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Tunable optical negative-index metamaterials employing anisotropic

liquid crystals

Xiande Wang, Do-Hoon Kwon, Douglas H. Werner,? and lam-Choon Khoo
Department of Electrical Engineering, The Pennsylvania State University, University Park,

Pennsylvania 16802, USA
Alexander V. Kildishev and Vladimir M. Shalaev

Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University,

West Lafayette, Indiana 47907, USA

(Received 19 August 2007; accepted 18 September 2007; published online 4 October 2007)

A full-wave analysis technique based on the finite element-boundary integral method is developed
and used to rigorously treat the scattering from periodically structured metamaterials incorporating
anisotropic liquid crystals (LCs) and dispersive materials. Reconfiguration of the negative-index
metamaterials is achieved by controlling the magnetic resonance via tuning permittivity of the
embedded anisotropic LCs. Numerical results show that the refractive index of the metamaterials
can be reconfigured by tuning the director orientation of anisotropic LCs or by using
temperature-dependent LCs. The design configurations and their characteristics in the near- and the
mid-infrared ranges are presented. © 2007 American Institute of Physics.

[DOI: 10.1063/1.2795345]

Current research and development in electro- and
nonlinear-optical materials for photonic applications are
largely centered on nanostructured metamaterials that exhibit
unique physical and optical properties.lf4 In particular, re-
search in negative- and zero-index materials®™ (NIMs and
ZIMs) has been very active over the past few years. In gen-
eral, the actual fabrication of such materials and nanostruc-
tures involves very complex and tedious multistep nanometer
scale processing. It is therefore highly desirable that some
kind of tunability be built into the material/structures
whereby the final product will exhibit the desired properties
at the prescribed spectral range or resonances. The most
commonly employed means are electro-optical tuning, where
a constituent material possesses an electro-optics response
such as the Pockel effect (where the refractive index change
is proportional to the applied electric field) or the Kerr effect
(where the refractive index change is proportional to the
square modulus of the electric field). These effects require
that some electrodes be built into the structure, which could
introduce serious complications to the actual fabrication pro-
cess for the NIM-ZIM materials. A preferable alternative is
to have a nonlinear optical material as one of the constitu-
ents, in which the refractive index can be modified by the
optical field intensity, i.e., the change in refractive index
An=n,l,,, where n, (in units of cm*/W) is the so-called
nonlinear coefficient and /, is the optical intensity (in units
of W/cm?).

In these respects, liquid crystals (LCs) are ideal candi-
date materials for such tunable applications. Ferroelectric
liquid crystals possess the Pockel effect that allows index
tuning of ~0.1 for an applied voltage on the order of a few
V/um, while nematic liquid crystals possess the Kerr effect
that allows similar index tuning at a similar voltage require-
ment. Perhaps the most important property of nematic liquid
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crystal is that they possess a nonlinear coefficient n, that
could be as large as 1000 cm?/W,> thus allowing optical
tuning with intensity on the order of mW/cm? or umW/cm?
and electrodeless material/structures.

An approximate isotropic treatment of nematic LCs has
been employed to design and analyze metamaterials that
have tunable negative-zero-positive refractive indices in the
optical frequency range.3’4 However, Pockel, Kerr, and other
nonlinear optical properties of LCs arise from their aniso-
tropy (birefringence) and the crystalline axis reorientation by
the applied field. Therefore, a rigorous anisotropic treatment
of LC elements is essential to ensure their incorporation into
metamaterial structures.

In this letter, two design approaches are presented for
tunable optical NIMs that incorporate anisotropic LCs. The
first approach utilizes an external field to change the director
orientation of the LC molecules to tune the refractive index
of the metamaterial, while the second approach employs
temperature dependence of the LCs. In addition, these de-
signs differ from those reported in Ref. 4 in two important
ways. First, the LC is used to tune the response of the mag-
netic resonator rather than changing the electric properties
of the NIM. Second, the inherent anisotropic properties of
the LCs are treated rigorously by a ?eriodic finite element-
boundary integral (FE-BI) technique,” which has been devel-
oped to compute the scattering from periodic structures
composed of inhomogeneous, anisotropic, and dispersive
materials of arbitrary shape.

Suppose the optical axis of the LC lies in the x-z plane
(see Fig. 1). In an anisotropic LC slab with the initial homeo-
tropic director of the molecules aligned along the z axis, an
external static electric/magnetic field can align all the direc-
tor axes to n={sin y,0,cos 7y}, where vy denotes the angle
between the +z axis and the director of the LC. In this case,
the permittivity tensor for the aligned anisotropic LC can be
represented by8
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FIG. 1. (Color online) The unit cell geometry of a two-dimensional metama-
terial incorporating anisotropic LCs with a reconfigurable index of
refraction.

g, +Aesin’y 0 Agcos ysiny
eLc= 0 ey 0 ; (1)

Agcosysiny 0 &, +Agcos’y

where Ae=g —¢ |, and g and ¢, are related to the ordinary
(n,) and the extraordinary (n,) refractive indices of the LC
by s”:ng and & ¢=”§, respectively.

This choice of the anisotropic LC directors allows no
cross-polarized components for the reflected and the trans-
mitted fields for normal incidence. This is a direct conse-
quence of the fact that the coupling between the Xx- and
y-directed fields is zero in a LC having the permittivity ten-
sor given in Eq. (1). Moreover, under these conditions, the
effective refractive index can still be retrieved using the in-
version techniques proposed in Ref. 9, which finds the effec-
tive parameters of a homogeneous slab that scatters the same
transmitted and reflected fields as the metamaterial.

The two dimensional metamaterial configuration illus-
trated in Fig. 1 is considered in this study, which is infinite in
the =y directions and periodic along the +x directions with
period p. The unit cell is comprised of silver nanostrip pairs
separated by anisotropic LCs and bounded by SiO, films
from both sides. In addition, it is bounded by thin silver and
Si0, films on the top and bottom. The metamaterial is then
placed on top of a thick glass slab. An anisotropic LC slab
is positioned between the silver strips forming a tunable
magnetic resonator. The thin silver films provide negative
permittivities and the nanostrip pairs provide negative per-
meabilities through magnetic resonances. The metamaterial
design is assumed to be illuminated by a normally incident
electric field polarized along the X direction and propagating
in the —Z direction.

The unique properties of anisotropic liquid crystals—
very broadband transparency and large optical birefringence
(An as large as 0.6)'°—make them a good candidate for use
in developing reconfigurable NIMs. In the analysis that fol-
lows, the LC parameter values are chosen as n,=1.5 and
n,=1.9. A proper application of an external static electric or
all-optical field rotates the director axis of the LCs® in the x-z
plane, allowing &, to be tuned in terms of vy according to
Eq. (1).

The refractive indices of anisotropic LCs can also be
tuned in the visible region utilizing their temperature
dependence.” Therefore, the refractive indices of metamate-

rials incorporating anisotropic LCs can also be reconfigured
Downloal
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FIG. 2. (Color online) The n. at near-infrared ranges: (a) n.; with respect
to wavelength for several different angles y and (b) n. with respect to the
director angle at different wavelengths.

with respect to temperature. The permittivity tensor of the
temperature-dependent LC is given by & c=diag{n?,n>,n’},
where the values of n, and n, at different temperatures can
be taken from Ref. 11.

In the following analyses, SiO,, Al,O3, and glass are
represented by nondispersive dielectric materials with per-
mittivity values equal to 2.088, 2.6244, and 2.25, respec-
tively. The permittivity for the dispersive silver material is
obtained by fitting experimental results.'?

The following geometrical parameter values were used
for the design configuration: p=600 nm, w=300 nm, ¢
=30 nm, #; =200 nm, #,=20 nm, and tf:10 nm. The re-
trieved effective refractive index (n.g=n'+in") for the
metamaterial having a thickness of 2(t,++1)+fc are
shown in Fig. 2(a) with respect to wavelength for different
director angles y=0°, 30°, 45°, and 60°. The effective per-
mittivity (e=¢’ +ie”) and permeability (u.s=p' +ip”) are
not shown here due to limited space. We observed that &’
and u' simultaneously reach negative values over limited
ranges, allowing the structure to behave as a low-loss double
negative-index metamaterial. Changing the angle 7y has a
larger effect on the location than on the bandwidth of the
NIM behavior. Figure 2(b) shows the effective refractive in-
dex as a function of the director angle for three different
wavelengths, i.e., A=1.15, 1.20, and 1.25 wum. This clearly
demonstrates that the refractive index can be tuned at the
different wavelengths by varying the director angle y of the
LC.

Figure 3 shows the effective refractive index for a tun-
able metamaterial configuration designed for operation in the
mid-IR range. The following parameters are used in the
simulation: p=2400 nm, w=1200 nm, ¢=120 nm, f¢
=200 nm, #,=20 nm, and tf=20 nm. One can observe that
the NIM bandwidths for the mid-IR design are wider than
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FIG. 3. (Color online) The n. at mid-infrared ranges with respect to wave-
length for three different values of .

those of the near-IR design shown in Fig. 2(a), but they are
also accompanied by higher values of n”, which are mainly
attributed to the higher losses in the silver at mid-IR wave-
lengths. It is also worth noting that the shifts in the NIM
bands over the range 0° < y=<60° are similar for the mid-IR
(=15%) and the near-IR (=12%) designs. The behavior of
negs as a function of the director angle y (not shown here)
reveals that n’ stays negative over the range from y=0° to
68° at A\=4.8 um, and from y=0° to 28° at A=5.4 um. At
both wavelengths, the transition from a negative to a zero
index of refraction occurs over a very narrow range of 7.

The effects of temperature on the effective refractive in-
dex are shown in Fig. 4 for a configuration having the same
design parameters as those used in Fig. 2. The tuning range
of the negative refractive index by changing temperature
over 40 K is relatively limited due to the small change in the
permittivity tensor for the temperature-dependent LCs.

In conclusion, two-dimensional reconfigurable NIMs in-
corporating anisotropic LCs have been presented that operate
in the near-IR and the mid-IR ranges. The anisotropic behav-
ior of the LCs was treated rigorously using the periodic
FE-BI full-wave analysis technique. The entries in the per-
mittivity tensor for the LCs can be tuned by changing the
director orientation of the LC molecules or by their tempera-
ture dependence to control the magnetic resonance of NIMs.
It provides an effectual method of tuning the location of the
NIM band. There are several apparent design trade offs such
as number of LC layers employed, biasing requirements, and
ease of fabrication. Compared to other reconfigurable NIM

Appl. Phys. Lett. 91, 143122 (2007)
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FIG. 4. (Color online) The effect on the refractive index of a change in the
LC temperature.

designs (e.g., Ref. 3), the structures proposed here are more
amenable to fabrication and characterization. In addition, the
two thin silver films can serve a dual purpose by operating as
the bias electrodes which control the orientation of the LC
molecules.
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