
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-1-1994

A SIMD SPARSE MATRIX-VECTOR
MULTIPLICATION ALGORITHM FOR
COMPUTATIONAL ELECTROMAGNETICS
AND SCATTERING MATRIX MODELS
Nirav Harish Kapadia
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kapadia, Nirav Harish, "A SIMD SPARSE MATRIX-VECTOR MULTIPLICATION ALGORITHM FOR COMPUTATIONAL
ELECTROMAGNETICS AND SCATTERING MATRIX MODELS" (1994). ECE Technical Reports. Paper 200.
http://docs.lib.purdue.edu/ecetr/200

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages

A SIMD SPARSE MATRIX-VECTOR

MULTIPLICATION ALGORITHM

FOR COMPUTATIONAL

ELECTROMAGNETICS AND

SCATTERING MATRIX MODELS

TR-EE 94-31
OCTOBER 1994

A SIMD SPARSE MATRIX-VECTOR MULTIPLICATION

ALGORITHM FOR COMPUTATIONAL ELECTROMAGNETICS

AND SCATTERING MATRIX MODELS

Nirav Harish Kapadia

k d u e University

ABSTRACT

Kipadia, Nirav Harish. M.S.E.E., Purdue University. May 1994. Pi SIMD Sparse
Matrix-Vector Multiplication Algorithm for Computational Electromagnetics and
Scattering Matrix Models. Major Professor: Jose Fortes.

A large number of problems in numerical analysis require the multiplication of a

sparse matrix by a vector. In spite of the large amount of fine-grained parallelism

available in the process of sparse matrix-vector multiplication, it is difficult to design

an algorithm for distributed memory SIMD computers that can efficiently multiply an

arbitrary sparse matrix by a vector. The difficulty lies in the irregular nature of the

data structures required to efficiently store arbitrary sparse matrices, and the

architectural constraints of a SIMD computer. We propose a new algorithm that

allows the "regularity" of a data structure that uses a row-major mapping to be varied

by a changing a parameter (the block size^'). The (block row) algorithm assumes that

the number of non-zero elements in each row is a multiple of the blocksize;

(additional) zero entries are stored to satisfy this condition. The blocksize can be

varied from one to N, where N is the size of the matrix; a blocksize of one results in a

rcw-major distribution of the non-zero elements of the matrix (no oveahead of storing

zcxo elements), while a blocksize of N results in a row-major distribution

corresponding to that of a dense matrix. The algorithm was irnplemerlted on a 16,384

processor MasPar MP-1, and for the matrices associated with ithe applications

considered here (S-Matrix Approach to Device Simulation, and tlhe Modeling of

Diffractive and Scattering Objects), the algorithm was faster than ainy of the other

algorithms considered (the "snake-like" method, the "segmented-scan" method, and

a randomized packing algorithm). For matrices that have a wide variation in the

number of non-zero elements in each row, a procedure for an "adaptive" block row

allgorithrn is briefly mentioned. The block row algorithm is applicable to unstructured

sllarse matrices which have relatively sparse columns (dense rows arc: not a problem),

and it can be implemented on any distributed memory computer.

ACKNOWLEDGMENTS

This report includes the results of the author's Master of Scienlce Thesis. This
research was funded in part by the National Science Foundation under grant number
CIIA-9015696.

iii

TABLE OF CONTENTS

Page

CHAPTER 1 . INTRODUCTION .. 1

... 1.1 Motivation 1

... 1.2 Prior Work 2
1.3 Results .. 4
1.4 Overview .. 5

CHAPTER 2 . SPARSE MATRIX-VECTOR MULTIPLICATION 7

2.1 Introduction .. -7
.. 2.2 Sequential Sparse Matrix-Vector Multiplication -7

...................................... 2.3 Parallel (SIMD) Sparse Matrix-Vector Multiplication 8
2.3.1 Analysis of Parallel Sparse Matrix-Vector Multiplication 7

... 2.3.2 Case I (Nproc > N. Nproc > Nel,) 9
... 2.3.3 Case I1 (Npoc < N, and/or Npoc < Nel,) 12

... 2.4 Result Summary 20
... 2.5 Conclusions 20

CHAPTER 3 . SPARSE MATRIX-VECTOR MULTIPLICATION
.. ON THE MASPAR MP- 1 27

... 3.1 Introduction 27
... 3.2 The MasPar MP- 1 Computer 27

... 3.2.1 Introduction 27
.. 3.2.2 The Processor Array 27

... 3.2.3 Interprocessor Communication -29
... 3.2.4 The Processing Elements 31

... 3.2.5 Software Options 31
... 3.2.6 Architectural Configuration 32

3.3 Sparse Matrix-Vector Multiplication on a SIMD Machine 32
... 3.3.1 Introduction 32

3.3.2 The Vector-Fetch Phase ... 33
.. 3.3.3 The Multiplication Phase 36

Page

3.3.4 The Reduction Phase .. 37
.. 3.3.5 The Result Phase 38

... 3.3.6 Summary 39
............................... 3.4 Data Structures for Sparse Matrices on SIMD Computers 39

3.4.1 Introduction ... 39
3.4.2 The "Row-Major' ' Format ... 40
3.4.3 The "Column-Major' ' Format .. 40
3.4.4 The "Diagonal" Format ... 41

3.5 Conclusions ... -43

CHAPTER 4 . THE BLOCK ROW ALGORITHM .. 47

4.1 Introduction ... 47
4.2 The Block Row Algorithm: An Example .. 47
4.3 Description of the Block Row Algorithm .. 53
4.4 Timing Analysis for the Block Row Algorithm .. 56
4.5 Practical Considerations .. 60

4.5.1 Selection of the Optimal Blocksize ... 60
4.5.2 "Flattening" Incomplete Layers of Data in the Processor

.. Memory 62
4.5.3 Coding the Block Row Algorithm ... 64
4.5.4 Loading the Matrix in the Processor Array .. 65

4.6 The "Adaptive" Block Row Algorithm .. 65
4.7 Conclusions ... 68

CHAPTER 5 . EXPERIMENTAL EVALUATION .. 71

5.1 Introduction ... 71
5.2 Experimental Analysis of the Block Row Algorithm 71

5.2.1 Introduction ... 71
5.2.2 Part I . The Finite Element Approach ... 75
5.2.3 Part I1 . The Scattering Matrix Approach .. 77

5.3 Comparative Analysis of the Block Row Algorithm 77
5.3.1 Introduction ... 77
5.3.2 The " Snake-like" Method .. 82
5.3.3 The "Segmented Scan" Method ... 82
5.3.4 The "Randomized Packing' ' Algorithm ... 82
5.3.5 Results of the Analysis .. 83

5.4 Conclusions ... -87

Page

CHAPTER 6 . THE SCATTERING MATRIX APPROACH 93

6.1 The Scattering Matrix Approach to Device Analysis 93
6.2 The Multi-Flux Scattering Matrix Approach ... 95
6.3 Simulations Involving Multi-band Transitions ... 97
6.4 The Sparsity Pattern of the Scattering Matrix .. 98

... 6.5 Experimental Results 100
.. 6.6 Conclusions 101

CHAPTER 7 . A FEM APPROACH FOR MODELING
... DIFFRACTIVE AND SCATTERING OBJECTS 103

... 7.1 Introduction 1 0 3
7.2 Numerical Analysis of Diffractive and Scattering Objects 103

.. 7.3 Numerical Results 104
.. 7.4 Conclusions 105

CHAPTER 8 . CONCLUSIONS .. 109

8.1 Summary .. 109
8.2 Future Work ... 110

.. LIST OF REFERENCES 111

APPENDIX: CODE LISTING FOR THE BLOCK ROW ALGORITHM 117

vii

viii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Sparse matrix-vector multiplication forms the computational core of a large

nurnber of problems in numerical analysis. Typical problems involving the solution of

large sparse linear systems using iterative methods can take several hours of CPU time

on a high performance workstation, making parallel computers very attractive for

these applications. Additionally, the process of sparse matrix-vector multiplication

intrinsically involves a large amount of fine-grained parallelism, which makes it an

ideal application for massively parallel SIMD computers.

However, it is difficult to design an algorithm for distributed imemory SIMD

co,mputers that can efficiently multiply an arbitrary sparse matrix by a vector. The

difficulty lies in the design of a data structure that can efficiently store arbitrary sparse

m~ttrices, allow most interprocessor communication to be "regular" (with respect to

the interprocessor connection network of the machine), and at the same: time distribute

the non-zero elements of the matrix evenly among the processors in the processor

an-ay. On most commercially available SIMD computers, regular interprocessor

communication (with adjacent processors or processors along the same row, for

example) is faster than communicating with an arbitrary processor in the processor

array; data structures designed to efficiently store arbitrary sparse matrices, however,

tend to be irregular in nature. An additional constraint is imposed by a SIMD

architecture because all enabled processors must perform the same operation at any

given time. Thus any data structure designed for unstructured sparse matrix-vector

multiplication on a SIMD computer must compromise between a good load balance, a

data distribution that allows most, if not all communication to be regular, and an

efficient storage format.

In this thesis, we present an algorithm for matrix-vector multiplication that was

primarily developed for unstructured sparse matrices arising from two different

applications - a finite element approach for the numerical analysis and modeling of

diffractive and scattering objects, and a scattering matrix approach to device

simulation. The algorithm has been implemented and tested on a 16.,384 processor

MasPar MP-1, and, for our applications, it was found to be faster than the randomized

packing algorithms described in [OgA93], the " segmented-scan" algorithm described

in [Ham92], and the "snake-like" method explained in [RoZ93].

1.2 Prior Work

While there have been several algorithms for the multiplication of unstructured

sparse matrices by vectors, most of them are designed for single program, multiple

data (SPMD) and multiple program, multiple data (MIMD) type architectures; a

relatively few algorithms exist for the more restrictive S M D model. Most algorithms

that are designed for SPMD or MIMD models would not work effici~zntly on SWlD

art;:hitectures without extensive modifications because of the restriction that all

embled processors in a SWlD machine must do the same operation ;at a given time

(in~plicit synchronization). A brief overview of sparse matrix computations along with

additional references can be found in [KuG94].

A look at algorithms for dense matrix-vector or matrix-matrix rn~ultiplication on

massively parallel computers shows that these procedures can be piarallelized very

efficiently, thus resulting in peak performance that is close to the peak speed of the

m,achine [JoH89, Tic89, BjM921. This efficiency is difficult to carry over to sparse-

matrix algorithms because the data structures that are typically used to store sparse

matrices are irregular in nature (regular data structures can be designed for sparse

matrices if they have specific sparsity patterns). Keeping this in mind., when selecting

a data structure for our algorithm, we attempt to maximize the regularity of the data

structure, while minimizing the overhead (of storing zero elements) ,that goes with a

regular data structure.

In his paper [Petgl], Alexander Peters discusses the implementation of several

sparse matrix-vector multiplication algorithms on a vector machine. The discussed

algorithms use scalar and vector ITPACK storage schemes, or some variants of them.

A t~rief description of parallelizable sparse matrix data structures can also be found in

[M:PP93, KuG941. For unstructured matrices on a massively parallel computer, we

find that a different storage scheme, such as the one used in [DuR79], is more efficient

(discussed in Chapter 3).

In [BiW92], Bik and Wijshoff present a method in which the se1e:ction of a data

strilcture is postponed until the compile phase, thus allowing the comp:iler to combine

code optimization with explicit data structure selection. This method is not considered

here because of the unavailability of the necessary compiler technology on the MasPar

MI?- 1.

Several VLSI implementations have also been proposed for the efficient parallel

sol.ution of sparse systems [LiS88, Me188, MiK931. In general, these methods involve

the use of special architectural features and/or specialized interprocessor routing

methods, thus making their implementation on general-purpose compu1:ers unfeasible.

In their paper on sparse matrix-vector multiplication on the DA.P, M. Morjaria

and G . Makinson [MoM82] have presented a block partitioning method for the storage

of large sparse matrices on a two-dimensional mesh processor array. This method was

inkproved upon by J. Anderson et. al. who used a less compact data structure and a

he:uristic scheduling procedure that enabled them to exploit more parallelism and

reduce the amount of interprocessor communication [AnM92].

Romero and Zapata [RoZ93] have proposed two methods for sparse matrix-

vcctor multiplication in multiprocessor computers with a two-dimensional mesh

interconnection network and a distributed memory system: mu.ltiple recursive

d(:composition, and the block row scatter method. Multiple recursive decomposition

irivolves dividing the matrix into submatrices such that each submatrix has

a1)proxirnately the same number of non-zero elements. In general, each submatrix will

h.we a different size, which makes this method unsuitable for SIMD computers. A

ran'domized packing algorithm proposed in [OgA93] achieves a similar load

disiribution, and at the same time divides the matrix into submatricec; of equal size

(except, possibly the ones on the edges). The block row scatter method is an

improvement on the scatter methods presented in [AnM92], where the imatrix is again

divided into submatrices of size equal to the size of the processor array. This method

is also conceptually similar to the one proposed in [OgA93]. A survey of the different

dat,s distributions for sparse matrix-vector multiplication on mu1tiproc;essor systems

can be found in [RoZ93]. Some additional methods are also reviewed in [Ham92].

A. Ogielski and W. Aiello present two randomized packing algorithms that

randomly permute the positions of the non-zero elements in the matrix before using a

block partitioning method to store it in the processor array [OgA93]. ' h e algorithms

are implemented on a MasPar MP-1, and the distribution of the matrix elements is

done so as to allow all interprocessor communications to be done using regular

cornrnunication primitives. Scatter and gather techniques are used 1.0 perform the

matrix-vector multiplication in parallel.

1.3 Results

We propose a new algorithm that allows the "regularity" of a data structure that

useis a row-major mapping to be varied by a changing a parameter (the "blocksize").

The (block row) algorithm assumes that the number of non-zero elements in each row

is a multiple of the blocksize; (additional) zero entries are stored to satisfy this

condition. The blocksize can be varied from one to N, where N is ,the size of the

matrix; a blocksize of one results in a row-major distribution of the non-zero elements

of the matrix (no overhead of storing zero elements), while a blocksize of N results in

a row-major distribution corresponding to that of a dense matrix. For matrices that

have a wide variation in the number of non-zero elements in each row, a procedure for

an "adaptive" block row algorithm is mentioned. The only assumption made about

the: matrix is that its columns are "sparse".

The block row algorithm was implemented on a 16,384 processor MasPar MP-1,

anti its performance was compared to that of three other algorithms. For the types of

matrices under consideration, we found that our algorithm was up to an order of

magnitude faster than the second randomized packing algorithm. described in

[01;A93]. Of the two applications, for the finite element approach, our algorithm was

about nine times faster than the randomized packing algorithm for the largest case,

while for the scattering matrix approach, it was faster by a factor of two. In addition,

the block row algorithm is much more memory-efficient - for the largest problem

solved, involving 93,602 unknowns, and 1,427,614 non-zero elements, the block row

algorithm used approximately 36 MBytes of memory, whereas the randomized

packing algorithm of [OgA93] used approximately 237 MBytes (1,427,614 elements

can be stored in approximately 11 MBytes of memory, using double precision).

1.4 Overview

The thesis is organized as follows. Chapter 2 deals with the analysis of parallel

sparse matrix-vector multiplication on SIMD computers. Chapter 3 is divided into

two main parts; in the first part, we present a brief description of the MasPar MP-1

computer, while the second part deals with the architecture-specific (to the MP-1, but

generalizable to SIMD machines) issues of parallel sparse matrix-vector

mu.ltiplication. The 'block row algorithm' is presented in Chapter 4, along with a

theoretical analysis. Chapter 5 provides an experimental and a comparative analysis

of the algorithm. Brief descriptions of the scattering matrix approach and the finite

element approach along with experimental data for simulations are presented in

Chapter 6 and Chapter 7, respectively. Finally, in Chapter 8, we conc:lude the thesis

and present some ideas for future work. The code (in MPL) for the block row

algorithm can be found in the appendix.

CHAPTER 2

SPARSE MATRIX-VECTOR MULTIPLICATION

2.1 Introduction

In this chapter, we analyze the basic procedure of sparse matrix-vector

multiplication, and compare the differences in the sequential and parallel (SIMD)

implementations of the procedure. We also provide a "generic" analysis for the

procedure; this analysis forms the basis on which the algorithms in the next chapter

are: developed. Because the following (parallel) analysis is for SIMD machines, there

is an implicit assumption that all enabled processors have to perform the same
operation at any given time.

2.2 Sequential Sparse Matrix-Vector Multiplication

Consider the problem of matrix-vector multiplication with the notation b = Ax,

where A is a sparse matrix of size N by N. Each element of the result vector can be

coinputed as

where aij is a non-zero element of the matrix A.

On a sequential computer, the result vector is computed one eleiment at a time,

by computing the relevant products (Equation 2.1) and adding them. The actual order

in which the computations are performed may vary depending on the architecture and

the memory subsystems of the computer. Let Ri represent the number of non-zero
i < N

e1e:ments in row i. Then, the sequential algorithm involves C (Ri-1) addition
i =O

i < N
opzrations and C (Ri) multiplication operations. The time required to perform one

i =O

matrix-vector multiplication using a sequential algorithm is

where

i < N
tadd = X C (Ri-1), and

i =O

Let R,,, be the maximum number of non-zero elements in any one row of the

sparse matrix A. Then, the complexity of the sparse matrix-vector multiplication

operation is O(R,,,.N). The complexity can also be represented in teirms of the total

number of non-zero elements in the matrix (NeI,). The complexity of the algorithm in
i < N

terms of Nel, is O(Nel,), where Nelk = C (Ri).
i=o

2.3 Parallel (SIMD) Sparse Matrix-Vector Multiplicatioin -

2.3.1 Analysis of Parallel Sparse Matrix-Vector Multiplicaition

In contrast to the sequential implementation, an effective matrix-vector

multiplication procedure for a massively parallel SIMD machine is quite different.

The discussion is divided into two parts; the first part is based on the assumption that

tht: number of processors in the processor array (Nproc) is greater than (:or equal to) the

size of the matrix (N) and the number of non-zero elements in the matrix (Nelts); that

is, Npoc 2 max(N, Nel,). The discussion in the second part deals with ,the cases where

these assumptions are not true. This approach results in a clearer analysis of the

problem.

The processors in the processor array can be visualized as a one dimensional

array of processors. We assume that each processor can simu1taneou:sly support one

incorning and one outgoing communication operation, and that interprocessor

co:mmunication involving any permutation of processors can be done in one parallel

operation. We also assume that the non-zero elements of the matrix and the elements

of the vector are distributed in the processor array using some (unspecified) mapping

method. Then, the process of parallel sparse matrix-vector mu1tip:llication can be

divided into several basic steps, as considered below. The actual iml~lementation of

thc: algorithm may include additional steps to optimize the performance; they are

ignored for now.

2.3.2 Case I (Nproc 2 N, Nproc 2 Nelrs)

2.3.2.1 Introduction

For the purpose of this discussion, and without loss of generality, we assume that

each enabled processor of the machine has exactly one non-zero element of the

matrix, and that the size of the matrix (N) is less than the number of pirocessors in the

processor array (Nproc). If the number of non-zero elements in the matrix (Nel,,) is less

than the number of processors in the processor array, some processors <:an be disabled.

Or1 the other hand, if some or all processors have more than one element, each

element in a given processor needs to be processed sequentially. Similarly, if the size

of the matrix is greater than the number of processors in the processor array, some or

all processors will have multiple elements of the vector, and each element in a given

processor will have to be processed sequentially. These cases require a virtual

mapping of the data, and are considered later.

2.3.2.2 Procedure

Each processor that has a non-zero element of the matrix (aij) must first fetch the

co:rresponding vector element (xi) from the memory of the processor where it is

stcsed. Because each processor can process only one communication request at one

tinie, it is most efficient to store each vector element on a different processor. With

this storage scheme, distinct vector elements can be fetched simultan~eously; if more

than one processor requires a particular vector element, each fetch for that vector

e1e:ment will have to be processed sequentially. Thus, the entire :€etch operation

requires C,, parallel communication operations, where C,, is the maximum

number of non-zero elements in any one column of the matrix.

Once all the vector elements have been fetched, each processoi: multiplies the

1oc;al copy of the non-zero matrix element (aij) by the vector element that was just

fetched (xj). The resulting product (aij x x,) is called a partial product. All processors

perform the multiplication in one parallel operation.

Once the partial products are available, the partial products from each row (say i)

of the matrix must be added together to form the result-vector elements (bi). The

addition can be performed using a procedure known as recursive ~loubling. Using

recursive doubling, n numbers can be added in steps, where each step

consists of one communication (parallel) and one addition (parallel) operation.

Depending on the specific data layout and the architecture of the machine, it may

nc't be feasible to use recursive doubling. In practice, for large problenis (as compared

to the number of processors), the most efficient methods use a combiriation of (local)

liriear addition and recursive doubling to add the partial products. For the purposes of

th:is analysis, we assume that it is feasible to use recursive doubling.

Finally, the elements of the result-vector must be sent to the appropriate

processors to form a complete vector. If we assume that the layout of the result-vector

is the same as that of the original vector (necessary for any iterative scheme), then this

operation can be done in one parallel operation because each element will be stored on

a distinct processor.

The sequence of operations just described is summarized below. Each of these

steps is a parallel operation, and is executed by all processors that h~ave a non-zero

element of the matrix.

1. Fetch the required vector element (xi).

2. Perform a local multiply (cij = aij x xi).

3. Add the partial products (bi = Ccij).
i

4. Put the result vector element in the appropriate processor.

2.3.2.3 Timing Analysis for Case I -

Based on the analysis above, we now obtain an expression for thie time taken to

perform one sparse matrix-vector multiplication. The time taken to fetch the vector

elements is proportional to the maximum number of non-zero elements in any one

column; that is, fetching the vector elements takes c 1 x C,,, units of time, where c 1

is a constant. The multiplication operation can be completely parallelized, and so it

call be executed in constant time (equal to c2, say). The partial products can be added

time units, where c3 is a constant, and R,, is the maximum

number of non-zero elements in any one row of the matrix. Finally, the results can be

moved to the appropriate processors in constant (c4) time. Thus, the time taken by the

en tire procedure is equal to:

tfetch = C 1 C rnax (2.3b)

t a d = c3 X k g 2 (~ ~ ~ ~) l , and

It must be emphasized that these results are based on the assumptions made

about the communication capabilities of the machine in Section 2.3.1. Then, under
the assumptions that each processor can support exactly one incoming and one

outgoing communication simultaneously, and that interprocessor communication

involving any permutation of processors can be done in one parallel operation, if

N,,,, >max(N, Nelk), the complexity of the parallel sparse matrix-vector

multiplication operation is O(C,, + log2R,, + 1). In practice, beciiuse of the fact

that it may not be possible to communicate data across any permutaticjn of processors

in one parallel operation, the above expression is actually a lower bound for the

procedure of matrix-vector multiplication. In addition, depending on the architecture

of the machine, and the method used to map the matrix into the processor array, the

partial products may have to be reduced by using linear addition (as opposed to

recursive doubling). On the other hand, a specific machine m(ay be able to

se~~d/receive more than one simultaneous communication from each processor, which

would modify the expressions obtained above.

However, assuming that the assumptions hold, the procedure involves

C,.,, + ~ogn(~,,,)l + 1 parallel communication operations, one parallel

miiltiplication operation, and parallel addition operations.

2.3.3 Case 11 (N > Nproc , and lor Nh > Nproc)

2.3.3.1 Introduction

The analysis resulting in Equation 2.3a was based on the assum])tions that each

enabled processor had exactly one non-zero element of the matrix, ancl that the length

of the vector was less than or equal to the number of processors in the processor array.

W'e now consider the cases where this is not true.

2.3.3.2 Case IIa (N Nproc, and NeIts > Nproc) -

If the number of non-zero elements in the matrix exceeds the number of

processors in the processor array, some or all processors will have more than one

element of the matrix; that is, the non-zero elements will be distributed in multiple

layers (of memory) in the processor array.

A plural variable exists on all the processors of the processor array, and it can

have a different value on each processor. Thus, on a processor array with Nproc

processors, a plural variable can be interpreted as a one-dimensional array of size

NIrOc (Figure 2. la). Similarly, a one dimensional plural array of size M is actually a

two dimensional array of size Nproc by M, where each processor has one column (M

locations) of the array (Figure 2.lb). The dimension along the processors (along

Nproc) is called a layer, and so the above array would have a depth of &I layers.

The first Nproc non-zero elements of the matrix will be mapped into the first layer

(of data), the next Nproc non-zero elements will be mapped into the second layer, and

so on. Let LeIts represent the number of layers that the non-zero elements of the matrix

are mapped into. Then,

If Lel, > 1, each layer must be processed sequentially, and the quantities obtained in

Equations 2.3b - 2.3e need to be multiplied by Lel,. The quantity C,, must be

redefined as Cmax,k, where Cmax,k represents the maximum non-zero elements from

any one column of the matrix that are stored in layer 'k'. Similarly, Rmax,k represents

the maximum number of non-zero elements from any one row of the matrix that are

stored in layer 'k'. It should be noted that 'Cmax,k' and 'Rmax,k' are no longer

constants based on the matrix; their values depend on the architecture of the machine

and the method used to distribute the matrix into the processor array

(Cmax,k, Nproc). Then, the time taken for a matrix-vector multiplication is
given by:

Elt N+l 1
' I

I
I
I

cj

Figure 2.1: a) A plural variable as a one dimensional array of size N and b) A
plural one dimensional array as a two dimensional array of?;e NF by
M.

where

2.:3.3.3 Case IIb (N > NDr, , and Nel, 5 NDro,)

On the other hand, if the size of the matrix exceeds the number of processors in

the processor array, then one or more processors will have multiple elements of the

vector. This affects the time required to fetch the vector elements anti to arrange the

result vector elements because each processor can support only one communication

request at a time.

Let there be Nproc processors in the processor array, and let the length of the

vector be N. Assume that the processors and the vector elements are numbered from

zero to Nproc-1 and zero to N-1, respectively. Assume that the vector itself is stored

completely; that is, all the elements of the vector are stored, even if they are zero.

Also assume that the consecutive elements of the vector are stored on adjacent

prxessors (assuming a one-dimensional model of the processor array), and that the

vector is "wrapped around" in the processor array (Figure 2.lb); that :is, if xi is stored

in the last processor of the processor array, then Xi+l is stored in the first processor of

the processor array. Then, the vector elements Xi, Xi + N ~ ~ ~ , Xi + mprm ,.. .., and Xi + jNprm,

such that j = 0, 1, 2, ... and i + jNproc < N, are stored in processor i.

Let LeCl represent the number of layers required to store the vector. The number

of layers is equal to the maximum number of vector elements that a e stored on any

one processor. Then,

The number of processors that would try to fetch one of the vector elements

stored in processor i is given by the expression

where Ck (k = i + jNFoc) is the number of non-zero elements in the kth column of the

matrix (0 5 k < N).

Then, the maximum number of processors that would try to fietch one of the

vector elements stored in any given processor is equal to

Thus, the time required to fetch the vector elements is given by

tfetch = c 1 cm (eff) q-).

The multiplication and addition steps are not affected by the s i x of the vector.

Once the result-vector elements are computed, they have to be sent to the appropriate

pIocessors. Each vector element that is stored in a given processor must be sent

sequentially because the destination processors can only handle one incoming

communication at a time.

The time required for the matrix-vector multiplication when the size of the

vc:ctor is greater than the number of processors in the processor array is

where

tadd = Cg log2 (R , and

2.3.3.4 Case IIc (N > N , , , and Nel , > N,,,,)

In the general case, both, the matrix size, and the number of non-zero elements in

the matrix may be greater than the number of processors in the procc:ssor array. The

result follows from a combination of the analyses in Case IIa and Case IIb.

Cm(eff) must be redefined as Cmar(ejf), k ; the term represents; the maximum

number of processors that need to fetch any one of the vector elements stored in any
given processor, in layer 'k'.

The time required to send the result vector elements to the appropriate processors

depends on which result vector elements are computed in a particular layer. If more

than one of the result vector elements that are computed in a given 1,ayer need to be

sent to the same processor, the send operation will have to be serialized. A worst case

estimate is cq x LECt time units.

The time taken to do the matrix-vector multiplication in the general case is given

wliere

tfetch, k = C 1 Cmax (eff), k

In Equations 2.10a - 2.10e, twang, represents the worst-case tinne, whereas the

other quantities represent execution times that would depend on the sparsity pattern of

the matrix and on the mapping of the data in the processor array. A !summary of the

results for Case I and Case I1 are given in Table 2.1. To determine an upper bound for

the procedure of sparse matrix-vector multiplication, a worst case analysis results in

more compact results.

2.3.3.5 Worst-Case Analysis -

The worst case value for Cm(g), k is equal to the smaller of: a) the maximum

number of non-zero elements in any one column of the matrix multiplied by the

miiximum number of vector elements that are stored in any one processor, and b) the

number of processors in the processor array. The upper bound for R-, k is the

smaller of the maximum number of non-zero elements in any one row of the matrix,

and the number of processors in the processor array. Using this in Etluations 2.10b -

2. lOe, we have

tparalkl = Lelts (tfetch + tntultiply + tadd + tarrange) (2.1 la)

where

2.1: A summary of the timing analysis for the parallel (SIMD) sparse matrix-
vector multiplication procedure (assuming that recursive doubling is used
to add the partial products).

Parallel Sparse Matrix Vector Multiplication

t fetch

t add

Nproc2Nelts and Nproc2N Npm <Nelts andlor Nproc <N

The worst case fetch time is proportional to Lells x Lvect x min(C ,,, Nproc), and

the worst case add time is proportional to Lelts x log2(min(R,,,, Nproc)). This

translates to a complexity of O(Lefl.min(C ,,, Nproc) + Lefilog2(min (R ,,, Nproc))),

where

and Lelts and Lvect are given by Equation 2.4 and Equation 2.6, respectively. Note that

if both, the size of the matrix and the number of non-zero elements in the matrix are

less than (or equal to) the number of processors in the pirocessor array,

LeIts = Lvect = 1, and C,, and R,,, are less than (or equal to) the number of

processors in the processor array, and the expression for the comp1e:xity reduces to

O(:C,,, + log2Rm,). A summary of the results for the worst-case analysis is

presented in Table 2.2.

2.4 Result Summary

If the size of the matrix and the total number of non-zero e1emen.t~ in the matrix

are both less than (or equal to) the number of processors in the processor array, the

data can be directly mapped on the processors - that is, there is no need for virtual

miipping. For this case, a comparison of the complexity of the serial and the parallel

a1l;orithms and the number of steps involved in the sequential and parallel sparse

miitrix-vector multiplication operations is given in Table 2.3. In the more general

case, where the above assumption is not true, the same data is shown in Table 2.4.

2.5 Conclusions

In this chapter, we have provided a "generic" analysis for sparse matrix-vector

milltiplication on a SIMD machine and compared it with a sequential implementation.

The analysis is "generic" in the sense that it includes only a limited amount of

information about the distribution of the data across the processor array, and there are

Table 2.2: A summary of the worst-case timing analysis for the parallel (SIMD)
sparse matrix-vector multiplication procedure (assuming that recursive
doubling is used to add the partial products).

Parallel Sparse Matrix Vector Multiplication
(Worst-Case Analysis)

Table 2.3: Complexity and number of operations involved in the sequential and
parallel algorithms for sparse matrix-vector multiplicatio~l when the size
of the matrix and the total number of non-zero elements i n the matrix are
less than or equal to the number of processors in the processor array.

Table 2.4: Complexity and number of operations involved in the sequential and
parallel algorithms for sparse matrix-vector multiplication when either the
size of the matrix or the total number of non-zero elements in the matrix
(or both) are greater than the number of processors in the processor array.

Sequential
Algorithm

Complexity O K a x -N

Addition
Operations

Communication
Operations

' < N

COI)-l

Multiplication
Operations

' < N

i = ~ C (Ri)

Parallel
Algorithm

Total
Operations

Ratio
(ParaNleYSequential)

2 x Nel, - 1

no assumptions about the type of interconnection network present in the machine

(except for the specific assumptions involving non-conflicting interprocessor

communication).

As explained in this chapter, the procedure of multiplying a sparse matrix by a

vector can be divided into four separate phases on a parallel compute:r. The first part

of the analysis provides an insight into the effect of virtual mapping of data (Table

2.1); that is, what happens when either the size of the matrix or the inumber of non-

zero elements in the matrix exceed the number of processors available: on the parallel

computer. This is an important factor because, in the general case, the problem sizes

of interest will require a virtual mapping (of data). Note that the 'vjrtually mapped

data' that we talk about does not involve any swapping to secondary storage. We

observe that increasing the number of elements in the vector (i.e., the size of the

matrix) affects tferch and tarmge, while increasing the number of non-zero elements in

the matrix affects all the phases (Table 2.2). Based on the expressions in Table 2.1

(and Table 2.2), we can expect that tfetch and tadd account for a large fraction of the

time taken to perform a sparse matrix-vector multiplication. We can also expect that

increasing the size of the matrix (while keeping the number of non-zero elements

constant) will not increase the time (to perform the matrix-vector milltiplication) as

much as an increase in the number of non-zero elements will.

For the case where the size of the matrix and the number of no11-zero elements

art: greater than the number of processors in the processor array, the iresults in Table

2.1. are dependent on the distribution of the non-zero elements in the memory of each

processor, and across the processor array. To give a better "feel" for the results, a

worst-case analysis is also performed, and the results are presented in Table 2.2. The

results clearly show that even though the performance of the parallel implementation

of sparse matrix-vector multiplication is dependent on the sparsity pattern of the

matrix and the distribution (of the matrix in the processor array) selected, there is a

definite lower bound on the performance, which is dependent on the number of

processors in the processor array (Table 2.3 and Table 2.4). The actual algorithm used

to perform the sparse matrix-vector multiplication will be based on the method used to

distribute the data across the processor array, and so, as the number of processors in

the processor array increases, the importance of using a "good" distribution (of the

matrix in the processor array) also increases (scalability issue).

Finally, we compare the parallel procedure (of sparse matrix-vector

multiplication) with the sequential procedure (Table 2.3 and Table 2.41). We find that

as the number of processors in the parallel computer increases, the number of

(sequential) addition and multiplication operations per processor decrease. In the best

case (the number of processors are greater than or equal to the numbel: of data items),

apart from the communication overhead, the parallel procedure involves

addition operations and one multiplication operation. This number can be significantly

smaller than the corresponding numbers in the sequential procedure where there are

N,,l,-l addition operations and Nel, multiplication operations.. The parallel

procedure, however, involves interprocessor communication operations that are not

present in the sequential procedure, which limits the amount of speeidup that can be

ot~tained over the sequential procedure.

The analyses in this chapter give us an idea of the constraints imposed on a

parallel implementation of sparse matrix-vector multiplication on SIMD machines. In

the next two chapters, we use this analysis in conjunction with tlhe architectural

fe,atures of the MasPar MP-1 to develop a new sparse matrix-vector multiplication

algorithm.

CHAPTER 3

SPARSE MATRIX-VECTOR MULTIPLICATION ON THE MASPAR MP- 1

3.1 Introduction

This chapter deals with the implementation details of sparse matrix-vector

multiplication on a SIMD computer. Specific details regarding the design and

iniplementation of data structures are provided; these form a basis for the design of

the data structure used for the block row algorithm (Chapter 4). 'The architectural

s~lecifications of the MasPar MP- 1, a 16,384 processor SIMD computer, are used for

the discussion in this chapter, but the analysis can be easily extended to other

distributed memory SIMD computers.

3.2 The MasPar MP- 1 Computer

3.2.1 Introduction

The MasPar MP-1 is a massively parallel SIMD computer with up to 16,384

processing elements. This section provides a brief introduction to the architectural

features of the computer.

3.2.2 The Processor Array

The MP-1 has a single instruction, multiple data (SIMD) architecture with 1,024

tcl 16,384 processors. The processors are called processing elements (PEs) because

they contain only the data path and no instruction logic. The instructions are fetched

and decoded by the Array Control Unit (ACU), which is a scalar processor with a

. . .
nproc- 1

PEO

PE4

PE8

PE12

Figure 3.1: a) A cluster of processing elements, and b) The Processor Element Array.

PE1

PE5

PE9

PE13

PE2

PE6

PE10

PE14

PE3

PE7

PE11

PE15

RISC-style instruction set. The processing elements together form the Processor

Elt~ment Array, and, the Array Control Unit and the Processor Element Array together

form the Data Parallel Unit (DPU) [NicgO].

The processing elements are divided into clusters of sixteen processing elements

each, and the processing elements in a cluster are logically arranged a!; a four-by-four

array to form a two-dimensional mesh connection (Figure 3.1). Each printed circuit

board contains 64 clusters, resulting in 1,024 processing elements. In the MP-I, each

processing element has 48 32-bit registers, of which 40 are available to the

programmer, and sixteen kilobytes of local memory. Thus, a 16,384 processing

element system has 256 megabytes of memory [NicgO].

3.2.3 Interprocessor Communication

Interprocessor communication is handled by two different networks. One is the

X-Net, which is functionally equivalent to an eight nearest-neighbor two-dimensional

mesh network. The connections at the edge of the Processor Elernent Array are

wrapped around to form a torus. The other network is the Global hlouter Network,

which is used to handle arbitrary communication patterns between processing

e1t:ments. Each cluster of sixteen processing elements shares one originating port and

one target port. So, the router network can support as many simultaneous connections

as there are clusters. Both, the X-Net and the Router Network are bit-serial and they

ar,e synchronously clocked with the processing elements [NicgO].

When using the X-Net for interprocessor communication, the communication

time is proportional to either the product or the sum of the operand1 length and the

distance (Table 3.1) [Nic90, MPA931. Also, the X-Net operations are faster when the

xnet* construct is on the left hand side than when it is on the right: hand side of a

statement [MPA93]. The approximate times required for interprocessor

communication using the basic 'xnet' construct, the 'xnetp' construct (pipelined

communication), and the 'xnetc' construct (copy left on intermediate processors) are

given in Table 3.1.

Table 3.1: Timings for interprocessor communication operations using the X-Net,
where 'dist' is the distance between the communicating processors, and
'opsize' is the size of the operand in bits.

r - -

- I Approximate Timing in Clock Cycles I

dist == 1

Operation

opsize + 7

LHS RHS 7
opsize + 17

dist == 1

dist > 1 ((opsize + 2)*dist + 6

opsize + 10

(opsize + 4)*dist + 17

opsize + 21
-

dist > 1 opsize*5/4 + dist + 11

dist == 1 I opsize + 10 -

dist > 1 opsize*2 + dist + 9

The Router Network provides a "distance insensitive" method of interprocessor

communication because all communication paths are of equal length. However,

because the router ports are multiplexed among the sixteen processing elements in
each cluster, an arbitrary communication takes at least sixteen router cycles to

complete [NicgO]. A random communication pattern using the Router Network, with

all processing elements participating takes an average of 5,000 clock cycles for 32-bit

operands.

On the whole, the X-Net is preferred if the communication patterns are regular;

that is, all active processing elements need to communicate with prociessing elements

that are in the same relative direction and distance. The 'xnetp' and the 'xnetc'

constructs are faster than the 'xnet' construct (for distances gre:ater than two,

approximately), but they require intermediate processing elements to be disabled.

3.2.4 The Processing Elements

Each processing element has a four-bit loadlstore unit and a feu-bit ALU. This

is transparent to the programmer, who can directly operate on the any of the supported

da.ta types. Each cluster of processing elements has one sixteen-way rnultiplexed port

to the local memory, and memory operations are overlapped with processing element

cclmputation wherever possible [NicgO]. An access to local memory is about ten

tirnes slower than an access to a local register[Chr90]. A processing element can

access another processing element's memory by sending a message to the other

processing element and requesting that it send the desired item; this procedure is

approximately one hundred times slower than a local register access [MMP90,

C hr901.

3.2.5 Software Options

The programs in this thesis were coded using the MasPar Parcillel Application

Lznguage (MPL). MPL is C-derived, and provides a direct high-level control of the

hiudware. Two more languages, the MasPar C (MPC) and MasPar Fortran (MPF),

are also supported, but they do not offer the flexibility of MPL [Chr90].

3.2.6 Architectural Configuration

Details about the architecture of the MasPar MP-1 can be found in [BlagO]. In

the next few lines, some of the frequently used variables are described. These

variables are pre-defined and represent the hardware configuration of the machine.

The variables nproc, nxproc, and nyproc represent the actual configuration of the

hardware of the MP- 1. nproc represents the total number of processing elements in the

system while nxproc (nyproc) represents the total number of processiilg elements per

row (column), in the two-dimensional array (Figure 3.1). iproc is a unique number

between 0 and nproc-1, given to a processing element, while ixproc, and iyproc tell a

processing element its row and column positions in the Processor Elernlent Array.

3.3 Sparse Matrix-Vector Multiplication on a SIMD Machine -

3.3.1 Introduction

In Chapter 2, we saw that the procedure of sparse matrix-vector multiplication

ccluld be divided into four parts - namely, the fetch phase (where the vector elements

are fetched), the multiplication phase, the reduction phase (where the partial products

are summed), and the result phase (where the result-vector elements are sent to the

appropriate processors). In this section, the implementation of each of these phases is

discussed. Under the assumption that communication between adjacent processors, or

between processors in one "row" is faster than communication between arbitrary

processors, a specific data structure (for the matrix and/or the vector) is defined for

each phase so that regular communication can be used as much a.s possible. The

matrices are assumed to be unstructured, and no attempt is made to optimize the

pc:rformance based on specific sparsity structures.

Even though this discussion is specifically aimed at the MasPar MP-1 computer,

it is directly applicable to any SIMD computer with a two-dirrlensional mesh

inlerconnection network, and primitives for regular and irregular communication

(with the regular communication being cheaper). The analysis, with minor

modifications, can also be applied to distributed memory SIMD compi~ters with other

types of interconnection networks.

3.3.2 The Vector-Fetch Phase

In the general case, each processor that has a non-zero element of' the matrix (aij)

will need to fetch the appropriate element of the vector (xj) from the processor in

which it is stored. Because data stored in different layers in memory is processed

se'quentially, the following discussion is specific to one layer of data (say k), without

any loss in generality. Under our assumption that each processor can support only one

fetch request at a time, the fetch time for layer 'k' is proportional to C:max(eff),k (Table

2.1). Cmax(eff),k represents the amount of communication conflicts that occur as a

result of the data distribution in the processor array (versus the conflicts that occur as a

result of the limitations of the interconnection network). The time taken by the fetch

phase can be optimized by minimizing both, Cmax(eff),k, and the cost of each fetch

operation (which includes the cost of communication conflicts 'because of the

limitations of the interconnection network).

The value of Cmax(ew,k can be reduced in two ways. As seen in E:quation 2.8, the

value of Cmax(eff) is proportional to the number of elements of the vector that are

stored on any one processor. So, an obvious way to reduce its value is to distribute the

elements of the vector evenly among the processors in the processor aray. This has an

aclded advantage that the memory requirement for vectors is distributed across the

prnocessor array; this is important because massively parallel machines with a

distributed memory tend to have a relatively small amount of memoiry per processor

(a maximum of 64kB for the MasPar MP- 1).

One possible way of distributing the elements of the vector among the processors

is as follows. Each element of the vector, starting from the first one (xo), is stored on

co:nsecutive processors, starting from the first one (processor #O). If the size of the

vector is greater than the number of processors in the processor array (Nproc), then the

neKt element of the vector (x ~) is again stored on the first processor. In general, the

sparsity pattern in the vector is not taken into account; that is, all the elements of the

vector, including the zero elements, are stored. This is done to avoid any "look-up"

overhead when fetching the vector elements; if all the elements of the vector are

stored, calculating the location of a particular element of the vector (:in terms of the

prc~cessor) is trivial (element xj is in processor j%Nproc, where the % sign represents

the modulus operator). For specific cases, where entire blocks of the vector are zero, it

miiy be advantageous to take the sparsity into account.

The value of Cmax(eff),k also depends on the actual distribution of the non-zero

elements of the matrix in the given layer (of data) in the memory (Equation 2.7), and

is proportional to the largest number of non-zero elements from any one column of the

m,atrix present in the layer (strictly speaking, it is proportional to the largest sum of

thlz non-zero elements from all the columns that need vector elements stored in a

given processor). Thus, the value of can also be reduced by a mapping of

th'e non-zero elements of the matrix that distributes the (non-zero) elements from a

ccllumn evenly among the layers (of data). This optimization is not considered in this

thesis.

An arbitrary distribution of the non-zero elements of the matrix among the

processors in the processor array would require irregular communication patterns (in

the general case) to fetch the vector elements. On most SIMD computers, regular

ccmmunication (with respect to the architecture of the interconnection network) is

faster than communications between arbitrary processors. Consec~uently, a data

distribution that utilizes only regular communication would result in a faster

a1 gorithm.

For the fetch phase, all non-zero elements of the matrix belonging to one column

require the same element of the vector. Consequently, if non-zero eleiments belonging

tc~ a given column were stored on adjacent processors, then it woul'd be possible to

send the vector-element to the relevant processors by using a "broadcast"

mechanism. In particular cases, it may also be possible to store the noin-zero elements

of a column on a single processor; for unstructured matrices, however, this would

usually lead to an unacceptable imbalance in the load distribution among the

pr13cessors.

The storage format where the non-zero elements of a column of the matrix are

stored in adjacent processors is called the column-major format. Ol)viously, if this

fo:rmat is used, one would store all (or as many as possible) non-zero elements of a

column in one layer (of data). This is because, when using a "broadcast" mechanism,

the cost of communication per processor involved is usually smaller than the cost of

setting up the communication (establishing the channel, masking, etc.). Depending on

the number of non-zero elements in a given column, the most efficient procedure may

be. a "hybrid" method where several processors first obtain the I-elevant vector-

element using (irregular) communication primitives, and then broadcast it to the other

elements. Even if an actual "broadcast" primitive is not available (as on the MP-l), it

is often possible to send data down "rows" of processors with very little cost (relative

to an irregular communication primitive).

For applications where a column-major format is inefficient (if the rows are

relatively dense, for example; explained in Section 3.3.4), it is possible: to optimize the

actual implementation of the fetch phase to reduce the communication conflicts. One

pc,ssibility is to make multiple copies of the vector elements (this is only feasible if

the size of the vector is less than the number of processors in the processor array);

depending on the size of the vector, one or more copies can be made of the entire

ve:ctor, or a part of it.

To do this, the processors are grouped into sets, with the number of processors in

each set being equal to the size of the vector (the last set may be "incomplete").

Tllen, processors within each set would perform fetch operations "locally" (within

the set). The improvement obtained from this scheme depends on the actual data

distribution among the sets. For example, on one extreme, if, for a given column of

the matrix (say J], all the (non-zero) elements of that column happen to be stored in

one set, then there is no reduction in the time required to fetch the elements of the

vector for that column. On the other hand, if the elements of the column are

distributed evenly among all the sets, then the fetch time will be reduced by a factor

equal to the total number of sets because the fetch requests (for that element of the

vector) will be distributed evenly among the processors that contain copies of x,.

Thus, we can conclude that to optimize the fetch phase, the vector elements must

be evenly distributed among the processors, and the non-zero elements of the matrix

milst be distributed in a column-major format. For matrices that have relatively sparse

columns and (relatively) dense rows, the column-major format is inefficient (for the

reduction phase, as discussed below), and so, depending on the applica~tion, it may not

be feasible to use the column-major format. In this case, the time taken for the fetch

phase can be reduced by making multiple copies of the vector, and by distributing the

non-zero elements of each column evenly across the layers of data in tlie memory.

3.3.3 The Multiplication Phase

This phase involves a local multiplication operation with no interprocessor

communication (Section 2.3.2.2), and all (enabled) processors multiply the non-zero

elements of the matrix in the current layer by the vector-elements fetched (in the fetch

phase) in parallel. Thus, the multiplication phase takes constant time: for each layer.

the resulting products are called partial products, and partial products from each row

must be added to form the result-vector elements.

Note that even though it is possible to combine the fetch phase and the

multiplication phase by performing a "remote" multiplication operation, this is

effectively the same as fetching a vector element and then perfonning a "local"

multiplication. In fact, depending on which processing element the result is computed,

combining the two phases may result in an extra communication step (if a;, is sent

over to the processing element containing x,, and then the result is sent back to the

original processing element).

3.3.4 The Reduction Phase

This phase involves the addition of partial products corresponding to each row to

foi-m the elements of the result vector. In general, the partial product:; will be spread

across the processors in the processor array, and consequently, this phase is

communication intensive. Using arguments similar to those for the vector-fetch

phase, it can be said that the execution time for this phase can be minimized by a

row-major distribution of the elements of the matrix. A row-major distribution allows

the use of regular communication to add the partial products, as discussed later in this

section. For a row-major distribution, (non-zero) elements from any single row of the

matrix are stored on the same processor, or on adjacent processors.

If the partial products from a row are arbitrarily distributed among the

processors, then there are two options: the partial products could be sorted according

to the row that they belong to (i.e., convert the distribution to a row-major mapping),

or partial products belonging to each row could be sent to a unique processor, where

thmey would be added. The first option involves (partially) sorting the non-zero

elements for every matrix-vector multiplication, in addition to the actual reduction of

thle partial products - which would not be feasible for large problerns. The second

option involves sending multiple data items to each processor, which would result in

serialization (our assumption regarding one communication per processor, at a time).

Assuming that the non-zero elements of the matrix are in a row-major format, the

reduction can proceed in several ways; each of these methods involves the use of only

regular communication primitives (no communication conflicts). If oilly one layer of

data is considered at a time (assuming that the elements of a row are stored in adjacent

processors, rather than the same processor), the reduction can be done in a logarithmic

(base 2) number of steps using recursive doubling. On the other hand, if all the (non-

zero) elements of a row are stored on one processor, then the number of steps required

to add the partial products is equal to the number of partial products (nlinus one).

Using recursive doubling, a given set of numbers can be added in a fewer

number of steps compared to linear addition, but at each step in the algorithm, the

nu.mber of processors utilized is reduced by a factor of two (all processors in the first

step, 1/2 in the second step, 1/4 in the next step, etc.). In addition, the i th step in the

algorithm involves interprocessor communication over distances of 2i--1. Even though

regular communication primitives may be used, unless the cornrnunication is

distance-insensitive, the cost of adding 'n' numbers can increase faster than O(log2n).

Based on this analysis, if the cost of a regular communication is comparable to

that of adding two numbers, recursive doubling is faster for adding a small set of

numbers together, while a combination of linear (local) addition and recursive

dc~ubling is faster for adding large sets of data. The actual threshold is dependent on

the cost of communication as compared to the cost of a floating point a.ddition.

3.3.5 The Result Phase

Once the partial products have been summed, the results need to be sent to the

appropriate processors so as to conform to the selected distribution for vectors. Note

that the vector distribution that minimizes the communication conflicts for the fetch

phase (elements distributed evenly among the processors) also minimizes the

cc~mmunication conflicts for this phase (because each proce:ssor gets sent

approximately the same number of elements, and the worst case serialization is equal

to the maximum number of vector elements that are stored on any one processor).

In practice, this step is done once for each layer of data, assembling a part of the

vc:ctor each time. Consequently, the number of communication confli'cts that occur in

this step is determined by the number of elements of the result-vector that are

generated in each layer (of data). For example, if the non-zero elements of the matrix

are stored in a row-major format, for large problems (that is, Nel, >> N,,,), elements

from a relatively small number of rows will be present in each layer, and so a smaller

number of results are likely to be generated in each layer (comparecl to the column-

major format, say). This, in turn reduces the probability of cornrnuni'ication conflicts.

On the other hand, if the non-zero elements of the matrix are mapped in a column-

major format, partial results for a larger number of rows are likely to be generated in

each layer, thus increasing the probability communication conflicts.

3.3.6 Summary

In this section, specific requirements of each phase of the matrix-vector

mlultiplication in terms of the data distribution were reviewed. To minimize

communication conflicts, the vector elements should be distributed evenly among the

processors. This has the added benefit of distributing the memory :requirement for

vectors among the processors. A column-major distribution of the (non-zero elements

of) the matrix is best for the fetch phase, while a row-major distributicln is best for the

re'duction phase.

For unstructured sparse matrices, a data structure that is designed to satisfy the

requirements of both the phases (the fetch phase and the reduction phase) is unlikely

to have an acceptable load balance among the processors; a data structure that reduces

the load imbalance has been implemented in [OgA93] with the help of randomization

techniques.

3.4 Data Structures for Sparse Matrices on SIMD Computers

3.4.1 Introduction

As described in Section 3.3, the fetch phase can be carried out by using regular

cc~mmunication primitives if the elements of the matrix are distributed in a column-

major format, whereas the reduction phase can be carried out by using (only) regular

communication if the elements of the matrix are distributed in a row major format. A

data-structure that simultaneously allows a row-major and a column-major mapping is

said to preserve the integrity of the matrix [OgA93]. For unstructured sparse matrices,

it is difficult (NP-complete, [OgA93]) to design a data structure thal simultaneously

preserves the integrity of the matrix, and also distributes the elements evenly among

the processors. A data structure that preserves the integrity of the ~natrix has been

in~plemented on the MP-1 [OgA93]; randomization techniques are used to reduce the

load imbalance among the processors.

The data structures considered in this thesis enforce an even distribution of the

loid among the processors, and do not attempt to preserve the integrity of the matrix.

In this section, three data structures are considered: the row-majior format, the

column-major format, and the diagonal format. The row-major format forms the basis

of the data structure used for the algorithm developed in the next chapter, while the

diagonal format is used to show how data structures can be designed to exploit

specific sparsity structures; the column-major format is considered here for the sake of

completeness.

3.4.2 The "Row-Major" Format

A row-major mapping of the (non-zero) elements of the matrix allows the use of

regular communication primitives in the reduction phase; partial products can be

summed using either local additions or recursive doubling across processors, or both.

However, in the general case, this mapping will result in an arbitrary distribution

(among the processors and layers of data) of the non-zero elements of a column.

Consequently, using a row-major format results in an inefficient implementation of

the fetch phase.

Depending on how many non-zero elements are present in the :rows of a given

matrix, a row-major mapping will result in elements from a relatively few rows being

present in each layer of data (especially if the elements of a row are d.istributed in the

sa.me layer along adjacent (rather than one or two) processors). Thus, on an average

(for a large problem), there will be a small number of (non-zero) elements from each

cc~lumn of the matrix in a given layer of data. As a result, the implementation of the

fe:tch phase will not involve a large amount of serialization.

3.4.3 The "Column-Major" Format

Mapping the matrix in a "column-major" format allows the use of regular

communications (using the X-Net) to fetch the vector elements during the fetch phase.

On the other hand, the partial products can no longer be efficiently summed in the

retluction phase without modifying their distribution (by sorting them, for example).

For large problems with relatively dense columns, however, if the elements from a

column are distributed in adjacent processors (and in the same layer of data), there

will be a relatively few partial products from any one row in a given layer of data,

Consequently, there is not much work involved in the reduction phase; but the work

required to arrange the elements of the result-vector increases (because results from a

larger number of rows are present in a given data layer).

Under the assumption that it is easier to resolve "one-to-many" (multiple reads)

conflicts than it is to resolve "many-to-one" (multiple writes), if the rows and the

columns of a given matrix contain approximately the same number of non-zero

elements, the row-major format will result in better performance than the column-

major format.

For example, on the MP-1, the router automatically resolves communication

conflicts; if multiple processors attempt to communicate with a single processor, the

cclmmunication requests are serialized in some (unspecified) order. However, if

multiple processors attempt to send data to one (memory) locati-on in a single

processor, the last value that is communicated overwrites the others. Because of this,

if multiple values are to be sent to a single processor (the partial products, in this

ca.se), it is necessary to "reduce" the values to one single vzilue before the

cornrnunication operation.

3.4.4 The "Diagonal" Format

The algorithm based on the row-major format exploits the fact tlhat the non-zero

elements from each row of the matrix are mapped in a regular fashion in the processor

aray, rather than being randomly spread across it. On the other hand, mapping the

non-zero elements in a column major format allows one to use the adjacency of the

non-zero elements in each column to advantage. A third possibility is to store the

non-zero elements of the matrix in terms of diagonals; that is, eleiments from one

diagonal are stored in adjacent processors.

If, instead of storing only the non-zero elements, one were to store (entirely) any

diagonal that had at least one non-zero element in it, one would be able to exploit the

advantages of both - the row-major format, and the column-major fonnat. Obviously,

this approach would only work for matrices with relatively "dense" diagonals; that is,

any diagonal that is not empty has a relatively small percentage of zero elements. For

miitrices where this not true, a significant amount of computation time and memory

resources will be spent on "zero" elements.

One possible way of implementing this method is as follows. Consider a matrix

'A' of size 'N'. Assign a number to each diagonal based on its distance from the main

diagonal; positive numbers refer to diagonals above the main diagonal, and negative

numbers refer to the ones below. For example, the number assigned to the main

di,sgonal is 'O', and the numbers assigned to the diagonals just above, and just below

the main diagonal are '1' and '-I7, respectively. Assume that the rows and the

columns of the matrix 'A', and the elements of the vector (x) are numbered from zero

to N-1.

Now, consider diagonal number '+i'. The first element of the: diagonal is in

cc~lumn number 'i', and the last element is in column number 'N-1 ' (the last column).

The length of the diagonal (that is, the number of elements in the diaglonal) is equal to

'N - i'. Then, for the vector-fetch phase, a "chunk" of the vectoi:, from element

number 'i' to element number 'N-1' is needed. The entire "chunk" can be fetched

using the X-Net because all the elements of the vector need to be: communicated

across the same distance and in the same direction (the elements of rhe diagonal are

stored in adjacent processing elements). Thus, the vector elements can be efficiently

fetched by using regular communication patterns.

The reduction phase can also be executed efficiently, though the actual

computation proceeds in a different order. Consider a relatively large matrix that maps

into several 'layers' in the Processor Array. If the row-major mapping is used, then a

relatively small number of result-vector elements are computed (corrlpletely) in each

layer (each layer is processed sequentially). On the other hand, if the diagonal format

is used, a relatively large number of result-vector elements are partiailly computed in

each layer. Because of this, and because the mapping allows the use of regular

communication patterns, the partial products can be reduced quickly without the use

of Recursive Doubling. For example, if the size of the matrix is approximately half the

number of processing elements in the processor array, approximately two diagonals

arc: stored in each layer (assuming that the diagonals are close to the main diagonal).

This means that the reduction phase involves only one addition per row of the matrix;

fo:r larger matrices, the addition phase may be "eliminated" completely.

A similar analysis can be done for negatively numbered diagonals, the only

difference being that the first element of the diagonal is always in the first column of

th'e matrix. On the whole, an algorithm using the diagonal format for the matrix (for

appropriate matrices, of course) can be expected to work faster than either the

algorithms using the row-major format or the column-major format.

A preliminary version of the algorithm was coded and implernented, and the

atlove analysis was verified for relatively small test cases. However, this algorithm is

not considered further in this thesis.

3.5 Conclusions

The MasPar MP-1 is a SIMD computer with between 1,024 and 16,384

processors, and a two-dimensional toroidal mesh interconnection network. A 16,384

processor system can achieve 650 MFLOPS (average 64-bit of adld and multiply

operations). Interprocessor communication is handled by two netw0r.k~; the X-Net is

an eight nearest-neighbor two-dimensional mesh network, while the rlouter network is

a distance-insensitive multistage network that can support arbitrary communication

patterns.

The analysis in Chapter 2 was based on the assumptions that processors can

support one incoming and one outgoing communication simultaneously, and that

ir~terprocessor communication involving any permutation of processors can be done in

one parallel operation. On the MP-1, even though the router can handle arbitrary

communication patterns, the communications are not conflict-free. That is, each

communication operation may involve several sequential steps. Consequently, sparse

matrix-vector multiplication on the MP-1 will take more time than estimated by the

analysis in Chapter 2 if the router is used for interprocessor communication; each

communication operation in the analysis in Chapter 2 will become a number

(indeterminate, in general) of steps. The X-Net can be much faster than the router

network (81 cycles for an adjacent processor vs. an average of 5000 cycles for a router

operation with all processors enabled), but the communication is limited to rows,

columns, or diagonals of the processor array - and all enabled processors have to

communicate in the same direction, at a given time.

Thus, given the limitations of the X-Net, it is desirable to design a data structure

that can utilize it (the X-Net) as much as possible. As stated earlier, there is an

implicit assumption in the analysis that the data is distributed evlenly across the

processor array. In Section 3.3, a data structure that utilizes regular ccbmmunication is

described for each (individual) phase; the cost of using a different data structure is

al,so discussed.

As seen in Chapter 2 (Table 2.1), most of the work involved in parallel matrix-

ve:ctor multiplication is concentrated in the fetch phase and the reduction phase. If

regular communication is to be used for both these phases, twcl different data

structures will be required (for unstructured matrices). Then, unless the (non-zero)

elements of the matrix are dynamically redistributed (in the processor array) for one

of' the two phases, it is necessary to use the router network for at least one of the fetch

arid the reduction phases (not true if the matrix has a diagonal sparsity structures, for

example). If the matrices under consideration have the same numlxr of non-zero

elements in the rows and columns (or, obviously, a lower number of non-zero

elements in the columns), it is more efficient to use the router network for the fetch

phase (Section 3.4.3).

In the next chapter, we propose a new algorithm that is based on a modified

row-major distribution of the elements of the matrix. Specifically, in addition to the

nca-zero elements, some (specified by a parameter) zero elements are stored to obtain

a more "regular7' data structure.

CHAPTER 4

THE BLOCK ROW ALGORITHM

4.1 Introduction

In the block row algorithm, elements from each row of a sparse matrix are

grouped into blocks, with blocksize elements in each block; zero elernents are stored

only if the number of non-zero elements in a particular row is not a multiple of the

blocksize. Then, each block (rather than each element) is processed as a basic unit,

w:hich facilitates the design of a data structure whose "regularity" can be varied by

chianging a parameter (the blocksize). The reduction phase and the result phase have

to be executed only once for every block because of the regular nature of the

associated data structure, which results in a faster algorithm.

In Section 4.2, the working of the block row algorithm is explainled with the help

of' an example. The algorithm is formally described in Section 4.3, and its

performance is analyzed in Section 4.4. Section 4.5 deals with some of the practical

aspects of the algorithm. For matrices with wide variations in the number of non-zero

el'ements between the rows, an "adaptive" version of the block row algorithm is

described (Section 4.6); this algorithm allows the use of different b:llocksizes within

one matrix by partitioning the matrix along rows. Finally, the chapter is concluded in

Section 4.7.

4.2 The Block Row Algorithm: An Example

Consider the matrix and the vector shown in Figure 4.1, and a processor array

with four processors. The matrix is a 6 x 6 "sparse" matrix w:ith 17 non-zero

elements, and the corresponding vector is assumed to be dense (note that the indexes

-
a o o o a o 2 0 o a o 5

0 all 0 a13 a14 a15

0 a21 a22 0 a24 a25

a30 0 0 a33 0 0

0 0 0 O a a O

a50 0 0 a53 0 a55 -

Figure 4.1: An example "sparse" matrix with N = 6 and 17 non-zero elements, and
the corresponding vector.

F:igure 4.2: The intermediate-stage representation of the matrix shown in Figure 4.1.

R o w 0

R o w l

Row 2

Row 3

Row 4

Row 5

aoo ao2 ao5 0 0 0
-

all a13 a14 a15 0 0

a21 a22 a24 a25 0 0

a30 a33 0 0 0 0

a 4 0 0 0 0 0

a50 a53 a55 0 0 0

of the elements of the matrix and the vector start from zero, rather than one). Assume

the intermediate-stage representation of the matrix shown in Figure 4.2; this

reypresentation is obtained by "compressing" the non-zero elements in each row of

the matrix - that is, by moving them to the left hand side of the zero elements.

From this intermediate-stage representation, data structures with different

amounts of "regularity" can be obtained by changing the value of a- parameter (the

blocksize). The elements within each row of the intermediate-stage representation are

divided into blocks such that the number of elements in each block is equal to the

va~lue of blocksize; zero elements can be added to the int.ermediate-stage

representation if the number of elements in a row is not a multiple of the blocksize.

Tlien, all blocks that contain at least one non-zero element are ma~pped on to the

processor array, whereas blocks that have only zero elements are discarded. Let Sblk

be: the value of the blocksize. Then, Ntot/Sbk blocks are mapped on .to the processor

array, where Ntot is the total number of elements in the blocks.

Consider a blocksize of one; each row is divided into blocks, with one element

pe:r block. The resulting data structure (Figure 4.3) does not have any zero elements

because any number is an exact multiple of one; observe (Figure 4.:3) that this data

sbructure is simply a row-major mapping of the non-zero elements of the matrix. This

data structure is then mapped into the processor array as shown in Figure 4.4. Each

processor reads Ntot/NprOc/Sbk (= 4, in this case) blocks from the data structure in a L 1
row-major format; thus, there are four complete layers of data in the memory of the

processors. The remaining blocks are mapped into incomplete laye,rs of data, with

each processor (starting from the first one) being assigned one bloclk. The vector is

also distributed among the processors, as shown in the figure.

In general, to multiply a sparse matrix by a vector, the fetch phase, the

rrmltiplication phase, the reduction phase, and the result phase must be executed (in

that sequence) for each layer of data (in the processor memory). Ln the block row

algorithm, however, the reduction phase and the result phase are executed only once

for each block; with a blocksize of one, though, each block has only one element, and

all phases must be executed for each layer of data. In general, for a given processor,

Row 0

Figure 4.3: The data structure for the matrix shown in Figure 4.1 witlh a blocksize of
one; single vertical lines indicate block boundaries.

Row

Figure 4.4: Distribution of the elements of the matrix shown in Figure 4.1 on a
processor array with four processors for a blocksize of one..

a00

all

a02 a05

a13 a14 a15

the reduction phase and the result phase do not need to be executed for layer 'i' (of

data) if the element in layer ' i+l ' belongs to the same row as the elenlent in layer 'i'.

In Figure 4.4, an underscore below a particular element indicates that the reduction

phase and the result phase need to be executed for that layer (by the corresponding

processor). Obviously, for the last layer of data, all phases must be executed.

For a blocksize of one, the reduction phase and the result ph.ase need to be

executed by at least one processor for every layer (Figure 4.4); in a SIMD computer,

because of implicit synchronization, processors that do not need to execute the

reduction/result phases must be disabled, and cannot do any useful work

(simultaneously).

Now consider a blocksize value of two - the resulting data structure is shown in

Figure 4.5. Notice that this data structure is more "regular" than the data structure for

a blocksize of one; this regularity, however, is obtained at the cost of' having to store

zeao elements. For the reduction phase, the zero elements are assumed to belong to a

specific block (specified by the row index), whereas for the fetch phase, the zero

entries are ignored (indicated by a "*" for the column index in Fiigure 4.6). The

entries in the data structure are mapped on to the processor array as shown in Figure

4.6. Again, each processor first reads Ntot/Nproc/Sblk (= 2, in this case) blocks L 1
corresponding to the complete layers of data; the remaining (two) blocks

corresponding to the incomplete layers of data are distributed evenly among the

processors in the processor array (by "flattening" them; Figure 4.6:). Note that this

"flattening" of the blocks in the incomplete layers of data has an interesting side-

effect; the reduction phase can become more expensive because the elements from a

given block are distributed across a larger number of processors (because of the

flattening).

In this case (because the blocksize is equal to two), the reduction phase and the

re:sult phase need to be executed once every two layers, as indicated by the

u~lderscores in Figure 4.6; also observe that not all processors execute the

re:duction/result phases at each block boundary. Thus, at the cost of storing three zero

elements, the values of tadd and tmmg, have been reduced by almost: a factor of two

Row 0

Row

Figure 4.5: The data structure for the matrix shown in Figure 4.1 witlh a blocksize of
two; single vertical lines indicate block boundaries.

a00 a02

Row 5

Figure 4.6: Distribution of the elements of the matrix shown in Figure 4.1 on a
processor array with four processors for a blocksize of two.

a05 0

all a13 a14 a15

a50 a53 a55 0

(a;ssuming that each execution of the reduction and the result phase takes the same

amount of time).

Finally, consider a blocksize of four: the corresponding data structure is shown in

Figure 4.7, and the data distribution in the processors is shown in Figure 4.8. As

before, the two blocks in the incomplete layers of data are flattened to maximize the

utilization of the processors. With this blocksize, the reduction/result phases are

executed only twice (compared to five times for a blocksize of one) for each matrix-

vector multiplication. Observe that a further increase in the blocksiz4e will add only

zero elements; a meaningful increase in the blocksize is limited by the maximum

number of non-zero elements in any one row of the given matrix.

4.3 Description of the Block Row Algorithm

As explained in Chapter 2, sparse matrix-vector multiplication on a SIMD

computer can be divided into four phases; namely, the fetch phase, the multiplication

phase, the reduction phase, and the result phase. Of these, tfetch and t,dd account for

th'e largest fraction of the total time required for the matrix-vector multiplication

(Clhapter 2 and Chapter 3). For the matrices associated with our applications, the

cc~lurnns tend to be more (or about equally) sparse than the rows. Consequently, the

algorithm is based a row-major mapping of data (Section 3.4.3).

Consider a sparse matrix of size N x N with Nelts non-zero e:lements, and a

processor array with Nproc processors. Assume that the non-zero elements in each row

of' the matrix are "compressed" (as in the example in Section 4.2) to obtain the

intermediate-stage representation of the matrix. Also assume that the elements from

ea.ch row of the intermediate-stage representation are grouped into blocks, with Sblk

el'ements in each block. Let Nto, be the total number of elements; in the blocks,

including the zero elements.

Then, the blocks are distributed in the processor array as follows: each

processor, starting with the first one, initially reads ~ t o t / ~ o c / ~ b k] blocks

Row 0 am a02 a05 0

Row 3 a30 a33 0 0

Row 4

Figure 4.7: The data structure for the matrix shown in Figure 4.1 witlh a blocksize of
four; single vertical lines indicate block boundaries.

a44 0 0 0

Row 5

Fiigure 4.8: Distribution of the elements of the matrix shown in Figure 4.1 on a
processor array with four processors for a blocksize of four.

a50 a53 a55 0

Matrix-vector Multiplication y = Ax

initialize
in parallel in all processors

partial-product = 0,

for k = 0, ..., L,,, - 1

result-vect-elt[k] = 0.

end for

Lmt for block = 0, ..., - - 1
S blk

for layer = 0, ..., Sblk - 1

in parallel in all processors

if aij in the current layer z 0

temp = processorlj % Nproc].xlj / Npmc],

partial-product += a;, x temp.

end if

end for

in parallel in all processors

reduced-result = 0,

if next block does not belong to the same row as this block

reduced-result = reduce(partia1-product),

partial-product = 0.

end if

in parallel in the last processor in each reduction set

processor[i % NF,,].result-vect-elt[i / Npmc] += reduced-result.

end for

Figure 4.9: Pseudocode for the block row algorithm; Lbt (L,,,,) is the number of
layers that the elements of the matrix (vector) map into, and Nproc is the
number of processors in the processor array.

corresponding to the complete layers of data. Then, the remaining blocks (k, say) are

di,stributed among the first 'k' processors, with one block per processor. The number

of layers of data that the elements are mapped into is given by

Note that, for this analysis, the blocks in the incomplete layers of data are not

flattened; this results in a clearer explanation, and "flattening" can !be added to the

algorithm with relatively minor modifications.

For the given setup, the pseudocode for sparse matrix-vector muhiplication using

the block row algorithm is given in Figure 4.9. With reference to the figure, observe

that the fetch phase and the multiplication phase are executed for all layers of data,

whereas the reduction phase and the result phase are executed only once for each

block. In practice, as explained in Section 4.2, if a processor has more than one block

from a given row of the matrix, the reductionJresult phases only have to be executed

after the last block (in that processor) belonging to that row has been pi:ocessed.

The fetch phase is not executed for zero entries. Consequently, changing the

value of the blocksize does not directly affect this phase; in practice, tliough, the fetch

phase is dependent on the data distribution, which changes for diffeirent blocksizes.

Also, a very high overhead (in terms of storing zero elements) can result in the under-

utilization of the bandwidth of the interprocessor communication :network of the

processor array - which, in turn, can cause an increase in the value of tf,,h.

4.4 Timing Analysis for the Block Row Algorithm

For this analysis, the setup in Section 4.3 is assumed. In general, for any value of

the blocksize other than one, there will be some zero entries in the data structure

corresponding to that blocksize. Thus, it can be expected that Lbt will be greater than

LeIt, for any blocksize other than one (in the general case).

Consider the fetch phase: as explained in Section 2.3.3.4, tfetch depends on the

number of non-zero elements in the columns of the matrix, and on the distribution of

the non-zero elements from any one column among the layers of dataL. In the general

case, different values of the blocksize will result in different data disbibutions (of the

elements of the matrix) in the processor array. Consequently, even if no zero entries

need to be stored, tfetch will be different for different values of the blocksize. If this

dependence of tfetch on the data distribution is ignored, tfetch remain:; approximately

constant independent of the blocksize (because the fetch phase is not executed for

zero entries), as long as there are a relatively few zero elements in ealch layer of data

(otherwise, the communications would effectively be serialized due to the under-

utilization of the communication network). Thus, up to a point, as the number of

layers of data increase because of the storage of zero entries, the average fetch time

per layer (proportionally) decreases because of the reduced amount of communication

conflicts.

The time required for the multiplication phase is proportional tc) the number of

layers that are processed (Lmt). As a result, the increase in tmulhply is proportional to

the number of zero entries that are stored. However, this does not have an adverse

effect on the overall performance of the algorithm (except, possibly, for very small

problems) because the multiplication phase is inexpensive as cornpaxed to the other

ph.ases (Table 2.1).

In the reduction phase, if the partial products belonging to a given row are on

multiple processors, they are "reduced" - that is, they are summed. Thus, if the

elements of a specific row are distributed across 'n' processors, 'n-1' addition and 'n-

1' communication operations are required for the reduction. Also, because the

elements of a row are always in adjacent processors, the communication operations

are conflict free.

Then, the reduction time for a given layer is proportional to the maximum

nu.mber of processors across which the elements from a single row are distributed (in

that layer). The total time taken for the reduction phase depends on the reduction time

fo:r each individual layer, and the number of layers for which the recluction phase is

executed. As the blocksize increases, both these values decrease; for a higher

blocksize, a given number of elements will be mapped across a fewer number of

prlocessors, and additionally, the reduction phase is executed less often. In practice, if

a given processor has more than one block from a specific row, the reduction phase is

executed only once - after the last block of that row is processed.

Finally, consider the result phase: tmmge is dependent on the dlata distribution

anlong the layers (of data). If this effect is ignored, then, tmange is (usually) lower for

higher values of the blocksize. This can be explained as follows. Consider a row 'r'
that has six elements that are divided into two blocks which are on sepiarate processors

(Figure 4.10). Then, as inhcated by the underscores, the result phase will be executed

twice for this row (no reduction is necessary for this row). Generalizing this, it can be

seten that, for one matrix-vector multiplication, there may be as nnany as 2 x N

messages generated in the result phase (if all rows are similarly distributed in multiple

prlocessors). For higher values of the blocksize, more rows are likely to be stored on

0n.e processor, thus reducing the number of messages (down to N messages, if all rows

art: appropriately distributed). Consequently, tmange is likely to be lower for higher

blocksizes.

Given these results, the time taken to do one matrix-vector multiplication using

the block row algorithm, in the general case (NeIts > Nproc and Nvect > Nproc), is given

by:

where

tfetch, k = C1 Cmax(eff), k

Figure 4.10: Execution of the reduction phase (indicated by an underscore) for row r.

Cg x (Wbk(rnax), k - 1) if k = i x Sbk, i=l, 2, ...
tdd, k =

otherwise , and

cq xLvect ifk=ixSblk, i=1, 2, ...
timange, k -

otherwise

In Equation 4.2b, Cm,(efo, k represents the maximum number of processors that need

to fetch any one of the vector elements stored in any given processor in layer 'k', as

defined in Section 2.3.3.4. Wblk(rnax), k (Equation 4.2d) represents the maximum

number of processors across which the blocks from any one row are distributed, for

the kh layer of data.

4.5 Practical Considerations

4.5.1 Selection of the Optimal Blocksize

In general, a larger blocksize means lower values of tdd and t,,,ge. On the other

hand, a larger blocksize can result in more overhead in terms of storin,g zero elements,

which, in turn, increases Lultiply, and can increase the value of tfe,h because of

under-utilization of the communication bandwidth of the interprocessor

communication network in the processor array. Thus, there is an optimal blocksize for

which the sum of tfetch, tmultiply, tadd, and tmange is minimized.

In general, however, finding this optimal blocksize is not easy because the

re:lative importance of a higher blocksize versus a lower overhead is not known, and

because the execution times also depend on the specific data distribution achieved;

obvious choices for the blocksize include a value that is equal to the number of non-

ztxo elements in most rows (if such a value exists), or a common submultiple of the

number of non-zero elements in each row. Given an upper limit for the acceptable

overhead, an iterative procedure to find the best blocksize is described below.

Blocksize Selettion

Sblk = max(#non-zeros in a row).

while Sbk > 1

overhead = 0.

for each row i in the intermediate-stage representation 1 *on-zexx; in row i
blocks = 1
overhead += blocks x Sbk - #non-zeros in row i.

end for

if overhead < MAX-OVERHEAD

break while

else

Sbk = next-max(#non-zeros in a row).

end if

end while

if Sbk < 1

Sbk = 1,

end if

Figure 4.1 1: Algorithm for the selection of the largest blocksize that results in an
acceptable amount of overhead; a call to next-max() returns the next
highest value of its argument (compared to the previous call to
next-max() or max()), or a zero if there are no more enbies.

Observe that the blocksize is bounded on both sides - a b1ock:iize of one is a

"rrivial" choice, requiring no preprocessing, while a blocksize value that is greater

than the maximum number of non-zero elements in any row only add.s zero elements

to the data structure. Then, if a limit is imposed on the number of zei:o elements that

ar'e allowed, the best blocksize can be determined as shown in Fi.gure 4.11. The

function 'max()' returns the maximum of a set of numbers, while the function

'next-max()' returns the highest value (in the set) that is lower than the value returned

by the most recent call to either m a () or next-ma(). This procedure iterates through

the values of the number of non-zero elements in the rows, starting from the highest

value, and selects the first (largest) value of the blocksize that results :in an acceptable

overhead. The procedure can also be modified to iterate through all integer values,

from the maximum number of non-zero elements, down to a value of one.

4.5.2 "Flattening" Incomplete Layers of Data in the Processor Memory

With reference to Figure 4.12a, if for a given blocksize, the number of blocks is

not a multiple of the number of processors in the processor array, then there will be

some "incomplete layers" of data (as shown in the figure). If the number of blocks in

the incomplete layers is such that a relatively small part of the processor array is

utilized, the overall time for the matrix-vector multiplication will increase because of

under-utilization of the resources of the machine (sequential processing). This

problem can be avoided by using a different blocksize for the blocks in the incomplete

layers of data (Figure 4.12b).

The following procedure is used to flatten the blocks in the incornplete layers. If,

fc~r the current blocksize, the number of active processors in the incclmplete layers is

less than (or equal to) half the total number of processors in the processor array, then

the blocks in the incomplete layers are split into two blocks; otherwise:, no flattening is

done. If, after splitting the blocks, the new blocksize is greater than one, and if the

number of active processors is still less than (or equal to) half the total number of

PI-ocessors, the above process is repeated; otherwise, the current (new) value of the

b1,ocksize is assigned to the blocks in the incomplete layers of data. If, at some point,

the blocksize is not an even value, a zero element is added at the enld of each block,

PEO PE1 PE2 PE3

PEO PE1 PE2 PE3 . . . PE nproc-1

.....

Incomplete Layers

A

0 3
8 s

\'
i

flattened
blocksize

Figure 4.12: Distribution of the blocks in the memory before (a) and after (b)
"flattening" the incomplete layers.

ant1 the blocksize is increased by one before dividing it by two; this allows the

processor utilization to be maximized regardless of the value of the blocksize,

po;j.sibly at the cost of adding more zero entries.

The procedure described above is not optimal; as the blocks are flattened, the

tinie required for the reduction phase increases because elements from each block

(which belong to one row) are now distributed across a greater number of processors.

On the other hand, the fetch time decreases (up to a point) because more fetch

operations are being run in parallel, and the multiplication time decreases because it is

proportional to the number of layers of data in which the elements are stored. The

time required for the result phase is not affected directly because it i!; executed only

once regardless of the new blocksize; it is, however, dependen.t on the data

distribution, which is specific to each blocksize. Then, in the general case, there will

be an optimal blocksize for which the sum of tfetch, hultiply, and tdd will be

rnjnimized - in effect, this is the exact problem of finding the optimal blocksize for a

given matrix.

It should be noted that the analysis in this chapter does not include the effects of

flattening the blocks in the incomplete layers of data; however, th'e modifications

required are minor. The main side-effect of flattening the blocks is that tdd may

increase as the blocksize is increased (instead of staying constant or decreasing); this

increase is only significant for relatively small problems where the incomplete layers

are a relatively large fraction of the total number of layers of data. 'This increase in

t,ld can be minimized by sorting the rows of the intermediate-stage representation in

t h ' ~ decreasing order of the number of non-zero elements before generating the

blocksize-specific data structure, and modifying the algorithm to ignore zero entries in

the incomplete layers.

4.5.3 Coding the Block Row Algorithm

In the code for the algorithm, the implementation of each of the four phases is

optimized as described in Chapter 3. The fetch phase is optimized for relatively small

matrices (N 5 Nproc) by making additional copies of the vector, and interprocessor

co~mmunication in the reduction phase is restricted to nearest-neighbor communication

via the X-Net. Additionally, all frequently used variables are kept in registers (register

operations are up to ten times faster than local memory operations on the MP-1). The

code for the block row algorithm (written in MPL) can be found in the appendix;

additional routines are required to load the matrix and the vector elements in the

processor array.

4.5.4 Loading the Matrix in the Processor Array

To utilize the parallel read capability of the MP-1, the data for a given sparse

matrix is stored in four files - the header file, the row-index file, the coliumn-index file,

and the data file. The header file contains the matrix size, the total number of elements

to be stored (including any zero elements), and the blocksize. The row-index

(column-index) file contains the row (column) indexes, while the data file contains the

values of the matrix entries to be stored. The entries in each of the row-index,

column-index and the data files are ordered so that the kth entry in: the row-index

(column-index) file represents the row (column) index of the kth entry in the data file;

the entries are stored in a row-major format. The vector is stored in a separate file (the

vector is assumed to be dense). Using this storage format, all files except for the

header file are read in parallel; on the MP- 1, a matrix with approximaitely one million

ncln-zero elements set up in this format can be read in about 1.5 seconds.

4.6 The "Adaptive" Block Row Algorithm

As explained earlier, it is difficult to find the optimal blocksize for an arbitrary

sparse matrix. Additionally, for matrices with complex structures, the optimal

blocksize may result in a large number of zero entries, for a relatively small

inlprovement in the performance. On the other hand, it is relatively easy to find a good

blocksize for simple matrices by using the iterative procedure descxibed in Figure

4.1 1. Thus, it would be advantageous to be able to partition a com1)lex matrix into

simpler blocks.

Figure 4.13: Intermediate-stage representation of an example matrix.

ROW 1

Row 2

ROW 3

Row4

a10 all a12 a13 a14 a15 a16 a17

a20 a21 a22 a23 a24 a25 a26 a:

a30 a31 a32 a33 a34 a35 a36 a37

a41 a44 a46 a48 a49 0 0 0

As an example, consider the intermediate-stage representation of a matrix

(Figure 4.13), and a processor array with four processors. It can b, seen that any

choice of a blocksize, other than one, will result in some zero elements being stored.

In general, this overhead is increases with increasing values of the blocksize.

Now, consider partitioning the intermediate-stage representation as indicated by

the double horizontal lines in Figure 4.13. Then, the best blocksize value for each

individual partition is obvious (the number of non-zero elements in one row of that

partition). Consequently, if we allow a matrix to be partitioned on the basis of the

number of non-zero elements in the rows, and assign a different blocksize to each

partition, we should be able to achieve improved performance with a smaller amount

of overhead.

This observation forms the basis for the "adaptive" block rovv algorithm. A

sorted (in the decreasing order of the number of non-zero elements per row)

ini~ermediate-stage representation of an arbitrary matrix can be divided into partitions

such that each partition contains rows with a similar number of non-zero elements.

Then, each partition can be assigned an individual blocksize that is equal to the largest

nu.mber of non-zero elements in a row in a given partition, if the partition contains

enough elements (2 Nproc x Sbk). The largest feasible blocksize for a. given partition

is the smaller of: a) the largest number of non-zero elements in one row within the

partition, and b) the total number of elements in the partition divided by the number of

processors in the processor array.

The optimization problem associated with the partitioning of the matrix is similar

to the problem involving the selection of the optimal blocksize. In general, a smaller

pslrtition will result in a lower overhead (in terms of storing zero elem'ents), whereas a

bigger partition allows a larger blocksize to be selected. Once the partitions have been

made, however, the algorithm in Figure 4.9 can be directly applied to each individual

partition.

4.7 Conclusions

The block row algorithm allows the "regularity" of a data structure that uses a

row-major mapping to be varied by a changing a parameter (the "bl.ocksize"). The

(block row) algorithm assumes that the number of non-zero elements i.n each row is a

multiple of the blocksize; (additional) zero entries are stored to satisfy this condition.

The blocksize can be varied from one to N, where N is the size of the matrix; a

blocksize of one results in a row-major distribution of the non-zero elements of the

matrix (no overhead of storing zero elements), while a blocksize of' N results in a

row-major distribution corresponding to that of a dense matrix. However a meaningful

increase in the blocksize is limited by the maximum number of non-zero elements in

any row of the matrix.

Of the four phases in parallel sparse matrix-vector multiplication, the fetch phase

and the multiplication phase are executed for each layer of data, while the reduction

phase and the result phase are executed only once for each block. C~ns~equently, as the

blocksize increases, the values of tadd and tmang, decrease. On the other hand, for

arbitrary unstructured sparse matrices, as the blocksize is increased, the number of

zero entries that are stored also increases, leading to more overhead. The increase in

the value of hultiply is proportional to the overhead; tfetch is also affected if the

overhead is more than a certain threshold. As a result, there is an optimal blocksize at

which the sum of tfetch, hultiply, tadd, and tmanpe is minimized, leading to the best

pc:rformance.

An iterative method for determining a "good" blocksize is explained; the

determination of the optimal blocksize is difficult because the execution times depend

011 the data distribution - which changes with a change in the value of the blocksize.

Also, the improvement in tadd and tmang, obtained by a larger blocksize can be offset

by a high overhead (in terms of storing zero elements); the impact of the overhead

depends on the distribution of the zero elements among the layers of d.ata. In practice,

th.e reduction time is also dependent on the data distribution. If a given processor has

rriultiple blocks from one row of the matrix, the reduction phase is executed only once

foir that row - after the last block (for that row) is processed. Flattening the blocks in

the incomplete layers of data causes the reduction time to increase sl.ightly - but the

overall performance is improved because of better processor utilization..

For matrices that have a wide variation of non-zero elements between rows, it is

advantageous to use different blocksizes for different parts of the matrix. This

ok~servation is the basis for the design of an adaptive block row algorithm. This

algorithm allows a matrix to be partitioned along its rows; each partition can then be

assigned an independent blocksize, and the basic algorithm described in this chapter is

applied to each partition of the matrix; this algorithm is not evaluated further in this

thesis.

In the next chapter, an experimental analysis of the block row is provided, using

the matrices associated with our applications. It is shown that higher blocksizes result

in improved performance, for a given amount of overhead. A comparative analysis of

the algorithm is also given; the block row algorithm is faster for all the problems that

wlzre tested.

CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Introduction

In this chapter, we present an experimental analysis and a comparative

evaluation of the block row algorithm. The chapter is divided into two parts. The first

part describes the experimental results obtained for the block row algorithm for

mistrices associated with our applications (the finite element method, and the

scattering matrix approach). In the second part, the performance of' the block row

algorithm is compared with the performance of the segmented-scan algorithm

[E[am92], the snake-like method [RoZ93], and a randomized packing algorithm

presented in [OgA93]. The block row algorithm is faster for all the matrices tested.

5.2 Experimental Analysis of the Block Row Algorithm -

5.2.1 Introduction

The data in this section is obtained by evaluating the perforrnarlce of the block

row algorithm for four different matrices. The first three matrices represent systems

discretized by using the finite element method, and the fourth matrix is a scattering

matrix for a silicon device. A brief description of the finite element problem can be

found in Chapter 7; a more detailed description is provided in [Lic93II. The scattering

matrix approach is described in some detail in Chapter 6; a more thorough description

can be found in [Stegl]. The execution times for the individual phases (tfekh, tmultiply,

tajd, and tmange, as defined in Chapter 2), as well as the (average) total time (tmhl)

taken to perform one matrix-vector multiplication are listed in the tables in this

ch'apter. It should be pointed out that, in some cases the total time may be less than the

sum of the times for the individual phases because of the (time) overhead involved in

recording the execution times of the individual phases.

The matrices associated with the finite element approach have four to eight non-

zero elements in each row. This makes them ideal for testing the perfbrmance of the

block row algorithm because the blocksize only needs to be varied from one to eight

foi- exhaustive testing. On the other hand, because any row has at most eight non-zero

elements, the reduction phase can be expected to take a relatively small fraction of the

tirne required for the matrix-vector multiplication (compared to a matrix with

rellatively dense rows). Consequently, optimizing this phase does not show up as a

large change in the total time required for the matrix-vector multiplication. In the first

m,atrix associated with the finite element problem (Ml; 1633 unknowns),

approximately 87% of the rows have exactly seven non-zero elemcmts, and in the

other two matrices (M2; 9385 unknowns, and M3; 36818 unknowns) more than 94%

of the rows have seven non-zero elements. This distribution indicates that a blocksize

of seven is likely to be the best choice. As an example, a matrix representing a (6 x

O.1)h conducting scatterer in a circular domain with a radius of 5h and a node density

of 20 nodesh is shown in Figure 5.1. Note that each '.' in the figure represents a

square matrix (of size 184 = the resolution of the map) with at least one non-zero

element, and so the number of 'dots' do not directly indicate the number of non-zero

elements in the matrix.

Matrices associated with the scattering matrix approach, unfortunately, are more

cc~mplicated. For the matrix used here, the number of non-zero elements in a row

ranges from 0 to 20,488. In addition, the variation in the number of noa-zero elements

in a row is relatively smooth; that is, there is no "common submulti~~le" that can be

chosen as a "good" blocksize. Consequently, "sample" data f o ~ eight different

blocksizes is presented in this section. The sparsity structure of a scattering matrix

evaluated at an electric field of 300kVIcm is shown in Figure 5.2. As before, each '.'
represents a non-empty submatrix (of size 486 this time).

Mairix Size: 368 18
Totd Elements: 255406
Map Resolution: 1:184

Figure 5.1: The sparsity structure of a matrix representing a (6 x O.l)h conducting
scatterer in a circular domain of radius 5h and node density 20 nodesh.

Malrix Size: 93602
Totil Elements: 1427614
Map Resolution: 1:468

Rgure 5.2: The sparsity structure of a scattering matrix evaluated at an electric field
of 300kV/cm.

5.2.2 Part I - The Finite Element Approach

The matrices associated with this application have complex (as c~pposed to real)

entries; however, for the experiments in this chapter, the matrices and vectors are

assumed to be real (the imaginary parts are set to zero). If complex values are used,

the execution time for each of the phases (and the total time) is a1mo:St exactly twice

the time reported here.

The matrix (MI) associated with the first problem has 1,633 unknowns and

11,065 non-zero elements. The problem represents a homogeneous mesh (no scatterer

in the domain) with a radius of 2h and a node density of 10 nodeslh. Tlne experimental

results for this problem are shown in Table 5.1.

In this case, the best performance is obtained for a blocksize of one. This is

explained by the "small" size of the problem - it involves only 11,065 non-zero

elements, which means that even with a blocksize of one, all the p1:ocessors in the

processor array are not utilized. Nevertheless, it is instructive to see that the lowest

values of tadd and tmmge are obtained for a blocksize of eight. As expe:cted, tadd either

de.creases or stays constant as the blocksize is increased; tadd does not change when

the blocksize is increased from four to five, and from five to six because rows with

seven non-zero elements will be mapped into two blocks for each of rhese blocksizes

(and more than 87% of the rows of the matrix have seven non-zero elements), thus

keeping the work in the reduction phase constant. Because of the sirnall size of the

problem, the result phase is executed only once for any value of the blocksize.

Consequently, in this case, tmange is dependent only on the distribuition of the non-

ze:ro elements among the layers (of data) - for different blocksizes, the source and

destination processors in the result phase are different, thus resulting in a different

number of router conflicts (or cycles).

The fetch time does not remain constant as the blocksize is varied; the variations

in. the distribution of the non-zero elements (of the matrix) in the processor array for

different blocksizes result in a different number of router conflj.cts. Finally, as

expected, h,ltiply increases with an increase in the number of layers into which the

data is mapped; that is, the increase in tmultiply is proportional to the overhead (in

terms of storing zero elements).

The second matrix (M2) is of size 9,385 and has 64,837 unknowns. The

associated problem is a homogeneous mesh with a radius of 2.51 and a node density

of 20 nodes/h. For this problem, the best performance is obtained with the largest

blocksize - that is, a blocksize of eight (Table 5.2). This performance is obtained in

spite of the fact that, for a blocksize of eight, the number of zero elements that are

stored is approximately eight times the number of zero elements that are stored for a

bl~xksize of seven. Observe that, in this case, tdd increases as tlhe blocksize is

increased (for some values of the blocksize). The reduction time is proportional to the

largest number of processors across which elements of a row are spread.

Consequently, when the last few layers of data are "flattened" in the memory to

maximize processor utilization, tadd may increase slightly depending on the

distribution of the matrix elements; this effect is seen clearly in this problem because

of its relatively small size (no "flattening" is done for the first problem). tmmge

depends on the distribution of the non-zero elements among the layers (of data), but,

in general, it is lower for higher blocksizes (Section 4.4). As before, the fetch time

depends on the distribution of the non-zero elements (of columns) in tlhe memory, and

the multiplication time is proportional to the overhead (in terms of the number of zero

elements that are stored).

The third matrix (M3) for the finite element approach arises from a system

consisting of 36,818 nodes, and 255,406 non-zero elements. It represr:nts a (6 x O.l)h

conducting scatterer in a mesh of radius 5 1 with a node density of 20 nodes/1 (actual

application problem with no analytical solution). The timing information for this

problem is shown in Table 5.3. For this problem, blocksizes of seven and eight result

in approximately the same performance, which is better than tlhe performance

obtained with lower blocksizes. As expected, the lowest values of tdll and tmmge are

obtained for the largest blocksize. However, the large increase in the overhead

(a.pproximately fifteen times) when going from a blocksize of seven 1.0 a blocksize of

eight offsets this improvement (for the overall time). Note that tadd either decreases, or

remains constant with an increase in the blocksize; "flattening" the la.st few layers (of

data) has a smaller effect on tadd because of the relatively large size of this problem.

Also, on the whole, tmang, decreases with increasing blocksizes. Finally, tf&

d~pends on the distribution of the non-zero elements of the matrix, and tmultiply

depends on the number of layers into which the data is distributed.

5.2.3 Part I1 - The Scattering Matrix Approach

The results for a matrix-vector multiplication operation involving a scattering

matrix (M4) evaluated at an electric field of 300kVIcm are presented in Table 5.4. As

stated before, the scattering matrix (N = 93,602; 1,427,614 non-zero elements) is not

as tractable as the matrices arising from the finite element approach It can be seen

(Table 5.4) that better performance can be obtained at higher blocksii:es, but it is not

clear how to select a "good" blocksize. Note, however, that, in general, tadd and

tarang, decrease as the blocksize increases. The data in Table 5.4 represents selected

blocksizes that include the best and the worst performance obtained when varying the

blocksize from one to twenty five.

5.3 A Comparative Analysis of the Block Row Algorithm

5.3.1 Introduction

In this section, the performance of the block row algorithm is compared with the

performance of three other algorithms discussed in literature. A variation of the

" snake-like" method [RoZ93], the " segmented-scan" method [:IHam92], and a

randomized packing algorithm [OgA93] were implemented on the MasPar MP- 1, and

compared with our algorithm. Each algorithm is described in brief before presenting

the comparative analysis.

Table 5.1: Variations in the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize' is varied (MI; finite
element approach).

Blocksize
(9% Overhead) fmultiplg trdd tarrange

Table 5.2: Variations in the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize' is varied (M2; finite
element approach).

Ta.ble 5.3: Variations in the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize' is varied (M3; finite
element approach).

Blocksize
(% Overhead)

Ta.ble 5.4: Variations in the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize' is varied (M4; scattering
matrix approach).

N: 93602 Nee: 1427614

Blocksize

I
(% O

verhead
) hetch fmultiplg tadd farrange

5.3.2 The "Snake-like" Method

This method requires the non-zero elements of a matrix to be stored in a

column-major format; that is, the non-zero elements from one column of the matrix

arc: stored in connected (adjacent) processors of the processor array. This distribution

allows the fetch phase of the matrix-vector multiplication to be implemented using

regular communication primitives (the X-Net on the MP-1)' but results in an

inefficient implementation of the reduction phase. This method performs well for

m;%trices that have relatively sparse rows and (relatively) dense columns.

5.3.3 The "Segmented Scan" Method

A detailed discussion of the implementation of this method can be found in
[E[am92]. A row-major storage format, along with a "scan" primitive is used to

optimize the reduction phase. Each row is considered to be a "segment", and the

reduction of partial products in all rows can be implemented in parallel. This method

can be used for matrices that have relatively sparse columns.

5.3.4 The "Randomized Packing' ' Algorithm

The randomized packing algorithm implemented here is the second (better)

algorithm presented in [OgA93]. The data structure for this algorithjm preserves the

integrity of the matrix by requiring both, the non-zero elements fiom a row and from a

cc~lumn, to be stored in adjacent processors. As a result, both, the fetch phase and the

reduction phase can be simultaneously optimized. However, this d;ata structure no

longer guarantees a good load balance among the processors; depending on the

sparsity structure of the matrix, most of the non-zero elements ma:y be distributed

arnong a relatively few processors in the processor array. The algorithm presented in

[OgA93] reduces this problem by randomly permuting the rows and columns of the

matrix before mapping it on the processor array - as a result of the randomization, the

non-zero elements are more uniformly distributed in the permuted matrix, and

consequently a better load distribution is obtained.

As described in [OgA93], the randomized packing algorithrrl involves five

"phases" - the vector distribution phase, the scatter phase, the multil?lication phase,

the gather phase, and the row-sum phase. For the purposes of this anal.ysis, the vector

distribution phase and the scatter phase are grouped together to form ithe fetch phase,

and the gather phase and the row-sum phase are grouped together to form the

"reduction + result" phase. The algorithm, as presented in the pape:r, has different

storage formats for the input vector and the output (result) vector:; because most

programs will require that the result vector be in the same format as the input vector,

wc: have added a few lines of code to do that, and included the time in the "reduction

+ :result" phase.

The randomization changes the matrix 'A' to 'PAQ~' , and this effect must be

reversed at the end of the computations. The time required to permute and

subsequently unpermute the matrix is ignored in this analysis. It shoul~d be mentioned,

however, that it took several minutes of CPU time to permute the rows and columns

for the largest problem described above (as compared to tens of seconds for the

preprocessing stage of the block row algorithm). Our imp1eme:ntation of the

randomized packing algorithm achieved approximately 110 MFLOPZi for the largest

dense matrix-vector multiplication problem that could be solved on a MP-1 with 256

MBytes of memory - versus the approximately 116 MFLOPS achieved by the authors.

Consequently, the times quoted for the randomized packing algorithm in this thesis

are accurate to within a few percent (of the authors' implementation), for a given

randomization.

5.3.5 Experimental Results

The algorithms described above are compared with the block row algorithm in

this section. For each algorithm, the "best" performance is used for the evaluation;

fclr the snake-like method and the segmented-scan method, the best time of several

(tr~n) runs is used, for the randomized packing algorithm, the best randomization (of

ten, using two different random number generators) is used, and the Ixst blocksize is

used for the block row algorithm. To give an idea of the structure of the matrices after

th.e randomization, randomized versions of the two matrices shown in Figure 5.1 and

Figure 5.2 are shown in Figure 5.3 and Figure 5.4, respectively (as explained earlier,

tht: 'dots' represent non-empty submatrices). The normalized time in the tables in this

section is the total execution time, normalized with respect to the time taken by the

block row algorithm.

The results for the matrix with 1,633 unknowns and 11,065 non-zero elements

(MI) are shown in Table 5.5. Without randomization, the data structure for the

raildomized packing algorithm would have resulted in a maximum processor load of

63, and a minimum processor load of 0; the best randomization (of ten) improved the

load distribution to a maximum load of 5, and a minimum load of 0 (as opposed to an

ideal load of one).

Because of the small size of the problem, the performance of all the algorithms is

approximately the same, though the block row algorithm is faster by about 10%. The

ra:ndomized packing algorithm is slower than all the other algorithnls because it is

de:signed for relatively dense matrices [OgA93]; ours are less than 1% full.

The results in Table 5.6 represent the problem with 9,385 nodes, and 64,837

ncm-zero elements (M2). For the randomized packing algorithm, the best

randomization resulted in a maximum processor load of 13, and a minimum processor

load of 0 (without randomization: 450 and 0, respectively; ideal load: 4). Again, it

should be emphasized that the main reason for the poor perfc~rmance of the

randomized packing algorithm is because the matrices associated with our

ay~plications are extremely sparse (the amount of sequential computation in the

randomized packing algorithm is proportional to the size of the matrix). For this

pr-oblem, the block row algorithm is more than twice as fast as the segmented-scan

algorithm (which is the next fastest algorithm).

For the third problem, the matrix (M3) has 36,818 unknowns and 64,837 non-

ztxo elements. Randomization achieved a maximum (minimum) load of 31 (4), and

Mal.rix Size: 36818
Total Elements: 255406
PE Load: Min 2, Max 31
Map Resolution: 1 : 184

Figure 5.3: The s~arsitv structure of the randomized version of the matrix
repres&tingsa (6 x 0.l)h conducting scatterer in a circular domain of
radius 5h and node density 20 nodeslh.

Ma~.rix Size: 93602
Total Elements: 1427614
PE Load: Min 48. Max 289
Ma;? Resolution: 1 :468

... I

... I

F.igure 5.4: The sparsity structure of the randomized version of the scattering matrix
evaluated at an electric field of 300kV/cm.

the maximum (minimum) load without randomization was 1880 (0); the ideal load for

this problem was 16. The results are similar to those obtained in the eiarlier problems,

wjth the block row algorithm being about twice as fast as the "se:gmented-scan"

al.j;orithm (Table 5.7).

The matrix for the fourth problem (M4) is a scattering matrix which is evaluated

at 300kV/cm; the size of the matrix is 93,602 x 93,602, and it has 1,427,614 non-zero

elements. The (best) random permutation of the rows and columns of the matrix

resulted in a maximum processor load of 275, and a minimum processor load of 44.

The ideal load was 88, and without randomization, the maximum processor load

would have been 4654 (minimum 0). In this case, the block row algorithm is about 1.7

tirnes faster than any of the other algorithms.

5.4 Conclusions

In general, it can be expected that tadd will decrease (or stay constant) as the

value of the blocksize is increased; the experimental results in the first part of this

chapter (Tables 5.1 - 5.4) agree with this - with one exception. For the second problem

(142; Table 5.2), tadd increases when the blocksize is increased from three to four,

from four to five, and from five to six; as explained earlier, this increase in the time is

a result of "flattening" the last few layers of data in the memory (experimentally

verified), and can be eliminated by sorting the rows in the decreasing order of the

number of non-zero elements before the "row compression" stage:. This situation

does not arise in larger problems (M3 and M4) because, for larger problems, the layers

of data in the memory that are "flattened" represent a relatively small1 fraction of the

total number of layers.

tmmg, depends on the distribution of the non-zero elements across the layers of

diita and on the blocksize. The distribution of the elements determines the

communication patterns involved in the result phase, which in turn. determines the

number of router cycles necessary to complete the communication. On the other hand,

the value of the blocksize determines the total number of (partial) results that are

communicated in the result phase (Section 4.4). As expected, tmanp, is lower for

Ta.ble 5.5: A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithm for test problem 1. Normalized times are with respect to the
block row algorithm.

Ta.ble 5.6: A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithm for test problem 2. Normalized times are wiith respect to the
block row algorithm.

1 Randomized

Blwk-Row

6.56E-03

3.24E-03

1.15E-03

8.51E-04

4.73E-02 5.48E-02

5.08E-03 1.61E-04

10.79

1.00 2.29E-04

Ta.ble 5.7: A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithm for test problem 3. Normalized times are with respect to the
block row algorithm.

I Normalized
Time

4.44

2.03

1.823-01 2.06E-01 8.80

1 .oo

Ta.ble 5.8: A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithm for the scattering matrix problem. Normalized times are
with respect to the block row algorithm.

higher values of the blocksize (it does not strictly decrease with each increment in the

blocksize, though).

The fetch time depends on the distribution of the non-zero elements of the matrix

anlong the layers of data (because this affects the communication paiserns), and to a

smaller extent on the total number of elements stored (including the zero elements),

whereas the multiplication time depends only on the total number of elements stored.

Then, ignoring the variation of t f b with changes in the distribution of data, it can be

concluded that, for a given overhead (of storing zero elements), the plerformance will

irr~prove as the blocksize is increased. However, it is not clear what the relative

weights of the blocksize and the overhead should be; that is, it is not clear how to find

the point at which the performance drops even with an increase in the blocksize,

be:cause of the increase in the overhead. For example, in the second problem (M2), a

blocksize of eight results in better performance even though the number of zero

elements stored increases by a factor of eight (compared to a blocltsize of seven),

while in the third problem (M3), the performance of the algorithm drops slightly for a

blocksize of eight as compared to the performance for a blocksize of seven, with the

overhead being fifteen times higher.

The comparative analysis in this chapter shows that the block r'ow algorithm is

faster than the snake-like method, the segmented-scan algorithm, and the randomized

packing algorithm. Though the improvement in the performance is limited to a factor

of' two (over the segmented-scan algorithm, approximately), this result needs to be

qualified. For the matrices associated with the finite element approach, there are at

most eight non-zero elements in a row; this limits the speedup that can be obtained by

optimizing the reduction phase because the time taken by that phase j.s already small.

On the other hand, though the scattering matrix considered has a maximum of 20,488

non-zero elements in a row, the variation of the non-zero elements across the rows is

such that it is not possible to select a (one) good blocksize. An "adaptive" version of

the block row algorithm that allows multiple blocksizes for a single matrix would be

m.ore appropriate for this application.

CHAPTER 6

THE SCATTERING MATRIX APPROACH

6.1 The Scattering Matrix Approach to Device Analysi,~

The Scattering Matrix Approach [Das90, Ste911 is a method used to simulate

carrier transport in modern semiconductor devices. In this approach, the device is

vi'ewed as a set of interconnected thin slabs, where each slab is thin enough so that the

electric field and the doping density can be considered constant within the slab.

Ciurier transport across each slab is described by a matrix equation which relates the

incident fluxes to the emerging fluxes through transmission and reflection coefficients.

Figure 6.1: Electron transport across a thin slab of semiconductor in terms of incident
and emerging fluxes.

The carrier fluxes emerging from the slab are related to those incident on the slab

b:y

where t, tl, and r, r l give the transmission and reflection probabillities for fluxes

incident from the left (a') and right (b-), respectively (Figure 6.1). The matrix,

is called the scattering matrix, and its coefficients are dependent on the electric field,

scattering mechanisms, and the recombination-generation processes that occur within

the slab. As stated above, a semiconductor device is analyzed by dividing it into a

number of small slabs. The scattering matrix Si describes the transport across a thin

slab centered at zi with doping density NDi and electric field Ei (Figure 6.1). To

simulate the carrier transport in the entire device, the scattering matrices representing

th'e slabs in the device are cascaded as shown in Figure 6.2.

Figure 6.2: Cascading of individual scattering matrices (Si).

The carrier transport in a device is simulated by using an iterative technique.

With reference to Figure 6.1, the emerging fluxes for a slab are computed by

iteratively solving the equation fi+l = S ' , where the initial value off is [a' b-]', and

S is the scattering matrix for the slab. First, the emerging fluxes are evaluated for each

slstb, starting from the left-most slab. An emerging flux for one slab acts as an incident

flu.x for an adjacent slab. Also, when periodic boundary conditions are used, the

emerging fluxes at the ends of the device are "wrapped around" to the other end

(a[= b i , and b i = a i in Figure 6.2). Once the emerging fluxes for the last (right-

most) slab have been evaluated, the process is repeated backwards - that is, from the

right hand side of the device towards the left. The above steps are repeated until all

the emerging fluxes converge.

6.2 The Multi-Flux Scattering Matrix Approach

To be applicable to modern devices with submicron dimensions, the flux method

de:scribed above needs to be extended. This is done by resolving the incident and

emerging fluxes in terms of energy and the angle to the normal axis of the slab.

The incident and emerging fluxes are discretized into a finite nu~nber (say M) of

subfluxes, and each subflux is called a mode. As a result, the transmission and

reflection coefficients t, tl, r, and r l become M by M submatrices relating all the

individual incoming and outgoing subfluxes, and the scattering matrix is 2M by 2M.

Tlie fluxes are treated as M by 1 vectors. The individual elements of the scattering

matrix are real numbers between zero and one, and represent the transmission and

reflection probabilities for the incident fluxes.

Several different discretizations of the energy space are possible; one of those is

discussed here. Consider a carrier with crystal momentum &I incident on a thin
+

islolated slab. The carrier is assigned a mode based on the Cartesian clomponents of k.

Then, element tji (rji) in each of the transmission (reflection) submatrices represents

the probability of a carrier that is incident in mode i being transmitted (reflected) in

mode j, for a given electric field. The element accounts for both, ~c~attering, and the

acceleration by the electric field. Figure 6.3 shows an isolated slab for which each of

the incident and emerging fluxes have been resolved into M modes, and the

corresponding 2M by 2M scattering matrix.

Figure 6.3: Discretization of incident and emerging fluxes.

The accuracy of the Scattering Matrix Approach strongly depends on the number

of modes used to discretize the energy space. More modes mean a higher resolution,

thus increasing the accuracy of the computation. A higher resolution also increases the

computation time and the amount of memory required to solve the problem. The

Multi-Flux Scattering Matrix Approach can result in very large prolblem sizes. For

example, the simulation of carrier transport in a typical serniconduct~or device could

involve scattering matrices with several hundred thousand non-zero elements, and

several thousand matrix vector multiplications.

6.3 Simulations Involving Multi-band Transitions

Any change in the energy or the direction of travel of an incident carrier can

cause it to change modes. In addition, depending on the material of the semiconductor

device and the electric field strength, a carrier can also make transitions between

different conduction bands. This effect can be ignored in devices made of specific

semiconductors, if the electric field strength is below a specified thrleshold. In other

cases, it becomes necessary to take the transitions between different bands into

account.

Consider a simulation where a carrier may make transitions be.tween B bands.

Tllen, for this case, each of the transmission and reflection subimatrices of the

scattering matrix is made up of B~ M by M submatrices, where M i,s the number of

modes. The elements of submatrix ji of the transmission (reflection) submatrix

represent the probabilities of carriers in band i making a transition to band j. Each

individual element still represents the probability of a carrier in one mode being

transmitted (reflected) in another mode, as described earlier.

For example, consider a two-band simulation. The transmission submatrix, t , is

made up of four submatrices as follows.

Th~e element T21 represents the probability of a carrier incident in some mode in band

1 emerging in some mode in band 2. Similar comments can be made about the other

three submatrices, t!, r, and r!. Thus, for a two-band simulation, the size of the

complete scattering matrix is 4M by 4M.

6.4 The Sparsity Pattern of the Scattering Matrix

The scattering matrix for a slab can be generated using Monte Cilrlo simulation.

The Monte Carlo simulation is a statistical method which involves simulating the

individual trajectories and scattering events of thousands of carriers as they pass

th~ough a device. Several thousand electrons distributed in mode i are injected into the

se~niconductor slab, and the elements tji and rji are determined by keeping track of the

mode in which the electrons exit. This process is repeated for each mode to evaluate

thr: entire scattering matrix. Because the scattering matrices are evaluated using a

statistical solution method, the sparsity structure of the matrices has a certain amount

of "fuzziness" to it.

A carrier injected into the slab in one mode can emerge in a different mode either

by gaining or losing energy, or by being deflected, or both. Both, the change in

energy, and the change in trajectory can occur because of either the scattering effects

or the electric field. The amount of energy that an electron carrier coulcl gain or lose is

dependent upon the electric field strength and the scattering in the slab. The actual

sparsity structure of a scattering matrix depends on how the energy space is

discretized; the structures of two scattering matrices based on the: discretization

discussed earlier are shown in Figure 5.2 and Figure 6.4. Both scattering matrices are

for the same semiconductor and slab thickness - the first one is evaluated at an electric

field strength of 300kV/cm, and the second one is evaluated at a much lower electric

field strength of lkV/cm.

Matrix Size: 93602
Totill Elements: 154488 1
Map Resolution: 1 :468

Figure 6.4: The sparsity pattern
strength of lkV/c

of a scattering matrix evaluated at a a electric field
m.

6.5 Experimental Results

To benchmark the performance of the block row algorithm fol: the scattering

ma.trix approach, parallel versions of two simulation programs existing on a IBM RS

60001580 were written on a 16,384 processor MasPar MP-1. The sequential programs

were written in FORTRAN, and were made available by [HuL93]. Sparse matrix-

vector multiplications forms the computational core of the programs, and more than

98.5% of the total computation time is spent doing the matrix-vector miultiplications.

The IBM RS 60001580 is a superscalar processor which is capable of issuing

multiple instructions (up to four) in every cycle, and it has a floating point multiply-

add instruction that can execute in one clock cycle (16ns) [Wargo]. In c:omparison, the

MasPar MP-1 is a SIMD computer with up to 16,384, and can do a double precision

addition (multiplication) on the processing elements in approximately 189 (557) 70ns

clock cycles [MPA93]. The IBM RS 60001580 is rated at 62.5 MFLOPS for double

pre:cision (64-bit) floating point operations (38.1 MFLOPS for LINPACK), whereas a

16.,384 processor MP-1 is rated at 630 MFLOPS peak (440 NIFLOPS for LINPACK)

for double precision floating point operations (average of add and nlultiply times).

This makes the RS 60001580 significantly faster than an individual processing element

on the MP-1; a 16k processor MP- 1 is at the most about ten times faster (peak) than a

RS 60001580.

The first program involves the simulation of carrier transport in a bulk

serrliconductor, which is a "thin" device with a uniform electric field; that is, the

device consists of just one slab. This program was run on both machines with the

3013kVlcm scattering matrix shown in Figure 5.2; the timing results for the simulation

are: shown in Table 6.1. It can be seen that the MP-1 is approximate:ly seven times

faster than the RS 60001580.

The second program simulates carrier transport in a device with a low-high-low

(11:Vlcm - 300kVlcm - IkVlcm) electric field distribution; the device was divided into

sixty slabs. The scattering matrices shown in Figure 5.2 (300kVIcm) and Figure 6.4

(11;VIcm) were used; the results of the simulation on the two machines are shown in

Table 6.2. This program also runs approximately seven times faster on the MP- 1.

6.6 Conclusions

The simulations on the MP-1 ran approximately seven times faster than the

coi-responding simulations on the RS 6000/580 - as compared to a theoretically

possible speedup of approximately ten (peak). However, the speedup obtained in

terms of the number of floating point operations is higher than the figure indicated by

the experimental results because of several reasons. The sparse matrix-vector routine

on the RS 6000/580 has been optimized to take advantage of sparse vectors (with the

cw-rent discretization for the generation of the scattering matrices, e n h e blocks of the

vector, adding to approximately 20% of the total size, consist of zero elements),

whereas the sparse matrix-vector routine on the MP-1 was not designed to take this

sparsity into account. Also, for matrix-vector multiplication, the RS 6000 can take

advantage of its multiply-add instruction; if this instruction is considered to be two

FLOPS, the peak speed of the RS 6000/580 can be as much as 125 MFI,OPS.

Additionally, as mentioned in Chapter 5, the scattering matrices have a rather

coinplex structure, thus making it difficult to find the best blocksizle for the basic

vei-sion of the block row algorithm. The performance of the algorithm, was tested for

blc~cksize values from one to twenty five for each matrix, and the besit blocksize was

used (for each matrix) to obtain the run times presented in this chapter.

Table 6.1: Computation times on the RS 6000/580 and the MI'-1 for carrier
simulation in a bulk semiconductor.

Bulk Semiconductor Simulation

S-Matrix: 300kV/cm, N = 93602,1427614 non-zero elements.

Table 6.2: Computation times on the RS 6000/580 and the MP-1 for carrier
simulation in a semiconductor device with a low-high-low electric field
distribution.

Machine

IBM RS 60001580

MasPar MP-1

Lo-Hi-Lo Simulation

Lo-Field S-Matrix: IkVIcm, N = 93602,1544881 non-zero elements.
Hi-Field S-Matrix: 300kV/cm, N = 93602,1427614 non-zero ctlements.

Iterations

42

42

Run Time
(seconh)

57.00

8.09

Machine

IBM RS 60001580

MasPar MP-1

Normalized
Run Time

7.05

1.00

Iterations

80

80

Run Time
(seconds)

14,198

1,920

Normalized
Ruin Time

'7.39

CHAPTER 7

A FEM APPROACH FOR MODELING
DIFFRACTIVE AND SCATTERING OBJECTS

7.1 Introduction

This chapter provides a short description of the finite element approach for the

numerical analysis and modeling of diffractive and scattering objects [Lic93], and a

brief summary of the results for a sample problem involving the solution of a complex

matrix system associated with the finite element implementation. The complex

conjugate gradient squared method [NaR92] is implemented on a 16,384 processor

MasPar MP-1, and its performance is compared to the performance of the same

mcthod and the performance of a complex direct solver on serial machi.nes.

7.2 Numerical Analysis of Diffractive and Scattering Objects [Lic93]

Several applications such as seismology, geophysics, weather prediction, and

electromagnetics, require the solution of wave-like equations in an infinite domain.

Fclr such problems involving the computation of scattering and diffra~ctive effects of

objects in open regions, it is necessary to limit the computational domain to a finite

size. This can be done either by mapping the infinite region onto a bounded one, or by

constructing an artificial boundary and imposing conditions on the boundary to

simulate the infinite region.

In order to compute an efficient numerical solution without too much reflection

from the outer boundary, it is desirable to get as close as possible to the scattering

ot'ject. Normally, the artificial boundaries are circular or spherical in shape. However,

fo:r elongated scatterers (objects), these special boundaries are inefficient because a

large computational domain is required. The work done in [Lic93] focuses on

generalizing the circular boundary condition to an arbitrary boundary shape for two-

dimensional geometries.

A finite element implementation is used to discretize a variatioinal form of the

wave equation, which results in a unsymmetric, complex sparse system (typically,

with a fill-in of less than 1%); the sparsity structure of the matrix depends on the size

and the shape of the scatterer(s) in the domain (the structure is symm(etric, however).

A parallel iterative solver for complex systems using the conjugate gradient squared

method was implemented on the MasPar MP-1; the results for one of the problems

solved are presented in the next section.

7.3 Numerical Results

Consider a domain with a radius of 5h that contains a conducting scatterer of size

(6 x O.l)h, where h is the wavelength of the incident waveform. A notie density of 20

nodes/h is used to discretize the domain, resulting in a sparse system with 36,818

unknowns and 255,406 non-zero coefficients (matrix elements). It is required to find

the transverse magnetic polarization in the domain when a plane ,wave with unit

magnitude is incident at 45' to the normal.

This problem was solved with the help of serial and massively parallel

irr~plementations of the conjugate gradient squared (CGS) method, and with the help

of a direct (serial) sparse matrix solver (the Y12M, developed in Copenhagen,

Denmark). The massively parallel implementation uses the block row algorithm (with

a blocksize of seven). For the iterative solutions, a residual norm of l.E-03 is used as

the stopping condition; this residual norm was verified to result in an accurate

solution.

A comparison of the number of iterations and the solution tim.es for the CGS

method on three different machines is presented in Table 7.1. Recall that a 16,384

pIocessor MP-1 is rated at 630 MFLOPS (440 MFLOPS for LWI'ACK); the RS

60001560 is rated at 50 MFLOPS (30.5 MFLOPS for LINPACK), and the Ardent

Titan is a four processor vector computer with each processor rated at 16 MFLOPS (6

MFLOPS for LINPACK). Code on the RS 60001560 was compiled with the "-0"

option, and the code on the Ardent Titan was compiled with the "-04" option.

Iterative methods converge faster if the starting vector is a good guess - if the incident

field is used as an initial guess, the number of iterations required to converge

decreases somewhat (Table 7.2). Table 7.3 shows the relative speeds of the direct

method on the Ardent Titan, and the CGS method on the MP-1 (with the incident field

as the initial guess); the CGS method on the MP-1 is faster by a factor of seven.

Finally, the verification of the accuracy of the result is shown in Tablle 7.4; the result

was also verified graphically.

7.4 Conclusions

The CGS method on the MP-1 runs approximately 3.5 times faster than the same

method on the RS 60001560, and approximately 23.5 times faster than the CGS

method on a four processor Ardent Titan as compared to the theore:tically possible

(peak) speedups of about thirteen and ten over the RS 60001560 and the Ardent Titan,

re,jpectively. Note that the RS 60001560 can perform a double precision multiply-add

every cycle [Wargo]; if the multiply-add instruction is considered to be two FLOPS,

thisn a 16,384 processor MP-1 is only about six times faster than the RS 60001560.

The CGS method on the MP-1 also ran seven times faster than the direct method on

th'e Ardent Titan; a higher speedup can be achieved with a better initial guess for the

iterative method.

Ta.ble 7.1: A comparison of the iterations and the execution times for the solution of
the problem using the conjugate gradient squared method; stopping
condition: residual norm < le-03.

Conjugate Gradient Squared Method

N: 36,818 Nelts: 255,406

Table 7.2: Effect of an initial guess vector on the number of iterations required to
converge.

Machine

Ardent Titan

RS 6000/560

MasPar MP-1

Iterations

5359

5362

4616

Conjugate Gradient Squared Method

N: 36,818 Nelh: 255,406

Starting
Vector

x,, = 1.0
x i = 0.0, i # 0

x = Incident Field

Computation
Time (seconds)

11,867

1,747

506

Normalized
Time

23.45

3.45

1 .OlO 1
Iterations

4616

4497

Computation
Time (seconds)

505.72

492.53

Table 7.3: A comparison of the performance of the parallel implerrlentation of the
conjugate gradient squared method with that of a serial sparse direct
solver.

Methodl Solution Time
Machine 1 (seconds)

CGS Method
on MasPar MP-1

Normalized

Direct Solver
on Ardent Titan

Table 7.4: The change in the error norm of the solution from the CGS method
(relative to the solution from the direct method) with a change in the
stopping condition.

3,473

I

11 Xdirect - Xcgs 112

11 Xdirect 112

N: 36,818 Nelk: 255,406

Residual Norm: 1E-03

4.371 x

Residual Norm: 1E-06

4.330 x

CHAPTER 8

CONCLUSIONS

8.1 Summary

Sparse matrix-vector multiplication is an integral component of a large number

of problems in numerical analysis. In spite of the inherent parallelism available in the

procedure, it is difficult to design an algorithm for distributed memory machines that

peaforms well for general unstructured sparse matrices. We have proposed a new

a1;gorithm that is designed for unstructured sparse matrices that have ~.elatively sparse

columns.

The procedure of sparse matrix-vector multiplication is analyzed for serial and

p~trallel machines with a distributed memory system. The parallel procedure is divided

into four phases - the fetch phase, the multiplication phase, the reduction phase, and

the arrange phase. For distributed memory machines, the fetch phase and the

reduction phase account for most of the interprocessor communication. It is difficult to

simultaneously optimize the fetch phase and the reduction phase, anti also achieve a

good load balance between the processors, for unstructured sparse matrices.

A SIMD architecture represents an additional restriction on the design of the

algorithm because all enabled processors must perform the same operation at any

given time. The restrictions imposed by a SIMD computer with a two-dimensional

mesh interconnection network on the design of an algorithm for sparse mamx-vector

multiplication are studied, and the block row algorithm is developed based on the

conclusions of the study.

A detailed description of the block row algorithm is presented., along with an

example. The algorithm is then analyzed, and the analysis is supported with

experimental evidence. For the types of matrices that are associated with the problems

being considered, the experimental analysis presented in Chapter 5 shows that the

block row algorithm is faster than the "snake-like" method, the "segmented scan"

method, and the randomized packing algorithm.

8.2 Future Work

The work presented in this thesis only optimizes the "reduction"' phase and the

"i.esult" phase. As seen from the experimental data in Chapter 5, the performance of

the block row algorithm is limited by the fetch phase. This bottleneck occurs because

a processor can only process one communication request at a time. While it is not

possible to completely optimize the fetch phase simultaneously, it would be possible

to permute the elements in the individual "blocks" in the block row algorithm so as

to minimize the number of elements from any single column that are mapped to any

one layer of memory. This could result in a significant improvement in the

pe:rformance of the algorithm because the router conflicts will be minimized.

As seen in Chapter 5, the matrices arising from the scattering matrix approach

are not very tractable for the block row algorithm because the number of non-zero

elements in the different rows are very different. As a result, it is difficult to obtain

one "good" blocksize. The block row algorithm can be extended to' an "adaptive"

block row algorithm, where different blocksizes can be used for different parts of the

matrix. This algorithm needs to be implemented and tested.

LIST OF REFERENCES

LIST OF REFERENCES

J. Anderson, G. Mitra, and D. Parkinson, "The Scheduling of Sparse
Matrix-Vector Multiplication on a Massively Parallel DAP Computer",
Parallel Computing, Vol. 18, June 1992, pp 675-697.

Aart J. C. Bik and Harry A. G. Wijshoff, "Compilation Techniques for
Sparse Matrix Computations", extended abstract of "Automatic Data
Structure Selection and Transformation for Sparse Matrix
Computations" by the same authors, TR No. 92-24, Dept. of Computer
Science, Leiden University, 1992.

P. Bjorstad, F. Manne, T. Sorevik, and M. Vajtersic, ":Efficient Matrix
Multiplication on SIMD Computers", SIAM Journal of Matrix Anal.
Appl., Vol. 13, No. 1, January 1992, pp 386-401.

Tom Blank, "The MasPar MP-1 Architecture", Proceledings of IEEE
Compcon Spring 1990, IEEE, February 1990, pp 20-24.

Peter Christy, "Software to Support Massively Paral1e:l Computing on
the MasPar MP-I", Proceedings of IEEE Compcon Spring 1990, IEEE,
February 1990, pp 29-33.

Arnitava Das, "The Scattering Matrix Approach to Device Analysis",
PhD Thesis, TR-EE 91- 1 1, March 199 1.

I. S. Duff and J. K. Reid, "Some Design Features of a Sparse Matrix
Code", ACM Transactions on Mathematical Software, Vol. 5, No. 1,
March 1979, pp 18-35.

Steven Warren Harnmond, "Mapping Unstructured Grid Computations
to Massively Parallel Computers", PhD. Thesis, 1992., Chapter 5, pp
93- 104.

Carl Huster, Prof. Mark Lundstrom, Personal Commun.ications, April -
July 1993.

S. Lennart Johnsson, Tim Harris, and Kapil K. Mathur, "Matrix
Multiplication on the Connection Machine", Proceedings of
Supercomputing, 1989, pp 326-332.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis,
"Introduction to Parallel Computing: Design ancl Analysis of
Algorithms", The BenjaminICumrnings Publishing (lompany, Inc.,
1994, Chapter 1 1.

Bernd Lichtenberg, "A Finite Element Approach for the Numerical
Analysis and Modeling of Diffractive and Scattering Objects", A
proposal submitted to the faculty of Purdue University for the Degree
of Doctor of Philosophy, August 1993.

Hungwen Li and Ming-Cheng Sheng, "Sparse Matrix Vector
Multiplication on a Polymorphic-Torus", Proceedings of the Second
Symposium on the Frontiers of Massively Parallel Computing, 1988,
pp 181-186.

Rami Melhem, "Parallel Solution of Linear Systems with Striped
Sparse Matrices", Parallel Computing, Vol. 6, No. 2, February 1988, pp
165-184.

Manavendra Misra and V. K. Prasanna Kumar, "Efficient VLSI
Implementation of Iterative Solutions to Sparse Linear Systems",
Parallel Computing, Vol. 19, No. 5, May 1993, pp 525-544.

M. Morjaria and G. J. Makinson, "Unstructured Sparsr: Matrix Vector
Multiplication on the DAP", Supercomputers and Parallel
Computation, 1984, pp 157-166.

"MasPar Parallel Application Language (MPL) User Guide", MasPar
Computer Corporation, Revision A5, July 1993, Chapter 4, pp 4.1-
4.12.

"MasPar MP-1 Principles of Operation", MasPar Computer
Corporation, Revision, July 1990, Chapter 3, pp 3.1-3.8.

"MP-PCGPAK3 User's Guide", MP-PCGPAK3 Version 1 .O, Scientific
Computing Associates, Inc., June 1993 pp 9-1 1.

Noel M. Nachtigal, Satish C. Reddy, and Lloyd N. Trefethen, "How
Fast are Nonsyrnrnetric Matrix Iterations ?", SIAM J. Matrix Anal.
Appl., Vol 13, No. 3, July 1992, pp 778-795.

John R. Nickolls, "The Design of the MasPar MP-1:: Cost Effective
Massively Parallel Computer", Proceedings of IEEE (lompcon Spring
1990, IEEE, February 1990, pp 25-28.

Andrew T. Ogielski and William Aiello, "Sparse Matrix Computations
on Parallel Processor Arrays", SIAM J. Sci. Comput., Vol. 14, No. 3,
May 1993, pp 519-530.

Alexander Peters, "Sparse Matrix Vector Multiplicatio~'a Techniques on
the IBM 3090 VF", Parallel Computing, Vol. 17, December 1991, pp
1409- 1424.

[R oZ9 31 L. F. Romero and E. L. Zapata, "Data Distributions foir Sparse Matrix
Vector Multiplication", to be published, 1993.

[S te9 11 Mark A. Stettler, "Simulation of Silicon Bipolar Transistors Using the
Scattering Matrix Approach", A proposal submitted to the faculty of
Purdue University for the Degree of Doctor of Philosophy, September
1991, pp 12-17.

[Tic891 Walter F. Tichy, "Parallel Matrix Multiplication on the Connection
Machine", International Journal of High Speed Computing, Vol. 1, No.
2,1989, pp 247-262.

war901 H. S. Warren, Jr., "Instruction Scheduling for the IBM RISC
System/6000 Processor", IBM Journal of Research and Development,
January 1990, Vol. 34, No. 1, pp 85-92.

APPENDIX

APPENDIX: CODE LISTING FOR THE BLOCK ROW ALGORITHM

#define SEND 0
#define EDGE 1
#define NO-SEND 2
#d.efine INVALID-ROW - 1
#define INVALID-COL - 1

void matvect~mul(plural double re-coef[], plural double im-coefl;],
plural int row-index[], plural int col-index[],
plural double re-vector[], plural double im-vector [I,
plural double re-resultlI], plural double im-result[],
int matrix-size, int total-elts, int blocksize[])

{
register int i, j, k;
register int vector-layers, complete~elt~layers, reg-blocksize;
register int processors, remaining-elts;
register int step, step2;
register plural int base;
register plural int remote-pe, layer;
register plural int temp-col-index;
register plural double re-reg-vector, im-reg-vector;
plural double re-temp-result, im-temp-result;
~egister plural double re-temp-vector, im-temp-vector;

/* Compute necessary variables and copy frequently used vars to registers */
processors = nproc;
if(matrix-size <= nproc)
i :
vector-layers = 1;
step = matrix-size/nxproc + ((matrix-size%nxproc) != 0);
step2 = nxproc * step;
base = (iproclstep2) * step2;
re-reg-vector = re-vector[Q];
im-reg-vector = im-vector[O] ;
re-result[O] = 0.0;
im-result[O] = 0.0;

I* Make copies of the vector, if possible */
if(iproc >= step2)
for(i=step2; i < nproc && i < total-elts; i += step2)
{
re-reg-vector = xnetN[step].re-reg-vector;
im-reg-vector = xnetN[step].im-regvector;

1
1
else
{
vector-layers = matrix-sizelnproc + ((matrix-size%nproc) != 0);
for(i=O; i < vector-layers; i++)

reg-blocksize = blocksize[O];
c:omplete-elt-layers = ((total~elts/reg~blocksize)/nproc)*reg~blocksi~ze;
i=O;
re-temp-result = 0.0;
im-temp-result = 0.0;
\vhile(i < complete-elt-layers)
{
for(k=O; k < regblocksize; k++, i++)
{
/* Fetch Appropriate Vector Elements */
temp-col-index = col-indexIj.1;
if(temp-col-index ! = INVALID-COL)
1
if(matrix-size > nproc)
{
remote-pe = temp-col-index%nproc;
layer = temp-col-indexlnproc;
for(j=O; j < vector-layers; j++)

if(1ayer == j)
{
re-regvector = re-vectorlj];
im-reg-vector = itn-vectorlj];
re-temp-vector = router[remote-pel .re-reg-vector;
im-temp-vector = router[remote-pel .im-reg-vector;

1
1
else
{
remote-pe = base + temp-col-index;
if(processors > matrix-size)
remote-pe -= (remote-pe >= processors)*step2;

re-temp-vector = router[remote-pel .re-regvector;

im-temp-vector = router[remote-pel .im-reg-vector;
1

1
/* Multiply corresponding elements */
re-temp-result += re-coef[i] *re-temp-vector - im~coef[j.]*im~tem.p~vector;
im-temp-result += re-coef[i] *im-temp-vector + im-coef [i] *re-temp-vector;

1
send~part~product(~e~result, im-result, &re-temp-result, &im-temp-result,

row-index, i, vector-layers, matrix-size,
complete~elt~layers, nproc);

1

r'emaining-elts = total-elts - complete~elt~layers*nproc;
iyremainingelts == 0)
return;

reg-blocksize = blocksize[l];
processors = remaining~elts/~egblocksize;

re-temp-result = 0.0;
im-temp-result = 0.0;
for(k=O; k < reg-blocksize; k++, i++)
I
if(iproc < processors)
f
/* Fetch Appropriate Vector Elements */
temp-col-index = col-index[i];
if(temp-col-index ! = INVALID-COL)
f
if(matrix-size > nproc)
{
remote-pe = temp-col-index%nproc;
layer = temp-col-index/nproc;
for(j=O; j < vector-layers; j++)
if(1ayer == j)
I
re-reg-vector = re-vectorlj];
im-reg-vector = im_vectoru];
re-temp-vector = router[remote-pel .re-regvector;
im-temp-vector = router[remote-pel .im-reg-vector;

1
1
else
{
remote-pe = base + temp-col-index;
if(processors > matrix-size)
remote-pe -= (remote-pe >= processors)*step2;

re-temp-vector = router[remote-pe].re-regvector;
im-temp-vector = router[remote~pe].im~reg~vector;

1

/* Multiply corresponding elements */
re-temp-result += re-coef[iIsre-temp-vector - im~coef[i]*im~temp~vector;
im-temp-result += re-coef[i] *im-temp-vector + im-coef[i]*re-temlp-vector;

1
send~part_product(re~result, im-result, &re-temp-result, &im-temp--result,

row-index, i, vector-layers, matrix-size,
complete-elt-layers+ 1, processors);

return;
I

void send-part-product(p1ural double re-result[], plural double im-result[],
plural double *re-temp-result,
plural double *im-temp-result,
plural int row-indexu, register int i,
int vector-layers, int matrix-size, int last-layer,
int processors)

I
register int j;
register plural char send-flag, temp-flag;
register plural int itempl;
register plural int temp-row-index;
register plural int remote-pe, layer;
register plural double re-dtemp 1, im-dtemp 1;
register plural double redtemp2, imdtemp2;
register plural double redtemp3, imdtemp3;
register plural double re-dbuffer, im-dbuffer;

1edtemp2 = *re-temp-result;
im-dtemp2 = *im-temp-result;
temp-row-index = row-index[i- I.];
2111 send-flag = NO-SEND;

if(i < last-layer)
itemp 1 = row-index[i];

else
itemp 1 = INVALID-ROW,

/'* Collect Partial Results (of each row) from Adjacent Processors */
jf((iproc < processors) && (itempl != temp-row-index))
.I
1

I* Reset Partial Products to zero (value held in temp register) */
*re-temp-result = 0.0;
*im-temp-result = 0.0;

/* Create the 'send mask' vector needed for reduction *I
send-flag = SEND;
if((iproc+l) % nxproc == 0)
{
if(xnetSE[:l] .temp-row-index != temp-row-index)
send-flag = EDGE;

1
else if(xnetEi[l] . temp-row-index ! = temp-row-index)

send-flag = EDGE;
if(processors < nproc)
proc[processors- I] .send-flag = EDGE;

if(send-flag == EDGE)
{
redbuffer = 0.0;
im-dbuffer = 0.0;

1
else
I
re-dbuffer = re-dtemp2;
im-dbuffer = im-dtemp2;

1

while(send-flag == SEND)
1
all
I
re-dtemp3 = 0.0;
im-dtemp3 = 0.0;

1
if((iproc+l) % nxproc == 0)
1
I
xnetSE[l].re_dtemp3 = re-dbuffer;
xnetSE[3.1 .imdtemp3 = im-dbuffer;

1
else
{
xnetE[l].re_dtemp3 = redbuffer;
xnetE[I.] .im_dtemp3 = im-dbuffer;

1

{
redbuffer = re-dtemp3;
im-dbuffer = im-dtemp3;
if(send-flag == EDGE)
{
re-dtemp2 += re-dbuffer;
im-dtemp2 += imdbuffer;

redbuffer = 0.0;

im-dbuffer = 0.0;
1
temp-flag = send-flag;

1
if(iproc % nxproc == 0)
1
if(xnetNW[l] .temp-flag != SEND)
send-flag = NO-SEND;

1
else if(xnetW[l] .temp-flag ! = SEND)

send-flag = NO-SEND;
1

1

/* Send Collected Results to Respective Processors */
if(send-flag == EDGE)
{
/* Send Result-Vector Elements to Appropriate Processors */
if(matrix-size > nproc)
{
remote-pe = temp-row-index%nproc;
layer = temp-row-index/nproc;
for(j=O; j < vector-layers; j++)
{
all
I
redtempl = 0.0;
im-dtempl = 0.0;

1

a11
{
re-resultti] += re-dtemp 1;
irn-resultlj] += im-dtemp 1;

1
1

1
else
{
all
I
re-dtempl = 0.0;
im-dtemp 1 = 0.0;

1

router[temp-row-index] .re-dtemp 1 = re-dtemp2;
router[temp-row-index] .im-dtemp 1 = im-dtemp2;
all
{
re-resu:lt[O] += redtemp 1;
im-result[O] += im-dtemp 1;

1
1

1
r,e turn;

1

	Purdue University
	Purdue e-Pubs
	10-1-1994

	A SIMD SPARSE MATRIX-VECTOR MULTIPLICATION ALGORITHM FOR COMPUTATIONAL ELECTROMAGNETICS AND SCATTERING MATRIX MODELS
	Nirav Harish Kapadia

