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Abstract 

This report considers the problem of writing data distribution independent 
(DDI) programs in order to  eliminate or reduce initial data redistribution over- 
heads for distributed memory parallel computers. The functionality and execution 
time of DDI programs are independent of initial data distributions. First, modu- 
lar mappings, which can be used to  derive many equally optimal ant1 functionally 
equivalent programs, are briefly reviewed. Relations between modular mappings 
and input data distributions are then established. These relations are the basis 
of a systematic approach to the derivation of DDI programs which is illustrated 
for matrix-matrix multiplication(c = a x b). Conditions on data distributions that 
correspond to  an optimal modular mapping are: (1)  the first row of the inverse 
of distribution pattern matrix of army 'a' should be equal to the second row of the 
inverse of distribution pattern matrix of array 'b') (2)  the second row of the in- 
verse of distribution pattern matrix of array 'a' should be linearly independent of 
the first row of the inverse of distribution pattern matrix of array 'b', and (3) each 
distribution pattern matrix of arrays 'a', 'b', and 'c' should have at [east one zero 
entry, respectively. It is shown that only twelve programs suffice to  accomplish 
redistribution-free execution for the many input data distributions that satisfy the 
above conditions. When DDI matrix multiplication programs are used in an algo- 
rithm with multiple matrix products, half of data redistributions otherwise required 
can be eliminated. 
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1 Introduction 

Optimized program modules such as basic subroutines, functions, macros, and intrinsic 

operetions are widely used to write efficient programs for parallel machines. In general, 

these modules expect input data to be distributed across processor memories in a prede- 

termined manner. Otherwise, it is necessary to carry a redistribution step which can be 

very expensive in time. A systematic approach is proposed to design data distribution 

independent (DDI) modules which eliminate or reduce the need for redistribution. The 

approach is conveyed and illustrated by the design of DDI programs for matrix multi- 

plica,tion. Using the resulting DDI matrix multiplication modules, it is possible to halve 

data redistribution costs in applications that require the product of 3" matrices for any 

integer n. 

A very large number of machines currently available or recently announced by major 

manufacturers (see [I]) have a physically distributed memory (possibly but not neces- 

sarily shared from a logic perspective, i.e. appearing as a single virtual address space 

to  al.1 processors). In these machines, bad initial data distributions (i.e., mappings of 

data into local processor memories) can slow down computations for reasons that are 

not inherent to the algorithms. The topic of data distribution in distributed memory 

machines has been extensively studied [2]- [l 11 . For some classes of programs techniques 

have been developed to enable a compiler to optimize (i.e., "minimize") the extent of 

data distribution/communication required to execute a program. Hlowever, this is an 

NP-complete problem and heuristic approaches must be used in practical solutions [2, 31. 

In order to  eliminate or reduce initial data redistributions, a new approach called data 

distribution independent (DDI) parallel programming has been recently proposed [12]. 

Ideally, a DDI parallel programming paradigm would be based on libraries of DDI com- 

putational modules. An ideal DDI computational module is a parallel program whose 

execution time and functionality are independent of input data distribution. In addition, 

ideal DDI module executes as fast as the fastest data distribution dependent (DDD) 

module for the same function and a given fixed input data distribution. In practice, 

this requirement might not be perfectly met by some DDI modules because of inevitable 



overheads. However, even DDI modules that do not execute in minimal time and may 

them-selves implement some redistribution of data may yield better pirograms than their 

DDC1 counterparts. A parallel program could then be written by involsing these modules 

in some appropriate order without concern for how data is distributed. Such programs 

would inherit the DDI property and could be invoked by other programs without violat- 

ing the basic paradigm. Programs would be easily ported among machines with different 

topologies as long as they have functionally equivalent DDI module libraries. 

This report explores the possibility of a parallel programming paradigm that is data- 

distribution independent (DDI) in the sense that the user would not be required to 

program or even invoke data communication modules. The need for data redistribution 

woultl either be eliminated or transparent to the user. The emphasis of the work reported 

here is on the design of computational modules so that there is no need to redistribute 

input data. When this cannot be achieved, the cost of (automatic) reclistribution should 

be minimized but this aspect of the problem is not addressed in this report. In this 

context, source-to-source program transformations, called modular mappings [13], and 

properties that allow commutative parallel processing are to be explored as techniques 

and concepts that enable DDI computation. Commutative parallel processing exploits 

severitl types of commutativity. Functional commutativity corresponds to the usual math- 

ematical definition of commutativity which allows operands of an operation to exchange 

position without impacting the final result. Structural commutativity is present among 

computations that are independent, i.e., share no data - they can be scheduled and al- 

located independently. Finally, architectural commutativity captures :symmetries in the 

targel, architecture that allow many virtual mappings of the processors and interconnec- 

tion network into the same identical virtual architecture (thus "making" different data 

distri'5utions look the same for different mappings). 

As an initial work towards DDI computation, a systematic derivat'ion of DDI paral- 

lel programs is provided for matrix-matrix multiplication. It should be clear from the 

preseiltation that the methodology has a general nature and can be applied to a large 

class of algorithms. In order to quantify and illustrate the improvement by DDI parallel 

programs in common applications, a program for triple matrix product is optimized using 

DDI parallel programs for matrix multiplication. 



The rest of the report is organized as follows. Section 2 discusse~l relations between 

modillar time-space transformations and modular distributions. Conditions also are de- 

rived that guarantee alignment of data and computations. Section 3 examines the con- 

ditio:ns on optimal modular mappings and distributions for matrix ~nultiplication that 

eliminate the need for input data redistribution. Based on these conditions, DDI parallel 

programs for matrix multiplication are derived. Section 4 analyzes th~e improvement by 

DDI matrix multiplication programs when they are used in programs that contain series 

matrix multiplications. Section 5 concludes the report. 

2 Modular t ime-space transformat ions and modu- 
lar data distributions 

Linea,r transformations of programs whose execution time is mostly spent in loops have 

been extensively studied and used for source-to-source program transformations in par- 

allelizing compilers and systolic array design [15]-[21]. In this framework, a given com- 

putation in a loop is represented by a vector j (of loop indices) and a linear mapping 

of coinputation into a domain of time (t) and processor (it) specifies the schedule and 

the allocation of the computation. The execution time of this computation is specified 

by t = IIj while the processor executing this computation is deter~nined by a = S j  

where: n z l x d i m ( 3 )  and s z d i m ( p r o c e 8 ~ 0 ~  a r r a y ) x d i m ( j )  are called the schedule and the 

allocation of a linear mapping, respectively. Combining the schedule aad the allocation, 

a trailsformation matrix (3 is often used to represent a linear mapping. Extend- 

ing the framework of linear algorithm transformations, this section considers modular 

translormations which are described by linear transformations modulo a constant vector. 

With modular mappings, time and processor are determined as with linear mappings 

except that they are computed modulo T and modulo P if execution time and numbers 

of processors are to be limited to T and P, respectively. Clearly, the programs that 

result from such transformations have the same execution time T on the same number 

of processors P. Hence, modular mappings can yield algorithm transformations that are 

equally optimal. Basic definitions and results on modular mappings are reviewed next 



(an extended treatment can be found in [13]). 

2.1 Modular time-space transformations 

Modular time-space transformations are defined in terms of two operations, a linear trans- 

formation and a 'mod' operation. 

Defi:nition 1 (modular function) A modular function, Tfi : Zn + Zk, is a mapping 

of the form: 

where T(i) is 

are clzlled the 

a row vector. The matrix T = [ Ty) ] and vector = (ml) - - ) mk)T 

T(k) 
transformation matrix and modulus vector, respectively. 

Definition 2 (modular transformation) A modular time-space trlansformation, T,, 

is a modular function that is injective when its domain is restricted to the index set J of 

an algorithm, i.e., Tii, : J + Zk is injective. 

Any k x n transformation matrix T and k dimensional modulus vector m can make 

a modular function. However, in order for any modular function to be a modular 

transformation of a given algorithm, T and m must be carefully cllosen so that the 

transformation is injective when its domain is restricted to the index set of the al- 

gorithm. This section considers only the case when n = k. Let ii and fi be two 

vecto-rs with the same number of elements. The notation ii(modo) denotes a vector 

( ( u ~ ) ( ~ ~ ~  vl), (u2)(rnod v2),  - . - , ( ~ ~ ) ( ~ ~ d  v,)). Therefore the modular function can be de- 

scribed as Tfi(j) = (Tj)(mod7TL). 



Initial work on linear transformations concentrated on perfectly nested loops whose 

body is treated as a single computation even if it contains multiple statements. Thanks to 

extensive work by many researchers, individual statements in arbitrarily nested loops can 

now be handled by using affine-by-statement mappings [19]. Modular affine-by-statement 

mappings can also be defined just as modular linear mappings were defined with respect 

to linear mappings. For simplicity, the results discussed in this report are stated in terms 

of modular linear mappings but are extensible to modular affine-by-shtement mappings. 

Linear mappings can be considered as particular cases of modular linear mappings 

for la,rge enough moduli and finite domains. It follows that it is possible to use modular 

mappings to derive algorithms that cannot be derived by using linear mappings. Cannon's 

algorithm for matrix multiplication is a good example of this fact (See Example 1). 

Finally, regarding processor allocation, modular mappings are well su:ited for ring, torus 

and other topologies where "wrap-around" links are mathematically captured by the 

"mocl" operation. 

Exarnple 1 Consider the matrix-matrix multiplication algorithm which computes c = 

a x b where a ,  b, and c are (5 x 5) matrices. 

DO i = 0,4 

DO j = 0 ,4  

DO k = 0,4 

c( i ,  j) = c(i ,  j) $ a(i, E )  x b(k, j )  

CONTINUE 

Cannon's algorithm is particularly efficient and frequently used in actzial parallel proces- 

sors :whose interconnection network is a torus[23],[24]. It is not possible to use affine 

mappings to derive Cannon's algorithm from the sequen,tial matrix-matrix multiplication 

algorzthm. Instead, the following modular transformation is required: 

This ,modular transformation yields the following program: 



DO t = 0,4 

DOALL pl = 0,4 

DOALL p2 = 0,4 

= Pl 

j = p 2  

k = (t f pl + ~ 2 ) m o d  5 

c(i, j) = c(i, j) + a(;, k) x b(k,j) 

CONTINUE 

The modular mapping used to "derive" Cannon's algorithm is only one of many pos- 

sible such mappings. However, not all modular mappings are acceptable. In addition 

to being injective they must satisfy other conditions (soon to be discussed) that pre- 

serve correctness. It is not trivial to derive conditions that assure injectivity of modular 

mappings for arbitrary algorithms. However, sufficient conditions (which are necessary 

in some cases) for injectivity of modular mappings of rectangular algorithms (i.e. algo- 

rithrr~s whose index sets are bounded by constants) have been provided in [13] and one 

of the main results is as follows: 

Theorem 1 Let J6 be a rectangular index set with the boundary vector b .  Let T6 be a 

modular function of the index set J6. Let + be an arbitrarily order on the set {1,2, - . . , n ) .  

T6 is injective if its transformation matrix T satisfies the following equations: 

For the case when all elements of b are identical, T6 is injective if T is unimodular. 

In this theorem, the modulus vector of a modular function is the same as the boundary 

vecto:c of an index set, i.e. m is equal to b. This condition can be generalized to the case 

when the modulus vector results from a permutation of the entries of the boundary 

vectoi:. For the particular cases when there exist some identical entries in the boundary 

vectoi:, it is possible to obtain more general conditions [13]. 



I:n addition to injectivity, valid modular mappings must also preserve dependencies 

and, possibly, avoid broadcasts. These and other conditions have been well studied in the 

context of affine mappings and can be captured similarly for modular mappings. However, 

when functional commutativity is present, these conditions should be changed to take 

advantage of the possibility of reordering chains of computations. For example, consider 

matrix-matrix multiplication. The condition for correctly sequencing computations and 

removing data broadcasts is that every element of the schedule vector should be positive. 

If fuilctional commutativity is taken into account, the condition call be changed to a 

weaker condition such that every element of the schedule vector should be different from 

0. In fact, Cannon's algorithm does take advantage of addition commutativity and wrap- 

around links and cannot be derived unless these properties are taken into consideration. 

The :following example illustrates how a modular mapping other than Cannon's can be 

se1eci;ed for matrix multiplication using the conditions just discussed. 

Exarnple 2 Consider the matrix-matrix multiplication algorithm of Example 1 again. 

The  nodular transformation 

yields the following program which is as eficient as Cannon's algorithm in the sense of 

proce.ssor utilization and neighborhood communication: 

DO t = 0 , 4  

Ds3ALL pl = 0,4 

DOALL p2 = 0,4 

2 = ( t  -k PI -k ~ 2 ) m o d  5 

j = m  

k = P2 
c(i, j) = c(i, j) + a( i ,  k)  x b(k, j )  

CONTINUE 



2.2 Modular data distributions 

In order to take advantage of modular mappings it is necessary to relate them to input 

data distributions that eliminate or minimize misalignments of data during the execution 

of thl: program (instead of only at the beginning of it). We consider distributions of data 

arrays as mappings from array indices to processor coordinates of the general form 

wherle y is a data array index, t denotes execution time, P is the data distribution pattern 

matrix, p  is the data distribution offset, y is the data distribution mobility and ix could 

be any vector (of the right dimension) but is hereon assumed to have its components 

correspond to the sizes of the processor grid along its dimensions. The initial data 

array distribution is specified by p(y , 0). For example, the data distribution pa (ij, t )  = 

( ( : i ) + ( ) t)mod ,5,5, maps the array element a(i, j) into processor (j, i) of a 5 x 5 

processor array at time zero and moves it right by one position every time unit (i.e., to 

processor ((j + t)mod 5 ,  i) at time t). Program array references to any data array element 

with index y are assumed to be of the form 

where F is the indexing matrix, f is the index offset and j is a point in the iteration 

set of the (nested loop) program. For example, for the reference a(2i7 .j + 1) in the body 

of two nested loops on i and j ,  the indexing matrix and offset are E' = ( i ! ) and 

Recall that, given a transformation matrix, the loop iteration point j is mapped onto 

Drocessor Z at time t. 

where the modulus vector m should be a permutation of the boundary vector of the loop 

iteration domain, b. Let 2' be the processor to which the index point y of data array is 

mapped at time t. Then, 

z'= Py + p +  yt. (7) 



Reca.11 that the first row of the transformation matrix is the scheclule vector II and, 

therefore t is ( I I?)rnodbn where bn represents the modulus of the schedule, i.e., the first 

entry of the modulus vector of a given time-space transformation. Vl'hen the index set 

of the algorithm is cubic (i.e., bn is identical to all entries of bx). Then, Eq. 7 becomes: 

To compute point j without need for communication, 5 should be e'qual to 5'. Hence, 

the f~llowing condition is obtained: 

wher'e T (2,3) denotes the second and third rows of matrix T and n1(2,3) denotes the 

sec0c.d and third elements of vector m. To satisfy above equation for arbitrary j ,  the 

condjt ion becomes: 

In the general case, when the index set is not cubic these conditions are also valid. 

However, it is necessary to consider a larger class of distribution functions that allow for 

replication of data and an additional condition is imposed on the number of array copies. 

The general form of the distribution when there are C = 1-1 - + 1 copies 
n 

of the array along direction 7 is 

whert: k = 1-1, [-~+1,..., 1-1-1, n 1-1. n LemmaA..l in theappendix 

show:; that these distribution functions guarantee the alignment between data and com- 

putations of a program that results from a modular mapping satisfying Equations 10- 12. 

Assume that bn divides all the entries in 6x. Then, p? and p z h C m  generate the same 

data distribution where klCm is the least common multiple of b i / h  for ,311 entries bi of 6x. 
Hence, in this case, at most klCm data array copies are necessary instead of the number 

C mentioned above. Depending on the value of 7, the number of copies can be further 



reduced. In the case of a cubic index set, kl,, = 1 and Eq. 13 particularizes to Eq. 9 

(any single value of k is acceptable including k = 0). 

Eiq. 10 shows the relation between the pat tern distribution and the transformation 

matrix and Eq. 11 shows the condition of the offset distribution. In  this section, the 

conditions of Eq. 11 and Eq. 12 are assumed to be always satisfied, and only the condition 

of EQ. 10 will be discussed. 

Eq. 10 becomes 

T(2) 3) - 7l-I = PF, 

and 

Finally, the following conditions are obtained: 

wherc: T;' denotes the first column of T-' and T;.; denotes the second and third columns 

of T-I. These equations must be established for each variable used in tlne same statement 

and solutions that satisfy all of them must be sought. From them conditions can be 

derived on input data distributions that guarantee alignment of data. It is also possible 

to derive the transformation necessary to generate a "transformed" program that accepts 

such data distributions. 

Exarnple 3 Consider data distribution for Cannon's algorithm. Thc: data distribution 

pa of matrix 'a' and the data distribution pb of matrix 'b' that satisfy conditions (17) and 



and 

Figure 1: Data distributions of Cannon's algorithm.. 

Figure 2: Initial data distributions different from those of Cannon's algorithm. 

The initial data distributions (at t = 0) are shown in Fig. l a  and the data distributions 

after first iteration (at t = 1) are shown in Fig. l b .  On the other hand, the initial data 

distributions of the modular mapping in Example 2 are shown in Figure 2. 



DDI parallel programs for matrix multiplication 

3.1 Conditions of an optimal modular mapping for matrix 
multiplication 

This section investigates conditions of optimal modular mapping and data distribution for 

matrix multiplication. Throughout this section, a mapping is optima:l if it is as efficient 

as Citnnon's mapping with respect to computation and communicati~on time. Proofs of 

Proplositions given in this section appear in Appendix. 

All modular mappings whose modulus vectors tightly bound the computation domain 

are optimal in the sense of processor utilization. However, in the sense of communication, 

not ad1 of these mappings are optimal. Therefore, conditions for an optimal modular 

mapping need to be investigated not only in the view of processor utilization but also with 

regard to communication. Communication cost depends on the target architecture and, 

in this section, it is assumed that it has 4-way mesh with wrap-around interconnections. 

In addition, it is also assumed that data movement between distant ]processors is more 

experwive than that between neighbor processors. The efficiency of' a given modular 

mapping is estimated based on these assumptions. 

T:he previous section investigated the relationship between a modular mapping and 

an initial data distribution that allows the start of computation without initial data 

reloc2~tion. An algorithm of matrix multiplication contains two input data arrays, matrix 

a and matrix b. In order to start computation without initial data movements, these two 

data arrays should satisfy those conditions of Eq. 17 and 18. To satisfy the condition of 

Eq. 17, the data distributions of matrix a and b should satisfy the fol.lowing relation of 

Proposition 1. 

Proposition 1 Let Pa and pb be distribution pattern matrices of data  array  a and b. If 
pa- '  = J ' u T - 1  and pb-' = J'bT-1 

2..3 2 . 3 )  then 



2. pa-' (1) and pb-' (2) are linearly independent. 

For t8he minimization of communication, the following should be satisfied. 

Proposition 2 For a matrix multiplication algorithm, the choice of Tcl  that results in 

minimum communication is either (f 1, 0, o ) ~ ,  (0, f 1, o ) ~ ,  or (0,O, f 1 1 ) ~ .  

Cannon's algorithm has elements of matrix 'a' and 'b' move to the n.ext processors and 

elements of matrix 'c' stay at the same processor throughout the computation. Hence, if 

an algorithm for matrix multiplication requires the same amount of da,ta movements, the 

data distribution mobilities of 'a','bl, and 'c', should be 0 (no communication), (f 1, o ) ~  

(shift, vertically to the neighbor processor), or (0, f l)T (shift horizontally to the neighbor 

procc:ssor) . 

Proposition 3 Let 7 be a distribution mobility of a data array. Thc: optimal choice of 

y is ii, (f 1, o ) ~ ,  or (0, f 

Proposition 4 follows from Proposition 3 and Eq. 17. 

Proposition 4 P a,  Pb and PC should have at least one zero entry, respectively. 

Proposition 1 and Proposition 4 give conditions on the pattern distribution matrices and 

consequently from Eq. 17 give conditions on T&. On the other hand, Proposition 2 and 

Proposition 3 give conditions on distribution mobilities and therefore from Eq. 18 give 

conditions on T r l .  Consider T,T.~  and corresponding Pa and Pb based on the relation of 

Eq. 17 that satisfy the conditions in Proposition 1 and Proposition 4. It is not difficult 

to set: that such T;.: should belong to one of the following six types: 

when: # s  denote arbitrary nonzero integers which are not necessarily identical. 



70 find the entire transformation matrix T ,  the next step is to find Tcl.  Consider 

the first type of TL.~. It follows from Eq. 17 that the data distributiolls should be of the 

form 
# 0 # 0 

The inverse of data patterns become: 

Proposition 2 allows three possible choices of T;' : (f l,O, o ) ~ ! ,  (0, f 1, o ) ~ ,  and 

(o,o, f l)T. If T;' = (f l , ~ ,  o ) ~ ,  then ya = (#, #)T, y b  = ( o , o ) ~ ,  yc = (#, o ) ~ .  If 
TT' := (0, f 1, o ) ~ ,  then y a  = (0, o ) ~ ,  y b  = (#, #)T,yc = (0, #)T. If T;' = (0,0, f 

then ya = (0, #)T, yb = (#, o ) ~ ,  yc = (0, o ) ~ .  The first and the second choices do not sat- 

isfy Proposition 3. Hence, the optimal choice is TT' = (0,O, f l)T. Sirr~ilarly, the optimal 

choicle of T;' can be found for other pattern distributions resulting in the following six 

types of the transformation matrices which guarantee that the corresponding programs 

run as efficiently as Cannon's algorithm. 

3.2 DDI program module for matrix multiplication 

Consider an SIMD or SPMD program for matrix multiplication. Without loss of gener- 

ality, consider the case when modular mappings are of the form 0 0 # . (: : :i 
Si:nce T-I = (0,O, f l )T,  there are four possible choices of optimal d.istribution mobil- 

ities and corresponding data movements: 

1. ya = (0, I ) ~ ,  y b  = (1, o ) ~  -+ a : east, b : south. 



DO t = 0,4 
c = c + a * b  
MOVE- WEST(^) 
MOVE SOUTH(^) 

CONTINUE 

D o  t = 0,4 
c = c + a * b  
MOVE-WEST(;%) 

MOVE-NORTH (b) 
CONTINUE 

(a) 7" = (0, - l )T,yb = ( I , O ) ~  (b) ?a = (0, - I ) ~ ,  yb I= (-1, o ) ~  

Figure 3: Programs for modular mappings with T of the form 
# # 

2. 7" = (0, I ) ~ ,  yb = (-1, o ) ~  + a : east, b : north. 

3. ya = (0, - I ) ~ ,  yb = (1, o ) ~  + a : west, b : south. 

4. ya = (0, - I ) ~ ,  yb = (-1, o ) ~  + a : west, b : north 

Amo:ng these four data movements, the first and the fourth movements generate the 

same results. Similarly, the second and the third movements also generate the same 

resul.1;~. Thus, the first and the second cases can be discarded and only the third and 

the fourth cases need to be kept. The programs for the third data mo-vement and fourth 

data movement are shown in Fig. 3. In these figures, variable a ,  b, c are assumed to be 

the appropriate elements of a(i,  j ) ,  b(i, j ) ,  and c(i, j), respectively. 

For each of the other five forms of modular mappings, only two programs are also 

sufficient. Hence, in total, twelve programs cover all possible opti~nal modular data 

distributions. With these twelve optimal programs, a DDI parallel program module 

(DDIPPM) for matrix multiplication can be built. For a given data distribution, an 

optimal modular mapping can be found from the relation of Eq. 17 a~nd Eq. 18. Then, 

the program corresponding to this modular mapping can be selected among the twelve 

programs in the DDIPPM. 

Example 4 Consider the initial distributions for Cannon's algorithnz shown in Exam- 



DO t = 0,4 
c = c + a * b  
MOVE-WEST (a) 
MOVE-NORTH (b) 

CONTINUE 

DO t = 0,4 
c = c + a * b  
MOVE-NORTH (a) 
MOVE-WEST (c) 

CONTINUE 

Figure 4: Optimal programs for a given initial data distribution. 

ple 1. Data pattern distributions of a and b are 

1 -1 
and pb = ( ) -1 1 

Hence, the inverses of data pattern distributions are 

pa-' = (: y )  and P"' = ( t  : ) 
It follows from Eq. 17 that 

From Eq. 21, Tcl should be ( O , O ,  f l ) T .  If T;' is chosen to be (0 ,0 ,  I ) ~ ,  then 7" = 

( 0 ,  and y b  = (- 1, o ) ~  are obtained. Hence, the program of Fig. qla is derived. This 
program is exactly the same as that in Example 1. Similarly, for the data distribution in 

Fig. .2, the optimal program of Fig. 4b can be derived. 

4 Triple matrix product algorithm optimized by 
DDI matrix multiplication 

This section considers a program for a sequence of matrix multiplicatiolls and implements 

this program by repeatedly invoking DDI parallel programs for matrix multiplication. 



The number of data movements in this program is compared to the program that uses 

DDII programs for matrix multiplication. 

Clonsider the triple matrix product: 

Y = L X R  

where Y, L, X and R are matrices whose sizes are assumed to be suitable for the computa- 

tion. Digital signal processing and control theory applications that require triple matrix 

prod-lcts include discrete Fourier transform, discrete Lyapunov and Ricatti equations, 

and Kalman filtering 1261. 

The program for triple matrix product can be described by the following pseudo code: 

TRI-:MAT,PROD (Y, L ,  X ,R) 

MATRIX Y,L ,X,R;  

IYATRIX Z ; 

MATMUL (Z , X , R) ; 

lYATMUL(Y , L , Z )  ; 

> 

IrL this program, keyword MATRIX represents a two dimensional array which is dis- 

tributed in a canonical manner, i.e., whose distribution can be described by p ( 3 )  = 

((  : ) ijinOd bi. This distribution is called a canonical disiribuiion For simplicity, 

the sizes of matrices are not shown in this program, but it is implicitly assumed that they 

are appropriate for this computation. MATMUL is the subprogram for matrix multiplica- 

tion which performs Cannon's algorithm with the assumption of canonically distributed 

input/output matrices. Given that initial data distribution for Cannon's algorithm is 

different from canonical array distribution (see Fig. 1)) it is necessa,ry to  redistribute 

the input matrices. Hence, two array redistributions are necessary to start Cannon's 

algorithm. The distribution of the output matrix of Cannon's algorithm is the same as 

the canonical distribution. Hence, no redistribution is necessary for the output matrix. 



Hence, subprogram MATMUL requires two data redistributions, and t:herefore, the entire 

program requires four data redistributions. 

Kow, consider the DDI approach to optimize triple matrix product. Let 

DDI-MATMUL(C, A, B, PC, Pa, Pb) represent the DDI version of matrix multiplication rou- 

tine which computes c = a x b, where Pa and Pb represent the initial distributions of 

matrix a and b, respectively, and PC represents the output distribution of matrix c. The 

initial distributions of matrix a and b must satisfy the conditions discussed in the previous 

section, and one of the twelve optimal programs corresponding the initial distribution is 

selected to compute matrix product. When DDI-MATMUL is used for 1,riple matrix prod- 

uct, it is possible to select the program whose input data distribution matches initial 

data distribution of TRI-MAT-PROD (canonical distribution). Hence, data movements for 

redis.tribution can be reduced. Consider the following program: 

TRI-MAT-PROD (Y ,L ,X ,R) 

MATRIX Y ,L ,X ,R; 

{ 
MATRIX Z; 

DDI-MATMUL(Z, X, R, P,, Px, P,) 

DDI-MATMUL(Y, L, Z, Py, 8, P,) 

} 

In this program, P,, P,, P,, P,, and Pl represent distribution pa1;tern matrices of 

2, X, R, Y, and L, respectively. These distributions are shown in Fig. 5 .  Since all matri- 

ces are assumed to be initially distributed in a canonical manner, matrix X and matrix 





Therefore, a total of (3"-' + 3"-' + . . - 3  + 1) triple matrix products (are needed. Hence, 

2(3"--' + 3n-2 + - . 3  + 1) data redistributions are necessary in this computation. Suppose 

that (3"-' - 1) MATMUL subprograms are used for this computation. Then, 2 x (3" - 1) 

data redistributions are necessary. Given that 

half of data redistributions are removed with the optimized triple matrix product sub- 

program. 

5 Conclusions 

As ail initial step towards DDI computation, a methodology has been proposed to sys- 

tematically derive DDI parallel programs for matrix multiplication. 'The resulting DDI 

programs accept a large number of input data distributions to run as efficiently as Can- 

non's algorithm. When the DDI parallel programs are used to multiply several matrices, 

it is l~ossible to save half of data redistributions needed by a non-DDI approach. Future 

work will address the problem of handling input data distributions tha~t are not accepted 

by the DDI programs derived in this report. In the derivation of DDI matrix multipli- 

catio:n, it is assumed that the target machine has as many processors as needed. Future 

work will address the case when data and algorithm need to be partitioned for execution 

on arrays of fixed "small" size. The extent to which a DDI paradigm could replace ex- 

isting approaches, complement them or merely apply to special application domains is 

unclear and this is another issue to be clarified by future research. 
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A Appendix 

Proposition 1 

(proof) since Fa = ( ) and ib = ( p ) , it  follow^ fnlm Eq. 17 that 

Hence, the condition of pa-' (2) = pb-' (1) is obtained. 

Eq. 1.7 should also hold for data array c. Hence, 

Since FC = ( b : ) , PC-' ran be represented by pa-' and Pb-': 

Since pC-' should be nonsingular, pa-'(1) and pb-' (2) should be linearly independent. 

Proposition 2 

(Proof) Suppose that T;' E NuZ1(Fu) for a data array v where Null(Fu) denotes the 
null space of matrix Fu. Then, 7" = 0 ,  i.e., data array v is not moving during the 
computation. Hence, in order to minimize data movements, it is desirable to find Tcl 
that are in the null spaces of indexing pattern matrices of as many data, arrays as possible. 
For ~natr ix  multiplication case, the indexing functions of three data arrays have distinct 
null spaces. Hence, it is impossible to find Tcl that are in the null space of more than one 
data array indexing function. The best choice of Tcl is a vector in the null space of one 
data array. Since (c, 0, O)T E NulZ(Fb), (0, c, o ) ~  f Null(Fa) ,  and (0, 0, c ) ~  E Null(F C)  
for c E 2, these three vectors are equally optimal choices. If Icl > 1, 7 has an entry whose 
absolute value is larger than 1. This implies non-neighbor communication. To eliminate 
this possibility, (kl, 0, o ) ~ ,  (0, k1, o ) ~ ,  and (0, O , & I ) ~  should be chosen as Tcl. 
Proposition 3 

(Proof) Suppose that all entries of Pa are not equal to zero. Then, it is also true that all 
entries of pa-' are not equal to zero. If Tcl # (0, k1, o ) ~ ,  then no entry of is equal to 
zero. Hence, this is not the optimal choice. Therefore, Tyl should be (0, f 1, O)T.  Since 
pa-' (2) = Pb-' ( I ) ,  no entry in pb-l (1) is equal to zero. Therefore, no entry in P: is equal 
to zero. On the other hand, since F ~ T ~ '  = (0, f l)T, no entry of .yb =: PbFbTcl is equal 
to zero. This results in non-neighbor communication in 4-way mesh interconnections. 



Therefore, there should exist at least one entry equal to zero in Pa.  Similar derivation 
can lxing the same condition for Pb and P C,  too. 

Lem,ma A.l:  Suppose that a data array has a finite number of data array copies whose 
distribution is given by p p  where 

where f denotes the index of the processor that executes computation with index at 
time t .  Processor 2 contains the correct data element y = F? + f at time t  if 

and 
m(2,3) = bx.  

bn F:+ (Proof) It suffices to show that there exists p p  (g, t )  such that (T (2 ,  3)j)m0d s, = px ( J 

f ,  t ) .  Let k = ~ $ 1 ,  n then p p  (jj, t )  = ( P F j  + P f + p + ?(t + L Z ] ) ) ~ ~ ~  a,. Since t = 

(nj)'rnOd ,, = nj - bn, 
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