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Abstract 

Simple conventional control methods, such as PD and PID controllers, are widely 

used in industrial applications. Such controllers exhibit poor performance when ap- 

plied to systems containing nonlinearities arising from unknown deadzones. In this 

report, we propose a novel fuzzy logic-based precompensation approach for controlling 

systems with deadzones. The control structure consists of a fuzzy logic-based prec- 

ompensator followed by a conventional PD controller. Our proposed control scheme 

shows superior transient and steady-state performance compared to conventional PD 

and PID controllers. In addition, the scheme is robust to variations in deadzone non- 

linearities, as well as the steady-state gain of the plant. We illustrate the effectiveness 

of our scheme using computer simulation examples. 
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Introduction 

We propose a fuzzy logic-based scheme for controlling systems with deadzones. Our 

control structure consists of a fuzzy precompensator and a standard P D  controller. 

The idea underlying the control scheme is based on analyzing the source of large 

steady-state errors which arise when a conventional P D  controller is applied to a 

system with a deadzone. Our proposed scheme hai good transient as well as steady- 

state performance, and is robust to variations in deadzone nonlinearities. 

Nonsmooth nonlinearities are common in many physical components in control 

systems, such as gears and hydraulic servovalves. Such nonlinearities include satu- 

ration, relays, hysteresis, and deadzones, and are often unknown and time varying. 

For example, a common source of nonlinearities arise from friction, which vary with 

temperature and wear, and may differ significantly between components which are 

mass produced. Therefore the study of methods for dealing with nonsmooth nonlin- 

earities has been of interest to control practitioners for some time. In this report, we 

consider only deadzone nonlinearities. Deadzones are of interest in their own right, 

and provide good models for many nonsmooth nonlinearities found in practice. 

Standard controllers used in practice, such as P D  and PID controllers, suffer from 

poor performance when applied directly to systems with deadzone nonlinearities. For 

example, a steady-state error occurs when applying a conventional P D  controller to a 

system with deadzones-t he size of the steady-state error increases with the deadzone 

width (see Section 11.2). The steady-state error arises because a PD controller uses 

only the output error and the change in output error as inputs to the controller. To 

eliminate the steady-state error, we may attempt to use a PID controller, that also 

incorporates the "integraln of the output error as an input to the controller. However, 

as we shall see in Section 11.4, the transient performance in this case is poor. 

More advenced control schemes for controlling systems with nonsmooth nonlin- 

earities include sliding mode control [:I.], and dithering [2]. Motivated by limitations 

in these methods, such as chattering in sliding mode control, Recker et al. [3] pro- 



posed an adaptive nonlinear control scheme for controlling systems with deadzones. 

In [3], full state measurements were assume to be available. More recently, Tao and 

Kokotovic [4] considered the more realistic situation where only a single output mea- 

surement is available. In practice, however, the transient performance of the adaptive 

control schemes above is limited. 

Fuzzy logic-based controllers have received considerable interest in recent years 

(see for example [5], [6], [7], [8], [Q]). Fuzzy-based methods are useful when pre- 

cise mathematical formulations are infeasible. Moreover, fuzzy logic controllers often 

yield superior results to  conventional control approaches [7]. In [lo], Kim et al. stud- 

ied a fuzzy logic based controller applied to systems with deadzones. Their scheme 

exhibits superior transient and steady-state response compared to the schemes de- 

scribed above. 

In this report we propose a fuzzy logic-based scheme for controlling systems with 

deadzones. Our present scheme is simpler and more practical than the one considered 

in [lo]. The control structure we propose in this report consists of simply adding a 

fuzzy logic based precompensator to a standard PD controller. The idea underlying 

our approach is based on analyzing the source of the steady-state error resulting 

from using a P D  controller alone. We demonstrate that our controller has excellent 

transient as well as steady-state performance, and is robust to  variations in deadzone 

nonlinearities as well as the steady-state gain of the plant. 

The remainder of this report is organized as follows. In Section I1 we describe a 

system with a deadzone, and study the characteristics of a conventional PD controller 

applied to  the system. We show that the PD controller results in poor performance, 

and give an analysis of the source of steady-state errors. We also study the behavior of 

a PID controller applied to the same system. In Section I11 we propose our fuzzy logic 

precompensation scheme. We describe the idea underlying our approach, and give 

a precise description of the controller. We also provide simulation plots to  illustrate 

the behavior of our scheme. Finally we conclude in Section IV. 



I1 Characteristics of Conventional PD Controller 

In this section we describe a general PD (Proportional-Derivative) controller, and 

study the behavior of the controller applied to a system with a deadzone. 

11.1 Basic Control Structure 

We consider the (discrete-time) system shown in Figure 1, which is a conventional 

PD control system. The transfer function P ( r )  represents the plant, D represents 

an actuator with deadzone, C[e(k), Ae(k)] = KPe(k) + KDAe(k) is a linear function 

of the error and change of error representing a standard PD control law, K1 is the 

feedforward gain, v(k) is the output of the PD controller, u(k) is the output of the 

actuator, y,(k) is the reference input (command signal to be followed), y,(k) is the 

output of the plant, e(k) is a tracking error between y,(k) and y,(k), and Ae(k) is 

the change in tracking error e(k) - e(k- 1). The characteristics of the actuator with 

deadzone D is described by the function 

m(v - d), if v > d 

i f - d < v < d  

m(v+d) ,  if v < -d 

where d, m > 0. Figure 2 illustrates the characteristics of the actuator with deadzone. 

The parameter 2d specifies the width of the deadzone, while m represents the slope 

of the response outside the deadzone. 

11.2 Analysis of Steady-State System Behavior 

We now study the steady-state behavior of the system controlled by the conventional 

PD controller. The purpose of the analysis is to illustrate a problem that arises 

in the presence of a deadzone. Specifically, we will show that in the presense of a 

deadzone, a steady-state error occurs in a Type 0 system controlled by a "well-tunedn 

PD controller (while there is no steady-state error if there is no deadzone). 
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Figure 1: Conventional PD control system with deadzone 

Figure 2: Characteristics of Actuator with deadzone 



The dynamics of overall system are described by the following equations: 

Note that the equation yp(k) = P(z)[u(k)] involves a slight abuse of notation; however, 

its meaning should be obvious. Since C[O, 0] = 0, then if we fix the reference input 

ym(k) = Y m 7  the steady-state actuator input is y,. 

Consider the case when there is no deadzone, i-e., d = 0, and m = 1. In this case 

the plant output can be written as 

Since e(k) = y,(k) - yp(k), then the plant output can also be written as 

We now fix y,(k) = y,, and study the behavior of the system in steady-state. We 

assume that the plant is of Type 0 (i.e., P (z )  does not have a pole at z = 1). To 

derive the equation for the steady-state behavior, we set Ae(k) = 0 to get 

where K, is the steady-state gain of P ( z )  (assumed stable), given by K, = 

lim,,l P (z ) ,  y,,,, is the steady-state output, and e,, is the steady-state error. Note 

that K, < oo for a Type 0 plant. The steady-state error e,, is then the solution to 

equation ( I ) ,  that is, 

I(,[I(lym + I(P~,,] = ym - e,, (2) 



We assume that the controller is "well-tunedn, so that K1 = I(,-'. Equation (2) then 

becomes 

KsKpess = -ess (3) 

It is clear that the solution to the above equation is simply e,, = 0, i.e., the steady- 

state error is zero, as expected. 

We now consider the case when a deadzone is present, i.e., d > 0, and m > 0 are 

arbitrary. In this case, the steady-state output of the plant can be written as 

yp,ss = KsD[Klym + Kpe,,] = y, - e,, 

Therefore, the steady-state error is the solution to the equation 

K,D[I(ly, + I(pe(k)] - y, = -eaa (4) 

The first term in the left hand side of (4) is illustrated in Figure 3(a). Once again we 

use a graphical approach to solve (4); see Figure 3(b). As we can see, the solution 

e,, is not zero, but some nonzero number (with the same sign as y,; in Figure 3(b) 

we have assumed a positive y,). It is clear that the nonzero steady-state error is a 

direct result of the presence of the deadzone in the actuator. In the next section we 

illustrate this behavior via an example. 

11.3 An Example 

Consider a (continuous time) plant with transfer function 

10 
s 2 + s + 1  

Using the standard sample-and-hold approach, with a sampling time of 0.025 seconds, 

we apply the PD controller to the plant, as described before. Note that the system 

is of Type 0. In this example, we set y, = 1, K1 = 0.1, Kp = 0.7, and I(o = 39.2. 

Figure 4 shows output responses of the plant for three values of d: 0.0, 0.5, 1.0. In 

all cases we used m = 1. It is clear from Figure 4 that there is a relatively large 

steady-state error and overshoot when a deadzone is present. The steady-state error 

and overshoot increases with the the deadzone width. 



('4 

Figure 3: Graphs of: (a) K ,  D[Kl y ,  + Kpe];  (b )  I(, DIKl y ,  + IGe] - y, and -e 



Figure 4: Output responses of plant with conventional PD controller 

0 

11.4 PID Controller 

- ............................................. ......... 
...... .... -' ....................... 

We may argue that a steady-state error exists in the previous system because the 

controller uses only the output error and change of output error. It is well known 

that if we also include the "integral" of the error as an input to the controller, then 

steady-state errors can be eliminated. In this section we study the behavior of a PID 

(Proportional-Integral-Derivative) controller applied to the system with a deadzone. 

The controller includes not only the error and change of error, but also "integraln of 

error, as input. 

Consider the control structure shown in Figure 5, which consists of a PID controller 

applied to the system with deadzone. The control law used is given by: 

-02 o i 2 3 4 s 6 7 8 9 10 

Time (Seconds) 

The above is the standard PID controller law, used widely in practice. 

To observe the behavior of the system in Figure 5 ,  we used the plant given in the 

previous example, with the following parameter values: K p  = 1.284, KI = 0.0325, 



Actuator 
with 

Controller deadzone Plant 

ym v U 
PID ---c D --c P(z) = "c 

Figure 5: PID controller for system with deadzone 

and KD = 46.8. As before, we used a sampling time of 0.025 seconds. The output 

responses are shown in Figure 6. As we can see, the steady-state error is eliminated. 

However, the transient response is sensitive to the deadzone width, and is increas- 

ingly poor as the deadzone width is increased. By tuning the parameters of the PID 

controller to the specific deadzone width, we may improve the transient response (al- 

though our experience with simulations of the system suggests that the improvement 

is not substantial). Nonetheless, the fact remains that the PID scheme is sensitive 

to variations in the deadzone width, and is therefore not a practical approach to the 

deadzone problem. 

Controller with Fuzzy Precompensator 

In this section we describe a novel controller structure based on fuzzy logic precompen- 

sation. Our aim is to eliminate the steady-state error and improve the performance 

of the output response for PD control systems with deadzones by introducing a fuzzy 

logic controller in front of the PD controller. As we shall see, our proposed scheme is 

indeed insensitive to deadzones, and exhibits good transient and steady-state behav- 

ior. 



Time (Seconds) 

Figure 6: Output responses of plant with PID controller 

111.1 Basic Control Structure 

We use a graphical approach to describe the idea underlying our proposed controller. 

Consider Figure 3(b), which illustrates the source of the steady-state error for the 

conventional PD control system. Suppose we shift the graph of I(, DIK1 y,+I(pe]- y, 

to the left by an amount equal to 7 (the intersection point of the graph with the e- 

axis). Then, it is clear that the steady-state error (the point of intersection of the two 

graphs in Figure 3(b)) becomes zero. Shifting the graph of I(,DIKl y, + Kpe] - y, to 

the left by an amount 7 is equivalent to adding 7 to e. In other words, the graph of 

K,DIKlym + Kp(e + v)] - y, intersects the graph of -e at the origin. The key idea 

underlying our proposed controller is to shift the curve of I<s DIK1 y, + Kp(e +7)] -Ym 

as described above so that the steady-state error is zero. Note that instead of adding 

7 to e to shift the curve, we can achieve a similar effect by adding some other constant 

p to the reference input y,. In our control scheme we use fuzzy logic rules to calculate 

the appropriate value of p to be added to the reference input. Note that in the above 



scheme we have deliberately avoided using explicit knowledge of the values K, or of 

the deadzone parameters d and m. In fact, as we shall see later, our approach is 

robust to variations in these parameter values. 

We now proceed to describe our proposed control scheme. First, we define the 

variables yk(k) and et(k) as follows: 

where p(k) is a compensating term that is generated using a fuzzy logic scheme 

(described below). The proposed control scheme is shown in Figure 7. As we can see, 

the overall control structure consists of two "layers": a fuzzy precompensator, and a 

conventional PD controller. The error e(k) and change of error Ae(k) are inputs to 

the precompensator. The output of the precompensator is p(k). The dynamics of 

overall system is then described by the following equations: 

In the next two sections we describe in detail the two layers of our proposed controller 

structure. 
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Figure 7: Proposed Control Structure 

111.2 First Layer: Fuzzy Precompensator 

We now describe the first layer in our two-layered controller structure, which consists 

of the fuzzy logic-based precompensator. The fuzzy logic control law is based on 

standard fuzzy logic rules-for details on fuzzy logic controllers we refer the reader to 

[7]. We think of e ( k )  and A e ( k )  as inputs to the controller, and p(k)  as the output. 

As we already know, e ( k )  is the output error y,(k) - yp(k) ,  and Ae(k)  is the change in 

output error e ( k )  - e (k  - 1 ) .  The output p(k)  is generated via the dynamic equation 

where F [ e ( k ) ,  Ae (k ) ]  is a nonlinear mapping implemented using fuzzy logic. In the 

following we describe how F [ e ( k ) ,  Ae(k) ]  is implemented. 

Associated with the function F [ e ( k ) ,  Ae(k)]  is a collection of linguistic values 

L = { N B ,  iVM, NS,  20, P S ,  P M ,  P B )  

and an associated collection of membership functions 

Each membership function is a map from the real line to the interval [0, 11; Figure 8 

shows a plot of the membership functions. The "meaning" of each linguistic value 



should be clear from its mnemonic; for example, N B  stands for "negative-big", NM 

stands for "negative-mediumn, N S  stands for "negative-smalln, ZO stands for "zeron, 

and likewise for the "positiven ( P )  linguistic value. 

The realization of the function F[e(k), Ae(k)] is based on a fuzzy logic method, 

consists of three stages: fuzzification, decision making fuzzy logic, and defuzzification. 

The process of fuzzification transforms the inputs e(k) and Ae(k) into the setting 

of linguistic values. Specifically, for each linguistic value 1 E L, we assign a pair of 

numbers ne(l) and nAe(l) to the inputs e(k) and Ae(k) via the associated membership 

function Mi, by 

where C, and CAe are scale factors. The numbers ne(l) and nAe(l), 1 E L, are used 

in the fuzzy logic decision process, which we describe next. 

Associated with the fuzzy logic decision process is a set of fuzzy rules R = 

{R1, Rz, . .  . , R). Each R;, i = 1,. . . , r, is a triplet (I,, la,, I,), where I,, la,, I, E L. 

The first two linguistic values are associated with the input variables e(k) and Ae(k), 

while the third linguistic value is associated with the output. An example of a rule 

is the triplet (NS, PS, 20). Rules are often written in the form: "if e(k) is I, and 

Ae(k) is la,, then p is I," (here we think of p as the output of the fuzzy logic rule). 

For example, in the rule represented by the triplet (NS, PS, ZO), the idea of the rule 

is that if e(k) is "negative-smalln and Ae(k) is "positive-smalln, then output "zeron. 

The rules for our fuzzy precompensator are given in Table 1. In this case, we used 

26 rules (i.e., r = 26). Our rules were derived by using a combination of experi- 

ence, "trial and error", and our knowledge of the response of the system. These are 

common approaches to the design of fuzzy logic rules, as described in [7]. We refer 

the reader to [7] for a discussion of advantages and tradeoffs in methods for selecting 

fuzzy rules. 

Specifically, each rule R, = (I,, la,, 1,) takes a given pair e(k) and Ae(k) and 



assigns to it a function p;(e(k), Ae(k), p) ,  p E [-I, 11, as follows: 

We combine the functions pi, i = 1 , .  . . ,26 to get an overall function q by 

q(e(k), Ae(k.1, P) = max(pi (e(k), Ae(k), p), . . . ,pzs(e(k), Ae(k), p)) ,  p E [-I, 11 

The defuzzification process maps the result of the fuzzy logic rule stage to a 

real number output F[e(k),Ae(k)]. Specifically, we use the Center of Area (COA) 

method, given by 

where CF is a scale factor. Note that the ratio in the right hand side of the above 

equation is simply the center of area of the function q(e(k), Ae(k), p)  (as a function 

of 4- 
Finally, as mentioned before, the actual control law for the precompensator is 

given by the equation: 

Note that the precompensator is not simply a memoriless nonlinearity, but a nonlinear 

dynamical system. 

111.3 Second Layer: Conventional PD Controller 

The second layer of our controller structure consists of a conventional PD controller, 

which is essentially identical to that described in Section 11.3. The only difference 

in this case is that instead of using e(k) and Ae(k) as inputs to the PD controller, 

we use el(k) and Ael(k), where el(k) = e(k) + p(k), Ael(k) = el(k) - el(k - I ) ,  and 

p(k) is the output of the precompensator. In particular, as indicated by the dynamics 

equations previously, the output of the PD controller is given by 



Figure 8: Membership Functions 

Table 1: Fuzzy logic rules for precompensator 



111.4 Example 

We consider again the plant of Section 11.3. We now apply the proposed two-layered 

fuzzy logic controller to the plant; as before we use a sampling time of 0.025 seconds. 

The scale factors used in the fuzzy precompensator (first layer) are as follows: C, = 

4.5/ym, Cae = 49.5/ym, CF = 0 . 2 ~ ~ .  The parameters of the PD controller (second 

layer) are the same as in the previous example. Here, we once again set y, = 1, and 

K1 = 0.1. 

Figure 9(a) shows output responses of the plant for m = 1 and three values of 

d (as before): 0.0, 0.5, 1.0. The output responses in Figure 9(a) show considerable 

improvement over those of Figures 4 and 6. Not only is the steady-state error reduced 

to virtually zero, but the transient response is also dramatically improved. In Note 

that in Figure 9(a), the same values for the "internal variables" (e.g., scale factors, 

membership functions) As we can see, the performance of the controller does not de- 

teriorate significantly for deadzone widths of d = 0.5 and 1.0. Therefore, we conclude 

that our controller is robust to variations in the deadzone width. In practice, we 

can use the same values of interval variables for a whole range of deadzone widths, 

without having to "retune" the controller. 

Figure 9(b) shows output responses of the plant for d = 0.5 and three values of 

m: 2.0, 3.0, 6.0. In all three plots, the same values for the internal variables of the 

fuzzy precompensator were used as before. The parameter values used for the PD 

controller were Kp = 0.3 and ICD = 9.6. As we can see, the controller performs well 

in all three cases. Hence we conclude that the controller is also robust to variations 

in slope. 

In the above examples we used = 0.1 = li',l, which means that is "well- 

tuned" to the steady-state gain of the plant. Figures 10(a) and (b) show output 

responses of the plant with values of I<l which are not well-tuned; in Figure 10(a) 

we used K1 = 2.0 (20 times K r l ) ,  and in Figure 10(b) we used K1 = 0.005 (1/20 
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times K;'). The parameters for the PD controller in these plots are the same as in 

Figure 9(a). We can see that the performance is relatively robust to the choice of 

K1. Naturally, with fixed values of K1 and the internal variables, we expect the per- 

formance to deteriorate with increasing deadzone widths, a s  illustrated in Figure 10. 

The performance for large deadzone widths may be improved if we retune the internal 

variables of the fuzzy precompensator. 

To observe the behavior of our fuzzy precompensator with a PID controller (in- 

stead of a PD controller), we plotted the output response of the system with the fuzzy 

precompensation scheme and a PID controller (with no feedforward term). Note that 

this set up is equivalent to using a PD controller (with = 0) applied to a Type 1 

system, namely the Type 0 system considered before with an additional pole at  z = 1. 

Figure ll.(a) shows output responses with deadzone slope m = 1 and deadzone widths 

of d = 0, 0.5, and 1.0. We used a PID controller with the same parameters as the one 

used in Section 11.4, Figure 6, namely, I(p = 1.284, I<[ = 0.0325, and = 46.8. 

We can see that the output responses for the system is virtually identical to those of 

Figure 9(a). In Figure l l ( b ) ,  we show output responses of the system with a fixed 

deadzone width of d = 0.5, and deadzone slopes of m = 1, 2, and 3. The PID pa- 

rameter values used in this case were I(p = 0.39, I<[ = 0.02, I iD = 22.4. The output 

responses of Figure l l ( b )  show slight overshoots for the case where m = 1 (but not 

for m = 2 and 3). This indicates that the system is more sensitive to variations in 

deadzone slope than to variations in deadzone width. Comparing Figure ll.(b) with 

Figure 9(b), we see that the precompensator with a PID controller is more sensitive 

(with respect to slope variations) than the precompensator with a PD controller. 

Conclusions 

In this report, we proposed a fuzzy logic-based precompensation scheme for controlling 

systems with deadzones. Our approach consists of a fuzzy precompensator and a 

conventional PD controller. The proposed control scheme has superior steady-state 
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Figure 10: Output responses of plant with proposed control scheme with (a) Kl = 2.0, 
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Figure 11: Output responses of plant with fuzzy precompensator and PID controller 

with (a) nz = 1, and (b) d = 0.5 



and transient performance, compared to a conventional PD controller, as well as a PID 

controller. An advantage of our present approach is that an existing PD controller can 

be easily modified into our control structure by simply adding a fuzzy precompensator. 

In addition, the control structure is robust to variations in the deadzone nonlinearities 

(width and slope), as well as the steady-state gain of the plant. We demonstrated 

the performance of our controller via several computer simulation examples. 

In this report, we do not address the important problem of stability of the control 

scheme. As for many other fuzzy logic based control schemes, a mathematical analysis 

of the stability of our scheme is an intractable problem, due to the highly nonlinear 

nature of the fuzzy precompensator. This difficult but important problem is a topic 

of ongoing research. 
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