other hand, an SLCN is constructed from a parse graph containing multiple sentence 

candidates, some with shared word nodes. Figure 18 depicts a simple SLCN with two roles con- 

structed from a word graph. An OR node is required at the top level of the graph to represent 

the contribution of various word nodes to the different sentence hypotheses in .the SLCN. Though 

the individual sentence hypotheses are not indicated individually in the SLCN (this would require 

exponential space in some cases), the logical presence of the OR node must be captured by the arc 



Figure 18: A simple SLCN. 

consistency algorithm for an SLCN. Figure 19 depicts the logical meaning of the word graph in 

Figure 18. 

An instance of an SLCN is said to  be arc consistent if and only if for every role value a in the 

domain of each role, there is at  least one sentence whose roles' domains contain at  least one role 

value b which supports that value. Hence, even though a binary constraint might disallow a role 

value in one sentence, it might allow it in another. When enforcing arc consistency for a single 

sentence, a role value a in the domain of i can be eliminated from role i whenever any other role 

has no role values which together with a satisfy the binary constraints. However, in an SLCN, 

before a role value can be eliminated from a role, it must fail to  satisfy the binary constraints in ad 

the sentences in which it appears. Note that SLCN arc consistency reduces to CN arc consistency 

when the number of sentences is one. 

SLCN arc consistency is enforced by removing from the domains those role values in a role 

which violate the SLCN arc consistency condition. Our algorithm builds andl maintains several 

data structures, described in Figure 20, to allow it to  efficiently perform this operation. Figure 

23 shows the code for initializing the data structures, and Figure 24 contains the algorithm for 

eliminating inconsistent role values from the domains. The algorithm initially assumes that each 

word node has a single role. After we present the algorithm, we will discuss hour multiple roles can 

be supported. 

If the role value a at  role i is compatible with role value b at role j, then a supports b. To 



Figure 19: The AND/OR graph for the SLCN in Figure 18. 

keep track of how much support each role value a has, the number of role values in Lj  which are 

compatible with a in L; are counted, and the total is stored in Counter[(i, j ) ,  a]. The algorithm must 

also keep track of which role values that a supports by using S[(i, j ) ,  a], which is a set of arc and 

role value pairs. For example, S[(i, j ) ,  a] = {[(j, i), b], [(j, i), c]) means that a in L; supports b and c 

in Lj. If a is ever invalid for L; then b and c will loose some of their support. This is accomplished 

by decrementing Counter[(j, i), b] and Counter[(j, i), c]. If Counter[(i, j ) ,  a] becomes zero, [(ij),a] 

would be placed on the List for further processing. Remember that for CN arc consistency, if 

Counter[(i, j ) ,  a] becomes zero, a would also be immediately removed from L;, because it would be 

incompatible with every sentence parse. However, in SLCN arc consistency, this is not the case, 

because even though a does not participate in a solution for any of the sentences which contain i 

and j, there could be another sentence for which a is perfectly legal. A role value cannot become 

globally inadmissible until it is incompatible with every sentence. 

Because an SLCN is represented as a directed acyclic graph (DAG), the algorithm is able to  

use the properties of DAGs to identify local (and hence efficiently computable) conditions under 

which role values become globally inadmissible. For the sake of discussion, we assume that each 

node contains a single role and the directed edges associated with the word node relate the roles 

in the SLCN. Consider Figure 21, which shows the roles that are adjacent to role i in an SLCN. 

Because every sentence in the SLCN which contains role i is represented as a path going through 

role i, either role j or role k must be in every sentence containing i. Hence, if the role value a is to 



Notation 

(4  j )  

a E Li is supported by b E Lj after binary constraint propagation iff the 
element indexed by [a, b] in the matrix for arc (i, j )  contains a 1. 

Meaning 

An ordered pair of roles. 

I 
1 

N 

L 

Li 

I [(i, j) ,  a1 I An ordered pair of a role pair (i, j) and a role value a E Li. I 

- 

{i, j,  . . .) is the set of all roles, with IN1 = p * n. 

{a, b, . . .) is the set of role values, with ILI = q * n 

{ala E L and (i, a) is admissible) 

M[(i, j) ,  a] = 1 indicates that the role value a is not admiz3sible for 
(and has already been eliminated from) all sentences containing i and j. 

All role pairs (i, j )  such that there exists a sentence which contains 
both i and j .  We distinguish (i, j )  from ( j ,  i) for the purposes 
of arc consistency, even though there is a single undirected arc joining 
two roles in the network. 

[(j, i), b] E S[(i, j) ,  a] means that role value a at role i and b at j 
are simultaneously admissible. 

Next-edge; 

Prev-edge; 

Counter[(;, j) ,  a] 

If a directed edge from i to j exists in E, then (i, j )  is a member of the set. 

If a directed edge from j to i exists in E, then ( j ,  i) is a 

The number of role values in Lj which are compatible 

'rev-Support[(', j) ,  'I (i, k) E Prev-Support[(i, j) ,  a] means that a is admissible in every sentence 
which contains i, j ,  and k. 

Next-Su~~ort[( i ,  j)! '1 (i, k) E Next-Support[(i, j) ,  a] means that a is admissible in every sentence 
which contains i, j, and k. 

Local-Prev-Support(i, 
A set of elements (i, j )  such that (j ,  i) E Prev-edgei and a is compatible 
with a t  least one of j's role values. 

Local-Next-Support(i, 

Figure 20: Data structures and notation for the SLCN arc consistency algorithm. 

A set of elements (i, j )  such that (i, j )  E Next-edgei and a is compatible 
with a t  least one of j's role values. 

I 

List A queue of arc support to be deleted. 



Local-Prev-Support I,a = { l,n ,(i,m)) 
~oc.1-~xt-~upport[i.a{ = {[i,j)i 

Figure 21: Local-Prev-Support and Local-Next-Support for an example SLCN. The solid directed 
lines represent the SLCN edges and the dotted directed lines represent the arcs. We use the 
directionality of the arcs to represent the fact that an arc matrix associated with an arc is used in 
two ways. For example, n's role values support i's role values, but also i's role values support n's. 
The sets indicate that the role value a is allowed for every sentence which contains n, m, and j, 
but is disallowed for every sentence which contains k. 

reniain in L;, it must be compatible with a t  least one role value in either Lj or Lk. Also, because 

either n or m must be contained in every sentence containing i, if a is to remain. in L;, it must also 

be compatible with at least one role value in either L, or L,. 

In order to track this dependency, two sets are maintained for each role value a at  role i, Local- 

Next-Support (i, a) and Local-Prev-Support (i, a). Local-Next-Support (i, a) is a set of ordered role 

pairs (i, j )  such that (i, j )  E Next-edge;, and there is at  least one role valu,e b E Lj  which is 

compatible with a. Local-Prev-Support(i, a) is a set of ordered pairs (i, j )  such that ( j , i )  E Prev- 

edge; and there is at least one role value b E Lj which is compatible with a. VVhenever one of i's 

adjacent roles, j, no longer has any role values b in its domain which are compatible with a,  then 

(i, j )  should be removed from Local-Prev-Support(i, a) or Local-Next-Support(i, a), depending on 

whether the edge is from j to  i or from i to  j, respectively. If either Local-Prev-Support(i,a) or 

Local-Next-Support(i, a)  becomes the empty set, then a is no longer a part of an!{ solution, and may 

be eliminated from L;. In Figure 21, the role value a is admissible for the sentence containing i and 

j, but not for the sentence containing i and k. If because of additional constraints, the role values 

in j become inconsistent with a on i, (i, j )  would be eliminated from Local-Next-Support(a,i), 

leaving an empty set. In that case, a would no longer be supported by any sentence. 

The algorithm can utilize similar conditions for roles which may not be directlly connected to i by 

Next-edge; or Prev-edge,. Consider Figure 22. Suppose that the role value a at  role i is compatible 

with a role value in Lj,  but it is incompatible the role values in L, and L,, then it is reasonable to 

eliminate a for all  sentences containing both i and j ,  because those sentences would have to include 
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Figure 22: If Next-edgej = {(j, x), ( j ,  y)) and S[(i, x), a] = 4 and S[(i, y), a] = 4 ,  then a is inadmis- 
sible for every sentence containing both i and j. 

either role x or y. To determine whether a role value is admissible for a set of sentences containing 

i and j, we calculate Prev-Support[(i, j ) ,  a] and Next-Support[(i, j) ,  a] sets. Next-Support[(i, j) ,  a] 

includes all (i, k) arcs which support a in i given that there is a directed edge between j and k, 

and (i, j )  supports a.  Prev-Support[(i, j ) ,  a]  includes all (i, k) arcs which support a in i given that 

there is a directed edge between k and j, and (i, j) supports a.  Note that Prev-Support[(i, j) ,  a] 

will contain an ordered pair (i, j )  if (i, j )  E Prev-edgej , and Next-Support[(i, j:), a] will contain an 

ordered pair (i, j )  if ( j ,  i)  E Next-edgej. These elements are included because the edge between roles 

i and j is sufficient to allow j's role value to support a in the sentences containing i and j. Dummy 

ordered pairs are also created to handle cases where a role is at  the beginning or end of a network: 

when (s ta r t ,  j )  E Prev-edgej, ( i ,s tar t )  is added to Prev-support[(i, j) ,al ,  and when ( j ,end)  E 

Next-edgej, ( i ,end) is added to Next-support[(i, j ) ,  a ] .  This is to prevent a role value from being 

ruled out because no roles precede or follow it in the SLCN. Figure 23 shows the Prev-Support, 

Next-Support, Local-Next-Support, and Local-Prev-Support sets that the initi,alization algorithm 

creates for some role values in a simple example SLCN. 

To illustrate how these data structures are used in SLCN arc consistency (see Figure 24), 

consider what happens if initially [(I, 3), a] E List for the SLCN in Figure 23. [( L,3), a] is placed on 

the list to  indicate that the role value a in role 1 is not supported by any of the role values associated 



1. List:=4; 
2. E := {(i, j)l3a E C : i, j E a A i # j A i, j E N); 
3. for ( i ,  j) E E d o  
4. f o r a E L i d o  
5. begin 
6. M[(i, j),  a] := 0; 
7. Prev-Support[(i, j), a] := 4; Next-Support[(;, j), a] := 4; 
8. Local-Prev-Support(i, a) := 4; Local-Next-Support(i, a) := 4; 
9. S[(i, j), a1 := 4; 
10. end 
11. for ( i ,  j )  E E d o  
12. f o r a E L i d o  
13. begin 
14. Total:=O; 
15. for b E Lj d o  
16. if Rd(i, a, j, b) then  
17. begin 
18. Total:=Total+l; 
19. s[( j ,  i), bl := S[(j, i), bl u {[(i,j), a]); 
20. e n d  
21. if Total=O then  
22. begin 
23. M[(i, j),a] := 1; 
24. List:=List U{[(i, j), a]); 
25. e n d  
26. Counter[(;, j), a]:=Total; 
27. Prev-Support[(i, j), a] := {(i, z)l(i, z) E E (z, j) E Prev-edgej) 

U{(i, j)l(i, j )  E Prev-edgej) U {(i, start)l(start,  j) E Prev-edgej); 
28. Next-Support[(i, j), a] := {(i, z)l(i, z)  E E (j ,  z )  E Next-edgej) 

U{(i, j)l(j, i) E Next-edgej ) U {(i, end)l(j, end) E Next-edgej); 
29. if (i, j )  E Next-edgei t h e n  
30. Local-Next-Support(;, a):=Local-Next-Support(i, a) U{(i, j)); 
31. if ( j ,  i) E Prev-edgei t h e n  
32. Local-Prev-Support(;, a):=Local-Prev-Support(;, a) U {(i, j)); 
33. end 

Next-Sup- 1 2 a = 1,3)) 
Next-Sup{l:3~:al=Ih.end)) Next-Sup 1 2 b = 1 3)) 

Next-Supl[l:31:b = fh:end)) 
Next-Sup 2 1 c = 2 1),(2 3)) 
Next-Sup'[2:31:~ = ![2:end)j 
~ext-~up'(3,1), 1 = ((3, I), (3,2)) 
Next-~upI(3,2), 4 = {(3,2)) 

Local-Prev-Sup@, a) = ((1, start)) Local-Next-Sup(1, a) = {(1,2), (1,3) 
Local-Prev-Sup 1 b = Local-Next-Sup 1 b = 1,2 , (1,3) 
Local-Prev-Sup[2;~1 = I[i:$yt)' Local-Next-Sup[2:c{ = Ib, 31) 
Local-Prev-Sup(3,d) = {(3,1),(3,2)) Local-Next-Sup(3,d) = ((3,end)) 

Figure 23: Algorithm for initializing the SLCN arc consistency data structures dong with a simple 
example. The dotted lines are members of the set E. 



1. while List # d do 
beg& ' 

choose [ ( j ,  i ) ,  b] from List and remove it from List; 
for [ ( i ,  j ) ,  a1 E S [ ( j ,  9, bl do 

begin 
Counter[(;, j ) ,  a]:=Counter[ i ,  j ) ,  a] - 1; 
if Counter[(;, j ) ,  a] = 0 A M ( i ,  j ) ,  a] = 0 then 

begin 
\ 

List:=List U{[( i ,  j ) ,  a] ) ;  
M [ ( i ,  j ) ,a]  := 1; 

end 
end 

for ( j ,  z )  E Next-Support[(j, i ) ,  b] do 
begin 

Prev-Support[(j, z ) ,  b]:=Prev-Support[(j, z ) ,  b] - { ( j ,  i ) ) ;  
if Prev-Support[(j, z ) ,  b] = 4 A M [ ( j ,  z ) ,  b] = 0 then 

begin 
List:=List U{[ ( j ,  z ) ,  b] ) ;  
M [ ( j ,  z ) ,  b] := 1; 

end 
end 

for ( j ,  z )  E Prev-Support[(j, i ) ,  b] do 
begin 

Next-Support[(j, z ) ,  b]:=Next-Support[(j, z ) ,  b] - { ( j ,  i ) ) ;  
if Next-Support[(j, z ) ,  b] = 4 M [ ( j ,  z ) ,  b] = 0 then 

begin 
List:=List U{[ ( j ,  z ) ,  b] ) ;  
M [ ( j ,  z ) ,  b] := 1; 

end 
end 

if ( j ,  i )  E Next-edgej then 
Local-Next-Support(j, b):=Local-Next-Support(j, b) - { ( j ,  i ) ) ;  

if Local-Next-Support(j, b) = 4 then 
begin 

Lj  := Lj  - {b) ;  
for ( j ,  z )  E Local-Prev-Support(j, b) do 

if M [ ( j , z ) , b ]  = 0 then 
begin 

List:=List U{[ ( j ,  z ) ,  b]);  
M [ ( j ,  z ) ,  b] := 1; 

end 
end 

if ( i ,  j )  E Prev-edgej then 
Local-Prev-Support(j, b):=Local-Prev-Support(j, b) - { ( j ,  i ) ) ;  

if Local-Prev-Support(j, b) = 4 then 
begin 

Lj  := Lj - {b) ;  
for ( j ,  z )  E Local-Next-Support(j, b) do 

if M [ ( j ,  z ) ,  b] = 0 then 
begin 

List:=List ~ { [ ( j ,  z ) ,  b]);  
M [ ( j ,  z ) ,  b] := 1; 

end 
end 

end 

Figure 24: Algorithm to enforce SLCN arc consistency. 



with role 2. When that value is popped off List, it is necessary to  remove [(I, 3), a]'s support 

from all S[(3, I ) ,  x] such that [(3, I ) ,  x] E S[(1, 3), a] by decrementing for each x, Counter[(3,l), x] 

by one. If the counter for any [(3, I ) ,  x] becomes 0, and the value has not already been placed 

on the List, then it is added for future processing. Once this is done, it is nlecessary to remove 

[(I, 3), a]'s influence on the SLCN. To handle this, we examine the two sets Prev-Support[(l, 3), a] = 

{(1,2), (1,3)) and Next-Support[(l, 3), a] = ((1, end)).  Note that the value (1, end )  in Next- 

Support [ ( l ,3) ,  a] and the value (1,3) in Prev-Support[(l, 3), a], once eliminated from those sets, 

require no further action because they are dummy values. However, the value (1,2) in Prev- 

Support[(l, 3), a] indicates that  (1,3) is a member of Next-Support[(l, 2), a], and since a is not 

admissible for (1,3), (1,3) should be removed from Next-Support [(1 ,2) ,  a], leaving an empty set. 

Note that because Next-Support[(l, 2), a] is empty and assuming that M[(1,2) ., a] = 0, [(I, 2), a] is 

added to  List for further processing. Next, (1,3) is removed from Local-Next-Support(1, a), but 

that  set is non-empty. During the next iteration of the while loop [(I, 2), a] is popped from List. 

When Prev-Support[(l, 2), a] and Next-Support[(l, 2), a] are processed, Next-Snpport[(l, 2), a] = 4 
and Prev-Support[(l, 2), a] contains only a dummy, which is removed. When (1,2) is removed from 

Local-Next-Support(1, a) ,  the set becomes empty, so a is no longer compatible with any sentence 

containing role 1 and can be eliminated from further consideration as a possible role value for role 

1. Once a is eliminated from role 1, it is also necessary to remove the support of a E L1 from all role 

values on roles that precede role 1, that is for all roles x such that (1, x)  E Local-IPrev-Support(1, a). 

Since Local-Prev-Support(1,a) = {( l , s t a r t ) ) ,  and start is a dummy role, there is no more work 

to  be done. 

In contrast, consider what happens if initially [(I, 2), a] E List for the SLCN in Figure 23. In 

this case, Prev-Support[(l, 2), a] contains (1,2) which requires no additional work; whereas, Next- 

Support [(I, 2), a] contains (1,3), indicating that (1,2) must be removed from Prev-Support[(l, 3), a]'s 

set. After the removal, Prev-Support[(l, 3), a] is non-empty, so the sentence containing roles 1 and 

3 still supports the role value a on 1. The reason that these two cases provide different results is 

that  roles 1 and 3 are in every sentence; whereas, roles 1 and 2 are only in one of them. 

3.2 The Running Time and Correctness of SLCN Arc Consistency 

The running time of the routine to initialize the SLCN arc consistency structures (in Figure 23) 

is O(n4), and the running time for the algorithm which prunes labels that are not arc consistent 

(in Figure 24) also operates in O(n4) time, where n is the number of word nodes in network. By 



comparison, the running time for CN arc consistency is O(n4), assuming that  there are n words in 

a sentence. The proof of correctness of this algorithm is detailed in [lo, 111, but we will summarize 

it below. 

A role value is eliminated from a domain by SLCN arc consistency only if its Local-Prev- 

Support or its Local-Next-Support set becomes empty. Therefore, we must shoar that a role value's 

local support sets become empty if and only if that role value cannot participate in an SLCN 

arc consistent solution. This is proven for Local-Next-Support (Local-Prev-!$upport follows by 

symmetry). Observe that  if a E L;, and it is incompatible with all of the roles which immediately 

follow L; in the SLCN, then it cannot participate in an SLCN arc consistent solution. In line 32 

in Figure 24, (i, j )  is removed from Local-Next-Support(i, a )  set only if [(i, j),cz] has been popped 

off List. Therefore, we show that [(i, j ) , a ]  is put on List, only if a E L; is inconnpatible with every 

sentence which contains i and j, by induction on the number of iterations of the while loop. 

For the base case, the initialization routine only puts [(i, j ) ,  a] on List if a E L; is incompatible 

with every role value in L j  (line 24 of Figure 23). Therefore, a E L; is in no solution for any sentences 

which contain i and j. Assume the condition holds for the first k iterations of the while loop in 

Figure 24, then during the (k+l)th iteration, tuples of the form [(i, j ) ,  a] for thce (k+l)th iteration 

were put on List by line 9 in Figure 24 or by line 24 in Figure 23 (in which case a is no longer 

compatible with any labels in Lj), line 18 in Figure 24 (in which case Prev-Support([(i, j ) ,  a]) = 4), 

line 27 in Figure 24 (in which case Next-Support([(i, j ) ,  a]) = 4),  or line 39 in Figure 24 (there is 

no longer any Local-Next-Support for a). In any of these cases, a E L; is incompatible with every 

sentence which contains i and j. We can therefore conclude that this is true for all iterations of 

the while loop. 

3.3 Multiple Roles in an SLCN 

As shown in Figure 18, an SLCN can have more than a single role. In our initial development of 

the SLCN arc consistency algorithm discussed in [6], we distinguished between1 two types of arcs: 

intm-arcs, which are arcs joining roles within the same word node, and inter-arcs, which are arcs 

joining roles across word nodes. The inter-arcs were processed in the same way as in the algorithm 

in Figures 23 and 24, but the intra-arcs were handled differently. They seemed to  require special 

handling because if a role value is disallowed for role x by a role y within the same word node as z ,  

then the role value must be eliminated from z.  In this case, the elimination of the role value from 

x is correct because every sentence containing the word node disallows the role value. 



Figure 25: An SLCN with multiple roles compatible with our new algorithm. 

Special handling of this case complicates the arc consistency algorithm; however, there is a 

simpler way to  accomplish precisely the same effect as the special case while using the simpler 

algorithm shown in Figures 23 and 24. It simply involves setting up the SLCN in a slightly different 

way than in Figure 18. The edges in the SLCN in Figure 18 relate the roles across nodes but not 

roles within the same word node. If we assume that the roles within a word node are connected 

by directed edges as in Figure 25, then the arc consistency algorithm in Figure 24 is sufficient for 

SLCNs with more than a single role. Because there is a single linear list of roles within a word 

node, they must appear in all the same sentences, and so if one role value is disallowed by one of 

the roles in the linear list of roles, it will be eliminated from the role. This is because every sentence 

containing the first role must also contain the other role (i.e., there are no alternative paths that 

include both roles). Hence, we set up SLCNs with more than a single role as :shown in Figure 25 

and use the simpler arc consistency algorithm described in this paper. 

3.4 Lexical Ambiguity 

Many words in the English language have more than a single part of speech. For example, the word 

garden in Figure 25 can either be a noun or a verb. Maruyama's algorithm requires that a word 

have a single part of speech, which is determined by dictionary lookup prior to the application of 

the parsing algorithm. Since parsing can be used to lexically disambiguate a sentence, ideally, a 

parsing algorithm should not require that a part of speech be known prior to piusing. In addition, 



Figure 26: An SLCN with multiple parts of speech for some words. 

lexical ambiguity, if not handled in a reasonable manner, can cause correctness and/or efficiency 

problems for a parser [4, 61. 

To handle lexically ambiguous words, we create a word node for each legal part of speech for a 

word. These word nodes cannot appear in the same sentence hypotheses and sol are not connected 

to  each other by directed edges, and do not share arcs for binary constraints. For example, Figure 

26 depicts an SLCN which supports multiple parts of speech for several different word nodes. This 

method of handling multiple parts of speech within our constraint parsing algorithm requires the 

use of the SLCN arc consistency algorithm described in this paper. 

Multiple parts of speech can be handled in a CN algorithm (as discussed bjr Harper and Helz- 

erman in [6]) by creating separate role values for each part of speech within the same word node, 

where it becomes the responsibility of the role value to  keep track of its lexical category. How- 

ever, the approach uses more space and requires an additional constraint wh~en compared with 

the method described in this paper. Role values associated with two different I-oles within a word 

node should not be allowed to  support each other if they do not correspond to  the same part of 

speech. Hence, we must propagate a binary constraint which zeros out the entries of all intra-arc 

arc matrices that  are indexed by role values corresponding t o  different parts of speech. By using 

an SLCN t o  handle lexical ambiguity, the roles of the word nodes corresponding to  different parts 

of speech cannot appear in any common sentences and so are not connected by arcs, eliminating 

the wasted space and the need for an additional constraint. 



3.5 Feature Analysis 

Lexical features, like number, person, and case, are used in many natural language parsers to enforce 

subject-verb agreement, determiner-head noun agreement, and case requirements for pronouns. 

This information can be very useful for disambiguating parses for sentences or for eliminating 

impossible sentence hypotheses, hence our parser supports them. 

Many times, even if a word is not lexically ambiguous, it can have ambiguity in the feature 

information associated with the word. For example, the noun fish can take the number/person 

feature value of third person singular or third person plural. It is important associate a single 

feature value with each role value which is being tested for number agreement with another word's 

role values. Because our parser utilizes only unary and binary constraints, role values with feature 

value ambiguity can only be tested pairwise for consistency, and yet the feature values associated 

with one word in a valid parse must often be compatible with more than one word in the sentence. 

For example, if we store sets of features with a node when we parse the sentence *a fish eat, it is 

easy to  ensure that a and fish agree in number and person by using a binary constraint, and that 

fish and eat agree, but without using ternary constraints, there is no way to ensure that a, fish, 

and eat have jointly compatible feature values. Furthermore, there is no guarantee that ternary 

constraints (or for that matter n-ary constraints, for any prespecified n) are sufficient to  ensure 

that the parser rejects sentences that are ungrammatical because of inc~mpat~ible feature values 

(e.g., *The fish which are eating swims). 

In order to enforce feature value compatibility across a set of words which must jointly agree 

on a feature value in our parsing algorithm, word nodes should be duplicated (along with their 

role values and arc matrices) and assigned a single feature value for the feature being tested by 

a constraint, not a set of features. A naive and computationally expensive vvay to  achieve this 

end is t o  initially duplicate each node so that all of the possible combinations of feature values are 

covered. Fortunately, there is a better alternative; when the parser is propagating a constraint with 

a particular feature test, a node with multiple values for that feature can be duplicated and assigned 

one of the feature values, and then that constraint containing the feature test can be applied to its 

role values, eliminating many of them before other types of feature constraints are propagated. A 

grammar writer can order constraints in a constraint file in such a way that role value duplication is 

minimized. For example, by placing pure phrase structure constraints before constraints containing 

feature tests, syntactically eliminated role values will not have to  be duplicated and tested against 



I scenic \ 

Figure 27: A word graph provided to  our system by the speech recognizer. 

the feature constraints. Given this strategy, the running time of the parser with feature constraints 

is comparable to  the running time of the parser without feature tests. 

In the next section, we illustrate how our system parses a word graph provided by a speech 

recognizer. This example shows how node splitting is used to  propagate syntactic feature constraints 

in the presence of feature value ambiguity. 

3.6 A Parsing example 

To parse a sentence, our parser requires a grammar designer to specify the grammar parame- 

ters, write and test constraints consistent with the grammar parameters, and design a grammar- 

appropriate lexicon. Assume that a grammar is needed to parse the word graph provided by our 

speech recognizer shown in Figure 27. 

The grammar designer provides a file containing the grammar parameters to  the parser. This 

file provides information needed to  check constraints for good form and to create the constraint 

network. Figure 28 depicts an example of a grammar parameter file for a simple grammar to  parse 

our example. Notice that in addition to  categories, roles, and labels, there is ;a label-table which 

restricts labels by part of speech and role id, a set of grammar features restricting the feature values 

for each feature type, and a feature-table restricting the the legal feature types for each part of 

speech. 

Our parser uses the feature-table to  check constraints and dictionary entries for good form. It 

uses the label-table to restrict the possible labels for each role using the category of the word and 

its role id. In practice, the table reduces the number of role values in the initial1 SLCN by a factor 

of five to  seven, and eliminates the need to propagate some unary constraints. Even though this 



; A l i s t  of the l ega l  pa r t s  of speech 

(categories adj  noun verb propernoun) 

; A l i s t  of r o l e  names f o r  the  grammar 

( ro les  governor needs) 

; A l i s t  of l ega l  l abe l s  f o r  the  grammar 

( labels  root  obj adj  nounmod s blank) 

; A l a b e l  t ab le  f o r  r e s t r i c t i n g  the  domains given 
; par t  of speech and r o l e  name. 

( label- table (governor (noun noun-mod obj)  
(propernoun nounaod ob j ) 
(verb root)  
(adj ad j ) )  

(needs (noun blank) 
(propernoun blank) 
(verb s )  
(adj  blank) 1) 

; A l is t  of l ega l  fea ture  types and possible values 

(grarrrarleatures (number 1s 2s 3s l p  2p 3p) 
(subcat dobj) 
(sem-type sign p re t ty  c i t y  a i r- t ransfer  show)) 

; A f ea tu re  t ab le  indicating the  possible values f o r  
; each fea tu re  type associated with a pa r t  of speech 
; and i t s  defaul t  value i f  none i s  specified.  

(f eature-table (adj  (sea-type p re t ty  [ 1 ) )  
(noun (sea-type sign a i r- t ransfer  [ 1 )  

(number 3s 3p C3sl)) 
(propernoun (number 3s 3p C3sl) 

(sem-type c i t y  C 1 ) )  
(verb (number 1s 2s 3s l p  2p 3p C3s1) 

(subcat dob j ) 
(sem-type show C 1 ) ) )  

Figure 28: A grammar parameter file for a simple example grammar. 



(display (category noun (number 3s) 
(sem-type sign))  

(category verb (number i s  2s lp  2p 3p) 
(subcat dob j ) 
(ser-type show))) 

( f l i g h t  (category noun (number 3s) 
(sea-type air-transf er)  ) )  

( f l i g h t s  (root~rord f l i g h t )  
(category noun (number 3p) ) ) ) 

(Phoenix (category propernoun (number 3s) 
(sen-type c i ty )  ) )  

(scenic (category adj (sem-type pretty)))  

Figure 29: A dictionary for parsing our example. 

does not improve the asymptotic running time of the algorithm, it does decrease the actual running 

time of the CDG algorithm (and the size of the SLCN). 

The dictionary for our simple -example is described next. The lexicon mus:t specify all of the 

words that can appear in a sentence. It is represented as a list of word entries, where each word 

entry is a list headed by the associated word along with other important information. Each word 

entry includes information on its legal parts of speech. In addition, syntactic and semantic features 

are stored for each part of speech of a word. The lexicon for our example appears in Figure 29. This 

lexicon stores information about noun number, verb number, semantic type, and subcategorization. 

The word flights inherits features that are not mentioned in its entry from its soot form flight. 

Given the grammar parameters, our system constructs the SLCN in Figure 30 from the word 

graph in Figure 27 by looking up information on each word in the dictionary. Ntotice that there are 

two roles for each word node, governor (i.e., G) and needs (i.e., N), and that twto nodes are created 

for the word display because it has two possible parts of speech. All remaining features are initially 

stored as sets on the word node. The role values assigned to each role are restricted to those that 

are allowed by the label-table (and the restriction that no word ever modifies itself). 

The constraints for our grammar are shown in Figure 31. Application of the unary constraints 

over the SLCN in Figure 30 eliminates many of the role values, as shown in Figure 32. To apply 

binary constraints, it is necessary to create arcs (and their corresponding arlc matrices) joining 

those roles that can appear in at  least one common sentence hypothesis. D r a ~ ~ i n g  all of the arcs 

would clutter the picture, so we will only depict those that are pertinent to pinpointing the parse 

of the sentence. However, the reader should be aware that no arcs join the roles of the noun form 

of display with the verb form of that word or the roles of scenic with the roles of Phoenix, because 

they cannot appear in the same sentence hypotheses. Figure 33 depicts the state of the matrices 



Figure 30: An SLCN constructed from the word graph in Figure 27. 

that are affected by the binary constraints. All other matrices contain only ones. Notice that 

we have numbered the roles in the SLCN. These numbers will allow us to  discuss Prev-Support, 

Next-Support, Local-Prev-Support, and Local-Next-Support sets when filtering; is applied next. 

After the propagation of binary constraints, we must apply the filtering algorithm. First, the 

preprocessing procedure in Figure 23 is invoked to  examine all of the arc matrices associated with 

the arcs and determine how the role values for each role are supported by elements associated with 

the roles they share an arc with. If a role value a E i is not supported by an!y of the role values 

associated with the role values of j, then the item [(i, j) ,a] is placed on List. 'The procedure also 

calculates the Prev-Support, Next-Support, Local-Prev-Support, and Local-Next-Support sets for 

each role value. Once this preprocessing step is complete, the arc consistency procedure in Figure 

24 loops until all items on List have been processed. As items on List are processed, new items 

can be inserted onto List. 

After the preprocessing procedure has been executed, List contains the following items: [(9,6), 

obj-(3,5)], [(9,8), obj-(3,5)], [(9,2), obj-(1,3)], [(7,2), obj-(1,3)], and [(4,5), s-(:1,5)]. For example, 

the presence of [(9,6), obj-(3,5)] on List indicates that the role value obj-(3,,5) in role 9 is not 

supported by any of the role values associated with role 6. 

Note that (9,8) and (9,6) are the only members of Local-Prev-Support(9, obj-(3,5)) and so once 

[(9,6), obj-(3,5)] and [(9,8), obj-(3,5)] are processed by the arc consistency procedure in Figure 24, 



UUARY COUSTRAIUTS: 
; A r o l e  value v i t h  l a b e l  root  modifies nothing. 

( i f  (eq ( lab  I) root)  
(eq (mod I) n i l ) )  

; A r o l e  value v i t h  l a b e l  blank modifies nothing. 

( i f  (eq ( l ab  I) blank) 
(eq (mod I) n i l ) )  

; A r o l e  value v i t h  l a b e l  adj  modifies a vord t o  i t s  r i g h t .  

( i f  (eq ( l a b  I) adj )  
( I t  (pos I) (mod I ) ) )  

; A r o l e  value v i t h  l a b e l  nounaod modifies a vord t o  i t s  r i g h t .  

( i f  (eq ( lab  I)  nounaod) 
( I t  (pos I) (mod I ) ) )  

; A r o l e  value v i t h  l a b e l  obj modifies a word t o  i t s  l e i  t . 
( i f  (eq ( l a b  I) obj)  

( g t  (pos I) (mod 11)) 

; A r o l e  value v i t h  l a b e l  s modifies a vord t o  i t s  r i g h t .  

( i f  (eq ( l a b  I) s )  
( I t  (pea I) (mod 1 ) )  

BIUARY COUSTRAIUTS: 
; A r o l e  value f o r  a verb v i t h  l abe l  s needs an obj which 
; it governs. 

( i f  (k (eq ( l a b  I) s )  
(eq ( r i d  y) governor) 
(eq (mod I) (pos y) 1) 

(k (eq ( l a b  y) obj)  
(eq (mod y) (pos I ) ) ) )  

; A r o l e  value f o r  a noun v i t h  l abe l  obj i s  governed by an 
; EI vhich needs it. 

( i f  (k (eq ( l ab  I) obj)  
(eq ( r i d  y) needs) 
(eq (mod 1 )  (pas y ) ) )  

(k (eq ( l ab  y )  8) 
(eq (mod y) (pos I) 1) )  

Figure 31: The unary and binary constraints for our example!. 



Figure 32: The SLCN after unary constraint propagation. 

Figure 33: The SLCN after binary constraint propagation. 



Local-Prev-Support(9, obj-(3,5))'s set becomes empty indicating that obj-(3,5) is not a legal role 

value in any sentence hypothesis, and so it can be removed from role 9. In addition, a l l  of the arcs 

attached to  role 9 will eliminate their support for obj-(3,5), and determine whether the elimination 

of that role value makes it possible to add new items onto List. When the algorithm eliminates 

[(9,4), obj-(3,5)] from the SLCN, it notices that [(4,9), s-(3,5)] should also be added to the List 

because the removal of obj-(3,5) causes s-(3,5) to become unsupported. 

When [(4,9), s-(3,5)] is processed, the algorithm must eliminate s-(3,5)'s support support given 

Prev-Support[(4,9), s-(3,5)] = {(4,8), (4,6)) and Next-Support[(4,9), s-(3,5)] == {(4,10)). This is 

achieved by removing (4,9) from Next-Support[(4,8), s-(3,5)] = {(4,9)) and Next-Support[(4,6), 

S-(3,5)] = {(4,9)), leaving both sets empty, causing [(4,8), s-(3,5)] and [(4,6), s-(3,5)] to be added 

to List. It must also remove (4,9) from Prev-Support[(4,lO), s-(3,5)] = {(4,9)), causing [(4,10), 

s-(3,5)] to be added to  the List. When [(4,6), s-(3,5)] is processed, the algorithm adds [(4,5), s-(3,5)] 

to the List, and when [(4,8), s-(3,5)] is processed, it adds [(4,7), s-(3,5)]. Because Next-Support(4, 

s-(3,5)) = {(4,5), (4,7)), once these two items are processed, s-(3,5) can be deleted from node 4. 

When the role value is eliminated, the algorithm is able to add [(7,4), obj-(1,,3)] to List. When 

[(7,4), obj-(1,3)] and [(7,2), obj-(1,3)] have both been processed, Local-Prev-Sulpport(7, obj-(1,3)), 

which initially was {(7,4), (7,2)), becomes empty and so obj-(1,3) can be eliminated from role 7. 

When obj-(3,5) is deleted from role 9, it also causes a chain of events to eliminate blank-nil from 

role 2 (since role 9 is in every sentence hypothesis containing role 2), thereby eliminating the only 

role value from role 2. After additional processing, the role values on role 1 alre also eliminated, 

leaving the word node for the noun form of display without any support. The word node can be 

pruned from the SLCN under these circumstances. 

Once filtering is complete, the SLCN is in the state shown in Figure 34. The network is still 

ambiguous since it contains a verb with multiple number values and two paths through the network. 

To restrict the number for the word display, we would propagate a number feature constraint 

indicating that a command verb must agree with the second person pronoun, you. To propagate 

this constraint, the word node would be split into five similar nodes with the ollly difference being 

the value stored for the number feature. The arcs and arc matrices associated with the node would 

also be duplicated. After node duplication, a constraint would be propagated r'equiring agreement 

with the word you, which has a number feature of either second person singular or plural. This 

constraint would eliminate all but two of the nodes for the verb, as shown in Figure 35. To 

determine which of the four remaining sentence hypotheses is correct requires the use of additional 



Figure 34: The SLCN after filtering. 

(n~n-n-+(5,6)1 

Figure 35: The SLCN after number constraints. 



Figure 36: An SLCN after syntactic constraint propagation and filtering. 

constraints. 

Constraint propagation provides a uniform method for applying higher-level knowledge sources 

to  prune a word graph. Because the constraints for each knowledge source can be developed 

independently, it is not as difficult t o  add another knowledge source to  our parser. In the next 

section, we discuss the addition of semantic constraints. 

3.7 Adding Semantic Constraints 

Semantic features associated with the words in a dictionary can also be used to help disambiguate an 

SLCN. To illustrate the use of semantic constraints, consider the SLCN in Figure 36, assuming that 

syntactic constraints and syntactic feature constraints have been propagated, and filtering has been 

performed. This SLCN represents two distinct sentence hypotheses: Show me flights to Atlanta and 

Show me flights with Atlanta. Notice that the prepositions to and with are synte~ctically ambiguous 

since they can either modify the noun flights or the verb show. In addition, t:he prepositions are 

semantically ambiguous because they can fill a number of semantic functions i:n the sentence. By 

using the semantic features in this sentence and two simple semantic constrai-nts, we are able to 

disambiguate this network entirely. The constraints are shown in figure 37. 

To propagate the semantic constraints, we must duplicate the word nodes associated with the 

prepositions and assign each of them a unique semantic feature value, as sh.own in Figure 38. 

The first constraint uses the semantic type of the head word in the object of the preposition to  



; ; A location tha t  is an object of a preposition modifies 
;; a locat ive  preposition. 

( i f  (& (eq ( lab x) ppab j )  
(eq (mod x) (por y) 
(eq (ram-type x) locat ion))  ; ; Mote that  a c i t y  is a 10,cation. 

(V (eq (sem-type y) t o l o c )  
(eq (mom-type y) fromloc) 
(eq (sem-type y) a t l o c ) ) )  

; ; A t o l o c  preposition modifies a move-event . 
( i f  (and (V (eq (lab x) nqp )  

(eq ( lab y) v q p ) )  
(eq (mod x) (por y ) )  
(eq (rem-type x) t o l o c ) )  

(eq (sea-type y) move-event)) 

Figure 37: Semantic constraints for Look up stairs. 

W-l) 

Figure 38: An SLCN just prior to semantic constraint propgation. 



Figure 39: An SLCN after semantic constraint propagation and filtering. 

restrict the semantic type of the preposition. After this constraint is propaga-ted, to with toloc 

as its semantic feature is the only prepositional word node remaining in the network. Because 

the semantic types of each the other instances of to and with are incompatible with the semantic 

type of its object, they are eliminated from the network. The second semantic constraint can now 

restrict the type of word to  which a to loc  preposition can attach. This constraint eliminates the 

role value v-pp-(1,2), giving a completely disambiguated word network, as shone in Figure 39. 

We conducted a simple experiment t o  determine the effectiveness of syntiactic and semantic 

constraints for reducing the ambiguity of word networks constructed from sets of BBN's N-best 

sentence hypotheses [23] from the ATIS database (Air Travel Information System). For this ex- 

periment, we selected twenty sets of 10 N-best sentence hypotheses for three different types of 

utterances: a command, a yes-no question, and a wh-question. The lists of the N-best sentences 

were converted t o  word graphs in which the duration of each node was determined by maintaining 

a syllable count through the utterance. Syntactic constraints were constructed first, then semantic 

constraints were constructed t o  further limit ambiguity [7]. Semantic constrajnts were relatively 

easy t o  create and incorporate into our parser. In fact they were added to  the grammar without 

modifying a single syntactic rule. Preliminary work with prosodic constraints also suggests that 

prosodic constraints should be as simple t o  add to  our grammar. 

Syntactic and semantic constraints are very useful for pruning out word inodes in an SLCN 

that  are syntactically or semantically anomalous. However, they do not, in man,y cases, sufficiently 

constrain the SLCN t o  a single sentence hypothesis with a single parse. Contextual information 



represents an additional knowledge source that can be exploited to  reduce the ambiguity in an 

SLCN, as discussed in the next section. 

3.8 Incorporating Pragmatic Constraints into SLCN Processin,g 

Barwise and Perry [2] suggest that ambiguity of language is just another aspect of the efficiency of 

language. The fact that an expression can be used in more than one way is just another feature 

of that expression. Understanding an expression more fully comes at the cost of identifying the 

context. If we can identify the context in which the sentence occurs (i.e., the situation), then we 

can understand the expression more fully. Clearly to provide a general model ca~pable for smoothly 

handling all the contexts that a human being can is beyond the scope of this paper. However, 

we believe that by exploiting context as a feature of language, we can develop a constraint-based 

system capable of utilizing this information. 

For the purposes of this paper, we define a context as a computer application. A user can interact 

with a language processor which interfaces with two or more applications as depicted in Figure 2. 

Here the function of the natural language interface is to interact with the correct application given 

the user's input. The process of parsing the input language should help to identify the correct 

context, and the identification of the correct context should help to  disambiguate the user's input. 

As an example of the usefulness of context, assume our system receives the word graph from 

our speech recognition module in Figure 27. Assume that there are three contexts, where c l  

corresponds to  an air travel database, c2 corresponds to  a road map database, ,and c3 corresponds 

to a program for designing signs. Our system constructs an SLCN from the w o ~ d  graph by looking 

up information on each word in the dictionary which stores the same informatioil as in our previous 

example along with additional information about the contexts in which the word can occur. The 

contextually augmented dictionary for our example is shown in Figure 40. Many words can be 

shared across contexts, but some content words should appear in one context but not another. Just 

knowing which contexts are supported by a word provides a useful clue for selecting the correct 

context for an utterance. 

The SLCN in Figure 41 is constructed from the word graph in Figure 27, assuming the grammar 

parameter file in Figure 28 and the lexicon in Figure 40. As before, two nodes are created for the 

word display because it has two possible parts of speech and all remaining features are initially 

stored as sets on the word node, including contextual information. 

By storing the allowable contexts with a word node, it is possible, without propagating even 



(display (category noun (context c3) 
(number 3s) 
(sen-type s ign))  

(category verb (context c i  c2) 
(number is 2s i p  2p 3p) 
(subcat dobj ) 
(sem-t ype show) ) ) 

( f l i gh t  (category noun (context c l  c3) 
(number 3s) 
(sen-type air-transf e r )  ) ) 

( f l i gh t s  (root-word f l i gh t )  
(category noun (number 3 ~ ) ) ) )  

(Phoenix (category propernoun (context c i  c3) 
(number 3s) 
(sen-type c i t y ) ) )  

(scenic (category adj (context c2) 
(sea-type pre t ty ) ) )  

Figure 40: A contextually expanded dictionary for parsing our example. 

Figure 41: An SLCN constructed from the word graph in Figure 27. 



Figure 42: The SLCN pruned of words associated with context c2. 

one constraint to  eliminate a context from consideration. For a sentence to be a legal utterance 

(given our restricted sense of context), it must have at  least one common context across all word 

nodes on the path. Also, for a context to  be admissible, there must be a path from start to end 

containing word nodes that support that context. For example, in Figure 41, context c2 is not 

supported by the SLCN even before propagation of constraints. If a context is not supported by at 

least one path through the network, then all word nodes that support only the disallowed context 

can be immediately pruned, as shown in Figure 42. Notice that c2 is also elimjnated as a context 

for the verb form of display. 

The next step in processing a contextual SLCN is to  propagate the context independent unary 

and binary syntactic constraints in Figure 31 and filter the SLCN. Once this step is completed, the 

SLCN is in the state depicted in Figure 43. Notice that following this, the wordl node for the noun 

form of display is eliminated; therefore, context c3 is no longer supported and can be pruned from 

the network. 

Next we select a set of constraints for a context independent syntactic fea.ture to  propagate. 

For each node that has more than one value for the feature type, we duplicate the node and assign 

it a single feature value. For example, if we propagate a number feature constraint, we would split 

the node corresponding to  the verb display, and propagate the constraint to limit the number of 

command verb t o  be 2s or 2p. Once this constraint is propagated, the network is in the state 



tobu1 9)) {blank-nl) 

Figure 43: The SLCN after context independent constraints are propagated and filtering is per- 
formed. 

depicted in Figure 44. 

At this point we can utilize contextual constraints in an attempt to refine the parse for the 

SLCN further. One constraint that would work well in the case of context c l ,  c2, or c3 is to  restrict 

the number of a command verb to second person singular (since the computer is singular). Because 

this constraint is common to all of the contexts, this constraint could be applied to a contextually 

ambiguous network without creating separate nodes for each context. However, in the case of our 

example, the context has already been isolated, and we apply the constraint to  simply eliminate 

the number ambiguity, with the resulting SLCN depicted in Figure 45. This sentence now has a 

single parse and is valid only in context c l .  

A model that can utilize a variety of knowledge sources to  disambiguate spoken language is more 

likely to  achieve a level of accuracy comparable to  humans. We have described a constraint-based 

system which is able to  utilize a variety of knowledge sources to  disambiguate speech. Knowledge 

sources commonly used in speech understanding are shown in Figure 1. There is :good evidence that 

there is an implicit ordering among these knowledge sources such that one type of information must 

be available before it makes sense to  progress to  the next level. If we combine two ordered knowledge 

sources together in a single module, the resulting system can be difficult to understand and can 

often become intractable. For example, combining prosodic processing [3] a with CFG grammar 

rules typically increases the size and complexity of the grammar and reduces its understandability. 

Also, semantic grammars have only been effective for limited domains and do not scale up well to 

larger systems [I]. 

The ordering of knowledge sources in Figure 1 suggests that there should be a way to order 



Figure 44: The SLCN after context independent number feature constraints axe propagated and 
filtering is performed. 

sem-typeSair-transfer] 

Figure 45: The SLCN with a single sentence hypothesis in context c l .  



constraints to  limit the combinatorial explosion of managing all knowledge sources a t  once. Below 

we enumerate the steps of our algorithm: 

1. Create an SLCN for the word graph by using a dictionary and eliminate i~n~ossible  contexts. 

2. Propagate context-independent syntactic unary constraints (no feature testing). 

3. Construct arcs for binary constraint propagation. 

4. Propagate context-independent syntactic binary constraints and filter the SLCN. 

5. Loop for each set of syntactic feature type constraints: 

Duplicate the nodes with more than a single value for that feature (role values, arcs, 

and matrices too). 

Propagate the constraints for that feature type. 

Filter the network. 

Eliminate impossible contexts. 

6. For semantic feature constraints: 

Duplicate the nodes with more than a single semantic feature value (role values, arcs, 

and matrices too). 

Propagate the semantic constraints. 

Filter the network. 

Eliminate impossible contexts. 

7. For contextual constraints: 

Duplicate the nodes with more than a single context, 

Propagate the contextual constraints, 

Filter the network. 

Eliminate impossible contexts. 

Depending on the number of contexts and the degree of sharing between contexts, we could 

utilize a courser granularity for propagating context-specific constraints. For example, if contexts 

c l  and c2 have many common constraints, then splitting a node that is ambiguous between c l  



(look (category verb (context c l  c2) 
(number l a  2s  l p  2p 3p) 
(sem-type f ind-ev, see-ev) ) ) 

( s t a i r s  (category noun (context c l  c2) 
(number 3p) 
(aem-type part(c1) l o c ( c 2 ) ) ) )  

(up (category par t i c l e  (context c l  c2) )  
(category preposit ion (context c l  c2) 

(sem-type up-loc) 1) 

Figure 46: Another contextually expanded dictionary. 

and c2 makes no sense until after the shared constraints are propagated6. Constraint parsing does 

provide a level of control to  allow a system designer to  avoid duplication of effolrt. 

We have observed that semantic features and context are often highly correlated. Hence, rather 

than require all semantic types associated with a word to  be allowed in each of its contexts, we 

provide a mechanism for indicating which semantic features are defined for each context in the 

dictionary. Consider the dictionary in Figure 46. Notice that the semantic features for the word 

stairs are annotated with a specific context, even though the word is defined in both contexts. If c l  

is a parts database and c2 is a mobile robot with an on-board phone, then the word stairs should 

have very different semantic features for each of the contexts. In the first case, ithe stairs represent 

a part in the database; whereas, in the second, the stairs represent a location. In contrast, the 

word look is also defined in both contexts, but because its semantic features can appear in both 

contexts, they are not annotated with contextual information. 

Associating contextual information with a semantic features allows us to  parse the SLCN for 

Look up stairs in two different ways, depending on which context is chosen. Figure 47 depicts an 

SLCN for this sentence after syntactic constraint propagation and filtering. Notice that there are 

two paths through the network, one using up as a preposition, the other usiilg it as a particle. 

Each word in the network can be used in either context; however, the semantic. feature associated 

with the word stairs is different for each context. If we propagate a context independent constraint 

requiring that  the object of an up-loc be a loc (i.e., a location), then c l  is disalllowed for the parse 

where up is a preposition. Then, if we propagate context specific semantic constraints, further 

refinement is possible. For example, after propagating a constraint which requires the object of 

look up to be a part in c l  and a number in c2, the SLCN ends up in the state shown in Figure 48. 

Though the SLCN is still ambiguous, it contains a single parse for the sentence in each context. 

'Although it is necessary to split the word node into two nodes, one for contexts cl  and c2 .and one for the others. 



Figure 47: An SLCN after syntactic constraint propagation. 

Figure 48: An SLCN after semantic and contextual constraint propagation. 



In conclusion, we have described a system which is capable of utilizing a variety of knowledge 

sources to  select the most appropriate parse for a spoken sentence. These knowledge sources 

include syntax, semantics, and contextual information. The parser uses a uiliform mechanism, 

constraint propagation, t o  apply these high-level knowledge sources t o  prune a wsord graph provided 

by the speech recognizer. Constraints for different knowledge sources can be dt?veloped somewhat 

independently and used incrementally when parsing a sentence. Our constraint-based parser should 

prove an important component for a spoken language interface t o  several computer applications, 

where each application defines its own context. 
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