
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-1-1994

Managing multiple knowledge sources in
constraint-based parsing of spoken language
Mary P. Harper
Purdue University School of Electrical Engineering

Randall A. Helzerman
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Harper, Mary P. and Helzerman, Randall A., "Managing multiple knowledge sources in constraint-based parsing of spoken language"
(1994). ECE Technical Reports. Paper 185.
http://docs.lib.purdue.edu/ecetr/185

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4948231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 94-16
APRL 1994

Abstract

In this paper, we describe a system which is capable of utilizing a variety of knowledge

sources to select the most appropriate parse for a spoken sentence. These knowledge sources

include syntax, semantics, and contextual information. We discuss one way to utilize contextual

information when determining a parse for a sentence. Our definition of a context is defined by

which computer application we wish to interact with, where our system is capable of interfacing

with two or more applications, each with a fixed vocabulary, syntax, and semanltics. The user

is able to interact through a single interface which uses contextual knowledge not only to parse

the query, but also to select the appropriate application to interact with. This birings us closer

to developing a more general purpose interface for multiple applications.

1 Introduction

Developing a computer model capable of understanding language (either spoken or text-based) is a

difficult problem, made more difficult by the ambiguity inherent in natural languages. Ambiguity

appears in many forms, including word recognition, syntax, word-sense, ambiguity of reference,

and quantifier scope. Because they are often interrelated, resolving each type of ambiguity often

requires that the others be handled at the same time. For example, the syntactic representation of

a sentence can constrain the possible antecedents for a referential noun phrase, while the antecedent

of a pronoun can also constrain the sentence's syntactic representation [5].

One way to resolve ambiguity is to utilize a wide variety of knowledge so.urces. The knowl-

edge sources commonly used in speech understanding are shown in Figure 1. Effective use of

multiple knowledge sources plays a key role in human spoken language understanding. It is, there-

fore, likely that advances in spoken language understanding will require effective utilization of this

information1.

To utilize the variety of knowledge sources needed to disambiguate language, we have con-

structed a constraint-based system [6, 7, 271 which is an extension to Constraint Dependency

Grammar (CDG) parsing as defined by Maruyama [15, 16, 171. This system is; capable of propa-

gating a wide variety of constraints, including syntactic, lexical, semantic, proso~dic, and contextual

constraints. The central data structure for this system is a word graph augmented with parse

related information, called a spoken language constraint network (SLCN). An SLCN represents all

possible parses for the represented sentence hypotheses in a compact form, ant1 is operated on by

constraints.

One of the most difficult knowledge sources t o incorporate into a computer system is pragmatics.

Pragmatics is the use of language in context. Often pragmatics deals with aspects of communication

which go beyond the literal truth conditions of the sentence, as in speech acts. However, here we will

only consider how context can help disambiguate the meaning of a sentence and identify precisely

.which context applies for a particular utterance.

For the purposes of this paper, we equate context with the choice of a computer application.

As shown in Figure 2, a user's input is processed by the language processor which interfaces with

two or more applications, each defining its own context. The goal of this systenl is t o interact with

'Prosody can help a word recognizer to rule out word candidates with unlikely stress and duration patterns, but
it can also impact syntactic and semantic modules. Therefore, we depict the prosody module as both a high-level
and low-level knowledge source.

Figure 1: Knowledge sources commonly used for spoken language understanding.

Pragmatic

High-Level
Knowledge

Semantic

Syntactic

Prosodic +b Lexical

I I
I

Low-Level
Knowledge

Acoustic/
phonetic

Language I .=Tr

Figure 2: A language interface to multiple computer applications.

the correct application given the user's spoken input. Initially, it analyzes a world graph of sentence

hypotheses provided by a speech recognizer using general syntactic and semantic. rules. Then, if the

utterance is still ambiguous, it utilizes context-specific constraints to further refine the analysis.

The system utilizes all of the knowledge sources it has access to in order to identify the correct

context. Also by identifying the correct context, the system should be able to further refine the

parse of the user's input. This synergy between syntax, semantics, and pragmaitics can be handled

quite effectively in our constraint-based system. This computer system, once capable of utilizing

multiple contexts within an evolving picture of what a sentence's parse, can be tlzought of as having

an imagination. Each hypothesis is subject to constraints which helps the computer t o disambiguate

the input syntactically and semantically while determining which context actuz~lly applies.

We begin our discussion by introducing constraint dependency grammars as defined by Maruyama

in section 2. Then in section 3, we describe how that algorithm is extended to process multiple

sentence hypotheses in a single constraint network. This same mechanism is utilized to handle

not only multiple sentence hypotheses with shared words, but also sentences with multiple parts

of speech, feature values, and contexts. We initially describe the mechanism for parsing multiple

sentences, and then describe how it can be used as a general mechanism for processing all ambiguity

inherent in a sentence, even the ambiguity of selecting the correct computer application with which

to interact.

2 The Theoretical Basis of the SLCN Parser

Our system uses Constraint Dependency Grammar (CDG) grammar, originally defined by Maruyama

[15, 16, 171, to process sentences. In the following subsections, we will describe the CDG grammar

formalism, the CDG parsing algorithm, and the benefits of a constraint-based system.

2.1 Elements of a CDG Grammar

Maruyama defines a CDG grammar as a four-tuple, (C, R, L, C), where:

C = a f i n i t e s e t of preterminal symbols, or l ex ica l categories.
R = a f i n i t e s e t of uniquely named roles (or role- ids) = { r l , . . . , r p) .
L = a f i n i t e s e t of labels = (1 1 , . . . , l q) .
C = a constraint aet that an assignment A must aatiafy.

A sentence s = ~ 1 ~ 2 ~ 3 . . . w, is a string of finite length n and is an element of C*. All of the roles

in R are associated with every wi of s yielding n * p roles for the entire sentence. The sentence s is

said to be generated by the grammar G if there exists an assignment A which maps role values to

each of the n * p roles for s such that the constraint set C is satisfied. A role val.ue is an element of

the set L x {1,2,. . .,n,nil). In other words, it is a tuple consisting of a label fronn L and a modifiee,

where a modifiee can be the index of a word in the sentence or nil. Role values will be denoted in

the examples as label-rnodifiee. L(G) is the language generated by grammar G if and only if L(G)

is the set of all sentences generated by G. Note that the null string E has no roles and is always

generated by any grammar according to definition.

A constmint set is a logical formula in the form: 'd xl 2 2 . . . x, : role (and P1 P2 . . . P,),

where the xis range over all of the role values in the roles of s. Below is the definition of possible

components of a subformula P;':

Variables: XI, "2, . . . x,.

Constants: elements and subsets of C U L U R U {nil, 1, 2, . . ., n), where n corresponds to

the number of words in a sentence.

Access Functions:

(pos x) returns the position of the word for role value x.

2Maruyama uses an infix notation; whereas, we use a prefix notation throughout this paper.

(rid x) returns the role-id for role value x.

(lab x) returns the label for role value x.

(mod x) returns the position of the modifiee for role value x.

(cat i) returns the category (i.e., the element in C) for the word3 in position i.

Predicate symbols:

(eq x y) returns true if x = y, false otherwise.

(gt x y) returns true if x > y and x, y E Integers, false otherwise4.

(It x y) returns true if x < y and x, y E Integers, false otherwise.

(elt x y) returns true if x E y, false otherwise.

Logical Connectives:

(& p q) returns true if p and q are true, false otherwise.

(V p q) returns true if p or q is true, false otherwise.

(not p) returns true if p is false, false otherwise.

Each Pi in C must be of the form (if Antecedent Consequent), where Antecede~zt and Consequent

are predicates or predicates joined by the logical connectives. A CDG grammar has two associated

parameters, degree and arity. The degree of a grammar G is the size of R. The arity of the grammar

corresponds to the maximum number of variables in the subformulas of C. To simplify the examples

in this section, we use a grammar with a degree of one, that is, with a single :role governor. The

governor role indicates the function a word fills in a sentence when it is governeld by its head word.

In our implemented grammars, we also use several needs roles (e.g, needl, needl2) to make certain

that a head word has all of the constituents it needs to be complete (e.g., a siingular count noun

needs a determiner to be a complete noun phrase). Maruyama has proven that is grammar requires

a degree and arity of at least two to be as expressive as a CFG.

To illustrate the use of CDG grammars, consider a very simple example grammar, GI = (C1,

R1, L1, C1) in Figure 3, which has a degree of one and an arity of two5. A subformula Pi is called a

unary constmint if it contains one variable and a binary constmint if it contains two. For example,

U-1, U-2, and U-3 are unary constraints because they contain a single variable, and B-1 is a binary

constraint because it contains two variables.

'Maruyama uses the access function word rather than cat, though the function accesses the category of the word.
'For example, (gt 1 nil) is false, because nil is not an integer.
'The constraints in this grammar were chosen for simplicity, not to exemplify constraints for a wide coverage

grammar.

= {dot , noun, verb)
R1 = {governor)
L1 = {DET, SUBJ , ROOT)
C1 = V z y : role (and

; ; [U-l] A det receives the l a b e l DET
; ; and modifies a word t o i ts r i g h t .
(i f (eq (ca t (pos x)) dot)

(& (eq (lab x) DET)
(I t (poe x) (mod x) 1)

;; [U-2) A noun receives the l abe l SUBJ
; ; and modifies a word t o i t e r i g h t .
(i f (eq (ca t (poe x)) noun)

(& (eq (lab x) SUBJ)
(I t (pos X) (mod x) 1)

; ; [U-31 A verb receives the l abe l ROOT
; ; and modifies no word.
(i f (eq (ca t (poe x)) verb)

(& (eq (lab x) ROOT)
(eq (mod x) n i l)))

; ; [B-l] A DET is governed by a SUBJ .
(i f (& (eq (lab x) DET)

(eq (mod x) (pos y)))
(eq (lab y) SUBJ))

1

Figure 3: GI = (XI, R1, L1, C1).

Figure 4: An assignment for The program runs.

For G1 to generate the sentence The program runs, there must be an assignment of a role value

to the governor role of each word, and that assignment must simultaneously satisfy each of the

subformulas in C1. Note that each word is assumed to have a single lexical category, which is

determined by dictionary lookup. Figure 4 depicts an assignment for the sentence which satisfies

C1. This assignment can be interpreted as the parse graph shown in Figure 14..

governor role's value

DET-2

SUBJ-3

ROOT-nil

POS

1

2

3

2.2 CDG Parsing

To determine whether a sentence is generated by a grammar, a CDG parser must be able to assign

at least one role value which satisfies the grammar constraints to each of the 1% + p roles, where n

word

the

program

runs

ca t

de t

noun

verb

node
1

(E l * WT-1, DET-2, WTJ,
ruw* suaci, ~UBJ-2 suw~.

ROOld, ROOT-1. W - 2 , RooTJ)

(WT- DET-1, DET-2, DETJ.
WAMI, wab1, ww-2 SUw4,

Rooria, RooT-I, W T - 2 Ra3T-a)

S U M , SUW-I. SUW-2 suw-a,

Figure 5: Initialization of roles for the sentence The program rtrns.

is sentence length, and p is the number of role-ids. Because the role values for the role are selected

from the finite set L1 x {1,2,. . .,n,nil), CDG parsing can be viewed as a constraint satisfaction

problem over a finite domain. Hence, constraint propagation [14, 19,261 can be used to develop the

parse of a sentence. A CDG parser generates all parses for a sentence in a com:pact representation

because enumeration of the individual parses for a highly ambiguous sentence is intractable. The

steps required for parsing the sentence The program runs are provided to illustra,te both the process

of parsing with constraint propagation and the running time of the algorithm.

To develop a syntactic analysis for a sentence using CDG, a constraint network (CN) of words is

created. Each of the n words in a sentence is represented as a node in a CN. Fig.ure 5 illustrates the

initial configuration of nodes in the CN for The program runs example. Notice that associated with

each node is its word, category, sentence position, and roles (only one for this ex;tmple). Each of the

roles is initialized to the set of all possible role values (i.e., the domain). Given GI, the domain for

the example is L1 x {1,2,3,nil) = {DET-nil, DET-1, DET-2, DET-3, SUBJ-nil., SUBJ-1, SUBJ-2,

SUBJ-3, ROOT-nil, ROOT-1, ROOT-2, ROOT-3). Since there are q * (n + 1) = O(n) possible

role values for each of the p * n roles for a sentence (where p, the number of ~aoles per word, and

q, the number of different labels, are grammatical constants, and n is the number of words in the

sentence), there are O(p * n * q * (n + 1)) = O(n2) role values which must be initially generated for

the CN, requiring O(n2) time.

To parse the sentence using GI, the unary and binary constraints in C1 are! applied to the CN

Figure 6: The CN after the propagation of U-1 for the sentence The pnymm runs.

to eliminate the role values from the roles of each word which are incompatible with C1. For a

sentence to be grammatical, each role in each word node must contain at least lone role value after

constraint propagation.

The unary constraints are applied to each of the roles in the sentence to eliminate the role

values incompatible with each word's role in isolation. To apply the first unary constraint (i.e.,

U-1, shown below) to the network in Figure 5, each role value for every role is examined to ensure

that it obeys the constraint.

;; [U-1] A det receives the label DET
;; and modifies a word t o i t s r ight .
(i f (eq (cat (pos x)) dot)

(& (eq (lab x) DET)
(I t (pos X) (mod x))))

If a role value causes the antecedent of the constraint to evaluate to TRUE ant1 the consequent to

evaluate to FALSE, then that role value is eliminated. Figure 6 shows the remaining role values

after U-1 has been applied to the CN in Figure 5.

Maruyama requires that each subformula in a constraint set be evaluated in constant time.

Because of this restriction, each constraint can only contain access functions and predicates that

operate in constant time (e.g., access functions and predicates like those defined in Section 2.1).

So when the unary constraint U-1 is applied to O(n2) role values, it requires O(n2) time.

To further eliminate role values which are incompatible with the categories of the words in the

example, the remaining unary constraints (i.e., U-2 and U-3) are applied to the CN in Figure 6,

producing the network in Figure 7. Given that the number of unary constrain~ts in a grammar is

a grammatical constant denoted as ku, the time required to apply all of the unary constraints in a

grammar is O(ku * n2).

The binary constraints determine which pairs of role values can legally coexist. To keep track

Figure 7: The CN after the propagation of all the unary constraints.

w
Figure 8: The CN after unary constraint propagation and before binary constraint propagation.

of pairs of role values, arcs connect each role to all other roles in the network, and each arc has an

associated arc matriz, whose row and column indices are the role values associated with the two

roles. The elements of an arc matrix can either be a 1 (indicating that the two role values which

index the element are compatible) or a 0 (indicating that the role values cannot simultaneously

exist). Initially, all entries in each matrix are set to 1 , indicating that the two role values are

initially compatible. Since there are (ny) = O(n2) arcs required in the CN, and each arc contains

a matrix with O((q * (n + I)) ~) = O(n2) elements, the time to construct the arcs and initialize

the matrices is O(n4). Figure 8 shows the matrices associated with the arcs before any binary

constraints are propagated. Unary constraints are usually propagated before preparing the CN for

binary constraints because they eliminate impossible role values from each role, and hence reduce

the dimensions of the arc matrices.

Binary constraints are applied to the pairs of role values indexing each of the arc matrix entries.

When a binary constraint is violated by a pair of role values, the entry in the matrix indexed by

Figure 9: The CN after B-1 is propagated.

those role values is set to zero. The binary constraint, B-1, ensures that a DET is governed by a

SUBJ:

; [B-I] A DET is governed by a SUBJ.
(if (k (eq (lab x) DET)

(eq (mod x) (pos y 1)
(eq (lab y) SUBJ))

After the application of this constraint to the network in Figure 8, the element indexed by the role

values x=DET-3 and y=ROOT-nil for the matrix on the arc connecting the governor roles for the

and runs is set to zero, as shown in Figure 9. This is because the must be governed by a word with

the label SUBJ, not ROOT. Since the constraint must be applied to O(n4) pairs of role values, the

time to apply the constraint is 0(n4). Given that the number of binary constraints in a grammar

is a grammatical constant denoted as b, the time required to apply all of the binary constraints

in a grammar is O(kb * n4).

Following the propagation of binary constraints, the roles of the CN could still contain role

values which are incompatible with the parse for the sentence. To determine whether a role value

is still supported for a role, each of the matrices on the arcs incident to the role must be checked

to ensure that the row (or column) indexed by the role value contains at least a single 1. If any

arc matrix contains a row (or column) of 0s for the role value, then that role value cannot coexist

with any of the role values for the second role and so is removed from the list of legal role values for

the first role. Additionally, the rows (or columns) associated with the eliminated role value can be

removed from the arc matrices attached to the role. The process of removing any rows or columns

containing all zeros from arc matrices and eliminating the associated role valueis from their roles is

I N I {i, j , . . .) is the set of all roles, with I NI = p * n. I

Notation

(4 j)

Meaning

An ordered pair of roles. 7

L

Li

{a, b, . . .) is the set of role values, with ILI = q * n

{ala E L and (i, a) is admissible) 1
(a)

a E Li is supported by b E Lj after binary constraint propagation iff the
element indexed by [a, b] in the matrix for arc (i, j) contains a 1.

(4 a) An ordered pair of role i and role value a E Li. I
M[i, a1

(j , b) E S[i, a] means that role value a a t role i and b at j are
simultaneously admissible.

M [i , a] = 1 indicates that the role value a is not admissible for (and
has already been eliminated from) the arc joining roles i and j .

E

I Counter[(;, j) , a] I The number of role values in L, which are compatible with a in Li. 1

All role pairs (i, j) .

Figure 10: Data structures and notation for the CN arc consistency algoritl~m (i.e., AC-4).

List

called filtering. Following binary constraint propagation any of the O(n2) role values may require

immediate filtering. However, filtering must also be applied iteratively since the elimination of a

role value from one arc could lead to the elimination of a role value from anoth~er arc.

The algorithm used for filtering a constraint network is known as arc consis.tency by constraint

satisfaction researchers. An optimal version of the algorithm, AC-4, was devel.oped by Mohr and

Henderson [18]. AC-4 builds and maintains several data structures, described in Figure 10, to

allow it to efficiently perform this operation. Figure 11 shows the code for iinitializing the data

structures, and Figure 12 contains the algorithm for eliminating inconsistent role values from the

domains. This filtering algorithm requires O(ea2), where e is the number of arcs, and a is the size

of the domain [18]. In the case of CDG parsing, e = ("y), and the domain size is n * q, so the

running time of the filtering step is O(n4) [15, 161.

If the role value a at role i is compatible with b at role j, then a supports b. To keep track of

how much support each role value a has, the number of role values in L j which are compatible with

a in L; are counted, and the total is stored in Counter[(i, j), a]. The algorithm must also keep track

A queue of arc support to be deleted. I

1. List:=$;
2. for i~ N do
3. for a E Li do
4. begin
5. M[i, a] := 0;
6. S[i, a] := 4;
7. end
8. for (i , j) E E do
9. f o r b E L i d o
10. begin
11. Total=O;
n12. for b E Lj do
13. if Rd(i, a, j, b) then
14. begin
15. Total=Total+l;
16. S[j, b] := S[j, b] + {(i, a));
17. end
18. if Total=O then
19. begin
20. M[i, a] = 1;
21. List:=List ~ { (i , a));
22. Li = Li - {a);
23. end
24. else
25. Counter[(i, j), a] =Total;
26. end

Figure 11: Construction of data structures for CN arc consistency (i.c?., AC-4).

of which role values that role value a supports by using S[i, a], which is a set o-i arc and role value

pairs. For example, S[i, a] = {(j, b), (j,c)) means that a in L; supports b and c in Lj. If a is ever

invalid for L; then b and c will loose some of their support. This is accomplished by decrementing

Counter[(j, i), b] and Counter[(j, i), c]. For CN arc consistency, if Counter[(i, j) , a] becomes zero, a

is automatically be removed from L;, because that would mean that a is impossible in any sentence

parse. When a role value a E i is found to be unsupported, the algorithm places the ordered pair

(2 , a) on List. When (i, a) is popped off List in the procedure in Figure 12, additional role values

may loose support and be placed on List.

Consider how filtering is applied to the CN in Figure 9. The matrix assolciated with the arc

connecting the and runs contains a row with a single element which is a zero. Because DET-3

cannot coexist with the only possible role value for the governor role of runs, it cannot be a legal

member of the governor role of the, and so (1, det-3) is placed on List, and det-3 is eliminated as

a role value for node 17s governor role. When the role value is eliminated from all arcs associated

with the role, filtering is complete and the resulting CN is depicted in Figure 13.

After all the constraints are propagated across the CN and filtering is l~erformed, the CN

provides a compact representation for all possible parses. Syntactic ambiguity is easy to spot in

1. while List not empty do
2. begin
3. choose (j, b) from List and remove (j, b) from List;
4. for (i, a) E Slj, b] do
5. begin
6. Counter[(i, j) , a]=Counter[(i, j) , a] - 1 ;
7. if Counter[(;, j) , a] = 0 and M [i, a] = 0 then
8. begin
9. List:=List U{(i, a));
10. M [i , a]=l;
11. Li = Li - {a)
12. end
13. end
14. end
Figure 12: Algorithm to enforce CN arc consistency (i.e., AC-4).

Figure 13: The CN after filtering.

Word = The
Cat = det

G = DET-2

Figure 14: The parse graph for the CN in Figure 13.

the CN since some of the roles in an ambiguous sentence contain more than a single role value.

If multiple parses exist, we can propagate additional constraints to further reline the analysis of

the ambiguous sentence, or we could just enumerate the parses contained in the CN by using

backtracking search. For highly ambiguous grammars, the process of enumerating all possible

parses is intractable, making incremental disambiguation a more attractive option. The parse trees

in a CN are precedence graphs, which we call parse graphs, and they consist of a compatible set of

role values (given the arc matrices) for each of the roles in the CN. The modifiees of the role values,

which point t o the words they modify, form the edges of the parse graph. Ou-r example sentence

has an unambiguous parse graph given GI, shown in Figure 14.

Below we list the steps in the CDG parsing algorithm and their associated running times:

1. Constraint network construction prior to unary constraint propagation: O(n2)

2. Unary constraint propagation: O(k, * n2)

3. Constraint network construction prior t o binary constraint propagation: 0 (n4)

4. Binary constraint propagation: O(kb * n4)

5. Filtering (arc consistency): O(n4)

2.3 Benefits of a Constraint-based Approach

There are many benefits to using a constraint based parser, with the primary one being flexibility.

When a traditional context-free grammar (CFG) parser generates a set of ambiguous parses for a

sentence, it cannot invoke additional production rules to further prune the analyses. In contrast,

in CDG parsing, the presence of ambiguity can trigger the propagation of additional constraints to

further refine the parse for a sentence. A core set of constraints that hold universally can be propa-

gated first, and then if ambiguity remains, additional, possibly context dependent, constraints can

be used. We have already developed semantic constraints which are used to eliminate parses with

semantically anomalous readings from the set represented in the constraint network [7]. Additional

knowledge sources are quite easy to add given the uniform framework providedl by constraints, as

we demonstrate in this paper.

Tight coupling of prosodic [3] and semantic rules with CFG grammar rules typically increases

the size and complexity of the grammar and reduces its understandability. Semantic grammars

have been effective for limited domains, but they do not scale up well to larger systems [I]. The

most successful modules for semantics are more loosely coupled with the syntactic module (e.g., in-

terleaved or postprocessing). The constraint-based approach represents a loosely-coupled approach

for combining a variety of knowledge sources. It differs from a blackboard appro'ach in that all con-

straints are applied using the uniform mechanism of constraint propagation. Hence, the designer

does not need to create a set of functionally different modules and worry about their interface with

the other modules. Constraint propagation is a uniform method which allows us to focus on the

best way to order the sources of information impacting comprehension.

The set of languages accepted by a CDG grammar is a superset of the set of languages which

can be accepted by CFGs. In fact, Maruyama [15,16] is able to construct CDG grammars with two

roles (degree = 2) and two variable constraints (arity = 2) which accept the sa~me language as an

arbitrary CFG converted to Griebach Normal form. We have also devised an algorithm to map a

set of CFG production rules into a CDG grammar. This algorithm does not assume that the rules

are in normal form, and the number of constraints created is O(G). In addition, CDG can accept

languages that CFGs cannot, for example, anbncn and ww, (where w is some string of terminal

symbols). There has been considerable interest in the development of parsers for grammars that are

more expressive than the class of context-free grammars, but less expressive tha~n context-sensitive

grammars [12, 24, 251. The running time of the CDG parser compares quite favorably to the

running times of parsers for languages which are beyond context-free. For example, the parser for

tree adjoining grammars (TAG) has a running time of O(n6).

CFG parsing has been parallelized by several researchers. For example, Kositraju's method [13]

using cellular automata can parse CFGs in O(n) time using O(nZ) processors. However, achieving

CFG parsing times of less than O(n) has required more powerful and less impleinentable models of

parallel computation than used by [13], as well as significantly more processors. Ruzzo's method

[22] has a running time of O(logz(n)) using a CREW P-RAM model (Concurrent Read, Exclusive

Write, Parallel Random Access Machine), but requires O(n6) processors to achieve that time bound.

In contrast, we have devised a parallelization for the single sentence CDG parser [9, 81 which uses

O(n4) processors to parse in O(k) time for a CRCW P-RAM model (Concurrent; Read, Concurrent

Write, Parallel Random Access Machine), where n is the number of words in the sentence and

k, the number of constraints, is a grammatical constant. Furthermore, this algorithm has been

simulated on the MasPar MP-1, a massively parallel SIMD computer. The MP-1 supports up to

16K Cbit processing elements, each with 16KB of local memory. The CDG algorithm on the MP-1

achieves an O(k+log(n)) running time by using 0(n4) processors. By comparison, the TAG parsing

algorithm has also been parallelized, and operates in linear time with O(n5) processors [2:L].

To parse a free-order language like Latin, CFGs require that additional rilles containing the

permutations of the right-hand side of a production be explicitly included in the grammar [20].

Unordered CFGs do not have this combinatorial explosion of rules, but the recognition problem

for this class of grammars is NP-complete. A free-order language can easily be handled by a CDG

parser because order between constituents is not a requirement of the grammatical formalism.

Furthermore, CDG is capable of efficiently analyzing free-order languages because it is does not

have to test for all possible word orders.

In summary, CDG supports a framework which is more expressive and flexible than CFGs,

making it an attractive alternative to traditional parsers. It is able to utilize a variety of different

knowledge sources in a uniform framework to incrementally disambiguate a sentence's parse. The

algorithm also has the advantage that is is efficiently parallelizeable.

3 Parsing Spoken Sentences with Constraints

The output of a hidden-Markov-model-based speech recognizer is often a list of ithe most likely sen-

tence hypotheses (i.e., an N-best list) where parsing can be used to rule out the impossible sentence

hard

2 3 4 6 7 8 19

Figure 15: Multiple sentence hypotheses can be represented in a single word graph.

hypotheses. CDG constraints can be used to parse single sentences in a CN; however, individually

processing each sentence hypothesis provided by a speech recognizer is inefficient since many sen-

tence hypotheses are generated with a high degree of similarity. An alternative representation for

a list of similar sentence hypotheses is a word graph or lattice of word candida~tes which contains

information on the approximate beginning and end point of each word. A word graph represents a

disjunction of all possible sentence candidates that the speech recognizer provides.

Word graphs are typically more compact and more expressive than N-best s,entence lists. In an

experiment in [27], word graphs were constructed from three different lists of sentence hypotheses.

The word graphs provided an 83% reduction in storage, and in all cases, they encoded more

possible sentence hypotheses than were in the original list of hypotheses. In one case, 20 sentence

hypotheses were converted into a word graph representing 432 sentence hypotheses. Figure 15

depicts a word graph containing four sentence hypotheses which was constructedl from two sentence

hypotheses: *It's hard to recognizes speech and It's hard to wreck a nice beach. If the spoken

language parsing problem is structured as a graph processing problem, then the constraints used

to parse individual sentences would be applied to a word graph of sentence hypotheses, eliminating

from further consideration all those hypotheses that are impossible given the constraints.

We have adapted the CDG constraint network to handle the multiple sentence hypotheses

stored in a word graph, calling it a Spoken Language Constraint Network (SLCN). The input to

the parser is a word graph like the one shown in Figure 15. Each word node in the word graph

contains information on the beginning and end point of the word's utterance, represented as an

integer tuple (b, e), with b < e. The tuple is more expressive than the point scheme used for CNs

and requires modification of some of the access functions and predicates defined for the CN scheme.

It's a

It's

hard nitx

hard

to beach wreck

to recognizes speech

Notice that nodes that can be adjacent t o one another are joined by directed edges. A sentence

hypothesis must include one word node from the beginning of the utterance, one word node from

the end of the utterance, and these two word nodes must be connected by a path of edges. The

number of sentence hypotheses represented by a graph of n nodes can be exponential in the size

of n. The goal of our system is t o utilize constraints t o eliminate as many impossible sentence

hypotheses as possible, and then t o select the best remaining sentence hypothesis (given the word

probabilities given by the recognizer).

To apply constraints t o the word graph, each word node must be annotated with a set of roles.

Then each role for each'word node is assigned a set of role values, requiring O(n2) time, where n

is the number of word candidates in the graph. Unary constraints are applied t o each of the role

values in the network, and like CNs, require O(k, * n2) time.

Some of the constraint access functions and predicates must be adapted for SLCN parsing. For

example, the access functions (~ o s x) and (mod x) now return a tuple (b, e) which describes the

position of the word associated with the role value x. Hence, the equality predicate is extended t o

test for equality of intervals (e.g., (eq (1,2) (1,2)) should return true). Also, the Iless-than predicate,

(It (b l , e l) (b2, e2)), returns true if e l < b2, and the greater than predicate, (gt (b l , e l) (b2, e2)),

returns true if b l > e2. One additional change is needed t o accommodate multiple words over the

same time interval. Recall that in CN parsing a word node has a unique category and position.

Hence, t o access the category associated with a role value, Maruyama would use the function (cat

(pos i)), where (pos i) returns the position of the role value, and its category is accessed by using

the position of the word in the sentence. For an SLCN, it is not always po!jsible t o determine

the category for a role value by using the position of the word in the sentence because some word

nodes share the same position. We handle this by allowing the role values t o keep track of their

part of speech, not just the position of their word node. Hence, the constraints in Figure 3 must

be rewritten so that the access function cat operates on a role value rather than on a word node

addressed by its position. For example, U-1 is rewritten as follows:

;; [U-11 A det receives the label DET
;; and modifies a word t o i t s r ight .
(i f (eq (cat x) det) ;; use (cat x) rather than (cat (pas x))

(L (eq (lab x) DET)
(I t (pos X) (mod x))))

The preparation of the SLCN for the propagation of binary constraints is similar t o that for

a CN. All roles within the same word node are joined with an arc as in a CIS\; however, roles in

Figure 16: Multiple sentence hypotheses can be parsed simultaneously by propagating constraints
over an SLCN rather than individual CNs.

different word nodes are joined with an arc if and only if they can be memb'ers of at least one

common sentence hypothesis (i.e., they are connected by a path of directed ed.ges). To construct

the arcs and arc matrices for an SLCN, it suffices to traverse the graph from beginning to end

and string arcs from each of the current word node's roles to each of the preceding word node's

roles (where a node precedes a node if and only if there is a directed edge fro:m the preceding to

the current node) and to each of the roles that the preceding word nodes' roles have arcs to. For

example, there should be an arc between the roles for recognizes and speech in Figure 16 because

they are located on a path from the beginning to the end of the sentence *It's hard to recognizes

speech. However, there should not be an arc between the roles for wreck and n:cognizes since they

are not found in any of the same sentence hypotheses. After the arcs for the SLCN are constructed,

the arc matrices are constructed in the same manner as for a CN. The time required to construct

the SLCN network in preparation for binary constraint propagation is O(n4) because there may

be up O(nZ) arcs constructed, each requiring the creation of a matrix with 0(1a2) elements. Once

the SLCN is constructed, binary constraints are applied to pairs of role values ,associated with arc

matrix entries (in the same manner as for the CN), requiring O(kb* n4) time, where n is the number

of word candidates.

Filtering in an SLCN is complicated because the limitation of one word's function in one sentence

hypothesis should not necessarily limit that word's function in another sentence hypothesis. For

example, consider the SLCN depicted in Figure 16. Even though all the role values for to would

Figure 17: The AND/OR graph for the CDG parsing algorithm.

be disallowed by the third person singular verb recognizes, those role values cannot be eliminated

since they are supported by wreck, an infinitive verb. The SLCN filtering a1gorit:hm cannot disallow

role values that are allowed by at least one sentence in the network, in contrast to CN filtering

algorithm. Hence, we must modify the CN filtering algorithm to accommodate word graphs. We

have developed an algorithm to achieve arc consistency in an SLCN by using the properties of the

directed acyclic graph representing the word network to filter role values that can never appear

in any parse [6, 101. This algorithm, described in the next section, operates correctly with single

sentences as well as word graphs.

3.1 SLCN Arc Consistency

When we create a constraint network representing multiple alternative senteilce hypotheses, we

have changed the logical meaning of the constraint network significantly. A CN can be thought of

as an AND/OR graph such that the values assigned to the roles of a word account for the only

OR nodes in the graph, as shown in Figure 17. Hence, for a sentence to have a parse, every role

in the CN must have a least one role value after filtering. A CN with this semantics is said to be

an: consistent if and only if for every pair of roles i and j , each role value in the domain of i has at

least one role value in the domain of j for which they both satisfy the binary cconstraints.

On the other hand, an SLCN is constructed from a parse graph containing multiple sentence

candidates, some with shared word nodes. Figure 18 depicts a simple SLCN with two roles con-

structed from a word graph. An OR node is required at the top level of the graph to represent

the contribution of various word nodes to the different sentence hypotheses in .the SLCN. Though

the individual sentence hypotheses are not indicated individually in the SLCN (this would require

exponential space in some cases), the logical presence of the OR node must be captured by the arc

Figure 18: A simple SLCN.

consistency algorithm for an SLCN. Figure 19 depicts the logical meaning of the word graph in

Figure 18.

An instance of an SLCN is said to be arc consistent if and only if for every role value a in the

domain of each role, there is at least one sentence whose roles' domains contain at least one role

value b which supports that value. Hence, even though a binary constraint might disallow a role

value in one sentence, it might allow it in another. When enforcing arc consistency for a single

sentence, a role value a in the domain of i can be eliminated from role i whenever any other role

has no role values which together with a satisfy the binary constraints. However, in an SLCN,

before a role value can be eliminated from a role, it must fail to satisfy the binary constraints in ad

the sentences in which it appears. Note that SLCN arc consistency reduces to CN arc consistency

when the number of sentences is one.

SLCN arc consistency is enforced by removing from the domains those role values in a role

which violate the SLCN arc consistency condition. Our algorithm builds andl maintains several

data structures, described in Figure 20, to allow it to efficiently perform this operation. Figure

23 shows the code for initializing the data structures, and Figure 24 contains the algorithm for

eliminating inconsistent role values from the domains. The algorithm initially assumes that each

word node has a single role. After we present the algorithm, we will discuss hour multiple roles can

be supported.

If the role value a at role i is compatible with role value b at role j, then a supports b. To

Figure 19: The AND/OR graph for the SLCN in Figure 18.

keep track of how much support each role value a has, the number of role values in Lj which are

compatible with a in L; are counted, and the total is stored in Counter[(i, j) , a]. The algorithm must

also keep track of which role values that a supports by using S[(i, j) , a], which is a set of arc and

role value pairs. For example, S[(i, j) , a] = {[(j, i), b], [(j, i), c]) means that a in L; supports b and c

in Lj. If a is ever invalid for L; then b and c will loose some of their support. This is accomplished

by decrementing Counter[(j, i), b] and Counter[(j, i), c]. If Counter[(i, j) , a] becomes zero, [(ij),a]

would be placed on the List for further processing. Remember that for CN arc consistency, if

Counter[(i, j) , a] becomes zero, a would also be immediately removed from L;, because it would be

incompatible with every sentence parse. However, in SLCN arc consistency, this is not the case,

because even though a does not participate in a solution for any of the sentences which contain i

and j, there could be another sentence for which a is perfectly legal. A role value cannot become

globally inadmissible until it is incompatible with every sentence.

Because an SLCN is represented as a directed acyclic graph (DAG), the algorithm is able to

use the properties of DAGs to identify local (and hence efficiently computable) conditions under

which role values become globally inadmissible. For the sake of discussion, we assume that each

node contains a single role and the directed edges associated with the word node relate the roles

in the SLCN. Consider Figure 21, which shows the roles that are adjacent to role i in an SLCN.

Because every sentence in the SLCN which contains role i is represented as a path going through

role i, either role j or role k must be in every sentence containing i. Hence, if the role value a is to

Notation

(4 j)

a E Li is supported by b E Lj after binary constraint propagation iff the
element indexed by [a, b] in the matrix for arc (i, j) contains a 1.

Meaning

An ordered pair of roles.

I
1

N

L

Li

I [(i, j) , a1 I An ordered pair of a role pair (i, j) and a role value a E Li. I

-

{i, j, . . .) is the set of all roles, with IN1 = p * n.

{a, b, . . .) is the set of role values, with ILI = q * n

{ala E L and (i, a) is admissible)

M[(i, j) , a] = 1 indicates that the role value a is not admiz3sible for
(and has already been eliminated from) all sentences containing i and j.

All role pairs (i, j) such that there exists a sentence which contains
both i and j . We distinguish (i, j) from (j , i) for the purposes
of arc consistency, even though there is a single undirected arc joining
two roles in the network.

[(j, i), b] E S[(i, j) , a] means that role value a at role i and b at j
are simultaneously admissible.

Next-edge;

Prev-edge;

Counter[(;, j) , a]

If a directed edge from i to j exists in E, then (i, j) is a member of the set.

If a directed edge from j to i exists in E, then (j , i) is a

The number of role values in Lj which are compatible

'rev-Support[(', j) , 'I (i, k) E Prev-Support[(i, j) , a] means that a is admissible in every sentence
which contains i, j , and k.

Next-Su~~ort[(i , j)! '1 (i, k) E Next-Support[(i, j) , a] means that a is admissible in every sentence
which contains i, j, and k.

Local-Prev-Support(i,
A set of elements (i, j) such that (j , i) E Prev-edgei and a is compatible
with a t least one of j's role values.

Local-Next-Support(i,

Figure 20: Data structures and notation for the SLCN arc consistency algorithm.

A set of elements (i, j) such that (i, j) E Next-edgei and a is compatible
with a t least one of j's role values.

I

List A queue of arc support to be deleted.

Local-Prev-Support I,a = { l,n ,(i,m))
~oc.1-~xt-~upport[i.a{ = {[i,j)i

Figure 21: Local-Prev-Support and Local-Next-Support for an example SLCN. The solid directed
lines represent the SLCN edges and the dotted directed lines represent the arcs. We use the
directionality of the arcs to represent the fact that an arc matrix associated with an arc is used in
two ways. For example, n's role values support i's role values, but also i's role values support n's.
The sets indicate that the role value a is allowed for every sentence which contains n, m, and j,
but is disallowed for every sentence which contains k.

reniain in L;, it must be compatible with a t least one role value in either Lj or Lk. Also, because

either n or m must be contained in every sentence containing i, if a is to remain. in L;, it must also

be compatible with at least one role value in either L, or L,.

In order to track this dependency, two sets are maintained for each role value a at role i, Local-

Next-Support (i, a) and Local-Prev-Support (i, a). Local-Next-Support (i, a) is a set of ordered role

pairs (i, j) such that (i, j) E Next-edge;, and there is at least one role valu,e b E Lj which is

compatible with a. Local-Prev-Support(i, a) is a set of ordered pairs (i, j) such that (j , i) E Prev-

edge; and there is at least one role value b E Lj which is compatible with a. VVhenever one of i's

adjacent roles, j, no longer has any role values b in its domain which are compatible with a, then

(i, j) should be removed from Local-Prev-Support(i, a) or Local-Next-Support(i, a), depending on

whether the edge is from j to i or from i to j, respectively. If either Local-Prev-Support(i,a) or

Local-Next-Support(i, a) becomes the empty set, then a is no longer a part of an!{ solution, and may

be eliminated from L;. In Figure 21, the role value a is admissible for the sentence containing i and

j, but not for the sentence containing i and k. If because of additional constraints, the role values

in j become inconsistent with a on i, (i, j) would be eliminated from Local-Next-Support(a,i),

leaving an empty set. In that case, a would no longer be supported by any sentence.

The algorithm can utilize similar conditions for roles which may not be directlly connected to i by

Next-edge; or Prev-edge,. Consider Figure 22. Suppose that the role value a at role i is compatible

with a role value in Lj, but it is incompatible the role values in L, and L,, then it is reasonable to

eliminate a for all sentences containing both i and j , because those sentences would have to include

(i t ~)

Figure 22: If Next-edgej = {(j, x), (j , y)) and S[(i, x), a] = 4 and S[(i, y), a] = 4 , then a is inadmis-
sible for every sentence containing both i and j.

either role x or y. To determine whether a role value is admissible for a set of sentences containing

i and j, we calculate Prev-Support[(i, j) , a] and Next-Support[(i, j) , a] sets. Next-Support[(i, j) , a]

includes all (i, k) arcs which support a in i given that there is a directed edge between j and k,

and (i, j) supports a. Prev-Support[(i, j) , a] includes all (i, k) arcs which support a in i given that

there is a directed edge between k and j, and (i, j) supports a. Note that Prev-Support[(i, j) , a]

will contain an ordered pair (i, j) if (i, j) E Prev-edgej , and Next-Support[(i, j:), a] will contain an

ordered pair (i, j) if (j , i) E Next-edgej. These elements are included because the edge between roles

i and j is sufficient to allow j's role value to support a in the sentences containing i and j. Dummy

ordered pairs are also created to handle cases where a role is at the beginning or end of a network:

when (s ta r t , j) E Prev-edgej, (i ,s tar t) is added to Prev-support[(i, j) ,al , and when (j ,end) E

Next-edgej, (i ,end) is added to Next-support[(i, j) , a] . This is to prevent a role value from being

ruled out because no roles precede or follow it in the SLCN. Figure 23 shows the Prev-Support,

Next-Support, Local-Next-Support, and Local-Prev-Support sets that the initi,alization algorithm

creates for some role values in a simple example SLCN.

To illustrate how these data structures are used in SLCN arc consistency (see Figure 24),

consider what happens if initially [(I, 3), a] E List for the SLCN in Figure 23. [(L,3), a] is placed on

the list to indicate that the role value a in role 1 is not supported by any of the role values associated

1. List:=4;
2. E := {(i, j)l3a E C : i, j E a A i # j A i, j E N);
3. for (i , j) E E d o
4. f o r a E L i d o
5. begin
6. M[(i, j), a] := 0;
7. Prev-Support[(i, j), a] := 4; Next-Support[(;, j), a] := 4;
8. Local-Prev-Support(i, a) := 4; Local-Next-Support(i, a) := 4;
9. S[(i, j), a1 := 4;
10. end
11. for (i , j) E E d o
12. f o r a E L i d o
13. begin
14. Total:=O;
15. for b E Lj d o
16. if Rd(i, a, j, b) then
17. begin
18. Total:=Total+l;
19. s[(j , i), bl := S[(j, i), bl u {[(i,j), a]);
20. e n d
21. if Total=O then
22. begin
23. M[(i, j),a] := 1;
24. List:=List U{[(i, j), a]);
25. e n d
26. Counter[(;, j), a]:=Total;
27. Prev-Support[(i, j), a] := {(i, z)l(i, z) E E (z, j) E Prev-edgej)

U{(i, j)l(i, j) E Prev-edgej) U {(i, start)l(start, j) E Prev-edgej);
28. Next-Support[(i, j), a] := {(i, z)l(i, z) E E (j , z) E Next-edgej)

U{(i, j)l(j, i) E Next-edgej) U {(i, end)l(j, end) E Next-edgej);
29. if (i, j) E Next-edgei t h e n
30. Local-Next-Support(;, a):=Local-Next-Support(i, a) U{(i, j));
31. if (j , i) E Prev-edgei t h e n
32. Local-Prev-Support(;, a):=Local-Prev-Support(;, a) U {(i, j));
33. end

Next-Sup- 1 2 a = 1,3))
Next-Sup{l:3~:al=Ih.end)) Next-Sup 1 2 b = 1 3))

Next-Supl[l:31:b = fh:end))
Next-Sup 2 1 c = 2 1),(2 3))
Next-Sup'[2:31:~ = ![2:end)j
~ext-~up'(3,1), 1 = ((3, I), (3,2))
Next-~upI(3,2), 4 = {(3,2))

Local-Prev-Sup@, a) = ((1, start)) Local-Next-Sup(1, a) = {(1,2), (1,3)
Local-Prev-Sup 1 b = Local-Next-Sup 1 b = 1,2 , (1,3)
Local-Prev-Sup[2;~1 = I[i:$yt)' Local-Next-Sup[2:c{ = Ib, 31)
Local-Prev-Sup(3,d) = {(3,1),(3,2)) Local-Next-Sup(3,d) = ((3,end))

Figure 23: Algorithm for initializing the SLCN arc consistency data structures dong with a simple
example. The dotted lines are members of the set E.

1. while List # d do
beg& '

choose [(j , i) , b] from List and remove it from List;
for [(i , j) , a1 E S [(j , 9, bl do

begin
Counter[(;, j) , a]:=Counter[i , j) , a] - 1;
if Counter[(;, j) , a] = 0 A M (i , j) , a] = 0 then

begin
\

List:=List U{[(i , j) , a]) ;
M [(i , j) ,a] := 1;

end
end

for (j , z) E Next-Support[(j, i) , b] do
begin

Prev-Support[(j, z) , b]:=Prev-Support[(j, z) , b] - { (j , i)) ;
if Prev-Support[(j, z) , b] = 4 A M [(j , z) , b] = 0 then

begin
List:=List U{[(j , z) , b]) ;
M [(j , z) , b] := 1;

end
end

for (j , z) E Prev-Support[(j, i) , b] do
begin

Next-Support[(j, z) , b]:=Next-Support[(j, z) , b] - { (j , i)) ;
if Next-Support[(j, z) , b] = 4 M [(j , z) , b] = 0 then

begin
List:=List U{[(j , z) , b]) ;
M [(j , z) , b] := 1;

end
end

if (j , i) E Next-edgej then
Local-Next-Support(j, b):=Local-Next-Support(j, b) - { (j , i)) ;

if Local-Next-Support(j, b) = 4 then
begin

Lj := Lj - {b) ;
for (j , z) E Local-Prev-Support(j, b) do

if M [(j , z) , b] = 0 then
begin

List:=List U{[(j , z) , b]);
M [(j , z) , b] := 1;

end
end

if (i , j) E Prev-edgej then
Local-Prev-Support(j, b):=Local-Prev-Support(j, b) - { (j , i)) ;

if Local-Prev-Support(j, b) = 4 then
begin

Lj := Lj - {b) ;
for (j , z) E Local-Next-Support(j, b) do

if M [(j , z) , b] = 0 then
begin

List:=List ~ { [(j , z) , b]);
M [(j , z) , b] := 1;

end
end

end

Figure 24: Algorithm to enforce SLCN arc consistency.

with role 2. When that value is popped off List, it is necessary to remove [(I, 3), a]'s support

from all S[(3, I) , x] such that [(3, I) , x] E S[(1, 3), a] by decrementing for each x, Counter[(3,l), x]

by one. If the counter for any [(3, I) , x] becomes 0, and the value has not already been placed

on the List, then it is added for future processing. Once this is done, it is nlecessary to remove

[(I, 3), a]'s influence on the SLCN. To handle this, we examine the two sets Prev-Support[(l, 3), a] =

{(1,2), (1,3)) and Next-Support[(l, 3), a] = ((1, end)). Note that the value (1, end) in Next-

Support [(l ,3) , a] and the value (1,3) in Prev-Support[(l, 3), a], once eliminated from those sets,

require no further action because they are dummy values. However, the value (1,2) in Prev-

Support[(l, 3), a] indicates that (1,3) is a member of Next-Support[(l, 2), a], and since a is not

admissible for (1,3), (1,3) should be removed from Next-Support [(1 ,2) , a], leaving an empty set.

Note that because Next-Support[(l, 2), a] is empty and assuming that M[(1,2) ., a] = 0, [(I, 2), a] is

added to List for further processing. Next, (1,3) is removed from Local-Next-Support(1, a), but

that set is non-empty. During the next iteration of the while loop [(I, 2), a] is popped from List.

When Prev-Support[(l, 2), a] and Next-Support[(l, 2), a] are processed, Next-Snpport[(l, 2), a] = 4
and Prev-Support[(l, 2), a] contains only a dummy, which is removed. When (1,2) is removed from

Local-Next-Support(1, a) , the set becomes empty, so a is no longer compatible with any sentence

containing role 1 and can be eliminated from further consideration as a possible role value for role

1. Once a is eliminated from role 1, it is also necessary to remove the support of a E L1 from all role

values on roles that precede role 1, that is for all roles x such that (1, x) E Local-IPrev-Support(1, a).

Since Local-Prev-Support(1,a) = {(l , s t a r t)) , and start is a dummy role, there is no more work

to be done.

In contrast, consider what happens if initially [(I, 2), a] E List for the SLCN in Figure 23. In

this case, Prev-Support[(l, 2), a] contains (1,2) which requires no additional work; whereas, Next-

Support [(I, 2), a] contains (1,3), indicating that (1,2) must be removed from Prev-Support[(l, 3), a]'s

set. After the removal, Prev-Support[(l, 3), a] is non-empty, so the sentence containing roles 1 and

3 still supports the role value a on 1. The reason that these two cases provide different results is

that roles 1 and 3 are in every sentence; whereas, roles 1 and 2 are only in one of them.

3.2 The Running Time and Correctness of SLCN Arc Consistency

The running time of the routine to initialize the SLCN arc consistency structures (in Figure 23)

is O(n4), and the running time for the algorithm which prunes labels that are not arc consistent

(in Figure 24) also operates in O(n4) time, where n is the number of word nodes in network. By

comparison, the running time for CN arc consistency is O(n4), assuming that there are n words in

a sentence. The proof of correctness of this algorithm is detailed in [lo, 111, but we will summarize

it below.

A role value is eliminated from a domain by SLCN arc consistency only if its Local-Prev-

Support or its Local-Next-Support set becomes empty. Therefore, we must shoar that a role value's

local support sets become empty if and only if that role value cannot participate in an SLCN

arc consistent solution. This is proven for Local-Next-Support (Local-Prev-!$upport follows by

symmetry). Observe that if a E L;, and it is incompatible with all of the roles which immediately

follow L; in the SLCN, then it cannot participate in an SLCN arc consistent solution. In line 32

in Figure 24, (i, j) is removed from Local-Next-Support(i, a) set only if [(i, j),cz] has been popped

off List. Therefore, we show that [(i, j) , a] is put on List, only if a E L; is inconnpatible with every

sentence which contains i and j, by induction on the number of iterations of the while loop.

For the base case, the initialization routine only puts [(i, j) , a] on List if a E L; is incompatible

with every role value in L j (line 24 of Figure 23). Therefore, a E L; is in no solution for any sentences

which contain i and j. Assume the condition holds for the first k iterations of the while loop in

Figure 24, then during the (k+l)th iteration, tuples of the form [(i, j) , a] for thce (k+l)th iteration

were put on List by line 9 in Figure 24 or by line 24 in Figure 23 (in which case a is no longer

compatible with any labels in Lj), line 18 in Figure 24 (in which case Prev-Support([(i, j) , a]) = 4),

line 27 in Figure 24 (in which case Next-Support([(i, j) , a]) = 4), or line 39 in Figure 24 (there is

no longer any Local-Next-Support for a). In any of these cases, a E L; is incompatible with every

sentence which contains i and j. We can therefore conclude that this is true for all iterations of

the while loop.

3.3 Multiple Roles in an SLCN

As shown in Figure 18, an SLCN can have more than a single role. In our initial development of

the SLCN arc consistency algorithm discussed in [6], we distinguished between1 two types of arcs:

intm-arcs, which are arcs joining roles within the same word node, and inter-arcs, which are arcs

joining roles across word nodes. The inter-arcs were processed in the same way as in the algorithm

in Figures 23 and 24, but the intra-arcs were handled differently. They seemed to require special

handling because if a role value is disallowed for role x by a role y within the same word node as z ,

then the role value must be eliminated from z. In this case, the elimination of the role value from

x is correct because every sentence containing the word node disallows the role value.

Figure 25: An SLCN with multiple roles compatible with our new algorithm.

Special handling of this case complicates the arc consistency algorithm; however, there is a

simpler way to accomplish precisely the same effect as the special case while using the simpler

algorithm shown in Figures 23 and 24. It simply involves setting up the SLCN in a slightly different

way than in Figure 18. The edges in the SLCN in Figure 18 relate the roles across nodes but not

roles within the same word node. If we assume that the roles within a word node are connected

by directed edges as in Figure 25, then the arc consistency algorithm in Figure 24 is sufficient for

SLCNs with more than a single role. Because there is a single linear list of roles within a word

node, they must appear in all the same sentences, and so if one role value is disallowed by one of

the roles in the linear list of roles, it will be eliminated from the role. This is because every sentence

containing the first role must also contain the other role (i.e., there are no alternative paths that

include both roles). Hence, we set up SLCNs with more than a single role as :shown in Figure 25

and use the simpler arc consistency algorithm described in this paper.

3.4 Lexical Ambiguity

Many words in the English language have more than a single part of speech. For example, the word

garden in Figure 25 can either be a noun or a verb. Maruyama's algorithm requires that a word

have a single part of speech, which is determined by dictionary lookup prior to the application of

the parsing algorithm. Since parsing can be used to lexically disambiguate a sentence, ideally, a

parsing algorithm should not require that a part of speech be known prior to piusing. In addition,

Figure 26: An SLCN with multiple parts of speech for some words.

lexical ambiguity, if not handled in a reasonable manner, can cause correctness and/or efficiency

problems for a parser [4, 61.

To handle lexically ambiguous words, we create a word node for each legal part of speech for a

word. These word nodes cannot appear in the same sentence hypotheses and sol are not connected

to each other by directed edges, and do not share arcs for binary constraints. For example, Figure

26 depicts an SLCN which supports multiple parts of speech for several different word nodes. This

method of handling multiple parts of speech within our constraint parsing algorithm requires the

use of the SLCN arc consistency algorithm described in this paper.

Multiple parts of speech can be handled in a CN algorithm (as discussed bjr Harper and Helz-

erman in [6]) by creating separate role values for each part of speech within the same word node,

where it becomes the responsibility of the role value to keep track of its lexical category. How-

ever, the approach uses more space and requires an additional constraint wh~en compared with

the method described in this paper. Role values associated with two different I-oles within a word

node should not be allowed to support each other if they do not correspond to the same part of

speech. Hence, we must propagate a binary constraint which zeros out the entries of all intra-arc

arc matrices that are indexed by role values corresponding t o different parts of speech. By using

an SLCN t o handle lexical ambiguity, the roles of the word nodes corresponding to different parts

of speech cannot appear in any common sentences and so are not connected by arcs, eliminating

the wasted space and the need for an additional constraint.

3.5 Feature Analysis

Lexical features, like number, person, and case, are used in many natural language parsers to enforce

subject-verb agreement, determiner-head noun agreement, and case requirements for pronouns.

This information can be very useful for disambiguating parses for sentences or for eliminating

impossible sentence hypotheses, hence our parser supports them.

Many times, even if a word is not lexically ambiguous, it can have ambiguity in the feature

information associated with the word. For example, the noun fish can take the number/person

feature value of third person singular or third person plural. It is important associate a single

feature value with each role value which is being tested for number agreement with another word's

role values. Because our parser utilizes only unary and binary constraints, role values with feature

value ambiguity can only be tested pairwise for consistency, and yet the feature values associated

with one word in a valid parse must often be compatible with more than one word in the sentence.

For example, if we store sets of features with a node when we parse the sentence *a fish eat, it is

easy to ensure that a and fish agree in number and person by using a binary constraint, and that

fish and eat agree, but without using ternary constraints, there is no way to ensure that a, fish,

and eat have jointly compatible feature values. Furthermore, there is no guarantee that ternary

constraints (or for that matter n-ary constraints, for any prespecified n) are sufficient to ensure

that the parser rejects sentences that are ungrammatical because of inc~mpat~ible feature values

(e.g., *The fish which are eating swims).

In order to enforce feature value compatibility across a set of words which must jointly agree

on a feature value in our parsing algorithm, word nodes should be duplicated (along with their

role values and arc matrices) and assigned a single feature value for the feature being tested by

a constraint, not a set of features. A naive and computationally expensive vvay to achieve this

end is t o initially duplicate each node so that all of the possible combinations of feature values are

covered. Fortunately, there is a better alternative; when the parser is propagating a constraint with

a particular feature test, a node with multiple values for that feature can be duplicated and assigned

one of the feature values, and then that constraint containing the feature test can be applied to its

role values, eliminating many of them before other types of feature constraints are propagated. A

grammar writer can order constraints in a constraint file in such a way that role value duplication is

minimized. For example, by placing pure phrase structure constraints before constraints containing

feature tests, syntactically eliminated role values will not have to be duplicated and tested against

I scenic \

Figure 27: A word graph provided to our system by the speech recognizer.

the feature constraints. Given this strategy, the running time of the parser with feature constraints

is comparable to the running time of the parser without feature tests.

In the next section, we illustrate how our system parses a word graph provided by a speech

recognizer. This example shows how node splitting is used to propagate syntactic feature constraints

in the presence of feature value ambiguity.

3.6 A Parsing example

To parse a sentence, our parser requires a grammar designer to specify the grammar parame-

ters, write and test constraints consistent with the grammar parameters, and design a grammar-

appropriate lexicon. Assume that a grammar is needed to parse the word graph provided by our

speech recognizer shown in Figure 27.

The grammar designer provides a file containing the grammar parameters to the parser. This

file provides information needed to check constraints for good form and to create the constraint

network. Figure 28 depicts an example of a grammar parameter file for a simple grammar to parse

our example. Notice that in addition to categories, roles, and labels, there is ;a label-table which

restricts labels by part of speech and role id, a set of grammar features restricting the feature values

for each feature type, and a feature-table restricting the the legal feature types for each part of

speech.

Our parser uses the feature-table to check constraints and dictionary entries for good form. It

uses the label-table to restrict the possible labels for each role using the category of the word and

its role id. In practice, the table reduces the number of role values in the initial1 SLCN by a factor

of five to seven, and eliminates the need to propagate some unary constraints. Even though this

; A l i s t of the l ega l pa r t s of speech

(categories adj noun verb propernoun)

; A l i s t of r o l e names f o r the grammar

(ro les governor needs)

; A l i s t of l ega l l abe l s f o r the grammar

(labels root obj adj nounmod s blank)

; A l a b e l t ab le f o r r e s t r i c t i n g the domains given
; par t of speech and r o l e name.

(label- table (governor (noun noun-mod obj)
(propernoun nounaod ob j)
(verb root)
(adj ad j))

(needs (noun blank)
(propernoun blank)
(verb s)
(adj blank) 1)

; A l is t of l ega l fea ture types and possible values

(grarrrarleatures (number 1s 2s 3s l p 2p 3p)
(subcat dobj)
(sem-type sign p re t ty c i t y a i r- t ransfer show))

; A f ea tu re t ab le indicating the possible values f o r
; each fea tu re type associated with a pa r t of speech
; and i t s defaul t value i f none i s specified.

(f eature-table (adj (sea-type p re t ty [1))
(noun (sea-type sign a i r- t ransfer [1)

(number 3s 3p C3sl))
(propernoun (number 3s 3p C3sl)

(sem-type c i t y C 1))
(verb (number 1s 2s 3s l p 2p 3p C3s1)

(subcat dob j)
(sem-type show C 1)))

Figure 28: A grammar parameter file for a simple example grammar.

(display (category noun (number 3s)
(sem-type sign))

(category verb (number i s 2s lp 2p 3p)
(subcat dob j)
(ser-type show)))

(f l i g h t (category noun (number 3s)
(sea-type air-transf er)))

(f l i g h t s (root~rord f l i g h t)
(category noun (number 3p))))

(Phoenix (category propernoun (number 3s)
(sen-type c i ty)))

(scenic (category adj (sem-type pretty)))

Figure 29: A dictionary for parsing our example.

does not improve the asymptotic running time of the algorithm, it does decrease the actual running

time of the CDG algorithm (and the size of the SLCN).

The dictionary for our simple -example is described next. The lexicon mus:t specify all of the

words that can appear in a sentence. It is represented as a list of word entries, where each word

entry is a list headed by the associated word along with other important information. Each word

entry includes information on its legal parts of speech. In addition, syntactic and semantic features

are stored for each part of speech of a word. The lexicon for our example appears in Figure 29. This

lexicon stores information about noun number, verb number, semantic type, and subcategorization.

The word flights inherits features that are not mentioned in its entry from its soot form flight.

Given the grammar parameters, our system constructs the SLCN in Figure 30 from the word

graph in Figure 27 by looking up information on each word in the dictionary. Ntotice that there are

two roles for each word node, governor (i.e., G) and needs (i.e., N), and that twto nodes are created

for the word display because it has two possible parts of speech. All remaining features are initially

stored as sets on the word node. The role values assigned to each role are restricted to those that

are allowed by the label-table (and the restriction that no word ever modifies itself).

The constraints for our grammar are shown in Figure 31. Application of the unary constraints

over the SLCN in Figure 30 eliminates many of the role values, as shown in Figure 32. To apply

binary constraints, it is necessary to create arcs (and their corresponding arlc matrices) joining

those roles that can appear in at least one common sentence hypothesis. D r a ~ ~ i n g all of the arcs

would clutter the picture, so we will only depict those that are pertinent to pinpointing the parse

of the sentence. However, the reader should be aware that no arcs join the roles of the noun form

of display with the verb form of that word or the roles of scenic with the roles of Phoenix, because

they cannot appear in the same sentence hypotheses. Figure 33 depicts the state of the matrices

Figure 30: An SLCN constructed from the word graph in Figure 27.

that are affected by the binary constraints. All other matrices contain only ones. Notice that

we have numbered the roles in the SLCN. These numbers will allow us to discuss Prev-Support,

Next-Support, Local-Prev-Support, and Local-Next-Support sets when filtering; is applied next.

After the propagation of binary constraints, we must apply the filtering algorithm. First, the

preprocessing procedure in Figure 23 is invoked to examine all of the arc matrices associated with

the arcs and determine how the role values for each role are supported by elements associated with

the roles they share an arc with. If a role value a E i is not supported by an!y of the role values

associated with the role values of j, then the item [(i, j) ,a] is placed on List. 'The procedure also

calculates the Prev-Support, Next-Support, Local-Prev-Support, and Local-Next-Support sets for

each role value. Once this preprocessing step is complete, the arc consistency procedure in Figure

24 loops until all items on List have been processed. As items on List are processed, new items

can be inserted onto List.

After the preprocessing procedure has been executed, List contains the following items: [(9,6),

obj-(3,5)], [(9,8), obj-(3,5)], [(9,2), obj-(1,3)], [(7,2), obj-(1,3)], and [(4,5), s-(:1,5)]. For example,

the presence of [(9,6), obj-(3,5)] on List indicates that the role value obj-(3,,5) in role 9 is not

supported by any of the role values associated with role 6.

Note that (9,8) and (9,6) are the only members of Local-Prev-Support(9, obj-(3,5)) and so once

[(9,6), obj-(3,5)] and [(9,8), obj-(3,5)] are processed by the arc consistency procedure in Figure 24,

UUARY COUSTRAIUTS:
; A r o l e value v i t h l a b e l root modifies nothing.

(i f (eq (lab I) root)
(eq (mod I) n i l))

; A r o l e value v i t h l a b e l blank modifies nothing.

(i f (eq (l ab I) blank)
(eq (mod I) n i l))

; A r o l e value v i t h l a b e l adj modifies a vord t o i t s r i g h t .

(i f (eq (l a b I) adj)
(I t (pos I) (mod I)))

; A r o l e value v i t h l a b e l nounaod modifies a vord t o i t s r i g h t .

(i f (eq (lab I) nounaod)
(I t (pos I) (mod I)))

; A r o l e value v i t h l a b e l obj modifies a word t o i t s l e i t .
(i f (eq (l a b I) obj)

(g t (pos I) (mod 11))

; A r o l e value v i t h l a b e l s modifies a vord t o i t s r i g h t .

(i f (eq (l a b I) s)
(I t (pea I) (mod 1))

BIUARY COUSTRAIUTS:
; A r o l e value f o r a verb v i t h l abe l s needs an obj which
; it governs.

(i f (k (eq (l a b I) s)
(eq (r i d y) governor)
(eq (mod I) (pos y) 1)

(k (eq (l a b y) obj)
(eq (mod y) (pos I))))

; A r o l e value f o r a noun v i t h l abe l obj i s governed by an
; EI vhich needs it.

(i f (k (eq (l ab I) obj)
(eq (r i d y) needs)
(eq (mod 1) (pas y)))

(k (eq (l ab y) 8)
(eq (mod y) (pos I) 1))

Figure 31: The unary and binary constraints for our example!.

Figure 32: The SLCN after unary constraint propagation.

Figure 33: The SLCN after binary constraint propagation.

Local-Prev-Support(9, obj-(3,5))'s set becomes empty indicating that obj-(3,5) is not a legal role

value in any sentence hypothesis, and so it can be removed from role 9. In addition, a l l of the arcs

attached to role 9 will eliminate their support for obj-(3,5), and determine whether the elimination

of that role value makes it possible to add new items onto List. When the algorithm eliminates

[(9,4), obj-(3,5)] from the SLCN, it notices that [(4,9), s-(3,5)] should also be added to the List

because the removal of obj-(3,5) causes s-(3,5) to become unsupported.

When [(4,9), s-(3,5)] is processed, the algorithm must eliminate s-(3,5)'s support support given

Prev-Support[(4,9), s-(3,5)] = {(4,8), (4,6)) and Next-Support[(4,9), s-(3,5)] == {(4,10)). This is

achieved by removing (4,9) from Next-Support[(4,8), s-(3,5)] = {(4,9)) and Next-Support[(4,6),

S-(3,5)] = {(4,9)), leaving both sets empty, causing [(4,8), s-(3,5)] and [(4,6), s-(3,5)] to be added

to List. It must also remove (4,9) from Prev-Support[(4,lO), s-(3,5)] = {(4,9)), causing [(4,10),

s-(3,5)] to be added to the List. When [(4,6), s-(3,5)] is processed, the algorithm adds [(4,5), s-(3,5)]

to the List, and when [(4,8), s-(3,5)] is processed, it adds [(4,7), s-(3,5)]. Because Next-Support(4,

s-(3,5)) = {(4,5), (4,7)), once these two items are processed, s-(3,5) can be deleted from node 4.

When the role value is eliminated, the algorithm is able to add [(7,4), obj-(1,,3)] to List. When

[(7,4), obj-(1,3)] and [(7,2), obj-(1,3)] have both been processed, Local-Prev-Sulpport(7, obj-(1,3)),

which initially was {(7,4), (7,2)), becomes empty and so obj-(1,3) can be eliminated from role 7.

When obj-(3,5) is deleted from role 9, it also causes a chain of events to eliminate blank-nil from

role 2 (since role 9 is in every sentence hypothesis containing role 2), thereby eliminating the only

role value from role 2. After additional processing, the role values on role 1 alre also eliminated,

leaving the word node for the noun form of display without any support. The word node can be

pruned from the SLCN under these circumstances.

Once filtering is complete, the SLCN is in the state shown in Figure 34. The network is still

ambiguous since it contains a verb with multiple number values and two paths through the network.

To restrict the number for the word display, we would propagate a number feature constraint

indicating that a command verb must agree with the second person pronoun, you. To propagate

this constraint, the word node would be split into five similar nodes with the ollly difference being

the value stored for the number feature. The arcs and arc matrices associated with the node would

also be duplicated. After node duplication, a constraint would be propagated r'equiring agreement

with the word you, which has a number feature of either second person singular or plural. This

constraint would eliminate all but two of the nodes for the verb, as shown in Figure 35. To

determine which of the four remaining sentence hypotheses is correct requires the use of additional

Figure 34: The SLCN after filtering.

(n~n-n-+(5,6)1

Figure 35: The SLCN after number constraints.

Figure 36: An SLCN after syntactic constraint propagation and filtering.

constraints.

Constraint propagation provides a uniform method for applying higher-level knowledge sources

to prune a word graph. Because the constraints for each knowledge source can be developed

independently, it is not as difficult t o add another knowledge source to our parser. In the next

section, we discuss the addition of semantic constraints.

3.7 Adding Semantic Constraints

Semantic features associated with the words in a dictionary can also be used to help disambiguate an

SLCN. To illustrate the use of semantic constraints, consider the SLCN in Figure 36, assuming that

syntactic constraints and syntactic feature constraints have been propagated, and filtering has been

performed. This SLCN represents two distinct sentence hypotheses: Show me flights to Atlanta and

Show me flights with Atlanta. Notice that the prepositions to and with are synte~ctically ambiguous

since they can either modify the noun flights or the verb show. In addition, t:he prepositions are

semantically ambiguous because they can fill a number of semantic functions i:n the sentence. By

using the semantic features in this sentence and two simple semantic constrai-nts, we are able to

disambiguate this network entirely. The constraints are shown in figure 37.

To propagate the semantic constraints, we must duplicate the word nodes associated with the

prepositions and assign each of them a unique semantic feature value, as sh.own in Figure 38.

The first constraint uses the semantic type of the head word in the object of the preposition to

; ; A location tha t is an object of a preposition modifies
;; a locat ive preposition.

(i f (& (eq (lab x) ppab j)
(eq (mod x) (por y)
(eq (ram-type x) locat ion)) ; ; Mote that a c i t y is a 10,cation.

(V (eq (sem-type y) t o l o c)
(eq (mom-type y) fromloc)
(eq (sem-type y) a t l o c)))

; ; A t o l o c preposition modifies a move-event .
(i f (and (V (eq (lab x) nqp)

(eq (lab y) v q p))
(eq (mod x) (por y))
(eq (rem-type x) t o l o c))

(eq (sea-type y) move-event))

Figure 37: Semantic constraints for Look up stairs.

W-l)

Figure 38: An SLCN just prior to semantic constraint propgation.

Figure 39: An SLCN after semantic constraint propagation and filtering.

restrict the semantic type of the preposition. After this constraint is propaga-ted, to with toloc

as its semantic feature is the only prepositional word node remaining in the network. Because

the semantic types of each the other instances of to and with are incompatible with the semantic

type of its object, they are eliminated from the network. The second semantic constraint can now

restrict the type of word to which a to loc preposition can attach. This constraint eliminates the

role value v-pp-(1,2), giving a completely disambiguated word network, as shone in Figure 39.

We conducted a simple experiment t o determine the effectiveness of syntiactic and semantic

constraints for reducing the ambiguity of word networks constructed from sets of BBN's N-best

sentence hypotheses [23] from the ATIS database (Air Travel Information System). For this ex-

periment, we selected twenty sets of 10 N-best sentence hypotheses for three different types of

utterances: a command, a yes-no question, and a wh-question. The lists of the N-best sentences

were converted t o word graphs in which the duration of each node was determined by maintaining

a syllable count through the utterance. Syntactic constraints were constructed first, then semantic

constraints were constructed t o further limit ambiguity [7]. Semantic constrajnts were relatively

easy t o create and incorporate into our parser. In fact they were added to the grammar without

modifying a single syntactic rule. Preliminary work with prosodic constraints also suggests that

prosodic constraints should be as simple t o add to our grammar.

Syntactic and semantic constraints are very useful for pruning out word inodes in an SLCN

that are syntactically or semantically anomalous. However, they do not, in man,y cases, sufficiently

constrain the SLCN t o a single sentence hypothesis with a single parse. Contextual information

represents an additional knowledge source that can be exploited to reduce the ambiguity in an

SLCN, as discussed in the next section.

3.8 Incorporating Pragmatic Constraints into SLCN Processin,g

Barwise and Perry [2] suggest that ambiguity of language is just another aspect of the efficiency of

language. The fact that an expression can be used in more than one way is just another feature

of that expression. Understanding an expression more fully comes at the cost of identifying the

context. If we can identify the context in which the sentence occurs (i.e., the situation), then we

can understand the expression more fully. Clearly to provide a general model ca~pable for smoothly

handling all the contexts that a human being can is beyond the scope of this paper. However,

we believe that by exploiting context as a feature of language, we can develop a constraint-based

system capable of utilizing this information.

For the purposes of this paper, we define a context as a computer application. A user can interact

with a language processor which interfaces with two or more applications as depicted in Figure 2.

Here the function of the natural language interface is to interact with the correct application given

the user's input. The process of parsing the input language should help to identify the correct

context, and the identification of the correct context should help to disambiguate the user's input.

As an example of the usefulness of context, assume our system receives the word graph from

our speech recognition module in Figure 27. Assume that there are three contexts, where c l

corresponds to an air travel database, c2 corresponds to a road map database, ,and c3 corresponds

to a program for designing signs. Our system constructs an SLCN from the w o ~ d graph by looking

up information on each word in the dictionary which stores the same informatioil as in our previous

example along with additional information about the contexts in which the word can occur. The

contextually augmented dictionary for our example is shown in Figure 40. Many words can be

shared across contexts, but some content words should appear in one context but not another. Just

knowing which contexts are supported by a word provides a useful clue for selecting the correct

context for an utterance.

The SLCN in Figure 41 is constructed from the word graph in Figure 27, assuming the grammar

parameter file in Figure 28 and the lexicon in Figure 40. As before, two nodes are created for the

word display because it has two possible parts of speech and all remaining features are initially

stored as sets on the word node, including contextual information.

By storing the allowable contexts with a word node, it is possible, without propagating even

(display (category noun (context c3)
(number 3s)
(sen-type s ign))

(category verb (context c i c2)
(number is 2s i p 2p 3p)
(subcat dobj)
(sem-t ype show)))

(f l i gh t (category noun (context c l c3)
(number 3s)
(sen-type air-transf e r)))

(f l i gh t s (root-word f l i gh t)
(category noun (number 3 ~))))

(Phoenix (category propernoun (context c i c3)
(number 3s)
(sen-type c i t y)))

(scenic (category adj (context c2)
(sea-type pre t ty)))

Figure 40: A contextually expanded dictionary for parsing our example.

Figure 41: An SLCN constructed from the word graph in Figure 27.

Figure 42: The SLCN pruned of words associated with context c2.

one constraint to eliminate a context from consideration. For a sentence to be a legal utterance

(given our restricted sense of context), it must have at least one common context across all word

nodes on the path. Also, for a context to be admissible, there must be a path from start to end

containing word nodes that support that context. For example, in Figure 41, context c2 is not

supported by the SLCN even before propagation of constraints. If a context is not supported by at

least one path through the network, then all word nodes that support only the disallowed context

can be immediately pruned, as shown in Figure 42. Notice that c2 is also elimjnated as a context

for the verb form of display.

The next step in processing a contextual SLCN is to propagate the context independent unary

and binary syntactic constraints in Figure 31 and filter the SLCN. Once this step is completed, the

SLCN is in the state depicted in Figure 43. Notice that following this, the wordl node for the noun

form of display is eliminated; therefore, context c3 is no longer supported and can be pruned from

the network.

Next we select a set of constraints for a context independent syntactic fea.ture to propagate.

For each node that has more than one value for the feature type, we duplicate the node and assign

it a single feature value. For example, if we propagate a number feature constraint, we would split

the node corresponding to the verb display, and propagate the constraint to limit the number of

command verb t o be 2s or 2p. Once this constraint is propagated, the network is in the state

tobu1 9)) {blank-nl)

Figure 43: The SLCN after context independent constraints are propagated and filtering is per-
formed.

depicted in Figure 44.

At this point we can utilize contextual constraints in an attempt to refine the parse for the

SLCN further. One constraint that would work well in the case of context c l , c2, or c3 is to restrict

the number of a command verb to second person singular (since the computer is singular). Because

this constraint is common to all of the contexts, this constraint could be applied to a contextually

ambiguous network without creating separate nodes for each context. However, in the case of our

example, the context has already been isolated, and we apply the constraint to simply eliminate

the number ambiguity, with the resulting SLCN depicted in Figure 45. This sentence now has a

single parse and is valid only in context c l .

A model that can utilize a variety of knowledge sources to disambiguate spoken language is more

likely to achieve a level of accuracy comparable to humans. We have described a constraint-based

system which is able to utilize a variety of knowledge sources to disambiguate speech. Knowledge

sources commonly used in speech understanding are shown in Figure 1. There is :good evidence that

there is an implicit ordering among these knowledge sources such that one type of information must

be available before it makes sense to progress to the next level. If we combine two ordered knowledge

sources together in a single module, the resulting system can be difficult to understand and can

often become intractable. For example, combining prosodic processing [3] a with CFG grammar

rules typically increases the size and complexity of the grammar and reduces its understandability.

Also, semantic grammars have only been effective for limited domains and do not scale up well to

larger systems [I].

The ordering of knowledge sources in Figure 1 suggests that there should be a way to order

Figure 44: The SLCN after context independent number feature constraints axe propagated and
filtering is performed.

sem-typeSair-transfer]

Figure 45: The SLCN with a single sentence hypothesis in context c l .

constraints to limit the combinatorial explosion of managing all knowledge sources a t once. Below

we enumerate the steps of our algorithm:

1. Create an SLCN for the word graph by using a dictionary and eliminate i~n~ossible contexts.

2. Propagate context-independent syntactic unary constraints (no feature testing).

3. Construct arcs for binary constraint propagation.

4. Propagate context-independent syntactic binary constraints and filter the SLCN.

5. Loop for each set of syntactic feature type constraints:

Duplicate the nodes with more than a single value for that feature (role values, arcs,

and matrices too).

Propagate the constraints for that feature type.

Filter the network.

Eliminate impossible contexts.

6. For semantic feature constraints:

Duplicate the nodes with more than a single semantic feature value (role values, arcs,

and matrices too).

Propagate the semantic constraints.

Filter the network.

Eliminate impossible contexts.

7. For contextual constraints:

Duplicate the nodes with more than a single context,

Propagate the contextual constraints,

Filter the network.

Eliminate impossible contexts.

Depending on the number of contexts and the degree of sharing between contexts, we could

utilize a courser granularity for propagating context-specific constraints. For example, if contexts

c l and c2 have many common constraints, then splitting a node that is ambiguous between c l

(look (category verb (context c l c2)
(number l a 2s l p 2p 3p)
(sem-type f ind-ev, see-ev)))

(s t a i r s (category noun (context c l c2)
(number 3p)
(aem-type part(c1) l o c (c 2))))

(up (category par t i c l e (context c l c2))
(category preposit ion (context c l c2)

(sem-type up-loc) 1)

Figure 46: Another contextually expanded dictionary.

and c2 makes no sense until after the shared constraints are propagated6. Constraint parsing does

provide a level of control to allow a system designer to avoid duplication of effolrt.

We have observed that semantic features and context are often highly correlated. Hence, rather

than require all semantic types associated with a word to be allowed in each of its contexts, we

provide a mechanism for indicating which semantic features are defined for each context in the

dictionary. Consider the dictionary in Figure 46. Notice that the semantic features for the word

stairs are annotated with a specific context, even though the word is defined in both contexts. If c l

is a parts database and c2 is a mobile robot with an on-board phone, then the word stairs should

have very different semantic features for each of the contexts. In the first case, ithe stairs represent

a part in the database; whereas, in the second, the stairs represent a location. In contrast, the

word look is also defined in both contexts, but because its semantic features can appear in both

contexts, they are not annotated with contextual information.

Associating contextual information with a semantic features allows us to parse the SLCN for

Look up stairs in two different ways, depending on which context is chosen. Figure 47 depicts an

SLCN for this sentence after syntactic constraint propagation and filtering. Notice that there are

two paths through the network, one using up as a preposition, the other usiilg it as a particle.

Each word in the network can be used in either context; however, the semantic. feature associated

with the word stairs is different for each context. If we propagate a context independent constraint

requiring that the object of an up-loc be a loc (i.e., a location), then c l is disalllowed for the parse

where up is a preposition. Then, if we propagate context specific semantic constraints, further

refinement is possible. For example, after propagating a constraint which requires the object of

look up to be a part in c l and a number in c2, the SLCN ends up in the state shown in Figure 48.

Though the SLCN is still ambiguous, it contains a single parse for the sentence in each context.

'Although it is necessary to split the word node into two nodes, one for contexts cl and c2 .and one for the others.

Figure 47: An SLCN after syntactic constraint propagation.

Figure 48: An SLCN after semantic and contextual constraint propagation.

In conclusion, we have described a system which is capable of utilizing a variety of knowledge

sources to select the most appropriate parse for a spoken sentence. These knowledge sources

include syntax, semantics, and contextual information. The parser uses a uiliform mechanism,

constraint propagation, t o apply these high-level knowledge sources t o prune a wsord graph provided

by the speech recognizer. Constraints for different knowledge sources can be dt?veloped somewhat

independently and used incrementally when parsing a sentence. Our constraint-based parser should

prove an important component for a spoken language interface t o several computer applications,

where each application defines its own context.

References

[I] J . Allen. Natuml Language Understanding. The Benjamin Cummings Pu'blishing Company,

Menlo Park, CA, 1987.

[2] J. Barwise and J. Perry. Situations and Attitudes. The MIT Press, Cambridge, MA, 1983.

[3] J. Bear and P. Price. Prosody, syntax, and parsing. In Pmeedings of the 28th annual ACL,

1990.

[4] P. Dey and B. R. Bryant. Lexical ambiguity in tree adjoining grammars. Information Pro-

cessing Letters, 34:65-69, 1990.

.[5] M. P. Harper. Ambiguous noun phrases in logical form. Computational Lin!guistics, 18(4):419-

465, 1992.

[6] M. P. Harper and R. A. Helzerman. PARSEC: A constraint-based parser for spoken language

parsing. Technical Report EE-93-28, Purdue University, School of Electrical Engineering, West

Lafayette, IN, 1993.

[7] M. P. Harper, L. H. Jamieson, C. B. Zoltowski, and R. A. Helzerman. Semantics and constraint

parsing of word graphs. In Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, volume 11, pages 63-66, April 1992.

[8] R. A. Helzerman. PARSEC: A framework for parallel natural language understanding. Master's

thesis, Purdue University, School of Electrical Engineering, West Lafayettt?, IN, 1993.

[9] R. A. Helzerman and M. P. Harper. Log time parsing on the MasPar MP-11. In Proceedings of

the Sizth International Conference on Pamllel Pmessing, August 1992.

[lo] R. A. Helzerman and M. P. Harper. An approach to multiply segmented corlstraint satisfaction

problems. In Proceedings of the National Conference on Artificial Intelligence, July 1994.

[l l] R. A. Helzerman and M. P. Harper. MUSE CSP: An extension to the co~lstraint satisfaction

problem. Technical Report EE-94-8, Purdue University, School of Electricil Engineering, West

Lafayette, IN, 1994.

[12] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars. Journal of Computer and

System Sciences, 10:136-163, 1975.

[13] S. R. Kosaraju. Speed of recognition of context-free languages by array automata. SIAM

Journal of Computing, 4 (3) :331-340, September 1975.

[14] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. A I hTagazine, 13(1):32-

44, 1992.

[15] H. Maruyama. Constraint dependency grammar. Technical Report #RT0044, IBM, Tokyo,

Japan, 1990.

[16] H. Maruyama. Constraint dependency grammar and its weak generative c.apacity. Computer

Software, 1990.

[17] H. Maruyama. Structural disambiguation with constraint propagation. In The Proceedings of

the Annual Meeting of ACL, 1990.

[18] R. Mohr and T. Henderson. Arc and path consistency revisited. Artifici:al Intelligence, 28,

1986.

[19] U . Montanari. Networks of constraints: Fundamental properties and appllications t o picture

processing. Information Science, 1976.

[20] M. D. Moshier and W. C. Rounds. On the succinctness properties of unordered context-free

grammars. In Proceedings of the 25th Annual Meeting of the Association for Computational

Linguistics, 1987.

[21] M. A. Palis, S. Shende, and D. S. L. Wei. An optimal linear-time parallel parser for tree

adjoining languages. SIAM Journal of Computing, 19: 1-31,1990.

[22] W. Ruzzo. Tree-size bounded alternation. Journal of Computers and System Sciences, 21:218-

235,1980.

[23] R. Schwartz and Y-L. Chow. The N-best algorithm: An efficient and exact procedure for

finding the N most likely sentence hypotheses. In IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, April 1990.

[24] K. Vijayashanker and A. K. Joshi. Some computational properties of tree adjoining grammars.

In Proceedings of the 24th Annual Meeting of the Association for Compui.ationa1 Linguistics,

1986.

[25] K. Vijayshanker, D.J. Weir, and A. K. Joshi. Characterizing structural descriptions produced

by various grammatical formalisms. In Proceedings of the 25th Annual Meeting of the Associ-

ation for Computational Linguistics, 1987.

[26] D. L. Waltz. Understanding line drawings of scenes with shadows. In P. H:. Winston, editor,

The Psychology of Computer Vision. McGraw Hill, New York, 1975.

[27] C. B. Zoltowski, M. P. Harper, L. H. Jamieson, and R. A. Helzerman. PARSEC: A constraint-

based framework for spoken language understanding. In Proceedings of the .hternational Con-

femnce on Spoken Language Understanding, October 1992.

	Purdue University
	Purdue e-Pubs
	4-1-1994

	Managing multiple knowledge sources in constraint-based parsing of spoken language
	Mary P. Harper
	Randall A. Helzerman

