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Abstract 

In this report we study the suprema distribution of a class of Gaussian 

processes having stationary increments and negative drift using key results 

from ~Txtrerne Value Theory. We focus on deriving an asymptotic upper 

bound to  the tail of the suprema distribution of such processes. Our bound 

is valid for both discrete- and continuous-time processes. VVe discuss the 

importance of the bound, its applicability to queueing problems, and show 

numerical examples to  illustrate its performance. 



1. Introduction 

Consider a continuous-time stochastic process {Xt : t > 0) or a discrete-time stochastic 

process {Xn : n = 1 ,2 , .  . .) described by the following equations. 

t 

Continuous-time process : Xt = 1 d d s  - (t E [ o , ~ ) ) ,  (1.1) 

n 

Discrete-time process : Xn = Jm - xn (n E 0 ,  2 ,  . . . (1.2) 
m=l 

Here J is a centered (zero-mean) stationary Gaussian process and x is a positive constant 

that determines the drift of X .  Since J is a stationary Gaussian process, the stochastic 

process X is a Gaussian process with stationary increments and negative drift. In this 

report we are interested in studying the suprema distribution of this process X .  Specifi- 

cally, we will derive an asymptotic upper bound* to the tail of the suprema distribution 

of X u:nder the following conditions on C[, the autocovariance function of the centered 

stationary Gaussian process [ 

(Cl)  Continuous-time: C[(r) := iE{(t[t+,) is absolutely integrable and J-z C,t(r)dr > 0. 

Discrete-time: C((1) := IE{JnJn+l) is absolutely summable and :CE-, Ct(l) > 0. 

(C2) Continuous-time: rC[ (7) is absolutely integrable. 

Discrete-time: 1 C[ (1 )  is absolutely summable. 

(C3) Continuous-time: Jr rC[(r) > 0 and So' rC[(r)dr + Jm tC[(r)dr > 0 

for all t E (0, co). 

Discrete-time: CEl 6CE(1) > 0 and Czl lC((1) + CEm+l mCc:(l) > 0 

for all rn = 1,2,  . . . .  

For notational simplicity, we define (w)@ := supoEo we (we will not specify the in- 

dex range O when it includes the entire domain of we). The study of the tail distribu- 

tion P({(X) > x)) is motivated by its applicability to queueing systems and high-speed 

'In this report, we say a positive-valued function f asymptotically bounds a positive-valued function 

g from a.bove, if lim sup,,, g(x)/ f (x) < 1 (or from below, if lim inf,,, g(x) / f (x) I). 



telecorr~munication networks [6, 7, 81. In particular, when K and I are appropriately 

defined, one can show that the steady state queue length distribution of a queueing sys- 

tem is equal to the suprema distribution of X [12, 141. Therefore, similar problems 

have been studied in the queueing context. For example, using Large Deviation tech- 

niques it has been shown for very general classes of stationary processes I that the limit 

q := lirn,,, - $ log P({ (X)  > x)) exists and is finite [12], that is, 

where f - g means lim,,, = 1. Also, in the discrete-time case the following stronger 
S(X) 

result has been shown for stationary ergodic Gaussian processes I, [I]: 

P({(X) > x)) - Ce-7x as x + oo, (1.4) 

that  is, the tail of the suprema distribution of X is asymptotically exponential. However, 

the asymptotic constant C is in general difficult to obtain and only app:roximations have 

been suggested to  evaluate it. An important result of this report is the derivation of an 

asymptotic upper bound, of an exponential form as in (1.4), for a fairly large class of 

Gaussian processes I given by ((31)-(C3). This bound also provides an upper bound to 

the asymptotic constant C which is a useful parameter for network dimensioning. 

In the continuous-time case, (1.4) has been shown in a more limited setting (e.g., 

when I is an Ornstein- Uhlenbeck process [19], or when X is a Brownian Motion process 

with negative drift [16]). In this report, for the continuous-time case, our asymptotic 

upper bound will also be used to show that there exists a constant q such that cle-7" 5 

IP({(X) > x)) 5 c2e-7" for some constants cl, c2, and all large enough T. 

The report is organized as follows. In Chapter 2, we first introduce fundamental 

results from the Extreme Value Theory for Gaussian processes; in Chalpter 3, we derive 

an asymptotic upper bound to IP({(X) > x)). To avoid redundancy, we derive the bound 

only foir the continuous-time case and refer to [8] for the derivations in discrete-time; in 

Chapter 4, we discuss the importance of the bound in analyzing the behavior of a queueing 

system; finally, in Chapter 5 we briefly illustrate the performance of the bound through 

numerical examples. 



2. Results from Extreme Value Theory 

Our study of the suprema distribution of X is based on the Extre~ne Value Theory 

literatwe. The following two theorems (from [2] )  play key roles in our study. 

Theorem 1 (Borell's Inequality) Let {Ct : t t T }  be a centered Gaussian process with 

sample path bounded a.s.; that i s  ( C )  < oo a.s. T h e n  IE{([)}  is  finite and for all x > 

where ( a 2)  := suptET IE{C:}. 

Theorem 2 (Slepian's Inequality) Let {ct : t t T }  and { v t  : t E TI} be two centered 

Gaussirzn processes o n  a n  index set T with sample path bounded a s s .  I,f IE{C:} = IE{v;} 

and IE{(C, - Ct)') 1 IE{(v, - for all s ,  t E T ,  then for all x 

In addition to Theorems 1 and 2 ,  we introduce another important result from 12, 

Corollary 4.151, which provides us a way to bound IE{(C)} and will be used together with 

Theore:m 1 to  derive a bound for the tail probability IF'({(<) > x } ) .  

Theorem 3 Let {Ct : t t T }  be a centered Gaussian process and define a pseudo-metmc* 

d o n  T as  d( t1 ,  t 2 )  := & { ( c ~ ~  - Ct2)2}. Also, let N ( t )  be the minimum number of closed 

d-balls of radius t needed to  cover T ,  then there exists a universal constant K such that 

*Note that d  is not a metric, since d ( t l ,  t z )  = 0 does not necessarily imply t l  = ta. 



3. Asymptotic Upper Bound for P({(X) > z)) 

In this chapter, we derive an asymptotic upper bound to the tail probability P({(X) > 

x)) for the stationary Gaussian processes J that satisfy (C1)-(C3). This chapter consists 

of two parts. We first obtain several preliminary results in Section 3.1, and then from these 

results we derive our main results in Section 3.2. Since the proofs for the discrete-time 

case are essentially similar to those for the continuous-time case, we provide derivations 

only for the continuous-time case. The detailed proofs for the discrete-time case can be 

found in [8]. 

3.1 F'reliminaries 

We assume that Jt is a centered stationary Gaussian process with a continuous auto- 

covariance function C[(r). Also, we assume Jt to be a separable and measurable Gaussian 

process in order for Xt to  be a well defined stochastic process*. 

Froin (1.1), the mean and the autocovariance function of Xt can be obtained as 

IE{Xt) = t and (3.1) 

We now define a few parameters which will be used extensively through.out the report. 

00 00 

s : = J _ _ ~ [ ( r ) d r ,  D : = 2 1  rC<(r)dr ,  and d : = 2  r)C4;(r)ldr. (3.3) 

In the following proposition, we show several important properties of the variance and 

the autocovariance function of Xt, which will later be used in deriving our bounds. 

Proposition 4 
VariXt} . (a) -7 zs a continuous and differentiable function for t > 0. Furthe:r, 

t 

rCJ( r )d r  for t > 0,  and 
dt 

lim Var{Xt) 
= 0. 

'Note that,  from the continuity of the autocovariance function, the process Jt can always be replaced 

with its separable and measurable version [ll, page 1711. 



( b )  cx( t i ,  t 2 )  = f ( V a r { ~ t , }  + Var{Xt2}  - Var{Xl t , - t2 , } ) .  

( c )  Let a > 1, then under condition ( C l ) ,  

lim cx (at, t )  
= lim Cx(t ,  at) 

= S. 

Va={X" >= s In  particular, limt+m , 
( d )  Unlder conditions ( C l )  and (C2) ,  

' I t 1  - t 2 '  for all t l ,  t2 > 0, and 
t l t 2  

( e )  Under conditions ((31)-(C3), < S and there exists a to > 0 such that 

Var{X t }  
= sup Var{Xs}  for all t >_ to.  

t O<s<t S 

Proof of Proposition 4 : 

( a )  From (3.2) ,  we have 

Var{X t }  = ltl t 

t t Cr(7i - 71)drldr2 

= 2 l ( l -  c ( ( r ) d r  (by  setting r = 7 2  -- rl).  (3.4) 

Differentiating both  sides o f  (3.4) ,  we get 

Also, note that  ( ( I  - ;)C<(r) 1 < (Ct(r)l 5 C<(O) for r E [0, t ] .  Therefore, 

( b )  Wi thout  loss o f  generality ( W. L. 0. G.), assume t2 > t l .  Then  



(c) From the symmetry of the autocovariance function, it suffices to  show that 

"(a t ' t )  = S.  Let ht(s) be defined as limt+m 7 

( (1 + j) C ~ T )  if T E [-t, o), 

C< (7) if T E [0, (a - l ) t ] ,  
ht(7) = 

(1 - ) c if E ((a - l ) t ,  a t ] ,  

1 0  otherwise. 

Then, again, by changing the variables of integration (T = 7 2  - T ~ ) ,  we obtain 

However, from the definition of ht,  we know that limt+, h t ( ~ )  = CS (7) and 1 ht (T:I 1 5 

I C< (T) 1 .  Therefore, from condition (Cl)  and the Dominated Convergence Theorem, it 

follows that  
Cx(at1 t)  - 

W 

lim 
t+W t - lW CS (7) d~ = S. 

(d) M7.L.O.G. assume t2 > t l  > 0. From (3.4), we have 

Since 0 5 < T for T E [tl, t2], it follows that 
t2- t1  - 



NOW, let ht(r)  be defined for r 2 0 by 

rCt ( r )  if 7 E [O, t), 
ht(7) = 

tC[(r) if r E [t, oo). 

Then, horn (3.4) and from the definition of S and ht(r) ,  we get 

On the other hand, from the definition of ht(r),  we know that ht(r)  -+ *rC<(r) as t -+ oo 

and 1 h t(r)  1 < rlCt(r) 1 .  Therefore, from condition (C2) and the Dominaked Convergence 

Theorem, 

lim t S - 
t+m ( v a r { X t ' ) = 2 L f f i r ~ t ( r ) d r = ~ .  t 

(e) From (3.4) and the definition of S ,  

> 0 for all t > 0 (from condition (C3)). 

Therefore, 

Var{Xt) < S for all t > 0. 
t 

Now, from the Dominated Convergence Theorem and conditions (C2) and (C3), it 

follows that 

ar Xt The above equation with (3.5) implies that there exists a tl > 0 such that $(w) > 0 
Var{Xt ) 

V x { X t }  is an increasing function for t 2 tl . Let a := supt,(o,tll 7. for all t 2 t l ;  that is, 7 

= 0, it then follows Var{x t )  and the fact that lirnlro 7 From (3.6), the continuity of 7 
Var Xt that a < S. Therefore, since -+ S as t -+ co, there exists a to > tl such that 



-. Var{xtO} > a. Let t > to, then for s 5 t l ,  
t o  

Var{Xs) < a < 
- s 

Var{XtO' (from the definition of to) 
to 

< - Var{Xt) 
Vx{Xt} is increasing on [tl, m ) ) .  (because 

t 

ar x t  l!~L?2 < for s E ( t l , t ) .  Therefore, for Also, since is increasing on Itl, m) , - 

Var{Xt} - all t > to, 7 Var{X3} 
- SUPo<s<t 7. Q. E. D. 

In t,his report, we will study the suprema distribution of Xt  through the Gaussian 

process {Y,'~) : t > 0) defined for each x > 0 by 

The following relation between X, and Y,") directly comes from the definition of &(") and 

plays a key role in studying the tail probability P({(X) > x)). 

For any t 2 0 and any x > 0, Xt > x if and only if Y,") > &. (3.8) 

It also immediately follows that &(') is a centered Gaussian process and its autocovariance 

function Cg1( t l ,  t2)  can be obtained in terms of Cx as 

c:" (t,, t2) := E{&~T)&F)} = 
xCx (t 1, t2) 

(x + &)(x + nt2)' 

Now, let g:,, be the variance of Y,"). It can then be expressed in terms of Var{Xt) as 

Hence, from Proposition 4(c), we have limt,, g:,, = 0. Since g:,, is a co~ltinuous function 

o f t  (from Proposition 4(a)),  there is a finite value t = ix at which g:,, attains its maximum 

( ~ 2 )  (note that (g:) denotes the supremum of ( ~ 2 , ~  over the time index t) .  In the next 

proposition (Proposition 5 ) ,  we show an important property of ix. Before we proceed, for 

notational simplicity, we define a function g(t) for t > 0 as 



Note that from Proposition 4(a), g(t) is a continuous function of t E [0, m), and g:,, can 

be written in terms of S and g(t) as 

2 Sxt  
g x , t  = (x + Kt)2 9(t). 

Proposition 5 Under condition (Cl) ,  

Further, under conditions (Cl)  and (C2), the following stronger result holds. 

x tx - - 
lim - = 0 for all 6 > 0. 

Proof of Proposition 5 : From Proposition 4(c), it follows that lim,,., g(t) = 1. Let 

G := supt2,g(t) (G is finite and not less than 1). Since IT:,, attains its maximum at  

t = t̂ ,, it follows that 

By solving (3.12) for ix, we have 

Since g (:) i 1 as x i m, this implies that ix i m (consequently g(%) i 1) as x i m. 

Sxt attains its maximum $ at t = 9, we know from (3.12) that g ( f )  5 Now, since i;r;iir 

g(iX) aind the following relation should hold. 

Since b'oth g(iX) and g(:) approach 1 as x i m, it follows from (3.13) that 

Thus, we have proved the first part of the proposition. 



We next prove the second part of the proposition for which the autocovariance function 

Cc satilsfies both conditions (Cl)  and (C2). From Proposition 4(d), note that 

Since both g( j) and % approach 1 as x increases, we know that g( f ), te E [[12] for all 

x sufficiently large. Therefore, for sufficiently large x, 

4x ("1ixA- ; I  + /-) < - - (from (3.14) and the definition of G) 
K s t ,  st,; 

= 4 ("I" six - '1 + V'W) s t ,  

iz-2 
Now assume that lim,,, + = 0 for some r > 0 (from the fact that i,: .-. ; as x i co, 

this holds with any r > 1). Then, from (3.15), 

i,-e 
Therefore, lim,,, = 0. Thus, by induction we have 

x 5 
A t - "  

" = O .  f o r a l l ~ > O .  lim 

The following proposition is a direct result of Propositions 4(c) and 5, and describes 

the 1imj.t of (a:) as x + co. 

Proposition 6 Under condition (Cl) ,  

2 S lim (a,) = - . 
x-+w 4K 



Proof of Proposition 6 : From (3.10), we have 

Since Y y  + S (Proposition 4(c)), % + 1 (Proposition 5 ) ,  as x + m, it follows that 

2 - s  limx+m(ax) - z. Q.E.D. 

3.2 Main Result 

In this section although we provide proofs only for the continuous-t,ime case, all the 

results are also valid for the discrete-time case with the process {Y,(~) : n = 0 ,1 , .  . .) and 

the parameters S and D redefined as 

&(Xn + ~ n )  
00 00 

y,(") := 
x + tcn , s : =  ~=-oo x Ct(l), and D : = ~ ~ I C ~ ( Z ) .  1=1 (3.16) 

Now as mentioned in Chapter 1, it has been shown for many classes of stationary 

processes Jt, that (1.3) holds for some q [12]. In particular, for the case when Jt is a 

stationi~ry Gaussian process that satisfies (Cl) ,  it has been shown that ,q = 9,  that is, 

1 2 tc 
lim - log P({ (X)  > x)) = - - 
x+m x S '  

Let us next consider a simple lower bound to  the tail probability P({(X) > x)) 

expressed in terms of the maximum variance (a:). From (3.8), it follows that 

However, note that Y,j') is a centered Gaussian random variable with variance (a:). There- 

fore. 

P where Q(x) := & Jxm e 2 dy is the tail of the standard Gaussian distribution. It is 

important to  note that P (6) is the probability that &(') is greater than & at  t = ix, 



which is that value of t for which the variance of &(') attains its maximum (0;). In 

the Extreme Value Theory for Gaussian processes, it has been frequently emphasized 

that the maximum variance of a centered Gaussian process with nonconstant variance, 

is a very important factor in studying the suprema distribution of the (Gaussian process 

(as can. be seen in Borell's inequality) [2, 3, 17, 201. Also, it has been found that if 

{Ct : t cf T) is a centered Gaussian process with nonconstant variance which attains its 

maximilm variance at  t = i?, P({(<) > x)) the tail of the suprema distribution of Ct can 

often be closely approximated by the tail probability P({Ci > x)). Therefore, it would 

not be surprising if the lower bound, given by (3.18), accurately approximates the tail 

probability P({(X) > x)). In fact, the lower bound has been used to  approximate the tail 

probabi~lity in [6, 71 and found to be quite accurate over a wide range of' x. Additionally, 

it has adso been shown in [6] that 

Therefore, from (3.17) and (3.19), the lower bound is asymptotically similar to  the tail 

probability in the logarithmic sense; that is, 

Qualitatively, the above observations on the lower bound suggests that the tail probability 

P({(X) > x)) is concentrated on or around the maximum variance index ix.  However, 

similarity in the logarithmic sense does not imply that * (6) = P({Xiz > x)) - 
P({(X) > x)) as x + oo. In fact, this relation does not hold in general [8]. Therefore, 

a natural question to  ask is whether (and how) we can choose some neighborhood F, 

around iX for each x such that P({(Y("))F~ =; fi)) - P({(Y(")) > &)) as x + oo. 
The folllowing theorem gives us an answer to  this question, and will be used to obtain an 

asymptotic upper bound to P({(X) > x)). 

Theorem 7 Under condition (Cl) ,  for any a > 1,  

lim P({(X)[&,?l > XI) 
= lim 

P({(Y(~))[ ' .~I  > fi)) 1. 

"+OC (X)  > 4) x+m P ( { ( Y ( ~  > fi)) 



Proof o f  Theorem 7 : The first equality directly follows from (3.8). :Now, in order to 

show the second equality, it suffices to  show that 

lim 
P({(Y(" ) ) [&,~  1' > &}) 

P({(Y(")) > JlcH 
= O  for a l l a  > 1, 

x+03 

where ,4' denotes the complementary set of A. 

Let a > 1. Since g(t) -+ 1 as t -+ m, there exists a to such that g(t) 5 $ for all 

t > to. Now, let G := sup,,, g(t), then there exists an x, > a ~ t ,  such that 
- 

Sxt,G < s fi 
for all x > x,. 

(x + - 2/40! + 1) 

is an increasing function of t on [0, f], this fact in conjunction with (3.11) Since 7- 

implies that 

< SxtG < Sxt,G < 
C'X,, - 

s fi for all x > x, and t :i to. (3.20) 
(x + 6t)2 - (x + - 2/40! + 1) 

Further, it can be easily verified that 

Sx t  < Sa x a x ,  
for t E [-, -1 

(x + ~ t ) ~  - ~ ( a  + atc C, 

From tlne definition of to and (3.21), we have 

2 S x t d t )  < s fi for x 2 xo and t E (to, &) U (7, ~m).  (3.22) 
bxlt = (x + nt)2 - 2 ~ ( a  + 1) 

Hence, from (3.20) and (3.22), it follows that 

S fi for all x >_ x,. 

("1 2 We now define a pseudo-metric d(") on [0, m) as d(")(tl, t2) := JIE{(Y,:) - Y,, ) }. 

Also, let BP) ( t )  := { s  E [0, m) : d(")(t, s) < c} be a d(")-ball of radius of c centered at  t ,  

and let N(")(E) be the minimum number of d(")-balls of radius of c needed to cover [0, m ) .  

Since ~.ar{Y,(')} 5 a < 9 and since ex) = 0, B?)(o) cover [0, m) when r >_ @. 
Therefore, for all x > 0, - 



Now, assume that r < @ and t2 > tl. Then, 

However, since the stationarity of Ct implies that Var{(Xt2 - Xt,)) = Var{Xt2-t,), 

Var{(X;, - Xt,)) and Var{Xt,) are bounded by SG(t2 - tl) and SGtl ,  respectively. 

Therefore, from (3.25) 

1 (from the fact that f i  S - a n d - - ? ~ i ; .  4 < .-I 1 
& 

This implies that if It2 - tl  1 <_ &r2, then d(x)(tl, t2) 5 r. Consequently, 

Also, it can easily be shown that ~ a r { ~ , ( ~ ) }  5 r2 for t 2 s. Since ex) = 0,  this implies 

that 

[S, a) C B!~)(oI 

Therefore, from (3.27) and (3.28), d(x)-balls of radius of r centered at  ti (i=o,l ,  ....r%/$l) 

covers '0, m), where [wl is the smallest integer that is larger than or equal to w and 

if i = 0, 
ti = 

" r2 otherwise. 



Hence, for r < @, the minimum number of d(x)-balls to cover [0, m) is bounded by the 

followirig inequality: 

From (i3.24) and (3.29), N(E) defined by 

I otherwise, 

bounds N ( ~ ) ( € )  for all x,  6 > 0. Now, let M := K log; N(c)dc, where K is the universal 

constant in Theorem 3 (it can easily be shown that the integral is finite). Then, from 

Theorem 3, 

IE{(Y("))} < M for all x > 0. (3.30) 

Hence, by applying Theorem 1 to on t E [$ , ?IC, we get 

(from (3.23) and the fact that ( ~ ( " ) ) [ i , = ~ c  a)( n < (Y '"'>> 
.(fi-M)'(a+l) < 2e- s f i  for x sufficiently large. (3.31) 

Therefore, it directly follows that 

1 ~ ( , / z - M ) ~ ( a + l )  + + I )  
lim sup - log P ( { ( Y ( " ) ) ~ L , ~ ~ ~  > &}) 5 lim - .- .- - 

OLK 
X f . 0 0  x x+m s x f i  sf i  * 

n(U+L) < -9 for all a > 1, (3.17) and (3.32) imply that ince S' 
S& 

lim 
P ({ (Y(" ) ) [~+] '  > ,/zH 

= 0. 
"-tW P({(Y'"') > &}) 

Q.E.D. 



We will now use Theorem 7 and a well known property of Brownian Motion process 

to obtain an asymptotic upper bound to P({(X) > x)).  Let {Bt : t 2 0) be the standard 

Brownian Motion (Wiener) process, and let {V, : t 2 0) be defined as 

V, := aBt - bt. (3.33) 

This process is often called Brownian Motion process with drift+ and lhas been studied 

extensively. In particular, the suprema distribution of V, has been found i.n a simple closed 

form (see, for example, [16, page 1991) as 

bt x - 262 
P({(V) > x)) = P({Bt > - + - for any t 2 0)) = e  7 .  (3.34) 

a a 

NOW, we are ready to derive an asymptotic upper bound to P({(X-) > x)). In the 

next theorem, we derive an asymptotic upper bound to the tail probability P({(X) > x)) 

in a single exponential form for Jt that satisfies conditions (C1)-(C3). As will soon be 

evident, the asymptotic upper bound is obtained by comparing P({(X) > x)) and the tail 

of the !;uprema distribution of a Brownian Motion process with drift through Slepian's 

inequality. 

Theorem 8 Under conditions (C1)-(C3), 

2%' D 
lim sup ~%P({(X) > x)) 5 e - 7 .  

1400 

I n  other words, P({(X) > x)) i s  asymptotically bounded from above by e -%(X+T) .  

Proof of  Theorem 8 : Let V, = &?B~ - tct and define a centered Gaussian process 

{z,(~) : t 2 0) for each x > 0 by 

?An interesting fact is that even though I/t cannot be expressed in the form of (:1.1), Proposition 5, 

Propo~it~ion 6, and Theorem 7 hold with Xt, rc ,  and S replaced by I/t, b, and a2, respectively. From the 

simple autocovariance function Cv(tl,  t2) = a2min{tl, t2) of I/t, these results can be obtained in almost 

the same way as (or usually easier than) in the case of Xt. 



Using this definition, c!) the autocovariance function of ZjX) can easily be obtained as 

From (3.11) and (3.35), we can verify that the variance of Zj") is equal to that of Y,'") for 

any t 2 0 and x > 0. 

Now, let a > 1 and consider Y,") and z!") on the interval [2, :I. From Proposi- 

tion 4(t:), there exists a to > 0 such that for all t 2 to, 

Var{X,} Var{Xt } 
I for all s < t. 

S t 

Hence if we assume that t2 > tl  2 to, then 

Cx(t1, t2) - -- - 
1 

t 1 
- (Var{Xtl} + Var{Xt2} - Var{Xt2-tl}) (from Proposition 4(b)) 
2tl 

t 1 }  + a t 2 }  -- V a ~ - { x ~ ~ - ~ ~ } ) )  
2 t 1 t2 it2 - t l  

varxtl + v a r 2 )  (from (3.36)) 
I ) (  t l  

(since > 0). 

This implies that 

~ m i n { t 1 , t 2 ) J m Z Q  = t~ (from the definition of g(t)) 

Therefore, from (3.9), (3.35), and (3.37), and from the fact that ~ar{Y,'")) = ~ar{Z!")}, 

it follows for any x 2 atdo that 

(5) 2 '2) 2 x a x  
{ (  - Y ,  ) } I { ( Z  - z ) } for all t l ,  t2 E [-, -1. 

CYK K 

Hence, from Theorem 2, 

( { ( Y ~ )  2 aK > A}) I ( { ( Z X )  aK > } for all x > ant,. (3.38) 



We now obtain an upper bound to P({(z(" ) ) [L ,~~ > fi)) for x 2 trnt,. 
OIK K 

X QX . 

IP({(Z("))[A,~ a& > &)) = P({z~") > J;F for some t E [-, -I}) 
a n  n 

X QX 
= P ( { J ~ B ~  > x + n t  for some t E [-,-I)) 

a n  n 
(from the definition of and zL")) 

Bt > x + nt for some t > 0)) 

(since g(t) is increasing on[&, :I) 
- 262 

- - e S9(?f) (from (3.34)). 

Hence, from (3.38) and (3.39), 

2nz 

> ) < e s  for x 2 ant,. 
u K  

Further, from Proposition 4(d) and the fact that g(t) + 1 as t + co, we have 

2nz  - 2Kx  - 2Kz ( I - * v ~ ~ { x ~  1) 
e ~ e  sg(%) = sscy) a& (from the definition of g(t)) 

- 
- - e s 2 ~ ~ ~ : , , y ( s - + ~ a ~ { ~ s ] )  + e - T  ZK'D as x + co. (3.41) 

Therefore, from Theorem 7 and from (3.8), (3.40) and (3.41), it follows that 

2n2 D 

lim sup ~YP({(X) > x)) < e-T . 
2--too 

Since a > 1 is arbitrary, the theorem follows. Q. E. D. 

An interesting observation is that the asymptotic upper bound given in Theorem 8 

can also be achieved by a simple expression given in terms of the maximum variance (a:). 

Proposition 9 Under conditions (Cl)  and (C2), 

-+ %+%) a s x + m .  e 2(0,) N e-- 

Proof o f  Proposition 9 : From (3.10) and the definition of ix, we have 



Therefore, 

Var{Xi ) Var{Xi ) (" -ix)2 
Since 2- i n, 

tzo i S, (s- ix ) %  i Dl and E L  i 0 as x i oo from 
Propositions 4 and 5, and from (3.42) we get 

2nx -+ 2 n 2 ~  
Hence, lim,,, e ~ e  2(ux) = e - 7 .  Q.E.D. 

Proposj~tion 9 and Theorem 8 tell us that when the process J satisfies conditions ((31)-(C3), 
Z -- 

the tail of the suprema distribution is asymptotically bounded by eP2(ui). Note that the 

class of stationary Gaussian processes that satisfy conditions ((31)-(C3) i:; fairly large. For 

exampl'e, any autocovariance function that vanishes faster than 7-' ( I - ' )  for some E > 2, 

satisfy conditions (Cl)  and (C2) (of course, except for those with S = 0). Also, condition 

(C3) w:hich is somewhat more restrictive, is satisfied by any nonnegative autocovariance 

function. Hence, the fact that an asymptotic upper bound to  P({(X') > x)) can be 

obtained merely from (a;), again indicates the importance of the maximum variance in 

studying the suprema distribution of Gaussian processes. 

In the next chapter, we will discuss the applications and importance of the asymptotic 

upper bound for the study of queueing systems. 



4. Application to Queueing Systems 

Consider a queueing system shown in Figure 4.1. Let At be an increasing function 

defined in such a way that At - A, is the amount of fluid that arrives into the system 

during the time interval (s, t]. Similarly, we define Mt to be an increasing function such 

that M1 - M, is the maximum amount of fluid that can be served during the time interval 

(s, t]. Then assuming that the queue is empty at t = 0, Qt the amount of fluid in the 

system (workload) at time t can be expressed as 

Qt = SUP (Nt - N,), 
o<s<t 

where Nt := At - Mt (see for example [12, 141). 

If we assume that At and Mt are independent stochastic processes with stationary 

increments, then 

P({Qt > x)) = P (Nt - N,) > x 

sup (No - N,) > x 
-t<s<O 

Hence, P({Q > x)) := limtim P({Qt > x)) = P  sup,^, (No - N,) > x}) . In other 

words, -the steady state (limiting) queue length distribution coincides with the distribution 

of sup,,,, .- (No - N,). The tail of the steady state queue length distributioin is an important 

measure of network congestion and very useful in the design and control of communication 

networlrs. Now let At be defined as the instantaneous rate of fluid input and pt  as the 

maximilm rate a t  which fluid can be served a t  time t. Then, Nt - N, cam be given by 

t 
Continuous-time : Nt - N, = Js uudu, and 

Discrete-time : Nt - N, = ~ k = , + ~  urn, 
(4.3) 

where vt := At - pt is the net input rate into the queue (note that ut can take on both 

positivt: and negative values). 
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Infinite Buffer 

Server 

4 
F l ~ ~ i d  i n n ~ ~ t  rate 

at time t 
Service rate 

at time t 

Figure 4.1: A fluid queueing system with an infinite buffer and a server. At is the instan- 

taneous amount of fluid (work) fed into the system a t  time t ,  pt is the maximum rate a t  

which fluid can be served a t  time t ,  and Qt is the amount of fluid in the queue a t  time t. 

Hence, from (4.2) and (4.3), it follows under the stationarity of ;vt (or under the 

stationarity and independence of At and pt) that 

Continuous-time : P({Q > x)) = P ({suptt, S,f v-,ds > x))  , and 

n Discrete-time : P({Q > x)) = P ({supnto Ern=, v-, > x}) . 
(4.4) 

Fluid queueing models have frequently been employed for the analysis of multiplexers 

in emerging high-speed communications such as Asynchronous Transfer Mode (ATM) 

networks [lo, 131. In these applications, the stationary process At models the aggregate 

traffic input to  a multiplexer, and pt is often fixed t o  a constant ,LL t o  represent the link 

capaci t ,~  of the multiplexer which is usually not time-varying. Since c:ommercial ATM 

multiplexers and switches are already equipped with very high-capacity li.nks, many traffic 

sources can be served a t  a multiplexer. Therefore, the net input trafilc (the aggregate 

traffic :input minus the link capacity of the multiplexer, which corresponds t o  vt) can 

usually be accurately characterized by a stationary Gaussian process [6, 71. Further, it 

has been found that  some important types of individual traffic sources themselves can be 

modeled as a stationary Gaussian process [15]. Once the net input traffic is characterized 

by a stationary Gaussian process, as we will discuss next, our asymptotic analysis of 

IF({(X) > x)) can be directly applied to  study P({Q > x)),  the tail of the queue length 

distribution, in such networks. 

Assuming that vt is a stationary Gaussian process, it is easy t o  see that  the steady 



state queue length distribution is equal to the suprema distribution of X (given by (1.1) 

or (1.2)) with J and K defined as 

Continuous-time : Jt = uPt - IE{uO), and K = IE{uo) cbr 

Discrete-time : Jn = ul-, - IE{uo), and K = E{ua). 
(4.5) 

Therefc~re, when the net traffic input can be effectively characterized by a stationary 

Gaussian process that satisfies conditions (C1)-(C3), Theorem 8 provicles us an asymp- 

totic upper bound to P({Q > x)), the tail of the queue length distribution. Here it should 

be noted that  while pt  = p for high-speed ATM networks, it may not -be true for other 

networks; however, all our results are also valid for general time-varying pt as long as the 

net input rate can be effectively modeled as a Gaussian process. Now let us briefly discuss 

the relevance of our work in the context of the existing literature. 

Discrete-Time Case: 

As :mentioned in Chapter 1, in the discrete-time setting [I] ,  it has been shown for 

stationary ergodic Gaussian net input processes u, that 

P({Q > x)) = P({(X) > x)) -- ~ e - 9  as x i m, (4.6) 

where Jn and K are given by (4.5), and S defined by (3.16). From th,e above relation, 

~ e - %  has been suggested as an approximation to P({Q > x)) for large z. This approxi- 

mation is often called the asymptotic approximation. However, since the exact value of the 

asymptotic constant C cannot be obtained in general, the following simpler approximation 

(obtained by setting C = 1) has also been suggested: 

2 6 2  -- 
P({Q > x)) = e s 

This approximation is the well known eSfective bandwidth approximation, which can be 

extended to fairly general classes of net input processes ut [13]. In recent papers, however, 

it has heen argued that the effective bandwidth approximation does not account for the 

advantage of multiplexing and could lead to significant underutilization of the network [9, 

181. Therefore, there is renewed interest in the accurate approximations and bounds for 

the asymptotic constant C .  



It is important to note that the decay rate of the asymptotic upper bound given 

in Theorem 8 coincides with the decay rate of the tail P({Q > x)) which is equal to 
2 6  2 ~ 2  D 

-- s * Therefore, the asymptotic upper bound provides us an upper bound e - 7  to the 

asymptotic constant C when vn is a stationary Gaussian process that sa,tisfies conditions 

(C1)-((23). As previously mentioned, a fairly large class of stationary Gaussian processes 

satisfy these conditions. Hence, the upper bound to the asymptotic constant is expected 

to help us to better exploit the advantage of multiplexing when designing these networks. 

Cont inuous-Time Case: 

In contrast to the discrete-time case, (4.6) has been shown to be valid i:n the continuous- 

time case only for a very limited class of stationary Gaussian processes vt. Therefore, 

obtaining an asymptotic result for the tail probability, which is similar to (4.6), is very 

important. In the following part of this section, we show how our asymptotic upper bound 

can be used to obtain an asymptotic result for P({Q > x)) which is nearly comparable 

to  (4.6). 

Using the results for the discrete-time case, we can show that there exists an asymp- 

totic lower bound to the tail probability P({(X) > x)) of the form ~ e - ? ,  that is, 

lim inf,,, ~?P({(x) > x)) > 0. Now, consider the continuous-time process Xt ex- 

pressed by (1.1). Given a A > 0, an asymptotic lower bound to the tail probability 

P({(X) > x)) can be found by looking a t  the sampled stochastic process {X, = XnA : 

n = 0 ,1 ,2 , .  . .). Note that X, can be expressed as 

where (5 ,  := J ( ~ ~ I A  [,ds and k := KA. & is a stationary Gaussian :process (from its 

definition) and C((1) its autocovariance function can be obtained in terms of C,(r)  as 



from which one can verify that 

W 

s := c ci (1) = a Sm C~ ( T ~ T  = as. 
-03 -03 

Hence, from (4.6) there exists a cl > 0 such that 

2r12 -- 2K2 -- ~({(x )  > x)) N c l e  s = cle s . 

Therefore, we get 

2 ~ 2  
lim inf e - 3 P ( { ( X )  > 2)) >_ lirn inf e - ~ P ( { ( x )  > x)) 

x+w x + w  

(since (x) 2 (x) = (X)(o,a,na, ...) ) 

= cl > 0 (from (4)). 

Now, by combining Theorem 8 and (4.7), it follows that for stationary Gaussian pro- 

cesses & that satisfy conditions (C1)-(C3), 

2nz ZKZ 2~~ D 
cl 5 lim inf e - s P ( { ( X )  > x)) 5 lim sup e P s P ( { ( X )  > x)) 5 e C 7 ,  

x t w  x + w  

- 2x2 D 
where D is defined by (3.3). Therefore, if we let c2 := e 7, then the above equation 

implies that for a fluid queue whose net input rate ut (= [-t - K )  is a sta1;ionary Gaussian 

process that satisfies conditions (C1)-(C3), for any E > 1, 

c1 - 2 ~ 2  2nz -e s < P({Q > x)) = P({(X) > x)) 5 e c 2 e - S  for a11 sufficiently large x. (4.9) 
E 

Even though the above relation is not as strong as (4.6), it tells us thak P({Q > x)) is 

asymptotically enclosed within an exponential envelope when conditions (C1)-(C3) are 

satisfied by the net input rate vt. 



5 .  Numerical Examples 

In this chapter we provide two numerical examples to illustrate the pe:rformance of the 

asymptotic upper bound P({(X) > x)) 5 e-%("+F) .  Our analytical results are compared 

with sirnulation results using the Importance Sampling technique described in [5], which 

has been developed to estimate the queue length distribution efficiently. Therefore, to 

estimate P({(X) > x)), we use the fact that the suprema distribution of X is equal to 

the queue length distribution if I and K are related to v by (4.5). Also, in order to  show 

the accuracy of the simulation estimates, 99% confidence intervals are computed by the 

method of batch mean [4], and displayed as vertical segments around the: estimates of the 

tail probability. 

In the first example, we consider a continuous-time process Xt  given by (1.1) where It is 

a stationary Gaussian process with autocovariance function C((T) = 80 x e-lr1+40 x e -  $ 1 .  
Since the (queueing) simulation with a Gaussian net input rate cannot be performed 

in continuous-time, we show the tail probability P({(x) > x)) instead of P({(X) > 

x))  where is the sampled sequence of Xt introduced in the previous chapter. More 

precisely, we set A to 0.05 to obtain X, = XnA from Xt.  In Figure 5.1, we compare 

the tail probabilities P({(x) > x)) estimated via simulation, and the asymptotic upper 

bounds given in Theorem 8 for K = 8 and K = 16. Remember that the d.ecay rates of the 

exact tail probability and the asymptotic upper bound are equal to - IF .  Therefore, as 

one can see in the figure, the simulation and analytical curves are paralllel to each other 

for large x. Also note that the the asymptotic upper bound is fairly close to the tail 

probability for sufficiently large x. Although the tail probability P({(;Y) > x)) cannot 

be directly estimated through simulation, it is bounded by P({(x) > x)) from below. 

Hence, for this case, we can conclude that the envelope given by (4.9) is fairly narrow. 

In the second example, we consider a discrete-time process X, given by (1.2) where 

I, is a stationary Gaussian process with its autocovariance function C((Y1) = 25 x 0.91" + 
20 x 0.971'1. In Figure 5.2, we show the tail probability and the asymptotic upper bound 

again for K = 8 and K = 16. As in the previous example, the exact tail probability 

curve estimated by simulation is parallel to the asymptotic upper bounld for large values 
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Figure 5.1: The tail probability P({(X) > x)) estimated through si~nulation and its 

asymptotic upper bound e-f ('~9) for a continuous-time process Xt  expressed by (1.1). 

In this example, the autocovariance function of tt is given as Ct (7) = 80 x e l r  +40 x e-lel 
and tc is set to two different values, 8 and 16. 

of x. Also, from the figure, we can deduce that the asymptote of the tail probability 

(as described by (4.6); there is an exponential asymptote of the tail probability in the 
Z K ~ D  

discrete-time case) will be quite close to the bound. This suggests that e - 7  is a tight 

upper bound to the asymptotic constant C in (4.6) which can be used as a dimensioning 

parameter for network design and control. Extensive experimentation with a wide variety 

of different processes tn has indicated that the upper bound to the asy:mptotic constant 

is usually quite tight [8]. 
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Figure 5.2: The tail probability P({(X) > x)) estimated through sirnulation and its 

asymptotic upper bound e - % ( ~ + 9 )  for a discrete-time process X, expressed by (1.2). In 

this exa,mple, the autocovariance function of J, is given as CI(Z) = 25 x 0.91'1 + 20 x 0.971'1 

and IC is set to two different values, 8 and 16. 
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