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ABSTRACT

This paper develops a hybrid/gain scheduled control to move a diesel engine through a
driving profile represented as a set of 12 operating points in the 7-dimensional state space of a 7th

order nonlinear state model.  The calculations for the control design are based on  a  3rd

order(reduced) model of the Diesel engine on which state space is projected the 12 operating
points.  About each operating point, we generate a 3rd order nonlinear error models of the Diesel
engine.  Using the error model for each operating point, a control design is set forth as a system
of LMI's.  The solution of each system of LMI's produces a norm bounded controller

guaranteeing that x xi
d

i
d

- Æ1  where xi
d  is the i-th desired operating point in the 3-dimensional

state space.  The control performance is then evaluated on the 7th order model.
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INTRODUCTION.

This paper sets forth the first control design phase in the development of a control law for
a diesel engine having a VGT/EGR(Variable Geometry Turbocharger/Exhaust Gas
Recirculation) system. [7]  For this phase, we assume a linear hybrid/gain-scheduled state
feedback control law evaluated on a 7th order nonlinear diesel engine model.  The objective of
the controller is to drive the engine operating point from an initial value to a desired value along
a drive cycle and stabilize the engine around the desired equilibrium.  This equilibrium is
computed so that it satisfies driver needs while achieving a reasonable trade-off between
undesirable emissions of nitrogen oxides (NOx) and smoke emissions on the one hand, and fuel
consumption on the other hand.

The control design will be achieved using polytopic system methods.  Here a chain of
overlapping compact regions of the state space is formed so that each region contains an
equilibrium point common to the next polytopic region in the chain.  Given appropriate
continuity, the induced image of each region in the model vector fields is bounded by a polytope.
Using Lyapunov methods applied to each region, a feedback control and an ellipsoidal domain of
attraction is obtained by solving a set of LMIs.  Each controller will move the state through the
associated region to an operating point common to the domain of attraction of current region and
the next region along the chain.  The controller for the next equilibrium state is invoked when the
system is sufficiently close to the preceding equilibrium state.  Thus the control  law is hybrid in
nature in that invocation of a new control requires knowledge of the current region as well as the
next desired region.  This of course is the lowest type of hybrid control.

To preserve geometric understanding of the control construction and to simplify the
calculations associated with the LMIs, the design will build on a third order nonlinear diesel
engine model.  However, the control and its performance will be evaluated using a 7th order
nonlinear diesel engine model.

2.   MODEL OF THE DIESEL ENGINE WITH VGT/EGR.

Over the last few decades, legislated levels of motor vehicle exhaust emissions have been
cut dramatically , forcing automotive engineers to focus on emission control more than ever.
Diesel engines offer superior fuel economy but their nitrogen oxide (NOx) emission control
remains challenging. This is because the conventional Three-Way Catalyst utilized in gasoline-
powered vehicles is not efficient for NOx conversion at lean air-to-fuel ratios where diesels
typically operate.  To be competitive with gasoline engines, new generation diesel engines are
equipped with exhaust gas recirculation (EGR) systems to reduce NOx emission and variable
geometry turbochargers (VGT) to reduce transient smoke.  Combination of EGR and VGT
provides an important avenue for NOx emission reduction.  Traditionally, turbocharging has been
used to increase the power density of diesel engines.  Variable geometry turbocharging is
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accomplished by a turbine that has a system of movable guide vanes located on the turbine.  By
adjusting the guide vanes, the exhaust gas energy to the turbocharger can be regulated, thus
controlling the compressor mass airflow and exhaust manifold pressure.  (See figure 1.)

Figure 1: Schematic diagram of VGT/EGR diesel engines

Initially, the rationale for using the variable geometry turbocharging was to increase
engine torque output at tip-ins and reduce turbo-lag. Now, variable geometry turbocharging has
emerged as an important way to reduce NOx emissions because it can be used to increase the
exhaust gas recirculation rates. The exhaust gas recirculation is accomplished by an EGR valve
that directs some of the exhaust gas from the exhaust manifold into the intake manifold.  This
dilutes the cylinder charge and lowers the combustion temperatures thereby impeding the process
of NOx formation.  Because the flow through the EGR valve depends on the pressure drop across
the valve, and because the VGT can affect this pressure drop, the turbocharger can also be
utilized to increase the EGR flow.  Thus, these two devices are strongly coupled and the system
exhibits internal instability, requiring advanced control algorithms.  The controller has to keep
EGR flow rate and air-fuel ratio at the desired levels such that NOx emission, as well as transient
smoke can be lowered to meet future regulations.  Additional factors that burden the application
of conventional control design methods are:

∑ lack of information about the system states; only a limited number of physical
coordinates (air flow rate and intake manifold pressure) can be measured directly,
while knowledge of the variable “EGR flow rate” to be controlled is not available;

∑ parameters of the process (intake burnt gas fraction, intake charge flow rate and
exhaust pressure) are unknown, due to aging and deposits on the flow ways/valves,
and  may vary over a wide range for different operation modes;

∑ system behavior is governed by a high order system of nonlinear equations and as a
result new control strategies should be developed (traditional methods based on PI or
PID controllers are generally no longer effective).

In light of this background, the model of the VGT/EGR Diesel engine ([1],[2],[3]) is
obtained through the application of  the mass and energy balances for the intake and exhaust
manifolds. For control design we will use a simplified 3rd order model whereas the 7th order
model will serve to evaluate and fine tune the control design.

2.1 The 7th order model for the diesel engine. [1, 2, 3, 8]
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The definitions of the state variables used in the nonlinear state model below are:  (i)  r 1,

r 2 (gas density in intake (subscript 1) and exhaust (subscript 2) manifold), (ii) F1, F2 (burnt gas

fractions in intake and exhaust manifolds), (iii) p1, p2 (pressures in intake and exhaust
manifolds), and (iv) PC  (compressor power).  For convenience we define the state vector

x t t F t p t t F t p t P tC
T( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( )]= r r1 1 1 2 2 2 .

In general, the indices 1, 2, e, and C stand for intake manifold, exhaust manifold, engine and
compressor respectively.  The symbols Wij and uij  have the meaning of flows from index i to
index j where i, j Œ {1, 2, e, C}. Ti  has the meaning of temperature in "compartment" i, whereas

Tij  means the temperature of the mixture flowing from i to j.

The intake manifold equations are:

« ( ) ( )

« ( ) ( )

« ( ) ( )

r a a

a r

g a a

1 21 1 12 1

1 2 1 21 1 1 1

1 21 2 1 1 12 1 1

= + - -[ ]
= - -[ ]
= + - -[ ]

W u W u V

F F F u F W V

p R W T u T W T u T V

C e

C

C C e

(2.1)

where (i) g is the specific heat ratio, (ii) R is the universal gas law constant (the difference of

specific heats), (iii) V1, V2 are the volumes of the intake and exhaust manifolds respectively, and
(iv) u12( )a  and u21( )a  are EGR flows that depend on the EGR value position a, 0 £ a £ 1, 0

denoting fully closed and 1 fully open. Note that WC is the flow from the compressor to the

intake manifold, and the mass flow rate of the intake charge to the engine  isW
NV

e
vol d

1
1

120
=

h r

where (i) hvol is the volumetric efficiency of the engine, (ii) r1 is the density of the gas mixture
in the intake manifold, (iii) N  is the engine RPM, (iv) Vd  is the displacement volume of the

engine; alternately we can write W k pe e1 1=  where k
NV

R Te
vol d=

◊ ◊
h
120 1

 is a pumping rate coefficient

associated with air flow through the engine.
The exhaust manifold equations are:

« ( ) ( ) ( )

« ( ) ( ) ( ) ( )

« ( ) ( ) ( ) ( )

r b a a

a r

g b a a

2 2 2 21 12 2

2 2 2 2 1 2 12 2 2

2 2 2 2 2 21 2 12 1 2

= - - +( )
= - + -[ ]
= - - +[ ]

W u u u V

F F F W W F F u V

p R W W T u T u T u T V

e t

e e f

e f e t

(2.2)

where u2t(b) is the controlled flow of the exhaust gases across the turbine veins which depends

on the VGT fin position b, 0 £ b £ 1.  Note that Wf is fuel flow and We2(Wf) means that the flow

from the engine to the exhaust manifold depends on fueling rate Wf.
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The power transfer from the turbine to the compressor is described by the first order
differential equation:

« ( )P P PC C m t= - + h t (2.3)

where t  is turbine to compressor power transfer time constant and hm is the turbocharger
mechanical efficiency.  In actuality, P t P tC m t( ) ( )+ =t h .  Equation 2.3 arises from a truncated
Taylor series for P tC ( )+t  about t, i.e.,

P t P t P tC C C( ) ( ) « ( )+ = + +t t H.O.T.

(H.O.T. means higher order terms)  It follows that

« ( ) ( ) ( ) ( ) ( )P t P t P t P t P tC C C C m t= + -[ ] = - +[ ]1
t

t h t

Thus as per [8], power transfer between the turbine and the compressor is represented by a first
order lag with a time constant t .  The time constant is assumed constant which in reality is untrue

as t  depends on the turbocharger operating point.

Physically speaking the control inputs are the valve position a of the EGR and the fin

position b of the VGT.  Since the valve/fin positions control flow, for convenience we use the

actual flows as control variables in our work, i.e., we use u21(a) = Wegr(a) and u2t(b), and desire

control values for these quantities as opposed to a  and b.  This assumes that the appropriate

system states are measurable and it also avoids having to deal with any dynamics and
disturbances associated with moving the EGR baffle or adjustment of the veins on the
compressor.

Finally, for practical reasons, we set u12(a) = 0, i.e., the EGR  flow from the intake

manifold to the exhaust manifold is set to zero, although there are circumstances when this is not
the case.

2.2 Reduced order model

A reduced (3rd order) model of the diesel engine follows by differentiating the ideal gas
law for the intake and exhaust manifolds under the assumptions that the temperatures in the
intake and exhaust manifolds are constant for local operation and that the there is no dependence
of thermodynamic properties on composition (i.e. all thermodynamic properties are considered
with respect to air g g= a  and R Ra=  ).  As mentioned, this reduced order model will be used for
control design and its evaluation will take place on the 7th order model.  Set points for the 3rd

order model are the projection of those of the 7th order model.  From [1] the 3rd order reduced
model has the form:
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«

« ( ) ( )

« ( )

p k W W W

p k W W W u

P P P

C egr e

e f egr t

C C m t

1 1 1

2 2 2 2

1

= + -( )
= - -( )
= - -

b

t
h

(2.4)

where k
RT

V1
1

1
= , k

RT

V2
2

2
= , the flow from the compressor to the intake manifold is represented

by W
T C

P

p

p

C
C

a p

C

a

=
Ê
ËÁ

ˆ
¯̃

-

h
m

1 1

, the turbine power is represented by P T C
p

p
ut t p

a
t= -

Ê
ËÁ

ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃h

m

2
1

21 , and

W k pe e1 1=  where k
NV

R Te
vol d=

◊ ◊
h
120 1

 is a pumping rate constant which governs the flow rate of air

through the engine.  Substituting into equation 2.4, leads to the following 3rd order dynamical
model

« ( )

« ( ) ( )

«

p k
T C

P

p

p

k k p k u

p k k p W u u

P P T C
p

p

C

a p

C

a

e

e f
d

t

C C m t p
a

1 1

1

1 1 1 21

2 2 1 21 2

2
2

1

1
1

=
Ê
ËÁ

ˆ
¯̃

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃

- +

= + - -( )
= - - -

Ê
ËÁ

ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜

h a

a b

t
h h

m

m

˜̃

È

Î

Í
Í

˘

˚

˙
˙

u t2 ( )b

(2.5)

where (i) Wf
d  is the desired fueling rate, (ii) u Wegr21( )a =  is EGR flow from the exhaust

manifold to the intake manifold, and (iii) u t2 ( )b  is the flow of the exhaust across the
turbocharger veins.

2.3 Operating Points

Generation of the set of operating points for the 7th order system is done by specifying a
set of triplets (AFR, EGR, Wf ) for a corresponding set of specified engine speeds and loads.
Presumably, the triples correspond to emissions that meet appropriate constraints and torque and
speed requirements of a driving cycle.  The set of triples are then mapped into a new set of triples

corresponding to desired flow rates:  W W Wf
d

C
d

egr
d, , ( ) .  The appropriate mappings can be

found in [1,8]  Given these flow rates, it is then necessary to determine consistent equilibrium
states in the 7th order model computed in the usual fashion by setting the derivative of the state
vector to zero.  The set of these 7th order equilibrium states are then projected onto the state space
of the 3rd order model with the additional assumption of locally constant T1 and T2 for each
operating point.
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Details of the computation of the operating points for the seventh and thus third order
models can be found in Appendix 1.

2.4 Remarks

The 7th and 3rd order models have independent derivations in contrast to the customary
reduced order model which is computed as a some type of projection of the higher order model
onto a lower dimensional state space or is possibly a singularly perturbed model reduction.
Further, there does not appear to be any work which guarantees that a control developed on the
3rd order model will work for the 7th order model.  Rather, experience via simulators has shown
that controllers so developed in fact work well on the 7th order model.  The control of course uses

full state feedback for the 3rd order model, but only partial state feedback (the same variables, p1,

p2, and PC, for the 7th order model.
Although it might be possible to rigorously demonstrate a projective relationship between

the 7th and 3rd order models, an investigation into an alternate approach to control design (found
to be useful for linear controller design [10]) might prove more beneficial.  The essential idea
here is to develop a first control on the 3rd order model.  Apply the control to the 7th order model
and evaluate its performance.  Store the essential input-output data associated with the
performance evaluation.  Return to the 3rd order model with this input-output data.  With the
control in place, execute a parameter ID on the controlled third order model so that its behavior
"better" conforms to that of the 7th order model as per the input-output data.  With these new
parameter values, redo the control design and repeat the process.  The process can be shown to
converge in certain linear cases.  Investigation of convergence in the general nonlinear case
remains an open frontier.  Nevertheless, one intuitively expects such a process to provide
incremental improvements in the controller design.

3.  A LYAPUNOV/LMI METHOD FOR STABILIZING POLYTOPIC NONLINEAR
SYSTEMS

Several notions and theorems from Lyapunov stability theory [9] underlie the theoretical
results of this section.  To set forth these results in a straightforward manner, we consider the
usual nonlinear state model

«( ) ( , ( )), ( )x t f t x t x t x= =0 0 (3.1)

where x t Rn( ) Œ  and t RŒ  and assume that the origin is an equilibrium point, i.e. f t( , )0 0=  for
all t.  Our interest is in the stability of the system about the origin.  The origin is uniformly
exponentially stable with rate of convergence a  > 0 if there exists R > 0 and b > 0 such that

whenever x t R( )0 <  then x t x t e t t( ) ( ) ( )< - -b a
0

0  for all t t≥ 0.  Assuming the origin is an
exponentially stable equilibrium point for 3.1, the set W is a region of attraction for the origin if

x t( )0 ŒW fi =
Æ•
lim ( )
t

x t 0.  Finally, a subset L  of the state space Rn is called an invariant set

for 3.1 if x t x t( ) ( )0 Œ fi ŒL L  for all t t≥ 0.  These notions underlie the following theorem of
Lyapunov stability theory:
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Theorem 1. [9]  With respect to the system 3.1, suppose that there is a continuously
differentiable function V x( )  and positive scalars a , b1, b2, and c such that for all x in

W = Œ <{ : ( ) }x R V x cn , b b1
2

2
2x V x x£ £( )  and for all t

∂
∂

=
∂

∂
=

∂
∂

£ -
V x

t

V x

x
x

V x

x
f t x V x

( ) ( )
«

( )
( , ) ( )2a . (3.2)

Then the origin is a uniformly exponentially stable equilibrium point with invariant region of
attraction W and rate of convergence a .

Because «( ( )) ( ( ))V x t V x t£ - 2a .  It follows that V x t V x e t( ( )) ( ( ))= -0 2a  meaning that the
energy of the system as measured by the Lyapunov function V x( )  diminishes to zero with
exponential rate 2a.  However, the state trajectory has may have a different rate of convergence.

Specifically, we assume that b b1
2

2
2x V x x£ £( ) .  Hence, b a

1
2 20x V x V x e t£ £ -( ) ( ( ))

implies that x
V x

e t£ -( ( ))0

1b
a , i.e., the state trajectory converges to zero with minimum rate of

convergence a.

A second result important to our formulation is the Shur complement [6, pp. 7, 28] for

converting nonlinear (convex) inequalities to LMI form:  let Q x Q xT( ) ( )= , P x P xT( ) ( )= , and
S x( ) depend affinely on x; the inequalities

P x Q x S x P x S xT( ) ,     ( ) ( ) ( ) ( )> - >-0 01

is equivalent to the LMI
Q x S x

S x P xT
( ) ( )

( ) ( )

È

Î
Í

˘

˚
˙ > 0

This equivalence proves useful when converting constraint equations to LMIs.

The main theoretical result of this paper states sufficient LMI conditions for the origin to
be uniformly exponentially stable for a system having the following polytopic form:

«( ) ( , ) ( ) ( , ) ( ), ( )x t A t x x t B t x u t x t x= + =0 0 (3.3)

where the time/state dependent matrices have the following structure

A t x A t x A( , ) ( , )= +0 Y D , B t x B t x B( , ) ( , )= +0 Y D  (3.4)

for constant matricesA0, B0, DA, andDB and scalar valued function Y ( , )t x .  Here Y ( , )t x  has
the property that whenever

Cx £ m (3.5a)

for an appropriate matrix C and a positive scalar m, then the following holds:
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 a t x b£ £Y ( , ) (3.5b)

for two constants a and b.
Equation 3.4 represents a non-unique decomposition.   The following theorem presumes

such a decomposition.  Different decompositions may lead to existence or nonexistence of the
LMI set forth in the theorem.

Theorem 2 [5].  With respect to the system 3.3 having properties 3.4 and 3.5, suppose there
exists a matrix L , a symmetric positive definite matrix S, an appropriate matrix C, and a scalar
m > 0 (as per equation 3.5) such that

A S SA B L L BT T T
1 1 1 1 0+ + + < (3.6)

A S SA B L L BT T T
2 2 2 2 0+ + + < (3.7)

CSCT £ 1 (3.8)

where A A a A1 0= + D , A A b A2 0= + D , B B a B1 0= + D , and B B b B2 0= + D .  Then for the
closed loop system,

«( ) ( , ) ( , ) ( )x t A t x B t x K x t= +( ) (3.9)

obtained from system 3.3 with the linear state feedback u Kx LS x= = - 1 , the origin is a

uniformly exponentially stable equilibrium point with W = Œ <-{ : }x R x S xn T 1 2m  an invariant
region of attraction.

Proof. For convenience we will use the notation 
∂
∂

∫
V

x
DV .  From the inequalities 3.6 and 3.7, it

follows that there exists a positive definite matrix Q > 0 such that

A S B L SA L B QT T T
1 1 1 1 0+ + + £ - < (3.10)

A S B L SA L B QT T T
2 2 2 2 0+ + + £ - < (3.11)

With V x x S xT( ) = - 1  as a candidate Lyapunov function, the goal is to find a continuous function
W( )o  > 0 such that, whenever x ŒW\ { }0 , DV x f t x W x( ) ( , ) ( )£ - < 0 for all t.

Let,x x R x S xn TŒ = Œ <-W { : }1 2m .  From Cauchy-Schwartz, the existence of a
symmetric S > 0, and inequality 3.8, we have

Cx CS S x CS S x CSC x S xT T2 0 5 0 5 2 0 5 2 0 5 2 1 2= £ ¥ = ¥ £- - -. . . . m (3.12)

i.e., Cx £ m for all x ŒW.  This relation is required for showing that forx ŒW\ { }0 ,
DV x f t x W x( ) ( , ) ( )£ - < 0 for all t.

With u Kx LS x= = - 1 , the closed loop system has the form
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« ( , ) ( , ) ( , )x f t x A t x Bt x LS x= ∫ +[ ]- 1

in which case

DV x f t x x S A tx S B t x L S x

x S A t x S B t x L A t x S B t x L S x

T

T T

( ) ( , ) [ ( , ) ( , ) ]

  ( , ) ( , ) ( , ) ( , )

= +

= + + +( )[ ]

- -

- -

2 1 1

1 1

(3.13)

Using equation 3.4, let

N t x A t x S Bt x L SA t x L B t x N t x NT T T( , ) ( , ) ( , ) ( , ) ( , ) ( , )= + + + ∫ +0 Y D .

where N A S B L SA L BT T T
0 0 0 0 0= + + +  and D D D D DN A S B L S A L BT T T= + + + .  By

assumption, x ŒW implies Cx £ m as per equation 3.12 which implies thata t x b£ £Y ( , ) .
Using equations 3.6 and 3.7,

N t x N t x N Q( , ) ( , )= + £ -0 Y D (3.14)

From 3.12 and 3.13, it follows that

DV x f t x x S N t x N S x x S QS xT T( ) ( , ) ( , )= +[ ] £ -- - - -1
0

1 1 1Y D

It remains to show that this expression is less than

- £ - Ê
Ë

ˆ
¯¥ ( ) = - Ê

Ë
ˆ
¯ <- - - - - - -x S QS x S Q S x S x S Q S V xT T1 1 1 1 1 1 1 0l lmin min ( )

where l min M( )  is the smallest eigenvalue value of the positive definite symmetric matrix, M,

and S- 1  is the unique symmetric positive definite square root of S S- -= Ê
Ë

ˆ
¯

1 1
2
.  With this

result,

«( ) ( )minV x S Q S V x£ - Ê
Ë

ˆ
¯ <- -l 1 1 0.

By the classical Lyapunov Theorem 1, the origin is a uniformly asymptotically stable
equilibrium point with W as an invariant region of attraction.

To verify that

- £ - Ê
Ë

ˆ
¯¥ ( ) = - Ê

Ë
ˆ
¯ <- - - - - - -x S QS x S Q S x S x S Q S V xT T1 1 1 1 1 1 1 0l lmin min ( )

observe that
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- = - Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯

- - - - - -x S QS x x S S Q S S xT T1 1 1 1 1 1

= - Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯
Ê
Ë

ˆ
¯ £ - Ê

Ë
ˆ
¯* ( )- - - - - - -S x S Q S S x S Q S x S x

T
T1 1 1 1 1 1 1l min

as was to be shown.

As a side note, observe that the matrices: S Q S- -Ê
Ë

ˆ
¯

1 1 and QS-( )1  are similar, because

QS S S Q S S- - - - - -= Ê
Ë

ˆ
¯

1 1
1

1 1 1.

Therefore, these matrices have the same eigenvalues. Using this fact, it also follows that

«( ( )) ( ( ))minV x t QS V x t£ - ( ) *-l 1

Furthermore, S Q QS
T- -= ( )1 1 because Q and S- 1 are symmetric, i.e., S Q- 1  and QS- 1have the

same eigenvalues.  Hence, we have the third relationship

«( ( )) ( ( ))minV x t S Q V x t£ - ( ) *-l 1

This completes the proof.

Theorem 2 can be generalized to systems described by 3.3 where the time/state dependent
matrices A t x( , ) and B t x( , ) have the following more general structure:

A t x A t x Ai i
i

l

( , ) ( , )= +
=
Â0

1

Y D (3.15a)

and

B t x B t x Bi i
i

l

( , ) ( , )= +
=
Â0

1

Y D (3.15b)

where the Yi ( , )o o  are scalar valued functions of t and x, A A Al0 1, , ,D DK  are constant n n¥
matrices and B B Bl0 1, , ,D DK  are n m¥  matrices.  Additionally we require that, whenever

C xi £ m, a t x bi i i£ £Y ( , )  for constant matrices Ci , a positive scalar m, and constants ai  and
bi , for i l=1, ,K .

For the origin to be an exponentially stable equilibrium point of the closed loop system

with the region of attraction W = { : }x R x S xn TŒ <- 1 2m , the matrices L  and S and the scalar m
must satisfy
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AS BL SA L B

CSC

T T T

T

+ + + <

£

0

1
(3.16a)

for all
C C i liŒ ={  |  , , }1K  (3.16b)

and all matrix pairs

A B A A B B a b i li i
i

l

i i
i

l

i i i, ,  |    , , ,( ) Œ + +
Ê

Ë
Á

ˆ

¯
˜ = = =

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂= =

Â Â0
1

0
1

1Y D Y D Y or K , (3.16c)

In this paper, this more general formulation of Theorem 2, represented as a family of
LMI's by the relations of 3.16, will be used to derive a linear state feedback for the reduced order
model of the Diesel engine.  The existence of L, S, and m in the LMI 3.16 provides state

feedback that is sufficient for stability.  Sufficient conditions (theoretical) in terms of the system
structure guaranteeing the existence of solution to the family of LMIs is an open question.

We must further impose two more constraints on the variables S L and  for a practical
solution to our control problem. The first constraint permits inclusion of a starting point xo in
the invariant ellipsoid W centered at the origin that can be expressed as an LMI using the Schur
complement:

x x S x xo
d T

o
d-( ) -( ) <-

1
1

1
2m      ¤     

m2
1

1

0
x x

x x S

o
d T

o
d

-( )
-( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

> (3.17)

where the difference x xo
d-( )1  is  to be driven to zero.

A second constraint upper bounds the 2-norm of u t( )  by g .  The value of g depends on

the saturation characteristics of the actuators involved in the implementing the control.
Additionally, g can be chosen to impose a maximum energy constraint on u t( )  over a control

interval [0,T]; here

u t dt dt T E
E

T

T T

( )     max
max

2
0 0
Ú Ú£ = £ ¤ £g g g

To impose this bound, for x t( ) ŒW, we require that for all t

u t Kx t x t K Kx tT T( ) ( ) ( ) ( )2 2 2= = £g (3.18)

But if

K K ST £ -g
m

2

2
1 (3.19)
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holds, then u t( ) £
2

g  as desired.  To convert 3.19 to LMI form, observe that

K K S L LS S L L ST T T= £ ¤ £- - -1 1
2

2
1

2

2
g
m

g
m

              (3.20)

Using the Schur complement 3.20 can be written as the LMI:

S L

L

T

g
m

2

2
0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

≥ (3.21)

In summary, the LMI formed by inequalities 3.16, 3.17 and 3.21 will be used in the next section
to develop a gain scheduled controller for the error system set forth in the next section.

4. CONTROL DESIGN

This section details the application of the general version of Theorem 2 to the design of a
control law for the reduced order model of the Diesel engine.  The controller drives the system
state through a sequence of operating points.  About each operating point we generate a
nonlinear error system amenable to polytopic form.  For each such system, an LMI is formulated
so that the previous equilibrium is included in the region of attraction of the current error system.
A constraint on the gain is also imposed.  The solution of the each LMI generates the needed
control as per section 3.

4.1 Derivation of the error system

The reduced order model of the EGR-VGT Diesel engine [8] is given in the set of
equations 2.4.

Assuming that the desired operating point is p p Pd d
C
d T

1 2, ,[ ] (see section 2.3), the equilibrium

equations are obtained by setting the derivative in equation 2.4 to zero, i.e.,

0

1

0

0 1

1

1

1 2

2
2

2

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á
Á

ˆ

¯
˜
˜

- +

= + - -

= - -
Ê

ËÁ
ˆ

¯̃

Ê

Ë
Á
Á

ˆ

¯
˜
˜

h

h h

m

m

C

a p

C
d

d

a

e
d

egr

e
d

f
d

egr
d

t
d

C
d

m t p
a
d t

d

T C

P

p

p

k p W

k p W W u

P T C
p

p
u

 (4.1)
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where the superscript d has the meaning of the desired operating point.  Since the control inputs
for the model (2.4) are Wegr and u t2  we denote them by u1 and u2, respectively.  We define

D D D Dx p p P p p p p P PC
T d d

C C
d T= = - - -[ , , ] [ , , ]1 2 1 1 2 2  as the error relative to the desired

operating point and from equations 2.4 and 4.1 we obtain the nonlinear error dynamics:

D
D

D
D

D
p k

P

T C p p

p

p

p

k p
T C

P

p p

p

C C
d

a p d

a

d

a

e
C

a p

C

d

a

1 1

1 1 1

1

1 1

1

1

1

1 1

∑
=

+
-

-

-

- +
+

-
Ê

ËÁ
ˆ

¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Ê

ËÁ
ˆ

¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

h h
m m m ++

= - -

∑
= -

+
- - +

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

( )
Ê

ËÁ
ˆ

¯̃

Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

∑

D

D D D D

D
D

D

u

p k k p u u

P T C u
p

p p

p

p
P T

e

C m t p
d a

d
a
d C m t

1

2 2 1 1 2

2 2
2 2 2

2
1 1 1

«

t
h h

t t
h h

m m

CC
p

p p
up

a
d

1
2 2

2-
+

Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙D
D

m

 (4.2)

4.2 Polytopic form of the error system

Let D D D Dx p p PC
T= [ ]1 2 .  The error system (4.2) can be written in the following

form:

D D D D Dx A x x B x u
∑

= ( ) + ( )  (4.4)

where  A x k keD
M M

M

( ) =

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

11 13

2

32

0

0 0

0
1
t

, M
D D

11
1

1
1 1 1

1

1

1

1

=
+Ê

Ë
Á

ˆ

¯
˜ -

-
Ê

Ë
Á

ˆ

¯
˜ -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-
k P

T C p p p

p

p

p

kC C
d

a p d

a

d

a

e
h

m m ,

M
D

13

1 1

1

1

=
+Ê

Ë
Á

ˆ

¯
˜ -

h
m

C

a p d

a

T C p p

p

,  M
D D32

2 2

2 2 2 2

1
= -

+

Ê

ËÁ
ˆ

¯̃
-

Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í

˘

˚

˙
˙t

h h m m
m t p

d
a

d
a
d

T C u

p

p

p p

p

p
, and

B x

k

k k

B

D( ) = - -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2 2

320

0

 with B T C
p

p p
m t p

a
d32 2
2 2

1
1= -

+

Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í

˘

˚

˙
˙t

h h
m

D
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We remark that the entry ( , )11  of the matrix A xD( )  is a differentiable function of Dp1 and
is defined for Dp1 0= .  A similar discussion is valid for the ( , )3 2  entry with respect to Dp2.

Let us define the following functions

Y D
D D

1
1

1
1 1 1

1

1

1

1

x
k P

T C p p p

p

p

p

C C
d

a p d

a

d

a

( ) =
+Ê

Ë
Á

ˆ

¯
˜ -

-
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

h
m m ,Y D

D
2

1 1

1

1

x
T C p p

p

C

a p d

a

( ) =
+Ê

Ë
Á

ˆ

¯
˜ -

h
m (4.5)

Y D
D D3

2 2

2 2 2 2

1
x

T C u

p

p

p p

p

p

m t p
d

a
d

a
d( ) = -

+

Ê

ËÁ
ˆ

¯̃
-

Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í

˘

˚

˙
˙t

h h m m

,Y D
D4 2

2 2

1
x T C

p

p p
m t p

a
d( ) = -

+

Ê

ËÁ
ˆ

¯̃t
h h

m

(4.6)

Using the above defined functions the matrix A o( ) can be written as in 3.15a:

A x A x Ai i
i

D Y D D( ) = + ( )
=
Â0

1

4
(4.7)

with DA4 0= [ ] ,

A

k

k k
e

e0 2

0 0

0 0

0 0
1

=
-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙t

, DA1

1 0 0

0 0 0

0 0 0

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙
, DA2

0 0 1

0 0 0

0 0 0

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙
, DA3

0 0 0

0 0 0

0 1 0

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙
. (4.8)

Similarly, the matrix B o( )  can be written as in 3.15b :

B x B x Bi i
i

D Y D D( ) = + ( )
=
Â0

1

4
 (4.9)

with D D DB B B1 2 3 0= = =[ ] ,

B

k

k k

T Cm t p

0

1

2 2

2
0

0

1
= - -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙t

h h

,  and DB4

0 0

0 0

0 1

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

(4.10)

The relations (4.7)-(4.10) represent the polytopic form of the reduced order model of the Diesel
engine.  From (4.5) and (4.6) we observe that there exist functions F i i( ), , , ,o =1 2 3 4 such that
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Y D F Di i ix C x i( ) ( ), , , ,= =1 2 3 4 where C C1 2 1 0 0= = [ ]  and C C3 4 0 1 0= = [ ] .  Since in a
sufficiently small region about the origin the functions F i i( ), , , ,o =1 2 3 4 are monotone then, for a
suitably chosen small m> 0, the functions F Di iC x( ) can be included in the interval defined by
F i -( )m  and F i m( )  wheneverC xi D £m.  It follows that the constants ai  and bi  can now be

explicitly chosen such that a x bi i i£ £Y D( )  whenever C xi D £m for i =1 2 3 4, , , .  Thus given the
polytopic form of equation 3.15, the LMI formed by inequalities 3.16, 3.17 and 3.21 is now
completely specified and the gain K  of the linear state feedback controller u K x= ¥ D  is then
obtained as a function of the solution of this system of LMI’s.  Details of the computations in
MATLAB of the gain K for a specific operating point  can be found in Appendix 3.

5.  GAIN SCHEDULED CONTROL LAW FOR DRIVING THE STATE OF THE
DIESEL ENGINE FROM AN INITIAL STATE TO A DESIRED VALUE.

In an ordinary drive cycle, the diesel engine transitions through different reference states.
These states are computed by the electronic control unit according to the driver demands and
road conditions, and the pre-computed exhaust gas emissions constraints.  We saw that to each

reference state x Di
d Œ  associated with the triple ( , , )L Si i iW , i nD=1, ,K , where D is the (finite)

set of all reference states which may occur during the operation of the engine and nD is the

number of elements in D.  Assuming that the engine is in state xk
dand the next desired state is

xk
d
+1 the following situation may occur: xk

d
kœ +W 1.  In this case the engine cannot be driven

from xk
d  to xk

d
+1 using the control law u L S xk k k= - 1 .  It is necessary for us to compute additional

intermediate reference states x x xk k k
ik1 2, ,..., such that the engine will pass through the whole chain

of regions of attractions W W Wk k k
ik1 2, ,...,  associated with these states until it will reach the Wk+1.

By applying the control u L S xk k k= - 1 the engine will be driven asymptotically to xk
d
+1; it will

remain in this state as long as the reference state remains unchanged. The idea is illustrated by
the following figure.



A Polytopic System Approach  page 16

 
1p

2p

CP

1-Wi

iW
1+Wi

d
ix 1- d

ix

d
ix 1+

xKuswitch i 1: -=
xKuswitch i=:

xKuswitch i 1: +=

Figure 2.  Sketch showing the concept of polytopic controller design for hybrid systems.

The above techniques were applied to the 3rd order engine model using a total of 12
equilibrium states including the initial and final points.  The resulting control was then applied to
the 7th order model and simulated.  The results of the simulation are presented below.

In order to show the flexibility in the controller design and the trade-offs that must be
made when designing the controller strategy, four sets of simulations have been performed.  The
controllers have been designed based on the reduced order model (the control model) and they
have been implemented on the full order model (the simulation model).  The discussions of the
simulations include characteristics, advantages and disadvantages of each set of simulations.

SET 1 OF SIMULATIONS:

Characteristics: For this set of simulations
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- 10 intermediate points (thus there are 12 operating points in total, including the first and
the last operating points) have been considered;

- a relative error of 310-  has been considered (the relative error represents the distance
between the desired state and the actual state when the switching of controller takes occurs);

 - the controllers have been designed such that they have a (2L -induced ) norm in the

interval ]10,107[ 45 --¥ .

The results of this set of simulations are plotted in figures 3 and 4.

Figure 3. Plot of the (partial) state of the (full) system (the desired values
 are plotted with dashed line and the simulated values are plotted with solid line)



A Polytopic System Approach  page 18

Figure 4. Plot of the control input (the desired values are plotted with
 dashed line and the simulated values are plotted with solid line)

Advantages:
- the trajectory of the state of the system is close to a desired trajectory(represented by a

curve which passes through all intermediate desired operating points);
- the variations in the control input are relatively small (this is due to the fact the norm of

the controllers have been chosen to be very small).

Disadvantages:
- the time of convergence from the first operating point to the last one is very large(from

the practical point of view it is unacceptable large);
- there are (as expected) discontinuities in the control input when the switching of the

controllers occurs.

SET 2 OF SIMULATIONS:

Characteristics:  For this set of simulations

- 7 intermediate points (thus there are 9 operating points in total, including the first and
the last operating points) have been considered;

- a relative error of 310-  has been considered (the relative error represents the distance
between the desired state and the actual state when the switching of controller takes occurs)
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 - the controllers have been designed such that they have a (2L -induced ) norm in the

interval ]1045.3,103[ 44 -- ¥¥ .

The results of this set of simulations are plotted in figures 5 and 6.

Figure 5. Plot of the (partial) state of the (full) system (the desired values
 are plotted with dashed line and the simulated values are plotted with solid line)
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Figure 6. Plot of the control input (the desired values are plotted with dashed line
and the simulated values are plotted with solid line)

Advantages:

- the trajectory of the state of the system is still relatively close to a desired trajectory;
- the variations in the control input are still relatively small (this is due to the fact the

norm of the controllers have been chosen to be  small).

Disadvantages:
- the time of convergence from the first operating point to the last one is large(from the

practical point of view it is still unacceptable large);
- there are (as expected) discontinuities in the control input when the switching of the

controllers occurs.  For this set of simulations the variations in the control input at the
discontinuities points are larger that in the previous set of simulations.

SET 3 OF SIMULATIONS:

Characteristics:  For this set of simulations

- 4 intermediate points (thus there are 6 operating points in total, including the first and
the last operating points) have been considered;
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- a relative error of 5.0  has been considered (the relative error represents the distance
between the desired state and the actual state when the switching of controller takes occurs)
 - the controllers have been designed such that they have a (2L -induced ) norm in the
interval ]0090.0;0069.0[ .

The results of this set of simulations are plotted figures 7 and 8

Figure 7. Plot of the (partial) state of the (full) system (the desired values
 are plotted with dashed line and the simulated values are plotted with solid line)
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Figure 8. Plot of the control input (the desired values are plotted with dashed line
and the simulated values are plotted with solid line)

Advantages:

- the trajectory of the state of the system is acceptable close to a desired trajectory, but the
previous trajectories are closer than this trajectory;

- the variations in the control input are acceptable (this is due to the fact the norm of the
controllers are lager for this set of simulations relatively to the previous two sets of simulations).

- the time of convergence from the first operating point to the last one is smaller in this
case(from the practical point of view it is acceptable);

Disadvantages:
- there are discontinuities in the control input when the switching of the controllers occurs.  For
this set of simulations the variations in the control input at the discontinuities points are larger
that in the previous sets of simulations.

In order to show what we mean when we say that a trajectory 2 is closer to the desired
trajectory than trajectory 3,  both trajectories from sets 2 and 3 of simulations are plotted in the
next figure.  The desired trajectory is also plotted on the same figure as per figure 9.
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Figure 9. The desired trajectory (with dashed line), the trajectory
from the 2nd set of simulations (with solid line), the
trajectory from the 3rd set of simulations(with stars)

SET 4 OF SIMULATIONS

Characteristics:  This is an extreme case when there is no intermediate point.  The state of the
system is driven directly from the first to the last operating point.  The norm of the controller is

0069.0 and the relative error is 5.0 .

The results of this set of simulations are plotted in figures 10 and 11.
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Figure 10. Plot of the (partial) state of the (full) system (the desired values
 are plotted with dashed line and the simulated values are plotted with solid line)
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Figure 11. Plot of the control input (the desired values are plotted with dashed line
and the simulated values are plotted with solid line)

Adavantages:
- the time of convergence is very small relatively with the previous sets of simulations.

Disadvantages:

- the trajectory is very far away form the desired trajectory;
- control input variations are too large and there may be possible saturations;
- the derivative of )(1 tu is very large at the beginning of the trajectory and the bandwidth

of the actuators may not be too large.

In conclusion, the fourth sets of simulations prove the flexibility of the control design
approach. This flexibility may be used to design the sequence of the controllers so that an
acceptable trade-off between the time of convergence, the closeness of the trajectory to the
desired trajectory, and appropriate gain constraints on the control inputs can be achieved.

The results here are similar to those reported in [4] although we did not consider here a
return to a lower load.  An advantage of the approach herein is that we utilize the nonlinear error
model as was done in [1] although in [1] a variable structure control was developed in contrast to
the polytopic/LMI development here.

In implanting the control, a relative error of 10-3 for the norm of the difference between
the desired state and x(t) was used before switching to the next controller.  A larger relative error
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of 10-2 significantly decreased the time of convergence to approximately 45 seconds instead of
83 seconds.  Also, we can reduce the time of convergence further by allowing a larger norm on
the control.  It is necessary to explore these tradeoffs relative to fuel economy and emissions
between the intermediate equilibrium states.

6.   CONCLUSIONS.

In this conclusions section, we first point out the overall design strategy as shown in
figure 12.

Figure 12.  Flow diagram of polytopic control design strategy.

Additionally the controller stabilizes the engine about each operating point as none of the
error systems is locally stable about any of the operating points.  This occurs in the presence of a
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non-minimum phase behavior.  Additioinally, the controller is robust with respect  to parameter
variations which in fact may vary over a wide range due to aging and use.

As with all work, this material needs to be extended.  In terms of output, state equations
are needed which relate the internal state variables and inputs (including engine speed) to the

torque produced by the engine and to the NOx produced.  Further, actuator dynamics associated
with the EGR valve and the VGT must be added.  And most critically, the dynamics of the
fueling process must be specified and utilized in the control design.
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APPENDIX 1: CALCULATIONS OF THE EQUILIBRIUM VALUES FOR THE STATE OF THE 7TH

ORDER DIESEL ENGINE MODEL BASED ON A A PRIORI SPECIFIED DRIVING PROFILE.

Section 1: Calculation of equilibrium values for a general Diesel engine model whose
dynamics are given by equations (2.1), (2.2) and (2.3).

For the calculation of a set of operating points, it is assumed that a driving profile has
been specified.  The specified driving profile consists of a sequence of points in the space
( , )W Nf  (fueling rate and engine speed) along with a set of associated reference values

( , )AFR EGRref ref  for ( , )AFR EGR chosen so that a trade-off between minimum fuel

consumption and minimum generated quantities of NOX and transient smoke is achieved.

Therefore one obtains a sequence of points ( , , , )W AFR EGR Nf
d

ref ref ref , in the space determined

by Wf , EGR, AFR, and N.  For this work, N = 2000 rpm is constant.  Assuming that the values

of Wf , EGR, AFR, and N are known for each operating point, the corresponding values of

Wegr
d  and WC

d  are computed using the relationships 4.15 and 4.3a in [8]:

W
W

EGR AFRC
d f

d

ref ref= + + -Ê
Ë

ˆ
¯2

4 12b b ( )

W
EGR

EGR
Wegr

d ref

ref
C
d=

-1

where
b = - + + -AFR EGR AF EGRref ref s ref( ) ( )1 1 1.

In the above expression AFs represents the stoichiometric value of the air-to-fuel ratio.

At equilibrium the state, r r1 1 1 2 2 2
d d d d d d

C
d T

F p F p P, , , , , ,[ ] , of the 7th order model of the Diesel

engine must satisfy the following equations:

W u WC
d d

e
d+ - =1 1 0 (A1.1)

F F u F Wd d d d
C
d

2 1 1 1 0-( ) - = (A1.2)

W T u T W TC
d

C
d d d

e
d d+ - =1 2 1 1 0 (A1.3)

W u ue
d d d
2 2 1 0- - = (A1.4)

F F We
d d

e
d

2 2 2 0-( ) = (A1.5)

W T u T u Te
d

e
d d d d d

2 2 2 2 1 2 0- - = (A1.6)
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P T C
p

p
uC

d
m t

d
p

a
d

d= -
Ê

ËÁ
ˆ

¯̃

Ê

Ë
Á
Á

ˆ

¯
˜
˜

h h
m

2
2

21 (A1.7)

where u u1 21= , represents the flow from the exhaust manifold to the intake manifold

u Wd
egr
d

1 =( ) , and u u t2 2= represents the turbine flow.  From equation (A1.1) it follows that, at

equilibrium,

W u WC
d d

e
d+ =1 1

Hence

W W u W We
d

C
d d

C
d

egr
d

1 1= + = + (A1.8)

The value of md
1 (equilibrium value for the mixture mass in the intake manifold) can be found

using the formula for W e1  (see relationship 3.11 in [8]). Therefore we have

m
W V

N V

V

N V
W Wd e

d

vol d vol d
C
d

egr
d

1
1 1 1120 120

=
◊ ◊

◊ ◊
=

◊
◊ ◊

+( )h h
(A1.9)

From the balance equation in mass flow rates with respect to the exhaust manifold it follows that

W u ue
d d d
2 1 2= +

Using the above equation and equation (A1.6) it follows that, at equilibrium,

T Te
d d
2 2= .

Using the above equation together with equation 3.20.6a in  [8], which represents the
temperature rise across the engine, it follows that

T T a
a

N

a

N

W

W W W
a

a

N

a

N
F a SOId d f

d

f
d

C
d

egr
d

d
2 1 1

2 3
2 4

5 6
2 1 7- = + +Ê

ËÁ
ˆ
¯̃ + +

+ + +Ê
ËÁ

ˆ
¯̃

+

(A1.10)

where a a a a a a a1 2 3 4 5 6 7, , , , , ,  are coefficients which depend on the type of the engine and SOI
represents the start of injection in degrees.  We assume that all these coefficients have been
previously computed.
Using the relationship (A1.8), equation (A1.3) can be rewritten as

W T W T W W TC
d

C
d

egr
d d

C
d

egr
d d+ - + =2 1 0( )

 which is equivalent to
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W T W T T W TC
d

C
d

egr
d d d

C
d d+ - - =( )2 1 1 0 (A1.11)

The above equation (A1.11) will be used to compute pd
1 .  Note that in equation (A1.11) the

values of WC
d  and Wegr

d  have been previously computed and the temperature difference

T Td d
2 1-  is given by the relationship (A1.10).  The equilibrium value of the temperature in the

intake manifold can be computed in terms of pd
1  from the universal gas law written for the

intake manifold

T
p V

m R
d

d

d1
1 1

1
=

Using the relationship (A1.9) the Td
1  can be written as

T
p N V

R W W
d

d
vol d

egr
d

C
d1

1

120
=

+
h

( )
(A1.12)

The equilibrium value of the compressor temperature can be computed using the relationship
C.11 in the Appendix of [8].

T T
p

pC
d

a
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d
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Á

ˆ

¯
˜ -
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Ë
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ˆ
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˙
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1
1

11
h

m

 (A1.13)

Replacing the relationships (12) and (13) into equation (11) we have

W T
p

p
W T T W

p N V

R W W
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d

a
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d

a
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d d d
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d
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(A1.14)

Equation (14) and (10) form a system

W T
p

p
W T T W

p N V

R W W

T T a
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N

a
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W W W
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d
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d
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4
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2 1 7

(A1.15)

from which pd
1 can be computed if  the value F d

1 is known. The next step toward computing pd
1

is to find F d
1 .  From equation (5) it follows that, at equilibrium,
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F Fe
d d
2 2=

The value of Fe
d
2 can be computed using the relationship 3.19.8 from [8].

F
F W W AF

W W
e
d

d
e
d

f
d

s

e
d

f
d2

1 1

1

1
=

+ +

+

( )

Therefore we have

F
F W W AF

W W
d

d
e
d

f
d

s

e
d

f
d2

1 1

1

1
=

+ +

+

( )

The above equation together with equation (A1.2) form a system form which F d
1  can be

computed

F
F W W AF

W W

F F u F W

d
d

e
d

f
d

s

e
d

f
d

d d d d
C
d

2
1 1

1

2 1 1 1

1

0

=
+ +

+

-( ) - =
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Ó
Ô
Ô

( )

(A1.16)

Solving the above system of equations it follows that

F
W W AF

W W W
d f

d
egr
d

s

e
d

C
d

f
d1

1

1
=

+

+

( )

( )
(A1.17)

F
W AF

W W
d f

d
s

C
d

f
d2

1
=

+

+

( )
(A1.18)

The equations from the system (A1.15) together with equation (A1.17) form a new system as
follows

W T
p

p
W T T W

p N V

R W W
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d

a
C

d
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egr
d d d

C
d

d
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d
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(A1.19a)

T T a
a

N

a

N

W

W W W
a

a

N

a

N
F a SOId d f

d

f
d

C
d

egr
d

d
2 1 1

2 3
2 4

5 6
2 1 7- = + +Ê

ËÁ
ˆ
¯̃ + +

+ + +Ê
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ˆ
¯̃

+ (A1.19b)

F
W W AF

W W W
d f

d
egr
d

s

e
d

C
d

f
d1

1

1
=

+

+

( )

( )
(A1.19c)
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A nonlinear equation with the unknown pd
1 can be obtained by, first, using the formula ofF d

1

from (A1.19c), in (A1.19b), and, second, by replacing T Td d
2 1- , in (A1.19a), with the formula in

(A1.19b).  The obtained nonlinear equation can be solved using a specialized software and thus

the value ofpd
1 is obtained. Using the obtained value of pd

1 and the equilibrium equations, the
desired values for state of the 7th order model of the Diesel engine can be obtained.  For clarity
and completeness we present below an algorithm with the main steps that needs to be followed in
order to compute the desired values of the 7th order model state.

Algorithm for obtaining the equilibrium state values of the 7th order model:

STEP 1: Input the value of the following parameters (which depend on the type of the engine and

the operating conditions): Wf
d , N , AFRref , EGRref , AFs, hm, ht , hC, pa, Ta,Cp, R, m,

hvol, t , Vd , a1, a2, a3, a4, a5, a6, a7, SOI(in degrees after TDC).

STEP 2: Compute WC
d, Wegr

d  and W e
d

1  using the following relations:

b = - + + -AFR EGR AF EGRref ref s ref( ) ( )1 1 1

W
W

EGR AFRC
d f

d

ref ref= + + -Ê
Ë

ˆ
¯2

4 12b b ( )

W
EGR

EGR
Wegr

d ref

ref
C
d=

-1

W W We
d

C
d

egr
d

1 = +

STEP 3: Form a nonlinear equation whose unknown is pd
1 as follows:

a) Use the below formula to compute F d
1 :

F
W W AF

W W W
d f

d
egr
d

s

e
d

C
d

f
d1

1

1
=

+

+

( )

( )

b) Compute the temperature difference T Td d
2 1- using the following formula:

T T a
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N

a

N

W

W W W
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N
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N
F a SOId d f
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2 3
2 4

5 6
2 1 7- = + +Ê

ËÁ
ˆ
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+ + +Ê
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ˆ
¯̃

+

c) Form the nonlinear equation in pd
1 :

W T
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p
W T T W
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R W W
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d) Solve the above equation in order to obtain pd
1 .

STEP 3: Compute the equilibrium values for the remaining state as follows:

a) Compute r1
d :

r
h1

1120d e
d

vol d

W

N V
=

◊
◊ ◊

b) Compute Td
1 :

T
p

R
d

d

d1
1

1
=

r
c) Compute Td

2 :

T T a
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a

N

W

W W W
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2 4
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d) Compute PC
d:
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e) Compute pd
2 :

p p
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m t
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p t
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f) Compute r 2
d :

r 2
2

2

d
d

d
p

T R
=

g) Compute F d
2 :

F
W AF

W W
d f

d
s

C
d

f
d2

1
=

+

+

( )
.

Section 2: A discussion on the use of the equilibrium value of the intake and
exhaust manifold temperatures(Td

1  and Td
2 ).

The reduced order model of the Diesel engine depends on T1(intake manifold
temperature) and on T2(exhaust manifold temperature).  Thus, in order to develop a controller
such that the closed loop system will have certain desired properties, one needs to know the
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values of T1 and T2.  The reduced order model assumes that these temperatures are constant.  For
our approach we have considered that T1 and T2 have constant values in a region around each
desired operating point.  Thus, for our controller development, we have considered that, locally,

T Td
1 1=  and T Td

2 2= , where Td
1  and Td

2  represents the values of T1 and T2 at the desired
operating point.  These values can be computed as presented in the algorithm of Section 1, Step
3.  If the mean values of T1 and T2 can be estimated then the algorithm from Section 1 must be

replaced by the derivation of pd
1 , pd

2  and PC
d presented in [1], Section 3.1.

Section 3 : A MATLAB code for computing the desired states of the 7th order
model of the Diesel engine.

Our controller development is based on a Diesel engine whose simulator has been
developed in SIMULINK by Devesh Upadhyay.  For this model, equation (A1.10) is given by

T T N Nd d
2 1

6 25 8940 0 00061 4 56 10- = - + ◊ + ◊ ◊-. . .

+
+

◊ ◊ + -Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

W

W W N
f
d

e
d

f
d

1
10000 1 3722 0 0709 1

10000
. . .

For the following MATLAB code we assume that the following values have been previously

determined: Wf
d , N , AFRref , EGRref , hm, ht , hC, pa, Ta, R,Cp, m, hvol, t , Vd .  The

following MATLAB code can be used to implement the steps presented in the algorithm from
Section 1.

>> beta1 = AFref*( 1-EGRref ) + 15.6*EGRref - 1;
>> Wcd = Wfd/2*( beta1+sqrt( beta1*beta1+4*( 1-EGRref )*AFref ) );
>> Wegrd = EGRref*Wcd/( 1-EGRref );
>> W1ed = Wegrd + Wcd;
>> m1d = (W1ed*V1*120)/(N*voleff*Vd);
>> u2td = Wcd + Wfd;
>> diffT = (-5.8940 + 0.00061*N + 4.56e-6*N*N) + Wfd/(Wfd+W1ed)*10000*( 1.3722
                                                                                                       + 0.0709*(1-10000/N) ) ;
>> sol = fzero( @myfun,[1 3],[],(eta_c*pa*V1)/(m1d*R*Ta),eta_c-1+
                                                                                        (eta_c*Wegrd*diffT)/(Wcd*Ta)) ;
>> p1d = sol*pa ;
>> T1d = p1d*V1/(m1d*R);
>> T2d = T1d + diffT;
>> Pcd = Wcd*Ta*Cp*( (p1d/pa)^miu-1 )/eta_c ;
>> p2d = pa*( 1 - Pcd/(eta_m*eta_t*T2d*Cp*u2td) )^(-1/miu) ;
>> F1d = 15.6*Wfd*Wegrd/( W1ed*(Wcd+Wfd) );
>> F2d = 15.6*Wfd/(Wcd+Wfd);
where myfun is used to define the nonlinear equation that appears in Step 3 of the algorithm from
Section1:
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>> function y = myfun(x,a,b)
>> y = x.^0.285715-x*a+b
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APPENDIX 2: COMPUTATION OF THE LINEARIZED (REDUCED ORDER) MODEL AROUND THE

EQUILIBRIUM POINT p p Pd d
C
d

1 2, ,( )
The 3rd order model can be written in the following form
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The linearized model has the form
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In the above expression x p p PC
T= [ ]1 2  and u u u

T= [ ]1 2 .  The superscript d has the
meaning of the desired value (the value at the equilibrium point around which the linearization is
computed).  Using the above expressions for f1, f2, f3, g1, g2, g3 the following expressions
are obtained for the matrices A and B:
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p

p
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p

p
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È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 1 0

0 0 1

, and D =
È
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.

In order to show the instability and the non-minimum phase behavior of the reduced
order model the poles and the transmission zeros will be computed for one equilibrium point
corresponding to:

W ef
d = -6 1111 004. kg /sec; AFRref = 45; EGRref = 0 4.

This operating point has been used in simulation in [1].  The equilibrium values corresponding to
this equilibrium operating point are:

pd
1 182 4412= . kPa

pd
2 186 4868= . kPa

PC
d =1 4990. kW

Td
1 511 6083= . K

Td
2 719 2392= . K

u t
d
2 0 0208= . kg/sec

Using these values in the previous expressions of the matrices A B C D, , ,  the poles and the zeros
can be computed.  The poles are

- ±13 7629 3 6782. . i , 5 0555. .

The transmission zeros from the input u Wegr1 = to the output y p1 1=  are

- 12 4085.  and 9 0751. .

The presence of a zero in the right half plane is consistent with our intuition, i.e. an increase in
u Wegr1 =  may result in a decrease in y p1 1=  since the turbine flow will decrease and so will do

the compressor power.
The transmission zeros do not show a non-minimum phase behavior from the input to the

output y p2 2=  for the third order model.  However the non-minimum phase feature of the
full(7th) order model of the Diesel engine has been proved in [8], page 172-180, by simulations
and by computing the transmission zeros for different transfer functions.

The MATLAB code that we have used for computing the linearized model of the 3rd

order model around the specified equilibrium point and computing the poles and the transmission
zeros is added below.
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>> p1d = 182.4412;
>> p2d = 186.4868;
>> Pcd = 1.4990;
>> T1d = 511.6083;
>> T2d = 719.2392;
>> u_2td = 0.0208;
>> k1 = R*T1d/V1;
>> k2 = R*T2d/V2;

>> A = zeros(3,3);
>> A(1,1) = k1*( -eta_c/(Ta*Cp)*Pcd*1/( ((p1d/pa)^miu-1)^2 )*miu*1/( pa^miu)
                                                                                                               *p1d^(miu-1)-ke );
>> A(1,2) = 0;
>> A(1,3) = k1*eta_c/(Ta*Cp)*1/( (p1d/pa)^miu - 1 );
>> A(2,1) = k2*ke;
>> A(2,2) = 0;
>> A(2,3) = 0;
>> A(3,1) = 0;
>> A(3,2) = 1/tau*eta_m*eta_t*T2d*Cp2*miu*pa^miu*p2d^(-miu-1)*u_2td;
>> A(3,3) = -1/tau;
>> eig(A)
>> B = zeros(3,2);
>> B(1,1) = k1;
>> B(1,2) = 0;
>> B(2,1) = -k2;
>> B(2,2) = -k2;
>> B(3,1) = 0;
>> B(3,2) = 1/tau*eta_m*eta_t*T2d*Cp2*( 1-(pa/p2d)^miu );
>> C1 = [1 0 0];
>> C2 = [0 1 0];
>> D = zeros(1,1);
>> z1 = tzero(A,B(:,1),C1,D) ;
>> z2 = tzero(A,B(:,2),C2,D);

For deriving a linearized model, around a specified operating point, of the 7th order model of the
Diesel engine a Mapple program has been used. The main part of the program is listed below:

Section 2.  Program Description

This program is used to compute the linearized model of the Diesel engine around an
equilibrium point.  The input to the model considered in this program is : u = [u1 u2]' = [ Wegr
u_2t]'.  The purpose of the linearization is to study the stability of the Diesel engine model at
different equilibrium
points.  The model has the standard form :
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> Diff(<m[1], F[1], p[1], m[2], F[2], p[2], P[C]>,t)=f(<m[1],
F[1], p[1], m[2], F[2], p[2], P[C]>,<u[1], u[2]>);
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∂
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Let x denote the state of the Diesel engine:

> x=<m[1], F[1], p[1], m[2], F[2], p[2], P[C]>;

 = x

È
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And let the input u be:

> u=<u[1], u[2]>;

 = u
È

Î
ÍÍÍÍ

˘

˚
˙̇
˙̇

u
1

u
2

Then the model can be written as:

> Diff(x,t)=<f[1](x,u), f[2](x,t), f[3](x,u), f[4](x,u),
f[5](x,u), f[6](x,u), f[7](x,u) >;
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 = ∂
∂
t

x

È

Î
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,x u
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,x u

( )f
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,x u

Section 3.  Definition of Wc1, W1e, Tc1, We2, Fe2, Te2, Pt in terms of the
state of the system

In this section the above variables will be defined in terms of the state of the system and
some constants.   The reason for defining the above variables is that they will be used in the next
section to compute the linearized   model around an equilibrium operating point.

> Wc1:=(eta_c*Pc)/( Cp1*Ta*( (p1/pa)^miu-1) );

 := Wc1
eta_c Pc

Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

> W1e:=(Vd*eta_v*N*m1)/(120*V1);

 := W1e
1

120
Vd eta_v N m1

V1

> Tc1:=Ta+Ta/eta_c*( (p1/pa)^miu-1 );

 := Tc1  + Ta
Ta

Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

eta_c
> We2:=Wf+W1e;

 := We2  + Wf

1
120

Vd eta_v N m1

V1

Fe2 represents the burnt gas ratio after the combustion has taken place and phi_s represents the
stoichiometric value of FAR(fuel-to-air ratio=1/AFR).

> Fe2:=( W1e*F1+Wf*(1+1/phi_s) )/(Wf+W1e);
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 := Fe2
 + 

1
120

Vd eta_v N m1 F1
V1

Wf Ê
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ˆ
¯
˜̃ + 1

1
phi_s

 + Wf

1
120

Vd eta_v N m1

V1
> T1:=p1*V1/(m1*R);

 := T1
p1 V1
m1 R

> T2:=p2*V2/(m2*R);

 := T2
p2 V2
m2 R

> Te2:=T1+( -5.8940+0.00061*N+4.56*10^(-6)*N^2
)+Wf/(Wf+W1e)*(10000*(1.3722+0.0709*(1-10000/N)));

Te2
p1 V1
m1 R

5.8940 .00061 N .4560000000 10-5 N2 -  +  +  := 

Wf
Ê
Ë
ÁÁ

ˆ
¯
˜̃ - 14431.0000

.7090000000 107

N

 + Wf

1
120

Vd eta_v N m1

V1

 + 

Pt represents the turbine power.

> Pt:=eta_t*T2*Cp2*( 1-(pa/p2)^miu )*u2;

 := Pt
eta_t p2 V2 Cp2

Ê
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ˆ

¯
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ˆ
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Section 4.  Computation of the linearized model

The linearized model has the following form:

> Diff(x,t)=A*x+B*u;

 = ∂
∂
t

x  + A x B u

with the matrix A defined as below:

> A=<<Diff(f[1](x,u),m[1]) | Diff(f[1](x,u),F[1]) |
Diff(f[1](x,u),p[1]) | Diff(f[1](x,u),m[2]) |
Diff(f[1](x,u),F[2]) | Diff(f[1](x,u),p[2]) |
Diff(f[1](x,u),P[c]) > , <Diff(f[2](x,u),m[1]) |
Diff(f[2](x,u),F[1]) | Diff(f[2](x,u),p[1]) |
Diff(f[2](x,u),m[2]) | Diff(f[2](x,u),F[2]) |
Diff(f[2](x,u),p[2]) | Diff(f[2](x,u),P[c])> ,
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<Diff(f[3](x,u),m[1]) | Diff(f[3](x,u),F[1]) |
Diff(f[3](x,u),p[1])| Diff(f[3](x,u),m[2]) |
Diff(f[3](x,u),F[2]) | Diff(f[3](x,u),p[2]) |
Diff(f[3](x,u),P[c])> , < Diff(f[4](x,u),m[1])|
Diff(f[4](x,u),F[1]) | Diff(f[4](x,u),p[1]) |
Diff(f[4](x,u),m[2]) | Diff(f[4](x,u),F[2]) |
Diff(f[4](x,u),p[2]) | Diff(f[4](x,u),P[c])> , <
Diff(f[5](x,u),m[1]) | Diff(f[5](x,u),F[1]) |
Diff(f[5](x,u),p[1]) | Diff(f[5](x,u),m[2]) |
Diff(f[5](x,u),F[2]) | Diff(f[5](x,u),p[2]) |
Diff(f[5](x,u),P[c])> , < Diff(f[6](x,u),m[1]) |
Diff(f[6](x,u),F[1]) | Diff(f[6](x,u),p[1]) |
Diff(f[6](x,u),m[2]) | Diff(f[6](x,u),F[2]) |
Diff(f[6](x,u),p[2]) | Diff(f[6](x,u),P[c])> , <
Diff(f[7](x,u),m[1]) | Diff(f[7](x,u),F[1]) |
Diff(f[7](x,u),p[1]) | Diff(f[7](x,u),m[2]) |
Diff(f[7](x,u),F[2]) | Diff(f[7](x,u),p[2]) |
Diff(f[7](x,u),P[c])>>;
>
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Computation of the 1st row of A

> Diff(m[1],t)=<Diff(f[1](x,u),m[1]) | Diff(f[1](x,u),F[1]) |
Diff(f[1](x,u),p[1]) | Diff(f[1](x,u),m[2]) |
Diff(f[1](x,u),F[2]) | Diff(f[1](x,u),p[2]) |
Diff(f[1](x,u),P[c]) >;
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> f1:=Wc1+u1-W1e;

 := f1  +  - eta_c Pc
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> diff(f1,m1);
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> diff(f1,F1);
0

> diff(f1,p1);
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> diff(f1,m2);
0

> diff(f1,F2);
0

> diff(f1,p2);
0
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> diff(f1,Pc);
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Computation of the 2nd row of A

> Diff(F[1],t)=<Diff(f[2](x,u),m[1]) | Diff(f[2](x,u),F[1]) |
Diff(f[2](x,u),p[1]) | Diff(f[2](x,u),m[2]) |
Diff(f[2](x,u),F[2]) | Diff(f[2](x,u),p[2]) |
Diff(f[2](x,u),P[c])>;
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> f2:=1/m1*( (F2-F1)*u1-F1* Wc1 );

 := f2
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F1 eta_c Pc

Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

m1
> diff(f2,m1);

-

 - ( ) - F2 F1 u1
F1 eta_c Pc

Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

m12

> diff(f2,F1);

-  - u1
eta_c Pc

Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

m1
> diff(f2,p1);

F1 eta_c Pc Ê
Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

miu

m1 Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

2

p1

> diff(f2,m2);
0

> diff(f2,F2);
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u1
m1

> diff(f2,p2);
0

> diff(f2,Pc);

- F1 eta_c

m1 Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

Computation of the 3rd row of A

> Diff(p[1],t)=<Diff(f[3](x,u),m[1]) | Diff(f[3](x,u),F[1]) |
Diff(f[3](x,u),p[1])| Diff(f[3](x,u),m[2]) |
Diff(f[3](x,u),F[2]) | Diff(f[3](x,u),p[2]) |
Diff(f[3](x,u),P[c])> ;

∂
∂
t

p
1 ∂

∂
m

1

( )f
3

,x u ∂
∂
F

1

( )f
3

,x u ∂
∂
p

1

( )f
3

,x u ∂
∂
m

2

( )f
3

,x u ∂
∂
F

2

( )f
3

,x u ∂
∂
p

2

( )f
3

,x u, , , , , ,È

Î
ÍÍÍ

 = 

∂
∂
P

c

( )f
3

,x u ˘

˚
˙̇̇

> f3:=gamma*R/V1*( Wc1*Tc1+u1*T2-W1e*T1 );

 := f3

gR

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃
˜̃

 +  - 
eta_c Pc

Ê

Ë

ÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃ + Ta

Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

eta_c

Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

u1 p2 V2
m2 R

1
120

Vd eta_v N p1
R

V1
> diff(f3,m1);

0
> diff(f3,F1);

0
> diff(f3,p1);

gR
eta_c Pc

Ê

Ë

ÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃ + Ta

Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

eta_c
Ê
Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

miu

Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

2

p1

Pc Ê
Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

miu

Cp1
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1 p1

-  + 

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
120

Vd eta_v N
R

 - 

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃
˜̃̃

V1/
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> diff(f3,m2);

- gu1 p2 V2

V1 m22

> diff(f3,F2);
0

> diff(f3,p2);
gu1 V2
V1 m2

> diff(f3,Pc);

gR eta_c

Ê

Ë

ÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃ + Ta

Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

eta_c

V1 Cp1 Ta
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - Ê

Ë
ÁÁ

ˆ
¯
˜̃

p1
pa

miu

1

Computation of the 4th row of A

> Diff(m[2],t)=< Diff(f[4](x,u),m[1])| Diff(f[4](x,u),F[1]) |
Diff(f[4](x,u),p[1]) | Diff(f[4](x,u),m[2]) |
Diff(f[4](x,u),F[2]) | Diff(f[4](x,u),p[2]) |
Diff(f[4](x,u),P[c])>;

∂
∂
t

m
2 ∂

∂
m

1

( )f
4

,x u ∂
∂
F

1

( )f
4

,x u ∂
∂
p

1

( )f
4

,x u ∂
∂
m

2

( )f
4

,x u ∂
∂
F

2

( )f
4

,x u ∂
∂
p

2

( )f
4

,x u, , , , , ,È

Î
ÍÍÍ

 = 

∂
∂
P

c

( )f
4

,x u ˘

˚
˙̇̇

> f4:=(We2-u2-u1);

 := f4  +  -  - Wf

1
120

Vd eta_v N m1

V1
u2 u1

> diff(f4,m1);
1

120
Vd eta_v N

V1

> diff(f4,F1);
0

> diff(f4,p1);
0

> diff(f4,m2);
0

> diff(f4,F2);
0

> diff(f4,p2);
0

> diff(f4,Pc);
0
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>
Computation of the 5th row of A

> Diff(F[2],t)=< Diff(f[5](x,u),m[1]) | Diff(f[5](x,u),F[1]) |
Diff(f[5](x,u),p[1]) | Diff(f[5](x,u),m[2]) |
Diff(f[5](x,u),F[2]) | Diff(f[5](x,u),p[2]) |
Diff(f[5](x,u),P[c])>;

∂
∂
t

F
2 ∂

∂
m

1

( )f
5

,x u ∂
∂
F

1

( )f
5

,x u ∂
∂
p

1

( )f
5

,x u ∂
∂
m

2

( )f
5

,x u ∂
∂
F

2

( )f
5

,x u ∂
∂
p

2

( )f
5

,x u, , , , , ,È

Î
ÍÍÍ

 = 

∂
∂
P

c

( )f
5

,x u ˘

˚
˙̇̇

> f5:=1/m2*(Fe2-F2)*We2;

 := f5

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃

 - 
 + 1

120
Vd eta_v N m1 F1

V1
Wf Ê

Ë
ÁÁ

ˆ
¯
˜̃ + 1

1
phi_s

 + Wf

1
120

Vd eta_v N m1

V1

F2

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1

m2
> diff(f5,m1);

1
120

Vd eta_v N F1

V1

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁÁ

1
120

Ê
Ë
ÁÁ

ˆ
¯
˜̃ + 

1
120

Vd eta_v N m1 F1
V1

Wf Ê
Ë
ÁÁ

ˆ
¯
˜̃ + 1

1
phi_s

Vd eta_v N

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1

2

V1

 - 

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃̃

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1
m2/

1
120

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃

 - 
 + 1

120
Vd eta_v N m1 F1

V1
Wf Ê

Ë
ÁÁ

ˆ
¯
˜̃ + 1

1
phi_s

 + Wf

1
120

Vd eta_v N m1

V1

F2 Vd eta_v N

m2 V1
 + 

> diff(f5,F1);
1

120
Vd eta_v N m1

m2 V1

> diff(f5,p1);
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0
> diff(f5,m2);

-

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃

 - 
 + 1

120
Vd eta_v N m1 F1

V1
Wf Ê

Ë
ÁÁ

ˆ
¯
˜̃ + 1

1
phi_s

 + Wf

1
120

Vd eta_v N m1

V1

F2

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1

m22

> diff(f5,F2);

-
 + Wf

1
120

Vd eta_v N m1

V1
m2

> diff(f5,p2);
0

> diff(f5,Pc);
0

>
Computation of the 6th row of A

> Diff(p[2],t)=< Diff(f[6](x,u),m[1]) | Diff(f[6](x,u),F[1]) |
Diff(f[6](x,u),p[1]) | Diff(f[6](x,u),m[2]) |
Diff(f[6](x,u),F[2]) | Diff(f[6](x,u),p[2]) |
Diff(f[6](x,u),P[c])> ;

∂
∂
t

p
2 ∂

∂
m

1

( )f
6

,x u ∂
∂
F

1

( )f
6

,x u ∂
∂
p

1

( )f
6

,x u ∂
∂
m

2

( )f
6

,x u ∂
∂
F

2

( )f
6

,x u ∂
∂
p

2

( )f
6

,x u, , , , , ,È

Î
ÍÍÍ

 = 

∂
∂
P

c

( )f
6

,x u ˘

˚
˙̇̇

> f6:=gamma*R/V2*(We2*Te2-u2*T2-u1*T2);
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f6 gR

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1
p1 V1
m1 R

5.8940 .00061 N -  + 

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁ

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁ

 := 

.4560000000 10-5 N2
Wf

Ê
Ë
ÁÁ

ˆ
¯
˜̃ - 14431.0000

.7090000000 107

N

 + Wf

1
120

Vd eta_v N m1

V1

 +  + 

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃

u2 p2 V2
m2 R

 - 

u1 p2 V2
m2 R

 - 

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃

V2/

> diff(f6,m1);

gR
1

120
Vd eta_v N

p1 V1
m1 R

5.8940 .00061 N .4560000000 10-5 N2 -  +  + 

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁ

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁÁ

Wf
Ê
Ë
ÁÁ

ˆ
¯
˜̃ - 14431.0000

.7090000000 107

N

 + Wf

1
120

Vd eta_v N m1

V1

 + 

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃

V1/

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1
 + 

Ê

Ë

ÁÁÁÁÁÁÁÁÁÁÁ

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃
˜

-  - 
p1 V1

m12 R

1
120

Wf
Ê
Ë
ÁÁ

ˆ
¯
˜̃ - 14431.0000

.7090000000 107

N
Vd eta_v N

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1

2

V1

ˆ

¯

˜̃
˜̃
˜̃
˜̃
˜̃
˜

V2/

> diff(f6,F1);
0

> diff(f6,p1);

g

Ê

Ë

ÁÁÁÁÁ

ˆ

¯

˜̃
˜̃̃ + Wf

1
120

Vd eta_v N m1

V1
V1

V2 m1
> diff(f6,m2);
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gR Ê
Ë
ÁÁ

ˆ
¯
˜̃ + u2 p2 V2

m22 R

u1 p2 V2

m22 R
V2

> diff(f6,F2);
0

> diff(f6,p2);

gR Ê
Ë
ÁÁ

ˆ
¯
˜̃-  - u2 V2

m2 R
u1 V2
m2 R

V2
> diff(F6,Pc);

0
>
Computation of the 7th row of the matrix A

> Diff(P[c],t)= < Diff(f[7](x,u),m[1]) | Diff(f[7](x,u),F[1]) |
Diff(f[7](x,u),p[1]) | Diff(f[7](x,u),m[2]) |
Diff(f[7](x,u),F[2]) | Diff(f[7](x,u),p[2]) |
Diff(f[7](x,u),P[c])>;

∂
∂
t

P
c ∂

∂
m

1

( )f
7

,x u ∂
∂
F

1

( )f
7

,x u ∂
∂
p

1

( )f
7

,x u ∂
∂
m

2

( )f
7

,x u ∂
∂
F

2

( )f
7

,x u ∂
∂
p

2

( )f
7

,x u, , , , , ,È

Î
ÍÍÍ

 = 

∂
∂
P

c

( )f
7

,x u ˘

˚
˙̇̇

> f7:=1/tau*(-Pc+eta_m*Pt);

 := f7
-  + Pc

eta_m eta_t p2 V2 Cp2
Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - 1 Ê

Ë
ÁÁ

ˆ
¯
˜̃

pa
p2

miu

u2

m2 R
t

> diff(f7,m1);
0

> diff(f7,F1);
0

> diff(f7,p1);
0

> diff(f7,m2);

-
eta_m eta_t p2 V2 Cp2

Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - 1 Ê

Ë
ÁÁ

ˆ
¯
˜̃

pa
p2

miu

u2

t m22 R
> diff(f7,F2);

0
> diff(f7,p2);
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 + 
eta_m eta_t V2 Cp2

Ê

Ë
ÁÁÁ

ˆ

¯
˜̃
˜ - 1 Ê

Ë
ÁÁ

ˆ
¯
˜̃

pa
p2

miu

u2

m2 R

eta_m eta_t V2 Cp2 Ê
Ë
ÁÁ

ˆ
¯
˜̃

pa
p2

miu

miu u2

m2 R
t

> diff(f7,Pc);

- 1
t

Section 4.  Eigenvalue analysis.
The eigenvalues of the matrix A computed as above at the same operating point as the 3rd

order model are:
- 59 2683. , - 42 3917. , 5 1455. , - 15 9578. , - 11 4079. , - 5 5867. , - 4 9945. .

Therefore at the same operating point in both models is unstable.
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APPENDIX 3: SAMPLE MATLAB CODE FOR COMPUTING A CONTROLLER GAIN AS DESCRIBED

IN SECTIONS 3. AND 4.

At the end of the Section 4., it was mentioned that the gain K  of the linear state feedback
controller u K x= ¥ D  is obtained as a function of the solution of a system of LMIs.  The purpose
of this Appendix is to present the MATLAB code that was used to form and solve the system of
LMIs introduced in Section 3.  This system is formed by equations 3.16, 3.17, and 3.21.

In the MATLAB code presented in this Appendix, the following notations are used:
- p1d, p2d, and Pcd stand for dp1 , dp2 , and d

CP respectively;

- DelA1, DelA2, and DelA3 stand for 1AD , 2AD , and 3AD , respectively;

- “eta” stands for h (different types of efficiencies);
- “mu” stands for m;

- u_2td stands for du2 .

The significance of the other symbols should be clear in view of the above explanations.
In the following code, it is assumed that an equilibrium point has been chosen, and all the
corresponding values for pressures, temperatures, and control inputs have been determined.
Also, it is assumed that a starting point for the trajectory of the 3rd order model is known.  The
constants that appear in the code have been previously defined, in either the main body of the
report or in the previous Appendices.

In order to make the MATLAB code more clear, it will be divided in several portions.
Also short explanations are provided for each portion.  Almost all the commands used in the
code can be found in the LMI Toolbox of MATLAB.

STEP 1: Set d (d places the role of mfrom the end of the Section 4.) to a value.

STEP 2: Using the increasing, or decreasing, properties, in a neighborhood of the equilibrium
point, of the functions )(◊Y i ’s, the matrices that define the corners of the polytope in the ( )BA, -

space are computed using the following code (see the relationships 4.5 – 4.10):

>> Ao = [ -ke 0 0 ; k2*ke 0 0 ; 0 0 -1/tau ];

>> DelA1 = [ 1 0 0 ; 0 0 0 ; 0 0 0 ];  % the function )(1 ◊Y  is locally increasing
>> a1 = k1*eta_c*Pcd/(Ta*Cp1*(-d))*( 1/( ( (p1d-d)/pa )^miu-1 ) - 1/( ( p1d/pa )^miu-1 ) );
>> b1 = k1*eta_c*Pcd/(Ta*Cp1*(+d))*( 1/( ( (p1d+d)/pa )^miu-1 ) - 1/( ( p1d/pa )^miu-1 ) );

>> DelA2 = [ 0 0 1 ; 0 0 0 ; 0 0 0 ]; % the function )(2 ◊Y  is locally decreasing
>> a2 = eta_c/(Ta*Cp1)*1/( ( (p1d+d)/pa )^miu1-1 );
>> b2 = eta_c/(Ta*Cp1)*1/( ( (p1d-d)/pa )^miu1-1 );

>> DelA3 = [ 0 0 0 ; 0 0 0 ; 0 1 0 ]; % the function )(3 ◊Y  is locally decreasing
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>> a3 = -1/tau*eta_m*eta_t*T2*Cp2*u_2td/(-d)*( ( pa/(p2d-d) )^miu-( pa/p2d)^miu );
>> b3 = -1/tau*eta_m*eta_t*T2*Cp2*u_2td/(+d)*( ( pa/(p2d+d) )^miu-( pa/p2d)^miu );

>> A1 = Ao + a1*DelA1 + a2*DelA2 + a3*DelA3;
>> A2 = Ao + b1*DelA1 + a2*DelA2 + a3*DelA3;
>> A3 = Ao + a1*DelA1 + b2*DelA2 + a3*DelA3;
>> A4 = Ao + a1*DelA1 + a2*DelA2 + b3*DelA3;
>> A5 = Ao + b1*DelA1 + b2*DelA2 + a3*DelA3;
>> A6 = Ao + b1*DelA1 + a2*DelA2 + b3*DelA3;
>> A7 = Ao + a1*DelA1 + b2*DelA2 + b3*DelA3;
>> A8 = Ao + b1*DelA1 + b2*DelA2 + b3*DelA3;

>> Bo = [ k1 0 ; -k2 -k2; 0 1/tau*eta_m*eta_t*T2*Cp2 ];
>> DelB1 = [ 0 0 ; 0 0 ; 0 1 ]; % the function )(4 ◊Y  is increasing concave
>> a4 = -1/tau*eta_m*eta_t*T2*Cp2*( pa/(p2d+d ) )^miu;
>> b4 = -1/tau*eta_m*eta_t*T2*Cp2*( pa/(p2d-d ) )^miu;

>> B1 = Bo + a4*DelB1;
>> B2 = Bo + b4*DelB1;

STEP 3: Form the LMIs.

STEP 3.1:
>> setlmis([])  % the variables are : S, L and gamma
>> S = lmivar(1,[3,1]);
>> L = lmivar(2,[2,3]);
>> gamma = lmivar(1,[1,1]); % the upper bound on the input which needs to be minimized

STEP 3.2: Form the LMIs represented by the relationships 3.16a (Remark that the polytope in
the space ( )BA,  has 16 vertices)

>> lmi1 = newlmi;
>> lmiterm([lmi1,1,1,S],A1,1,'s');       % A1*S+S*A1'
>> lmiterm([lmi1,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi2 = newlmi;
>> lmiterm([lmi2,1,1,S],A1,1,'s');       % A1*S+S*A1'
>> lmiterm([lmi2,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi3 = newlmi;
>> lmiterm([lmi3,1,1,S],A2,1,'s');       % A2*S+S*A2'
>> lmiterm([lmi3,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi4 = newlmi;
>> lmiterm([lmi4,1,1,S],A2,1,'s');       % A2*S+S*A2'
>> lmiterm([lmi4,1,1,L],B2,1,'s');       % B2*L+L'*B2'
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>> lmi5 = newlmi;
>> lmiterm([lmi5,1,1,S],A3,1,'s');       % A3*S+S*A3'
>> lmiterm([lmi5,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi6 = newlmi;
>> lmiterm([lmi6,1,1,S],A3,1,'s');       % A3*S+S*A3'
>> lmiterm([lmi6,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi7 = newlmi;
>> lmiterm([lmi7,1,1,S],A4,1,'s');       % A4*S+S*A4'
>> lmiterm([lmi7,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi8 = newlmi;
>> lmiterm([lmi8,1,1,S],A4,1,'s');       % A4*S+S*A4'
>> lmiterm([lmi8,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi9 = newlmi;
>> lmiterm([lmi9,1,1,S],A5,1,'s');       % A5*S+S*A5'
>> lmiterm([lmi9,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi10 = newlmi;
>> lmiterm([lmi10,1,1,S],A5,1,'s');       % A5*S+S*A5'
>> lmiterm([lmi10,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi11 = newlmi;
>> lmiterm([lmi11,1,1,S],A6,1,'s');       % A6*S+S*A6'
>> lmiterm([lmi11,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi12 = newlmi;
>> lmiterm([lmi12,1,1,S],A6,1,'s');       % A6*S+S*A6'
>> lmiterm([lmi12,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi13 = newlmi;
>> lmiterm([lmi13,1,1,S],A7,1,'s');       % A7*S+S*A7'
>> lmiterm([lmi13,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi14 = newlmi;
>> lmiterm([lmi14,1,1,S],A7,1,'s');       % A7*S+S*A7'
>> lmiterm([lmi14,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi15 = newlmi;
>> lmiterm([lmi15,1,1,S],A8,1,'s');       % A8*S+S*A8'
>> lmiterm([lmi15,1,1,L],B1,1,'s');       % B1*L+L'*B1'

>> lmi16 = newlmi;
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>> lmiterm([lmi16,1,1,S],A8,1,'s');       % A8*S+S*A8'
>> lmiterm([lmi16,1,1,L],B2,1,'s');       % B2*L+L'*B2'

>> lmi17 = newlmi;
>> lmiterm([-lmi17,1,1,S],1,1);           % S
>> lmiterm([lmi17,1,1,0],0);                % this inequality requires that S be nonsingular

The invariant region is { x: x'*inv(S)*x < 1 }.  LMI18 impose that the starting point be in this
region.  This LMI represents the inequality 3.16.

>> lmi18 = newlmi;
>> lmiterm([-lmi18,1,1,0],1);              % 1
>> lmiterm([-lmi18,1,2,0],[p1s-p1d p2s-p2d Pcs-Pcd]);  % (x0-x1)'
>> lmiterm([-lmi18,2,2,S],1,1);           % S

LMI19 and LMI20 impose that the invariant region(ellipsoid) be in the box(in the state space)
where we are doing the approximation: C1*S*C1' < d^2 and C2*S*C2' < d^2

>> lmi19 = newlmi;
>> lmiterm([lmi19,1,1,S],C1,C1');          % C1*S*C1'
>> lmiterm([-lmi19,1,1,0],d*d);              % 1

>> lmi20 = newlmi;
>> lmiterm([lmi20,1,1,S],C2,C2');           % C2*S*C2'
>> lmiterm([-lmi20,1,1,0],d*d);               % 1

STEP 3.3: Form the LMI representing the inequality 3.20

>> lmi21 = newlmi;
>> lmiterm([-lmi21,1,1,S],1,1);
>> lmiterm([-lmi21,2,1,L],1,1);
>> lmiterm([-lmi21,2,2,gamma],1,1);

The LMI22 requires that gamma be positive.

>> lmi22 = newlmi;
>> lmiterm([-lmi22,1,1,gamma],1,1);
>> lmiterm([lmi22,1,1,0],0);

>> lmis = getlmis;

STEP 4: The formulation of the optimization problem

>> c = mat2dec(lmis,0,0,1);
>> options = [1e-5 0 0 0 0];
>> [copt,xopt] = mincx(lmis,c,options)
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>> S = dec2mat(lmis,xopt,S)
>> L = dec2mat(lmis,xopt,L)

>> K = L*inv(S)


	Purdue University
	Purdue e-Pubs
	1-1-2002

	A TECHNICAL REPORT ON A POLYTOPIC SYSTEM APPROACH FOR THE HYBRID CONTROL OF A DIESEL ENGINE USING VGT/EGR
	Sorin Bengea
	Ray DeCarlo
	Martin Corless
	Giorgio Rizzoni


