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ABSTRACT 

Neural networks, trained with the backpropagation algorithm have: been applied to 
various classification problems. For linearly separable and nonseparahle problems, they 
have been shown to approximate the a posteriori probability of an input vector X 
belonging to a specific class C. 

In order to achieve high accuracy, large training data sets have to be used. For a 
small number of input dimensions, the accuracy of estimation was inferior to estimates 
using the Parzen density estimation. 

In this thesis, we propose two new techniques, lowering the mean square estimation 
error drastically and achieving better classification. In the past, t:he desired output 
patterns used for training have been of binary nature, using one for the class C the vector 
belongs to, and zero for the other classes. This work will show that by training against 
the columns of a Hadamard matrix, and then taking the inverse Hadamard transform of 
the network output, we can obtain more accurate estimates. 

The second change proposed in comparison with standard backpropagation networks 
will be the use of redundant output nodes. In standard backpropagat:ion the number of 
output nodes equals the number of different classes. In this thesis, it is shown that adding 
redundant output nodes enables us to decrease the mean square error at the output 
further, reaching better classification and lower mean square error rates than the Parzen 
density estimator. 

Comparisons between the statistical methods, the Parzen density estimation and 
histogramming, the conventional neural network and the Hadamard transformed neural 
network with redundant output nodes are given. 

Further, the effects of the proposed changes to the backpropagation algorithm on the 
convergence speed and the risk of getting stuck in a local minimum are: studied. 
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1. INTRODUCTION 

It has been shown previously that neural networks whose learning is based on 

minimizing the mean square error function at the output approximate the a posteriori 

class probabilities P ( c ~ ~  Xi) given the input vector Xi. [I], [2], [3], [4]. However, for 

these approximations to be correct, a very large set of training data is required [3], and 

the results are not significantly better than those of parametric estimation models. The 

correct approximation of the a posteriori probabilities is of great interest for classification 

problems. When the a posteriori probabilities are estimated correctl,y, we can give a 

classification confidence, being the difference between the 2 classes with the highest 

probability. 

In order to distinguish between vectors and matrices on one side, and scalars on the 

other, we use bold letters for matrices and vectors. For example, Oi or O(Xi) being the 

vector containing the outputs for an input vector Xi. The output values of the output 

nodes are the components of Oi. If we refer to probabilities, estimations etc. the bold 

notation stands for the probability, estimation, etc. of each compon.ent. For example, 

P(C I Xi) is a vector, where each component equals: P(Cj I Xi). 

We choose to show the model both in matrix and scalar notation. The underlying 

properties are more obvious in the scalar notation, while the matrix notation is more 

useful for cases with many classes. At one place, section 2.4, the matrix notation has to 

be dissolved into scalar notation. Otherwise it would have been iml~ossible to resolve 

and simplify the problem. 

1.1 Hadamard-Transformed Output Representations 

We will refer to the 0-1 representation as the binary output representation in which 

the desired output value is 1 at the output node for the class the input vector belongs to, 



and the desired output values are zero at the other output nodes. The Hadamard- 

transformed representation will be the product of the desired output vector D of length N 

with a Hadamard matrix of size N. 

When the 0-1 representation is used, the outputs directly estimate the a posteriori 

probabilities. If a different binary output representation is used, i.e. 1 imd -1 instead of 0 

and 1, the outputs have to be scaled and shifted to obtain the probability estimates. 

However, the meaning of the output values remains the same [2]. If we do not use such a 

binary representation (i.e. if we use other possible binary representations as in computers 

or digital communications), then the output values no longer show the a posteriori 

probabilities, and instead show the probability of the desired output of this node being 

one [2]. 

Chapter 2 will show that the Hadamard-transformed output representations can 

reduce the estimation error for the a posteriori probabilities significantly. First, a simple 

theoretical model will be set up, with the assumption of an unbiased independent output 

error. This will be explored experimentally, and a more detailed model, without 

underlying assumptions, will be given. Extensive treatment of Hadamard matrices, 

transformation etc. can be found in [5], [6]. 

1.3 Statistical Classifier versus Neural Networks 

We will also compare these results with those of non parametric estimation models, 

in particular Parzen density estimation [7], [8], and histogramming [8]. Histogramming 

is probably the oldest known probability estimation technique. It is easy to apply, fast 

and well investigated. The Parzen density estimation was developed much later. It can be 

seen as a windowed average of all points within the kernel range of the estimator kernel 

at one specific point. So far, for the 1 and 2 dimensional case, the Parzen density 

estimation is the most accurate estimator. However, due to computing the kernel function 



for all points, the computation can become excessive for high resoli~tions, and higher 

dimensions. Both methods have the disadvantage, that the distributions generated during 

training have to be stored in a lookup table. 

Neural networks on the other hand, provide the desired probability values by forward 

propagation of the testing vectors, hence by simple matrix multiplication. On the other 

hand they require larger training times for 1 and 2 dimensional cases., and there results 

have been inferior to those of Parzen density estimators. 

We will compare the results of a binary neural network, a Hadamard-transformed 

neural network, histogramming and the Parzen density estimation. 

1.3 Redundant Nodes 

Our previous findings, like in Chapter 2, suggest that the performance of the 

Hadarnard-transformed neural network improves when the size of the Hadamard matrix 

is increased. However, that would be equal to choosing a 16, or higher, class problem. 

We will show that we do not have to increase the number of classes, but can simply add 

zero-components to the binary vector of size F. We can then take the Hadamard- 

transform and obtain only the first F columns of the Hadamard matrix iis desired outputs. 

This chapter will show that the model set up in chapter 2 covers the: case of redundant 

nodes as well. We will also investigate the limitations of zero - padding the binary output 

response. As in Chapter 3, a comparison is given between Parzen density estimation and 

the neural networks will be given, showing that with enough redundant output nodes, the 

neural networks can actually perform better. The problems accompanying the increase in 

network complexity are also investigated. 

1.4 Convergence Issues 

Neural networks learning can be seen as learning a function mapping F(X,D) between 

the input vector set X and the desired output vector set D. Clearly, this input - output 



mapping is effected by the choice of the output representation. In Chapter 5 we will 

investigate the effects of both Hadamard-transforming and zero-padding the desired 

output vectors. We will also pay some attention to initialization. This issue seems to have 

lost some of its importance due to backpropagation algorithms with adaptive learning 

rate, like used throughout this thesis. 



- 5 -  

2. HADAMARD-TRANSFOWIED OUTPUT REPRESENTATION 

2.1 Introduction 

This chapter provides a complete analysis of Hadamard-transformed output 

representations to neural networks. We define the Hadamard-transformed output 

representation to be given by 

where D is the matrix of the different desired outputs. In our case, where the binary 

output representation is used, D is the identity matrix of size N. 

The Hadamard-transform is used in statistical design of experime:nts and in systems 

such as optical spectrometers[5]. It reduces the variance of measurement errors by 1/N, 

where N is the size of the Hadamard matrix. In such applications, the size of the 

Hadamard matrix equals the number of measurements. Instead of measuring each 

variable separately, different combinations determined by the Had.amard matrix are 

measured. Then, the values of the variables are obtained using the inverse Hadamard- 

transform. 

During testing, the outputs of the network are inverse Hadamiud-transformed to 

obtain the results equivalent to the 0-1 representation [9], [lo], [ l l ] .  In this work, we 

show that the Hadamard-transformed output representation in neural networks leads to 

the same advantages as in statistical design of experiments. The Hadamard-transformed 

output representation yields better classification results and a better approximation of the 

a posteriori probabilities. 

In section 2.2, we set up a simple model for the expected results of the Hadamard- 

transformed neural network. In Section 2.3 we experimentally test the predictions of the 

model set up. Section 2.4 provides modified model, which is confirmed by a second set 

of experiments. In Section 2.6 we introduce a simple method to estimate the error 



estimation results of a neural network without knowing the underlying distributions of 

the training and testing data. 

2.2 Theoretical Model of Hadamard-Transformed Networks 

Hadamard matrices are orthogonal and consist of elements hij which are either 1 or - 

1. The inverse of a Hadamard matrix can be obtained by transposing it and dividing it by 

its size N. For symmetrical (or Sylvester form) Hadamard matrices, this reduces to 

dividing the Hadamard matrix by its size N. 

Let P(Cj I Xi) be the a posteriori probability of occurrence of class Cj given that the 

A 

input vector is Xi. Also let P (Cj 1 Xi) be the estimate of P(Cj I Xi). We assume that we 

have trained the neural network with the Hadamard-transformed output Dh and then 

computed the inverse Hadamard-transform. We then compare the error eji between the 

estimated probability (Cj I Xi) and the true probability P(Cj I Xi): 

The error vector eoi at the output nodes is defined by 

eOi = O(Xi) - H P(C 1 Xi) 

where P(C ( Xi) is the true probability vector of Xi. 

We will assume that the error components eOji are unbiased with different variances, 

and the dependencies between the errors at the different nodes are small enough to be 

neglected. 



The square s2 of a matrix or vector S is defined as being obtained by squaring each 

component of the vector or matrix S . Then, the following equations are obtained: 

where SO is the covariance matrix at the output of the neural network. Its diagonals 

contain oOj2 as components, while all other components are 0 due to independence. 0 is 

the null vector. Equation (2.6) is results from the independence of the different training 

vectors, while equation (2.7) results from the assumption of independence of the 

different probabilities for each class for the same vector. 

The output vector O(Xi) can be written as 

O(Xi) = H P(C I Xi) + eoi 

A 

P (C I Xi) is obtained by inverting this equation: 

A 

P (C I Xi) = H-I O(Xi) = P(C I Xi) + ei 

where ei is the estimation error. Its mean is given by 



The covariance matrix of the estimation error after the inverse Hadamard-transform is 

given by 

Using H - ~  = H ~ / N  and the independence of the components of eoi we obtain a 

covariance matrix S with each diagonal element equal to: 

We can drop all the non-quadratic terms due to independence of Cgi. The Hadarnard 

matrix can be dropped as well, since its entries are 1 or -1, and all the remaining terms 

are quadratic. 

If we assume CJoij
2 = oO2, then equation (2.12) would simplifies to 

with I as identity matrix of size N. 

This result shows that the variance of the estimation error with the Hadamard 

representation is N times smaller than for the 0-1 representation. 

For example, with N = 4, this is the same as 



where Pji equals P(Cj I Xi). Pji 'S are estimated by inverting Eq. (2.15): 

Since E { eoji } = 0, we have 

Using the independence of eli, its variance is given by 

where olO2 is the error variance before the inverse Hadamard-transform. Now, if the 

variances are the same for all nodes, 02 is given by 



The other ~ ( e ~ ~ ~ }  are the same for all nodes. This follows from the independence of the 

errors at the different nodes, so only the quadratic terms remain. 

2.3 Experiments 

We trained a two stage backpropagation network, using the mean square error as the 

cost function. The tangent hyperbolic and linear activation function. were used at the 

hidden layer and at the output layer, respectively. A linear activation function at the 

output can produce slightly negative values if the class probability is very small, say 

smaller than the error variance. However, using a logsig function here would produce a 

biased estimation, especially for small probabilities close to 0 and events with large 

probabilities close to 1. We trained 2 different networks, one with binary output 

representation, the other one with Hadamard-transformed output representation. 

2.3.1.The random variable generator 

The problem the network was trained with was an 8 classes separation problem. The 

classes were linearly nonseparable. Figure 1 shows the X-Y scatter of the data, and 

Figure 2 shows the probability distribution P(X) in the 2 dimensional space. Each class 

of training data was synthetically generated with the same Gaussian distribution, with 

the covariance matrix S equal to the identity matrix. Each class has a different mean, as 

shown in Figure 2.The data is then divided into parts. The two parts are then transformed 

onto opposite sides of the circle center, in order to obtain the 2 opposing clusters of data. 

The distribution function for one class Ci is given by 

(2.20) 



The data was generated with the same random variable generator, and scaled between 0 

and 1. 

In the 3 dimensional case, we simply added one more dimension, centered at 0.5. The 

data then is shaped like a 3 dimensional ring. 

X-Y Scatter Plot 

Fig. 2.1 Input data clustering for the 2-D case 



Fig. 2.2 Probability distribution of the input vectors 

2.3.2 True a posteriori probabilities 

The use of synthetic input data allows us to compute P(Cj I Xi) directly, using simply the 

Bayesian rule: 



P(Xi I Cj) is known, and P(Xi) is given by total probability as 

Usually the a priori probability of each class is known. In the above case, P(Cj) equals 

118, so we can compute the a posteriori probabilities, using equation (21): 

2.3.3 Experimental results 

We first ran a series of examples with 100 training vectors per class. For classification 

problems with nonseparable classes, the mean and the sum squared error do not converge 

to zero [I], [2], [3]. This results from the estimation of the a posteriori probabilities, 

which are not necessarily close to the desired output values. Since the sum squared error 

reaches high values, one cannot be sure whether a local or a global minimum is reached. 

Hence, we have to use a different criterion to measure the training success of the neural 

network. In our case, we decided to measure the number of correctly classified training 

patterns every 50 sweeps to show the progress of learning. Figure 2:.3 shows a typical 

learning curve. 
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walnlna ascuracy 2 layer NN. e slaccac. non cap. . -- - hrdrmrrd wam>(ormed 
I I 

Fig. 2.3 Number of correctly classified training pattern 

Tables 2.1, - 2.2 show the results for the variance of the estima1:ion error and the 

mean of estimation error. 



Table 2.1 
Average variance of estimation error, 100 training vecl:ors 

2 - dimensional input data, 1000 vectors for testing: 



Table 2.2 
Average mean of estimation error, 100 training vectors 

2 - dimensional input data, 1000 vectors for testing 

binary -0.00 193 0.00 2 13 0.00 165 -0.00 698 
Hadamard -0.00 139 0.00 122 -0.00 377 0.00 094 

binary -0.00 106 0.00 746 -0.00 336 -0.00 280 
Hadamard 0.00 038 0.00 155 0.00 299 -0.00 637 

binary 0.03 042 -0.02 309 -0.00 894 0.0 1 647 
Hadamard 0.00 23 1 -0.00 428 0.00 069 -0.00 179 

-0.00 078 

-0.00 008 

0.00 028 

average Hadamard 

The predicted results are not reached. However, the error variance and the mean square 

error do reduce by approximately 30-40 %. Each node though achieves a different value. 

Also, the mean error does not vanish. Figure 2.4 shows a detailed plot of the output error 



distribution at each node. Apparently, the output error at the output of the Hadamard- 

transformed network before taking the inverse Hadarnard-transform is larger than the 

error at the output of the binary output. 



Node 1 

250 7 

Node 3 

Node 5 

200 1 

Node 7 

Node 2 

200 11 

Node 4 

Node 6 

20° -7 

Node 0 

Fig. 2.4 (a) Error distribution at the output nodes for the binary output 

representation 



Node 1 Node 2 

Node 9 Node 4 

Node 5 Node 6 

Node 7 Node 19 

Fig. 2.4 (b) Error distribution at the output nodes before the inverse Hadamard- 
transform 



Fig. 2.4 (c) Output error distribution after the inverse Hadamard.-transform 



2.3.4 Conclusions 

Figure 2.5 shows the Hadamard-transformed network and the measurement points for the 

2 different errors. 

M e a s u r i n g  e O i  M e a s u r i n g  e i  

Fig. 2.5: The measured errors at different points 

A 

The probability P(C (Xi) was computed for each vector. The estimated P (C I Xi) 

0 u  t -  
P u t  

I n p u t  
v e c t o r  

was then compared with the correct one, and the error 

- 
N e u r a l  I n  v e r s e  

N e  t w  o  r k  H a d a m  a r d  

was calculated. In the binary case, using 0 and 1 as desired outputs, the values of the 

output nodes are the a posteriori probability estimations. The estimation error made then 

equals eoi. Figure 2.4 (a) shows the sampled error distributions at the output nodes of the 

binary output neural network. 

For the binary network, the output error eoi is equal to the probability error ei since 

the inverse Hadamard-transform is missing. 

For the Hadamard-transformed output, we compared the calculated inverse 

Hadamard-transform of the outputs, using equations (2.9) and (2.1 1): 

P (C 1 Xi) = H-' O(Xi) - H - ~  eOi = ()(Xi) - ei (2.27) 
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ei = H-' O(Xi) - P(C I Xi) 

The sampled error distributions of all eji are shown in Figure 2.4 (c) 

We also Hadamard-transformed the computed a posteriori probabilities and compared 

them directly with the neural network output (2.3): 

eOi = O(Xi) - H P(C I Xi) (2.3) 

However, O(Xi) now ranges from -1 to 1, so to obtain the error between the estimation 

A 

of the probability of the output at node j equaling one (P(oji=l IXi)) and the true 

probability P(oji =1 I X), we have to scale [2] by 0.5 and shift by adding 0.5, giving us: 

where P(Oi=l I X) can be obtained by 

P(Oi=l I X) = 0.5 (H P(C I Xi) + 1) (2.30) 

with P(C 1 Xi) being the computed a posteriori probability in our specific example. 

This implies: 

eoip is the probability estimation error at the output nodes of the Hadarnard-transformed 

neural network and is shown in Figure 2.4 (b). 



Assuming the relative error eOip to be of the same range as the output error of the 

binary network we expect the mean to double and the variance to increase by a factor of 

4 before taking the inverse Hadarnard-transform. The inverse Hadamard-transform uses 

the absolute error at the output, which is two times the relative error. Hence we can only 

expect a reduction of the variance by Nl4, in our example 50%. 

The distributions of these errors are similar to those of the binary representation, and 

but the variances are different. The variance for the output before the inverse Hadamard- 

transform is higher than the variance of the binary network. This shows, that like in our 

model, the reduction of the error variance is a result due to the inverse Hadamard- 

transform of the output, and not of better learning done by the Hadamard-transformed 

network.. 

2.4 Modification of the Model 

The sampling of the density function of the error shows that one cannot really use the 

approximation of a zero mean error over all vectors. The distributions are approximately 

Gaussian. Also it is a rough approximation to assume the same variances for all output 

nodes. One would have to include the mean error in a more detailed model, since it does 

not totally vanish. It is usually higher for the Hadamard-transformed-output 

representation. 

The experimental results show that we cannot justify all the assumptions we made in 

Section 2. Clearly, the limited sample size will produce a sample slightly different from 

the original distribution. For each component, the sample expectation and its variance are 

given by [12]: 



where M is the sample size, ; the sample mean, ox2 the variance of the sample mean 

and & is the variance of each component of the input data. In our case, the input data 

consists of 8 independent classes, each of them with 2 different clusters. This gives us 16 

clusters of vectors. Each cluster has a covariance matrix of dimension 2. The covariance 

matrix for each cluster of our synthetic data is given by 

where I is the identity matrix and 16 2 k. 

Then, due to independence, the overall covariance matrix becomes [7] 

where Sb is the in between scatter matrix , Sw is the within scatter matrix and L is the 

total number of clusters, equal to 2 N. N is the number of different classes. 

According to [7], the within cluster scatter matrix is defined by: 

L 
Swk = 2 P(C1uster k) E{(X-mk) ( X-mk)'} I Cluster k} 

k=l 

with mk as the mean of each cluster. For our data, the cluster probabilit:~ equals 

1 1 
- -- - for all classes. This yields: 
2N L 



With L = 16 and Scluster = 11900 I, we obtain: 

The in between class scatter is Sbk is defined by [7] 

And, with the means used for our random data: 

The overall covariance matrix then becomes: 

We can now compute the standard deviation for each component. For the 100 vector case 

we obtained a = 0.0181, for the 1000 vector case a = 0.00181. This suggests that we 

have to expect some bias at the output as well, due to the limited sample mean. 

The neural network is a highly nonlinear system. Hence, we cannot propagate the 

sample mean through it and expect the output to equal the observed mean. 

We will now drop the assumption of an unbiased error. Using a biased estimation 

error and keeping up the assumption of independence, Equations (2.4) - (2.6) for the 

expected error, the output error covariance matrix and the expectations of the product of 

2 different vectors and 2 different components, all before taking the inverse Hadamard- 

transform, become 



Eq. (2.1 l), the mean error after the inverse Hadamard-transform then becomes 

where 11Oj 'lom are the means of eOji respectively. Does our assumption of 

independence hold? Assuming independence, but using the biased estimate, we obtain the 

covariance matrix S after the inverse Hadamard-transform as 

We are now interested in the variance for each output value after the inverse Hadarnard- 

transform, since this is the important term for the accuracy of the probability density 

estimation. In order to obtain the error variance of each output value explicitly, we will 

use the scalar notation. We obtain with N = 4: 



We will use a constant Kri for the respective product terms of each component now: 



Now, if we take the expectation of the equations (2.47) we obtain 

Squaring yields: 

Similar to the term Kr for the product terms in Eq.(2.48), we use constant Ar for the 

product terms now: 



The expectations of equations (2.48) are: 



Now, for independent errors ejk, E{Kr} equals A, 

With E{Kr} = A, we obtain the variance of each output node as 

Our experimental results obtained with the training set are not equal to the value obtained 

with this formula, see Table 2.9. 

Hence, we have to drop the assumption of independence of the error over the nodes 

as well. We will still assume independence for the errors of different input vectors, since 

the system has no memory. The new variance of the rth output value after the inverse 

Hadamard-transform is given by 

Since we no longer assume independence, the expectation of equations (2.48) becomes: 

The correlation between two nodes is defined by 



- 31 - 

sOjk = E{ eOji eoki) - E{ eOji) E{ eoki) 

This can be written as: 

0 0 eOji eOki) = sojk+ q jq k 

This yields 

Using the previously defined constant A1 and defining a constant T1 for the sum of all 

sOjk yields 

And, similarly for the other components, we get 



Now, using equations (2.57) and equations (2.56) with equation (2.53), we obtain 

The average variance is the sum of the variances over all the output nodes. 

N 
Since Ti=O. , the average gain over all the output values after the inverse Hadamard- 

transform, is given by 



The or2 can also be obtained using the matrix notation. Taking the inverse Hadamard- 

transform is a linear transform, where vector eoi is multiplied with H/N. According to 

[7],  and using the symmetry of the Hadamard matrix, we obtain: 

where S is the covariance matrix after the inverse Hadamard-transform and SO is the 

covariance matrix at the actual neural network output. Now in order to obtain the 

elements on the diagonal, q.2 we would have to write Eq. (2.60) in component form, 

which will then yield the same results as Eq. 2.59. 

2.5 Experiments with the More Detailed Model 

Our experimental results, shown in Table 2.3, agree with Eqs. (2.58) and (2.59). Eq. 

2.59 shows the variance of each output node, pertinent to individual classes. Since the 

dependency terms drop out, and the results for the average terms is similar to the case 

with independence but nonzero means. 



Table 2.3 
Predicted variance vs. actual variance 

1 nodes 

average I? 

binary Output at Hadamard Eq. (2.14) Eq. (2.46) Eq. 
output node, eiO Output ei of Eq. (2.58) 

nodes 

1 

8 

average 

binary 

output 

0.02 239 

0.02 367 

0.02 383 

Output at 

node, eiO 

0.00 079 

0.16 3 19 

0.1 1 898 

Hadamard 

output ei 

0.01 998 

0.01 094 

0.01 487 

Eq. (2.14) 

0.01 492 

0.01 492 

0.01 492 

Eq. (2.46) 

0.01 487 

0.01 487 

0.01 487 

Eq. (2.58) 

0.01 998 

constant Tj 

of Eq. (2.58) 

0.00 51 1 

0.01 094 

0.01 487 

-0.00 393 

0.00 000 



nodes tr 
binary Output at Hadamard Eq. (2.14) Eq. (2.46) Eq. 

Output node, eiO output ei of Eq. (2.58) 

nodes IT 

1 average 

binary Output at Hadarnard Eq. (2.14) Eq. (2.46) ~ q .  (2.58) constant Tj 
Output node, eiO Output ei of Eq. (2.58) 

0.05 230 0.00 079 0.03 267 0.02 873 0.02 753 0.03 267 0.00 514 



1 nodes 

sample 5 

average 

nodes 

1 
2 
3 
4 
5 
6 
7 
8 

average 

lbinary loutput at I~adamard I E ~ .  (2.14) I E ~ .  (2.46) I E ~ .  (2.58) Iconstant Tj I 
Output node, eiO Output ei of Eq. (2.58) 

0.03 573 0.00 034 0.03 298 0.02 678 0.02 677 0.03 298 0.00 620 

sam~le  6 

binary 

Output 

0.03 947 

0.04 480 
0.02 825 
0.04 11 1 
0.04 272 
0.03 249 
0.03 583 
0.03 280 

0.03 7 18 

average variance over all samples 

2.6 Conclusions 

In comparison to the 0-1 representation network our gain is only 30-45 %. Both 

networks learn towards a similar probability error. The Hadamard representation is 

shifted and scaled compared to the probability error. The error equals the probability 

error scaled by 2. Due to that, the mean of the error doubles, and the variance has to be 

Output at 

node, eiO 

0.00 039 

0.69 640 
0.14 963 
0.12 975 
0.08 617 
0.26 044 
0.10 940 
0.32 056 

0.2 1 909 

Hadamard 

output ei 

0.02 779 

0.02 691 
0.02 8 13 
0.02 663 
0.02 916 
0.02 266 
0.02 412 
0.03 368 

0.02 739 

Eq. (2.14) 

0.02 740 

0.02 740 
0.02 740 
0.02 740 
0.02 740 
0.02 740 
0.02 740 
0.02 740 

0.02 740 

Eq. (2.46) 

0.02 739 

0.02 739 
0.02 739 
0.02 739 
0.02 739 
0.02 739 
0.02 739 
0.02 739 

0.02 739 

Eq. (2.58) 

0.02 691 
0.02 81 3 
0.02 663 

constant Tj 

of Eq. (2.58) 

0.02- 

-0.00 048 
0.00 074 

-0.00 076 
0.02 
0.02 
0.02 
0.03 

0.02 



multiplied by a factor of 4. However, taking the inverse Hadamard-transform reduces the 

average variance by 1/N. For our experimental results N = 8, a maximum reduction of 50 

% of the error variance can be expected. 

One can expect that for problems with more classes than 8, the variance reduction 

gain will be larger, i.e. a reduction by 75 % for a 16 class problem. 

Our experiments do not reach 50 %. Hadamard-transformed outputs force the output 

neurons to learn several decision borders, since the output has to be 1 for Nl2 classes and 

-1 for the other N12 classes. This explains why we usually reach only 30-45 % reduction. 

On the other hand, the experimental mean error did not double like expected but only 

increased about 30 - 45 % . 

2.7 Error Estimation of the Classifier without known A Posteriori Probabilities 

2.7.1 Sum of all output values 

The output of the binary network and the Hadamard-transformed network both 

estimate the a posteriori probabilities. So far, we could compute the etstimation error of 

each input vector Xi, since we knew the underlying data distributions. The input data 

always belongs to one of the classes. Then, since we estimate the :probability of the 

vector belonging to each of the possible 8 classes, the sum over all output values has to 

sum up to one. 

Now, one measure for the accuracy of the density estimation will be if our probability 

estimates will sum up to 1 or not. Figure 2.6 will show two samples, where, for 80 

testing vectors, we show the overall output value. 



Sum of all probabiHas, dashed : Hadamard 

Sum of all probabillies, dashed : Hadamard 

Fig. 2.6 Summation over all output nodes 

dotted : binary network 

dashed : Hadamard-transformed network 
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Clearly, the sum over all output nodes for the Hadamard-transformed neural network is 

much closer to 1, and oscillates less. Hence, the probability estimation is better. 

2.7.2 Estimation of the mean of the output error 

A short calculation will show that even without knowing the a posteriori probabilities 

of our testing set we can still obtain sum measurement for the mean estimation error. Let 

us first consider the output of the neural network to be the exact a posteriori probability. 

Then by taking the expectation over all testing vectors, we obtain: 

Hence, for an ideal neural network estimator, we obtain the probability of the class P(Cj) 

as expectation for the output node j. For a non-ideal neural network estimator, Equation 

(2.61) one changes to: 

This gives 



where P(C,) is the known probability of class j and the estimation is computed from the 

output of the neural network. If P(Cj) is not known, we are not able to estimate each 

N 
mean separately. However, we can estimate E{ C 5 ). Taking the expectation of the 

j= 1 

sum of all equations (2.63), we obtain: 

Summing over all the output nodes yields 

Table 2.4 compares the predicted mean error with the actual mean error for the 100 

vector case. 

Table 2.4 
Approximated average mean error versus real mean error 



3. COMPARISON BETWEEN STATISTICAL METHODS AND 

NEURAL NETWORKS 

3.1 Introduction 

There exist two major statistical non parametric probability density estimation techniques 

- histogramming and Parzen density estimation. Histogramming is probably the easiest, 

but the Parzen density estimation is more accurate. In this chapter, we will first introduce 

the two methods and provide the approximations formulas for adjusting the respective 

parameters. When we refer to nonparametric density estimator this means that, instead of 

assuming a certain distribution and estimating its parameters like variance, mean etc., we 

estimate the whole function numerically and generate a lookup table in which we store 

the estimated distributions. There are no assumptions made of the underlying probability. 

In Section 3.4, we compare the results achieved by the binary neural network, the 

Hadamard-transformed neural network, histogramming and the Parzen Density 

estimation. Also, training times, testing times and memory needs of the different 

algorithms are investigated. Section 3.5 provides the conclusions. 

3.2 Histogramming 

Histogramming is the oldest known method for probability density estimation. Classical 

histograms consist of nonoverlapping intervals, the bins. The density function of the 

histogram is then obtained by dividing the number of points fallen in one bin by the total 

number of points. The actual probability mass is then the product of the binwidth with 

the binvalue. 

The problem of the appropriate binwidth selection is treated well in [8]. Clearly, if 

we choose the binwidth to be large, we get only a very rough approximation of the 

density function. Small features will be oversmoothed. On the other hand, for a small 

binwidth, we will obtain arbitrary oscillations in regions with few points. The problem of 



binwidth selection is equal to the problem of the number of bins to use, since the binwith 

for the classical histogram used here is Ifnumber of bins. 

[8] derives the following formula for the optimal number of bins for each dimension, 

which minimizes the asymptotic mean integral square error, AMISE: 

number of bins = (3.1) 

A histogram using this formula, where M is the total number of vectors, should be 

optimally smoothed. 

3.3 Parzen Density Estimation 

In the Parzen density estimation, the estimate at one point is obtained not by simply 

counting the number of points but by averaging over the neighboring points as well. The 

value at one point is obtained from the kernel function of the region 

where K is the Kernel function and h is the smoothing parameter. L. is the number of 

points within the Kernel. In our case, we used normal Kernel, which has infinite support. 

Hence L equals the total number of vectors M of the training set. There have been 

proposed many different Kernel function, like a uniform normal, triangular or a 

combination of several functions [7] ,  [8]. In this section, we will restrict to a normal 

Kernel with variance equal to one 181. For the one dimensional case, an optimal kernel 

can be derived. For higher dimensions, where a product Kernel is used, we can only 

estimate an optimal hi for each dimension i. For the normal Kernel used in our 

experiments, an approximation formula minimizing the AMISE is given by 



A 

M is the training sample size and d is the number of dimensions [Scott 921. oj is the 

estimated standard deviation of the training data. It is estimated from the sample by 

computing the following for each dimension of the input data: 

If we cannot assume an underlying distribution, it will become very difficult to derive an 

estimation formula from the AMISE. Heuristic approaches are equally different, since 

the underlying distributions are not known. As an illustration we applied the Parzen 

density estimation with several different smoothing parameters h to the data used in 

Chapter 2.3. The resulting P(X) is shown in Figure 3.1. 



Parzen Density wilh h= i Parzen Density with h=0.9 

Parzen Density with h=O.i Parzen Density wilh h=0.01 

5 ,  0.B ., 

Fig. 3.1. Estimation of P(X), using the Parzen method with different smoothing 

parameters. 



3.4 Experiments 

We first ran a series of examples with 1000 training vectors per class. We then reduced 

the size of the training set to 100 vectors per class for a second set of simulations. The 

results for classification and probability estimation with the present method were studied 

comparatively with the methods of histogramming and the Parzen density estimation. 

In a second set of experiments, we used 3-dimensional data as input with 300 vectors 

per class as data set. We had to increase the number of training sweeps from 1000 to 

3000, and the number of hidden neurons from 15 to 25, since the data was more 

complicated. 

Since there are quite a lot of bins in the histogram where no vectors occurred during 

the estimation, we set them to -1 and counted every testing vector falling in such bins as 

misclassified. We excluded those vectors for the calculation of the mean error and the 

variance of the estimation, since we could not assign a specific error to them. Those 

regions would be very large in the 3-D case. Hence we restricted histogramming to the 2 

- D case. 

In the 2 and dimensional case we obtained nopt = 676 bins for the 1000 vector case. 

Tables 1, 2 and 3 show the achieved classification, the mean error and the variances for 

the 2-D case, respectively. The results are shown for 3 different histograms, with 100 

bins, nopt and 2500 bins. 

The histogramming method performed the worst in classification, especially when 

using the small data set for density estimation. The neural networks performed better 

than the histograrnming method, especially if we use the smaller training set of 100 

vectors per class. In this case, histogramming is useless, since the distribution is sampled 

inaccurately, and there are not enough samples in the regions of low probability to 

sample them accurately. The Parzen method performed better then histogramming, but it 

did not reach the classification performance of the Hadamard-transformed neural 

network. For the average probability estimation performance, the Parzen method with 

hopt performs the best, yielding a smaller bias and a much smaller mean variance than 

the neural networks. The Parzen density estimations though depend hlghly on the choice 



of the smoothing parameter h. For a non-optimal h, it yields results inferior to those of 

the neural network. 

The result of a better classification despite a higher estimation error may be related to 

the fact that neural networks approximate the decision boundaries continuously, whereas 

for the statistical methods we had to use the method of bilinear interpolation. Another 

reason is that the mean is more influenced by a small number of vectors which are 

misclassified with a huge error than by small errors. However, when the small errors are 

made in regions of high vector density and near a decision boundary, the classification 

performance is affected quite strongly. So, the regions where the errors occur becomes 

equally important to the error itself. The region of error does not influence the mean 

error or the mean variance. 

Neural networks using the mean square error as error function do not approximate the 

a posteriori probabilities in regions with low probability well either [3]. If there is special 

interest in those regions, one can use importance sampling [13]. 

In the 3-dimensional case, the estimation errors of the Parzen density with hopt and 

the Hadarnard-transformed neural network perform approximately equally, as shown in 

Tables 3.1,3.4 and 3.5. 

Table 3.1 (a) 
Correct testing classification, using 100 vectors for training 



Table 3.1 (b) 
Correct testing classification, using 1000 vectors for training 

2-dimensional input data 

Table 3.1 (c) 
Correct testing classification, using 300 vectors for training 

3-dimensional input data 

6 
93.79% 
94.60% 
7 1.33% 
92.56% 

92.53% 
67.86% 

sample no, 
binary repr. 

Hadamard repr. 
Parzen density h = 1 
Parzen density h = hopt 

Parzen density h = 0.0 1 
Histogram 100 bins 
Histogram 676 bins 
Histogram 2500 bins 
max. possible class. 

sample no, 
binary repr. 

Hadamard repr. 
Parzen density h = 1 
Parzen density h = hopt 

Parzen density h = 0.0 1 
max. possible class. 

1 
93.04% 
94.50% 
62.85% 
91.90% 

91.68% 
68.19% 

3 
92.45% 
92.50% 
72.29% 
92.40% 

92.23% 
66.89% 

2 
92.76% 

90.90% 
72.39% 
91.99% 

91.91% 
67.04% 

6 
88.00% 
90.83% 
--- 
--- 

--- 
94.70% 

1 
87.60% 
91.89% 
67.12% 
8 1.86% 

90.80% 
95.30% 

4 
88.90% 
93.14% 

--- 
--- 

--- 

95.00% 

88.84% 
92.73% 
95.20% 

5 
90.80% 
92.83% 
--- 

--- 
--- 

94.30% 

88.30% 
92.94% 
95.05% 

4 
93.06% 
94.60% 
67.10% 
92.48% 

92.43% 
67.29% 

88.55% 
92.48% 
94.91% 

2 
84.20% 
90.75% 

--- 
--- 

--- 

94.90% 

87.84% 
92.93% 
94.96% 

5 
93.80% 

94.20% 
70.91% 
91.99% 

91.83% 
66.95% 

3 
89.40% 
90.96% 

--- 
--- 

--- 

94.50% 



Table 3.2 (a) 
Mean of the estimation error for the 100 vector case 

sarn~le 1 
binary Hadam. Parzen Parzen Parzen histogr . histogr. histogr. 1 nodell output 1 output 1 h = 1 1 h = hODt 1 h = 0.01 1 100 bins 676  bins 2500 b. 1 

1 8 1 0.03 0561-0.00 226 0.00 002 0.00 3941 0.00 5821 0.12 762) 0.1 1 9371 0.35 5611 

sample 2 
I lbinary I~adam.  l~arzen IParzen l~arzen 1 histogr. I histogr. I histogr. I 
nodes1 output I output 1 h = 1 I h =  hopt I h=0.01 ll00bins 1676bins 12500b. 



nodes output output h = 1 h = hOpt h = 0.01 

1 -0.01 091 -0.00 599 -0.00 029 -0.00 339 -0.00 463 

sample 4 
1binar-y laadam. l~arzen l~arzen l~arzen ihistogr. Ihistogr. Ihistogr. 1 

nodes1 output I output 1 h = 1 I h = hopt I h = 0.01 1100 bins 1676 bins 12500 b. 



sample 5 

nodes 

1 

average mean 

sample 6 

binary 
output 

0.00 688 

nodes 

1 
2 
3 
4 
5 
6 
7 
8 

Hadam. 
output 

0.01 229 

histogr. 
2500 b. 

0.35 974 
0.36 549 
0.37 204 
0.36 660 
0.35 849 
0.36 663 
0.36 289 
0.35 645 

binary 
output 

0.00 688 
-0.00 379 
-0.00 888 
0.00 386 
0.00 384 

-0.00 292 
-0.00 259 
0.00 349 

Parzen 
h = 1 

-0.00 133 

Hadam. 
output 

-0.00 297 
0.00 306 

-0.00 15 1 
-0.00 024 
0.00 517 

-0.00 305 
0.00 033 

-0.00 035 

Parzen 

h = hopt 
-0.00 112 

Parzen 
h = l  

0.00 068 
-0.00 023 
-0.00 205 
-0.00 032 
0.00 226 

-0.00 022 
-0.00 017 
0.00 005 

Parzen 
h = 0.01 

-0.00 228 

Parzen 

h = hopt 
-0.00 161 
-0.00 095 
0.00 128 
0.00 11 1 
0.00 217 

-0.00 175 
-0.00 090 
0.00 066 

histogr. 
100 bins 

0.14 138 

Parzen 
h = 0.0 1 

-0.00 093 
-0.00 25 1 
0.00 276 

-0.00 076 
0.00 194 

-0.00 078 
0.00 113 

-0.00 085 

histogr. 
676 bins 

0.10 902 

histogr. 
2500 b. 

0.37 293 

histogr. 
100 bins 

0.12 156 
0.17 434 
0.14 546 
0.18 123 
0.12 968 
0.15 547 
0.15 469 
0.15 568 

histogr. 
676 bins 

0.05 961 
0.10 840 
0.1 1 048 
0.10 148 
0.06 770 
0.09 912 
0.08 930 
0.09 568 



Table3.2 (b) 
Mean of the estimation error for the 1000 vector case 

2 - dimensional input data 
sample 1 

nodes1 output 1 output 1 h = 1 I h = hopt I h = 0.01 1100 bins 1676 bins 12500 b. 

1 node 

~ p l e  2 
binary Hadarn. Parzen Parzen Parzen histogr. histogr. histogr. 
output output h = 1 h = hopt h = 0.01 100 bins 676 bins 2500 b. 

0.00 033 0.00 282 0.00 127 0.00 112 0.00 125 0.03 272 0.01 778 0.02 782 



sample 3 

output output h = 1 I h = hopr I h = 0.01 1 100 bins 1676 bins 12500 b. 

sample 4 

nodes 

1 
2 
3 
4 
5 
6 
7 
8 

histogr. 
100 bins 

0.03 194 
0.06 688 
0.06 333 
0.06 630 
0.02 659 
0.06 771 
0.06 042 
0.06 704 

binary 
output 

0.00 015 
-0.00 091 
-0.00 005 
-0.00 029 
0.00 043 

-0.00 009 
0.00 050 
0.00 026 

histogr. 
676 bins 

0.01 401 
0.01 204 
0.01 61 8 
0.01 244 
0.01 340 
0.01 701 
0.01 604 
0.01 722 

histogr. 
2500 b. 

0.02 385 
0.02 372 
0.02 577 
0.02 299 
0.02 472 
0.02 466 
0.02 457 
0.02 450 

Hadam. 
output 

0.00 200 
-0.00 285 
0.00 00 1 
0.00 096 

-0.00 095 
-0.00 014 
0.00 136 

-0.00 043 

Parzen 
h = 1 

0.00 101 
-0.00 040 
-0.00 08 1 
0.00 08 1 
0.00 042 
0.00 033 

-0.00 051 
-0.00 085 

Parzen 

h = hopt 
0.00 030 

-0.00 060 
-0.00 076 
0.00 08 1 
0.00 001 

-0.00 023 
0.00 108 

-0.00 061 

Parzen 
h = 0.01 

0.00 01 1 
-0.00 016 
-0.00 10 1 
0.00 079 
0.00 009 

-0.00 028 
0.00 112 

-0.00 066 



sample 5 

nodes 
binary Hadam. Parzen Parzen Parzen histogr. histogr. histogr. 

h = hOnt h = 0.01 100 bins 676 bins 2500 b. output 1 output 1 h = 1 1 1 1 1 1 1 

sample 6 

1 node 
binary Hadam. Parzen Parzen Parzen histogr. histogr. histogr. 
output 1 output 1 h = 1 1 h = hODt 1 h = 0.01 1 100 bins 1 676 bins 1 2500 b. 1 

average mean 



nodes 

.T 

average 
I vari ana 

Table 3.3 (a) 
Variance of the estimation error for 1000 training vectors 

1 nodes 

1 

average F 

binary 
output 

0.02 842 

0.02 454 

1 variance 

binary 1   ad am. l~arzen l~arzen l~arzen ihistogr. I histogr. (histogr. 
output I output I h = 1 I h = hopt I h = 0.01 1 LOO bins 1676 bins 12500 b. 

Hadam. 
output 

0.00 684 
0.01 547 

Parzen 
h = 0.01 

0.00 729 

0.00 562 

Parzen 
h = 1 

0.09 901 
0.10 006 

histogr. 
100 bins 

0.09 685 
0.10 08 1 

Parzen 

h = hopt 
0.00 666 

0.00 5 18 

histogr. 
676 bins 

0.02 207 

0.02 390 

histogr. 
2500 b. 

0.02 119 
0.02 372 



sample 3 

7 0.01 390 0.01 55 1 0.09 930 0.00 765 0.00 8 14 0.06 501 
8 0.01 869 0.01 569 0.10 023 0.00 620 0.00 642 0.10 08 1 

average 
variance 0.02 384 0.02 210 0.09 977 0.00 5 13 0.00 538 0.08 889 0.02 153 0.02 371 

nodes 

1 

output 

0.01 890 

sample 4 

6 
7 
8 

average 
variance 

output 

0.00 782 

nodes 

0.05 305 
0.03 583 
0.03 400 

0.03 806 

h = 1 

0.09 960 

binary 
output 

Parzen 

h = h,,+ 

histogr. 
100 bins 

Parzen 
h = 0.01 

0.00 720 
0.01 122 
0.00 712 

0.00 857 

h = hopt 
0.00 457 

Hadam. 
output 

histogr. 
676 bins 

Parzen 
h = 1 

0.09 996 
0.09 919 
0.09 860 

0.09 969 

h = 0.01 

0.00 457 

histogr. 
2500 b. 

0.00 621 
0.00 757 
0.00 696 

0.00 5 10 

100 bins 

0.09 096 

0.00 629 
0.00 754 
0.00 696 

0.00 5 19 

676 bins 

0.02 238 

2500 b. 

0.02 298 

0.09 922 
0.06 900 
0.09 239 

0.08 967 

0.02 403 
0.02 448 
0.02 434 

0.02 407 

0.02 466 
0.02 457 
0.02 450 

0.02 435 



lbinary  ada am. 1 ~arzen Parzen l~arzen 1 histogr. 1 histogr. I histogr. I 
nodes 1 output 1 output I h = 1 I h = hOnt I h = 0.01 1 100 bins 1676 bins 12500 b. I 

sample 6 

average variance over all samples 
10.03 0561 0.01 4891 0.09 9761 0.00 5281 0.00 5511 0.08 8261 0.02 2901 0.02 5001 

8 

average 
variance 

0.03 528 

0.03 185 

0.01 323 

0.01 3 12 

0.09 987 

0.09 960 

0.00 677 

0.00 545 

0.00 709 

0.00 567 

0.08 462 

0.08 44 1 

0.01 920 

0.02 076 

0.02 855 

0.02 597 



Table 3.3 (b) 
Variance of the estimation error for the 100 vectors case 

sample 1 

I nodes 

1 variance 

sample : 

nodes IT 

1 varianct 

binary I ~ a d a m .  l~arzen l~arzen l~arzen 1 histog-. I histog. I histog. I 
output I output 1 h = 1 I h = hopt I h = 0.0 1 1 100 bins 1676 bins 12500 b. 

binary I ~ a d a m .  l~arzen l~arzen l~arzen lhistogr. Ihistogr. Ihistogr. I 
output ( output I h = 1 I h = hopt I h = 0.01 1100 bins 1676 bins 12500 b. 



sample 3 

sample 4 

nodes 

average P 
1 variance 

binary Hadam. Parzen Parzen Parzen histogr. histogr. histogr. 
output output h = 1 h = hOpt h = 0.01 100 bins 676 bins 2500 b. 

0.05 230 0.0 1 324 0.00 66 1 0.00 576 0.10 033 0.13 903 0.1 1 250 0.17 665 



8 0.03 280 0.03 209 0.00 923 0.00 663 

average 
variance 0.03 7 18 0.0 1 622 0.00 703 0.00 536 

sample 5 

nodes 

IT 

nodes 

average P 

histogr. 
676 bins 

binary 
output 

1 0.03 2001 0.01 9531 0.00 891 1 0.00 6951 0.09 9921 0.15 2621 0.1 1 3261 0.17 1051 
average variance over all samples 

binary 
output 

histogr. 
2500 b. 

Hadam. 
output 

Hadam. 
output 

Parzen 
h = 1 

Parzen 
h = 1 

Parzen 

h = hopt 

Parzen 
h = 0.01 

Parzen 

h = hoDt 

histogr. 
100 bins 

Parzen 
h = 0.01 

histogr. 
100 bins 

histogr. 
676 bins 

histogr. 
2500 b. 



Table 3.4 
Mean of the estimation error for the 300 vector case 

nodes 

15 hidden neurons 25 hidden neurons 
binary I Hadam. lbinary I Hadam. 1 Parzen l~arzen 1 Parzen 
output output output output h = 1 h = hopt h = 0.01 

-0.00 284 0.00 099 -0.00 621 0.00 1 16 -0.00 049 0.00 3 16 -0.00 289 

I nodes 1 output I output I output I output I 

average absolute errors over all samples: 
1 3.17~-061 1.17~-051 3.7 1E-051 3.50~-0513.12~-1114.57~-041 -1.258-061 



Table 3.5 

Variance of the estimation error for 300 training vectors, 
3-dimensional input data 

sample 1 15 hidden neurons 25 hidden neurons 

1 nodes 

average F= 1 variance 

binary Hadamard binary Hadamard Parzen Parzen Parzen 
output output output output h = 1 h = hopt h = 0.01 

0.05 674 0.04 847 0.04 293 0.01 686 0.09 970 0.02 300 0.00 690 

sam le 2 

nodes output output output output 

0.04 847 0.02 089 0.05 528 0.01 890 

average variance over all samples 
1 0.04 9681 0.02 6301 0.05 0601 0.02 5451 0.09 9801 0.02 4611 0.00 7791 



In the Parzen case, store the distribution in a 50 by 50 by 50 lockup table took a lot of 

memory, about 7.75 MI3 for each class. In contrast, the weights and biases of the neural 

network can be stored in 150 kb. The training time for the Parzen density estimation for 

the 3-D case was 32 hours. Hence we restricted it to one sample. The training times for 

the neural network were smaller as well, and the time needed to compute the probability 

of an input vector during testing was about 2 times smaller than that of the Parzen 

density estimation. These experimental results are shown in Tables 3.6-3.8. 

Table 3.6 
Memory needed to store the weights 

Table 3.7 (a) 
Training times, using 100 vectors for training 

neural network 
parzen density 

Table 3.7 (b) 
Training times, using 1000 vectors for training 

2-dimensional input data 

2-D case 

8.44 kb 
939 kb 

sample no. 

binary repr. 
Hadamard repr. 
Parzen density 

3-D case 
15 hidden neurons 

11.7 kb 

5 

191 
190 
36 

3-D case 
24 hidden neurons 

19.7 kb 

1 

189 

192 
3 6 

45 700 kb 

6 

190 
193 
3 6 

6 
3 750 
3740 

225 

average 

190 
190 
3 6 

2 

194 

190 
36 

average 
3 768 
3731 

224 

3 
3 766 
3 618 

222 

2 
3 914 
3 743 

226 

sample no, 
binary repr. 

Hadamard repr. 
Parzen density 

1 
3733 
3 734 

22 1 

3 

189 
190 
3 6 

4 
3 556 
3636 

232 

4 

188 
188 
3 6 

5 
3 890 
3917 

217 



Table 3.7 (c) 
Training time for the classification 300 vectors for training 

3-dimensional input data 

Apparently, CPU time is not equivalent to real time. The time needed to compute the 

sample no, 

binary repr, 15 
hidden nodes 

Hadamard repr. 15 
hid. nod. 

binary repr. 25 
hidden nodes 

Hadamard repr. 25 
hid. nod. 

Parzen density 

Parzen density estimate was 32 hours, compared to 5 hours for the slowest neural 

network. 

1 

2 200 

2 190 

3414 

3 422 

3 634 

Table 3.8 (a) 
Testing time using 1000 vectors 

2-D 

2 

2 240 

2 250 

3 419 

3 427 

--- 

Table 3.8 (c) 
Testing time using 1000 vectors 

3-D 

sample no. 

binary repr. 
Hadamard repr . 
Parzen density 

3 

2 190 

2 190 

3 431 

3 480 

--- 

1 

99 
94 

228 

4 

2200 

2210 

3 397 

3 378 

--- 

2 

96 
94 

228 

5 
103 
103 
156 
109 

--- 

sample no, 
binary repr. 15 hidden no. 
Hadamard repr. 15 hidd. no. 
binary repr. 25 hidden no. 
Hadamard repr. 25 hidd. no. 
Parzen density 

2 
104 
101 
117 
105 

--- 

1 
105 
103 
109 
102 
670 

average 

2 195 

2 207 

3416 

3 421 

5 

2 180 

2 190 

3419 

3 439 

3 

109 
93 

226 

6 
104 
104 
153 
107 

--- 

--- -1 

6 

2 160 

2210 

3416 

3 382 

average 
105 
103 
139 
106 
670 

3 
106 
104 
137 
103 

--- 

4 

94 
94 

225 

4 
107 
105 
161 
108 

--- 

5 

95 
94 

226 

6 

93 
93 

228 

average 

98 
93 

227 



3.5 Conclusions 

We have introduced a new output representation, which reduces the variance of the 

estimation error by up to 50 % for an 8 class problem. We have then compared the 

performance of the neural networks to the performance of mathematical classifiers. Our 

research shows that already for the 3 dimensional case the neural networks become much 

faster, while yielding estimation results similar to those of the Parzen density estimation. 

The neural networks need less memory, and, for the 3 dimensional case, perform faster in 

both training and testing. The biggest advantage of the neural network is the complete 

absence of assumptions of the underlying data. For the Parzen density estimation, one has 

to adjust the smoothing parameter correctly. The existing formula for the estimation of 

an optimal smoothing parameter assumes an underlying distribution and depends on the 

estimated variance of the training set. 
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4. ADDITION OF REDUNDANT HIDDEN NODES 

4.1 Introduction 

The model we set up in Chapter 2 shows a decrease of the error variance by 1/N for the 

Hadamard-transformed output representation. N is the number of output nodes, which 

was equal to the number of classes in Chapter 2. This suggests that, by increasing the 

number of output nodes, and consequently, the size of the Hadamard matrix, we can 

decrease the variance further. 

In order to increase the number of output nodes, we added components with zero 

value for all input classes to the desired outputs. We will refer to this new binary output 

vectors as zero padded vectors. The output nodes which are trained against the 

components of the desired vectors equaling zero for all input classes will be referred to as 

redundant nodes. They are referred to by redundant nodes, since their values have no 

direct effect on classification. They values will be discarded during testing. 

When taking the Hadamard-transform of these vectors, we obtain new desired output 

vectors which equal the first rows of the Hadamard matrix. These new Hadamard- 

transformed outputs will have no constant component except the first one. Hence the 

learning with these vectors will be simply completed like learning a Hadamard- 

transformed representation of a problem with a number of different classes. 

The effect of increasing the size of the Hadamard matrix might be opposed by an 

increase of the error at the output nodes, before taking the inverse Hadamard-transform. 

We show in Section 4.2 that the model of Chapter 2 can be used for neural networks 

with redundant output nodes as well. Section 4.3 contains the experiments with 

redundant nodes. We show that for small and medium amounts of redundant nodes we do 

not encounter significant increases in the error at the output. Hence, the performance 

improves drastically. As in Chapter 3, we compare the results to those of statistical 

density estimators. Section 4.4 contains the discussion. In Section 4.5 we apply these 

techniques to the 3-dimensional case. Section 4.6 is conclusions. 



4.2 Theoretical Treatment of Redundant Nodes 

In Chapter 2, we have shown that by using the inverse Hadamard-transform, we can 

decrease the output error by 1/N. We assumed the number of classes to be equal to the 

matrix size N of the Hadamard matrix. 

Introducing redundant nodes can be seen as zero padding of the desired output 

vectors. For example, desired output vectors for a two class problem, which is zero 

padded to size 4, are given by 

Using equation (2. I), we get: 

Thus, Dh simply becomes the first two columns of the Hadamard matrix of size 4. We 

now train the neural network with the first column as desired output for class 1 and the 

second column as desired output for class 2. In Chapter 2, we have explained that the 

output of the network then learns the probability of the desired output component j of 

the desired output Dh equaling 1. Of course, to obtain that actual probability, we would 

have to shift and scale the actual output. This property of the neural network is not 

changed by using only the first 2 columns as desired output vectors. 

As in Chapter 2 the actual output is given by 



Hence we can solve equation (4.3) to obtain the probability estimates. Using H-l = WN, 

we obtain: 

A 

Since H is a square matrix of size N, and Oi is a vector of length N, P (C I Xi) 

is a vector of length N. We can truncate all output values with j>(N-M). The first N-M 

components contain the a posteriori probabilities of the (N-M) classes we have. 

Now we will investigate if using only the first N-M columns of the Hadarnard matrix 

for training affects the model variance set up in Chapter 2. We have shown, that for the 

average variance reduction, we can use our simple model set up in Section 2.2. Using the 

assumptions (2.4)-(2.7), Equation (2.12) is still given by 

Using Hml = H ~ / N  and the independence of the components of eoi we obtain the average 

variance to be 

Like we have shown at the beginning of this section, H-1 is not affected by using only 

the first N-M columns for training. Also, the error at the output nodes before the inverse 



Hadamard-transform still minimizes the error of that node equaling 1. Hence the gain in 

variance is not affected by the number of different output patterns used for training. 

This result enables us to add redundant nodes and expect a reduction of the variance 

by the size N of the zero padded desired outputs. Clearly N still has to be 2k since 

Hadamard matrices only exist for 2k, where k is an integer. However, since we no longer 

use all columns of H, we can now use any number L<N of the columns of H as desired 

output. This means, we are no longer restricted to problems with 2k classes. 

By adding redundant nodes, we increase the network complexity. This might lead to 

an increase of the output error before the inverse Hadamard-transform. We now 

experimentally test if the output error increases, and if the addition of redundant notes 

yields the theoretical benefits. The results are discussed in the next section. 

4.3 Experiments with the Redundant Nodes and Comparison with the Statistical 

Methods 

We used the same artificially generated 2 dimensional 100 vector training set used in 

Chapter 2. The same 1000 vector testing set like in Chapter 2 was used as well. Only the 

testing results are shown, since there is limited interest in training values. We restricted 

to the use of the. For comparison, we always trained a binary output and a Hadamard- 

transformed output network. We show the results for 0, 8, 24 and 56 redundant nodes, 

giving a total of 8, 16, 32 and 64 output nodes, respectively. For the 24 redundant node 

case we, trained networks with 25 and 45 hidden nodes. For the 56 redundant node case, 

we trained one network with 45 hidden nodes and one with 75 hidden nodes. We 

increased the number of hidden neurons, since the redundant nodes increase the 

complexity of the output. Like before, we computed the variance, mean square and the 

mean of the estimation error. In this section, we will only show the average testing 

results for each sample, and the average over all samples. For comparison, we included 

the results of the best statistical method, namely the Parzen density estimation with 

estimated optimal smoothing parameter hOpt In Table 1 we also included the optimal 



Bayesian classifier, giving the maximal possible performance. Tables 2 through 4 will 

show the variance of the estimation error, the mean square error and the mean error, 

respectively. Figures 4.1 and 4.2 display how the classification accuracy increases the 

mean square error decreases, as the number of hidden and output nodes increases. 



Table 4.1 
Classification percentage 100 vectors as training set 
2 - dimensional input data, 1000 vectors for testing 

100 vectors 

no redundant nodes, 15 hidden nodes 

sample # 1 

binary output 
Hadamard output 

24 redundant nodes, 25 hidden nodes 

8 redundant nodes, 25 hidden nodes 

2 

9 1.20% 
92.30% 

94.00% 
94.74% 

binary output 
Hadamard ou t~ut  

binary output 
Hadamard output 

3 

93.50% 
94.10% 

binary output 
Hadamard output 

9 1.70% 
94.14% 

24 redundant nodes, 45 hidden nodes 

89.50% 
93.90% 

58 redundant nodes, 75 hidden nodes 

4 

90.40% 
92.30% 

92.68% 
94.25% 

93.00% 
94.03% 

93.20% 
94.50% 

58 redundant nodes, 45 hidden nodes 

9 1.50% 

94.92% 

5 

87.40% 
91.10% 

93.71% 
94.64% 

91.70% 
94.60% 

binary output 
Hadamard output 

90.60% 
92.80% 

92.90% 
93.85% 

93.60% 
94.10% 

91.20% 
95.04% 

binary output 
Hadamard output 

92.60% 
94.52% 

92.80% 
94.40% 

92.10% 

95.10% 

Parzen density hop( 

maximal possible 
classification 

6 

93.20% 
94.25% 

92.64% 
93.99% 

93.00% 
94.10% 

90.90% 

95.11% 

9 1.80% 

94.99% 

9 1.50% 

94.63% 

average 

93.70% 
94.90% 

91.90% 
94.24% 

92.80% 
94.60% 

93.00% 
94.50% 

91.78% 
94.59% 

92.30% 
94.90% 

9 1.00% 

94.86% 

93.60% 
94.50% 

92.13% 
94.59% 

91.50% 
94.8 1 % 

9 1.70% 

94.84% 

92.70% 
94.70% 

91.50% 
94.44% 

92.72% 
94.43% 

91.60% 
94.68% 



Fig. 4.1 Classification vs. number of outputhidden nodes 
dotted: maximum possible classification 
dashed: Hadamard-transformed network 

solid: binary network 



Table 4.2 
Average variance of estimation error, 100 training vectors 

2 - dimensional input data, 1000 vectors for testing 
100 vectors 

no redundant nodes, 15 hidden nodes 
binary 1 0.02 6901 0.02 3801 0.03 5001 0.04 440 0.03 7201 0.03 2001 0.03 3221 

sample # 

1 Hadamard 1 0.02 0401 0.01 4901 0.01 9701 0.02 7501 0.02 740) 0.02 6801 0.02 2781 
8 redundant nodes, 25 hidden nodes 

1 

24 redundant nodes, 25 hidden nodes 
binary 1 0.03 5401 0.01 9601 0.02 1701 0.02 5001 0.02 5301 0.02 440) 0.02 523 

binary 
Hadamard 

I Hadamard 1 0.00 7551 0.00 7261 0.00 8081 0.00 5921 0.00 7341 0.00 5881 0.00 7011 
24 redundant nodes, 45 hidden nodes 

binary 1 0.01 8001 0.02 2001 0.01 7401 0.02 6901 0.02 1201 0.02 0801 0.02 105 

2 

0.02 480 
0.00 747 

I Hadamard 1 0.00 5591 0.00 5261 0.00 5621 0.00 5471 0.00 6811 0.00 5151 0.00 5651 
58 redundant nodes. 45 hidden nodes 

6 

I binary 1 0.03 5101 0.03 0001 0.03 0801 0.03 8901 0.02 5801 0.04 0401 0.03 3501 

average 3 

0.01 970 
0.00 947 

I Hadamard 1 0.00 5531 0.00 4941 0.00 5661 0.00 5291 0.00 5321 0.00 7451 0.00 5701 
58 redundant nodes, 75 hidden nodes 

4 

0.02 150 
0.00 892 

5 

binary 
Hadamard 

0.02 250 
0.00 897 

0.01 240 
0.00 412 

0.01 660 
0.00 71 1 

0.01 630 
0.00 412 

0.02 670 
0.00 771 

0.02 197 
0.00 828 

0.01 640 
0.00 407 

0.01 860 
0.00 45 1 

0.01 570 
0.00 395 

0.01 740 
0.00 513 

0.01 613 
0.00 432 



Table 4.3 
Average mean square of estimation error, 100 training vectors 

2 - dimensional input data, 1000 vectors for testing 
100 vectors 

no redundant nodes, 25 hidden nodes 

sample # 

8 redundant nodes, 25 hidden nodes 
binary 1 0.02 4901 0.01 980 0.02 1701 0.02 2501 0.01 6701 0.02 6701 0.02 205) 

1 

binary 
Hadamard 

Hadamard ( 0.00 7481 0.00 9521 0.00 8951 0.00 9191 0.00 713 0.00 8241 0.00 8421 
24 redundant nodes. 25 hidden nodes 
I binarv 1 0.03 5401 0.01 9701 0.02 1701 0.02 5001 0.02 5301 0.02 4401 0.02 5251 

2 

0.02 690 
0.02 040 

1 Hadamard 1 0.00 7691 0.00 7281 0.00 81 11 0.00 5941 0.00 7571 0.00 5881 0.00 7081 
24 redundant nodes, 45 hidden nodes 

3 

0.02 380 
0.01 490 

binary 
Hadamard 

4 

0.03 530 
0.01 970 

58 redundant nodes, 45 hidden nodes 

Parzen hopt 1 0.00 6271 0.00 5581 0.00 6731 0.00 63 11 0.00 5601 0.00 7071 0.00 626 

0.01 800 
0.00 590 

58 redundant nodes, 75 hidden nodes 

5 

0.04 440 
0.02 870 

binary 
Hadamard 

0.02 200 
0.00 529 

0.04 040 
0.00 753 

binary 
Hadamard 

6 

0.03 760 
0.02 740 

0.03 510 
0.00 554 

0.03 352 
0.00 575 

average 

0.01 740 
0.00 564 

0.01 240 
0.00 413 

0.01 860 
0.00 453 

0.03 200 
0.02 680 

0.03 000 
0.00 496 

0.01 740 
0.00 5 17 

0.01 570 
0.00 397 

0.03 333 
0.02 298 

0.02 690 
0.00 548 

0.01 618 
0.00 434 

0.01 650 
0.00 414 

0.03 080 
0.00 584 

0.01 650 
0.00 410 

0.02 120 
0.00 682 

0.03 900 
0.00 53 1 

0.02 080 
0.00 5 15 

0.02 580 
0.00 534 

0.02 105 
0.00 57 1 



Mean sauare error versus number of outnut nodes 

Fig. 4.2 Mean square vs. number of outputkidden neurons 
solid : binary network 

dashed : Hadarnard-transformed network 



Table 4.4 
Average mean of the estimation error, 100 training vectors 

2 - dimensional input data, 1000 vectors for testing 

no redundant nodes, 15 hidden nodes 
1 binary I -0.000 1651 0.000 0081 0.000 0891 -0.000 23 11 0.002 1001 -0.000 12 11 0.00 028 

sample 
# 

I I I I I I I I 

8 redundant nodes. 25 hidden nodes 
1 binary 1 -0.004 1301 0.000 3751 0.000 1841 0.000 0161 0.000 3841 0.000 1001 -0.00 05 11 

1 

1 ~ a d a m . 1  0.000 1201 0.000 0661 0.000 0861 -0.000 0651 0.000 2431 -0.000 29 11 0.00 0031 
24 redundant nodes. 25 hidden nodes 

2 

binary 
Hadam. 

3 

24 redundant nodes, 45 hidden nodes 

58 redundant nodes, 75 hidden nodes 
binary 1 -0.0000371 0.0058201 0.0000571 0.000046( -0.0005701 -0.0015301 0.000631 

-0.001 050 
0.000 005 

binary 
Hadam. 
58 redundant nodes, 45 hidden nodes 

4 

binary 
Hadam. 

Interestingly, the average estimation error for the binary network decreases as well with 

the addition of 8 and 16 redundant notes. The experiments also indicated that the number 

of hidden neurons should always be a larger than the number of output nodes to achieve 

optimal results. 

The classification increases and reaches almost the optimal Bayesian classification 

result. The classification accuracy achieved with the redundant neural network is 

significantly better than that achieved by Parzen density estimation. 

The variance and the mean square error of the Hadarnard-transformed neural network 

0.000 294 
0.000 086 

0.000 783 
-0.000 09 1 

Parzen 

hopt 

5 

-0.000 054 
-0.000 023 

-0.000 043 
-0.000 071 

6 

0.000 106 
0.000 077 

2.66E-12 6.25E-12 

average 

-0.000 401 
-0.000 043 

-0.000 5 17 
0.000 097 

-0.000 157 
-0.000 002 

0.000 044 
0.000 030 

0.000 212 
0.000 01 8 

0.001 590 
0.000 01 6 

-0.000 037 
-0.000 018 

-0.000 219 
-0.000 026 

1.74E-12 

0.000 160 
0.000 120 

1.05E-11 -5.62E-12 

-0.003 080 
-0.000 258 

-0.000 848 
-0.000 1 14 

-0.000 167 
0.000 006 

-0.000 720 
-0.000 050 

-1.92E-11 

0.000 062 
0.000 005 

2.23E-11 

-0.000 606 
-0.000 007 



are also reduced by using redundant output nodes. In comparison to the non-redundant 

Hadamard-transformed neural network, the reduction in error variance for 8 redundant 

nodes is 64 %, more then the 50 % we expected. For 16 redundant nodes and 45 hidden 

neurons, we reduced it by about 75%, like expected. For the 56 vector case with 75 

hidden neurons, the improvement is about 81 %, 6.5 % less than the expected 87.5 %. 

The maximal achieved reduction of network error in comparison to the binary network 

with no redundant notes is 87%. This means that we could reduce the variance of the 

estimation error to about 118 of its previous value. The lowest variance and mean square 

error achieved were about 31 % lower than that of the optimal Parzen density estimation 

method. 

On the other hand, increasing the network complexity increases the time needed for 

training, and testing. Tables 4.5 and 4.6 show the respective CPU times in seconds. Table 

4.5 shows the increase in memory needed to store the additional weights. 

Table 4.5 
Training time, using 100 vectors for training 

2-dimensional input data 



Fig. 4.3 Training time versus number of outputhidden nodes 

Table 4.6 
Testing time, using 1000 vectors for testing 

sample no. 

no redundant nodes, 25 hidden nodes 

8 redundant nodes, 25 hidden nodes 
24 redundant nodes, 25 hidden nodes 
24 redundant nodes, 45 hidden nodes 
58 redundant nodes, 45 hidden nodes 
58 redundant nodes. 75 hidden nodes 

Parzen densitv 

:nsional input data 
1 1  2 / 3 1 4  1 5  1 6  laveragel 



Table 4.6 
Memory needed to store the mapping 

4.4 Discussion of the Results 

The most surprising result is the reduction of error variance and the mean square error of 

the binary network with redundant nodes. The most likely explanation is that with the 

addition of redundant nodes we increased the number of hidden nodes. When we left the 

number of hidden nodes constant, but increased the number of redundant output nodes, 

the output error increased slightly. This can expected, since we allow more total output 

noise, but do not use those additional output nodes. 

To show this effect we set the number of hidden neurons constantly to 75 for the 3 

dimensional case, discussed in Section 4.5. 

In the previous Chapters, we had used 15 - 25 hidden neurons. This number was 

experimentally determined by [3]. However, they used one dimensional input data. We 

used 2 or 3 dimensional input data. One can think of each hidden neuron trying to learn 

small piece of the distribution function, similar to the function learning presented by 

[14]. Now, the accuracy of this mapping will depend not only on how accurate one 

neuron learns its piece of the distribution, but also on how many hidden neurons we use. 

This is a problem seemingly similar to over -and under smoothing in statistical 

estimators. In our case, the lowest mean square error was achieved with the highest 

number of hidden neurons. We can expect to reach some saturation point, after which the 

addition of more hidden neurons will increase the error. For the 2 - and 3 dimensional 

input data, we stopped before, due to the excessive times necessary. In the one 

dimensional case, [3] show that there is a certain number of hidden neurons, which gives 

no. redundant neurons 
no. hidden neurons 

memory / kb 

Parzen 
--- 
--- 

939.00 

neural network 
0 

25 

2.72 

8 
25 

7.66 

24 
25 

14.13 

45 

25.13 

5 8 
45 

54.33 

75 

77.09 



minimum output error. The increase of hidden neurons might be thought of as "curse of 

dimensionality", analog to the curse of dimensionality for statistical methods. [8] 

The effects for the Hadamard-transform are quite different. As discussed in Chapter 

2, the error at the output of the Hadamard-transform depends on the absolute error at the 

output of the network, and not on the relative error, the probability error. In Chapter 2, 

the output error of the Hadamard-transformed network was found to be approximately 

twice the size of the error of the binary network. Hence the error variance of the 

Hadamard-transformed network is reduced by 41 N instead 1M. Still, our results do not 

show a reduction by 4M. 4/N seems to be the upper bound of reduction, achieved in 

some cases, while others achieve lower reductions. This must be a consequence of an 

increase of the output error at the output nodes of the Hadamard-transformed network. 

In Chapter to we found out that the dependency terms T, caused by taking the inverse 

Hadarnard-transform of not independent output values, summed up to 0 over all output 

values. However, when we use redundant nodes, we will only use the first 8 output nodes 

for the a posteriori probabilities. The dependency terms no longer have to cancel out, like 

they do in Section 2.5. In Section 4.5, the 3 - dimensional case, we will measure the 

average of the actual dependencies components T for the first 8 output nodes. 

Another disadvantage is that training and testing times increase significantly, and so 

does the needed memory. 

4.5 Further Experiments 

We used a set of 100 training vectors. The structure of the set is similar to that of the 300 

vector per class 3-dimensional set used in Chapter 3. 

We again trained a binary and a Hadamard network. Each of them had 75 hidden 

neurons. Table 4.8 will show the testing classification, using 1000 testing vectors. We 

ran 4 samples, each of them with 0, 8, 24 and 56 redundant output nodes. the achieved 

classification, and the mean square error are shown in Table 4.8,4.9 and 4.10. Figure 4.4 

and 4.5 will show the classification and the mean square error versus the number of 



output nodes, respectively. 

Table 4.8 
Testing classification with the 3 - D input data 

8 ou t~u t  nodes 

sample # I 1 

I binary 1 88.00% 1 87.20% 1 88.10% 1 85.90% 1 87.30% 1 
I Hadamard 191.20% 1 91.30% 1 91.00% 1 91.40% 11 91.23% 1 

2 3 

16 output nodes 

64 output nodes 

binary 
Hadamard 

32 output nodes 

binary 1 83.80% 1 85.90% 1 85.00% 1 82.60% 1- 

4 average 

binary 
Hadamard 

86.60% 
9 1.00% 

84.19% 
93.20% 

Hadamard 

max. possible 
classification 

87.90% 
92.10% 

85.74% 
92.98% 

87.08% 
93.80% 

87.15% 
91.93% 

86.90% 
9 1.90% 

94.00% 

95.25% 

87.20% 
92.70% 

85.73% 
92.80% 

85.96% 
92.10% 

93.80% 

94.88% 

93.60% 

94.46% 

93.70% 1 

95.03% 



Fig. 4.4 Testing classification versus number of output neurons 

Table 4.9 
Mean square error in the 3 - D case, 75 hidden neurons 

8 output nodes 

sample # I 1 

16 out~ut  nodes 

2 

binary 
Hadamard 

I Hadarnard 1 0.02 100 1 0.02 200 1 0.01 590 1 0.02 590 1 0.02 120 1 

3 

0.03 904 
0.02 680 

32 output nodes 

4 

0.03 956 
0.02 570 

64 output nodes 

average 

binary 
Hadamard 

binary 
Hadamard 

0.03 453 
0.02 250 

0.04 806 
0.01 377 

0.04 542 
0.01 401 

0.04 057 
0.02 520 

0.04 643 
0.01 617 

0.03 941 
0.01 123 

0.05 059 
0.01 084 

0.03 842 
0.02 505 

0.04 780 
0.01 486 

0.04 642 
0.00 807 

0.04 540 
0.01 1 10 

0.05 023 
0.01 040 

0.04 816 
0.01 0 10 
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Fig. 4.5 Mean square error versus number of output neurons 

With a constant number of hidden neurons, the binary classification decreases and the 

mean square error increases with the number of output neurons, while the classification 

of the Hadamard-transformed network increases. The mean square error of the best 

Hadamard network is approximately 4 times lower than the one of the best binary 

network. 

We will now compute the dependency terms, like in Section 2.4. the interest will be 

if the first 8 nodes, which are now relevant, will have large dependency terms or not, and 

if they sum up to 0. Table 4.9 shows the dependency terms for all output values, for the 8 

redundant node Hadamard-transformed case. 



Table 4.10 
Dependency terms for the 8 redundant nodes cases 

Now, the dependency terms over all output values cancel out. However, the terms for the 

first 8 values, which contain the a posteriori probabilities, are all positive. This explains, 

why the decrease of the mean square error between the 0 and the 8 redundant node case 

is much less then the expected 50 %. Table 4.10 will now show the dependency terms for 

the first 8 nodes for 0, 8, 24 and 56 redundant nodes. Figure 4.7 shows how the average 

dependency of the first 8 nodes over the 4 samples is effected by the increase of the 

hidden nodes. 



Table 4.1 1 
Average de~endencies of the first 8 nodes 

10 redundant nodes 1 0.00 000 1 0.00 000 1 0.00 000 1 0.00 000 1 0.00 000 1 

u 

18 redundant nodes 1 0.01 010 1 0.01 070 1 0.00 77 1 1 0.01 260 1 0.01 028 i 

sample # 

m I I I I 

24 redundant nodes 1 0.00 822 / 0.0 1 070 ( 0.0 1 190 1 0.01 010 1 0.01 023 
(56 redundant nodes 1 0.00 932 1 0.00 954 1 0.00 694 / 0.00 889 1 0.00 867 

1 

Fig. 4.7 Dependency terms versus number of output nodes 
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Dependency terms versus number of redundant nodes 
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0.01 

3 
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0.006 - - 

- 

- 
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Apparently, the dependency terms are the highest for only 8 redundant nodes, and 

decrease slowly with the addition of more redundant hidden nodes. the magnitude of the 

dependency terms in Table 4.10 accounts for most of the observed output mean square 

error. For the average variance 02, the reduction is no longer given by 1/N, in 

comparison with the variance before the inverse Hadamard-transform. 1/N marks the 

lowest bound, while the actual variance reduction is much lower, due to the dependency 

terms. Still, the average performance improves with the addition of the redundant nodes, 

especially when a large number is added. 

4.6 Conclusions 

In comparison with the Parzen density estimation, our network now performed better in 

both classification and the mean square error. The only remaining advantages of the 2- 

dimensional Parzen density classifier are the extremely fast training time and a smaller 

mean error. To store the lookup tables we still need significantly more memory than for 

the neural network weights. 

Previously we discussed advantages of the neural networks, like the absence of a 

smoothing parameter, the possibility to use high dimensional input data, etc. Now, with 

the introduction of the redundant nodes, we obtain a classifier that outperforms the 

statistical methods both in classification and mean square error, that is nonparametrical, 

has no smoothing parameters to adjust, and can be used for higher dimensions easily. 

The only remaining advantages of the Parzen density classifier are the shorter 

training times, and for low mean square error, the faster testing times as well. 





5. CONVERGENCE ISSUES 

5.1 Introduction 

We have introduced a new output representation and added redundant nodes for the 

neural network learning. So far we examined the results with respect to testing 

performance in classification and a posteriori probability estimation. In this chapter we 

will discuss speed of convergence and, the likelihood of getting stuck in a local minimum 

when the initialization used is imperfect. 

In the backpropagation algorithm used here, the gradient, and therefore the weight 

adjustment in the output layer, are proportional to the error at the output, D - Y, where Y 

is the actual output vector. This suggests that the speed of learning not only depends on 

the chosen input representation, but also on the chosen output representation. 

When we add redundant output nodes, the error surfaces for the output layer remain 

the same. However, the weight changes in the hidden layer depend on the 

backpropagated error of the output layer. Now, if we change the structure of that layer, 

we are quite likely to change the error backpropagated to the hidden layer and therefore 

the weight adaptation in the hidden layer itself. This will be discussed in Section 5.3. 

5.2 Convergence of Hadamard-Transformed Output Networks 

5.2.1 Effects of the Hadamard-transformed output representation 

The Hadamard-transformed output representation is orthogonal. This means the inner 

product of two different columns is zero. The Hamming distance is N/2 for each column. 

compared to a Hamming distance of 2 for the binary output vectors. 

Hence, the spheres in the hyperspace are further apart for Hadamard-transformed 



outputs than for binary outputs. 

The weight adaptation for the backpropagation is given by [15] 

where 1 is the layer index, j is the jth neuron in layer 1, and k is the kth neuron in the next 

layer. 6j(i) is the local gradient, and ykl(i) is the input of neuron k to neuron j. a is the 

learning rate, and i stands for the ilh input vector. 

Since we use a linear output layer, the gradient at the output layer (layer number 3) 

becomes 

6j2(i) = ej(i) = dj(i) - yj(i) 

For the hidden layer, Sj 1 is given by 

where q(vj(i)) is the derivative of the activation function of the hidden layer. 

Clearly, using an orthogonal output representation instead of a binary will effect the 

error in Eq.(5.2). therefore, the gradient in Eq. (5.3) will be changed as well, and hence 

the weight adjustments in both the hidden and the output layer will be effected. Weather 

the effects will improve or slow convergence has to be determined experimentally. 

5.2.1 Experimental Results 

As discussed in Section 2.3, we cannot use the mean squared error to show the 

progress of learning. We will instead display the number of correctly classified vectors of 

the training set. Figure 5.1 shows 3 typical training patterns with both the Hadamard- 



transformed and the binary output representation, using the 2 - dimensional training data. 

Figure 5.2 shows 3 typical training patterns with the 3 - dimensional input data. We 

decided not to average over a sum of different networks, since the practical interest is to 

evaluate the performance of a specific classifier and not of a set. Using the average 

would smooth out some important characteristics. 
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Fig. 5.1 Training classification versus number of sweeps 

2 - D case 
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Fig. 5.2 Training classification versus number of sweeps, 3 - D case 



Clearly, the Hadamard-transformed neural network converges faster then the binary 

network, especially during the first sweeps. The effects are more obvious in the 3 - 

dimensional case. This suggests that the benefits of the Hadamard-transformed 

convergence will be stronger with more complex problems. 

Tables 5.1 (a), 5.1 (b) show the average number of iterations of six samples and CPU- 

time needed until the network reached 70, 80 and 85 % correctly separated patterns in the 

3 dimensional case. This time we decided to use the average instead of the single cases, 

in order to show the average gains. Due to computational limitations, we only show the 

results after 600 sweeps. Our previous findings show that the binary network will 

eventually reach the 85 % classification later. 

Table 5.1 (a) 
Training results achieved within the first 600 sweeps 

0 redundant nodes, 55 hidden nodes 

I Hadamard 11 120 1 220 1 360 1 

training classification 1 
binary 

I Hadamard 11 100 1 180 1 200 1 

70% 

binary 

280 , 400 560 

80% 

360 

binary 
Hadamard 

I Hadamard 11 100 1 120 1 200 / 

85% 

binary 

--- 

520 
280 

--- 

--- 

360 
220 

average 

440 

560 
280 

binary 
Hadamard 

--- 

3 10 
125 

340 
200 



Table 5.1 (b) 
Training times needed to reach the classification percentage 

0 redundant nodes. 55 hidden nodes 

binary 
,k7zzz-I 
1 training classification 1 70% 

average 

80% 

binary 
Hadamard 

85% 

Clearly, the Hadarnard-transformed networks converge faster, reaching 70% correct 

classification within 113 of the time of the binary network, and 85 % at about less then 

112 of the time needed for the binary network. 

The comparison between the 2-D case and the 3-D case shows that the convergence 

speedup is larger for the 3-D case. Hence, the benefits of using Hadamard-transformed 

output representations can be expected to be larger for more complex problems. 

840 
337 

5.3 Convergence of networks with redundant nodes 

We introduced redundant hidden nodes in Chapter 4. Now, equation (5.3) shows that 

the weight adaptation in the hidden layer is proportional to the sum of the error of all 

output nodes connected with the hidden node. by adding redundant output terms, we add 

more terms to the sum in equation (5.3). This will affect the adjusting of the weights in 

the hidden layer. However, it is impossible to give a theoretical treatment if this will 

affect the network convergence speed in a positive or negative way. 

binary 
Hadamard 

1 780 
423 

1 230 
44 1 

1 380 
762 

--- 

764 

2 290 
1 104 



Figure 5.3 will show the effects for two samples, in the 2 dimensional case. In each 

sample we trained a neural network with no, 8, 16 and 32 redundant nodes. The number 

of hidden nodes was set a little larger than the number of output nodes, like discussed in 

Chapter 4. We used the previously used 2 dimensional 100 vector training set. 
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In order to verify if the improved convergence is the result of the addition of the hidden 

nodes or of the redundant nodes, we then ran 3 samples with a constant amount of hidden 

nodes, 55. The results for 0, 8, and 16 redundant nodes are shown in Table 5.2. 

Table 5.2 (a) 
Training results achieved within the first 600 sweeps 

24 redundant nodes. 55 hidden nodes 
training classification 

binary 
Hadamard 

binarv 
Hadamard 

binarv 
- 

Hadamard 
binary 

Hadamard 

average 

Table 5.2 (b) 
Training results achieved within the first 600 sweeps 

binary 
Hadamard 

8 redundant nodes, 55 hidden nodes 
1 training classification 

500 
145 

Hadamard 
I binary 

n. a. 
175 

I Hadamard 

n. a. 
330 

I binary 

binarv F 
Hadamard 

average " 

binary 
Hadamard 

n. a. 
245 

365 
110 

415 
160 



Table 5.2 (c) 
Training results achieved within the first 600 sweeps 

0 redundant nodes, 55 hidden nodes 
1 training classification I 70%1 80%1 85%1 

I Hadamard 1 180 1 280 1 360 1 

binary 
Hadamard 

binary 
Hadamard 

binary 

280 
120 
3 60 
100 
380 

binary 
Hadamard 

Hence, the addition of more hidden nodes reduces the number of iterations needed. 

binary 
Hadamard 

The addition of redundant output nodes has no or little effect on the number of iterations 

400 
220 
--- 

180 
520 

average 

220 
100 

needed for convergence in the Hadamard-transformed case. This can be explained by the 

560 
3 60 
--- 

200 
--- 

3 10 
125 

fact that the desired output of the redundant nodes is constant for all vectors. It slows the 

440 
120 

convergence of the binary case. 

--- 

200 

340 
200 

5.4 Initialization Problems 

560 
280 

So far we used an initialization procedure based on the algorithm by [Nguyen 

Widrow]. Instead of initializing with small random variables, the hidden neurons are 

initialized to cover the whole range of the input data. First all the weights are set to 

uniform random values between the minimum and the maximum of the input data. Then 

the weight magnitudes are readjusted so that each hidden neuron is linear only over a 

small interval. Then, the magnitude of Wi is set to: 



where H is the number of hidden nodes and P is the number of input dimensions. f is a 

factor smaller than one, to give some overlap between the intervals of the different 

hidden nodes. The bias for the hidden node is then set to a uniform random variable 

between - I wil and + I wil . This distributes the hidden nodes over the whole input 

space equally. The output layer weights are set to small random variables. 

Another initialization scheme is to choose the weights randomly in the range 

where Fj is the fan-in, the total number of inputs to neuron j in the network [15]. 

W also ran an initialization where the initial weights were distributed gaussian 

between 0 and 1. The idea of setting all weights to a positive value is to complicate the 

learning process and increase the likelihood of it to get stuck in a local minimum. This 

will then show whether any of the changes proposed in this thesis will enable the neural 

network to avoid local minima, or decrease the ability to overcome local minima. 

Table 5.3 shows the iterations needed to reach 70, 80, 85 and 90 % in the 3- 

dimensional classification problem. 25 hidden nodes were used in all cases. 

In the case of poor initialization, both networks get stuck in a local minimum twice. 

However, there are 2 more cases were the binary network fails to reach acceptable 

classification accuracy within a reasonable number of training iterations. The Hadamard 

network was performing better, though not as good as with both the heuristic range and 

the Nguyen Widrow algorithm. Figure 5.4 show 2 training cases. 
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Fig. 5.4 Backpropagation with binary representation stuck in a local minimum 

In general, even if the local minimum is overcome, the learning curve is no longer 

asymptotic. It instead shows slow increase which gets halted occasionally. 

Using Hadamard-transformed output representations worked better with all the 3 

different initializations. Of the 3 different initializations, the Nguyenl'idrow 

initialization and the uniform random initialization give the best results. 



Table 5.3 (a) 
Iterations needed to reach certain training performance 

Nguyen Widrow initialization 

Hadamard 
binary 
Hadamard 

Table 5.3 (b) 
Iterations needed to reach certain training performance 

Uniform Random initialization 

average 

100 
200 
200 

binary 
Hadamard 

150 
200 
700 

not computed 
not computed 

175 
142 

550 
350 
850 

1 650 
--- 
--- 

342 
325 

492 
450 



Hadamard I 2001 2501 3001 6501 
average 

Table 5.3 (c) 
Iterations needed to reach certain training performance 

Positive gaussian values as initialization 

binary 
Hadamard 

train. class 

binary 

442 
225 

Hadamard 
binary 
Hadamard 

475 
267 

binary 
Hadamard 

Hadamard 

525 
308 

binary 

n.a. (700) 
- 

967 

Hadamard 
binary 
Hadamard 
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6. CONCLUSIONS 

6.1 Summary of the Results 

We have introduced an output representation which reduces the mean square 

estimation error of a neural network classifier drastically. Our experimental results 

confirmed the model we have set up for the expected reductions. We have then modified 

the new output representation by enlarging its size. This yields the expected benefits, up 

to the point where the computational overhead becomes excessive. 

The modifications we introduced reduced the mean square error of a neural network 

classifier to about 118 of its previous value. This is accompanied be classification results 

which almost reach the maximum possible classification. This is especially remarkable, 

since it is usually possible to overcome the last 2 - 3 percent for maximum classification 

at great cost and effort. 

The proposed changes make neural networks a powerful, completely non-parametric 

a priori probability density estimator. It needs little more memory to store the 

distributions than the classic backpropagation, there are no smoothing parameters to 

adjust, and the density can be estimated more accurately than with the Parzen density 

estimation. It can easily be used for higher dimensional probability density estimation as 

well. 

The only advantage remaining for the Parzen density estimation is the shorter training 

time in the 1- and 2- dimensional case to generate the lookup table. However, already for 

the 3-dimensional case, the product Kernel becomes so excessive to compute that almost 

no practical use is known. The testing times differ. For small an medium network 

complexity, the network performs faster, while for high complexity, i.e. many redundant 

nodes, the Parzen density estimation is faster. 

6.2 Possible Applications 



Lower mean square estimation error and better classification are interesting for all 

classification problems. However, there might be special interest in applying these 

techniques to problems where misclassifications produce great cost, i. e. in signature 

verification, medical engineering etc. In such problems classification confidence is of 

great importance. Hence, by reducing the error variance, we would be able to raise the 

rejection borders significantly, allowing more input data to be classified, and less to be 

rejected. 

The ability of the Hadamard-transformed neural network to overcome local minima 

and to speed up convergence will be especially beneficial for complex problems. Those 

problems will both benefit from the reduction of the variance of the output error and the 

effects of the orthogonalty of the desired output. 

Application of the Hadamard-transformed representation to problems outside of 

classification, i. e. time series prediction, functional approximation or image compression 

might be difficult. In those cases, when we take the Hadamard-transform of the desired 

output, we would get a higher range. The desired outputs are analog between some 

values, and taking the Hadamard-transform would produce large output values. This will 

then eat up the benefits of taking the inverse Hadamard-transform. 

6.3 Direction for Further Research 

Further research might bring down the level of the output noise even further. One 

possible place to look for that will be the "saturation phase", where the neural network 

basically has found its minimum, but keeps oscillating slightly, since the desired output 

representation is fairly different and produces an error affecting the learning as discussed 

in Chapter 5. 

Other interesting areas are the parallel implementation of redundant networks. This 

would enable us to find the point where increasing the number of redundant output 

neurons further might be overcome by the general error increase due to complexity. 

Another interesting field will be the effects of Hadamard-transformed output 

representations to supervised, but not backpropagation, learning algorithms, like the 



PSNN presented in [4]. 

Concerning the initialization problems, investigations into other algorithms which are 

more likely to get stuck in a local minimum then our approach with an adaptive learning 

rate might show the effects of initialization, and output transformations overcoming a 

local minimum better. Investigations of the sources of noise inside a neural network 

might be promising as well. 
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