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Abstract—Localization is considered a key factor for au-
tonomous cars. In this paper, we present a complete Simultaneous
Localization And Mapping (SLAM) solution. This algorithm is
based on probabilistic maximum likelihood framework using grid
maps (the map is simply presented as a grid of occupancy prob-
abilities). The solution mainly solve three renowned localization
problems (1. localization in unknown environment, 2. localization
in a pre-mapped environment and 3. recovering the localization
of the vehicle). Memory issues caused by the open size of outdoor
environment are solved using an optimized management strategy
that we propose. This strategy allows us to navigate smoothly
while saving and loading probabilities-grid submaps into/from
a hard-disc in a transparent way. We present the results of our
solution using our own experimental dataset as well as the KITTI
dataset.

I. INTRODUCTION

One of the key aspects induced by a self-driving car is the
ability to localize itself in its environment. This perception
task, essential to every navigation system, is crucial for au-
tonomous driving as it is the basis on which trajectory planning
and command laws will rely. This topic has therefore received
a great amount of attention from the scientific community.
However, it is a difficult goal to achieve as such a solution
must be able to operate in large environments, provide accurate
results in real time and be able to find the vehicle’s location
in a previously explored environment when necessary.

Simultaneous Localization And Mapping (SLAM) tech-
niques play a central role in making cars truly autonomous.
The idea behind SLAM is, for a vehicle, to be able to incre-
mentally build a map of its surroundings while estimating its
pose (position and orientation) inside this map. An interesting,
but often neglected aspect is that, once a map has been built, it
can then be enriched or/and used for re-localization purposes
if a vehicle re-enters a previously mapped area.

In order to work in a fully autonomous car (embedding
other detection and safety algorithms), the requirements of
each algorithm should be optimized. This includes localization
system, as well as the architecture surrounding it, they must
be designed with this constraint in mind and should not limit
the size of the environment in which the vehicle is moving.

We propose here a complete SLAM solution, called PML-
SLAM for Probabilistic Maximum Likelihood - SLAM, based
on horizontal laser sensors. PML-SLAM is well-suited to
real-life applications, it’s designed to perform in low re-

source requirements, both in terms of computational time
and memory consumption management. PML-SLAM has the
particularity to be designed around a solid map management
strategy in order to allow navigation to be smooth while
save/load/update/enrich map of any size environment. Based
on this map management strategy three of the most popular
problems related to localization are solved. 1. localization in
unknown environment, where our solution offers the possi-
bility to build a consistent map. 2. localization in known
environment, using a pre-built map which offers the possibility
to define vehicle’s trajectory. 3. the kidnapped robot problem,
in this case the vehicle can retrieve precisely its location
and orientation after kidnapping without any priori knowledge
about its new position. In these three cases the environment
map can be updated in real-time even when the vehicle route
from a previously explored environment or after kidnapping.

The paper is organized as follows: Section II presents the
state of the art regarding SLAM algorithms. Then, Section
III introduces the PML-SLAM algorithm with it’s different
modules that have been developed. The architecture as well as
the underlying mathematical framework are presented. Finally,
Section IV deals with the experiments and the results obtained.

II. STATE OF THE ART

Early work on the SLAM problem led to the foundation of
a probabilistic framework [1][2][3]. Even though the SLAM
problem can now be considered as being theoretically solved
[1], many issues have emerged in practical implementations.

The map representation has a great impact on which en-
vironments could be tackled and the performance of the
algorithm. Three main map representations can be found
in the literature: landmark-based maps, grid maps and raw-
measurement maps. The first one relies on the environment’s
specific characteristics to extract significant landmarks (points,
edges, etc.) [4]. One strong constraint is to be able to have a
sufficiently high number of landmarks in the scene to compute
a proper localization. Grid maps divide the environment into
cells. Each cell is associated to an occupancy probability
[5]. Consequently, these algorithms depend on the geometric
structure of the environment. Last, approaches based on raw-
measurement maps directly integrate raw sensor data in order
to have the most accurate map possible. The direct conse-
quence is that these maps can be difficult to store and can



require a high computational cost for processing [6].
The sensors used (information type), the environment’s

characteristics (information extraction) as well as the estima-
tion process (information processing) should guide the choice
of a map representation. Regarding estimation processes, the
initial solutions to address the SLAM problem were based
on Extented Kalman Filters [1] and Particle Filters [3][7].
Optimization methods, such as Bundle Adjustment [8], are
now computationally viable and provide interesting results.
These approaches are better suited to a landmark-based rep-
resentation. Conversely, other solutions based on Likelihood
Maximization [9][6] are suited to grid maps. Some imple-
mentations also consider a raw-measurement map in addition.
Landmark maps are usually built with vision and laser sensors
whereas grid maps rely mostly on lasers.

The computational performance of SLAM algorithms is also
a major criterion when real-life applications are targeted. This
aspect has been considered in many recent SLAM algorithms
such as [10] and [11][12]. Still in the objective of making
vehicles autonomous, being able to solve the kidnapped robot
problem (localize the vehicle in a map given a set of observa-
tions) is important [13]. Indeed, the vehicle should be able to
use a reference map when the environment has already been
mapped, as it increases the relative localization accuracy and
allows the map to be enriched [8].

In this paper, we propose a solution to deal with large-scale
environments using a standard computer. Our solution is based
on laser sensors data only which require less processing for
data extraction than cameras. This choice led us to a grid-based
representation due to its lightness. Around these choices, we
built an estimation process based on likelihood maximization.

III. PML-SLAM

A. Probabilistic SLAM

The general formulation of the SLAM problem is the
estimation of the joint probability posterior of the robot pose
and the environment map simultaneously over all previous
sensor observations and command inputs:

P (xt,Mt|z0:t,u0:t,x0) (1)

where xt is the position and orientation of the robot
(x, y, α) at time t, Mt is the environment map at time t,
z0:t = {z0, z1, ..., zt} is the set of all sensor observations up
to time t, u0:t = {u0,u1, ...,ut} is the set of robot motion
measurements up to time t and x0 is the initial position and
orientation of the vehicle.

SLAM algorithms mainly consist of a two-step recursive
process:
• time update (prediction): which is a prediction of the

robot state and the joint map, based on previous obser-
vations as well as command inputs.

P (xt,Mt|z0:t−1,u0:t,x0) =

∫
P (xt|xt−1,ut)

×P (xt−1,Mt−1|z0:t−1,u0:t−1,x0)dxt−1

(2)

• measurement update (correction): which is a correction
of the state (vehicle and map) based on the current
observation.

P (xt,Mt|z0:t,u0:t,x0) =

P (zt|xt,Mt)× P (xt,Mt|z0:t−1,u0:t,x0)

P (zt|z0:t−1,u0:t)

(3)

B. General Overview

PML-SLAM for Probabilistic Maximum Likelihood -
SLAM, is a complete SLAM framework for autonomous cars
based on information provided by laser sensors. PML-SLAM
offers two different operating modes (localization with or
without an a prior map of the environment). It is based on
a complete framework to manage large-scale maps (there is
no limitation on the environment size and the map can be
gradually expanded and/or updated in real-time).

The general flowchart of the PML-SLAM approach is given
in Figure 1. It shows the architecture of the implementation
which is basically built around three main blocks (dark green
boxes).
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Fig. 1. General flowchart of the PML-SLAM algorithm

Different module illustrated on this flowchart will be
detailed in the rest of this section.

C. Overview on Data Representation

The map is expressed through a grid of probability cells
with a parameterizable resolution, which makes it possible
to control the discretization level of the environment. We
also take advantage of this discretization to maintain maps at
different resolutions to perform localization recovery faster (cf.



III-H). The cell size, in the highest resolution, is set according
to the laser sensor characteristics to obtain the best localization
accuracy possible. An example of such a map is shown in
Figure 2.

(a) Satellite map (b) Map built by PML-SLAM

Fig. 2. Map from Plaisir-France

The map, at resolution level r and at time t, is
denoted as Mt,L=r. It is the fusion of all submaps
{M1,M2, · · ·Mt}L=r, where the submap Mt

L=r is the envi-
ronment seen at time t. The different resolution level are used
to solve kidnapped robot problems (more details in Section
III-H).

Mt
L=r is the collection of cells {m1,m2, · · ·mN} with N

being the maximum number of cells in the submap. Each cell
corresponds to an occupancy probability [0, 1] where a cell
occupancy probability close to 0 means that it is likely to be
free. Conversely, a probability close to 1 means that a cell is
likely to be occupied.

Figure 2(b) shows the probability grid map of the real
environment presented in Figure 2(a). The dark cells are those
with a high occupancy probability and the light cells represent
the ones that are likely to be free. The green points represent
the current observation data.

D. Motion Model

The Motion Model computes the pose prediction based on
a vehicle model. It takes into account the vehicle’s previous
pose xt−1 and the vehicle’s speed vt−1 (linear and angular)
to provide a list of position and orientation candidates
Xt = {x1,t,x2,t, · · ·xn,t} where the vehicle can be located.

Here, we are using a Constant Velocity model to describe
the behavior of the vehicle’s motion. Indeed, as the time
interval δt between two consecutive laser scans is small (≈
60 milliseconds), we assume that the variation in the vehicle’s
speed δvt is also small. Our prediction model is expressed as:

∆xt = ∆xt−1 + δt× δvt (4)

xt|t−1 = xt−1|t−1 + ∆xt (5)

E. Initial velocity finder

The role of the Initial velocity finder module is to deal with
scenarios which begin when the vehicle is already moving.
With the Constant Velocity model presented previously, these
cases can lead to wrong estimates at the beginning of such a
trajectory.

The module computes a rough estimation of the movement
by minimizing the distance (translation and rotation) between
the two first laser scans z0 = {z00, z10 · · · zn−10 } and z1 =
{z01, z11 · · · zn−11 } where zij is the ith 2D point in the jth laser
scan composed of n points.

Fig. 3. Search area around the vehicle to compute its movement.

This first estimate is estimated as follows (dist is the func-
tion computing the Euclidean distance between two points):

∆x1 =
1

n

n−1∑
i=0

dist(zi0, z
i
1) (6)

v1 = ∆x1/δt(0,1) (7)

The values computed (∆x1,v1) can then be transmitted to
the Motion Module presented above.

The search space is limited by the maximum distance the
vehicle can travel during time between the first two observa-
tions (z0, z1). Figure 3 shows the distribution of candidates
all around to cover the possible area. Each square represents
one candidate on a low resolution map to accelerate the search
process.

F. Maximum Likelihood Matching

The Maximum Likelihood Matching module corresponds to
the correction process in SLAM algorithms (see Equation 3)).
It takes into account the new measurement of the environment
zt in order to refine the state estimation xt|t−1 proposed in
the output of the Motion Model.

This module performs a maximization of similarity between
the current laser scan zt and the map Mt−1 from the previous
time using the list of candidate poses Xt provided by the
motion model:

xt|t = arg max {P (zt|xt|t−1,Mt−1)

×P (xt|t−1|xt−1|t−1,ut)}
(8)



P (zt|xt|t−1,Mt−1) ∝
N∑

cell i=1

P (mi
t−1) (9)

where mi
t−1 is occupied.

In other words, this step consists in finding the best position
and orientation xt|t of the vehicle by fitting the observation
zt on the map Mt−1.

After performing the correction step, we update the system
joint state (xt,Mt) by merging the new observation in the
map:

Mt = Mt−1 ∪Mt (10)

This module is completed by a feedback process to adapt
the matching parameters depending on the matching score.
The threshold for cell selection (which is based on their
probability) is adjusted to maximize the number of matched
cells in the next SLAM update. If the matching score is too
low, the feedback triggers a reset of the system in order to
re-localize the vehicle.

G. Map Manager

This map manager is the key feature of our work. The
map is represented by a high resolution occupancy grid and
we aim at performing SLAM in large-scale environments.
This is not compatible as maps grow in size and we have
limited memory resources. The Map Manager module provides
a robust management of our limited resources. The goal is to
be able to have high resolution maps for accurate matching
without putting any limitation on the environment size.

Tiles of the exchange buffer 
(loaded from hard-disk)

Tiles of the current local map 
(later saved on hard-disk)

Common tiles between buffers 
(conserved on memory)

Fig. 4. Map buffers to deal with large-scale environments

Our technique consists in managing the map between the
limited Random Access Memory (RAM) and the hard-disk-
drive (HDD) where space is not an issue. First, the map is
divided into small areas which we call tiles. Then, we only

keep in the memory a current local part of the global map
which is still big enough to navigate seamlessly from one
local map to another. The other tiles are saved on the hard-
disk. Tiles are then loaded and unloaded depending on the
pose of the vehicle so as always being able to match current
observations. An illustration of this map management strategy
is given in Figure 4. The grey square is the current local
map buffer, containing a grid of 16 tiles, which is actually
loaded in the RAM. The other squares (blue, green and red)
are candidate configurations to which the local buffer may
next move, depending on the vehicle’s direction. The arrows
of same color shows the next configuration to be adopted.

Furthermore, the key ingredient behind exchanging buffers
seamlessly between RAM and HDD in real-time is by com-
pressing probability grid submaps. The buffer (grid of proba-
bility) is seen as an image buffer. This allows us to use a image
compression techniques. Here we are using a compression
technique in PNG which accelerates files saving and loading
operations as well as reducing the space required on the hard-
drive.

H. Pyramidal Map Matching

The Pyramidal Map Matching module is able to solve
the kidnapped robot and relocalization in pre-mapped envi-
ronments (with what is called a reference map) problems.
The idea is to perform an extensive search of the current
observation over the reference map to find the robot’s pose
with relation to this map. As this process can be unreliable and
time consuming, the reference map is expressed at different
resolution levels. At low resolutions, finding a correspondence
is fast but not accurate. By going through the different levels,
we are able to refine the pose quickly, by testing only a few
pose candidates.

This module uses a similar strategy than proposed by
Xie et al. [9]. The main difference comes from the map
representation. Instead of a raw-measurement map, we take
advantage of our Map Manager module to directly use a
grid representation. It has the advantage to allow a faster and
constant loading time compared to [9] where the time will
vary according to the map size.

As the search can be long without prior knowledge (GPS
position for instance), the vehicle continues to perform SLAM
while the Pyramid Map Matching module works as a back-
ground task. Once the pose on the reference map is found, the
current state is brought back into the frame of the reference
map.

IV. EXPERIMENTS

The first experiments were carried out using the KITTI
odometry database [14] which provides datasets (with Velo-
dyne, cameras and a ground truth) in various environments
for performance evaluation. In order to adapt the data to our
implementation inputs, we cut the original Velodyne data to
simulate an ordinary single-layer LiDAR scanner configuration
(360° field of view with a 0.25° resolution).



In order to test the relocalization performance of PML-
SLAM, we also built our own datasets thanks to a vehicle
equipped with 5 laser scanners covering a 360° field of view
with a 0.25° resolution. Only one layer was used to obtain
the results presented in this article. An IMU was fused with a
RTK-GPS to provide a ground truth.

All the experiments took place in urban and peri-urban en-
vironments in real conditions (moving obstacles were present).
All tests were performed on a computer equipped with a Core-
i7 running at 2.9 GHz. For all the results presented below,
PML-SLAM took on average 2 ms to process a scan layer.

A. SLAM in unknown environments

In this experiment, we used the sequence ”05” from the
KITTI odometry dataset, collected in a residential environ-
ment. We performed SLAM without any prior knowledge on
the environment.

At the beginning of the trajectory, a map of 16 tiles
(resolution 10 pixels/meter) were initialized. During the
whole trajectory, a total of 32 tiles were created and saved
on the hard disk, covering a 720, 000 m2 surface. The map
produced takes up 981 KB on the hard disk. The computed
trajectory is shown in Figure 5.
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Fig. 5. Vehicle paths from the Kitti odometry dataset, the path estimated by
PML-SLAM and the ground truth path.

The errors in displacement and heading at each iteration
are illustrated in the Figure 6. As we can see, the errors in
displacement are bounded by ± 5 cm, while the errors in
heading are limited to ± 0.3°.

Path estimated by SLAM is close to the ground truth. The
deviation throughout the trajectory in distance and in heading
are shown in Figure 7. We can see that after 2, 204 meters the
deviation in distance is about 6 meters with 0.1°of deviation
in heading.

B. Recovering from kidnapping

In this experiment we used a dataset which we collected in
a city using our platforms. The aim of this test is to illustrate
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Fig. 6. Errors in heading and displacement by iteration during the test.
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Fig. 7. Deviation from real path in distance and heading along journey.

the kidnapped robot problem and how we deal with it. The
trajectory performed and the recovery from kidnapping are
shown in Figure 8.
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Fig. 8. Vehicle path estimated by PML-SLAM during experiment in mapping
with kidnapping and recovering from kidnapping.

The vehicle starts to build a map (black path), then the



vehicle is kidnapped and put in another location (diamond on
the trajectory). As a consequence, the vehicle starts a new
local SLAM process (red path) whose computed trajectory
takes a similar shape to the previous route. During this time,
the position is provided in a local reference. The matching
process then finds the vehicle new position on the pre-built
map (recover from kidnapping). The recovery moment is
represented by the dashed green lines. The vehicle’s positions
provided from now on are given on the global map. The map
is further enriched during the common path (in dark green).
Once the vehicle enters areas not previously mapped (light
green), the vehicle continues to map and localize itself.

The map built at the beginning of the experiment served as
a recovering-from-kidnapping map, and covered 360, 000 m2.
The localization precision after recovering was ± 5 cm.

The operation of recovering took about 27 seconds in this
example. However, this time depends on the random selection
of matching candidates and is thus variable. Nevertheless,
while searching for its position, the vehicle is still localizing
itself with the SLAM process. The final map built takes up
508 KB on the hard disk and it should cover 517, 500 m2 of
surface.

C. Memory consumption

The limitation in resources is an important issue treated in
this paper. Figure 9 shows a comparison in terms of memory
consumption regarding the maximal size of the area covered by
the SLAM system with and without the Map Manager module
presented in this article (see Section III-G).
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Fig. 9. Memory consumption regarding the area covered by SLAM

We can see on the graphic that memory required by a SLAM
system without Map Management increases quadratically in
function of the environment size. In contrast the memory re-
quired by a SLAM with a Map Manager is constant regardless
the environment size. In realistic scenarios of autonomous
driving we can’t predefine the map size, a vehicle need to
have it’s freedom to navigate.

V. CONCLUSION

We have presented a complete SLAM algorithm, called
PML-SLAM. The proposed solution is based on the proba-
bilistic maximum likelihood framework coupled with a grid

representation. Its integration inside a complete architecture
allows to use any previously built map if available. A map
matching algorithm, based on a pyramidal search with multi-
resolution map, is able to re-localize the vehicle inside a map
given an observation, thus solving the kidnapped robot case.
Our approach has been designed with real-life applications in
mind and is consequently light both in terms of memory re-
quirements and processing time. The map is smartly managed
to be loaded and unloaded on the hard drive when needed thus
allowing to work in large-scale environments.

We have validated PML-SLAM with several experiments
over different scenarios: SLAM localization, relocalization and
navigation inside an existing map. The results show that our
approach is viable for real-time urban localization without
restrictions on the size of the environment.

In future work, we plan to fuse several localization al-
gorithms within a supervision layer in order to increase
robustness and localization accuracy.
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