
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

8-1-1997

POSTERIORI PROBABILITY ESTIMATION
AND PATTERN CLASSIFICATION WITH
HADAMARD TRANSFORMED NEURAL
NETWORKS
Peter G. Gulden
Purdue University School of Electrical and Computer Engineering

Okan Ersoy
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Gulden, Peter G. and Ersoy, Okan, "POSTERIORI PROBABILITY ESTIMATION AND PATTERN CLASSIFICATION WITH
HADAMARD TRANSFORMED NEURAL NETWORKS" (1997). ECE Technical Reports. Paper 83.
http://docs.lib.purdue.edu/ecetr/83

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4948214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages

POSTERIORI PROBABILITY

ESTIMATION AND PATTERN

CLASSIFICATION WITH HADAMARD

TRANSFORMED NEURAL NETWORKS

TR-ECE 97-8
AUGUST 1997

POSTERIORI PROBABILITY ESTIMATION

AND PATTERN CLASSIFICATION

WITH HADAMARD TRANSFORMED

NEURAL NETWORKS

Peter G. Gulden
Okan Ersoy

School of Electrical and Computer Engineering
1285 Electrical Engineering Bldg.

Purdue University
West Lafayette, IN 47907- 1285

TABLE OF CONTENTS

.. LIST OF TABLES v

. .
LIST OF FIGURES ... vii

.. ABSTRACT ix

1 . INTRODUCTION .. 1
.. 1 . 1 Hadamard Transformations 1

.. 1.2 Statistical Classifier versus Neural Networks 2
1.3 Redundant Nodes .. 3
1.4 Convergence issues ... 3

2 . HADAMARD TRANSFORMED OUTPUT REPRESENTATION 5
2.1 Introduction .. 5
2.2 Theoretical Model of Hadamard Transformed Networks 6

.. 2.3 Experiments 10
.. 2.3.1 The random variable generator 10

2.3.2 True a posteriori probabilities .. 12
.. 2.3.3 Experimental results 13

... 2.3.4 Conclusions 21
2.4 Modification of the Model .. 23
2.5 Experimental with the More Detailed Model ... 33
2.6 Conclusions .. 36
2.7 Error Estimation of the Classifier Without Known A Posteriori 37
Probabilities

2.7.1 Sum of all output values .. 37
2.7.2 Estimation of the mean of the output error 39

..... 3 . COMPARISON BETWEEN STATISTICAL METHODS AND NEURAL 41
NETWORKS

.. 3.1 Introduction 41
.. 3.2 Histogramming Method 41

.. 3.3 Parzen Density Estimation 42
3.4 Experiments .. 45

.. 3.5 Conclusions 64

4 . ADDITION OF REDUNDANT HIDDEN NODES ... 65
4.1 Introduction .. 65
4.2 Theoretical Treatment of Redundant Notes .. 66

............... 4.3 Experiments with the Redundant Nodes and Comparison with 68
the Statistical Methods
4.4 Discussion of the Results .. 78
4.5 Further Experiments .. 79
4.6 Conclusions ... 85

5 . CONVERGENCE ISSUES .. 87
5.1 Introduction .. 87
5.2 Convergence of Hadamard Transformed Output Networks 87

5.2.1 Effects of the Hadamard transformation on the network 87
5.2.2 Experimental results ... 88

5.3 Convergence of Networks with Redundant Nodes 93
5.4 Initialization Problems .. 97

6 . CONCLUSIONS ... 103
6.1 Summary of the Results .. 103
6.2 Possible Applications .. 104
6.3 Direction of Further Research ... 104

REFERENCES

LIST OF TABLES

Table Page

2.1 Average variance of estimation error. 100 training vectors 16
.................................. 2.2 Average mean of estimation error. 100 training vectors 17

... 2.3 Predicted variance vs . actual variance 34
2.4 Approximated mean error versus real mean error .. 41

3.1 (a) Correct testing classification. using 100 vectors for training 46
3.1 (b) Correct testing classification. using 100 vectors for training 47
3.1 (c) Correct testing classification. using 300 vectors for training 47
3.2 (a) Mean of the estimation error for the 100 vector case 48
3.2 (b) Mean of the estimation error for the 1000 vector case 51
3.3 (a) Variance of the estimation error for 1000 training vectors 54
3.3 (b) Variance of the estimation error for 100 training vectors 57
3.4 Mean of the estimation error for the 300 vector case 60
3.5 Variance of the estimation error for 300 training vectors 61

... 3.6 Memory needed to store the weights 62
... 3.7 (a) Training times. using 100 vectors for training 62

3.7 (b) Training times. using 1000 vectors for training ... 62
3.7 (c) Training times. using 300 vectors for training ... 63

... 3.8 (a) Testing time using 1000 vectors. 2 - D 63

... 3.9 (b) Testing time using 1000 vectors. 3 - D 63

4.1 Classification percentage 100 vectors as training set 70
4.2 Average variance of estimation error. 100 training vectors 72
4.3 Average mean square of estimation error. 100 training vectors 73
4.4 Average mean of the estimation error. 100 training vectors 75

.. 4.5 Training time. using 100 vectors for training 76
.. 4.6 Testing time. using 1000 vectors for testing 77

4.7 Memory needed to store the mapping .. 78
... 4.8 Testing classification with the 3 - D data 80

................................... 4.9 Mean square error for the 3-D data. 75 hidden neurons 81
.. 4.10 Dependency terms for the 8 redundant node case 83

... 4.1 1 Average dependencies of the first 98 nodes 84

5.1 (a) Training results achieved within the first 600 sweeps 92
5.1 (b) Training times needed to reach certain classification percentage 93
5.2 (a) Training results achieved within the first 600 sweeps, 16 redundant nodes. 96
5.2 (b) Training results achieved within the first 600 sweeps, 8 redundant nodes ... 96
5.2 (c) Training results achieved within the first 600 sweeps, 0 redundant nodes ... 97
5.3 (a) Iterations needed to reach certain training performance, Nguye:n Widrow ..I00

initialization
5.3 (a) Iterations needed to reach certain training performance, unifonn random ..I00

initialization
5.3 (b) Iterations needed to reach certain training performance, positive 101

gaussian values as initialization

vii

LIST OF FIGURES

Figure Page

2.1 Input data clustering for the 2-D case ... 11
2.2 Probability distribution of the input vectors .. 12
2.3 Number of correctly classified training pattern .. 14
2.4 (a) Error distribution at the output nodes for the binary output representation . 18
2.4 (b) Error distribution at the output nodes before the inverse Hadamard 19

transformation
2.4 (c) Output error distribution of the error after the inverse Hadamard 20

transform
2.5 The measured errors at different points ... 21
2.6 Summation over all output nodes .. 38

3.1 Estimation of P(X). using the Parzen method with different smoothing 44
parameters

... 4.1 Classification vs . number of outputhidden nodes 71
4.2 Mean square error vs . number of outputhidden nodes 74

...................................... 4.3 Training time versus number of outputhidden nodes 77
.. 4.4 Classification versus the number of output nodes 81

..................................... 4.5 Mean square error versus the number of output nodes 82
4.6 Dependency terms versus number of output nodes .. 84

5.1 Training classification versus number of sweeps. 2-D case 91
5.2 Training classification versus number of sweeps 3-D case 92

... 5.3 Training classification versus number of sweeps 95
........... 5.4 Backpropagation with binary representation stuck in a local minimum 100

ABSTRACT

Neural networks, trained with the backpropagation algorithm have: been applied to
various classification problems. For linearly separable and nonseparahle problems, they
have been shown to approximate the a posteriori probability of an input vector X
belonging to a specific class C.

In order to achieve high accuracy, large training data sets have to be used. For a
small number of input dimensions, the accuracy of estimation was inferior to estimates
using the Parzen density estimation.

In this thesis, we propose two new techniques, lowering the mean square estimation
error drastically and achieving better classification. In the past, t:he desired output
patterns used for training have been of binary nature, using one for the class C the vector
belongs to, and zero for the other classes. This work will show that by training against
the columns of a Hadamard matrix, and then taking the inverse Hadamard transform of
the network output, we can obtain more accurate estimates.

The second change proposed in comparison with standard backpropagation networks
will be the use of redundant output nodes. In standard backpropagat:ion the number of
output nodes equals the number of different classes. In this thesis, it is shown that adding
redundant output nodes enables us to decrease the mean square error at the output
further, reaching better classification and lower mean square error rates than the Parzen
density estimator.

Comparisons between the statistical methods, the Parzen density estimation and
histogramming, the conventional neural network and the Hadamard transformed neural
network with redundant output nodes are given.

Further, the effects of the proposed changes to the backpropagation algorithm on the
convergence speed and the risk of getting stuck in a local minimum are: studied.

- 1 -

1. INTRODUCTION

It has been shown previously that neural networks whose learning is based on

minimizing the mean square error function at the output approximate the a posteriori

class probabilities P (c ~ ~ Xi) given the input vector Xi. [I], [2], [3], [4]. However, for

these approximations to be correct, a very large set of training data is required [3], and

the results are not significantly better than those of parametric estimation models. The

correct approximation of the a posteriori probabilities is of great interest for classification

problems. When the a posteriori probabilities are estimated correctl,y, we can give a

classification confidence, being the difference between the 2 classes with the highest

probability.

In order to distinguish between vectors and matrices on one side, and scalars on the

other, we use bold letters for matrices and vectors. For example, Oi or O(Xi) being the

vector containing the outputs for an input vector Xi. The output values of the output

nodes are the components of Oi. If we refer to probabilities, estimations etc. the bold

notation stands for the probability, estimation, etc. of each compon.ent. For example,

P(C I Xi) is a vector, where each component equals: P(Cj I Xi).

We choose to show the model both in matrix and scalar notation. The underlying

properties are more obvious in the scalar notation, while the matrix notation is more

useful for cases with many classes. At one place, section 2.4, the matrix notation has to

be dissolved into scalar notation. Otherwise it would have been iml~ossible to resolve

and simplify the problem.

1.1 Hadamard-Transformed Output Representations

We will refer to the 0-1 representation as the binary output representation in which

the desired output value is 1 at the output node for the class the input vector belongs to,

and the desired output values are zero at the other output nodes. The Hadamard-

transformed representation will be the product of the desired output vector D of length N

with a Hadamard matrix of size N.

When the 0-1 representation is used, the outputs directly estimate the a posteriori

probabilities. If a different binary output representation is used, i.e. 1 imd -1 instead of 0

and 1, the outputs have to be scaled and shifted to obtain the probability estimates.

However, the meaning of the output values remains the same [2]. If we do not use such a

binary representation (i.e. if we use other possible binary representations as in computers

or digital communications), then the output values no longer show the a posteriori

probabilities, and instead show the probability of the desired output of this node being

one [2].

Chapter 2 will show that the Hadamard-transformed output representations can

reduce the estimation error for the a posteriori probabilities significantly. First, a simple

theoretical model will be set up, with the assumption of an unbiased independent output

error. This will be explored experimentally, and a more detailed model, without

underlying assumptions, will be given. Extensive treatment of Hadamard matrices,

transformation etc. can be found in [5], [6].

1.3 Statistical Classifier versus Neural Networks

We will also compare these results with those of non parametric estimation models,

in particular Parzen density estimation [7], [8], and histogramming [8]. Histogramming

is probably the oldest known probability estimation technique. It is easy to apply, fast

and well investigated. The Parzen density estimation was developed much later. It can be

seen as a windowed average of all points within the kernel range of the estimator kernel

at one specific point. So far, for the 1 and 2 dimensional case, the Parzen density

estimation is the most accurate estimator. However, due to computing the kernel function

for all points, the computation can become excessive for high resoli~tions, and higher

dimensions. Both methods have the disadvantage, that the distributions generated during

training have to be stored in a lookup table.

Neural networks on the other hand, provide the desired probability values by forward

propagation of the testing vectors, hence by simple matrix multiplication. On the other

hand they require larger training times for 1 and 2 dimensional cases., and there results

have been inferior to those of Parzen density estimators.

We will compare the results of a binary neural network, a Hadamard-transformed

neural network, histogramming and the Parzen density estimation.

1.3 Redundant Nodes

Our previous findings, like in Chapter 2, suggest that the performance of the

Hadarnard-transformed neural network improves when the size of the Hadamard matrix

is increased. However, that would be equal to choosing a 16, or higher, class problem.

We will show that we do not have to increase the number of classes, but can simply add

zero-components to the binary vector of size F. We can then take the Hadamard-

transform and obtain only the first F columns of the Hadamard matrix iis desired outputs.

This chapter will show that the model set up in chapter 2 covers the: case of redundant

nodes as well. We will also investigate the limitations of zero - padding the binary output

response. As in Chapter 3, a comparison is given between Parzen density estimation and

the neural networks will be given, showing that with enough redundant output nodes, the

neural networks can actually perform better. The problems accompanying the increase in

network complexity are also investigated.

1.4 Convergence Issues

Neural networks learning can be seen as learning a function mapping F(X,D) between

the input vector set X and the desired output vector set D. Clearly, this input - output

mapping is effected by the choice of the output representation. In Chapter 5 we will

investigate the effects of both Hadamard-transforming and zero-padding the desired

output vectors. We will also pay some attention to initialization. This issue seems to have

lost some of its importance due to backpropagation algorithms with adaptive learning

rate, like used throughout this thesis.

- 5 -

2. HADAMARD-TRANSFOWIED OUTPUT REPRESENTATION

2.1 Introduction

This chapter provides a complete analysis of Hadamard-transformed output

representations to neural networks. We define the Hadamard-transformed output

representation to be given by

where D is the matrix of the different desired outputs. In our case, where the binary

output representation is used, D is the identity matrix of size N.

The Hadamard-transform is used in statistical design of experime:nts and in systems

such as optical spectrometers[5]. It reduces the variance of measurement errors by 1/N,

where N is the size of the Hadamard matrix. In such applications, the size of the

Hadamard matrix equals the number of measurements. Instead of measuring each

variable separately, different combinations determined by the Had.amard matrix are

measured. Then, the values of the variables are obtained using the inverse Hadamard-

transform.

During testing, the outputs of the network are inverse Hadamiud-transformed to

obtain the results equivalent to the 0-1 representation [9], [lo], [l l] . In this work, we

show that the Hadamard-transformed output representation in neural networks leads to

the same advantages as in statistical design of experiments. The Hadamard-transformed

output representation yields better classification results and a better approximation of the

a posteriori probabilities.

In section 2.2, we set up a simple model for the expected results of the Hadamard-

transformed neural network. In Section 2.3 we experimentally test the predictions of the

model set up. Section 2.4 provides modified model, which is confirmed by a second set

of experiments. In Section 2.6 we introduce a simple method to estimate the error

estimation results of a neural network without knowing the underlying distributions of

the training and testing data.

2.2 Theoretical Model of Hadamard-Transformed Networks

Hadamard matrices are orthogonal and consist of elements hij which are either 1 or -

1. The inverse of a Hadamard matrix can be obtained by transposing it and dividing it by

its size N. For symmetrical (or Sylvester form) Hadamard matrices, this reduces to

dividing the Hadamard matrix by its size N.

Let P(Cj I Xi) be the a posteriori probability of occurrence of class Cj given that the

A

input vector is Xi. Also let P (Cj 1 Xi) be the estimate of P(Cj I Xi). We assume that we

have trained the neural network with the Hadamard-transformed output Dh and then

computed the inverse Hadamard-transform. We then compare the error eji between the

estimated probability (Cj I Xi) and the true probability P(Cj I Xi):

The error vector eoi at the output nodes is defined by

eOi = O(Xi) - H P(C 1 Xi)

where P(C (Xi) is the true probability vector of Xi.

We will assume that the error components eOji are unbiased with different variances,

and the dependencies between the errors at the different nodes are small enough to be

neglected.

The square s2 of a matrix or vector S is defined as being obtained by squaring each

component of the vector or matrix S . Then, the following equations are obtained:

where SO is the covariance matrix at the output of the neural network. Its diagonals

contain oOj2 as components, while all other components are 0 due to independence. 0 is

the null vector. Equation (2.6) is results from the independence of the different training

vectors, while equation (2.7) results from the assumption of independence of the

different probabilities for each class for the same vector.

The output vector O(Xi) can be written as

O(Xi) = H P(C I Xi) + eoi

A

P (C I Xi) is obtained by inverting this equation:

A

P (C I Xi) = H-I O(Xi) = P(C I Xi) + ei

where ei is the estimation error. Its mean is given by

The covariance matrix of the estimation error after the inverse Hadamard-transform is

given by

Using H - ~ = H ~ / N and the independence of the components of eoi we obtain a

covariance matrix S with each diagonal element equal to:

We can drop all the non-quadratic terms due to independence of Cgi. The Hadarnard

matrix can be dropped as well, since its entries are 1 or -1, and all the remaining terms

are quadratic.

If we assume CJoij
2 = oO2, then equation (2.12) would simplifies to

with I as identity matrix of size N.

This result shows that the variance of the estimation error with the Hadamard

representation is N times smaller than for the 0-1 representation.

For example, with N = 4, this is the same as

where Pji equals P(Cj I Xi). Pji 'S are estimated by inverting Eq. (2.15):

Since E { eoji } = 0, we have

Using the independence of eli, its variance is given by

where olO2 is the error variance before the inverse Hadamard-transform. Now, if the

variances are the same for all nodes, 02 is given by

The other ~ (e ~ ~ ~ } are the same for all nodes. This follows from the independence of the

errors at the different nodes, so only the quadratic terms remain.

2.3 Experiments

We trained a two stage backpropagation network, using the mean square error as the

cost function. The tangent hyperbolic and linear activation function. were used at the

hidden layer and at the output layer, respectively. A linear activation function at the

output can produce slightly negative values if the class probability is very small, say

smaller than the error variance. However, using a logsig function here would produce a

biased estimation, especially for small probabilities close to 0 and events with large

probabilities close to 1. We trained 2 different networks, one with binary output

representation, the other one with Hadamard-transformed output representation.

2.3.1.The random variable generator

The problem the network was trained with was an 8 classes separation problem. The

classes were linearly nonseparable. Figure 1 shows the X-Y scatter of the data, and

Figure 2 shows the probability distribution P(X) in the 2 dimensional space. Each class

of training data was synthetically generated with the same Gaussian distribution, with

the covariance matrix S equal to the identity matrix. Each class has a different mean, as

shown in Figure 2.The data is then divided into parts. The two parts are then transformed

onto opposite sides of the circle center, in order to obtain the 2 opposing clusters of data.

The distribution function for one class Ci is given by

(2.20)

The data was generated with the same random variable generator, and scaled between 0

and 1.

In the 3 dimensional case, we simply added one more dimension, centered at 0.5. The

data then is shaped like a 3 dimensional ring.

X-Y Scatter Plot

Fig. 2.1 Input data clustering for the 2-D case

Fig. 2.2 Probability distribution of the input vectors

2.3.2 True a posteriori probabilities

The use of synthetic input data allows us to compute P(Cj I Xi) directly, using simply the

Bayesian rule:

P(Xi I Cj) is known, and P(Xi) is given by total probability as

Usually the a priori probability of each class is known. In the above case, P(Cj) equals

118, so we can compute the a posteriori probabilities, using equation (21):

2.3.3 Experimental results

We first ran a series of examples with 100 training vectors per class. For classification

problems with nonseparable classes, the mean and the sum squared error do not converge

to zero [I], [2], [3]. This results from the estimation of the a posteriori probabilities,

which are not necessarily close to the desired output values. Since the sum squared error

reaches high values, one cannot be sure whether a local or a global minimum is reached.

Hence, we have to use a different criterion to measure the training success of the neural

network. In our case, we decided to measure the number of correctly classified training

patterns every 50 sweeps to show the progress of learning. Figure 2:.3 shows a typical

learning curve.

- 14-

walnlna ascuracy 2 layer NN. e slaccac. non cap. . -- - hrdrmrrd wam>(ormed
I I

Fig. 2.3 Number of correctly classified training pattern

Tables 2.1, - 2.2 show the results for the variance of the estima1:ion error and the

mean of estimation error.

Table 2.1
Average variance of estimation error, 100 training vecl:ors

2 - dimensional input data, 1000 vectors for testing:

Table 2.2
Average mean of estimation error, 100 training vectors

2 - dimensional input data, 1000 vectors for testing

binary -0.00 193 0.00 2 13 0.00 165 -0.00 698
Hadamard -0.00 139 0.00 122 -0.00 377 0.00 094

binary -0.00 106 0.00 746 -0.00 336 -0.00 280
Hadamard 0.00 038 0.00 155 0.00 299 -0.00 637

binary 0.03 042 -0.02 309 -0.00 894 0.0 1 647
Hadamard 0.00 23 1 -0.00 428 0.00 069 -0.00 179

-0.00 078

-0.00 008

0.00 028

average Hadamard

The predicted results are not reached. However, the error variance and the mean square

error do reduce by approximately 30-40 %. Each node though achieves a different value.

Also, the mean error does not vanish. Figure 2.4 shows a detailed plot of the output error

distribution at each node. Apparently, the output error at the output of the Hadamard-

transformed network before taking the inverse Hadarnard-transform is larger than the

error at the output of the binary output.

Node 1

250 7

Node 3

Node 5

200 1

Node 7

Node 2

200 11

Node 4

Node 6

20° -7

Node 0

Fig. 2.4 (a) Error distribution at the output nodes for the binary output

representation

Node 1 Node 2

Node 9 Node 4

Node 5 Node 6

Node 7 Node 19

Fig. 2.4 (b) Error distribution at the output nodes before the inverse Hadamard-
transform

Fig. 2.4 (c) Output error distribution after the inverse Hadamard.-transform

2.3.4 Conclusions

Figure 2.5 shows the Hadamard-transformed network and the measurement points for the

2 different errors.

M e a s u r i n g e O i M e a s u r i n g e i

Fig. 2.5: The measured errors at different points

A

The probability P(C (Xi) was computed for each vector. The estimated P (C I Xi)

0 u t -
P u t

I n p u t
v e c t o r

was then compared with the correct one, and the error

-
N e u r a l I n v e r s e

N e t w o r k H a d a m a r d

was calculated. In the binary case, using 0 and 1 as desired outputs, the values of the

output nodes are the a posteriori probability estimations. The estimation error made then

equals eoi. Figure 2.4 (a) shows the sampled error distributions at the output nodes of the

binary output neural network.

For the binary network, the output error eoi is equal to the probability error ei since

the inverse Hadamard-transform is missing.

For the Hadamard-transformed output, we compared the calculated inverse

Hadamard-transform of the outputs, using equations (2.9) and (2.1 1):

P (C 1 Xi) = H-' O(Xi) - H - ~ eOi = ()(Xi) - ei (2.27)

- 22 -

ei = H-' O(Xi) - P(C I Xi)

The sampled error distributions of all eji are shown in Figure 2.4 (c)

We also Hadamard-transformed the computed a posteriori probabilities and compared

them directly with the neural network output (2.3):

eOi = O(Xi) - H P(C I Xi) (2.3)

However, O(Xi) now ranges from -1 to 1, so to obtain the error between the estimation

A

of the probability of the output at node j equaling one (P(oji=l IXi)) and the true

probability P(oji =1 I X), we have to scale [2] by 0.5 and shift by adding 0.5, giving us:

where P(Oi=l I X) can be obtained by

P(Oi=l I X) = 0.5 (H P(C I Xi) + 1) (2.30)

with P(C 1 Xi) being the computed a posteriori probability in our specific example.

This implies:

eoip is the probability estimation error at the output nodes of the Hadarnard-transformed

neural network and is shown in Figure 2.4 (b).

Assuming the relative error eOip to be of the same range as the output error of the

binary network we expect the mean to double and the variance to increase by a factor of

4 before taking the inverse Hadarnard-transform. The inverse Hadamard-transform uses

the absolute error at the output, which is two times the relative error. Hence we can only

expect a reduction of the variance by Nl4, in our example 50%.

The distributions of these errors are similar to those of the binary representation, and

but the variances are different. The variance for the output before the inverse Hadamard-

transform is higher than the variance of the binary network. This shows, that like in our

model, the reduction of the error variance is a result due to the inverse Hadamard-

transform of the output, and not of better learning done by the Hadamard-transformed

network..

2.4 Modification of the Model

The sampling of the density function of the error shows that one cannot really use the

approximation of a zero mean error over all vectors. The distributions are approximately

Gaussian. Also it is a rough approximation to assume the same variances for all output

nodes. One would have to include the mean error in a more detailed model, since it does

not totally vanish. It is usually higher for the Hadamard-transformed-output

representation.

The experimental results show that we cannot justify all the assumptions we made in

Section 2. Clearly, the limited sample size will produce a sample slightly different from

the original distribution. For each component, the sample expectation and its variance are

given by [12]:

where M is the sample size, ; the sample mean, ox2 the variance of the sample mean

and & is the variance of each component of the input data. In our case, the input data

consists of 8 independent classes, each of them with 2 different clusters. This gives us 16

clusters of vectors. Each cluster has a covariance matrix of dimension 2. The covariance

matrix for each cluster of our synthetic data is given by

where I is the identity matrix and 16 2 k.

Then, due to independence, the overall covariance matrix becomes [7]

where Sb is the in between scatter matrix , Sw is the within scatter matrix and L is the

total number of clusters, equal to 2 N. N is the number of different classes.

According to [7], the within cluster scatter matrix is defined by:

L
Swk = 2 P(C1uster k) E{(X-mk) (X-mk)'} I Cluster k}

k=l

with mk as the mean of each cluster. For our data, the cluster probabilit:~ equals

1 1
- -- - for all classes. This yields:
2N L

With L = 16 and Scluster = 11900 I, we obtain:

The in between class scatter is Sbk is defined by [7]

And, with the means used for our random data:

The overall covariance matrix then becomes:

We can now compute the standard deviation for each component. For the 100 vector case

we obtained a = 0.0181, for the 1000 vector case a = 0.00181. This suggests that we

have to expect some bias at the output as well, due to the limited sample mean.

The neural network is a highly nonlinear system. Hence, we cannot propagate the

sample mean through it and expect the output to equal the observed mean.

We will now drop the assumption of an unbiased error. Using a biased estimation

error and keeping up the assumption of independence, Equations (2.4) - (2.6) for the

expected error, the output error covariance matrix and the expectations of the product of

2 different vectors and 2 different components, all before taking the inverse Hadamard-

transform, become

Eq. (2.1 l), the mean error after the inverse Hadamard-transform then becomes

where 11Oj 'lom are the means of eOji respectively. Does our assumption of

independence hold? Assuming independence, but using the biased estimate, we obtain the

covariance matrix S after the inverse Hadamard-transform as

We are now interested in the variance for each output value after the inverse Hadarnard-

transform, since this is the important term for the accuracy of the probability density

estimation. In order to obtain the error variance of each output value explicitly, we will

use the scalar notation. We obtain with N = 4:

We will use a constant Kri for the respective product terms of each component now:

Now, if we take the expectation of the equations (2.47) we obtain

Squaring yields:

Similar to the term Kr for the product terms in Eq.(2.48), we use constant Ar for the

product terms now:

The expectations of equations (2.48) are:

Now, for independent errors ejk, E{Kr} equals A,

With E{Kr} = A, we obtain the variance of each output node as

Our experimental results obtained with the training set are not equal to the value obtained

with this formula, see Table 2.9.

Hence, we have to drop the assumption of independence of the error over the nodes

as well. We will still assume independence for the errors of different input vectors, since

the system has no memory. The new variance of the rth output value after the inverse

Hadamard-transform is given by

Since we no longer assume independence, the expectation of equations (2.48) becomes:

The correlation between two nodes is defined by

- 31 -

sOjk = E{ eOji eoki) - E{ eOji) E{ eoki)

This can be written as:

0 0 eOji eOki) = sojk+ q jq k

This yields

Using the previously defined constant A1 and defining a constant T1 for the sum of all

sOjk yields

And, similarly for the other components, we get

Now, using equations (2.57) and equations (2.56) with equation (2.53), we obtain

The average variance is the sum of the variances over all the output nodes.

N
Since Ti=O. , the average gain over all the output values after the inverse Hadamard-

transform, is given by

The or2 can also be obtained using the matrix notation. Taking the inverse Hadamard-

transform is a linear transform, where vector eoi is multiplied with H/N. According to

[7], and using the symmetry of the Hadamard matrix, we obtain:

where S is the covariance matrix after the inverse Hadamard-transform and SO is the

covariance matrix at the actual neural network output. Now in order to obtain the

elements on the diagonal, q.2 we would have to write Eq. (2.60) in component form,

which will then yield the same results as Eq. 2.59.

2.5 Experiments with the More Detailed Model

Our experimental results, shown in Table 2.3, agree with Eqs. (2.58) and (2.59). Eq.

2.59 shows the variance of each output node, pertinent to individual classes. Since the

dependency terms drop out, and the results for the average terms is similar to the case

with independence but nonzero means.

Table 2.3
Predicted variance vs. actual variance

1 nodes

average I?

binary Output at Hadamard Eq. (2.14) Eq. (2.46) Eq.
output node, eiO Output ei of Eq. (2.58)

nodes

1

8

average

binary

output

0.02 239

0.02 367

0.02 383

Output at

node, eiO

0.00 079

0.16 3 19

0.1 1 898

Hadamard

output ei

0.01 998

0.01 094

0.01 487

Eq. (2.14)

0.01 492

0.01 492

0.01 492

Eq. (2.46)

0.01 487

0.01 487

0.01 487

Eq. (2.58)

0.01 998

constant Tj

of Eq. (2.58)

0.00 51 1

0.01 094

0.01 487

-0.00 393

0.00 000

nodes tr
binary Output at Hadamard Eq. (2.14) Eq. (2.46) Eq.

Output node, eiO output ei of Eq. (2.58)

nodes IT

1 average

binary Output at Hadarnard Eq. (2.14) Eq. (2.46) ~ q . (2.58) constant Tj
Output node, eiO Output ei of Eq. (2.58)

0.05 230 0.00 079 0.03 267 0.02 873 0.02 753 0.03 267 0.00 514

1 nodes

sample 5

average

nodes

1
2
3
4
5
6
7
8

average

lbinary loutput at I~adamard I E ~ . (2.14) I E ~ . (2.46) I E ~ . (2.58) Iconstant Tj I
Output node, eiO Output ei of Eq. (2.58)

0.03 573 0.00 034 0.03 298 0.02 678 0.02 677 0.03 298 0.00 620

sam~le 6

binary

Output

0.03 947

0.04 480
0.02 825
0.04 11 1
0.04 272
0.03 249
0.03 583
0.03 280

0.03 7 18

average variance over all samples

2.6 Conclusions

In comparison to the 0-1 representation network our gain is only 30-45 %. Both

networks learn towards a similar probability error. The Hadamard representation is

shifted and scaled compared to the probability error. The error equals the probability

error scaled by 2. Due to that, the mean of the error doubles, and the variance has to be

Output at

node, eiO

0.00 039

0.69 640
0.14 963
0.12 975
0.08 617
0.26 044
0.10 940
0.32 056

0.2 1 909

Hadamard

output ei

0.02 779

0.02 691
0.02 8 13
0.02 663
0.02 916
0.02 266
0.02 412
0.03 368

0.02 739

Eq. (2.14)

0.02 740

0.02 740
0.02 740
0.02 740
0.02 740
0.02 740
0.02 740
0.02 740

0.02 740

Eq. (2.46)

0.02 739

0.02 739
0.02 739
0.02 739
0.02 739
0.02 739
0.02 739
0.02 739

0.02 739

Eq. (2.58)

0.02 691
0.02 81 3
0.02 663

constant Tj

of Eq. (2.58)

0.02-

-0.00 048
0.00 074

-0.00 076
0.02
0.02
0.02
0.03

0.02

multiplied by a factor of 4. However, taking the inverse Hadamard-transform reduces the

average variance by 1/N. For our experimental results N = 8, a maximum reduction of 50

% of the error variance can be expected.

One can expect that for problems with more classes than 8, the variance reduction

gain will be larger, i.e. a reduction by 75 % for a 16 class problem.

Our experiments do not reach 50 %. Hadamard-transformed outputs force the output

neurons to learn several decision borders, since the output has to be 1 for Nl2 classes and

-1 for the other N12 classes. This explains why we usually reach only 30-45 % reduction.

On the other hand, the experimental mean error did not double like expected but only

increased about 30 - 45 % .

2.7 Error Estimation of the Classifier without known A Posteriori Probabilities

2.7.1 Sum of all output values

The output of the binary network and the Hadamard-transformed network both

estimate the a posteriori probabilities. So far, we could compute the etstimation error of

each input vector Xi, since we knew the underlying data distributions. The input data

always belongs to one of the classes. Then, since we estimate the :probability of the

vector belonging to each of the possible 8 classes, the sum over all output values has to

sum up to one.

Now, one measure for the accuracy of the density estimation will be if our probability

estimates will sum up to 1 or not. Figure 2.6 will show two samples, where, for 80

testing vectors, we show the overall output value.

Sum of all probabiHas, dashed : Hadamard

Sum of all probabillies, dashed : Hadamard

Fig. 2.6 Summation over all output nodes

dotted : binary network

dashed : Hadamard-transformed network

1 .25

1 .2

1.15-

1.1

I I I I I I I

-

i
.'. . a

. . , -
. a I ' . : (. . -. . '
I '

. . I . . . a '.
, . *'. : I . ' I . . I - :

1 . 0 5- , : 8
8. - . .. I I

0.95 -
. , - . . . , -

., .I ,. , . I _ I' . , ! . . .
0.9 - . 4 ' , . . - . ,

.,! ,
0.05 - -

Clearly, the sum over all output nodes for the Hadamard-transformed neural network is

much closer to 1, and oscillates less. Hence, the probability estimation is better.

2.7.2 Estimation of the mean of the output error

A short calculation will show that even without knowing the a posteriori probabilities

of our testing set we can still obtain sum measurement for the mean estimation error. Let

us first consider the output of the neural network to be the exact a posteriori probability.

Then by taking the expectation over all testing vectors, we obtain:

Hence, for an ideal neural network estimator, we obtain the probability of the class P(Cj)

as expectation for the output node j. For a non-ideal neural network estimator, Equation

(2.61) one changes to:

This gives

where P(C,) is the known probability of class j and the estimation is computed from the

output of the neural network. If P(Cj) is not known, we are not able to estimate each

N
mean separately. However, we can estimate E{ C 5). Taking the expectation of the

j= 1

sum of all equations (2.63), we obtain:

Summing over all the output nodes yields

Table 2.4 compares the predicted mean error with the actual mean error for the 100

vector case.

Table 2.4
Approximated average mean error versus real mean error

3. COMPARISON BETWEEN STATISTICAL METHODS AND

NEURAL NETWORKS

3.1 Introduction

There exist two major statistical non parametric probability density estimation techniques

- histogramming and Parzen density estimation. Histogramming is probably the easiest,

but the Parzen density estimation is more accurate. In this chapter, we will first introduce

the two methods and provide the approximations formulas for adjusting the respective

parameters. When we refer to nonparametric density estimator this means that, instead of

assuming a certain distribution and estimating its parameters like variance, mean etc., we

estimate the whole function numerically and generate a lookup table in which we store

the estimated distributions. There are no assumptions made of the underlying probability.

In Section 3.4, we compare the results achieved by the binary neural network, the

Hadamard-transformed neural network, histogramming and the Parzen Density

estimation. Also, training times, testing times and memory needs of the different

algorithms are investigated. Section 3.5 provides the conclusions.

3.2 Histogramming

Histogramming is the oldest known method for probability density estimation. Classical

histograms consist of nonoverlapping intervals, the bins. The density function of the

histogram is then obtained by dividing the number of points fallen in one bin by the total

number of points. The actual probability mass is then the product of the binwidth with

the binvalue.

The problem of the appropriate binwidth selection is treated well in [8]. Clearly, if

we choose the binwidth to be large, we get only a very rough approximation of the

density function. Small features will be oversmoothed. On the other hand, for a small

binwidth, we will obtain arbitrary oscillations in regions with few points. The problem of

binwidth selection is equal to the problem of the number of bins to use, since the binwith

for the classical histogram used here is Ifnumber of bins.

[8] derives the following formula for the optimal number of bins for each dimension,

which minimizes the asymptotic mean integral square error, AMISE:

number of bins = (3.1)

A histogram using this formula, where M is the total number of vectors, should be

optimally smoothed.

3.3 Parzen Density Estimation

In the Parzen density estimation, the estimate at one point is obtained not by simply

counting the number of points but by averaging over the neighboring points as well. The

value at one point is obtained from the kernel function of the region

where K is the Kernel function and h is the smoothing parameter. L. is the number of

points within the Kernel. In our case, we used normal Kernel, which has infinite support.

Hence L equals the total number of vectors M of the training set. There have been

proposed many different Kernel function, like a uniform normal, triangular or a

combination of several functions [7] , [8]. In this section, we will restrict to a normal

Kernel with variance equal to one 181. For the one dimensional case, an optimal kernel

can be derived. For higher dimensions, where a product Kernel is used, we can only

estimate an optimal hi for each dimension i. For the normal Kernel used in our

experiments, an approximation formula minimizing the AMISE is given by

A

M is the training sample size and d is the number of dimensions [Scott 921. oj is the

estimated standard deviation of the training data. It is estimated from the sample by

computing the following for each dimension of the input data:

If we cannot assume an underlying distribution, it will become very difficult to derive an

estimation formula from the AMISE. Heuristic approaches are equally different, since

the underlying distributions are not known. As an illustration we applied the Parzen

density estimation with several different smoothing parameters h to the data used in

Chapter 2.3. The resulting P(X) is shown in Figure 3.1.

Parzen Density wilh h= i Parzen Density with h=0.9

Parzen Density with h=O.i Parzen Density wilh h=0.01

5 , 0.B .,

Fig. 3.1. Estimation of P(X), using the Parzen method with different smoothing

parameters.

3.4 Experiments

We first ran a series of examples with 1000 training vectors per class. We then reduced

the size of the training set to 100 vectors per class for a second set of simulations. The

results for classification and probability estimation with the present method were studied

comparatively with the methods of histogramming and the Parzen density estimation.

In a second set of experiments, we used 3-dimensional data as input with 300 vectors

per class as data set. We had to increase the number of training sweeps from 1000 to

3000, and the number of hidden neurons from 15 to 25, since the data was more

complicated.

Since there are quite a lot of bins in the histogram where no vectors occurred during

the estimation, we set them to -1 and counted every testing vector falling in such bins as

misclassified. We excluded those vectors for the calculation of the mean error and the

variance of the estimation, since we could not assign a specific error to them. Those

regions would be very large in the 3-D case. Hence we restricted histogramming to the 2

- D case.

In the 2 and dimensional case we obtained nopt = 676 bins for the 1000 vector case.

Tables 1, 2 and 3 show the achieved classification, the mean error and the variances for

the 2-D case, respectively. The results are shown for 3 different histograms, with 100

bins, nopt and 2500 bins.

The histogramming method performed the worst in classification, especially when

using the small data set for density estimation. The neural networks performed better

than the histograrnming method, especially if we use the smaller training set of 100

vectors per class. In this case, histogramming is useless, since the distribution is sampled

inaccurately, and there are not enough samples in the regions of low probability to

sample them accurately. The Parzen method performed better then histogramming, but it

did not reach the classification performance of the Hadamard-transformed neural

network. For the average probability estimation performance, the Parzen method with

hopt performs the best, yielding a smaller bias and a much smaller mean variance than

the neural networks. The Parzen density estimations though depend hlghly on the choice

of the smoothing parameter h. For a non-optimal h, it yields results inferior to those of

the neural network.

The result of a better classification despite a higher estimation error may be related to

the fact that neural networks approximate the decision boundaries continuously, whereas

for the statistical methods we had to use the method of bilinear interpolation. Another

reason is that the mean is more influenced by a small number of vectors which are

misclassified with a huge error than by small errors. However, when the small errors are

made in regions of high vector density and near a decision boundary, the classification

performance is affected quite strongly. So, the regions where the errors occur becomes

equally important to the error itself. The region of error does not influence the mean

error or the mean variance.

Neural networks using the mean square error as error function do not approximate the

a posteriori probabilities in regions with low probability well either [3]. If there is special

interest in those regions, one can use importance sampling [13].

In the 3-dimensional case, the estimation errors of the Parzen density with hopt and

the Hadarnard-transformed neural network perform approximately equally, as shown in

Tables 3.1,3.4 and 3.5.

Table 3.1 (a)
Correct testing classification, using 100 vectors for training

Table 3.1 (b)
Correct testing classification, using 1000 vectors for training

2-dimensional input data

Table 3.1 (c)
Correct testing classification, using 300 vectors for training

3-dimensional input data

6
93.79%
94.60%
7 1.33%
92.56%

92.53%
67.86%

sample no,
binary repr.

Hadamard repr.
Parzen density h = 1
Parzen density h = hopt

Parzen density h = 0.0 1
Histogram 100 bins
Histogram 676 bins
Histogram 2500 bins
max. possible class.

sample no,
binary repr.

Hadamard repr.
Parzen density h = 1
Parzen density h = hopt

Parzen density h = 0.0 1
max. possible class.

1
93.04%
94.50%
62.85%
91.90%

91.68%
68.19%

3
92.45%
92.50%
72.29%
92.40%

92.23%
66.89%

2
92.76%

90.90%
72.39%
91.99%

91.91%
67.04%

6
88.00%
90.83%

94.70%

1
87.60%
91.89%
67.12%
8 1.86%

90.80%
95.30%

4
88.90%
93.14%

95.00%

88.84%
92.73%
95.20%

5
90.80%
92.83%

94.30%

88.30%
92.94%
95.05%

4
93.06%
94.60%
67.10%
92.48%

92.43%
67.29%

88.55%
92.48%
94.91%

2
84.20%
90.75%

94.90%

87.84%
92.93%
94.96%

5
93.80%

94.20%
70.91%
91.99%

91.83%
66.95%

3
89.40%
90.96%

94.50%

Table 3.2 (a)
Mean of the estimation error for the 100 vector case

sarn~le 1
binary Hadam. Parzen Parzen Parzen histogr . histogr. histogr. 1 nodell output 1 output 1 h = 1 1 h = hODt 1 h = 0.01 1 100 bins 676 bins 2500 b. 1

1 8 1 0.03 0561-0.00 226 0.00 002 0.00 3941 0.00 5821 0.12 762) 0.1 1 9371 0.35 5611

sample 2
I lbinary I~adam. l~arzen IParzen l~arzen 1 histogr. I histogr. I histogr. I
nodes1 output I output 1 h = 1 I h = hopt I h=0.01 ll00bins 1676bins 12500b.

nodes output output h = 1 h = hOpt h = 0.01

1 -0.01 091 -0.00 599 -0.00 029 -0.00 339 -0.00 463

sample 4
1binar-y laadam. l~arzen l~arzen l~arzen ihistogr. Ihistogr. Ihistogr. 1

nodes1 output I output 1 h = 1 I h = hopt I h = 0.01 1100 bins 1676 bins 12500 b.

sample 5

nodes

1

average mean

sample 6

binary
output

0.00 688

nodes

1
2
3
4
5
6
7
8

Hadam.
output

0.01 229

histogr.
2500 b.

0.35 974
0.36 549
0.37 204
0.36 660
0.35 849
0.36 663
0.36 289
0.35 645

binary
output

0.00 688
-0.00 379
-0.00 888
0.00 386
0.00 384

-0.00 292
-0.00 259
0.00 349

Parzen
h = 1

-0.00 133

Hadam.
output

-0.00 297
0.00 306

-0.00 15 1
-0.00 024
0.00 517

-0.00 305
0.00 033

-0.00 035

Parzen

h = hopt
-0.00 112

Parzen
h = l

0.00 068
-0.00 023
-0.00 205
-0.00 032
0.00 226

-0.00 022
-0.00 017
0.00 005

Parzen
h = 0.01

-0.00 228

Parzen

h = hopt
-0.00 161
-0.00 095
0.00 128
0.00 11 1
0.00 217

-0.00 175
-0.00 090
0.00 066

histogr.
100 bins

0.14 138

Parzen
h = 0.0 1

-0.00 093
-0.00 25 1
0.00 276

-0.00 076
0.00 194

-0.00 078
0.00 113

-0.00 085

histogr.
676 bins

0.10 902

histogr.
2500 b.

0.37 293

histogr.
100 bins

0.12 156
0.17 434
0.14 546
0.18 123
0.12 968
0.15 547
0.15 469
0.15 568

histogr.
676 bins

0.05 961
0.10 840
0.1 1 048
0.10 148
0.06 770
0.09 912
0.08 930
0.09 568

Table3.2 (b)
Mean of the estimation error for the 1000 vector case

2 - dimensional input data
sample 1

nodes1 output 1 output 1 h = 1 I h = hopt I h = 0.01 1100 bins 1676 bins 12500 b.

1 node

~ p l e 2
binary Hadarn. Parzen Parzen Parzen histogr. histogr. histogr.
output output h = 1 h = hopt h = 0.01 100 bins 676 bins 2500 b.

0.00 033 0.00 282 0.00 127 0.00 112 0.00 125 0.03 272 0.01 778 0.02 782

sample 3

output output h = 1 I h = hopr I h = 0.01 1 100 bins 1676 bins 12500 b.

sample 4

nodes

1
2
3
4
5
6
7
8

histogr.
100 bins

0.03 194
0.06 688
0.06 333
0.06 630
0.02 659
0.06 771
0.06 042
0.06 704

binary
output

0.00 015
-0.00 091
-0.00 005
-0.00 029
0.00 043

-0.00 009
0.00 050
0.00 026

histogr.
676 bins

0.01 401
0.01 204
0.01 61 8
0.01 244
0.01 340
0.01 701
0.01 604
0.01 722

histogr.
2500 b.

0.02 385
0.02 372
0.02 577
0.02 299
0.02 472
0.02 466
0.02 457
0.02 450

Hadam.
output

0.00 200
-0.00 285
0.00 00 1
0.00 096

-0.00 095
-0.00 014
0.00 136

-0.00 043

Parzen
h = 1

0.00 101
-0.00 040
-0.00 08 1
0.00 08 1
0.00 042
0.00 033

-0.00 051
-0.00 085

Parzen

h = hopt
0.00 030

-0.00 060
-0.00 076
0.00 08 1
0.00 001

-0.00 023
0.00 108

-0.00 061

Parzen
h = 0.01

0.00 01 1
-0.00 016
-0.00 10 1
0.00 079
0.00 009

-0.00 028
0.00 112

-0.00 066

sample 5

nodes
binary Hadam. Parzen Parzen Parzen histogr. histogr. histogr.

h = hOnt h = 0.01 100 bins 676 bins 2500 b. output 1 output 1 h = 1 1 1 1 1 1 1

sample 6

1 node
binary Hadam. Parzen Parzen Parzen histogr. histogr. histogr.
output 1 output 1 h = 1 1 h = hODt 1 h = 0.01 1 100 bins 1 676 bins 1 2500 b. 1

average mean

nodes

.T

average
I vari ana

Table 3.3 (a)
Variance of the estimation error for 1000 training vectors

1 nodes

1

average F

binary
output

0.02 842

0.02 454

1 variance

binary 1 ad am. l~arzen l~arzen l~arzen ihistogr. I histogr. (histogr.
output I output I h = 1 I h = hopt I h = 0.01 1 LOO bins 1676 bins 12500 b.

Hadam.
output

0.00 684
0.01 547

Parzen
h = 0.01

0.00 729

0.00 562

Parzen
h = 1

0.09 901
0.10 006

histogr.
100 bins

0.09 685
0.10 08 1

Parzen

h = hopt
0.00 666

0.00 5 18

histogr.
676 bins

0.02 207

0.02 390

histogr.
2500 b.

0.02 119
0.02 372

sample 3

7 0.01 390 0.01 55 1 0.09 930 0.00 765 0.00 8 14 0.06 501
8 0.01 869 0.01 569 0.10 023 0.00 620 0.00 642 0.10 08 1

average
variance 0.02 384 0.02 210 0.09 977 0.00 5 13 0.00 538 0.08 889 0.02 153 0.02 371

nodes

1

output

0.01 890

sample 4

6
7
8

average
variance

output

0.00 782

nodes

0.05 305
0.03 583
0.03 400

0.03 806

h = 1

0.09 960

binary
output

Parzen

h = h,,+

histogr.
100 bins

Parzen
h = 0.01

0.00 720
0.01 122
0.00 712

0.00 857

h = hopt
0.00 457

Hadam.
output

histogr.
676 bins

Parzen
h = 1

0.09 996
0.09 919
0.09 860

0.09 969

h = 0.01

0.00 457

histogr.
2500 b.

0.00 621
0.00 757
0.00 696

0.00 5 10

100 bins

0.09 096

0.00 629
0.00 754
0.00 696

0.00 5 19

676 bins

0.02 238

2500 b.

0.02 298

0.09 922
0.06 900
0.09 239

0.08 967

0.02 403
0.02 448
0.02 434

0.02 407

0.02 466
0.02 457
0.02 450

0.02 435

lbinary ada am. 1 ~arzen Parzen l~arzen 1 histogr. 1 histogr. I histogr. I
nodes 1 output 1 output I h = 1 I h = hOnt I h = 0.01 1 100 bins 1676 bins 12500 b. I

sample 6

average variance over all samples
10.03 0561 0.01 4891 0.09 9761 0.00 5281 0.00 5511 0.08 8261 0.02 2901 0.02 5001

8

average
variance

0.03 528

0.03 185

0.01 323

0.01 3 12

0.09 987

0.09 960

0.00 677

0.00 545

0.00 709

0.00 567

0.08 462

0.08 44 1

0.01 920

0.02 076

0.02 855

0.02 597

Table 3.3 (b)
Variance of the estimation error for the 100 vectors case

sample 1

I nodes

1 variance

sample :

nodes IT

1 varianct

binary I ~ a d a m . l~arzen l~arzen l~arzen 1 histog-. I histog. I histog. I
output I output 1 h = 1 I h = hopt I h = 0.0 1 1 100 bins 1676 bins 12500 b.

binary I ~ a d a m . l~arzen l~arzen l~arzen lhistogr. Ihistogr. Ihistogr. I
output (output I h = 1 I h = hopt I h = 0.01 1100 bins 1676 bins 12500 b.

sample 3

sample 4

nodes

average P
1 variance

binary Hadam. Parzen Parzen Parzen histogr. histogr. histogr.
output output h = 1 h = hOpt h = 0.01 100 bins 676 bins 2500 b.

0.05 230 0.0 1 324 0.00 66 1 0.00 576 0.10 033 0.13 903 0.1 1 250 0.17 665

8 0.03 280 0.03 209 0.00 923 0.00 663

average
variance 0.03 7 18 0.0 1 622 0.00 703 0.00 536

sample 5

nodes

IT

nodes

average P

histogr.
676 bins

binary
output

1 0.03 2001 0.01 9531 0.00 891 1 0.00 6951 0.09 9921 0.15 2621 0.1 1 3261 0.17 1051
average variance over all samples

binary
output

histogr.
2500 b.

Hadam.
output

Hadam.
output

Parzen
h = 1

Parzen
h = 1

Parzen

h = hopt

Parzen
h = 0.01

Parzen

h = hoDt

histogr.
100 bins

Parzen
h = 0.01

histogr.
100 bins

histogr.
676 bins

histogr.
2500 b.

Table 3.4
Mean of the estimation error for the 300 vector case

nodes

15 hidden neurons 25 hidden neurons
binary I Hadam. lbinary I Hadam. 1 Parzen l~arzen 1 Parzen
output output output output h = 1 h = hopt h = 0.01

-0.00 284 0.00 099 -0.00 621 0.00 1 16 -0.00 049 0.00 3 16 -0.00 289

I nodes 1 output I output I output I output I

average absolute errors over all samples:
1 3.17~-061 1.17~-051 3.7 1E-051 3.50~-0513.12~-1114.57~-041 -1.258-061

Table 3.5

Variance of the estimation error for 300 training vectors,
3-dimensional input data

sample 1 15 hidden neurons 25 hidden neurons

1 nodes

average F= 1 variance

binary Hadamard binary Hadamard Parzen Parzen Parzen
output output output output h = 1 h = hopt h = 0.01

0.05 674 0.04 847 0.04 293 0.01 686 0.09 970 0.02 300 0.00 690

sam le 2

nodes output output output output

0.04 847 0.02 089 0.05 528 0.01 890

average variance over all samples
1 0.04 9681 0.02 6301 0.05 0601 0.02 5451 0.09 9801 0.02 4611 0.00 7791

In the Parzen case, store the distribution in a 50 by 50 by 50 lockup table took a lot of

memory, about 7.75 MI3 for each class. In contrast, the weights and biases of the neural

network can be stored in 150 kb. The training time for the Parzen density estimation for

the 3-D case was 32 hours. Hence we restricted it to one sample. The training times for

the neural network were smaller as well, and the time needed to compute the probability

of an input vector during testing was about 2 times smaller than that of the Parzen

density estimation. These experimental results are shown in Tables 3.6-3.8.

Table 3.6
Memory needed to store the weights

Table 3.7 (a)
Training times, using 100 vectors for training

neural network
parzen density

Table 3.7 (b)
Training times, using 1000 vectors for training

2-dimensional input data

2-D case

8.44 kb
939 kb

sample no.

binary repr.
Hadamard repr.
Parzen density

3-D case
15 hidden neurons

11.7 kb

5

191
190
36

3-D case
24 hidden neurons

19.7 kb

1

189

192
3 6

45 700 kb

6

190
193
3 6

6
3 750
3740

225

average

190
190
3 6

2

194

190
36

average
3 768
3731

224

3
3 766
3 618

222

2
3 914
3 743

226

sample no,
binary repr.

Hadamard repr.
Parzen density

1
3733
3 734

22 1

3

189
190
3 6

4
3 556
3636

232

4

188
188
3 6

5
3 890
3917

217

Table 3.7 (c)
Training time for the classification 300 vectors for training

3-dimensional input data

Apparently, CPU time is not equivalent to real time. The time needed to compute the

sample no,

binary repr, 15
hidden nodes

Hadamard repr. 15
hid. nod.

binary repr. 25
hidden nodes

Hadamard repr. 25
hid. nod.

Parzen density

Parzen density estimate was 32 hours, compared to 5 hours for the slowest neural

network.

1

2 200

2 190

3414

3 422

3 634

Table 3.8 (a)
Testing time using 1000 vectors

2-D

2

2 240

2 250

3 419

3 427

Table 3.8 (c)
Testing time using 1000 vectors

3-D

sample no.

binary repr.
Hadamard repr .
Parzen density

3

2 190

2 190

3 431

3 480

1

99
94

228

4

2200

2210

3 397

3 378

2

96
94

228

5
103
103
156
109

sample no,
binary repr. 15 hidden no.
Hadamard repr. 15 hidd. no.
binary repr. 25 hidden no.
Hadamard repr. 25 hidd. no.
Parzen density

2
104
101
117
105

1
105
103
109
102
670

average

2 195

2 207

3416

3 421

5

2 180

2 190

3419

3 439

3

109
93

226

6
104
104
153
107

--- -1

6

2 160

2210

3416

3 382

average
105
103
139
106
670

3
106
104
137
103

4

94
94

225

4
107
105
161
108

5

95
94

226

6

93
93

228

average

98
93

227

3.5 Conclusions

We have introduced a new output representation, which reduces the variance of the

estimation error by up to 50 % for an 8 class problem. We have then compared the

performance of the neural networks to the performance of mathematical classifiers. Our

research shows that already for the 3 dimensional case the neural networks become much

faster, while yielding estimation results similar to those of the Parzen density estimation.

The neural networks need less memory, and, for the 3 dimensional case, perform faster in

both training and testing. The biggest advantage of the neural network is the complete

absence of assumptions of the underlying data. For the Parzen density estimation, one has

to adjust the smoothing parameter correctly. The existing formula for the estimation of

an optimal smoothing parameter assumes an underlying distribution and depends on the

estimated variance of the training set.

- 65 -

4. ADDITION OF REDUNDANT HIDDEN NODES

4.1 Introduction

The model we set up in Chapter 2 shows a decrease of the error variance by 1/N for the

Hadamard-transformed output representation. N is the number of output nodes, which

was equal to the number of classes in Chapter 2. This suggests that, by increasing the

number of output nodes, and consequently, the size of the Hadamard matrix, we can

decrease the variance further.

In order to increase the number of output nodes, we added components with zero

value for all input classes to the desired outputs. We will refer to this new binary output

vectors as zero padded vectors. The output nodes which are trained against the

components of the desired vectors equaling zero for all input classes will be referred to as

redundant nodes. They are referred to by redundant nodes, since their values have no

direct effect on classification. They values will be discarded during testing.

When taking the Hadamard-transform of these vectors, we obtain new desired output

vectors which equal the first rows of the Hadamard matrix. These new Hadamard-

transformed outputs will have no constant component except the first one. Hence the

learning with these vectors will be simply completed like learning a Hadamard-

transformed representation of a problem with a number of different classes.

The effect of increasing the size of the Hadamard matrix might be opposed by an

increase of the error at the output nodes, before taking the inverse Hadamard-transform.

We show in Section 4.2 that the model of Chapter 2 can be used for neural networks

with redundant output nodes as well. Section 4.3 contains the experiments with

redundant nodes. We show that for small and medium amounts of redundant nodes we do

not encounter significant increases in the error at the output. Hence, the performance

improves drastically. As in Chapter 3, we compare the results to those of statistical

density estimators. Section 4.4 contains the discussion. In Section 4.5 we apply these

techniques to the 3-dimensional case. Section 4.6 is conclusions.

4.2 Theoretical Treatment of Redundant Nodes

In Chapter 2, we have shown that by using the inverse Hadamard-transform, we can

decrease the output error by 1/N. We assumed the number of classes to be equal to the

matrix size N of the Hadamard matrix.

Introducing redundant nodes can be seen as zero padding of the desired output

vectors. For example, desired output vectors for a two class problem, which is zero

padded to size 4, are given by

Using equation (2. I), we get:

Thus, Dh simply becomes the first two columns of the Hadamard matrix of size 4. We

now train the neural network with the first column as desired output for class 1 and the

second column as desired output for class 2. In Chapter 2, we have explained that the

output of the network then learns the probability of the desired output component j of

the desired output Dh equaling 1. Of course, to obtain that actual probability, we would

have to shift and scale the actual output. This property of the neural network is not

changed by using only the first 2 columns as desired output vectors.

As in Chapter 2 the actual output is given by

Hence we can solve equation (4.3) to obtain the probability estimates. Using H-l = WN,

we obtain:

A

Since H is a square matrix of size N, and Oi is a vector of length N, P (C I Xi)

is a vector of length N. We can truncate all output values with j>(N-M). The first N-M

components contain the a posteriori probabilities of the (N-M) classes we have.

Now we will investigate if using only the first N-M columns of the Hadarnard matrix

for training affects the model variance set up in Chapter 2. We have shown, that for the

average variance reduction, we can use our simple model set up in Section 2.2. Using the

assumptions (2.4)-(2.7), Equation (2.12) is still given by

Using Hml = H ~ / N and the independence of the components of eoi we obtain the average

variance to be

Like we have shown at the beginning of this section, H-1 is not affected by using only

the first N-M columns for training. Also, the error at the output nodes before the inverse

Hadamard-transform still minimizes the error of that node equaling 1. Hence the gain in

variance is not affected by the number of different output patterns used for training.

This result enables us to add redundant nodes and expect a reduction of the variance

by the size N of the zero padded desired outputs. Clearly N still has to be 2k since

Hadamard matrices only exist for 2k, where k is an integer. However, since we no longer

use all columns of H, we can now use any number L<N of the columns of H as desired

output. This means, we are no longer restricted to problems with 2k classes.

By adding redundant nodes, we increase the network complexity. This might lead to

an increase of the output error before the inverse Hadamard-transform. We now

experimentally test if the output error increases, and if the addition of redundant notes

yields the theoretical benefits. The results are discussed in the next section.

4.3 Experiments with the Redundant Nodes and Comparison with the Statistical

Methods

We used the same artificially generated 2 dimensional 100 vector training set used in

Chapter 2. The same 1000 vector testing set like in Chapter 2 was used as well. Only the

testing results are shown, since there is limited interest in training values. We restricted

to the use of the. For comparison, we always trained a binary output and a Hadamard-

transformed output network. We show the results for 0, 8, 24 and 56 redundant nodes,

giving a total of 8, 16, 32 and 64 output nodes, respectively. For the 24 redundant node

case we, trained networks with 25 and 45 hidden nodes. For the 56 redundant node case,

we trained one network with 45 hidden nodes and one with 75 hidden nodes. We

increased the number of hidden neurons, since the redundant nodes increase the

complexity of the output. Like before, we computed the variance, mean square and the

mean of the estimation error. In this section, we will only show the average testing

results for each sample, and the average over all samples. For comparison, we included

the results of the best statistical method, namely the Parzen density estimation with

estimated optimal smoothing parameter hOpt In Table 1 we also included the optimal

Bayesian classifier, giving the maximal possible performance. Tables 2 through 4 will

show the variance of the estimation error, the mean square error and the mean error,

respectively. Figures 4.1 and 4.2 display how the classification accuracy increases the

mean square error decreases, as the number of hidden and output nodes increases.

Table 4.1
Classification percentage 100 vectors as training set
2 - dimensional input data, 1000 vectors for testing

100 vectors

no redundant nodes, 15 hidden nodes

sample # 1

binary output
Hadamard output

24 redundant nodes, 25 hidden nodes

8 redundant nodes, 25 hidden nodes

2

9 1.20%
92.30%

94.00%
94.74%

binary output
Hadamard ou t~ut

binary output
Hadamard output

3

93.50%
94.10%

binary output
Hadamard output

9 1.70%
94.14%

24 redundant nodes, 45 hidden nodes

89.50%
93.90%

58 redundant nodes, 75 hidden nodes

4

90.40%
92.30%

92.68%
94.25%

93.00%
94.03%

93.20%
94.50%

58 redundant nodes, 45 hidden nodes

9 1.50%

94.92%

5

87.40%
91.10%

93.71%
94.64%

91.70%
94.60%

binary output
Hadamard output

90.60%
92.80%

92.90%
93.85%

93.60%
94.10%

91.20%
95.04%

binary output
Hadamard output

92.60%
94.52%

92.80%
94.40%

92.10%

95.10%

Parzen density hop(

maximal possible
classification

6

93.20%
94.25%

92.64%
93.99%

93.00%
94.10%

90.90%

95.11%

9 1.80%

94.99%

9 1.50%

94.63%

average

93.70%
94.90%

91.90%
94.24%

92.80%
94.60%

93.00%
94.50%

91.78%
94.59%

92.30%
94.90%

9 1.00%

94.86%

93.60%
94.50%

92.13%
94.59%

91.50%
94.8 1 %

9 1.70%

94.84%

92.70%
94.70%

91.50%
94.44%

92.72%
94.43%

91.60%
94.68%

Fig. 4.1 Classification vs. number of outputhidden nodes
dotted: maximum possible classification
dashed: Hadamard-transformed network

solid: binary network

Table 4.2
Average variance of estimation error, 100 training vectors

2 - dimensional input data, 1000 vectors for testing
100 vectors

no redundant nodes, 15 hidden nodes
binary 1 0.02 6901 0.02 3801 0.03 5001 0.04 440 0.03 7201 0.03 2001 0.03 3221

sample #

1 Hadamard 1 0.02 0401 0.01 4901 0.01 9701 0.02 7501 0.02 740) 0.02 6801 0.02 2781
8 redundant nodes, 25 hidden nodes

1

24 redundant nodes, 25 hidden nodes
binary 1 0.03 5401 0.01 9601 0.02 1701 0.02 5001 0.02 5301 0.02 440) 0.02 523

binary
Hadamard

I Hadamard 1 0.00 7551 0.00 7261 0.00 8081 0.00 5921 0.00 7341 0.00 5881 0.00 7011
24 redundant nodes, 45 hidden nodes

binary 1 0.01 8001 0.02 2001 0.01 7401 0.02 6901 0.02 1201 0.02 0801 0.02 105

2

0.02 480
0.00 747

I Hadamard 1 0.00 5591 0.00 5261 0.00 5621 0.00 5471 0.00 6811 0.00 5151 0.00 5651
58 redundant nodes. 45 hidden nodes

6

I binary 1 0.03 5101 0.03 0001 0.03 0801 0.03 8901 0.02 5801 0.04 0401 0.03 3501

average 3

0.01 970
0.00 947

I Hadamard 1 0.00 5531 0.00 4941 0.00 5661 0.00 5291 0.00 5321 0.00 7451 0.00 5701
58 redundant nodes, 75 hidden nodes

4

0.02 150
0.00 892

5

binary
Hadamard

0.02 250
0.00 897

0.01 240
0.00 412

0.01 660
0.00 71 1

0.01 630
0.00 412

0.02 670
0.00 771

0.02 197
0.00 828

0.01 640
0.00 407

0.01 860
0.00 45 1

0.01 570
0.00 395

0.01 740
0.00 513

0.01 613
0.00 432

Table 4.3
Average mean square of estimation error, 100 training vectors

2 - dimensional input data, 1000 vectors for testing
100 vectors

no redundant nodes, 25 hidden nodes

sample #

8 redundant nodes, 25 hidden nodes
binary 1 0.02 4901 0.01 980 0.02 1701 0.02 2501 0.01 6701 0.02 6701 0.02 205)

1

binary
Hadamard

Hadamard (0.00 7481 0.00 9521 0.00 8951 0.00 9191 0.00 713 0.00 8241 0.00 8421
24 redundant nodes. 25 hidden nodes
I binarv 1 0.03 5401 0.01 9701 0.02 1701 0.02 5001 0.02 5301 0.02 4401 0.02 5251

2

0.02 690
0.02 040

1 Hadamard 1 0.00 7691 0.00 7281 0.00 81 11 0.00 5941 0.00 7571 0.00 5881 0.00 7081
24 redundant nodes, 45 hidden nodes

3

0.02 380
0.01 490

binary
Hadamard

4

0.03 530
0.01 970

58 redundant nodes, 45 hidden nodes

Parzen hopt 1 0.00 6271 0.00 5581 0.00 6731 0.00 63 11 0.00 5601 0.00 7071 0.00 626

0.01 800
0.00 590

58 redundant nodes, 75 hidden nodes

5

0.04 440
0.02 870

binary
Hadamard

0.02 200
0.00 529

0.04 040
0.00 753

binary
Hadamard

6

0.03 760
0.02 740

0.03 510
0.00 554

0.03 352
0.00 575

average

0.01 740
0.00 564

0.01 240
0.00 413

0.01 860
0.00 453

0.03 200
0.02 680

0.03 000
0.00 496

0.01 740
0.00 5 17

0.01 570
0.00 397

0.03 333
0.02 298

0.02 690
0.00 548

0.01 618
0.00 434

0.01 650
0.00 414

0.03 080
0.00 584

0.01 650
0.00 410

0.02 120
0.00 682

0.03 900
0.00 53 1

0.02 080
0.00 5 15

0.02 580
0.00 534

0.02 105
0.00 57 1

Mean sauare error versus number of outnut nodes

Fig. 4.2 Mean square vs. number of outputkidden neurons
solid : binary network

dashed : Hadarnard-transformed network

Table 4.4
Average mean of the estimation error, 100 training vectors

2 - dimensional input data, 1000 vectors for testing

no redundant nodes, 15 hidden nodes
1 binary I -0.000 1651 0.000 0081 0.000 0891 -0.000 23 11 0.002 1001 -0.000 12 11 0.00 028

sample

I I I I I I I I

8 redundant nodes. 25 hidden nodes
1 binary 1 -0.004 1301 0.000 3751 0.000 1841 0.000 0161 0.000 3841 0.000 1001 -0.00 05 11

1

1 ~ a d a m . 1 0.000 1201 0.000 0661 0.000 0861 -0.000 0651 0.000 2431 -0.000 29 11 0.00 0031
24 redundant nodes. 25 hidden nodes

2

binary
Hadam.

3

24 redundant nodes, 45 hidden nodes

58 redundant nodes, 75 hidden nodes
binary 1 -0.0000371 0.0058201 0.0000571 0.000046(-0.0005701 -0.0015301 0.000631

-0.001 050
0.000 005

binary
Hadam.
58 redundant nodes, 45 hidden nodes

4

binary
Hadam.

Interestingly, the average estimation error for the binary network decreases as well with

the addition of 8 and 16 redundant notes. The experiments also indicated that the number

of hidden neurons should always be a larger than the number of output nodes to achieve

optimal results.

The classification increases and reaches almost the optimal Bayesian classification

result. The classification accuracy achieved with the redundant neural network is

significantly better than that achieved by Parzen density estimation.

The variance and the mean square error of the Hadarnard-transformed neural network

0.000 294
0.000 086

0.000 783
-0.000 09 1

Parzen

hopt

5

-0.000 054
-0.000 023

-0.000 043
-0.000 071

6

0.000 106
0.000 077

2.66E-12 6.25E-12

average

-0.000 401
-0.000 043

-0.000 5 17
0.000 097

-0.000 157
-0.000 002

0.000 044
0.000 030

0.000 212
0.000 01 8

0.001 590
0.000 01 6

-0.000 037
-0.000 018

-0.000 219
-0.000 026

1.74E-12

0.000 160
0.000 120

1.05E-11 -5.62E-12

-0.003 080
-0.000 258

-0.000 848
-0.000 1 14

-0.000 167
0.000 006

-0.000 720
-0.000 050

-1.92E-11

0.000 062
0.000 005

2.23E-11

-0.000 606
-0.000 007

are also reduced by using redundant output nodes. In comparison to the non-redundant

Hadamard-transformed neural network, the reduction in error variance for 8 redundant

nodes is 64 %, more then the 50 % we expected. For 16 redundant nodes and 45 hidden

neurons, we reduced it by about 75%, like expected. For the 56 vector case with 75

hidden neurons, the improvement is about 81 %, 6.5 % less than the expected 87.5 %.

The maximal achieved reduction of network error in comparison to the binary network

with no redundant notes is 87%. This means that we could reduce the variance of the

estimation error to about 118 of its previous value. The lowest variance and mean square

error achieved were about 31 % lower than that of the optimal Parzen density estimation

method.

On the other hand, increasing the network complexity increases the time needed for

training, and testing. Tables 4.5 and 4.6 show the respective CPU times in seconds. Table

4.5 shows the increase in memory needed to store the additional weights.

Table 4.5
Training time, using 100 vectors for training

2-dimensional input data

Fig. 4.3 Training time versus number of outputhidden nodes

Table 4.6
Testing time, using 1000 vectors for testing

sample no.

no redundant nodes, 25 hidden nodes

8 redundant nodes, 25 hidden nodes
24 redundant nodes, 25 hidden nodes
24 redundant nodes, 45 hidden nodes
58 redundant nodes, 45 hidden nodes
58 redundant nodes. 75 hidden nodes

Parzen densitv

:nsional input data
1 1 2 / 3 1 4 1 5 1 6 laveragel

Table 4.6
Memory needed to store the mapping

4.4 Discussion of the Results

The most surprising result is the reduction of error variance and the mean square error of

the binary network with redundant nodes. The most likely explanation is that with the

addition of redundant nodes we increased the number of hidden nodes. When we left the

number of hidden nodes constant, but increased the number of redundant output nodes,

the output error increased slightly. This can expected, since we allow more total output

noise, but do not use those additional output nodes.

To show this effect we set the number of hidden neurons constantly to 75 for the 3

dimensional case, discussed in Section 4.5.

In the previous Chapters, we had used 15 - 25 hidden neurons. This number was

experimentally determined by [3]. However, they used one dimensional input data. We

used 2 or 3 dimensional input data. One can think of each hidden neuron trying to learn

small piece of the distribution function, similar to the function learning presented by

[14]. Now, the accuracy of this mapping will depend not only on how accurate one

neuron learns its piece of the distribution, but also on how many hidden neurons we use.

This is a problem seemingly similar to over -and under smoothing in statistical

estimators. In our case, the lowest mean square error was achieved with the highest

number of hidden neurons. We can expect to reach some saturation point, after which the

addition of more hidden neurons will increase the error. For the 2 - and 3 dimensional

input data, we stopped before, due to the excessive times necessary. In the one

dimensional case, [3] show that there is a certain number of hidden neurons, which gives

no. redundant neurons
no. hidden neurons

memory / kb

Parzen

939.00

neural network
0

25

2.72

8
25

7.66

24
25

14.13

45

25.13

5 8
45

54.33

75

77.09

minimum output error. The increase of hidden neurons might be thought of as "curse of

dimensionality", analog to the curse of dimensionality for statistical methods. [8]

The effects for the Hadamard-transform are quite different. As discussed in Chapter

2, the error at the output of the Hadamard-transform depends on the absolute error at the

output of the network, and not on the relative error, the probability error. In Chapter 2,

the output error of the Hadamard-transformed network was found to be approximately

twice the size of the error of the binary network. Hence the error variance of the

Hadamard-transformed network is reduced by 41 N instead 1M. Still, our results do not

show a reduction by 4M. 4/N seems to be the upper bound of reduction, achieved in

some cases, while others achieve lower reductions. This must be a consequence of an

increase of the output error at the output nodes of the Hadamard-transformed network.

In Chapter to we found out that the dependency terms T, caused by taking the inverse

Hadarnard-transform of not independent output values, summed up to 0 over all output

values. However, when we use redundant nodes, we will only use the first 8 output nodes

for the a posteriori probabilities. The dependency terms no longer have to cancel out, like

they do in Section 2.5. In Section 4.5, the 3 - dimensional case, we will measure the

average of the actual dependencies components T for the first 8 output nodes.

Another disadvantage is that training and testing times increase significantly, and so

does the needed memory.

4.5 Further Experiments

We used a set of 100 training vectors. The structure of the set is similar to that of the 300

vector per class 3-dimensional set used in Chapter 3.

We again trained a binary and a Hadamard network. Each of them had 75 hidden

neurons. Table 4.8 will show the testing classification, using 1000 testing vectors. We

ran 4 samples, each of them with 0, 8, 24 and 56 redundant output nodes. the achieved

classification, and the mean square error are shown in Table 4.8,4.9 and 4.10. Figure 4.4

and 4.5 will show the classification and the mean square error versus the number of

output nodes, respectively.

Table 4.8
Testing classification with the 3 - D input data

8 ou t~u t nodes

sample # I 1

I binary 1 88.00% 1 87.20% 1 88.10% 1 85.90% 1 87.30% 1
I Hadamard 191.20% 1 91.30% 1 91.00% 1 91.40% 11 91.23% 1

2 3

16 output nodes

64 output nodes

binary
Hadamard

32 output nodes

binary 1 83.80% 1 85.90% 1 85.00% 1 82.60% 1-

4 average

binary
Hadamard

86.60%
9 1.00%

84.19%
93.20%

Hadamard

max. possible
classification

87.90%
92.10%

85.74%
92.98%

87.08%
93.80%

87.15%
91.93%

86.90%
9 1.90%

94.00%

95.25%

87.20%
92.70%

85.73%
92.80%

85.96%
92.10%

93.80%

94.88%

93.60%

94.46%

93.70% 1

95.03%

Fig. 4.4 Testing classification versus number of output neurons

Table 4.9
Mean square error in the 3 - D case, 75 hidden neurons

8 output nodes

sample # I 1

16 out~ut nodes

2

binary
Hadamard

I Hadarnard 1 0.02 100 1 0.02 200 1 0.01 590 1 0.02 590 1 0.02 120 1

3

0.03 904
0.02 680

32 output nodes

4

0.03 956
0.02 570

64 output nodes

average

binary
Hadamard

binary
Hadamard

0.03 453
0.02 250

0.04 806
0.01 377

0.04 542
0.01 401

0.04 057
0.02 520

0.04 643
0.01 617

0.03 941
0.01 123

0.05 059
0.01 084

0.03 842
0.02 505

0.04 780
0.01 486

0.04 642
0.00 807

0.04 540
0.01 1 10

0.05 023
0.01 040

0.04 816
0.01 0 10

Ma-n squ-ra error YS. numbet of outpunodes. drhsed : H-d-rnrrd
o . o s s , I

Fig. 4.5 Mean square error versus number of output neurons

With a constant number of hidden neurons, the binary classification decreases and the

mean square error increases with the number of output neurons, while the classification

of the Hadamard-transformed network increases. The mean square error of the best

Hadamard network is approximately 4 times lower than the one of the best binary

network.

We will now compute the dependency terms, like in Section 2.4. the interest will be

if the first 8 nodes, which are now relevant, will have large dependency terms or not, and

if they sum up to 0. Table 4.9 shows the dependency terms for all output values, for the 8

redundant node Hadamard-transformed case.

Table 4.10
Dependency terms for the 8 redundant nodes cases

Now, the dependency terms over all output values cancel out. However, the terms for the

first 8 values, which contain the a posteriori probabilities, are all positive. This explains,

why the decrease of the mean square error between the 0 and the 8 redundant node case

is much less then the expected 50 %. Table 4.10 will now show the dependency terms for

the first 8 nodes for 0, 8, 24 and 56 redundant nodes. Figure 4.7 shows how the average

dependency of the first 8 nodes over the 4 samples is effected by the increase of the

hidden nodes.

Table 4.1 1
Average de~endencies of the first 8 nodes

10 redundant nodes 1 0.00 000 1 0.00 000 1 0.00 000 1 0.00 000 1 0.00 000 1

u

18 redundant nodes 1 0.01 010 1 0.01 070 1 0.00 77 1 1 0.01 260 1 0.01 028 i

sample #

m I I I I

24 redundant nodes 1 0.00 822 / 0.0 1 070 (0.0 1 190 1 0.01 010 1 0.01 023
(56 redundant nodes 1 0.00 932 1 0.00 954 1 0.00 694 / 0.00 889 1 0.00 867

1

Fig. 4.7 Dependency terms versus number of output nodes

2

Dependency terms versus number of redundant nodes
0.01 2

0.01

3

I I I I

- / -

4

0.008 - -

0.006 - -

-

-

0 I I I 8 I

10 2 0 9 0 40 60 6

average
dependency

0

Apparently, the dependency terms are the highest for only 8 redundant nodes, and

decrease slowly with the addition of more redundant hidden nodes. the magnitude of the

dependency terms in Table 4.10 accounts for most of the observed output mean square

error. For the average variance 02, the reduction is no longer given by 1/N, in

comparison with the variance before the inverse Hadamard-transform. 1/N marks the

lowest bound, while the actual variance reduction is much lower, due to the dependency

terms. Still, the average performance improves with the addition of the redundant nodes,

especially when a large number is added.

4.6 Conclusions

In comparison with the Parzen density estimation, our network now performed better in

both classification and the mean square error. The only remaining advantages of the 2-

dimensional Parzen density classifier are the extremely fast training time and a smaller

mean error. To store the lookup tables we still need significantly more memory than for

the neural network weights.

Previously we discussed advantages of the neural networks, like the absence of a

smoothing parameter, the possibility to use high dimensional input data, etc. Now, with

the introduction of the redundant nodes, we obtain a classifier that outperforms the

statistical methods both in classification and mean square error, that is nonparametrical,

has no smoothing parameters to adjust, and can be used for higher dimensions easily.

The only remaining advantages of the Parzen density classifier are the shorter

training times, and for low mean square error, the faster testing times as well.

5. CONVERGENCE ISSUES

5.1 Introduction

We have introduced a new output representation and added redundant nodes for the

neural network learning. So far we examined the results with respect to testing

performance in classification and a posteriori probability estimation. In this chapter we

will discuss speed of convergence and, the likelihood of getting stuck in a local minimum

when the initialization used is imperfect.

In the backpropagation algorithm used here, the gradient, and therefore the weight

adjustment in the output layer, are proportional to the error at the output, D - Y, where Y

is the actual output vector. This suggests that the speed of learning not only depends on

the chosen input representation, but also on the chosen output representation.

When we add redundant output nodes, the error surfaces for the output layer remain

the same. However, the weight changes in the hidden layer depend on the

backpropagated error of the output layer. Now, if we change the structure of that layer,

we are quite likely to change the error backpropagated to the hidden layer and therefore

the weight adaptation in the hidden layer itself. This will be discussed in Section 5.3.

5.2 Convergence of Hadamard-Transformed Output Networks

5.2.1 Effects of the Hadamard-transformed output representation

The Hadamard-transformed output representation is orthogonal. This means the inner

product of two different columns is zero. The Hamming distance is N/2 for each column.

compared to a Hamming distance of 2 for the binary output vectors.

Hence, the spheres in the hyperspace are further apart for Hadamard-transformed

outputs than for binary outputs.

The weight adaptation for the backpropagation is given by [15]

where 1 is the layer index, j is the jth neuron in layer 1, and k is the kth neuron in the next

layer. 6j(i) is the local gradient, and ykl(i) is the input of neuron k to neuron j. a is the

learning rate, and i stands for the ilh input vector.

Since we use a linear output layer, the gradient at the output layer (layer number 3)

becomes

6j2(i) = ej(i) = dj(i) - yj(i)

For the hidden layer, Sj 1 is given by

where q(vj(i)) is the derivative of the activation function of the hidden layer.

Clearly, using an orthogonal output representation instead of a binary will effect the

error in Eq.(5.2). therefore, the gradient in Eq. (5.3) will be changed as well, and hence

the weight adjustments in both the hidden and the output layer will be effected. Weather

the effects will improve or slow convergence has to be determined experimentally.

5.2.1 Experimental Results

As discussed in Section 2.3, we cannot use the mean squared error to show the

progress of learning. We will instead display the number of correctly classified vectors of

the training set. Figure 5.1 shows 3 typical training patterns with both the Hadamard-

transformed and the binary output representation, using the 2 - dimensional training data.

Figure 5.2 shows 3 typical training patterns with the 3 - dimensional input data. We

decided not to average over a sum of different networks, since the practical interest is to

evaluate the performance of a specific classifier and not of a set. Using the average

would smooth out some important characteristics.

waining accuracy 2 layer NN. 8 classes, non sap. , -- = hadamard wanformed
i

waining accuracy 2 layer NN. 8 classes, non sap. . -- = hadamard wanformed
0.95

0 .Q

0.85

0 .a

0.75

0.7

0.65

0.6

0.55
5 0 i 00 i 50 20 0 25 0 300 9 50 10 0

Fig. 5.1 Training classification versus number of sweeps

2 - D case

taining accuracy 2 layer NN, 0 classas, non sap . . -- = hadamard tanbrmad

Waining accuracy 2 layer NN. 0 classes, non sap. . -- = hadamard tanbrmad

Fig. 5.2 Training classification versus number of sweeps, 3 - D case

Clearly, the Hadamard-transformed neural network converges faster then the binary

network, especially during the first sweeps. The effects are more obvious in the 3 -

dimensional case. This suggests that the benefits of the Hadamard-transformed

convergence will be stronger with more complex problems.

Tables 5.1 (a), 5.1 (b) show the average number of iterations of six samples and CPU-

time needed until the network reached 70, 80 and 85 % correctly separated patterns in the

3 dimensional case. This time we decided to use the average instead of the single cases,

in order to show the average gains. Due to computational limitations, we only show the

results after 600 sweeps. Our previous findings show that the binary network will

eventually reach the 85 % classification later.

Table 5.1 (a)
Training results achieved within the first 600 sweeps

0 redundant nodes, 55 hidden nodes

I Hadamard 11 120 1 220 1 360 1

training classification 1
binary

I Hadamard 11 100 1 180 1 200 1

70%

binary

280 , 400 560

80%

360

binary
Hadamard

I Hadamard 11 100 1 120 1 200 /

85%

binary

520
280

360
220

average

440

560
280

binary
Hadamard

3 10
125

340
200

Table 5.1 (b)
Training times needed to reach the classification percentage

0 redundant nodes. 55 hidden nodes

binary
,k7zzz-I
1 training classification 1 70%

average

80%

binary
Hadamard

85%

Clearly, the Hadarnard-transformed networks converge faster, reaching 70% correct

classification within 113 of the time of the binary network, and 85 % at about less then

112 of the time needed for the binary network.

The comparison between the 2-D case and the 3-D case shows that the convergence

speedup is larger for the 3-D case. Hence, the benefits of using Hadamard-transformed

output representations can be expected to be larger for more complex problems.

840
337

5.3 Convergence of networks with redundant nodes

We introduced redundant hidden nodes in Chapter 4. Now, equation (5.3) shows that

the weight adaptation in the hidden layer is proportional to the sum of the error of all

output nodes connected with the hidden node. by adding redundant output terms, we add

more terms to the sum in equation (5.3). This will affect the adjusting of the weights in

the hidden layer. However, it is impossible to give a theoretical treatment if this will

affect the network convergence speed in a positive or negative way.

binary
Hadamard

1 780
423

1 230
44 1

1 380
762

764

2 290
1 104

Figure 5.3 will show the effects for two samples, in the 2 dimensional case. In each

sample we trained a neural network with no, 8, 16 and 32 redundant nodes. The number

of hidden nodes was set a little larger than the number of output nodes, like discussed in

Chapter 4. We used the previously used 2 dimensional 100 vector training set.

training accuracy 2 byer neural nehvork. Hadamard transforrned

Fig. 5.3 Training accuracy versus number of sweeps

solid = 0, dashed = 8, dash-dot = 16 and dotted = 32 redundant nodes

1

0.95

training accuracy 2 layer neural nehvork. Hadarnard transformed

I I I I I I

,__--,,<,.. r.',,:z:-TTTT -.-------..-.-. .-e:.- ..-Y.-.~. :=:-<:,Y.--7-'.T:r:.y:.- -2:=--Ly-.. :,:=
_ _ _ _ _ _ _ _ d - - - - - - - - -

_ _ - - - - - - _ _ _ - _ - - - -

I

0.95

0.75 I I I I I I

5 0 100 1 50 20 0 250 300 350 400

I I I I I I

......_._._._.....-.-.- . - ,.-=.= .--- - --- -4 *-.- --.-- ---.-;-_.=----.---.---- - -
.' i

, ,;, r
-. / ,'

I I I I I

50 100 1 50 20 0 250 300 9 50 40 0

In order to verify if the improved convergence is the result of the addition of the hidden

nodes or of the redundant nodes, we then ran 3 samples with a constant amount of hidden

nodes, 55. The results for 0, 8, and 16 redundant nodes are shown in Table 5.2.

Table 5.2 (a)
Training results achieved within the first 600 sweeps

24 redundant nodes. 55 hidden nodes
training classification

binary
Hadamard

binarv
Hadamard

binarv
-

Hadamard
binary

Hadamard

average

Table 5.2 (b)
Training results achieved within the first 600 sweeps

binary
Hadamard

8 redundant nodes, 55 hidden nodes
1 training classification

500
145

Hadamard
I binary

n. a.
175

I Hadamard

n. a.
330

I binary

binarv F
Hadamard

average "

binary
Hadamard

n. a.
245

365
110

415
160

Table 5.2 (c)
Training results achieved within the first 600 sweeps

0 redundant nodes, 55 hidden nodes
1 training classification I 70%1 80%1 85%1

I Hadamard 1 180 1 280 1 360 1

binary
Hadamard

binary
Hadamard

binary

280
120
3 60
100
380

binary
Hadamard

Hence, the addition of more hidden nodes reduces the number of iterations needed.

binary
Hadamard

The addition of redundant output nodes has no or little effect on the number of iterations

400
220

180
520

average

220
100

needed for convergence in the Hadamard-transformed case. This can be explained by the

560
3 60

200

3 10
125

fact that the desired output of the redundant nodes is constant for all vectors. It slows the

440
120

convergence of the binary case.

200

340
200

5.4 Initialization Problems

560
280

So far we used an initialization procedure based on the algorithm by [Nguyen

Widrow]. Instead of initializing with small random variables, the hidden neurons are

initialized to cover the whole range of the input data. First all the weights are set to

uniform random values between the minimum and the maximum of the input data. Then

the weight magnitudes are readjusted so that each hidden neuron is linear only over a

small interval. Then, the magnitude of Wi is set to:

where H is the number of hidden nodes and P is the number of input dimensions. f is a

factor smaller than one, to give some overlap between the intervals of the different

hidden nodes. The bias for the hidden node is then set to a uniform random variable

between - I wil and + I wil . This distributes the hidden nodes over the whole input

space equally. The output layer weights are set to small random variables.

Another initialization scheme is to choose the weights randomly in the range

where Fj is the fan-in, the total number of inputs to neuron j in the network [15].

W also ran an initialization where the initial weights were distributed gaussian

between 0 and 1. The idea of setting all weights to a positive value is to complicate the

learning process and increase the likelihood of it to get stuck in a local minimum. This

will then show whether any of the changes proposed in this thesis will enable the neural

network to avoid local minima, or decrease the ability to overcome local minima.

Table 5.3 shows the iterations needed to reach 70, 80, 85 and 90 % in the 3-

dimensional classification problem. 25 hidden nodes were used in all cases.

In the case of poor initialization, both networks get stuck in a local minimum twice.

However, there are 2 more cases were the binary network fails to reach acceptable

classification accuracy within a reasonable number of training iterations. The Hadamard

network was performing better, though not as good as with both the heuristic range and

the Nguyen Widrow algorithm. Figure 5.4 show 2 training cases.

Ualnlng accuracy 2 layer NN. 0 clamma. non map. . -- - hadamard tanfarmed
0 .e I I I I I I I I

0.0 - ,--. ,%
I . , - / *

l - -

I
5 1 -. > - - - .

I $ 1 '
I I)

-. /
, \ \ - -

' \ I
- - _ _ - - - _

0.7 - / l' ' , I , , ' f I)
J \ I ' I
I

I

I
0 . - 1

I
J

J

J

0.5 - 1

0.4 -

0.3 -

0.2 -

0.1 -

0 I I I I I I I I

o zao 400 moo moo laaa 12aa 1400 ~ m a a

Fig. 5.4 Backpropagation with binary representation stuck in a local minimum

In general, even if the local minimum is overcome, the learning curve is no longer

asymptotic. It instead shows slow increase which gets halted occasionally.

Using Hadamard-transformed output representations worked better with all the 3

different initializations. Of the 3 different initializations, the Nguyenl'idrow

initialization and the uniform random initialization give the best results.

Table 5.3 (a)
Iterations needed to reach certain training performance

Nguyen Widrow initialization

Hadamard
binary
Hadamard

Table 5.3 (b)
Iterations needed to reach certain training performance

Uniform Random initialization

average

100
200
200

binary
Hadamard

150
200
700

not computed
not computed

175
142

550
350
850

1 650

342
325

492
450

Hadamard I 2001 2501 3001 6501
average

Table 5.3 (c)
Iterations needed to reach certain training performance

Positive gaussian values as initialization

binary
Hadamard

train. class

binary

442
225

Hadamard
binary
Hadamard

475
267

binary
Hadamard

Hadamard

525
308

binary

n.a. (700)
-

967

Hadamard
binary
Hadamard

- 103 -

6. CONCLUSIONS

6.1 Summary of the Results

We have introduced an output representation which reduces the mean square

estimation error of a neural network classifier drastically. Our experimental results

confirmed the model we have set up for the expected reductions. We have then modified

the new output representation by enlarging its size. This yields the expected benefits, up

to the point where the computational overhead becomes excessive.

The modifications we introduced reduced the mean square error of a neural network

classifier to about 118 of its previous value. This is accompanied be classification results

which almost reach the maximum possible classification. This is especially remarkable,

since it is usually possible to overcome the last 2 - 3 percent for maximum classification

at great cost and effort.

The proposed changes make neural networks a powerful, completely non-parametric

a priori probability density estimator. It needs little more memory to store the

distributions than the classic backpropagation, there are no smoothing parameters to

adjust, and the density can be estimated more accurately than with the Parzen density

estimation. It can easily be used for higher dimensional probability density estimation as

well.

The only advantage remaining for the Parzen density estimation is the shorter training

time in the 1- and 2- dimensional case to generate the lookup table. However, already for

the 3-dimensional case, the product Kernel becomes so excessive to compute that almost

no practical use is known. The testing times differ. For small an medium network

complexity, the network performs faster, while for high complexity, i.e. many redundant

nodes, the Parzen density estimation is faster.

6.2 Possible Applications

Lower mean square estimation error and better classification are interesting for all

classification problems. However, there might be special interest in applying these

techniques to problems where misclassifications produce great cost, i. e. in signature

verification, medical engineering etc. In such problems classification confidence is of

great importance. Hence, by reducing the error variance, we would be able to raise the

rejection borders significantly, allowing more input data to be classified, and less to be

rejected.

The ability of the Hadamard-transformed neural network to overcome local minima

and to speed up convergence will be especially beneficial for complex problems. Those

problems will both benefit from the reduction of the variance of the output error and the

effects of the orthogonalty of the desired output.

Application of the Hadamard-transformed representation to problems outside of

classification, i. e. time series prediction, functional approximation or image compression

might be difficult. In those cases, when we take the Hadamard-transform of the desired

output, we would get a higher range. The desired outputs are analog between some

values, and taking the Hadamard-transform would produce large output values. This will

then eat up the benefits of taking the inverse Hadamard-transform.

6.3 Direction for Further Research

Further research might bring down the level of the output noise even further. One

possible place to look for that will be the "saturation phase", where the neural network

basically has found its minimum, but keeps oscillating slightly, since the desired output

representation is fairly different and produces an error affecting the learning as discussed

in Chapter 5.

Other interesting areas are the parallel implementation of redundant networks. This

would enable us to find the point where increasing the number of redundant output

neurons further might be overcome by the general error increase due to complexity.

Another interesting field will be the effects of Hadamard-transformed output

representations to supervised, but not backpropagation, learning algorithms, like the

PSNN presented in [4].

Concerning the initialization problems, investigations into other algorithms which are

more likely to get stuck in a local minimum then our approach with an adaptive learning

rate might show the effects of initialization, and output transformations overcoming a

local minimum better. Investigations of the sources of noise inside a neural network

might be promising as well.

LIST OF REFERENCES

M. D. Richard, R. P. Lippman, "Neural Network Classifiers Estimate Bayesian a
posteriori probabilities" Neural Computations MIT Press 199 1.

E. A. Wan, "Neural Network Classification: A Bayesian Interpretation" IEEE
Transactions on Neural Networks, Vol. 1. No4, December 1990.

H. White, "Learning in Artificial Neural Networks: A Statistical Perspective"
Neural Computations vol. 1, no. 4, pp. 425-464 MIT Press 1989.

0. K. Ersoy, D. Hong, "Parallel, Self-Organizing, Hierarchical Neural
Networks - 11" IEEE Transactions on Industrial electronics, Vol. 40 No.2
April 1993.

M. Harwit N. J. A. Sloane, Hadamard-transform Optics Academic Press, Inc.,
New York 1979.

S. S. Agaian, Hadamard Matrices and Their Applications Springer Verlag,
Berlin 1985.

Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition Academic
Press, San Diego, California, second edition 1990, chapters 6 and 10.

David W. Scott, Multivariate Density Estimation John Wiley & Sons, New
York 1992, chapters 3 and 6.

J. Nazari, "Development of Algorithms for Generalization, Convergence and
Parallelization in Neural Networks" Chapter 6, Output representations Ph. D.
dissertation, Purdue University 1994.

J. Nazari and O.K. Ersoy, "Utilization of Hadamard Matrices for Output
Representation in Neural Networks" Proceedings of European Conference on
Circuit Theory and design, ECCTD-95, pp. 691-694, Istanbul, Turkey, August
1995.

[l l] J. Nazari and O.K. Ersoy, "Application of Error Control Codes and Hadamard
Matrices in Solving Classification Problems with Neural Networks"
Proceedings of ICEE-95 conference, pp. 210-217, Tehran, May 1995.

[12] A. Papoulis, Probability, Random Variables and Stochastic Processes McGraw
Hill, third edition 199 1.

[13] D.J. Munro, O.K. Ersoy, M.R. Bell, J. S. Sadowski, "A Weighted Least Squares
Algorithm for Neural Network Learning in Recognition of Low Probability
Events" in press.

[14] D. Nguyen, B. Widrow, "Improving the Learning Speed of 2 - Layer Neural
Networks by choosing Initial Values of the Adaptive Weights".

[151 S. Haykin, Neural Networks Macmillan New York 1994.

	Purdue University
	Purdue e-Pubs
	8-1-1997

	POSTERIORI PROBABILITY ESTIMATION AND PATTERN CLASSIFICATION WITH HADAMARD TRANSFORMED NEURAL NETWORKS
	Peter G. Gulden
	Okan Ersoy

