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Understanding Coulomb Effects in Nanoscale
Schottky-Barrier-FETs

Klaus Michael Indlekofer, Joachim Knoch, and Joerg Appenzeller, Senior Member, IEEE

Abstract—We employ a novel multiconfigurational self-
consistent Green’s function approach (MCSCG) for the simulation
of nanoscale Schottky-barrier-field-effect transistors (SB-FETs).
This approach allows the calculation of electronic transport
with a seamless transition from the single-electron regime to
room-temperature FET operation. The particular improvement
of the MCSCG stems from a self-consistent division of the channel
system into a small subsystem of resonantly trapped states for
which a many-body Fock space approach becomes numerically
feasible and the rest of the system which can be treated adequately
on a conventional mean-field level. The Fock space description
allows for the calculation of few-electron Coulomb charging
effects beyond the mean-field. We compare a conventional Hartree
nonequilibrium Green’s function calculation with the results of
the MCSCG approach. Using the MCSCG method, Coulomb
blockade effects are demonstrated at low temperatures while,
under strong nonequilibrium and high-temperature conditions,
the Hartree approximation is retained. Finally, the visibility of
quantum and single-electron effects in scaled transistor structures
is discussed.

Index Terms—Coulomb interaction, nanowire, Schottky-
barrier-field-effect transistors (SB-FETs).

I. INTRODUCTION

ONE OF THE major challenges for the simulation of
nanoscale field-effect transistors (FETs) consists of an

adequate description of few-electron Coulomb blockade effects
within the transistor channel: A proper simulation approach has
to account for the Coulomb interaction of a few fluctuating elec-
trons and, at the same time, has to be able to describe nonequi-
librium quantum transport in an open nanosystem. Obviously,
such effects are beyond the scope of a conventional mean-
field simulation approach, which is based on a self-consistent
Hartree potential for the description of the Coulomb inter-
action, albeit being able to account for quantum-confinement
effects on the single-particle level. A many-body quantum
approach becomes mandatory when it comes to the description
of few-electron Coulomb blockade effects in ultimately scaled
nanoFETs. While density-functional theory [1], in principle, is
an exact ab initio many-body approach and can be used for the
simulation of nanosystems [2], density-functional theory (DFT)
normally aims at ground-state properties only. Furthermore,
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realistic implementations of DFT typically employ the local-
density approximation (LDA, and extensions thereof) and, thus,
may exhibit mean-field artefacts. In general, an adequate de-
scription of few-electron Coulomb effects under application-
relevant conditions thus requires the consideration of the Fock
space as the general quantum–mechanical Hilbert space of a
many-electron system [3], [4].

For the correct many-body description of the Coulomb in-
teraction with the inclusion of contact coupling and nonequi-
librium injection conditions, Fock space approaches such as
real-time renormalization group (RTRG) [5], [6] or the Fock
space Green’s function [7] are available. This class of meth-
ods provides kinetic equations in Fock space, which include
the Coulomb interaction and account for renormalization (i.e.,
energy shifts), level broadening (i.e., finite lifetimes of states),
and dissipation (i.e., energy relaxation) due to the coupling to
the contacts, at least to some extent. Since these approaches
involve the 2N -dimensional Fock space for the considered
single-particle basis of N states, they typically are restricted to
N � 10 for practical reasons. In the limit of small coupling, the
Fock space description of the system can be approximated by a
reduction to rate equations [8], [9], which deal with many-body
eigenstates of the uncoupled Hamiltonian obtained via exact
diagonalization [10]–[15] containing a full description of the
Coulomb interaction.

Realistic modeling of a 1-D semiconductor nanotransistor
typically involves a number N of single-particle states (orbitals
or sites) of up to a few hundred, rendering a full numerical Fock
space description impossible due to the exponential scaling
of the resulting many-body space dimensions. Furthermore,
most of the potentially current-carrying single-particle states
are strongly coupled to the contacts, and thus, the picture of
a weakly coupled system, in general, becomes inadequate. The
nonequilibrium Green’s function (NEGF) approach [16]–[20]
in a mean-field approximation provides reasonable numerical
scalability, however, in principle, lacks the description of few-
electron Coulomb charging effects, which become apparent in
the case of resonantly trapped states, in particular, at lower
temperatures. A possible solution is the combination of the
numerically well scaling mean-field NEGF with a Fock space
description for those states where many-body Coulomb ef-
fects may become important for the device characteristics.
In this context, we have recently proposed a multiconfigu-
rational self-consistent Green’s function approach (MCSCG)
[15], [21] for the realistic simulation of nanodevice systems un-
der application-relevant conditions with reasonable numerical
efforts.

0018-9383/$25.00 © 2007 IEEE
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Fig. 1. Example for the division of the single-particle space (50 orbitals in
the example) into two subspaces. For only resonantly trapped states (six in the
example), a Fock space description is employed. The rest (evanescent) is treated
by a mean-field description.

In the following sections, we will outline the main ideas and
the algorithm behind the MCSCG and demonstrate its strengths
by comparing a conventional Hartree NEGF calculation with
the results of the MCSCG approach, providing significantly
extended information to our recent conference contribution
[22]. Using the MCSCG, Coulomb blockade effects are demon-
strated at low temperatures while under strong nonequilibrium
and high-temperature conditions the Hartree approximation is
retained. Finally, the visibility of single-particle confinement
and single-electron Coulomb effects in scaled nanowire-based
transistor structures at room temperature will be discussed.

II. MULTICONFIGURATIONAL APPROACH

In order to handle systems with a large number N of single-
particle states, the main idea of the MCSCG is to divide the
system adaptively into two subsystems: resonantly trapped (i.e.,
weakly coupled) states and those states that couple strongly
to the contacts, as depicted in Fig. 1. Within the subspace of
N ′ � 10 resonantly trapped states, which require a many-body
description of the Coulomb interaction, a Fock space method
will be applied, whereas the rest (N − N ′) is treated adequately
on an approximated NEGF level. The eigenstates {|κ〉} of the
many-body statistical operator (or Hamiltonian, depending on
the Fock space method) within the resonantly trapped subspace
will be referred to as configurations with weights {wκ} corre-
sponding to the respective eigenvalues. Thus, the configurations
and their weights follow from a Fock space calculation, taking
the detailed Coulomb interaction within this subspace into
account. The many-body statistical operator ρ which describes
the general thermodynamical state of the system [3] is assumed
to be of the form

ρ =
∑

κ

wκPκ ⊗ ρrest[κ] (1)

where Pκ ≡ |κ〉〈κ| denotes the projection operator correspond-
ing to the eigenstate |κ〉 and ρrest is the many-body statistical

operator of the rest, which may depend on the configuration
κ. Motivated by this form, we define a configuration-averaged
Green’s function Ḡ of the system as

Ḡ =
∑

κ

wκG[κ] (2)

where G[κ] corresponds to Pκ ⊗ ρrest[κ] and shall fulfill
Dyson’s equation [3], [4] with a suitable contact coupling plus
Coulomb self-energy approximation Σ[κ]. In the simplest case,
Σ[κ] may be of a decoupled mean-field form [15], which is
adequate for temperatures well above the corresponding Kondo
temperature.

As for the Fock subspace of the resonantly trapped states,
the projected many-body Hamiltonian contains the reduced
single-particle and Coulomb terms. Furthermore, coupling to
the contacts with nonequilibrium carrier injection and coupling
(tunneling) to the rest of the system is described by means
of self-energy kernels, depending on the chosen Fock space
method. For the latter, various choices with different levels
of sophistication are possible, for example: 1) Exact diagonal-
ization with entropy maximization and Dyson’s equation [3],
[4] as subsidiary condition [15], [21]; 2) RTRG [5], [6]; or 3)
Fock space Green’s functions [7]. In the following, we will
discuss the first option based on diagonalization. In this case,
the many-body statistical operator is assumed to be diagonal in
the eigenbasis of the resonant subspace Hamiltonian. Here, the
eigenvalues wκ are determined such that the resulting many-
body Green’s function GMB in Lehmann representation fulfills
Dyson’s equation within the resonant subspace. In the simplest
implementation, {wκ} is chosen such that the spectral peaks of
G<

MB match those of Ḡ< [15].
As an overall self-consistency condition, the resonantly

trapped states experience a mean-field interaction of the rest,
whereas the rest is subject to the set {Σ[κ]} of self-energies
originating from the resonant many-body configurations κ and
its own mean-field interaction.

Finally, for the identification of resonantly trapped states,
the single-particle eigenstates of the single-particle density-
matrix are employed (so-called natural orbitals). The latter
follows directly from the Green’s function Ḡ< as part of the
multiconfigurational self-consistency procedure (note that each
individual G[κ] need not be self-consistent with its respective
Σ[κ]). In turn, resonantly trapped states are defined as those
single-particle eigenstates that exhibit a level broadening below
a given threshold: Technically, if −Γ(E)/2 denotes the imagi-
nary part of the coupling self-energy to the contacts [15], [18],
an eigenstate |n〉 of the single-particle density-matrix with a
mean energy En thus has to fulfill the criterion 〈n|Γ(En)|n〉 <
γ0 in order to be identified as a “resonantly trapped” state,
where γ0 is the given threshold. As a further simplification,
only those resonantly trapped states that exhibit occupation
fluctuations require a full many-body treatment. Such fluc-
tuations correspond to the eigenvalues of the single-particle
density-matrix that deviate significantly from zero or one (i.e.,
a single-particle state that is fully occupied or always empty
can be kept frozen in the electronic configuration). Hence, the
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Fig. 2. Flowchart of the MCSCG algorithm. In the case shown, diagonalization is employed as the simplest Fock-subspace method. Arrows visualize the flow
of the self-consistency loop.

single-particle basis, and its division into (relevant) resonantly
trapped states and the rest is not predefined but follows adap-
tively from the MCSCG self-consistency loop as well. Fig. 2
illustrates the details of the algorithm as a flowchart.

For the calculation of expectation values of single-particle
observables (e.g., electron density, current, spin density, etc.),
the self-consistent Green’s function Ḡ< is employed as an ap-
proximation for the unknown exact G<. Optionally, within the
resonant subspace, one can use the many-body result (such as
GMB, the reduced statistical operator, dissipation kernel, etc.)
for the evaluation of arbitrary expectation values, in particular,
contour-ordered correlation functions of arbitrary order.

Analogous to other quantum-kinetic approaches, the detailed
geometry of the simulated device structure and the underlying
material parameters are expressed in terms of single- and two-
particle matrix elements of the total many-body Hamiltonian.
These matrix elements have to take the dielectric and elec-
trode (image charge) screening into account. Depending on the
desired accuracy, more or less sophisticated band structures
(preferably formulated in a tight binding basis), such as the
spin degree of freedom and spin-orbit coupling (Rashba and
Dresselhaus terms), can be included. Even ab initio methods
such as DFT [1] might be used to provide material-specific
single-particle basis functions and associated matrix elements.

In summary, the MCSCG provides a systematic means to
extend the well-established mean-field NEGF simulation tech-
nique, incorporating many-body interaction terms in order to
describe few-electron charging effects. On the other hand, in
contrast to a numerically unfeasible full many-body description
of the realistic device structure, the MCSCG provides a signif-
icant reduction of degrees of freedom, focusing adaptively on
the relevant many-body states. In comparison to the commonly
employed idealized many-body models which require user-
supplied constants (such as capacitances or gate-efficiency fac-
tors), the MCSCG implicitly provides effective parameters for

Fig. 3. Schematic sketch of a nanowire MOSFET with coaxial gate.

relevant states, which follow adaptively from the given realistic
device structure, and, in general, are nonlinear functions of the
external electrode voltages.

III. SIMULATION OF NANOWIRE SB-FETS

In order to demonstrate the strengths of the MCSCG ap-
proach, we consider a 1-D coaxially gated nanowire transis-
tor with Schottky-barrier source and drain contacts [26]–[28],
since deviations from a mean-field approximation become most
apparent in a system with quasi-bound states. Fig. 3 shows a
schematic of such a nanowire transistor, where we assume a
channel length of L = 20 nm, a diameter of dch = 4 nm, and
a gate oxide thickness of dox = 10 nm. We employ a one-band
tight-binding description with one lateral channel mode only
(a tight-binding basis provides a flexible and accurate way to
describe nanoscale device structures in real space [16], [18]).
Since the spin degree of freedom is included and a site spacing
of a = 1 nm is employed, we thus consider N = 40 single-
particle states. Such a nanowire transistor can, in principle, be
realized with a semiconducting InGaAs nanowire with SiO2 as
gate dielectric.

It has been shown that the electrostatics of coaxially gated
nanowire transistors can be well described by a modified 1-D
Poisson equation [29], accounting for the screening effects due
to the gate electrode. This Poisson equation allows to easily
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Fig. 4. Nonlinear grayscale plot of the total drain–current for the SB-FET at
T = 77 K (black = 0 nA, white = 5 nA). (a) Hartree-only case. (b) MCSCG
case: Coulomb diamonds arise.

calculate the Coulomb Green’s function, which in turn enables
the description of the classical electrostatics and the screened
interaction between electrons on equal footing [15]. Within
the scope of the MCSCG approach, the realistic influence of
the external electrodes (gate, source, and drain) is inherently
contained within the single-particle potential of the channel. In
contrast to highly idealized impurity-like models of Coulomb
blockade, a change in the electrode voltages does not only
provide a shifted or tilted potential profile but may also result in
a spatially modified shape of the potential and, in turn, altered
wavefunctions. Therefore, the few-electron energy spectrum
and, thus, the transport properties, in general, become a non-
linear function of all applied voltages.

For the following simulation results, the simplest MCSCG
variant has been employed, based on diagonalization (with
N ′ = 6 resonantly trapped states yielding 64 Fock space di-
mensions) with a decoupled static self-energy form.

Fig. 4 visualizes the simulated drain–current ID for the
single-electron transport regime (T = 77 K) as a grayscale
plot. In contrast to the Hartree-only calculation [Fig. 4(a)], the
MCSCG approach [Fig. 4(b)] correctly reveals diamondlike-
shaped patterns due to the quantized Coulomb interaction (as
predicted by the orthodox theory and observed in experiments
[24], [25]). While the MCSCG treatment is able to cope with
the mixture of many-body configurations, the Hartree theory

Fig. 5. Visualization of the difference between the mean-field (Hartree) and
the many-body (MCSCG) description of Coulomb interaction of resonantly
trapped states. n̄ denotes the average electron number.

only provides a mean interaction potential for the description
of the Coulomb interaction.

The origin of the difference between the many-body de-
scription of the Coulomb interaction and its mean-field-
approximated version can be understood as follows. Assuming
an average electron number n̄ inside the resonantly trapped
states, the mean-field picture provides an overall shift of single-
particle energies by ∝ n̄e2/C, where n̄ need not be an inte-
ger. This situation is schematically shown in Fig. 5 (left). In
contrast, the many-body state (roughly spoken) consists of a
quantum ensemble of many-body configurations with integer
electron numbers each, hence, providing only weighted realiza-
tions of full-interaction energies, as depicted in the right part
of Fig. 5. As a result, Coulomb oscillations arise. Apparently,
this difference between the many-body picture and the mean-
field approximation becomes significant at low temperatures
for resonantly trapped single-particle states that exhibit a small
level broadening (as compared to the spacing e2/C). On the
other hand, in the high-temperature limit and for states with
strong coupling to the environment (i.e., strong broadening),
the many-body and the mean-field description converge: Here,
a weighted average of peaks with spacing e2/C becomes
equivalent to a shift of the mean energy. Indeed, the MCSCG
approach consistently employs the many-body description for
resonantly trapped states only.

Fig. 6 shows ID(VGS) curves for different drain voltages
VDS. In the MCSCG case [Fig. 6(b)], single-electron transport
can be identified in terms of Coulomb oscillations for the two
lowest VDS, whereas the Hartree-only simulation [Fig. 6(a)]
lacks these features; the Hartree-only case exhibits broader
peaks solely due to the single-particle levels of the system.
However, with increasing VDS, both approaches become equiv-
alent (note that the subthreshold regime shows the regular
behavior and has been omitted here).

Finally, Fig. 7 shows the room-temperature (T = 300 K)
characteristics. Apart from the slight modulation in the
MCSCG calculation [Fig. 7(b)], which is a remnant of the
Coulomb oscillation, the Hartree [Fig. 7(a)] and MCSCG
[Fig. 6(b)] results are in good agreement.

IV. COULOMB EFFECTS AND SCALING

OF NANOWIRE FETS

In this section, we discuss the relevance of few-electron
Coulomb charging effects for room-temperature nanowire-FET
devices. Two effects become important with the downscaling
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Fig. 6. SB-FET transfer characteristics at T = 77 K. (a) Hartree-only.
(b) MCSCG approach: Coulomb oscillations are clearly visible.

of the channel length L: 1) The longitudinal single-particle
quantization splitting

∆E ∝ �
2

m∗L2
(3)

of states inside the channel. The lateral quantization energy ∝
d−2
ch is not considered here, leading only to an overall shift of

energy bands for a constant channel diameter dch. 2) The single-
electron Coulomb charging energy

EC =
e2

C∗ . (4)

The effective total capacitance C∗ is proportional to the clas-
sical total capacitance of the channel [21], however, with a
proportionality factor which, in general, also depends on L,
dox, the electron number, and other parameters due to quantum
effects. In principle, this factor has to be determined from the
many-body quantum calculations, as was discussed in the study
in [21].

If we define measures ∆E/kBT for the visibility of
single-particle quantization and EC/kBT for the visibility of
few-electron charging effects (i.e., Coulomb oscillations), it
is apparent that ∆E/kBT ∝ m∗−1L−2 becomes larger with
smaller channel length L and smaller m∗ due to an increased
quantization energy. In contrast, EC/kBT depends, in particu-

Fig. 7. SB-FET transfer characteristics at T = 300 K. Solid lines: MCSCG
approach: Only weak remnants of the Coulomb oscillations can be seen. Dotted
lines: Hartree-only.

lar, on the scaling of Cox, where in a cylindrical surrounding-
gate transistor, we have

Cox =
πε0εchd2

chL

4λ2
. (5)

Here, λ is the screening length of the device. Electrostatic
integrity in a transistor is preserved as long as the screening
by the gate is sufficiently strong, or in other words, if λ � L
(as a side-effect, the limit λ/L → 0 implies a strong screen-
ing of the Schottky barriers by the gate, leading to a more
transparent source and drain contacts [23]). To be specific, λ is
given by [29]

λ2 =
εch
εox

d2
ch

8
ln

(
1 + 2

dox

dch

)
(6)

which means that Cox and, hence, the visibility of Coulomb
effects EC/kBT depends on all three geometrical lengths: L,
dox, and dch. As a result, there is no universal scaling of
Coulomb effects in L. In order to determine the scaling law
for EC/kBT , one, therefore, has to specify the experimentally
chosen scaling of dox and dch with varying L.

Three application-relevant scaling cases for a nanowire-
based FET can by distinguished [note that, in the following
estimations, we assume C∗/Cox = const for simplicity, thus
neglecting the variation of the quantum confinement factor in
C∗ (cf. [21]) and the source and drain capacitances].

1) Proportional scaling of all geometrical lengths: As was
aforementioned, preserving electrostatic integrity when
scaling down L requires also a scaling of λ by decreas-
ing dch and dox (and/or increasing εox). If we scale
all geometrical lengths by the same factor as the chan-
nel length L, we obtain an approximated scaling law
EC/kBT ∝ L−1 for the visibility of Coulomb charg-
ing effects. Comparing the approximate scaling laws
EC/kBT ∝ L−1 and ∆E/kBT ∝ L−2 for the Coulomb
and single-particle quantization energies, respectively,
one can see that below a critical channel length,
the single-particle quantization becomes the dominating
energy scale (as long as m∗ and other parameters are kept
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constant). Nevertheless, within this simple approxima-
tion, the temperature below which Coulomb effects be-
come visible increases with decreasing channel lengths,
and thus, such effects may eventually become relevant at
room temperature.

2) Scaling of L alone: The same scaling law
EC/kBT ∝ L−1, as for case 1), can also be derived for
an FET where dox and dch are kept constant (hence,
λ = const as well) with varying L. Note, however, that
once the short-channel regime is reached (that is λ � L
is no longer fulfilled), the source and drain capacitance
will gain influence, thus terminating the L−1 scaling of
EC/kBT in this case.

3) Scaling of L and λ(dox): An interesting scaling law for
the Coulomb energy, and hence, its visibility arises for
the case that the channel diameter dch is kept constant.
Such a situation can occur for nanowire FETs based on
carbon nanotubes or semiconductor whiskers. Assuming
electrostatic integrity (that is λ � L) with a scaling
of dox (and/or εox) such that λ(dox) ∝ L, we obtain a
reciprocal scaling law EC/kBT ∝ L as compared to the
cases discussed above. Here, the capacitance increases
with decreasing L. Consequently, the Coulomb charg-
ing energy and, hence, the temperature below which
Coulomb effects become visible decreases with down-
scaling of the channel length. In such a peculiar situa-
tion, single-electron charging effects become irrelevant
at room temperature for downscaled devices. Note, how-
ever, that single-particle quantization effects would still
scale as L−2.

An important point has not yet been addressed, namely, the
relation between the onset of short-channel effects (i.e., λ � L
is no longer fulfilled) and the visibility of Coulomb effects. In-
deed, the above discussion does not imply a general correlation
between these two. Of course, short-channel effects imply a
reduced gate efficiency, however, they do not necessarily yield
small capacitances (and, hence, large Coulomb energies). This
can easily be understood by the following argument. Equivalent
to specifying L, dox, and dch, one can also choose L, λ/L,
and C∗ as the three independent parameters (as long as C∗ is
not limited by the source and drain capacitances). Consider,
for instance, an artificial set of FETs with a fixed C∗ and L
but varying λ/L. It is obvious that all these devices have the
same visibility measure EC/kBT but cover the whole range
from electrostatically well behaved (i.e., λ � L) to the opposite
extreme of short-channel FETs.

The MCSCG approach can handle all situations mentioned
above, accounting for single-particle quantization and few-
electron Coulomb effects. In order to visualize our statements,
we will now discuss two opposite scaling examples, both
starting from the previously discussed SB-FET of Section III
with L = 20 nm and an oxide thickness of dox = 10 nm. The
transfer characteristics of this device were shown in Fig. 7.
The two scaled SB-FETs (a) and (b) that we want to discuss
now exhibit both a downscaled channel length of L = 15 nm
with an unchanged fixed diameter. The first device (a) is scaled
according to case 2) (with an unchanged rather large gate oxide

Fig. 8. SB-FET transfer characteristics at T = 300 K with different dox in
(a) and (b). Solid lines: MCSCG approach. Dotted lines: Hartree-only. For the
short-channel device (a) with the smaller capacitance, Coulomb oscillations are
important even at room temperature.

thickness of dox = 10 nm), whereas the second device (b) is
scaled according to case 3) with a reduced dox = 3.5 nm,
such that λ ∝ L, leading to screening lengths of λa = 3.71 nm
and λb = 2.79 nm, respectively. This implies that device (a)
exhibits short-channel effects, whereas the second transistor (b)
is an electrostatically well-tempered device. Fig. 8(a) shows
room-temperature transfer characteristics of the device (a) for
different VDS, and Fig. 8(b) shows the same for the device (b)
with the thinner gate oxide.

As shown in Fig. 8(a) for device (a), significant differences
between the Hartree and the MCSCG calculation can be ob-
served with a well-pronounced additional modulation of the
drain–current, in particular, at low VDS. This modulation stems
from single-electron Coulomb charging effects with EC ≈
96 meV for the first two electrons. The latter value has to be
compared to EC ≈ 93 meV of the unscaled FET. At a first look,
this almost negligible change in EC appears surprising since
device (a) corresponds to the scaling case 2), where Cox ∝ L.
The reason for this saturation in EC for the short-channel
FET (a), however, can be found in the increased influence
of the drain and source capacitance on C∗, as discussed in
case 2). Nevertheless, comparing Figs. 7 and 8(a), the gate
voltage interval for one Coulomb oscillation is increased with
the reduction of L. In our case, this has to be attributed to a
reduced gate efficiency due to short-channel effects.

In contrast, for the electrostatically well-tempered device
(b) with a significantly smaller EC ≈ 66 meV [with EC ∝ L
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approximately, see case 3)], the Hartree and the MCSCG ap-
proach yield similar results. A Coulomb oscillation at VG ≈
0.72 V is still visible in Fig. 8(b), however, exhibiting a reduced
amplitude as compared to Figs. 7 and 8(a). The modulations in
the Hartree and MSCSG results are dominated by the single-
particle quantization; the differences between the Hartree-only
case and the MCSCG (in particular, a slight shift in gate
voltage) result mainly from Coulomb exchange terms, which
are neglected in the Hartree approximation. Finally, the increase
in drain–current of FET (b) stems from the thinner effective
Schottky barriers due to a reduced λ (see [23]).

In conclusion, single-particle quantization effects have an
increasing influence on the room-temperature characteristics
with decreasing channel lengths, scaling as L−2. In contrast,
the scaling of the visibility of few-electron charging effects
at room temperature strongly depends on the chosen system-
parameter scaling. For the commonly employed proportional
scaling of all geometrical lengths, Coulomb energies increase
as L−1, thus becoming more important for smaller devices.
Nevertheless, the single-particle quantization will dominate be-
low a characteristic channel length. Even for the case that few-
electron charging effects are not visible at room temperature,
low-temperature measurements are often used to extract the
effective capacitances from Coulomb diamonds. Also, in this
case, a Fock space simulation approach becomes mandatory,
seamlessly covering the room-temperature operation and the
Coulomb blockade regime to obtain consistent (i.e., compara-
ble) results. Here, the MCSCG provides a numerically efficient
many-body simulation technique.

V. CONCLUSION

In summary, we have compared the conventional Hartree
NEGF with the MCSCG and have shown that the multiconfig-
urational approach is able to describe single-electron charging
effects in the low-temperature limit for a realistic FET structure.
In case of strong nonequilibrium (with an almost depleted
channel) and high-temperature conditions, the MCSCG and
the well-established Hartree approximation lead to equivalent
results for the discussed example of a nanowire MOSFET.
As such, the MCSCG yields a seamless transition from the
single-electron transport regime to transistor operation at room
temperature. For realistic FETs with a large number of sites
where a full Fock space formulation becomes impossible, the
MCSCG permits a self-consistent Fock space treatment of
states which are responsible for few-electron charging effects.
Finally, we have shown that the scaling law for the visibility of
Coulomb effects at room temperature strongly depends on the
chosen relative scaling of geometrical lengths.
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