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NONLINEAR SCHRÖDINGER EQUATION: CONCENTRATION ON CIRCLES
DRIVEN BY AN EXTERNAL MAGNETIC FIELD

DENIS BONHEURE, SILVIA CINGOLANI, AND MANON NYS

Abstract. In this paper, we study the semiclassical limit for the stationary magnetic nonlinear
Schrödinger equation

(i~∇ + A(x))2
u + V (x)u = |u|p−2

u, x ∈ R
3
, (0.1)

where p > 2, A is a vector potential associated to a given magnetic field B, i.e ∇ × A = B and V is
a nonnegative, scalar (electric) potential which can be singular at the origin and vanish at infinity
or outside a compact set. We assume that A and V satisfy a cylindrical symmetry. By a refined
penalization argument, we prove the existence of semiclassical cylindrically symmetric solutions of
(0.1) whose moduli concentrate, as ~ → 0, around a circle. We emphasize that the concentration is
driven by the magnetic and the electric potentials. Our result thus shows that in the semiclassical
limit, the magnetic field also influences the location of the solutions of (0.1) if their concentration
occurs around a locus, not a single point.

2010 AMS Subject Classification.
Keywords Nonlinear Schrödinger equation; semiclassical states; Singular potential; Vanishing poten-
tial; Concentration on curves; External magnetic field; Variational methods; penalization method.

1. Introduction

In Quantum Mechanics, the nonlinear Schrödinger equation (NLS) with a exterior magnetic field
B, having source in the magnetic potential A, and a scalar (electric) potential U has the form

i~
∂ψ

∂t
= (i~∇ +A(x))2 ψ + U(x)ψ = f(|ψ|2)ψ, x ∈ R

N ,

where N ≥ 3, i2 = −1, ~ is the Planck constant, and the mass is taken m = 1/2 for simplicity. The
magnetic laplacian is defined by

(i~∇ +A(x))2 = −~
2∆ + 2i~A(x) · ∇ + i~divA(x) + |A(x)|2,

and f(|ψ|2)ψ is a nonlinear term. In dimension N = 3, the magnetic potential A is related to the
magnetic field B by the relation B = ∇ × A. Such evolution equation arises in various physical
contexts, such as nonlinear optics or plasma physics, where one simulates the interaction effect
among many particles by introducing a nonlinear term.

The search of standing waves ψ(x, t) = e−i E
~

t u(x) leads to study the stationary nonlinear mag-
netic Schrödinger equation

(i~∇ +A(x))2 u+ (U(x) − E)u = f(|u|2)u, x ∈ R
N . (1.1)
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In the following, we write V (x) = U(x)−E and for simplicity we consider f(t) = t(p−2)/2. However,
we note that a larger class of nonlinearity could be considered, see for instance [34].

For ~ > 0 fixed, the existence of a solution of (1.1) whose modulus |u~| vanishes at infinity was first
proved by Esteban and Lions in [22] by using a constrained minimization approach. Concentration
and compactness arguments are applied to solve the associated minimization problems for a broad
class of magnetic fields. Successively in [5], Arioli and Szulkin studied the existence of infinitely
many solutions of (1.1) assuming that V and B are periodic.

In the present paper, we are interested in the semiclassical analysis of the magnetic nonlinear
Schrödinger equation (1.1). From a mathematical point of view, the transition from quantum to
classical mechanics can be formally performed by letting ~ → 0. For small values of ~ > 0, solutions
u~ : RN → C of (1.1) are usually referred to as semiclassical (ground or bound) states.

When A = 0, the study of the nonlinear Schrödinger equation

−~
2∆u+ V (x)u = f(|u|2)u, x ∈ R

N , (1.2)

has been extensively pursued in the semiclassical regime and a considerable amount of work has been
done, showing that existence and concentration phenomena of single- and multiple-spike solutions
occur at critical points of the electric potential V when ~ → 0, see e.g. [1, 3, 14, 15, 19, 20,
23, 32, 34]. Successively, the question of existence of semiclassical solutions to NLS equations
concentrating on higher dimensional sets has been investigated. In [4] Ambrosetti, Malchiodi and
Ni considered the case of a radial potential V (|x|) and constructed radial solutions exhibiting
concentration on a sphere, which radius is a non degenerate critical point of the concentration
function M(r) = rN−1V σ(r), σ = p/(p− 2) − 1/2 (see also [2, 6]). Moreover they conjectured that
this phenomenon takes place, at least along a sequence ~n → 0, whenever the sphere is replaced
by a closed hypersurface Γ, stationary and non degenerate for the weighted area functional

∫

Γ V
σ.

In [21], the above conjecture was completely solved in the plane by Del Pino, Kowalczyk and Wei.
We also quote [28], where Malchiodi and Montenegro considered the NLS equation on a smooth
bounded domain Ω in R

2 with Neumann boundary conditions and proved, for a suitable sequence
~n → 0, the existence of positive solutions u~n concentrating at the whole boundary of Ω or at
some components of it. In [26, 27], boundary concentration on a geodesic of the boundary has been
treated in the three-dimensional case. Later on, concentration on spheres of dimension N − 2 was
studied in [29] whereas Ambrosetti and Malchiodi proved the existence of solutions concentrating
on k-dimensional spheres (k ≤ 1 ≤ N − 1), see [3, Theorem 10.11]. More recently in [7], Bonheure,
Di Cosmo and Van Schaftingen proved the existence of semiclassical solutions to (1.2) concentrating
on a k-dimensional sphere, 1 ≤ k ≤ N − 1, for a large class of symmetric potentials V .

In presence of a magnetic field (A 6= 0), a challenging question is to establish how the magnetic
field influences the existence and the concentration of the moduli of the complex-valued solutions of
(1.1) as ~ → 0. A first result dealing with the concentration of least-energy solutions for magnetic
NLS equations was obtained in [25]. In this paper, Kurata proved that if (u~)~ is a sequence of

least-energy solutions to (1.1) with f(t) = t(p−2)/2, then the sequence (|u~|)~ of their moduli must
concentrate at a global minimum x0 of V , as ~ → 0. More precisely, there exist a sequence of points
(xn)n ⊂ R

N and a subsequence still denoted by (~n)n, with xn → x0 and ~n → 0 as n → +∞, such
that v~n(y) = u~n(xn +~ny) converges to some v ∈ C2

loc and converges also weakly in Lp. Moreover,
v satisfies the limiting equation

(i∇ +A(x0))2 v + V (x0)v = |v|p−2v, x ∈ R
N .

If we let w(x) = e−iA(x0)·x v(x), it follows that w satisfies weakly the equation

−∆w + V (x0)w = |w|p−2w, x ∈ R
N .
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Hence the concentration of the least-energy solutions is driven by the electric potential while the
magnetic potential influences the phase factor of the solutions, but does not affect the location of
the peaks of their moduli. The existence of such semiclassical least-energy solutions for magnetic
NLS equations was established in [11] by using Ljusternick-Schnirelmann theory.

Successively, by using a penalization argument, the existence of semiclassical bound state so-
lutions to (1.1), concentrating at local minima of V , has been proved in [17], for a large class of
magnetic potentials, covering the case of polynomial growths corresponding to constant magnetic
field (see also [16] for bounded potentials).

We also refer to [13] for existence results of multi-peak solutions to (1.1), whose moduli have
multiple concentration points around local minima of V , dealing with a large class of nonlinear
terms (possibly not monotone); and to [12] for semiclassical solutions having specific symmetries
concentrating around orbits of critical points of V .

In [35], the authors have established necessary conditions for a sequence of standing wave so-
lutions of (1.1) to concentrate, in different senses, around a given point. More precisely, they

show that if f(t) = t(p−2)/2, then the moduli of the peaks have to locate at critical points of V ,
independently of A, confirming what was conjectured in [16].

In all the above cited papers, the concentration of the moduli of the complex valued solutions
occurs at one or a finite set of critical points of the electric field V , while the magnetic field only
influences the phase factor of the standing waves as ~ is small.

In the present paper, we are interested in studying concentration phenomena on higher dimen-
sional sets in the presence of a magnetic field. More particularly, we aim to understand how and
in which situations the magnetic field influences such concentration. In the following, we restrict
ourself to consider (1.1) in R

3, for which we can already detect some interesting phenomena.
More specifically, we consider the class of scalar potentials V invariant under a group G of

orthogonal transformations, and the class of magnetic potentials A equivariant under the same
group, that is

g A(g−1x) = A(x), (1.3)

for every g ∈ G.

In dimension 3, the simplest group is G = O(3) which corresponds to a radially symmetric
setting. The potential V then depends only on |x|, while A satisfies the equivariance condition
(1.3) for every g ∈ O(3). However, this last constraint on A is too strong, in the sense that the only
possible vector potential satisfying this condition is a multiple of the normal vector to the sphere.
Indeed, if x is a point on a sphere of radius r, there always exist rotations gx ∈ O(3) that leave the
axis going through the center of the sphere and x invariant, that is gxx = x for those particular gx.
Then, at that point x, the equivariance condition (1.3) rewrites

gxA(g−1
x x) = A(x) ⇒ gx A(x) = A(x).

This means that at that point x, A(x) = f(x)x, where f(x) is any arbitrary function of x. Finally,
if we consider any g ∈ O(3) with A having the above expression, we obtain

g f(g−1x)
(

g−1x
)

= f(g−1x)x = f(x)x, for all g ∈ O(3).

This means that A(x) = f(r)x is a normal vector to the sphere, depending only of the radius of the
sphere. Furthermore, we immediately notice that A is a conservative field and therefore ∇ ×A =
B = 0. We remark that this result was already obtained in [18, Theorem 1.3]. Then physically,
(1.1) is equivalent to a problem without magnetic potential. In particular, the concentration on
spheres of the solutions of (1.1) is only driven by the scalar potential V and we are exactly on the
case studied by Ambrosetti, Malchiodi and Ni in [4].
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A physically relevant case occurs in R
3 in presence of magnetic and electric potentials having

cylindrical symmetries. In that setting, we obtain a new surprising result for (1.1). We prove that
the existence and the concentration of semiclassical bound states is influenced by the magnetic
field when the concentration occurs on a circle. We conjecture that this result should also occur in
more general situations. More specifically, we consider the class of invariant scalar potentials and
equivariant magnetic potentials under the action of the group

G := {gα ∈ O(3), α ∈ [0, 2π[ }, (1.4)

where

gα =





cosα − sinα 0
sinα cosα 0

0 0 ±1



 .

Namely, we assume that A = (A1, A2, A3) ∈ C1(R3,R3) satisfies (1.3) for every g ∈ G given by
(1.4). If we use the cylindrical coordinates (x1, x2, x3) = (ρ cos θ, ρ sin θ, x3), the condition (1.3) can
be rewritten as

A1(ρ, θ − α,±x3) = cosαA1(ρ, θ, x3) + sinαA2(ρ, θ, x3)

A2(ρ, θ − α,±x3) = − sinαA1(ρ, θ, x3) + cosαA2(ρ, θ, x3)

A3(ρ, θ − α,±x3) = ±A3(ρ, θ, x3).

If we denote by

eτ = (− sin θ, cos θ, 0) , en = (cos θ, sin θ, 0) , e3 = (0, 0, 1)

an orthonormal basis of R3, we therefore infer that A has the form

A(ρ, θ, x3) = φ(ρ, |x3|) en + c(ρ, |x3|) eτ + A3(ρ, x3) e3,

for some functions φ, c ∈ C1(R+ ×R
+) and some A3 ∈ C1(R+ ×R) which is odd in x3. The typical

example φ ≡ 0 ≡ A3 and c = bρ/2, b ∈ R\{0} corresponds to the constant magnetic field B = b in
the direction x3 which is the simplest but also one of the more relevant case.

Next, we consider nonnegative cylindrically invariant potentials V ∈ C(R3\{0}), i.e. V (gx) =
V (x) for every g ∈ G. This is equivalent to assume that V depends only on ρ and |x3|. Moreover,
we impose a growth condition at infinity when p ∈ (2, 4] :

(V ∞) there exists α ≤ 2 such that lim inf
|x|→+∞

V (x)|x|α > 0.

When p > 4, we do not impose this restriction so that for instance one can deal with fast-decaying
potentials or even compactly supported potentials. Nonetheless, as we will see later, we cannot
consider V ≡ 0.

At the origin, we do not require any specific assumptions on V . For instance, V can behave
singularly at the origin, or be locally bounded at the origin. However, if V has a singularity, one
can single out the Hardy potential as a threshold behaviour as in [7]. If we assume in addition that

(V 0) there exists α ≥ 2 such that lim inf
|x|→0

V (x)|x|α > 0,

then one can deduce a strong flatness of the solutions at the origin which depends on the order of
the singularity.

We will look for solutions u : R3 → C of the problem
{

(i~∇ +A)2 u+ V u = |u|p−2 u,
u ∈ L2(R3,C), (i~∇ +A) u ∈ L2(R3,C3).

(1.5)
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which satisfy the condition

u(gx) = u(x) for all g ∈ G, x ∈ R
3,

and concentrate around a circle for small ~ > 0. To this aim, we introduce the concentration
function M : R

+ × R
+ → R

+ defined by

M(ρ, |x3|) = 2πρ
[

c2(ρ, |x3|) + V (ρ, |x3|)
] 2

p−2 E(0, 1), (1.6)

where E(0, 1) is a positive unrelevant constant (see Section 3 for more details).
Denoting by H ⊂ R

3 the 1-dimensional vectorial subspace spanned by e3, and by H⊥ its orthog-
onal complement, we assume the existence of a smooth bounded open G-invariant set Λ ⊂ R

3 such
that Λ̄ ∩ H = ∅, Λ ∩ H⊥ 6= ∅. By G-invariant, we mean that one has g(Λ) = Λ for every g ∈ G.
Furthermore we assume that

inf
Λ∩H⊥

M < inf
∂Λ∩H⊥

M and inf
Λ∩H⊥

M < 2 inf
Λ

M, (1.7)

whereas

inf
Λ̄
V > 0. (1.8)

Observe that the second assumption in (1.7) is in fact not restrictive if we take Λ sufficiently small,

since Λ is smooth and V is continuous in Λ̄.

Using the facts that A and V have cylindrical symmetries, the equation in (1.5) can be reduced
to a problem in R

2. Let ρ0 > 0 be a fixed radius and denote by A0 : R2 → R
2 the constant magnetic

potential defined by

A0 = (φ(ρ0, 0), 0) and a0 = c2(ρ0, 0) + V (ρ0, 0).

We introduce the following two-dimensional problem

(i∇ +A0)2u+ a0u = |u|p−2u, y = (y1, y2) ∈ R
2 (1.9)

which can be regarded as a limiting problem for (1.5). Following the approach in [7], we will obtain
the existence of cylindrically symmetric solutions of (1.1) concentrating around circles in Λ ∩ H⊥

for ~ > 0 small.
We stress that the two-dimensional limiting problem (1.9), as well as the concentration function

M, takes into account the magnetic field which will therefore influence the location of the concen-
tration set of the semiclassical solutions of (1.1). This feature is new and, up to our knowledge,
different from all the previous results in literature when dealing with an exterior magnetic field.
Moreover, if we let Aτ (ρ) = A(ρ, θ, 0) · eτ = c(ρ, 0) be the tangential component of A(ρ, θ, 0) and
An(ρ) = A(ρ, θ, 0) · en = φ(ρ, 0) be its normal component, the solution of the two-dimensional limit
problem (1.9) is given by ei(An(ρ0),0)·yw, y ∈ R

2, where w is the ground state solution of

−∆w + a0w = |w|p−2w, y ∈ R
2.

In this equation, a0 = c2(ρ0, 0) + V (ρ0, 0) = A2
τ (ρ0) + V (ρ0, 0). Therefore, our result below shows

that the location of the concentration of the semiclassical bound states is influenced by the tan-
gential component of A and by the scalar potential V , while the phase factor of the semiclassical
wave depends on the normal component of A. We conjecture that this is a general fact and that it
is not just a consequence of the symmetry assumptions.

In order to state our main result, we introduce some notations and tools adapted to the cylindrical
symmetry of the problem. First, for y, z ∈ R

3, we define the pseudometric

dcyl(y, z) =
(

(ρy − ρz)2 + (y3 − z3)2
)1/2

,
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where ρy = (y2
1 + y2

2)1/2 and ρz = (z2
1 + z2

2)1/2. This function accounts for the distance between two
circles. Then, for r > 0 and x ∈ R

3, we denote by Bcyl(x, r) the ball (which is torus shaped)

Bcyl(x, r) =
{

y ∈ R
3 | dcyl(x, y) < r

}

.

Our main theorem states, for ~ sufficiently small, the existence of solutions of (1.5) that con-
centrate around a circle S1

~
in the plane x3 = 0, centered at the origin and of radius ρ~, where ρ~

converges to a minimizer of M in Λ ∩ H⊥.

Theorem 1.1. Let p > 2. Let V ∈ C(R3\{0}) and A ∈ C1(R3,R3) be such that V (gx) = V (x)
and g A(g−1x) = A(x), for every g ∈ G defined in (1.4). Moreover, if p ∈ (2, 4), we suppose V
satisfies (V ∞). Assume that there exists a bounded smooth G-invariant set Λ ⊂ R

3 such that (1.7)
and (1.8) are satisfied. Then there exists ~0 > 0 such that for every 0 < ~ < ~0

(i) the problem (1.5) has at least one solution u~ ∈ C1,α
loc

(R3\{0}) such that u~(gx) = u~(x) for
every g ∈ G.

Moreover, for every 0 < ~ < ~0, |u~| attains its maximum at some x~ = (ρ~ cos θ, ρ~ sin θ, x3,~) ⊂ Λ,
θ ∈ [0, 2π[, such that

(ii) lim inf
~→0

|u~(x~)| > 0.

(iii) lim
~→0

M(x~) = inf
Λ∩H⊥

M;

(iv) lim sup
~→0

dcyl(x~,H
⊥)

~
< +∞ , that is x3,~ → 0;

(v) lim inf
~→0

dcyl(x~, ∂Λ) > 0.

Finally, for every 0 < ~ < ~0 there exist C > 0 and λ > 0 such that the following asymptotic holds

(vi) 0 < |u~(x)| ≤ C exp

(

−
λ

~

dcyl(x, x~)

1 + dcyl(x, x~)

)

(1 + |x|)−1 ∀x ∈ R
3 \ {0}.

Remark 1.2. The last assertion (vi) in Theorem 1.1 combines a concentration estimate with a
decay as |x| → ∞. This decay at infinity is not enough to guarantee that our solutions are L2 (since
the ambiant space is R

3). However, this is only a rough estimate valid without further assumption
on V and it can be improved when assuming a slow decay of V at infinity. Namely if we assume
that (V ∞) holds, then the solutions decay fast enough to be square integrable and thus they are true
bounded state solutions. We mention also that when (V 0) holds, we can estimate the flatness of the
solution at the origin. We refer to Lemma 6.5 for more details.

Example 1.3. As a striking example, we observe that the presence of a constant magnetic field can
produce a concentration phenomenon when coupled with a decaying electric potential. If we consider
for instance the cubic nonlinearity, i.e. p = 4, and the cylindrical Hardy potential V (ρ) = 1/ρ2,
ρ2 = x2

1 + x2
2, there is no concentrated bound state (probably no bound state at all) of the equation

without magnetic field. The presence of a constant magnetic field B = b in the direction x3 produces
a solution that concentrates on the circle of radius 21/2/(3b2)1/4.

As a particular case of Theorem 1.1, we deduce the somewhat surprising result which states that
when the scalar potential V is constant, the existence and the location of our semiclassical states
is only driven by the magnetic field.

Corollary 1.4. Assume V ≡ ω, where ω is a positive constant. Then, under the assumptions of
Theorem 1.1, the concentration of the solutions u~ holds at

inf
Λ∩H⊥

M = inf
Λ∩H⊥

2πρ
(

c2 + ω
) 2

p−2 E(0, 1).
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Finally, we also remark that Theorem 1.1 do not require an upper bound on p > 2. Henceforth,
we can treat critical and supercritical exponent problems by looking for cylindrically symmetric
solutions of (1.1).

The paper is organized as follows. In Section 2, we give the variational framework and some
related properties. Section 3 is devoted to the study of the two dimensional limit problem. A
penalization scheme is introduced in Section 4 and the existence of least-energy solutions is proved.
The asymptotics of those solutions is studied in Section 5, while their concentration behaviour is
established in Section 6, showing that the solutions of the penalized problem solve the original one
and therefore concluding the proof of Theorem 1.1. Finally, Section 7 is devoted to another class
of symmetric solutions in the special case of a Lorentz type magnetic potential. These solutions
are defined through an ansatz proposed by Esteban and Lions in [22, Section 4.3].

2. The variational framework

In this section, we will fix our functional setting. In particular, we will define the Hilbert spaces
adapted to the presence of a magnetic potential. We emphasize that in all Hilbert spaces we use,
the scalar product will always be taken as the real scalar product, i.e. for every z,w ∈ C, the scalar
product will be defined by (w|z) = Re(wz̄).

2.1. The magnetic spaces. Let N ≥ 2. For A ∈ L2
loc(R

N ,RN ), we define the space D1,2
A,ε(R

N ,C)

as the closure of C∞
0 (RN ,C) with respect to the norm defined through

‖u‖2
D1,2

A,ε

:=

∫

RN
|(iε∇ +A)u|2.

Similarly, D1,2(RN ,C) (resp. D1,2(RN ,R)) is the closure of C∞
0 (RN ,C) (resp. C∞

0 (RN ,R)) with
respect to the norm defined through

‖u‖2
D1,2 :=

∫

RN
|∇u|2.

Remember that the Sobolev inequality implies that D1,2(RN ,C) (resp. D1,2(RN ,R)) is embedded
in L2⋆

(RN ,C) (resp. L2⋆
(RN ,R)). We also consider the space

H1
A,ε(R

N ,C) =
{

u ∈ L2(RN ,C) | (iε∇ +A)u ∈ L2(RN ,CN )
}

,

endowed with the norm

‖u‖2
H1

A,ε
=

∫

RN
|(iε∇ +A)u|2 + |u|2.

We remark that, in general, this space is not embedded in H1(RN ,C) (and inversely). However if
u ∈ H1

A,ε(R
N ,C), then |u| ∈ H1(RN ,R). This is the diamagnetic inequality that we recall here.

Lemma 2.1 (Diamagnetic inequality). Let A : R
N → R

N be in L2
loc

(RN ,RN ) and let u ∈

D1,2
A,ε(R

N ,C). Then, |u| ∈ D1,2(RN ,R) and the diamagnetic inequality

ε |∇|u|(x)| ≤ |(iε∇ +A)u(x)| (2.1)

holds for almost every x ∈ R
N and for every ε > 0.

Proof. We compute

ε∇|u| = Im

(

iε∇u
ū

|u|

)

= Im

(

(iε∇ +A)u
ū

|u|

)

a.e.

because A is real-valued. We conclude using the fact that |Im(z)| ≤ |z| for any complex number
z. �
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Using (2.1), we can verify that, for every u ∈ D1,2
A,ε(R

N ,C),

ε2
∫

RN
|∇|u||2 dx ≤

∫

RN
|(iε∇ +A)u|2 dx, (2.2)

for any ε > 0.

In some particular cases, the spaces H1
A,ε(R

N ,C) and H1(RN ,C) are equivalent as for instance

if A is bounded. The following lemma is proved for example in [16, Lemma 3.1].

Lemma 2.2. Let A : RN → R
N be such that |A| ≤ C for all x ∈ R

N , C ≥ 0. Then, the spaces
H1

A,ε(R
N ,C) and H1(RN ,C) are equivalent.

Finally, we introduce the following Hilbert space

H1
A,V,ε(R

N ,C) =

{

u ∈ D1,2
A,ε(R

N ,C) |
∫

RN
V (x)|u|2 < ∞

}

,

endowed with the norm

‖u‖2
H1

A,V,ε
=

∫

RN
|(iε∇ +A)u|2 + V (x)|u|2.

In what follows, for simplicity, we write ‖u‖ε instead of ‖u‖H1
A,V,ε

.

2.2. Hardy and Kato inequalities. In dimensions N ≥ 3, the Hardy inequality for functions
u ∈ D1,2(RN ,C) writes

(

N − 2

2

)2 ∫

RN

|u(x)|2

|x|2
dx ≤

∫

RN
|∇u|2,

and for functions u ∈ D1,2
A,ε(R

N ,C)

ε2
(

N − 2

2

)2 ∫

RN

|u(x)|2

|x|2
dx ≤ ε2

∫

RN
|∇|u||2 ≤

∫

RN
|(iε∇ +A)u|2, (2.3)

for any ε > 0. Furthermore, we recall the following Kato’s inequalities. First, for functions
u ∈ L1

loc(R
N ,C) with ∇u ∈ L1

loc(R
N ,CN ), we define

sign(u)(x) =











ū(x)

|u(x)|
u(x) 6= 0

0 u(x) = 0.

We have

∆|u| ≥ Re (sign(u)∆u) . (2.4)

We also have a similar inequality in presence of a magnetic potential A ∈ L2
loc(R

N ,RN ),

ε2∆|u| ≥ −Re
(

sign(u)(iε∇ +A)2u
)

. (2.5)

Throughout the text, we will use an auxiliary Hardy type potential. This potential was first
introduced in [30, 31] to extend the penalization method of del Pino and Felmer to compactly
supported potentials V . For N ≥ 3, we define the function H : RN → R by

H(x) =
κ

|x|2 ((log |x|)2 + 1)
1+β

2

,

for β > 0 and 0 < κ <
(

N−2
2

)2
. Notice that, for all x ∈ R

N , we have

H(x) ≤
κ

|x|2
, or H(x) ≤

κ

|x|2 |log |x||1+β
. (2.6)
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The interest of this auxiliary potential comes mainly from the following comparison principle for
−∆ −H which was proved in [7].

Lemma 2.3. Let N ≥ 3 and Ω ⊂ R
N \ {0} be a smooth domain. Let v,w ∈ H1

loc
(Ω,R) be such

that ∇(w − v)− ∈ L2(Ω), (w − v)−/|x| ∈ L2(Ω) and

−∆w −H(x)w ≥ −∆v −H(x)v, ∀x ∈ Ω.

Moreover, if ∂Ω 6= ∅, assume that w ≥ v on ∂Ω. Then, w ≥ v in Ω.

We also point out that H can be compared to the Hardy potential C/|x|2 which is a critical
potential, both at zero and at infinity. Indeed, if V behaves like 1/|x|α at infinity, for α ≥ 2,

then we have an equivalence between H1
A,V,ε(R

N ,C) and D1,2
A,ε(R

N ,C). It means that the condition
∫

RN V (x)|u|2 < ∞ is unnecessary in that case. The same holds true if V is singular at 0 and behaves
as 1/|x|α for α ≤ 2.

2.3. Notations adapted to the cylindrical symmetry. From now on, we deal with dimension
N = 3. As we will work with functions having cylindrical symmetry, that is functions such that
u ◦ g = u for g ∈ G, where G is defined in (1.4), the significant variables are ρ ∈ R

+ and x3 ∈ R,

where ρ = (x2
1 + x2

2)1/2, x = (x1, x2, x3). The angular variable θ ∈ [0, 2π) plays no role. However,
even if those functions only depend on ρ and x3, there are still functions defined in R

3 and with
some abuse of notations we will write either u(ρ, x3) or u(x1, x2, x3) depending on the situation.

We also recall the distance adapted to cylindrical symmetry already mentioned in the introduc-
tion: for y, z ∈ R

3,

dcyl(y, z) =
(

(ρy − ρz)2 + (y3 − z3)2
)1/2

,

for ρy = (y2
1 + y2

2)1/2 and ρz = (z2
1 + z2

2)1/2, as well as the cylindrical ball

Bcyl(x, r) =
{

y ∈ R
3 | dcyl(x, y) < r

}

,

for r > 0 and x ∈ R
3.

The following lemma gives us some compact embedding of the magnetic Sobolev spaces with
cylindrical symmetry.

Lemma 2.4. Assume that Ω ⊂ R
3 is an open bounded set such that

g(Ω) = Ω for every g ∈ G and 0 < ρ0 < ρ < ρ1 for every (ρ cos θ, ρ sin θ, x3) ∈ Ω.

Then, the space
{

u ∈ H1
A,ε(Ω,C) |u ◦ g = u for every g ∈ G

}

is compactly embedded in Lq(Ω), for

2 ≤ q < +∞.

Proof. First, since Ω is bounded and A ∈ C1(R3,R3), we have seen in Lemma 2.2 that this space
is equivalent to

{

u ∈ H1(Ω,C) |u ◦ g = u for every g ∈ G
}

. Since u depends only on ρ and x3, we
can write the square of the H1-norm of u as

∫

Ω

(

|∇u|2 + |u|2
)

dx1dx2dx3 = 2π

∫

Ω0

(

|∂ρu|2 + |∂x3
u|2 + |u|2

)

ρdρdx3,

where Ω0 is the parametrization of Ω in the ρ, x3 variables. Now, take a bounded sequence (un)n ⊂
H1

A,ε(Ω,C). Considering each un as a function of the two variables ρ, x3 in R
2, we infer that the

sequence is bounded as a sequence (un)n ⊂ H1(Ω0). We can then use the compact embedding in
dimension 2 to conclude. �
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3. The limit problem

Because of the symmetry, our solutions will concentrate on circles and the limit problem will hold
in R

2. The aim of this section is to describe such a limit problem. Consider a constant potential
A0 : R2 → R

2 and a positive constant a0 > 0. The equation

(i∇ +A0)2u+ a0u = |u|p−2u, y = (y1, y2) ∈ R
2 (3.1)

will be referred to as the limit equation associated to the problem (1.1). For solutions concentrating
around a circle of radius ρ0 > 0, we will have

A0 = (φ(ρ0, 0), 0) and a0 = c(ρ0, 0)2 + V (ρ0, 0).

By lemma 2.2, the weak solutions of (3.1) are critical points of the functional J A0
a0

: H1(R2,C) → R

defined by

J A0

a0
(u) =

1

2

∫

R2

[

|(i∇ +A0)u|2 + a0|u|2
]

dy −
1

p

∫

R2

|u|p dy. (3.2)

Any nontrivial critical point u ∈ H1(R2,C) of JA0
a0

belongs to the Nehari manifold

N A0

a0
=
{

u ∈ H1(R2,C) |u 6≡ 0 and 〈(J A0

a0
)′(u), u〉 = 0

}

.

A solution u ∈ H1(R2,C) is called a least energy solution, or ground state, of (3.1) if

J A0

a0
(u) = inf

v∈N
A0
a0

J A0

a0
(v).

The following lemma states that any least energy solution of the limit problem (3.1) is real up
to a change of gauge and a complex phase.

Lemma 3.1. Suppose v is a least energy solution of equation (3.1). Then

v(y) = w(y − y0)eiαeiA0·y,

for some α ∈ R, y0 ∈ R
2 and where w is the unique radially symmetric real positive solution of the

scalar equation

−∆w + a0w = |w|p−2w in R
2. (3.3)

Proof. First, we consider the functional J 0
a0

: H1(R2,C) → R associated to equation (3.3)

J 0
a0

(u) =
1

2

∫

R2

|∇u|2 + a0|u|2 dy −
1

p

∫

R2

|u|p dy.

Again, any nontrivial critical point u ∈ H1(R2,C) of J 0
a0

belongs to the Nehari manifold N 0
a0

. By
performing the change of gauge

v(y) = eiA0·yu(y) (3.4)

on functions v ∈ N A0
a0

and u ∈ N 0
a , we observe that there is an isomorphism between the two Nehari

manifolds. Indeed, any least energy solution v of J A0
a0

provides a least energy solution u of J 0
a0

by
(3.4) and vice-versa.

Since it is well-known, see for example [25, Lemma 7], that the set of complex valued least energy
solutions u of J 0

a0
can be written as

{u(y) = eiαw(y − y0), α ∈ R, y0 ∈ R
2},

the proof is completed. �
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We may now define the ground energy function E : R
2 × R

+\{0} → R
+ by

E(A0, a0) = inf
v∈N

A0
a0

JA0

a0
(v).

The following lemma gives some properties of this ground energy function. We refer to [7] or [34]
for more details.

Lemma 3.2. For every (A0, a0) ∈ R
2 × R

+\{0}, E(A0, a0) is a critical value of J A0
a0

and we have
the following variational characterization

E(0, a0) = E(A0, a0) = inf
v∈H1(R2,C)\{0}

max
t≥0

J A0

a0
(v).

Moreover,

(i) for every A0 ∈ R
2, a0 ∈ R

+\{0} 7→ E(A0, a0) is continuous;
(ii) for every A0 ∈ R

2, a0 ∈ R
+\{0} 7→ E(A0, a0) is strictly increasing.

In fact, for our nonlinearity

E(0, a0) = E(A0, a0) = E(A0a
− 1

p−2

0 , 1)a
2

p−2

0 = E(0, 1)a
2

p−2

0 . (3.5)

Finally, the concentration function M : R
+ × R

+ → R
+, already introduced in (1.6), is defined

more precisely by

M(ρ, |x3|) = 2πρ E(0, c2(ρ, |x3|) + V (ρ, |x3|)) = 2πρ
[

c2(ρ, |x3|) + V (ρ, |x3|)
] 2

p−2 E(0, 1).

We will look for solutions concentrating around local minima of M.

4. The penalization scheme

The functional associated to equation (1.1) is given by
∫

R3

(

|(iε∇ +A)u|2 + V |u|2
)

dx−
1

p

∫

R3

|u|p dx.

It is natural to consider this functional in the Sobolev space H1
A,V,ε(R

3,C). However, the mere
assumptions on V , and more particularly the fact that V can decay to zero at infinity, do not
ensure that H1

A,V,ε(R
3,C) is embedded in the Lp(R3,C). Then, the last term of the functional is

not necessarily finite. Moreover, even if we assume that V is bounded away from zero, the functional
would have a mountain-pass geometry in H1

A,V,ε(R
3,C), but the Palais-Smale condition could fail

without further specific assumptions on V .
For those reasons, following del Pino and Felmer [19], we truncate the nonlinear term through

a penalization outside the set where the concentration is expected. Basically, the penalization
approach consists in modifying the nonlinearity outside the bounded set Λ, where Λ verifies (1.7)
and (1.8), in the following way

f̃(x, s) = min{µV (x)s, f(s)},

where 0 < µ < 1. The penalized functional, given by
∫

R3

(

|(iε∇ +A)u|2 + V |u|2
)

dx−
∫

R3

F̃ (|u|) dx,

where F̃ (τ) =
∫ τ

0 f̃(s) ds, has the mountain-pass geometry and we recover the Palais-Smale con-
dition thanks to the penalization, so that we can easily deduce the existence of a mountain pass
critical point u. Then, if we succeed to show that f(u) ≤ νV (x)u outside the set Λ, we recover a
solution of the initial problem.

We will argue slightly differently for two reasons. The first one is that this approach works fine
when V stays bounded away from zero, or at least when V does not converge to fast to zero at
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infinity. We do not want to restrict our assumptions on the potentials V to this class. To solve this
issue, we will add the term ε2H(x) to V in the modified nonlinearity. This penalization approach
was first introduced in [30, 31] as an extension of [8] and subsequently used in [7]. The second
reason, as already said before, is that our functions are complex-valued. We will then perform the
penalization on the modulus of the unknown.

4.1. The penalized functional. We fix µ ∈ (0, 1). We define the penalized nonlinearity gε :
R

3 × R
+ → R by

gε(x, s) = χΛ(x)f(s) + (1 − χΛ(x)) min
{

(ε2H(x) + µV (x)), f(s)
}

(4.1)

for f(s) = s
p−2

2 . Let Gε(x, s) = 1
2

∫ s
0 gε(x, σ) dσ. There exists 2 < θ ≤ p such that

0 < θGε(x, s) ≤ gε(x, s)s ∀x ∈ Λ, ∀s > 0, (4.2)

0 < 2Gε(x, s) ≤ gε(x, s)s ≤ (ε2H(x) + µV (x))s ∀x /∈ Λ, ∀s > 0. (4.3)

Moreover, we have that

gε(x, s2) is nondecreasing ∀x ∈ R
3, (4.4)

which is a useful property, see for example [34].
In the following we look for cylindrically symmetric solutions of the penalized equation

(iε∇ +A)2u+ V (x)u = gε(x, |u|2)u, x ∈ R
3. (4.5)

Let us define the penalized functional Jε : H1
A,V,ε(R

3,C) → R

Jε(u) =
1

2

∫

R3

|(iε∇ +A)u|2 + V (x)|u|2 −
∫

R3

Gε(x, |u|2),

and the space

Xε =
{

u ∈ H1
A,V,ε(R

3,C) |u ◦ g = u, ∀g ∈ G
}

.

By the principle of symmetric criticality [33], the critical points of Jε in Xε are weak solutions
of the penalized problem (4.5), having cylindrical symmetry. Thanks to the properties (4.2) and
(4.3), the functional has a mountain pass geometry. Indeed, it clearly displays a local minimum at
u = 0, while the infimum is −∞. Standard arguments imply then the existence of a Palais-Smale
sequence (un)n ⊂ Xε for Jε, that is

Jε(un) ≤ C and J ′
ε(un) → 0 as n → ∞.

To secure the existence of a weak solution of (4.5) for every ε > 0, it only remains to prove that
Jε satisfies the Palais-Smale condition, i.e. each Palais-Smale sequence possesses a convergent
subsequence. This is our next aim.

4.2. The Palais-Smale condition.

Lemma 4.1. For every ε > 0, every Palais-Smale sequence for Jε in Xε contains a convergent
subsequence.

Proof. We proceed in several steps.
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Step 1. As usual, the first step of the proof consists in proving that the Palais-Smale sequence
(un)n is bounded. By using successively the properties of the Palais-Smale sequence (un)n, (4.2),
(4.3) and finally the magnetic Hardy inequality (2.3), we infer that

1

2
‖un‖2

ε = Jε(un) +

∫

R3

Gε(x, |un|2)

≤ C +

∫

Λ
Gε(x, |un|2) +

∫

Λc
Gε(x, |un|2)

≤ C +
1

θ

∫

R3

gε(x, |un|2)|un|2 +

(

1

2
−

1

θ

)∫

Λc
gε(x, |un|2)|un|2

≤ C +
1

θ
‖un‖2

ε −
1

θ
〈J ′

ε(un), un〉 +

(

1

2
−

1

θ

)∫

Λc

(

ε2H(x) + µV (x)
)

|un|2

≤ C +
1

θ
‖un‖2

ε + o(1)‖un‖ε +

(

1

2
−

1

θ

)

µ

∫

R3

V (x)|un|2 +

(

1

2
−

1

θ

)

4κ

∫

R3

|(iε∇ +A)un|2

≤ C +
1

θ
‖un‖2

ε + o(1)‖un‖ε +

(

1

2
−

1

θ

)

max{µ, 4κ}‖un‖2
ε.

Since θ > 2 and max{µ, 4κ} < 1, the inequality
(

1

2
−

1

θ

)

(1 − max{µ, 4κ}) ‖un‖2
ε ≤ C + o(1)‖un‖ε

leads to the conclusion.

From Step 1, we deduce the existence of a function u ∈ Xε such that, up to a subsequence still
denoted in the same way, un weakly converges to u.

Step 2. In this step, we prove two useful claims aiming to deduce the strong convergence. We

define the closed set Aλ = B(0, eλ)\B(0, e−λ), where λ ≥ 0.

Claim 1 - for every δ > 0, there exists λδ ≥ 0 such that

lim sup
n→∞

ε2
∫

R3\Aλδ

H(x)|un|2 < δ. (4.6)

The inequality (2.6) together with Hardy inequality (2.3) yields
∫

R3\Aλ

H(x)|un|2 ≤
4κ

λ1+β

∫

R3

|(iε∇ +A)un|2.

Since (un)n is bounded, we now infer that for every δ > 0, there exists λδ ≥ 0 such that (4.6) holds.

Claim 2 - for every δ > 0, there exists λδ ≥ 0 (eventually bigger than the previous one) such that

lim sup
n→∞

∫

R3\Aλδ

V (x)|un|2 < δ. (4.7)

We first define ξ ∈ C∞(R) such that 0 ≤ ξ ≤ 1 and

ξ(s) =

{

0 if |s| ≤ 1
2

1 if |s| ≥ 1

to build the cut-off function ηλ ∈ C∞(R3,R) as

ηλ(x) = ξ

(

log |x|

λ

)

.
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Since (un)n is a bounded Palais-Smale sequence and ηλ ≤ 1, we deduce that 〈J ′
ε(un), ηλun〉 = o(1).

We then infer that
∫

R3

(

|(iε∇ +A)un|2 + V (x)|un|2
)

ηλ

=

∫

R3

gε(x, |un|2)|un|2ηλ + Re

∫

R3

iε(iε∇ +A)un · ∇ηλun + o(1). (4.8)

Since Λ̄ ⊂ R
3\{0}, there exists λ0 ≥ 0 such that Λ̄ ⊂ Aλ0

. Then, if we take λ ≥ 2λ0, we have
ηλ = 0 on Λ. Now, using (4.3) and the above remark, we get

∫

R3

gε(x, |un|2)|un|2ηλ =

∫

Λc
gε(x, |un|2)|un|2ηλ (4.9)

≤
∫

Λc

(

ε2H(x) + µV (x)
)

|un|2ηλ

≤
∫

R3

(

ε2H(x) + µV (x)
)

|un|2ηλ.

Next, using the properties of ηλ and the magnetic Hardy inequality (2.3), we deduce that

Re

∫

R3

iε(iε∇ +A)un · ∇ηλun ≤ ε

∣

∣

∣

∣

∫

R3

(iε∇ +A)un) · ∇ηλun

∣

∣

∣

∣

(4.10)

≤
Cε

λ

(∫

R3

|(iε∇ +A)un|2
)1/2

(

∫

R3

|un|2

|x|2

)1/2

≤
4C

λ

∫

R3

|(iε∇ +A)un|2.

Combining (4.8), (4.9) and (4.10), we get the estimate
∫

R3\Aλ

(

|(iε∇ +A)un|2 + (1 − µ)V (x)|un|2
)

≤
∫

R3

(

|(iε∇ +A)un|2 + (1 − µ)V (x)|un|2
)

ηλ

≤
4C

λ
‖un‖2

ε + ε2
∫

R3

H(x)|un|2ηλ + o(1),

for λ ≥ 2λ0. Finally, thanks to (4.6), if we take λ > 2λδ, the second term in the right hand side
is smaller than δ. It follows that, for every δ > 0, we can choose (a new) λδ ≥ 2 max{λ0, λδ} such
that (4.7) holds.

Step 3. We are now in a position to deduce the strong convergence. We compute

‖un − u‖2
ε =

〈J ′
ε(un), un − u〉 − 〈J ′

ε(u), un − u〉 + Re

∫

R3

[

gε(x, |un|2)un − gε(x, |u|2)u
]

(un − u).

From Step 1, we know that (un)n is bounded so that in the right hand side, the first two terms
converge to zero. For the last term in the right hand side, we divide the integral in three pieces.
We treat separately the integrals on Λ, Aλδ

\Λ and R
3\Aλδ

and we next prove that they converge
to zero.

For the integral on Λ, we can use the fact that un ∈ H1
A,ε(Λ,C) because infΛ V > 0 and un ∈ Xε.

Then, we conclude by using the compact embedding of H1
A,ε(Λ,C) in Lq(Λ,C) for 2 ≤ q < +∞.

Indeed, Lemma 2.4 applies since Λ is bounded away from the axis x3.
For the integral in Aλδ

\Λ, we use the fact that un ∈ H1(Aλδ
\Λ,C). Indeed, Aλδ

\Λ is bounded.
In dimension 3, this space is compactly embedded in Lq(Aλδ

\Λ,C) for 1 ≤ q < 6. Moreover, the
penalization gε is bounded on this bounded set. This and the strong convergence in L2 allows to
conclude.
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The claims in Step 2 were intended to treat the remaining integral. Indeed, using (4.6) and (4.7),
we infer that

lim sup
n→∞

∣

∣

∣

∣

∣

Re

∫

R3\Aλδ

[

gε(x, |un|2)un − gε(x, |u|2)u
]

(un − u)

∣

∣

∣

∣

∣

≤ 2 lim sup
n→∞

∫

R3\Aλδ

(

ε2H(x) + µV (x)
) (

|un|2 + |u|2
)

≤ 4C(1 + µ)δ.

Then, since δ > 0 is arbitrary, we are done. �

As a direct consequence, we deduce the existence of a least energy solution of the penalized
problem (4.5).

Theorem 4.2. Let gε : R×R
+ → R defined in (4.1) satisfy (4.2), (4.3), (4.4) and V ∈ C(R3\{0})

verify the hypothesis of Section 2.2. Then, for every ε > 0, the functional Jε has a non trivial
critical point uε ∈ Xε, which is also a weak solution of (4.5), characterized by

cε = Jε(uε) = inf
u∈Xε\{0}

max
t>0

Jε(tu). (4.11)

This solution uε belongs to W 2,q
loc (R3\{0}) for 2 ≤ q < +∞ and therefore to C1,α

loc (R3\{0}). We
cannot hope a better regularity since the penalization gε is not even continuous.

In the next section, we estimate the critical value cε from above. In the study of the asymptotics
of the solutions uε, this upper estimate will be useful to determine that the concentration occurs
exactly in Λ.

4.3. Upper estimate of the mountain pass level.

Proposition 4.3 (Upper estimate of the critical value cε). Suppose that the assumptions of Theo-
rem 4.2 are satisfied. For every ε > 0 small enough, the critical value cε defined in (4.11) satisfies

lim inf
ε→0

ε−2cε ≤ inf
Λ∩H⊥

M. (4.12)

Moreover, there exists C > 0 such that the solution uε found in Theorem 4.2 satisfies

‖uε‖2
ε ≤ Cε2. (4.13)

Proof. Let x0 = (ρ0 cos θ, ρ0 sin θ, 0) ∈ Λ ∩ H⊥, with ρ0 > 0 and θ ∈ [0, 2π), be such that M(x0) =
infΛ∩H⊥ M. The existence of x0 is ensured by the continuity of M on Λ and (1.7). Consider the
functional J A0

a0
defined by (3.2), with a0 =

[

c(x0)2 + V (x0)
]

and A0 = (φ(x0), 0). Next, we define
the cut-off function η ∈ C∞

0 (R+ × R) such that 0 ≤ η ≤ 1, η = 1 in a small neighbourhood of
(ρ0, 0), and is compactly supported in a small neighbourhood of (ρ0, 0), and ‖∇η‖L∞ ≤ C. We
define the cylindrically symmetric function

u(x1, x2, x3) = u(ρ, x3) = η(ρ, x3)v

(

ρ− ρ0

ε
,
x3

ε

)

,

where v is the least-energy solution of J A0
a0

. If we perform the change of variables

y1 =
ρ− ρ0

ε
and y2 =

x3

ε
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in the computation of Jε(tu), we get

Jε(tu) =
t2

2

∫

R3

[

|(iε∇ +A)u|2 + V (x)|u|2
]

dx−
∫

R3

Gε(x, t2|u|2) dx

= 2πε2 t
2

2

∫ ∞

−
ρ0
ε

∫

R

{η2(ρ0 + εy1, εy2)
[

|(i∇ + (φ(ρ0 + εy1, εy2), A3(ρ0 + εy1, εy2)) v|2
]

+ η2(ρ0 + εy1, εy2)
[

c(ρ0 + εy1, εy2)2 + V (ρ0 + εy1, εy2)
]

|v|2} (ρ0 + εy1) dy1dy2

− 2πε2
∫ ∞

−
ρ0
ε

∫

R

Gε(ρ0 + εy1, εy2, t
2|v|2η2) (ρ0 + εy1) dy1dy2 + o(ε2).

The term o(ε2) includes the terms where the derivatives were applied to η instead of v. This term
is controlled thanks the the compactness of the support of η and the control ‖∇η‖L∞ ≤ C. Finally,
as η is compactly supported around (ρ0, 0), Gε(x, t2|v|2η2) will coincide with F (t2|v|2η2) for ε small
enough. We then deduce that

lim inf
ε→0

ε−2Jε(tu) ≤ 2πρ0 J A0

a0
(tv).

Now we exploit the fact that cε is the least-energy level for Jε and v is the least-energy function
for J A0

a0
, as well as Lemma 3.1 where w is the least energy solution to J 0

a0
, to obtain

lim inf
ε→0

ε−2cε ≤ lim inf
ε→0

ε−2 max
t>0

Jε(tu) ≤ 2πρ0 max
t>0

J A0

a0
(tv)

= 2πρ0 J A0

a0
(v) = 2πρ0 J 0

a0
(w).

The last equality follows from (3.5).

To deduce the second statement of the proposition, we argue as in Step 1 of the proof of Lemma
4.1, with the extra properties that J ′

ε(uε) = 0, because we have the additional information that uε

is a critical point, and Jε(uε) = cε ≤ Cε2. We then infer that
(

1

2
−

1

θ

)

(1 − max{4κ, µ}) ‖uε‖2
ε ≤ Cε2.

�

5. Asymptotic estimates

In this section, we study the behaviour of solutions when ε → 0. With those estimates at hand,
we will be able to prove that the solutions of the penalized problem solve the original equation for
ε small enough.

5.1. No uniform convergence to 0 on Λ. We start by proving that the solution uε does not
converge uniformly to 0 in Λ as ε → 0.

Proposition 5.1. Suppose the assumptions of Theorem 4.2 are satisfied and let (uε)ε ⊂ Xε be the
solutions found in Theorem 4.2. Then,

lim inf
ε→0

‖uε‖L∞(Λ) > 0.

Proof. By contradiction, assume that there exists a sequence (εn)n ⊂ R
+ such that εn → 0 and

‖uεn‖L∞(Λ) → 0 as n → +∞. Using Kato inequality (2.5) and the equation (4.5), we obtain

−εn
2 (∆ +H) |uεn | + (1 − µ)V |uεn | ≤ −ε2

nH|uεn | − µV |uεn | + gεn(x, |uεn |2)|uεn |.
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By (4.3), we infer that the right hand side of the last inequality is non positive in Λc. On the
other hand, since we assume that ‖uεn‖L∞(Λ) → 0, the facts that p > 2 and V (x) > 0 in Λ implies

|uεn |p−1 ≤ µV (x)|uεn | in Λ for n large. We thus conclude that

−εn
2 (∆ +H(x)|) |uεn | + (1 − µ)V (x)|uεn | ≤ 0, in R

3.

We then reach a contradiction because the comparison principle (Lemma 2.3) implies that |uεn | = 0
for large n. �

5.2. Estimates on the rescaled solutions. As we have seen in Proposition 4.3, the norm of the
solution uε is of the order ε. It is then natural to rescale uε around some family of points (ρε, x3,ε)
as

vε(y) = uε(xε) = uε(ρε + εy1, x3,ε + εy2), (5.1)

where (xε)ε = (ρε cos θ, ρε sin θ, x3,ε)ε ⊂ Λ̄, θ ∈ [0, 2π[. The rescaled solution is defined for y =
(y1, y2) ∈ (−ρε/ε,+∞)×R. The following lemma shows the convergence of those rescaled sequences
of solutions.

Lemma 5.2 (Convergence of the rescaled solutions). Suppose the assumptions of Theorem 4.2 are

satisfied. Let (εn)n ⊂ R
+ and (xn)n = (ρn cos θ, ρn sin θ, x3,n)n ⊂ Λ̄, θ ∈ [0, 2π) be such that εn → 0

and xn → x̄ = (ρ̄ cos θ, ρ̄ sin θ, x̄3) ∈ Λ, as n → +∞. Set

Ā = (φ(ρ̄, x̄3), A3(ρ̄, x̄3)) , ā = c2(ρ̄, x̄3) + V (ρ̄, x̄3).

Consider the sequence of solutions (uεn)n ⊂ Xεn found in Theorem 4.2. There exists v ∈ H1(R2,C)
such that, up to a subsequence,

vεn → v in C1,α
loc

(R2,C) for α ∈ (0, 1),

where (vεn)n is the sequence defined by (5.1), v solves the equation

(i∇ + Ā)2v + āv = ḡ(y, |v|2)v in R
2, (5.2)

with

ḡ(y, |v|2) = χ(y)f(|v|2) + (1 − χ(y)) min{µV (ρ̄, x̄3), f(|v|2)}, (5.3)

χ being the limit a.e. of χn(y) = χΛ(ρn + εny1, x3,n + εny2). Moreover, we have

2πρ̄

∫

R2

(

|(i∇ + Ā)v|2 + ā|v|2
)

dy =

lim
R→+∞

lim inf
n→+∞

ε−2
n

∫

Bcyl(xn,εnR)

(

|(iεn∇ +A)uεn |2 + V (x)|uεn |2
)

dx. (5.4)

Proof. We proceed again in several steps.

Step 1: Convergence of the sequence (vεn)n. First, the equation solved by vεn is the
following

(i∇ +An)2vεn −
εn

ρn + εny1

∂vεn

∂y1
+ i

εn

ρn + εny1
φnvεn +

[

Vn + c2
n

]

vεn = gεn,n(y, |vεn |2)vεn . (5.5)

The two-dimensional magnetic potential An(y) is given by An(y) = (φn(y), A3,n(y)) and the other
functions are defined by

φn, A3,n, cn, Vn, gεn,n(y) := φ,A3, c, V, gεn (ρn + εny1, x3,n + εny2).

By using the definition of vεn and (4.13), we obtain the following inequality
∫ +∞

− ρn
εn

∫

R

[

|(i∇ +An)vεn |2 + (Vn + c2
n)|vεn |2

]

(ρn + εny1) dy1dy2 =
1

2πε2
n

‖uεn‖2
εn

≤ C, (5.6)
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for C > 0 independent from n.
Next, we choose e sequence Rn such that Rn → +∞ and εnRn → 0 as n → +∞, and we define

the cut-off function ηRn ∈ C∞
c (R) such that 0 ≤ ηRn ≤ 1,

ηRn(y) =

{

0 if |y| ≥ Rn

1 if |y| ≤ Rn/2

and ‖∇ηRn‖L∞ ≤ C/Rn for some C > 0. Since Λ ∩ H = ∅, we have that ρn → ρ̄ > 0, and then, for
n sufficiently large, εnRn < ρ̄/2 < ρn. Set wn(y) = ηRn(y)vεn(y), where vεn is extended by 0 where
it is not defined (anyway ηRn = 0 therein).

We now estimate the L2-norm of |wn|. Observe that if y2
1+y2

2 ≤ R2
n, then (ρ−ρn)2+(x3−x3,n)2 ≤

ε2
nR

2
n, so that for n large enough, ρn + εny1 ∈ Λ. Hence, since by hypothesis infΛ(c2 + V ) > 0 and

(ρn − εnRn) > ρ̄/2 for n large enough, we infer that
∫

R2

|wn|2 dy1dy2 ≤
∫

B(0,Rn)
|vεn |2 dy1dy2 (5.7)

≤
2

ρ̄
sup

Λ̄

1

c2 + V

∫

B(0,Rn)
|vεn |2(c2

n + Vn)(ρn + εny1) dy1dy2.

Using the fact that B(0, Rn) ⊂
(

−ρn

εn
,+∞

)

× R, for n large enough and (5.6), we deduce the

estimate
∫

R2

|wn|2 dy1dy2 ≤
2

ρ̄
sup

Λ̄

1

c2 + V

∫ +∞

− ρn
εn

∫

R

|vεn |2(c2
n + Vn)(ρn + εny1) dy1dy2 ≤ C.

Next, we study the L2-norm of ∇|wn|. By using the diamagnetic inequality (2.2) and arguing as
before, we get
∫

R2

|∇|wn||2 dy1dy2 ≤
∫

R2

|(i∇ +An)(ηRnvεn)|2 dy1dy2

≤ 2

∫

R2

|(i∇ +An)vεn |2η2
Rn

dy1dy2 + 2

∫

R2

|∇ηRn |2|vεn |2 dy1dy2

≤
4

ρ̄
sup

Λ̄

1

c2 + V

∫

B(0,Rn)

(

|(i∇ +An)vεn |2 + (c2
n + Vn)|vεn |2

)

(ρn + εny1) dy1dy2

≤ C.

We have just shown that (|wn|)n ⊂ H1(R2,R) is a bounded sequence. Hence, there exists a function
|v| ∈ H1(R2,R) such that, up to a subsequence, |wn| converges weakly to |v|. Moreover, we deduce
from Sobolev embeddings that the convergence is strong in Lp

loc(R
2,C) for 2 ≤ p < +∞.

To prove the convergence in C1,α
loc , we consider any compact set K ⊂ R

2. For n sufficiently large,

we have K ⊂ B(0, Rn

2 ) which implies wn = vn in K. In that compact set K, wn solves the equation
(5.5) and using a standard bootstrap argument (see for example [24, Theorem 9.1]) and the fact
that wn ∈ Lp(K,C) for 2 ≤ p < +∞, we conclude that

sup
n

‖wn‖W 2,p(K) ≤ C.

Finally, since this estimate holds for all 2 ≤ p < +∞, Sobolev embeddings imply that wn = vn

converges in C1,α(K) to v. The claim then follows from a diagonal procedure.

Step 2: Limit equation satisfied by v. Since Λ is smooth, the characteristic functions
converge a.e. to a measurable function 0 ≤ χ(y) ≤ 1. We therefore obtain equation (5.2) from

(5.5) by using the C1,α
loc -convergence. Moreover, if x̄ ∈ Λ, we remark that ḡ(y, |v|2) = f(|v|2), that

is χ ≡ 1.
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Step 3: Proof of the estimate (5.4). Using the preceding arguments and theC1,α
loc -convergence,

we have

lim inf
n→+∞

ε−2
n

∫

Bcyl(xn,εnR)

(

|(iεn∇ +A)uεn |2 + V (x)|uεn |2
)

dx

= 2π lim inf
n→+∞

∫

B(0,R)

[

|(i∇ +An)vεn |2 + (c2
n + Vn)|vεn |2

]

(ρn + εny1) dy1dy2

= 2πρ̄

∫

B(0,R)

[

|(i∇ + Ā)v|2 + ā|v|2
]

dy1dy2.

Finally, we let R go to +∞ to complete the proof. �

Next, we examine the contribution of uε to the action functional in a neighbourhood of a circle.
In particular, we derive a lower estimate on the action of uε which accounts for the number of
circles around which uε is non negligible. By combining the next lemmas with the upper estimate
on the critical level cε, we reach the conclusion that uε concentrates around exactly one circle.

Lemma 5.3 (lower bound in a small ball). Suppose that the assumptions of Theorem 4.2 are

satisfied. Let (εn)n ⊂ R
+ and (xn)n = (ρn cos θ, ρn sin θ, x3,n)n ⊂ Λ̄ be such that εn → 0 and

xn → x̄ = (ρ̄ cos θ, ρ̄ sin θ, x̄3) ∈ Λ̄ as n → +∞, θ ∈ [0, 2π). Let (uεn)n ⊂ Xεn be the solutions found
in Theorem 4.2. If

lim inf
n→+∞

|uεn(xn)| > 0, (5.8)

then, up to a subsequence, we have

lim inf
R→+∞

lim inf
n→+∞

ε−2
n

∫

Bcyl(xn,εnR)

1

2
(|(iεn∇ +A)uεn |2 + V (x)|uεn |2) −Gεn(x, |uεn |2)

≥ M(ρ̄, x̄3).

Proof. We set again vεn as in (5.1). First, by (5.8), |v(0)| = limn→+∞ |vεn(0)| > 0, then v is not
identically zero. Moreover, we know from Lemma 5.1 that v satisfies the equation (5.2). This

implies that v is a critical point of the functional GĀ
ā : H1(R2,C) → R defined by

GĀ
ā (u) =

1

2

∫

R2

|(i∇ + Ā)u|2 + ā|u|2 dy −
∫

R2

Ḡ(y, |u|2) dy,

ā and Ā being defined in Lemma 5.2, and where

Ḡ(y, s) =
1

2

∫ s

0
ḡ(y, σ) dσ.

Since ḡ(y, |u|2) ≤ f(|u|2), it follows immediately that

GĀ
ā (u) ≥ J Ā

ā (u).

Since v is a critical point of GĀ
ā and ḡ satisfies the property (4.4), we have that

GĀ
ā (v) = sup

t>0
GĀ

ā (tv) ≥ inf
u∈H1(R2,C)

sup
t>0

GĀ
ā (tu)

≥ inf
u∈H1(R2,C)

sup
t>0

J Ā
ā (tu) = E(Ā, ā) = E(0, 1) ā

2

p−2 .
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By using the C1,α
loc -convergence of the sequence (vεn)n, we obtain that

lim inf
n→+∞

ε−2
n

∫

Bcyl(xn,εnR)

[

1

2

(

|(iεn∇ +A)uεn |2 + V (x)|uεn |2
)

−Gεn(x, |uεn |2)

]

dx =

2π lim inf
n→+∞

∫

B(0,R)

[

1

2

(

|(i∇ +An)vεn |2 + (Vn + c2
n)|vεn |2

)

−Gεn,n(y, |vεn |2)

]

(ρn + εny1) dy =

2πρ̄

∫

B(0,R)

[

1

2

(

|(i∇ + Ā)v|2 + ā|v|2
)

− Ḡ(y, |v|2)

]

dy.

Finally, we let R → +∞ to conclude.
�

The following lemma estimates what happens outside the small balls where uε concentrates.
In particular we show that the contribution to the action of uε is nonnegative so that the lower
estimate from the preceding lemma is meaningful.

Lemma 5.4 (Inferior bound outside small balls). Assume that the assumptions of Theorem 4.2

are satisfied. Let (εn)n ⊂ R
+ and (xi

n)n = (ρi
n cos θ, ρi

n sin θ, xi
3,n)n ⊂ Λ̄ be such that εn → 0 and

xi
n → x̄i = (ρ̄i cos θ, ρ̄i sin θ, x̄i

3) ∈ Λ̄, for 1 ≤ i ≤ M , as n → +∞, θ ∈ [0, 2π). Let (uεn)n ⊂ Xεn be
the solutions found in Theorem 4.2. Then, up to a subsequence, we have

lim inf
R→+∞

lim inf
n→+∞

ε−2
n

∫

R3\Bn(R)

1

2

(

|(iεn∇ +A)uεn |2 + V (x)|uεn |2
)

−Gεn(x, |uεn |2) ≥ 0, (5.9)

where

Bn(R) = ∪M
i=1Bcyl(x

i
n, εnR). (5.10)

Proof. We consider yet another smooth test function ηR,εn such that ηR,εn = 0 on Bn(R/2), ηR,εn =
1 on R

2\Bn(R) and ‖∇ηR,εn‖L∞ ≤ C/(εnR). From (4.2) and (4.3), we infer that
∫

R3\Bn(R)

[

1

2

(

|(iεn∇ +A)uεn |2 + V (x)|uεn |2
)

−Gεn(x, |uεn |2)

]

dx

≥
∫

R3\Bn(R)

[

1

2

(

|(iεn∇ +A)uεn |2 + V (x)|uεn |2
)

− gεn(x, |uεn |2)|uεn |2
]

dx.

If we test the equation (4.5) on (uεnηR,εn), we obtain

0 =

∫

R3\Bn(R)

[

|(iεn∇ +A)uεn |2 + V (x)|uεn |2 − gεn(x, |uεn |2)|uεn |2
]

dx

+

∫

Bn(R)\Bn(R/2)

[

|(iεn∇ +A)uεn |2 + V (x)|uεn |2 − gεn(x, |uεn |2)|uεn |2
]

η2
R,εn

dx

− iεn

∫

Bn(R)\Bn(R/2)
∇ηR,εn · (iεn∇ +A)uεnuεn dx.

Then, to deduce the estimate (5.9), it is enough to estimate the last two integrals in the annular
region An(R) = Bn(R)\Bn(R/2).

We start with the first of these two terms. Thanks to the fact that An(R) is a bounded set having

the cylindrical symmetry and such that An(R) ∩ H = ∅, we can use the compact embeddings from
Lemma 2.4. Then, we conclude that

lim inf
n→+∞

ε−2
n

∣

∣

∣

∣

∣

∫

An(R)

[

|(iεn∇ +A)uεn |2 + V (x)|uεn |2 − gεn(x, |uεn |2)|uεn |2
]

η2
R,εn

dx

∣

∣

∣

∣

∣

≤ lim inf
n→+∞

ε−2
n C

(

I2
n,R + Iq

n,R

)

,
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where we denoted

In,R =

[

∫

An(R)

[

|(iεn +A)uεn |2 + V (x)|uεn |2
]

dx

] 1

2

.

Next, we estimate the second term

lim inf
n→+∞

ε−2
n

∣

∣

∣

∣

∣

εn

∫

An(R)
(iεn∇ +A)uεn · ∇ηR,εnuεn dx

∣

∣

∣

∣

∣

≤ lim inf
n→+∞

Cε−2
n R−1

∫

An(R)
|(iεn∇ +A)uεn ||uεn | dx

≤ lim inf
n→+∞

2Cε−2
n R−1

∫

An(R)

(

|(iεn∇ +A)uεn |2 + |uεn |2
)

dx

≤ lim inf
n→+∞

2Cε−2
n R−1I2

n,R.

Finally, by taking the lim infR→+∞ and using relation (5.4), we obtain that both integrals converge
to zero, which concludes the result. �

The next lemma combines the informations from the two preceding ones and yields a lower bound
on the action of uε as a function of the points in Λ̄ where the solution concentrates.

Lemma 5.5 (lower bound on the critical level). Suppose that the assumptions of Theorem 4.2

are satisfied. Let (εn)n ⊂ R
+ and (xi

n)n = (ρi
n cos θ, ρi

n sin θ, xi
3,n)n ⊂ Λ̄ be such that εn → 0 and

xi
n → x̄i = (ρ̄i cos θ, ρ̄i sin θ, xi

3) ∈ Λ̄, for 1 ≤ i ≤ M , as n → +∞, θ ∈ [0, 2π). Let (uεn)n ⊂ Xεn be
the solutions found in Theorem 4.2. Assume that for every 1 ≤ i < j ≤ M , we have

lim sup
n→+∞

dcyl(x
i
n, x

j
n)

εn
= +∞, (5.11)

and

lim inf
n→+∞

|uεn(xi
n)| > 0.

Then it holds

lim inf
n→+∞

ε−2
n cεn ≥

M
∑

i=1

M(ρ̄i, x̄i
3).

Proof. We infer from the previous lemmas that for every δ > 0, there exists Rδ > 0 large enough,
such that for all R > Rδ

lim inf
n→+∞

ε−2
n

∫

R3\Bn(R)

[

1

2
(|(iεn∇ +A)uεn |2 + V (x)|uεn |2) −Gεn(x, |uεn |2)

]

dx ≥ −δ

lim inf
n→+∞

ε−2
n

∫

Bcyl(xi
n,εnR)

[

1

2
(|(iεn∇ +A)uεn |2 + V (x)|uεn |2) −Gεn(x, |uεn |2)

]

dx ≥ M(ρ̄i, x̄i
3) − δ,

where Bn(R) is defined in (5.10). Then, thanks to the hypothesis (5.11), the balls are disjoint.
We then decompose ε−2

n J (uεn) as the sum of the M integrals on each ball Bcyl(x
i
n, εnR) and one

integral in R
3\Bn(R). We then have

lim inf
n→+∞

ε−2
n J (uεn) ≥

M
∑

i=1

M(ρ̄i, x̄i
3) − (M + 1)δ.

Since δ > 0 is arbitrary, the conclusion follows. �
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The following proposition is a key result of the proof. It concludes to the existence of a sequence
of maximum points for uε in Λ̄ and tells us that that sequence of maximum points will in fact
converge to the point of infimum of our concentration function M at the interior of Λ.

Proposition 5.6. Suppose that the assumptions of Theorem 4.2 are satisfied. Let (uε)ε ⊂ Xε be

the solutions found in Theorem 4.2 for ε > 0. Then, there exist (xε)ε = (ρε cos θ, ρε sin θ, x3,ε)ε ⊂ Λ̄
such that

lim inf
ε→0

|uε(xε)| > 0. (5.12)

Moreover, we have

(i) lim sup
ε→0

dcyl(xε,H
⊥)

ε
< +∞, that is x3,ε → 0;

(ii) lim inf
ε→0

dcyl(xε, ∂Λ) > 0;

(iii) lim
ε→0

M(xε) = inf
Λ∩H⊥

M;

(iv) for every δ > 0, there exists Rδ > 0, such that for every R > Rδ there exist εR > 0 such
that, for every ε < εR, |uε| < δ in Λ\Bcyl(xε, εR).

Proof. First, observe that the existence of a sequence (xε)ε ⊂ Λ̄ of local maximum points of |uε| in

Λ̄ follows from the continuity of uε. The estimate (5.12) holds because we know from Proposition

5.1 that uε does not converge uniformly to zero in Λ̄.

Proof of assertion (i). By contradiction, assume that there exist sequences (εn)n ⊂ R
+ and

(xn)n ⊂ Λ̄ such that εn → 0 and xn → x̄ = (ρ̄ cos θ, ρ̄ sin θ, x̄3) ∈ Λ̄, θ ∈ [0, 2π) (this is always

possible because of the compactness of Λ̄),

lim inf
n→+∞

|uεn(xn)| > 0,

and

lim sup
n→+∞

d(xn,H
⊥)

εn
= +∞.

Let gref ∈ G be the reflection with respect to H⊥. We know that uεn ◦ gref = uεn , so that

lim inf
n→+∞

|uεn(gref (xn))| > 0.

Moreover, by our assumption

lim
n→+∞

dcyl(gref (xn),H⊥)

εn
= +∞.

Therefore, we infer that

lim sup
n→+∞

dcyl(xn, gref (xn))

εn
= +∞,

We can now use Lemma 5.5 to deduce that

lim inf
n→+∞

ε−2
n cεn ≥ (M(x̄) + M(gref (x̄))) ≥ 2 inf

Λ
M,

whereas we know from (4.12) in Proposition 4.3 that

lim inf
n→+∞

ε−2
n cεn ≤ inf

Λ∩H⊥

M.

This yields the inequality

2 inf
Λ

M ≤ inf
Λ∩H⊥

M,

which is impossible because of the property (1.7) of the set Λ.
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Proof of assertion (ii). Arguing again by contradiction, assume that there exist sequences

(εn)n ⊂ R
+ and (xn)n ⊂ Λ̄ such that εn → 0,

lim inf
n→+∞

|uεn(xn)| > 0,

and

lim
n→+∞

dcyl(xn, ∂Λ) = 0,

that is xn → x̄ = (ρ̄ cos θ, ρ̄ sin θ, x̄3) ∈ ∂Λ, θ ∈ [0, 2π). By assertion (i), we also know that x̄ ∈ H⊥.
From Lemma 5.5, we have

lim inf
n→+∞

ε−2
n cεn ≥ M(ρ̄, x̄3) ≥ inf

∂Λ∩H⊥

M,

so that (4.12) in Proposition 4.3 implies

inf
∂Λ∩H⊥

M ≤ inf
Λ∩H⊥

M,

which is again a contradiction to (1.7).

Proof of assertion (iii). This is also an easy consequence of Proposition 4.3 and Lemma 5.5.
Indeed, using also (i), we can still assume the existence of a sequence (xn)n such that xn converges

to some x̄ = (ρ̄ cos θ, ρ̄ sin θ, 0) ∈ Λ̄ ∩ H⊥. Then combining Lemma 5.5 and Proposition 4.3, we
deduce that

M(x̄) ≤ lim inf
n→+∞

ε−2
n cεn ≤ inf

Λ∩H⊥

M.

Assume x̄ ∈ ∂Λ ∩ H⊥. Then, by (1.7) and the last inequality, we have

inf
Λ∩H⊥

M < inf
∂Λ∩H⊥

M ≤ M(x̄) ≤ inf
Λ∩H⊥

M,

which is a contradiction. Henceforth, we deduce that x̄ ∈ Λ ∩ H⊥ and limn→+∞ M(xn) = M(x̄) =
infΛ∩H⊥ M.

Proof of assertion (iv). Assume by contradiction the existence of δ > 0 and a sequence yn ∈ Λ̄
such that

|uεn(yn)| > δ,

and

lim
n→+∞

dcyl(xn, yn)

εn
= +∞.

Up to a subsequence, we know that yn → ȳ ∈ Λ̄ ∩ H⊥, Then, using again Lemma 5.5, Proposition
4.3 and (1.7), we obtain

inf
Λ∩H⊥

M ≥ lim inf
n→+∞

ε−2
n cεn ≥ (M(x̄) + M(ȳ)) ≥ 2 inf

Λ∩H⊥

M,

which is impossible. �

6. Solutions of the initial problem

All this section is inspired by [7], where they study concentration of solutions around k-spheres
for Laplacian problems.
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6.1. Linear inequation outside small balls.

Lemma 6.1. Suppose that the assumptions of Theorem 4.2 are satisfied. Let (uε)ε ⊂ Xε be the

solutions found in Theorem 4.2. Let (xε)ε ⊂ Λ̄, found in Proposition 5.6, be such that

lim inf
ε→0

|uε(xε)| > 0.

Then, there exists r0 > 0 such that for every r > r0, there exists εr > 0 such that for every ε < εr,

−ε2 (∆ +H) |uε| + (1 − µ)V |uε| ≤ 0 in R
3\Bcyl(xε, εr).

Proof. First, we have that

µV (x) ≥ δ > 0,

for x ∈ Λ. By Proposition 5.6 (iv), there exists r0 > 0 sufficiently large, such that, for every r > r0

there exist εr > 0 such that for every ε < εr,

|uε(x)|p−2 < δ in Λ\Bcyl(xε, εr).

Then, we use the Kato inequality (2.4) to obtain

−ε2 (∆ +H) |uε| + (1 − µ)V |uε| ≤ |uε|p−1 − µV |uε| − ε2H|uε| < 0 in Λ\Bcyl(xε, εr).

Now, in R
3\Λ, we use again the Kato inequality to obtain

−ε2 (∆ +H) |uε| + (1 − µ)V |uε| ≤ 0 in R
3\Λ,

by the definition of the nonlinearity gε in R
3\Λ. This concludes the proof. �

6.2. Barrier functions. Once we can construct functions wε verifying the opposite inequation

−ε2 (∆ +H)wε + (1 − µ)V wε ≥ 0 in R
3\Bcyl(xε, εr)

with some convenient boundary conditions on ∂Bcyl(xε, εr), Lemma 6.1 suggests that we can use
the comparison principle to obtain an upper bound on |uε|. Those functions wε will be chosen in
such a good way that the bound |uε| ≤ Cwε imply that |uε|p−2 ≤ µV (x)+ε2H(x) for all x ∈ R

3\Λ,
so that we recover solutions of the initial problem (1.1).

We now define more precisely the notion of barrier functions.

Definition 6.2. Let (xε)ε ⊂ R
3 and r > 0. We say that (wε)ε ⊂ C1,α(R3\{0}\Bcyl(xε, εr)) is a

family of barrier functions if there exists ε0 > 0 such that, for every ε < ε0, we have that

(i) wε satisfies the inequation

−ε2 (∆ +H)wε + (1 − µ)V wε ≥ 0 in R
3\Bcyl(xε, εr);

(ii) ∇wε ∈ L2(R3\Bcyl(xε, εr));
(iii) wε ≥ 1 on ∂Bcyl(xε, εr).

6.2.1. Construction of the comparison functions. In this section, we recall how to construct some
comparison functions in Λ and in R

3\Λ. Those comparison functions will be used to construct the
barrier functions. We first begin by the construction in R

3\Λ.

Lemma 6.3. For every ε > 0, there exists Ψε ∈ C1,α
loc

(R3\{0}\Λ) such that
{

−ε2(∆ +H)Ψε + (1 − µ)VΨε = 0 in R
3\Λ,

Ψε = 1 on ∂Λ,

and
∫

R3\Λ
|∇Ψε|2 +

|Ψε|2

|x|2
< +∞.
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We also have the following estimate for every x ∈ R
3 \ (Λ ∪ {0}) and C > 0

0 < Ψε(x) ≤
C

1 + |x|
.

(i) If we assume in addition that (V ∞) holds with α = 2, then, for every ν > 1 and for every

R > 1, with Λ̄ ⊂ B(0, R), there exist C > 0 and ε0 > 0 such that, for every ε < ε0 and for
every x ∈ R

3\B(0, R),

0 < Ψε(x) ≤
C

|x|ν
;

(ii) If we assume that (V ∞) holds with α < 2, then, for every ν > 0 and for every R > 1,

with Λ̄ ⊂ B(0, R), there exist C > 0 and ε0 > 0 such that, for every ε < ε0 and for every
x ∈ R

3\B(0, R),

0 < Ψε(x) ≤ C exp
(

−ν|x|
2−α

2

)

;

(iii) If we assume that (V 0) holds with α = 2, then, for every ν > 0 and for every 0 < r < 1,

with B(0, r) ∩ Λ̄ = ∅, there exist C > 0 and ε0 > 0 such that, for every ε < ε0 and for every
x ∈ B(0, r) \ {0},

0 < Ψε(x) ≤ C|x|ν .

(iv) If we assume that (V 0) holds with α > 2, then, for every ν > 0 and for every 0 < r < 1,

with B(0, r) ∩ Λ̄ = ∅, there exist C > 0 and ε0 > 0 such that, for every ε < ε0 and for every
x ∈ B(0, r) \ {0},

0 < Ψε(x) ≤ C exp
(

−ν|x|
2−α

2

)

.

We refer to [7] for the proof.
Now, we construct a comparison function inside of Λ.

Lemma 6.4. Consider r > 0. Let (xε)ε = (ρε cos θ, ρε sin θ, x3,ε)ε ⊂ Λ, θ ∈ [0, 2π), and R > 0 be
such that Bcyl(xε, R) ⊂ Λ. We define

Φε(x) = cosh

(

λ
R− dcyl(x, xε)

ε

)

,

where λ > 0 is chosen such that

inf
Λ̄
V >

λ2

(1 − µ)
.

Then, there exists ε0 > 0 such that, for every ε < ε0,

−ε2 (∆ +H) Φε + (1 − µ)V Φε ≥ 0 in Bcyl(xε, R)\Bcyl(xε, εr).

Proof. By simple calculation, we obtain that

− ε2 (∆ +H) Φε + (1 − µ)V Φε =

(λ2 + (1 − µ)V ) Φε − ε2HΦε + ελ
2ρ− ρε

ρdcyl(x, xε)
sinh

(

λ
R− dcyl(x, xε)

ε

)

≥ 0,

thanks to the assumption on λ and for ε small enough. �

Thanks to Proposition 5.6 we remark that the assumption Bcyl(xε, R) ⊂ Λ is verified if ε is taken
sufficiently small. From now, we will always consider that ε0 ∈ R is taken small enough to have
this property.

With those two functions Ψε and Φε, we are ready to construct the barrier functions. Again we
refer to [7] for the proof.
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Lemma 6.5. Take r > r0 (r0 introduced in Lemma 6.1). Let λ > 0 be as in Lemma 6.4 and (xε)ε

be as in Proposition 5.6. Then, there exists ε0 > 0 and a family (wε)ε ⊂ C1,α
loc

(R3\{0}\Bcyl(xε, εr))
of barrier functions such that for ε < ε0

0 < wε(x) ≤ C exp

(

−
λ

ε

dcyl(x, xε)

1 + dcyl(x, xε)

)

(1 + |x|)−1 ∀x ∈ R
3 \ (Bcyl(xε, εr) ∪ {0}).

Moreover, if we assume that

(i) (V ∞) holds with α = 2, then, for every ν > 1 and for every R > 1 with Λ̄ ⊂ B(0, R), there
exist C > 0 and ε0 (eventually smaller than the previous one) such that, for all ε < ε0,

0 < wε(x) ≤ C exp

(

−
λ

ε

dcyl(x, xε)

1 + dcyl(x, xε)

)

|x|−ν ∀x ∈ R
3\B(0, R); (6.1)

(ii) (V ∞) holds with α < 2, then, for every ν > 1 and for every R > 1 with Λ̄ ⊂ B(0, R), there
exist C > 0 and ε0 > 0 such that, for all ε < ε0,

0 < wε(x) ≤ C exp

(

−
λ

ε

dcyl(x, xε)

1 + dcyl(x, xε)

)

exp
(

−ν|x|
2−α

2

)

∀x ∈ R
3\B(0, R); (6.2)

(iii) (V 0) holds with α = 2, then, for every ν > 1 and for every r < 1 with B(0, r)∩ Λ̄ = ∅, there
exist C > 0 and ε0 > 0 such that, for all ε < ε0,

0 < wε(x) ≤ C exp

(

−
λ

ε

dcyl(x, xε)

1 + dcyl(x, xε)

)

|x|ν ∀x ∈ B(0, r) \ {0}; (6.3)

(iv) (V 0) holds with α > 2, then, for every ν > 1 and for every r > 1 with B(0, r)∩ Λ̄ = ∅, there
exist C > 0 and ε0 > 0 such that, for all ε < ε0,

0 < wε(x) ≤ C exp

(

−
λ

ε

dcyl(x, xε)

1 + dcyl(x, xε)

)

exp
(

−ν|x|
2−α

2

)

∀x ∈ B(0, r) \ {0}. (6.4)

6.3. Back to the original equation. Thanks to Lemmas 6.1 and 6.5, we obtain an upper bound
on |uε|.

Proposition 6.6. Suppose the assumptions of Theorem 4.2 and Proposition 5.6 are satisfied. Let
λ > 0 be as in Lemma 6.4, (xε)ε ⊂ Λ̄ be as in Proposition 5.6 and (uε)ε ⊂ Xε be the solutions
found in Theorem 4.2. Then, there exists C > 0 and ε0 > 0 such that, for all ε < ε0,

0 < |uε(x)| ≤ C exp

(

−
λ

ε

dcyl(x, xε)

1 + dcyl(x, xε)

)

(1 + |x|)−1 ∀x ∈ R
3 \ {0}. (6.5)

Moreover, (6.1)-(6.4) hold for |uε| in place of wε if we make the same assumptions on V .

Proof. By Lemma 6.1, we know that |uε| is a subsolution in R
3\Bcyl(xε, εr), for some r > r0.

Furthermore, thanks to Lemma 5.2, we know that ‖uε‖L∞(Bcyl(xε,εr)) is bounded for ε < ε0. We

deduce that |uε| ≤ ‖uε‖L∞(Bcyl(xε,εr)) on ∂Bcyl(xε, εr). With the comparison principle, we conclude
that

0 < |uε(x)| ≤ ‖uε‖L∞(Bcyl(xε,εr))wε(x) ∀x ∈ R
3 \ (Bcyl(xε, εr) ∪ {0}).

Finally, since |uε| is bounded in Bcyl(xε, εr), we obtain the estimate (6.5) for all x ∈ R
3. The other

estimates follow by reasoning in the same way. �

We can now proof the main Theorem.
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Proof of Theorem 1.1. It remains us to prove that uε is in fact a solution of the initial problem
(1.1). For this, we need to show that

f(|uε|2) = |uε|p−2 ≤ ε2H(x) + µV (x) ∀x ∈ R
3\Λ.

We prove this for example in the case where we make no assumptions on V (then p > 4). We use
Proposition 6.6 to say that

|uε(x)|p−2 ≤ Ce− λ
ε

(p−2)(1 + |x|)−(p−2) ≤ ε2H(x) + µV (x),

for small ε. The last inequality is verified since we considered p > 4. Indeed, for |x| large, the
right-hand side behaves as 1/

(

|x|2 log |x|
)

. The left-hand side decays then faster since it behaves
as 1/|x|p−2. For |x| small, the left-hand side behaves as a constant while the right-hand side is
unbounded. The other cases may be treated in a similar way. �

Remark 6.7. In addition of theorem 1.1, we may also prove that estimates (6.1)-(6.4) hold for
|uε| instead of wε if we make the corresponding assumptions on V .

7. Another class of symmetric solutions

When A is equal to the Lorentz potential, i.e. A = (−x2, x1, 0) or has the slightly more general
form

A(ρ, θ, x3) = c(ρ)(− sin θ, cos θ, 0), (7.1)

Esteban and Lions have proposed in [22, Section 4.3] the class of solutions

uk := Ck

(

x2 + ix1

ρ

)k

vk,

where k ∈ Z, Ck ∈ R\{0} and vk are real cylindrically symmetric solutions of an auxiliary problem.
One can check easily that the functions uk solve

(iε∇ +A)2 uk + V (ρ, x3)uk = |uk|p−2uk, x ∈ R
3, (7.2)

if and only if the vk are real solutions of

− ε2∆vk +

(

(

kε

ρ
+ c(ρ)

)2

+ V (ρ, x3)

)

vk = Cp−2
k |vk|p−2vk, x ∈ R

3. (7.3)

The limit equation in R
2 has the form

−∆wk +
(

c2(ρ0) + V (ρ0, x3,0)
)

wk = Cp−2
k |wk|p−2wk, (7.4)

where (ρ0, x3,0) is such that the normalized concentration function

M(ρ, x3) = ρ
(

c2(ρ) + V (ρ, x3)
) 2

p−2 (7.5)

is locally minimized at this point.
Observe that this reduction to a real valued problem allows us to use directly the arguments from

[7] without much modifications. One can then consider several cases according to the properties of
c and V . We do not address all these cases in details. We will focus on the special case which for
instance allows to consider a critical frequency.
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7.1. Existence at the critical frequency. Remember that the potential V stands for U − E,

where U is the electrical potential and E is the frequency of the standing wave ψ(x, t) = e−i E
~

t u(x).
When E = infRN U(x), we say that E is the critical frequency. When A = 0, the critical frequency
was studied by many authors, starting with the contribution of Byeon and Wang [9, 10] and followed
by many others.

Byeon and Wang have shown that there exists a standing wave which is trapped in a neighbour-
hood of the isolated minimum points of V and whose amplitude goes to 0 as ~ → 0. Moreover,
depending upon the local behaviour of the potential function V near the minimum points, the
limiting profile of the standing-wave solutions was shown to exhibit quite different characteristic
features. This is in striking contrast with the non-critical frequency case (inf U(x) > E) where the
solution develops a spike in the semiclassical limit.

Here we show that even if the frequency is critical, the presence of an external magnetic field
allows for the existence of a solution concentrating on a circle and whose amplitude does not vanish
in the semiclassical limit so that this solution is a spike type solution.

Let p > 2 and k ∈ Z. Let V ∈ C(R3\{0}) be nonnegative and such that V (gx) = V (x) for every
g ∈ G. Assume A ∈ C1(R3,R3) is of the form (7.1) and such that c(ρ) > 0 for every ρ and

lim inf
ρ→∞

c(ρ)ρ > 0.

With those assumptions, the assumption lim inf |x|→+∞W (x)|x|2 > 0 holds for the potential

W =

(

kε

ρ
+ c(ρ)

)2

+ V (ρ, x3)

and ε small. Moreover this potential is nonnegative everywhere and for every 0 < θ < 1 and ε > 0,
there exists ρθ,ε > 0 such that

(

kε

ρ
+ c(ρ)

)2

+ V (ρ, x3) ≥ θc(ρ)2 + V (ρ, x3),

for ρ ≥ ρθ,ε. Clearly ρθ,ε → 0 as ε → 0 for any fixed θ.
The proof of the following theorem can be easily recovered from [7] with straightforward modi-

fications.

Theorem 7.1. With the above conditions on c, V , k and p, assume there exists a bounded
G-invariant smooth set Λ ⊂ R

3 such that (1.7) is satisfied with M now defined by (7.5) and
(1.8) is satisfied for θc2 + V , θ ∈ (0, 1). If ε > 0 is small enough, the equation (7.3) has
a solution vk,ε such that vk,ε(gx) = vk,ε(x) for all g ∈ G, vk,ε attains its maximum at some
xk,ε = (ρk,ε cos θ, ρk,ε sin θ, x3,k,ε) ∈ Λ such that

(ii) lim inf
ε→0

|vk,ε(xk,ε)| > 0;

(iii) lim
ε→0

M(xk,ε) = inf
Λ∩H⊥

M;

(iv) lim sup
ε→0

dcyl(xk,ε,H
⊥)

ε
< +∞ , that is x3,k,ε → 0;

(v) lim inf
ε→0

dcyl(xk,ε, ∂Λ) > 0.

Finally, there exists Ck ∈ R \ {0} such that

uk,ε = Ck

(

x2 + ix1

ρ

)k

vk,ε

solves (7.2) and for every ν > 1, the asymptotic estimate

0 < |uk,ε(x)| ≤ C exp

(

−
λ

ε

dcyl(x, xk,ε)

1 + dcyl(x, xk,ε)

)

|x|−ν ∀x ∈ R
3 \ {0}.
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As previously discussed, we can consider the critical frequency as one can allow V to vanish at
the local minimum point of M in Λ.

Observe also that the ansatz fixes the concentration as the concentration set is the same for any
choice of k ∈ Z.
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