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Abstract. When we have a deformation group acting on a vector space
of observations, these data are not anymore elements of our space but
rather orbits for the group action we consider. If the data are generated
from an unknown template with noise, to estimate this template, one
may want to minimise the variance in the quotient set. In this article
we study statistics on a particular quotient space. We prove that the
expected value of a random variable in our vector space mapped in the
quotient space is different from the Fréchet mean in the quotient space
when the observations are noisy.

Introduction

In the theory of shape introduced by Kendall [6], in Computational anatomy [4]
or in image analysis, one often aims at estimating a template (which stands
for the mean of the data) of shapes (for instance an average shape of an or-
gan from a population of subject scans). To understand the observations, one
assumes that these data follow a statistical model. A very popular one is that
the observations are random deformations of the template with additional noise.
This is the model proposed in [4] which is the foundation of Computational
Anatomy. This introduces the notion of group action where the deformations
we considered are elements of a group which acts on the set of objects, namely
the images. In this particular setting, the template estimation is most of the
time based on the minimization of the empirical variance in the quotient space
(called the empirical Fréchet mean) (see for instance [7,5,9] among many others).

More precisely here, we consider M a finite dimensional vector space with a
euclidean norm, G a finite group acting on M , such that the action is isomet-
ric with the respect of the euclidean norm on M . Thus the quotient M/G is
equipped with a quotient distant, noted here ρ, moreover we call [m] the orbit
of m ∈M .
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We consider the following generative model: Y is a random variable on M
with a density h for the Lebesgue measure. Y is not a random variable constant:
it is the sum of a template and a white noise. And we aim to estimate this tem-
plate. If Y was an observed variable, this question will be meaningless it would
suffice to compute:

∫
M
yh(y)dy which corresponds at the case where we have an

infinite number of observations. Instead, here the random variable Y which lives
in the total space M is not an observable variable, only [Y ] is observable.

In the following, the deformations of the group G will be restricted to trans-
lations and the noise will follow a general distribution. This kind of action is
a simplified setting for image registration, for instance medical images can be
obtained by translation of one scan to another due to different poses. More pre-
cisely, we work in the vector space M = RT where T = (Z/NZ)D is a discrete
torus in D-dimension, an element of RT is seen as a function y : T → R, y(τ)
is the value at the pixel τ . When D = 1, y can be seen like a discretised signal
with N pixels, when D = 2, we can see y like a picture with N ×N pixels etc.
We then define the group action of G = T on RT by:

τ ∈ T, y ∈ RT τ · y : σ 7→ y(σ + τ). (1)

We note || || the canonical Euclidean norm over RT. We define a distance in
the quotient space by:

ρ([y], [z]) = inf
τ,σ∈T

||τ · y − σ · z|| = inf
τ∈T
||τ · y − z||. (2)

Now the fact that Y has a density for the Lebesgue measure, implies that [Y ]
has a density in M/G for the image measure noted ν. This density is given by:
h̃([y]) = 1

|G|
∑
g∈G h(g ·y), therefore we can write the variance of [Y ] at the point

[µ] ∈M/G by:

F ([µ]) = E(ρ([µ], [Y ])2) (3)

=

∫
M/G

ρ([µ], z)2h̃(z)ν(dz) (4)

=
1

|G|

∫
M/G

ρ([µ], [y])2
∑
g∈G

h(g · y)ν(d[y])) (5)

=

∫
M

ρ([µ], [y])2h(y)λ(dy) (6)

=

∫
RT

inf
τ∈T
||τy − µ||2h(y)λ(dy) = J(µ). (7)

J is non-negative, continuous, lim||µ||→+∞ J(µ) = +∞, therefore J reaches its
minimum. The points in RT/T which minimises F are the Fréchet means of [Y ].
In this article, the central question is: is the template - which generates the
random variable Y in the total space - mapped in the quotient space, a Fréchet
mean of [Y ] or not?
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About this kind of questions, previous works have been done before: for
instance Allassonnière, Yali and Trouvé in [1] show an example of translated
step function. They compared the iterative algorithm which numerically esti-
mates the empirical Frechet mean in the quotient space to the Expectation-
Maximization [3] algorithm which approximates the maximum likelihood esti-
mator. In this example, even with a large number of observations, estimating
the empirical Fréchet mean did not succeed to estimate well the template (the
step function from which the synthetic samples were generated) when the noise
on the observation was large enough.

To understand the example found in [1], different algorithms and theorems
have been proposed (for instance in [2,7] or [10]), to improve or ensure the con-
vergence of the empirical Fréchet mean in a more general case than presented
in this article. A first contribution to provide a clue to know if even with an
infinite number of observations, we could estimate the template has been given
by Miolane and Pennec in [8]. They show that the presence of noise may imply
that the template mapped in the quotient space is not a Fréchet mean in the
quotient space. Then estimating the template in the total space with the Fréchet
mean in the quotient space produces a bias. Considering the action of rotations
on an euclidean space, they highlight the influence of dimension of the consid-
ered vector space and the influence of the ratio signal over noise on the bias.
Although they showed a general result with a finite dimensional manifold and
an isometric Lie group action, they made the assumption of a Gaussian noise.
Here we do not make this assumption to show the presence of bias. For instance,
here even with a bounded support of the density, under some condition we may
have a bias. Moreover the method proposed here is different from [8], which can
provide another explanation to the presence of bias in this context.

This paper is organised as follows. In Section 1, we show that the expected
value of Y mapped in the quotient space is not a Fréchet mean of [Y ] as soon
as the density of Y satisfies a certain condition. In Section 2, we compute the
bias in a special case of torus with a Gaussian noise. This trivial example aims
to give us an intuition of which parameters the bias depends on.

1 Existence of a bias for any discrete torus

In this section, we show that under some conditions of the density, the expected
value of the random variable Y is not a minimum of J (defined in Equation (7)).
To show that, we first study the differentiability of the integrand of J . Then
we justify that the gradient of the variance J is the integral of the gradient’s
integrand. Finally we show that the gradient of the variance J at the expected
value of the random variable Y is not zero. It will imply that the expected value
of Y mapped in the quotient space in not a Fréchet mean of [Y ].
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1.1 Study of the Differentiate of the Integrand

In this sub-part, we search to see when the integrand is differentiable, and to
compute its gradient. In order to do that we defined:

∀ µ, y ∈ RT f(µ, y) = inf
τ∈T
||τ · y − µ||2h(y)dy. (8)

Then we have: J(µ) =
∫
RT f(µ, y)dy, we will see that the differentiability of

µ 7→ f(µ, y) at the point µ0 depends on y and µ0, more precisely the question
on differentiability is related to the isotropy group of µ0 and to the distances
between y and τ · µ0 for τ ∈ T. Indeed one difficulty appears here: the inf of
several differentiable functions is not necessary differentiable.

Remark 1. Let f1, . . . , fr : Rn → R be differentiable functions at a point x0,
f = inf

1≤i≤r
fi is differentiable at x0 if: ∀i, j ∈ J1, rK2 , i 6= j =⇒ fi(x0) 6= fj(x0).

Indeed in this case, we take k = argmin{fi(x0), i ∈ J1, rK}, we have locally around
x0: f = fk. Then f is differentiable at x0, and ∇f(x0) = ∇fk(x0) (where ∇f(x)
is the gradient of f at the point x).

In Equation (8), let τ, τ ′ be two distinct elements of T then: ||τy−µ|| = ||τ ′y−µ||
is equivalent to ||y − (−τ)µ|| = ||y − (−τ ′)µ||,4 there are two cases:

• If (−τ)µ = (−τ ′)µ then ∀y ∈ RT ||τy − µ|| = ||τ ′y − µ||.
• If for all τ 6= τ ′ we have τµ 6= τ ′µ, i.e. the isotropy group is reduced to {0},

(the isotropy group is defined by: Iso(µ) = {τ ∈ T, τµ = µ}). We call such
a µ a regular point, otherwise we say that µ is a singular point. We note

Aµ =
⋃

τ,τ ′∈T, τ 6=τ ′

{x ∈ RT, ||x− τ · µ|| = ||x− τ ′ · µ||}. (9)

Foj µ regual, Aµ is the set of points equally distant from two points of
the orbit of µ, Aµ is a finite union of hyperplanes, therefore the Lebesgue’s
measure of Aµ is null. In this case for every regular point µ and for all most
every y (y does not belong to Aµ), the infimum in Equation (8) is reached
at a unique τ ∈ T. When the infimum in Equation (8) is reached at a unique
τ ∈ T , we note this τ by:

τ(y, µ) = argmin{||τ · y − µ||, τ ∈ T}. (10)

We note Sing = {µ ∈ RT, such that Iso(µ) 6= {0}} the set of singular points.
Notice that: Sing =

⋃
τ 6=0

ker (x 7→ τ · x− x) is a finite union of strict linear sub-

spaces of RT, then Sing is a null set for the Lebesgue’s measure. For µ 6∈ Sing
we have then for almost all y:

f(µ, y) = inf
τ∈T
||µ− τy||2h(y) = ||µ− τ(y, µ)y||2h(y). (11)

4 Because ||x|| = ||τx||, and τ(x+ y) = τx+ τy.
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We can now apply the remark 1 to differentiate the integrand f defined in (8).
But first we need to see how τ variates. Let µ be a regular point and y /∈ Aµ
therefore: ||µ−τ(y, µ) ·y|| < inf

α6=τ(y,µ)
||µ−αy||. For continuity reason we have the

existence of αµ,y > 0, βµ,y > 0 such that for ν, z ∈ RT verifying ||µ− ν|| < αµ,y,
||y − z|| < βµ,y we still have:

||ν − τ(y, µ) · z|| < inf
α6=τ(y,µ)

||ν − α · z||. (12)

And then we have:

∀ν, z ∈ RT, ||µ− ν|| < αµ,y, ||y − z|| < βµ,y =⇒ τ(z, ν) = τ(y, µ). (13)

Finally, we can differentiate µ 7→ f(µ, y) with respect to µ in µ0 /∈ Sing and
y 6∈ Aµ0 , Equation (13) allow us to differentiate µ 7→ τ(y, µ) (which is locally
constant) which yields:

∂f

∂µ
(µ0, y) = 2(µ0 − τ(y, µ0)y)h(y). (14)

Now that we have seen the differentiability of the integrand, we justify in the
next part that we can permute the differentiation and the integral sign.

1.2 Justification of the Differentiation of the Integral

In order to differentiate the variance in the quotient space (noted J), we propose
to do the following things:

• Showing that µ 7→ f(µ, y) is weakly differentiable for almost all y, and com-
puting its weak gradient.
• Deducing that J is weakly differentiable and finding its weak gradient ∇J .
• Showing that ∇J is continuous at some point, therefore by integration J is

differentiable at these points, and ∇J is its strong gradient.

Remark 2. We can not apply here the theorem of differentiation under the inte-
gral sign, because µ 7→ f(µ, y) is differentiable at µ0 for almost all y, but "the
allmost y" is RT \Aµ0

depends of µ0.

Weak differentiation of f( ,y) for almost all y. First we define C∞c (RT,R)
as the set of functions of infinite class whose support is a compact set. We want
here to show that for almost all y (y /∈ Sing):

∀ϕ ∈ C∞c (RT,R)
∫
f(µ, y)∇ϕ(µ)dµ = −

∫
ϕ(µ)

∂f

∂µ
(µ, y)dµ. (15)

Let ϕ ∈ C∞c (RT,R) and by linearity it is sufficient to show:∫
f(µ, y)

∂ϕ(µ)

∂µ1
dµ = −

∫
∂f

∂µ1
(µ, y)ϕ(µ)dµ.
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Which is equivalent to:5∫ (∫
f(µ, y)

∂ϕ(µ)

∂µ1
dµ1

)
dµ2 . . . dµ|T| = −

∫ (∫
∂f

∂µ1
(µ, y)ϕ(µ)dµ1

)
dµ2 . . . dµ|T|.

Hence, it is sufficient to show that for almost all (µ2, . . . , µ|T |) we have:∫
f(µ, y)

∂ϕ(µ)

∂µ1
dµ1 = −

∫
∂f

∂µ1
(µ, y)ϕ(µ)dµ1. (16)

There are two cases: L = {(x, µ2, . . . , µ|T|), x ∈ R} is included in Ay, or not.
If L is not included in Ay then L ∩Ay is finite, so in a connected component of
L \Ay, fL : x 7→ f(x, µ2, . . . , µT, y) is derivable with a strong derivative:6

f ′L(x) = 〈(µ− τ(y, µ)y)h(y) |e 〉 with µ = (x, µ2, . . . , µ|T|), e = (1, 0, . . . , 0).

Therefore by cutting the integral by pieces, where each piece is a connected
component on L \ Ay and by integrating by part on each piece, we get7 in this
case Equation (16).
We note B = {(µ2, . . . µ|T|) ∈ R|T|−1, ∀x ∈ R (x, µ2, . . . µ|T|) ∈ Ay} and we define
for all (τ, α) ∈ T2 with τ 6= α:

Ψτ,α :

(
R|T|−1 → Aff

(µ2, . . . µ|T|) 7→ x 7→ Ψτ,α(µ2, . . . , µ|T|)(x)

)
Ψτ,α(µ2, . . . , µ|T|)(x) = ||(x, µ2, . . . µ|T|)− τy||2 − ||(x, µ2, . . . µ|T|)− αy||2

= 2
〈
(x, µ2, . . . , µ|T|) |αy − τy

〉
.

where Aff is set of real affine maps, Ψτ,α is well defined, affine, non zero (because
y /∈ Sing), so Ψ−1τ,α({0}) is a strict affine subspace of R|T|−1 therefore: B =⋃
τ 6=α

Ψ−1τ,α({0}) is a null set.

To conclude, we have for almost all (µ2, . . . µ|T|) the equation (16) which
proves (15).

Remark 3. We did not show here that f belongs to a Sobolev space, because
generally a Sobolev space is defined as the set of L2 (or Lp) functions whose weak
derivative exist and are in L2 (or Lp), here f( , y) /∈ Lp for every p > 1, because
f(µ, y)→ +∞ when ||µ|| → +∞. Instead we have shown that the derivative of
the distribution associated to µ 7→ f(µ, y) is a distribution associated to another
function (namely µ 7→ ∂f

∂µ (µ, y)). The only thing we need in order to speak about
a distribution associated to a function is that the function is integrable over each
compact set of RT which is the case here.
5 For writing µ ∈ RT µ = (µ1, . . . , µ|T|) we suppose that we have chosen (once for all)
an arbitrary order between the |T| real variables.

6 By using the result in (14) by permuting the role of µ and y to ensure that the inf
in (8) is unique.

7 In fact, this is a particular case of the theorem of derivation of a distribution rep-
resented by a function with jumps, the derivative of a jump at the position a is
obtained by a Dirac distribution function in a, here there is no Dirac because the
function f is continuous.
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Weakly differentiability of the variance in the quotient space We now
prove that J(µ) =

∫
f(µ, y)dy is weakly differentiable: Let ϕ ∈ Cc(RT,R) then

(by permutation of integrals thanks to Fubini’s theorem):∫
J(µ)ϕ′(µ)dµ =

∫ ([∫
f(µ, y)dy

]
ϕ′(µ)

)
dµ

=

∫ (∫
f(µ, y)ϕ′(µ)dµ

)
dy

= −
∫ ∫

ϕ(µ)
∂f

∂µ
(µ, y)dµdy

= −
∫ (∫

∂f

∂µ
(µ, y)dy

)
ϕ(µ)dµ.

Thus J is weakly differentiable, and its weakly derivative is:

∇J(µ) =
∫
∂f

∂µ
(µ, y)dy = 2

(
µ−

∫
τ(y, µ)yh(y)dy

)
. (17)

Continuity of the weak gradient at the regular points. We show the
continuity of the weak gradient at the regular points by simply applying the
continuity under integral sign:
Let µ0 ∈ RT \ Sing, then for y /∈ Aµ0

, µ 7→ f(µ, y) is continuous at µ0 by
Equation (13), moreover ||τ(y, µ) · y||h(y) ≤ ||y||h(y) with y 7→ ||y||h(y) an
integrable function independent of µ. Therefore by the continuity under integral
sign:

∇J(µ) = 2

(
µ−

∫
τ(y, µ) · yh(y)dy

)
, (18)

is continuous at µ0. This implies that the variance in the quotient space, (noted
J) is differentiable over R \ Sing and its strong gradient over R \ Sing is:

∇J(µ) = 2

(
µ−

∫
RT
τ(y, µ) · yh(y)dy

)
. (19)

1.3 The expected value of Y mapped in the quotient space is not
necessarily a Fréchet mean of [Y ]

We suppose that E(Y ) (noted y0) the expected value of the random variable Y is
a regular point (to ensure that J is differentiable at y0) and verifies ∇J(y0) = 0,
and we want to find a contradiction, we know from Equation (19) that:

1

2
∇J(y0) =

∫
RT
yh(y)dy −

∫
RT
τ(y, y0) · yh(y)dy. (20)

Therefore:

1

2
〈∇J(y0) |y0 〉 =

∫
RT

(〈y |y0 〉 − 〈τ(y, y0) · y |y0 〉)h(y)dy = 0. (21)
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We shall remember that τ(y, y0) minimises {||τ · y − y0||, τ ∈ T} for almost
all y. Then it minimises for almost all y:

{||τ · y − y0||2 = ||y||2 + ||y0||2 − 2 〈τy |y0 〉 , τ ∈ T},

and then almost surely τ(y, y0) maximises:

{〈τ · y |y0 〉 , τ ∈ T},

This leads to:

〈y |y0 〉 − 〈τ(y, y0) · y |y0 〉 ≤ 0 almost surely.

So the integral of a non-positive function is null, so if we note Supp(h) the
support of h we have then:

∀y ∈ Supp(h), 〈y |y0 〉 = 〈τ(y, y0) · y |y0 〉 almost surely. (22)

Then τ = 0 maximises the dot product almost surely. Therefore (as we know
that τ(y, y0) is unique almost surely, since y0 is regular):

∀y ∈ Supp(h), τ(y, y0) = 0 almost surely. (23)

Let us suppose that the support of h contains a neighbourhood of y ∈ RT

such that τ(y, y0) is unique and τ(y, y0) = α 6= 0, therefore: ||αy − y0|| <
||τy − y0|| ∀τ ∈ T \ {α}, and like in Equation (12), we have the existence of
r > 0 such that:

∀z ∈ B(y, r) ||α · z − y0|| < inf
τ∈T,τ 6=α

||τz − y0||. (24)

Then for z ∈ B(y, r) τ(z, y0) is unique and τ(z, y0) = α 6= 0, which is a con-
tradiction with Equation (23). We have therefore proved the following theorem:

Theorem 1. Let Y be a random variable of density h, whose expected value has
a isotropy group reduced to {0}. If Supp(h) contains a neighbourhood of a point
y such that τ(y,E(Y )) 6= 0 (which means that y is strictly closer to τ ·E(Y ) with
some τ 6= 0 than E(Y ) itself), then we can say that [E(Y )] is not a Fréchet mean
of [Y ] in the quotient of the space quotiented by the action of translations.

2 Example in a very simple torus

In the previous part, we have shown that the expected value of Y can not
be estimated by the Fréchet mean estimator. But we did not say how far this
expected value of Y was from the set of all the Fréchet means in the quotient
space. In this section, we take a very simple example: we take only two pixels: in
other words here we work with RT where T = Z/2Z, we can identify RT with R2

and work with the canonical basis of R2, we note by (u, v) the coordinates of an
element of RT. 0 · (u, v) = (u, v) and 1 · (u, v) = (v, u),. We note L = {(u, u), u ∈
R}, and HP = {(u, v), v > u} the half-plane above the line L. Here we suppose
that Y follows a Gaussian law of variance σ2 and expected value E(Y ) ∈ HP.
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2.1 Graphical Interpretation of the Presence of the Bias

In this subpart we explain why there is a biasin this situation. Let µ ∈ HP 8

(as it is the case for E(Y )). We remind that τ(y, µ) is an element of T which
minimises ||τ · y − µ|| see (10)):

• If y ∈ HP then τ(y, µ) · y = y, because µ, y are in the same half-plane
delimited by L, and L is the perpendicular bisector of y and 1 · y.

• If y /∈ HP then τ(y, µ) · y = 1 · y ∈ HP.

For µ ∈ HP, we define Z = τ(Y, µ) · Y (Z do not depend of µ ∈ HP see above)
we have J(µ) = E(||Z − µ||2).

Lemma 1. The global minimums of J are exactly: E(Z) and 1 · E(Z).

Proof. Let µ0 be a global minimum of J , we know that J(µ) = J(1 ·µ). Without
loss of generality we can assume that µ0 ∈ HP. Now as E(Z) is the expected
value of Z we know that E(Z) is the only point where the variance of Z:(

RT → R+

µ 7→ E(||Z − µ||2)

)
(25)

is minimal, moreover we know that Z takes value in HP, then for convexity
reason E(Z) ∈ HP. Then by restriction to HP, E(Z) is still the unique minimum
of: (

HP→ R+

µ 7→ E(||Z − µ||2)

)
. (26)

As a conclusion we have µ0 = E(Z). ut

When we represent graphically these two random variables Y, Z, we can see
that Y, Z have different means. This case shows graphically the bias. On the
Fig. 1(a) and Fig. 1(b), we see the noise’s influence: more the noise is important,
more the mass under the line L is big and more the mean of Z is far from the
expected value of Y . On the Fig. 1 we understand the condition of the density
in the theorem 1, if the density’s support is too small, then there are no mass
under the line L, therefore Y = Z and in this case there is no bias.

2.2 Localize the Fréchet mean

Thanks to the lemma 1, we can compute a Fréchet mean by computing E(Z),
which is the sum of the area of the grey part (for the density h) and of the area
of the black part (for the density h) in the Fig. 1(b), we have:

E(Z) =
∫
v>u

(u, v)h(u, v)dudv +

∫
v<u

(v, u)h(u, v)dudv, (27)

8 For symmetry reason, because J(µ) = J(τµ).
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where (u, v) are the coordinates of a point in RT ' R2. To compute (27)
we convert to polar coordinates: (u, v) = E(Y ) + (r cos θ, r sin θ) where r > 0 et
θ ∈ [0, 2π]. We also define: d = dist(E(Y ), L). We get:

E(Z) = E(Y ) +

∫ +∞

d

r2 exp(− r2

2σ2 )

πσ2

√
2g

(
d

r

)
dr × (−1, 1), (28)

where g is a non-negative function on [0, 1] defined by g(x) = sin(arccos(x))−
x arccos(x). Here we want to compute ρ̃ = ρ([E(Y )], [E(Z)]) where ρ is the
distance in the quotient space defined in (2). As we know that E(Y ), E(Z) are
in the same half-plane delimited by L, we have:

ρ̃ = ρ([E(Y )], [E(Z)]) = ||E(Y )−E(Z)|| = 2

∫ +∞

d

r2 exp(− r2

2σ2 )

πσ2
g

(
d

r

)
dr. (29)

We can conclude that:

Theorem 2. The Fréchet mean of [Y ] in the quotient space is an orbit of
two points which are on the line passing through the expected value of Y and
perpendicular to L and we compute the relative gap between the bias ρ̃ and
d = dist(E(Y ), L) by:

ρ̃

d
=
σ

d

2

π

∫ +∞

d
σ

r2 exp

(
−r

2

2

)
g

(
d

rσ

)
dr. (30)

(a) Graphic representa-
tion of Y , y0 = E(Y )

(b) Graphic representa-
tion of Z, y0 6= E(Z)

(c) Variation of ρ̃
d
in function

of d
σ
.

Fig. 1. Z and Y have not the same mean, therefore there is a bias.

Remark 4. Here, contrarily to [8], it is not the ratio ||E(Y )|| over the noise which
matters to estimate the bias, but the ratio dist(E(Y ), L) over the noise which
matters. But in fact, there it is not so different, in both case we measure the
distance between the signal and the singularities (which is {0} in [8] for the
action of rotations, L in this case).



Title Suppressed Due to Excessive Length 141

Discussion

In this article we have compared two notions of mean, one is the expectation of
our random variable in our linear space, the other is the Fréchet mean in the
space quotiented by translations. By differencing the variance in the quotient
space we managed to show that when our random variable has a density whose
support is large enough due to noise, the template in the total space mapped
in the quotient space is not a Fréchet mean. But is the template mapped in
the quotient space close to the Fréchet mean in the quotient space? We have
answered to this question only in a special case of torus by computing the bias
with a Gaussian noise. In this case, the bias depends on the scale of the noise
and on the regularity of the signal, (measured here by how far our signal is from
the set of singularity). In future work, we will generalise this estimation of the
bias for a general torus T = (Z/NZ)D, in order to see the influence of N (the
number of pixels for each side of the picture) and D (the dimension of the pic-
ture) on the size of the bias. We have also seen the role played by the nature
of the isotropy group for the presence of bias. This was already observed in [8],
restricted to Gaussian noise.

In the section 1, we showed a bias for the Fréchet mean estimator with a
particular group action defined in (1). But we have never used that definition.
We have only used some properties of this group action: a finite group acts
isometrically and effectively on a finite dimensional vector space. Therefore the
theorem 1 generalises to any group with these properties.

What if the isotropy group is not reduced to {0}? Suppose now that G is a
finite group acting isometrically and effectively on Rn. Let suppose that E(Y )
is singular, and that Supp(h) contains a neighbourhood of a point y such that y
is strictly closer to g0 · E(Y ) than E(Y ) with some g0 ∈ G. We make the extra
assumption that it exists K a subgroup of G with G = {k × i, k ∈ K, i ∈
Iso(E(Y ))} and K ∩ Iso(E(Y )) = {eG}, then we have the same result: Indeed,
by noting y0 = E(Y ), we have:

[y0] = {g · y0, g ∈ G} = {g · y0, g ∈ K} (31)

Therefore if we note:

J̃(µ) =

∫
Rn

inf
g∈K
||y − g · µ||2h(y)dy (32)

Then we have: J(y0) = J̃(y0) and for all µ ∈ Rn J̃(µ) ≥ J(µ), now if we consider
the action of G but restricted to K (the action is still isometric, and effective:
since no element leaves y0, moreover by writing g0 = k × i with iy0 = y0, and
k ∈ K, y is strictly closer to k · E(Y ) than E(Y )), then we know (by the the-
orem (1), with y0 a regular point for the action of the group K) that it exists
µ ∈ Rn such that J̃(µ) < J̃(y0), therefore J(y0) = J(ỹ0) > J̃(µ) ≥ J(µ),
then y0 is still not a minimum of the variance J , therefore the expected value
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of Y mapped in the quotient space is not a Frechet mean of [Y ] even in this case.

In a more general case: when we take an infinite-dimensional vector space
quotiented by a group action, for instance when the group is a subgroup of the
group of smooth diffeomorphism, is there always a bias? And when it does, can
we measure the bias in function of the scale of the noise and the distance between
the template and the singularities? Figure 1(c) shows us that the bias is not so
important in favourable cases: when the noise is low and the signal far from the
singularities. Then we can hope that it will be also the case in a more general
case. If so, one could keep using the Fréchet mean in the quotient space in order
to estimate the template in the total space.
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