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ABSTRACT

Kapadia, Nirav Harish. M.SE.E., Purdue University. May 1994. A SIMD Sparse
Matrix-Vector Multiplication Algorithm for Computational Electromagnetics and
Scattering Matrix Models. Mgjor Professor: Jose Fortes.

A large number of problemsin numerical analysis require the multiplication of a
sparse matrix by a vector. In spite of the large amount of fine-grained parallelism
available in the process of sparse matrix-vector multiplication, it is difficult to design
an algorithm for distributed memory SIMD computers that can efficiently multiply an
arbitrary sparse matrix by a vector. The difficulty lies in the irregular nature of the
data structures required to efficiently store arbitrary sparse matrices, and the
architectural constraints of a SIMD computer. We propose a new agorithm that
allowsthe **regularity®* of adata structure that usesarow-major mapping to be varied
by achanging aparameter (the ‘‘blocksize’’). The (block row) algorithm assumes that
the number of non-zero elements in each row is a multiple of the blocksize;
(additional) zero entries are stored to satisfy this condition. The blocksize can be
varied from one to N, where N is the size of the matrix; a blocksize of one resultsin a
rcw-major distribution of the non-zero elements of the matrix (no oveahead of storing
zero elements), while a blocksize of N results in a row-maor distribution
corresponding to that of a dense matrix. The agorithm was implemented on a 16,384
processor MasPar MP-1, and for the matrices associated with the applications
considered here (S-Matrix Approach to Device Simulation, and the Modeling of
Diffractive and Scattering Objects), the algorithm was faster than any of the other
algorithms considered (the ** snake-like"* method, the ** segmented-scan™ method, and
a randomized packing agorithm). For matrices that have a wide variation in the
number of non-zero elements in each row, a procedure for an ** adaptive' block row
algorithm is briefly mentioned. The block row algorithm is applicable to unstructured
sparse matrices which haverelatively sparse columns (denserows ac. not a problem),
and it can beimplemented on any distributed memory computer.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Sparse matrix-vector multiplication forms the computational core of a large
number of problemsin numerical analysis. Typical problemsinvolving the solution of
large sparse linear systems using iterative methods can take several hoursof CPU time
on a high performance workstation, making parallel computers very attractive for
these applications. Additionally, the process of sparse matrix-vector multiplication
intrinsically involves a large amount of fine-grained parallelism, which makes it an
ideal application for massively parallel SIMD computers.

However, it is difficult to design an agorithm for distributed memory SIMD
computers that can efficiently multiply an arbitrary sparse matrix by a vector. The
difficulty liesin the design of adata structure that can efficiently store arbitrary sparse
matrices, allow most interprocessor communication to be **regular® (with respect to
the interprocessor connection network of the machine), and at the same time distribute
the non-zero elements of the matrix evenly among the processors in the processor
anay. On most commercially available SIMD computers, regular interprocessor
communication (with adjacent processors or processors along the same row, for
example) is faster than communicating with an arbitrary processor in the processor
array; data structures designed to efficiently store arbitrary sparse matrices, however,
tend to be irregular in nature. An additional constraint is imposed by a SIMD
architecture because all enabled processors must perform the same operation at any
given time. Thus any data structure designed for unstructured sparse matrix-vector
multiplication on a SIMD computer must compromise between a good load balance, a
data distribution that allows most, if not all communication to be regular, and an
efficient storage format.



In this thesis, we present an algorithm for matrix-vector multiplication that was
prirnarily developed for unstructured sparse matrices arising from two different
applications - a finite element approach for the numerical analysis and modeling of
diffractive and scattering objects, and a scattering matrix approach to device
simulation. The agorithm has been implemented and tested on a 16.384 processor
MasPar MP-1, and, for our applications, it wasfound to be faster than the randomized
packing algorithms described in [OgA93], the “‘segmented-scan®* algorithm described
in [Ham92], and the ** snake-like' method explained in [RoZ93].

1.2 Prior Work

While there have been several algorithms for the multiplication of unstructured
sparse matrices by vectors, most of them are designed for single program, multiple
data (SPMD) and multiple program, multiple data (MIMD) type architectures; a
relatively few algorithms exist for the more restrictive SIMD model. Most algorithms
that are designed for SPMD or MIMD models would not work efficiently on SIMD
architectures without extensive modifications because of the restriction that all
enabled processors in a SIMD machine must do the same operation at a given time
(implicit synchronization). A brief overview of sparse matrix computations along with
additional references can be found in [KuG94].

A look at algorithms for dense matrix-vector or matrix-matrix multiplication on
massively parallel computers shows that these procedures can be parallelized very
efficiently, thus resulting in peak performance that is close to the peak speed of the
machine [JoH89, Tic89, BjM92]. This efficiency is difficult to carry over to sparse-
matrix algorithms because the data structures that are typically used to store sparse
matrices are irregular in nature (regular data structures can be designed for sparse
matrices if they have specific sparsity patterns). Keeping thisin mind.,when selecting
a data structure for our algorithm, we attempt to maximize the regularity of the data
structure, while minimizing the overhead (of storing zero elements) that goes with a
regular data structure.




In his paper [Pet91], Alexander Peters discusses the implementation of several
sparse matrix-vector multiplication algorithms on a vector machine. The discussed
algorithms use scalar and vector ITPACK storage schemes, or some variants of them.
A brief description of parallelizable sparse matrix data structures can also befound in
[MPP93, KuG94]. For unstructured matrices on a massively parallel computer, we
find that adifferent storage scheme, such asthe one used in [DuR79], is more efficient
(discussed in Chapter 3).

In [BiW92], Bik and Wijshoff present a method in which the selection of a data
structure i s postponed until the compile phase, thus allowing the compiler to combine
code optimization with explicit data structure selection. This method is not considered
here because of the unavailability of the necessary compiler technology on the MasPar
MP-1.

Several VLS| implementations have also been proposed for the efficient parallel
solution of sparse systems [LiS88, Mel88, MiK93]. In general, these methodsinvolve
the use of special architectural features and/or speciaized interprocessor routing
methods, thus making their implementation on general-purpose computers unfeasible.

In their paper on sparse matrix-vector multiplication on the DAP, M. Morjaria
and G . Makinson [MoM82] have presented a block partitioning method for the storage
of large sparse matrices on atwo-dimensional mesh processor array. This method was
improved upon by J. Anderson et. al. who used a less compact data structure and a
heuristic scheduling procedure that enabled them to exploit more parallelism and
reduce the amount of interprocessor communication [AnM92].

Romero and Zapata [RoZ93] have proposed two methods for sparse matrix-
vector multiplication in multiprocessor computers with a two-dimensional mesh
interconnection network and a distributed memory system: multiple recursive
decomposition, and the block row scatter method. Multiple recursive decomposition
involves dividing the matrix into submatrices such that each submatrix has
approximately the same number of non-zero elements. In general, each submatrix will
have a different size, which makes this method unsuitable for SIMD computers. A




randomized packing agorithm proposed in [OgA93] achieves a similar load
distribution, and at the same time divides the matrix into submatrices of equa size
(except, possibly the ones on the edges). The block row scatter method is an
improvement on the scatter methods presented in [AnM92], where the matrix is again
divided into submatrices of size equal to the size of the processor array. This method
is aso conceptually similar to the one proposed in [OgA93]. A survey of the different
data distributions for sparse matrix-vector multiplication on multiprocessor systems
can befound in [RoZ93]. Some additional methods are also reviewed in [Ham92].

A. Ogielski and W. Aidllo present two randomized packing algorithms that
randomly permute the positions of the non-zero elements in the matrix before using a
block partitioning method to storeit in the processor array [OgA93]. The algorithms
are implemented on a MasPar MP-1, and the distribution of the matrix elements is
done so as to alow all interprocessor communications to be done using regular
cornrnunication primitives. Scatter and gather techniques are used to perform the
matrix-vector multiplication in parallél.

1.3 Results

We propose a new algorithm that allows the **regularity** of a data structure that
uses a row-major mapping to be varied by achanging a parameter (the **blocksize™).
The (block row) algorithm assumes that the number of non-zero elementsin each row
is a multiple of the blocksize; (additional) zero entries are stored to satisfy this
condition. The blocksize can be varied from one to N, where N is the size of the
matrix; a blocksize of oneresultsin arow-major distribution of the non-zero elements
of the matrix (no overhead of storing zero el ements), while a blocksize of N resultsin
a row-magjor distribution corresponding to that of a dense matrix. For matrices that
have a wide variation in the number of non-zero elements in each row, a procedure for
an ""adaptive™ block row agorithm is mentioned. The only assumption made about
the matrix isthat itscolumnsare** sparse™.

The block row algorithm was implemented on a 16,384 processor MasPar MP-1,
and its performance was compared to that of three other algorithms. For the types of



matrices under consideration, we found that our algorithm was up to an order of
magnitude faster than the second randomized packing algorithm. described in
[0OzA93]. Of the two applications, for the finite element approach, our algorithm was
about nine times faster than the randomized packing algorithm for the largest case,
while for the scattering matrix approach, it was faster by a factor of two. In addition,
the block row algorithm is much more memory-efficient - for the largest problem
solved, involving 93,602 unknowns, and 1,427,614 non-zero elements, the block row
algorithm used approximately 36 MBytes of memory, whereas the randomized
packing algorithm of [OgA93] used approximately 237 MBytes (1,427,614 elements
can be stored in approximately 11 MBytes of memory, using double precision).

1.4 Overview

The thesis is organized as follows. Chapter 2 deals with the analysis of parallel
sparse matrix-vector multiplication on SIMD computers. Chapter 3 is divided into
two main parts; in the first part, we present a brief description of the MasPar MP-1
computer, while the second part deals with the architecture-specific (to the MP-1, but
generalizable to SIMD machines) issues of paralel sparse matrix-vector
multiplication. The 'block row algorithm' is presented in Chapter 4, along with a
theoretical analysis. Chapter 5 provides an experimental and a comparative analysis
of the algorithm. Brief descriptions of the scattering matrix approach and the finite
element approach along with experimental data for simulations are presented in
Chapter 6 and Chapter 7, respectively. Finally, in Chapter 8, we conclude the thesis
and present some ideas for future work. The code (in MPL) for the block row
algorithm can be found in the appendix.






CHAPTER 2
SPARSE MATRIX-VECTORMULTIPLICATION

2.1 Introduction

In this chapter, we anayze the basic procedure of sparse matrix-vector
multiplication, and compare the differences in the sequential and paralel (SIMD)
implementations of the procedure. We aso provide a *"generic'* analysis for the
procedure; this analysis forms the basis on which the algorithms in the next chapter
ae developed. Because the following (parallel) analysisisfor SIMD machines, there
Is an implicit assumption that all enabled processors have to perform the same
operation at any given time.

2.2 Sequential Sparse Matrix-Vector Multiplication

Consider the problem of matrix-vector multiplication with the notation b = Ax,
where A is a sparse matrix of size N by N. Each element of the result vector can be
computed as

bi = Xlaij > x)) , (2.1)
j

where g;; isanon-zero element of the matrix A.

On a sequential computer, the result vector is computed one element at a time,
by computing the relevant products (Equation 2.1) and adding them. The actual order
in which the computations are performed may vary depending on the architecture and
the memory subsystems of the computer. Let R; represent the number of non-zero

i<N
elements in row i. Then, the sequential agorithm involves ¥ (R;—1) addition
i=0



i<N
operations and Y, (R;) multiplication operations. The time required to perform one
i=0

matrix-vector multiplication using a sequential algorithmis

Usequential = ladd t tmuliipty » (2.2a)
where
i<N
| =
i<N
tmultiply =2 X Z (R;) (2.2¢)
(=0

Let R hax be the maximum number of non-zero elements in any one row of the
sparse matrix A. Then, the complexity of the sparse matrix-vector multiplication
operation is O(Rpyax-N). The complexity can aso be represented in terms of the total
number of non-zero elements in the matrix (N.z). The complexity of the algorithm in

i<N
terms of Nejis 1S O(Ngyis), Where Neys = 3 (Ry).
i=0

2.3 Parallel (SIMD) Sparse Matrix-V ector Multiplication

2.3.1 Analysisof Parallel Sparse Matrix-V ector Multiplication

In contrast to the seguential implementation, an effective matrix-vector
multiplication procedure for a massively paralel SIMD machine is quite different.
The discussion isdivided into two parts; the first part is based on the assumption that
the number of processors in the processor array (Vo) is greater than (or equal to) the
size of the matrix (N) and the number of non-zero elements in the matrix (Ny,); that
IS, Nproe 2 max(N, Neys). Thediscussion in the second part deals with the cases where
these assumptions are not true. This approach results in a clearer analysis of the
problem.




The processors in the processor array can be visualized as a one dimensional
array of processors. We assume that each processor can simultaneously Support one
incoming and one outgoing communication operation, and that interprocessor
communication involving any permutation of processorscan be done in one paralléel
operation. We also assume that the non-zero elements of the matrix and the elements
of the vector are distributed in the processor array using some (unspecified) mapping
method. Then, the process of parallel sparse matrix-vector multiplication can be
divided into several basic steps, as considered below. The actual implementation of
the algorithm may include additional steps to optimize the performance; they are
ignored for now.

2.3.2 Casel (Nproc 2N, Nproc 2 Neits)

2.3.2.1 Introduction

For the purposeof thisdiscussion, and without loss of generality, we assume that
each enabled processor of the machine has exactly one non-zero element of the
matrix, and that the size of the matrix (N) is lessthan the number of processors in the
processor array (Nproc)- If the number of non-zero elements in the matrix (Neys) isless
than the number of processorsin the processor array, Some processorscan be disabled.
On the other hand, if some or al processors have more than one element, each
element in a given processor needs to be processed sequentially. Similarly, if the size
of the matrix is greater than the number of processorsin the processor array, some or
all processors will have multiple elements of the vector, and each element in a given
processor will have to be processed sequentially. These cases require a virtual
mapping of the data, and are considered later.

2.3,2.2 Procedure

Each processor that has a non-zero element of the matrix (ajj) must first fetch the
corresponding vector element (x;) from the memory of the processor where it is



stcred. Because each processor can process only one communication request at one
time, it is most efficient to store each vector element on a different processor. With
this storage scheme, distinct vector elements can be fetched simultaneously; if more
than one processor requires a particular vector element, each fetch for that vector
element will have to be processed sequentialy. Thus, the entire :€etchoperation
requires C . paralel communication operations, where Cp.x IS the maximum
number of non-zero elementsin any one column of the matrix.

Once al the vector elements have been fetched, each processor multiplies the
local copy of the non-zero matrix element (a;;) by the vector element that was just
fetched (x;). The resulting product (a;; xX,) iscalled apartial product. All processors
perform the multiplicationin one parallel operation.

Once the partial products are available, the partial productsfrom each row (say i)
of the matrix must be added together to form the result-vector elements (b;). The
addition can be performed using a procedure known as recursive doubling. Using

recursive doubling, » numbers can be added in [logz(n)] steps, where each step
consists of one communication (parallel) and one addition (parallel) operation.

Depending on the specific datalayout and the architecture of the machine, it may
nct befeasible to userecursive doubling. In practice, for large problenis (as compared
to the number of processors), the most efficient methods use a combiriation of (local)
linear addition and recursive doubling to add the partial products. For the purposes of
this analysis, we assumethat it isfeasible to use recursivedoubling.

Finaly, the elements of the result-vector must be sent to the appropriate
processors to form a complete vector. If we assume that the layout of the result-vector
isthe same as that of the original vector (necessary for any iterative scheme), then this
operation can be donein one parallel operation because each element will be stored on
adistinct processor.

10



The sequence of operations just described is summarized below. Each of these
steps is a paralel operation, and is executed by all processors that have a non-zero
element of the matrix.

1. Fetch the required vector element (x;).
2. Perform alocal multiply (c;; = a;; % x;).

3. Add the partial products (b; = }'¢;;)-
J
4. Put the result vector element in the appropriate processor.

2.3.2.3 Timing Analysisfor Casel

Based on the analysis above, we now obtain an expression for the time taken to
perform one sparse matrix-vector multiplication. The time taken to fetch the vector
elements is proportional to the maximum number of non-zero elements in any one
column; that is, fetching the vector elements takes ¢ X C pax UNits of time, where c
Is a constant. The multiplication operation can be completely parallelized, and so it
can be executed in constant time (equal to c5, say). The partial products can be added

in c3 x [logz(R max)-| time units, where ¢3 is a constant, and R, i$ the maximum

number of non-zero elementsin any one row of the matrix. Finally, the results can be
moved to the appropriate processorsin constant {(c 4) time. Thus, the time taken by the
entire procedureisequal to:

tparallel = Yferch + tnultiply + Ladd + tarrange (2.3a)

where
tfetch = €1 %XCax » (2.3b)
Imultiply = C2» (2.3¢)
tadd = C3 % [logZ(Rmax)] , and (2.3d)
Larrange = C4 . (2.3e)
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It must be emphasized that these results are based on the assumptions made
about the communication capabilities of the machine in Section 2.3.1. Then, under
the assumptions that each processor can support exactly one incoming and one
outgoing communication simultaneously, and that interprocessor communication
involving any permutation of processors can be done in one parallel operation, if
Nproc 2 max(N, Ngys), the complexity o the parallel sparse matrix-vector
multiplication operation is O(C pax T1022R max T 1). In practice, because of the fact
that it may not be possible to communicate data across any permutation Of processors
in one parallel operation, the above expression is actually a lower bound for the
procedure of matrix-vector multiplication. In addition, depending on the architecture
of the machine, and the method used to map the matrix into the processor array, the
partial products may have to be reduced by using linear addition (as opposed to
recursive doubling). On the other hand, a specific machine may be able to
send/receive more than one simultaneouscommunication from each processor, which
would modify the expressionsobtained above.

However, assuming that the assumptions hold, the procedure involves

Cmax+’710g2(Rmax)-|+l parallel  communication operations, one paralel

multiplication operation, and [logz(R max)-| parallel addition operations.
233 Casell (N > Nproc: andlor Ny > Nproc)

2.3.3.1 Introduction

The analysis resulting in Equation 2.3a was based on the assumptions that each
enabled processor had exactly one non-zero element of the matrix, and that the length
of the vector wasless than or equal to the number of processorsin the processor array.
We now consider the cases where thisis not true.

12



2.3.3.2 Case IIa (N SNpro(;, and Nehs > ND"OC)

If the number of non-zero elements in the matrix exceeds the number of
processors in the processor array, some or all processors will have more than one
element of the matrix; that is, the non-zero elements will be distributed in multiple
layers (of memory) in the processor array.

A plural variable exists on al the processors of the processor array, and it can
have a different value on each processor. Thus, on a processor array With Ny
processors, a plural variable can be interpreted as a one-dimensional array of size
Nyroe (Figure 2.12). Similarly, a one dimensional plural array of size M is actually a
two dimensional array of size N, by M, where each processor has one column (M
locations) of the array (Figure 2.1b). The dimension along the processors (along
N,,oc) iscalled alayer, and so the above array would have a depth of M layers,

Thefirst Ny, non-zero elements of the matrix will be mapped into the first layer
(of data), the next N, non-zero elements will be mapped into the second layer, and
soon. Let L. represent the number of layers that the non-zero elements of the matrix
are mapped into. Then,

LeIts = [N elts/N proc.| . (2-4)

IF Leys > 1, each layer must be processed sequentialy, and the quantities obtained in
Equations 2.3b - 2.3e need to be multiplied by L. The quantity C .z must be
redefined as C,q x, Where Cpax x represents the maximum non-zero elements from
any one column of the matrix that are stored in layer ‘k’. Similarly, R, & represents
the maximum number of non-zero elements from any one row of the matrix that are
stored in layer ‘k’. It should be noted that ‘Cpaxx’ and ‘Rpaxx’ a@e no longer
constants based on the matrix; their values depend on the architecture of the machine
and the method used to distribute the matrix into the processor array

(Cmax,k» Rmax,k <Nproc). Then, the time taken for a matrix-vector multiplication is
given by:

13
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Figure2.1: @) A plural variable as a one dimensional array of size N,,,., and b) A
plural one dimensional array as a two dimensional array of size Nproc by
M.
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k< LelLr

Yparaliel = kZ_:O [tfetch, k + tmuttiply t ladd, & T+ tarrange] , (2.52)

where
Yetch, k = €1 % Crnaz i » (2.5b)
Imuttipty = €25 (2.5¢)
tadd, k = €3 X [IOgZ(Rmm,k)-‘ , and (2.5d)
larrange = C4 . (2.5¢)

2.3.3.3 CaselIlb (N > Nproc, and Neys < Nyyoc)

On the other hand, if the size of the matrix exceeds the number of processorsin
the processor array, then one or more processors will have multiple elements of the
vector. This affects the time required to fetch the vector elements and to arrange the
result vector elements because each processor can support only one communication
request at atime.

Let there be N, processors in the processor array, and let the length of the
vector be N. Assume that the processors and the vector elements are numbered from
zero to Np,0.—1 and zero to N -1, respectively. Assume that the vector itself is stored
completely; that is, all the elements of the vector are stored, even if they are zero.
Also assume that the consecutive elements of the vector are stored on adjacent
processors (assuming a one-dimensional model of the processor array), and that the
vector is " wrapped around™* in the processor array (Figure 2.1b); that :is, if x; is stored
in the last processor of the processor array, then x;; is stored in the first processor of
the processor array. Then, the vector elements x;, x; Nopoo? Xi ¥ 2N, sve s and x;

proc’

suchthat j =0, 1, 2,...and i +ij,,,c < N, are stored in processor i.

Let L, represent the number of layersrequired to store the vector. The number
of layersisequa to the maximum number of vector elements that are stored on any

15




one processor. Then,

Ly = [N/Npmc-l . 2.6)

The number of processors that would try to fetch one of the vector elements
stored in processor i isgiven by the expression

i+ Ny <N

Cie) = Eo Cit N e » (2.7)
J

where C; (K =1+ jNyoc) iSthe number of non-zero elementsin the k* column of the
matrix (0 £k < N).

Then, the maximum number of processors that would try to fetch one of the
vector el ements stored in any given processor isegual to

i+ jNproc <N
Crax(efy = max j% Cit e | - (2.8)

Thus, the timerequired to fetch the vector elementsisgiven by

fetch = €1 mem(eff) .

The multiplication and addition steps are not affected by the size of the vector.
Once the result-vector elements are computed, they have to be sent to the appropriate
processors. Each vector element that is stored in a given processor must be sent
sequentially because the destination processors can only handle one incoming
communication at atime.

The time required for the matrix-vector multiplication when the size of the
vector IS greater than the number of processorsin the processor array is

Iparallel = fetch t tmuttiply + tadd t larrange > (2.92)

where

ik
[(®)




toch = €1 X Crax(eff) » (2.9b)

tmultiply =Ca, (2.9¢)
ladd = €3 % [1082(13 max)-‘ , and (2.9d)
tarra.nge =04 ><Lvect . (296)

2.3.3.4 Casellc (N > N,pe, 80d Notis > Nproc)

In the general case, both, the matrix size, and the number of non-zero elementsin
the matrix may be greater than the number of processorsin the processor array. The
result follows from acombination of the analysesin Case ITa and Case IIb.

Crax(ery Must be redefined as Cpax(ef), « ; the term represents the maximum
number of processors that need to fetch any one of the vector elements stored in any
given processor, in layer ‘k’.

The time required to send the result vector elements to the appropriate processors
depends on which result vector elements are computed in a particular layer. If more
than one of the result vector elements that are computed in a given layer need to be
sent to the same processor, the send operation will have to be serialized. A worst case
estimateiscy X L, time units.

The time taken to do the matrix-vector multiplication in the general caseis given

by:
k< L,m
tparallel = Z [tfetch, kt tmultiply + tadd, kT tarrange] » (2.103,)
k=0
where
Ifeteh, k = €1 % Crmax (eff), k > (2.10b)
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Iultiply = €2, (2.10¢)
tadd, k = €3 X ’-logz(R max, k)-l , and (2.10d)

larrange = C4 X Lyect - (2.10e)

In Equations 2.10a - 2.10e, f4rqnge represents the worst-case time, whereas the
other quantities represent execution times that would depend on the sparsity pattern of
the matrix and on the mapping of the data in the processor array. A summary of the
resultsfor Case | and Casell are given in Table 2.1. To determine an upper bound for
the procedure of sparse matrix-vector multiplication, a worst case analysis resultsin
more compact results.

2.3.3.5 Worst-Case Analysis

The worst case value for Cpgy (o), « iSequal to the smaller of: a) the maximum
number of non-zero elements in any one column of the matrix multiplied by the
maximum number of vector elements that are stored in any one processor, and b) the
number of processors in the processor array. The upper bound for R, ¢ IS the
smaller of the maximum number of non-zero elements in any one row of the matrix,
and the number of processors in the processor array. Using this in Equations 2.10b -
2.10e, we have

tarallel = Leits X (ferch + tmuttiply t tadd + tarrange) » (2.11a)

where
Yerch = €1 X Lyeer X Min(C max, Nproc) » (2.11b)
Lnultiply = €25 2.11¢)
logd = €3 % [logz(min(Rm,Npmc)ﬂ , and (2.11d)
tarrange = C4 % Lyecs . (2.11e)
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Table 2.1: A summary of the timing analysis for the parallel (SIMD) sparse matrix-
vector multiplication procedure (assuming that recursive doubling is used
to add the partial products).

Parallel SparseMatrix Vector Multiplication
Nproc2Neits and Nproc2N Nproc<Neits and/or Nypoc<N
k< Lchs
tfetch €y X Cmax €y X Z Cmax(eff), k
k=0
tmultiply C2 € X Leys
k< Lclls
tad cs [ 1082 (R % 3 [082 R, )
k=0

tarrange Cq C4 X Leps X Lyect
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The worst case fetch time is proportional t0 Leys X Lyee; X min(C max» Nproc), aNd
the worst case add time is proportional t0 Leys * loga(min(R gy, Nproc))- This
trandates to a complexity of O(Leg.min(C max» Nproc) T Leg10g2(min (Rinaxs Nproc)))s
where

Leﬁ = Leus * Lyect » (2.12)

and L., and L., are given by Equation 2.4 and Equation 2.6, respectively. Note that
if both, the size of the matrix and the number of non-zero elements in the matrix are
less than (or equal to) the number of processors in the processor array,
Lops =Lyec =1, and Cax and R are less than (or equal to) the number of
processors in the processor array, and the expression for the complexity reduces to
O(C oz T1082R max)- A summary of the results for the worst-case analysis is
presented in Table 2.2.

2.4 Result Summary

If the size of the matrix and the total number of non-zero elements in the matrix
are both less than (or equal to) the number of processorsin the processor array, the
data can be directly mapped on the processors - that is, there is no need for virtual
mapping. For this case, a comparison of the complexity of the serial and the parallel
algorithms and the number of steps involved in the sequential and parallel sparse
miitrix-vector multiplication operations is given in Table 2.3. In the more genera
case, where the above assumptionis not true, the same datais shown in Table 2.4.

2.5 Conclusions

In this chapter, we have provided a ** generic'* analysisfor sparse matrix-vector
multiplication on a SIMD machine and compared it with a sequential implementation.
The analysis is ""generic'" in the sense that it includes only a limited amount of
information about the distribution of the data across the processor array, and there are
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Table22: A summary of the worst-case timing analysis for the parallel (SIMD)
sparse matrix-vector multiplication procedure (assuming that recursive
doubling is used to add the partial products).

Parallel SparseMatrix Vector Multiplication
(Worst-Case Analysis)

Nproc2Neits and Nproe>N Nproc<Neits and/or Nproc<N
tfetch 1 % Chax C1 X Leyts X Lyeet X Min(Crpaxs Nproc)
tmultiply ) Cy X Leys
tada % [log2Rmar)] | €3 % Loy  [10g2 (MinRpmn, Nor)
tarrange C4 C4 % Leigs X Liyect
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Table2.3: Complexity and number of operations involved in the sequential and
paralel algorithms for sparse matrix-vector multiplication when the size
of the matrix and the total number of non-zero elementsin the matrix are
less than or equal to the number of processorsin the processor array.

Sequential Parallel Ratio
Algorithm Algorithm (Parallel/Sequential)
Complexity ORpas N) | O(Crras + 108 (Rypas) + 1) -
Addition N News — 1
. Z (R1) -1 10g2(Rmax) 2 -
Operations pard l- -‘ ’Vlogz(N)-‘
Multiplication N
Operations E’O ®R) ! Nets
Communication ] Cos + ’—logZ(Rmax)-‘ +1 )
Operations

Total

N, — 1
Operations 2xNes =1 | Crax + 2[ logZ(Rmax)-‘ +2 Its

2
N+2 [logz(N)-‘ +2
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Table 24 Complexity and number of operations involved in the sequential and
parallel algorithmsfor sparse matrix-vector multiplication when either the
size of the matrix or the total number of non-zero elements in the matrix
(or both) are greater than the number of processorsin the processor array.

Sequential Paralld Ratio
Algorithm Algorithm (Parallel/Sequential)
== — =
0( Leff -{min(cmaxv Npmc)
Complexity O(Rpyex -N) + 10g; (MIn(R a5 Noroc)) )
i<N
Addition < kdﬂn[ Neys — 1
: -1 lo ax -’ > -
Operations EO R®) EO B2Ronr. & Lete-MNRpzr > Noroc)
i<N
Multiplication Nes
Operations 2R Lets Leis
k <Leys
Communication EO (Conaxem, & -
Operations + ’—IOgZ(Rmax. k).' +Lyet )
k <2Ldu( C 2Ne1ts -1
2
_ max(eff), k =
5 -groélailons 2xNgy -1 | = L. [IogZ(Npm).‘ +1)
P + 2108 R, )] + Lo #1) |+ LaNpus + 1)
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no assumptions about the type of interconnection network present in the machine
(except for the specific assumptions involving non-conflicting interprocessor
communication).

As explained in this chapter, the procedure of multiplying a sparse matrix by a
vector can be divided into four separate phases on a parallel computer. The first part
of the analysis provides an insight into the effect of virtual mapping of data (Table
2.1); that is, what happens when either the size of the matrix or the number of non-
zero elements in the matrix exceed the number of processors available: on the parallel
computer. This is an important factor because, in the general case, the problem sizes
of interest will require a virtual mapping (of data). Note that the ‘virtually mapped
data’ that we talk about does not involve any swapping to secondary storage. We
observe that increasing the number of elements in the vector (i.e., the size of the
matrix) affects tgren ad tarrange, Whileincreasing the number of non-zero elementsin
the matrix affects all the phases (Table 2.2). Based on the expressionsin Table 2.1
(and Table 2.2), we can expect that t4..x and t.44 account for alarge fraction of the
time taken to perform a sparse matrix-vector multiplication. We can also expect that
increasing the size of the matrix (while keeping the number of non-zero elements
constant) will not increase the time (to perform the matrix-vector multiplication) as
much as an increasein the number of non-zero elementswill.

For the case where the size of the matrix and the number of non-zero elements
are greater than the number of processorsin the processor array, the results in Table
2.1 are dependent on the distribution of the non-zero elementsin the memory of each
processor, and across the processor array. To give a better **fee”" for the results, a
worst-case analysisis also performed, and the results are presented in Table 2.2. The
results clearly show that even though the performance of the parallel implementation
of sparse matrix-vector multiplication is dependent on the sparsity pattern of the
matrix and the distribution (of the matrix in the processor array) selected, there is a
definite lower bound on the performance, which is dependent on the number of
processorsin the processor array (Table 2.3 and Table 2.4). The actual algorithm used
to perform the sparse matrix-vector multiplication will be based on the method used to
distribute the data across the processor array, and so, as the number of processorsin
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the processor array increases, the importance of using a "*good** distribution (of the
matrix in the processor array) also increases (scalability issue).

Finally, we compare the paralel procedure (of sparse matrix-vector
multiplication) with the sequential procedure (Table 2.3 and Table 241). We find that
as the number of processors in the parallel computer increases, the number of
(sequential) addition and multiplication operations per processor decrease. In the best
case (the number of processors are greater than or equal to the number of dataitems),

apart from the communication overhead, the parallel procedure involves ’VlogZ(Rmax)-I

addition operationsand one multiplication operation. This number can be significantly
smaller than the corresponding numbers in the sequential procedure where there are
Nu—1 addition operations and N multiplication operations.. The parallel
procedure, however, involves interprocessor communication operations that are not
present in the sequential procedure, which limits the amount of speedup that can be
obtained over the sequential procedure.

The analyses in this chapter give us an idea of the constraints imposed on a
parallel implementation of sparse matrix-vector multiplication on SIMD machines. In
the next two chapters, we use this analysis in conjunction with tihe architectural
features of the MasPar MP-1 to develop a new sparse matrix-vector multiplication
algorithm.
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CHAPTER 3
SPARSE MATRIX-VECTOR MULTIPLICATION ON THE MASPAR MP-1

3.1 Introduction

This chapter deals with the implementation details of sparse matrix-vector
multiplication on a SIMD computer. Specific details regarding the design and
iniplementation of data structures are provided; these form a basis for the design of
the data structure used for the block row algorithm (Chapter 4). The architectural
specifications of the MasPar MP-1, a 16,384 processor SIMD computer, are used for
the discussion in this chapter, but the analysis can be easily extended to other
distributed memory SIMD computers.

3.2 The MasPar MP-1 Computer

3.2.1 Introduction

The MasPar MP-1 is a massively paralel SIMD computer with up to 16,384
processing elements. This section provides a brief introduction to the architectural
features of the computer.

3.2.2 The Processor Array

The MP-1 has a single instruction, multiple data (SIMD) architecture with 1,024
tc 16,384 processors. The processors are called processing elements (PEs) because
they contain only the data path and no instruction logic. The instructions are fetched
and decoded by the Array Control Unit (ACU), which is a scalar processor with a
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Figure3.1: @) A cluster of processing elements, and b) The Processor Element Array.
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RISC-style instruction set. The processing elements together form the Processor
Element Array, and, the Array Control Unit and the Processor Element Array together
form the Data Parallel Unit (DPU) [Nic90].

The processing elements are divided into clusters of sixteen processing elements
each, and the processing elementsin acluster arelogically arranged as a four-by-four
array to form a two-dimensional mesh connection (Figure 3.1). Each printed circuit
board contains 64 clusters, resulting in 1,024 processing elements. In the MP-1, each
processing element has 48 32-bit registers, of which 40 are available to the
programmer, and sixteen kilobytes of local memory. Thus, a 16,384 processing
element system has 256 megabytesof memory [Nic90].

3.2.3 Interprocessor Communication

Interprocessor communication is handled by two different networks. One is the
X-Net, which is functionally equivalent to an eight nearest-neighbor two-dimensional
mesh network. The connections at the edge of the Processor Elernent Array are
wrapped around to form a torus. The other network is the Global Router Network,
which is used to handle arbitrary communication patterns between processing
elements. Each cluster of sixteen processing elements shares one originating port and
one target port. So, the router network can support as many simultaneous connections
as there are clusters. Both, the X-Net and the Router Network are bit-serial and they
are synchronously clocked with the processing el ements [Nic90].

When using the X-Net for interprocessor communication, the communication
time is proportiona to either the product or the sum of the operand length and the
distance (Table 3.1) [Nic90, MPA93]. Also, the X-Net operations are faster when the
xnet* construct is on the left hand side than when it is on the right: hand side of a
statement [MPA93]. The approximate times required for interprocessor
communication using the basic ‘xnet’ construct, the ‘xnetp’ construct (pipelined
communication), and the ‘xnetc’ construct (copy left on intermediate processors) are
givenin Table3.1.
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Table 3.1: Timings for interprocessor communication operations using the X-Net,
where 'dist' is the distance between the communicating processors, and
'opsize’ isthe size of the operand in bits.

I

Approximate Timingin Clock Cy~'~ |

Operation
LHS RHS
dist = opsizet 7 opsizet 17
xnet|[]
dist> 1 (opsize + 2)*dist + 6 (opsize t+ 4)*dist + 17
dist== opsizet 10 opsizet 21
xnetp|]
dist>1 opsize*5/4 +dist T+ 11 | opsize*5/4 + 2*dist + 24
dist == opsizet 10 -
xnete[]
dist>1 opsize*2 +dist +9 -
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The Router Network providesa " distance insensitive' method of interprocessor
communication because all communication paths are of equal length. However,
because the router ports are multiplexed among the sixteen processing elements in
each cluster, an arbitrary communication takes at least sixteen router cycles to
complete [Nic90]. A random communication pattern using the Router Network, with
al processing elements participating takes an average of 5,000 clock cycles for 32-bit
operands.

On the whole, the X-Net is preferred if the communication patterns are regular;
that is, al active processing elements need to communicate with processing elements
that are in the same relative direction and distance. The ‘xnetp’ and the ‘xnetc’
constructs are faster than the 'xnet' construct (for distances greater than two,
approximately), but they require intermediate processing elements to be disabled.

3.2.4 TheProcessing Elements

Each processing element has a four-bit load/store unit and a four-bit ALU. This
IS transparent to the programmer, who can directly operate on the any of the supported
data types. Each cluster of processing elements has one sixteen-way rnultiplexed port
to the local memory, and memory operations are overlapped with processing element
computation wherever possible [Nic90]. An access to local memory is about ten
times slower than an access to a local register[Chr90]. A processing element can
access another processing element's memory by sending a message to the other
processing element and requesting that it send the desired item; this procedure is
approximately one hundred times slower than a local register access [MMP90,
Chr90].

3.2.5 Software Options

The programs in this thesis were coded using the MasPar Parallel Application
Language (MPL). MPL is C-derived, and provides a direct high-level control of the
hardware. Two more languages, the MasPar C (MPC) and MasPar Fortran (MPF),
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are also supported, but they do not offer theflexibility of MPL [Chr90].

3.26 Architectural Configuration

Details about the architecture of the MasPar MP-1 can be found in [Bla90]. In
the next few lines, some of the frequently used variables are described. These
variables are pre-defined and represent the hardware configuration of the machine.
The variables nproc, nxproc, and nyproc represent the actual configuration of the
hardware of the MP-1. nproc representsthe total number of processing elements in the
system while nxproc (nyproc) represents the total number of processing elements per
row (column), in the two-dimensional array (Figure 3.1). iproc is a unique number
between 0 and nproc-1, given to a processing element, while ixproc, and iyproc tell a
processing element its row and column positionsin the Processor Element Array.

3.3 Sparse Matrix-Vector Multiplication on a SIMD Machine

3.3.1 Introduction

In Chapter 2, we saw that the procedure of sparse matrix-vector multiplication
could be divided into four parts - namely, the fetch phase (where the vector elements
are fetched), the multiplication phase, the reduction phase (where the partial products
are summed), and the result phase (where the result-vector elements are sent to the
appropriate processors). In this section, the implementation of each of these phasesis
discussed. Under the assumption that communication between adjacent processors, or
between processors in one "‘row' is faster than communication between arbitrary
processors, a specific data structure (for the matrix and/or the vector) is defined for
each phase so that regular communication can be used as much as possible. The
matrices are assumed to be unstructured, and no attempt is made to optimize the
performance based on specific sparsity structures.
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Even though this discussion is specifically amed at the MasPar MP-1 computer,
it is directly applicable to any SIMD computer with a two-dimensional mesh
inlerconnection network, and primitives for regular and irregular communication
(with the regular communication being cheaper). The analysis, with minor
modifications, can also be applied to distributed memory SIMD computers with other
types of interconnection networks.

3.3.2 The Vector-Fetch Phase

In the general case, each processor that has a non-zero element of' the matrix (aij)
will need to fetch the appropriate element of the vector (x;) from the processor in
which it is stored. Because data stored in different layers in memory is processed
sequentially, the following discussion is specific to one layer of data (say k), without
any loss in generality. Under our assumption that each processor can support only one
fetch request at atime, the fetch timefor layer ‘k’ is proportional to Cpaxeetr),x (Table
2.1). Chaxetn,k represents the amount of communication conflicts that occur as a
result of the data distribution in the processor array (versusthe conflicts that occur as a
result of the limitations of the interconnection network). The time taken by the fetch
phase can be optimized by minimizing both, Cpaxesp,kx» @d the cost of each fetch
operation (which includes the cost of communication conflicts 'because of the
lirnitations of the interconnection network).

The value of Cpaxeetn,k Can bereduced in two ways. As seen in Equation 2.8, the
value of Cpaxeetry iS proportional to the number of elements of the vector that are
stored on any one processor. So, an obviousway to reduce its valueis to distribute the
elements of the vector evenly among the processorsin the processor array. This has an
aclded advantage that the memory requirement for vectors is distributed across the
processor array; this is important because massively parallel machines with a
distributed memory tend to have a relatively small amount of memory per processor
(a maximum of 64kB for the MasPar MP-1).

One possible way of distributing the elements of the vector among the processors
is as follows. Each element of the vector, starting from the first one (xp), is stored on
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consecutive processors, starting from the first one (processor #0). If the size of the
vector is greater than the number of processorsin the processor array (Nproc ), then the
next element of the vector (xn,,.) isagain stored on the first processor. In general, the
sparsity pattern in the vector is not taken into account; that is, all the elements of the
vector, including the zero elements, are stored. This is done to avoid any **look-up®*
overhead when fetching the vector elements; if all the elements of the vector are
stored, calculating the location of a particular element of the vector (in terms of the
processor) is trivial (element x; isin processor j%Nprc, Where the % sign represents
the modulus operator). For specific cases, whereentire blocksof the vector are zero, it
may be advantageous to take the sparsity into account.

The value of Cpaxefn,x @S0 depends on the actual distribution of the non-zero
elements of the matrix in the given layer (of data) in the memory (Equation 2.7), and
isproportional to the largest number of non-zero elementsfrom any one column of the
matrix present in the layer (strictly speaking, it is proportional to the largest sum of
the non-zero elements from al the columns that need vector elements stored in a
given processor). Thus, the value of Cpaxet),x Can also be reduced by a mapping of
the non-zero elements of the matrix that distributes the (non-zero) elements from a
cclumn evenly among the layers (of data). This optimization is not considered in this
thesis.

An arbitrary distribution of the non-zero elements of the matrix among the
processors in the processor array would require irregular communication patterns (in
the general case) to fetch the vector elements. On most SIMD computers, regular
communication (with respect to the architecture of the interconnection network) is
faster than communications between arbitrary processors. Consequently, a data
distribution that utilizes only regular communication would result in a faster
algorithm.

For the fetch phase, all non-zero elements of the matrix belonging to one column
require the same element of the vector. Consequently, if non-zero elements belonging
to a given column were stored on adjacent processors, then it would be possible to
send the vector-element to the relevant processors by using a ""broadcast™
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mechanism. In particular cases, it may also be possible to store the noin-zero elements
of a column on a single processor; for unstructured matrices, however, this would
usually lead to an unacceptable imbalance in the load distribution among the
PrOCESSOIS.

The storage format where the non-zero elements of a column of the matrix are
stored in adjacent processors is called the column-major format. Obviously, if this
format is used, one would store all (or as many as possible) non-zero elements of a
column in one layer (of data). Thisis because, when using a ** broadcast™ mechanism,
the cost of communication per processor involved is usualy smaller than the cost of
setting up the communication (establishing the channel, masking, etc.). Depending on
the number of non-zero elements in a given column, the most efficient procedure may
be a ""hybrid"* method where several processors first obtain the relevant vector-
element using (irregular) communication primitives, and then broadcast it to the other
elements. Even if an actual **broadcast™ primitiveis not available (as on the MP-1), it
isoften possible to send datadown **rows' of processors with very little cost (relative
to an irregular communication primitive).

For applications where a column-major format is inefficient (if the rows are
relatively dense, for example; explained in Section 3.3.4), it is possible: to optimize the
actual implementation of the fetch phase to reduce the communication conflicts. One
possibility is to make multiple copies of the vector elements (this is only feasible if
the size of the vector is less than the number of processors in the processor array);
depending on the size of the vector, one or more copies can be made of the entire
vector, or apart of it.

To do this, the processors are grouped into sets, with the number of processorsin
each set being equal to the size of the vector (the last set may be **incomplete™).
Then, processors within each set would perform fetch operations **localy** (within
the set). The improvement obtained from this scheme depends on the actual data
distribution among the sets. For example, on one extreme, if, for a given column of
the matrix (say j), al the (non-zero) elements of that column happen to be stored in
one set, then there is no reduction in the time required to fetch the elements of the
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vector for that column. On the other hand, if the elements of the column are
distributed evenly among al the sets, then the fetch time will be reduced by afactor
equal to the total number of sets because the fetch requests (for that element of the
vector) will be distributed evenly among the processorsthat contain copies of x;.

Thus, we can conclude that to optimize the fetch phase, the vector elements must
be evenly distributed among the processors, and the non-zero elements of the matrix
must be distributed in a column-major format. For matrices that have relatively sparse
columns and (relatively) dense rows, the column-major format is inefficient (for the
reduction phase, as discussed below), and so, depending on the application, it may not
be feasible to use the column-mgjor format. In this case, the time taken for the fetch
phase can be reduced by making multiple copies of the vector, and by distributing the
non-zero elements of each column evenly acrossthe layersof datain the memory.

3.3.3 The Multiplication Phase

This phase involves a loca multiplication operation with no interprocessor
communication (Section 2.3.2.2), and all (enabled) processors multiply the non-zero
elements of the matrix in the current layer by the vector-elementsfetched (in the fetch
phase) in parallel. Thus, the multiplication phase takes constant time: for each layer.
the resulting products are called partial products, and partia products from each row
must be added to form the result-vector el ements.

Note that even though it is possible to combine the fetch phase and the
multiplication phase by performing a "‘remote’” multiplication operation, this is
effectively the same as fetching a vector element and then performing a **local™*
multiplication. In fact, depending on which processing element the result i s computed,
combining the two phases may result in an extra communication step (if a;; is sent
over to the processing element containing x;, and then the result is sent back to the
original processing el ement).
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3.3.4 The Reduction Phase

This phaseinvolves the addition of partial products corresponding to each row to
form the elements of the result vector. In general, the partial product:; will be spread
across the processors in the processor array, and consequently, this phase is
communication intensive. Using arguments similar to those for the vector-fetch
phase, it can be said that the execution time for this phase can be minimized by a
row-major distribution of the elements of the matrix. A row-major distribution allows
the use of regular communication to add the partial products, asdiscussed later in this
section. For arow-major distribution, (non-zero) elements from any single row of the
matrix are stored on the same processor, or on adjacent processors.

If the partial products from a row are arbitrarily distributed among the
processors, then there are two options: the partial products could be sorted according
to the row that they belong to (i.e., convert the distribution to a row-major mapping),
or partial products belonging to each row could be sent to a unique processor, where
they would be added. The first option involves (partially) sorting the non-zero
elements for every matrix-vector multiplication, in addition to the actual reduction of
the partial products - which would not be feasible for large problems. The second
option involves sending multiple data items to each processor, which would result in
serialization (our assumption regarding one communication per processor, at atime).

Assuming that the non-zero elements of the matrix are in arow-major format, the
reduction can proceed in several ways, each of these methods involves the use of only
regular communication primitives (no communication conflicts). If only one layer of
data isconsidered at a time (assuming that the elements of arow are stored in adjacent
processors, rather than the same processor), the reduction can be done in alogarithmic
(base 2) number of steps using recursive doubling. On the other hand, if al the (non-
zero) elements of arow are stored on one processor, then the number of steps required
to add the partial productsisequal to the number of partia products (minus one).

Using recursive doubling, a given set of numbers can be added in a fewer
number of steps compared to linear addition, but at each step in the algorithm, the
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number of processors utilized is reduced by afactor of two (all processorsin the first
step, 1/2 in the second step, 1/4 in the next step, etc.). In addition, the i step in the
algorithm involves interprocessor communication over distances of 21, Even though
regular communication primitives may be used, unless the cornrnunication is
distance-insensitive, the cost of adding ‘n” numbers can increasefaster than O(log,n).

Based on this analysis, if the cost of a regular communication is comparable to
that of adding two numbers, recursive doubling is faster for adding a small set of
numbers together, while a combination of linear (local) addition and recursive
doubling isfaster for adding large sets of data. The actual threshold is dependent on
the cost of communication as compared to the cost of afloating point addition.

3.35 The Result Phase

Once the partia products have been summed, the results need to be sent to the
appropriate processors so as to conform to the selected distribution for vectors. Note
that the vector distribution that minimizes the communication conflictsfor the fetch
phase (elements distributed evenly among the processors) also minimizes the
communication conflicts for this phase (because each processor gets sent
approximately the same number of elements, and the worst case serialization is equal
to the maximum number of vector elementsthat are stored on any one processor).

In practice, this step isdone once for each layer of data, assembling a part of the
vector each time. Consequently, the number of communication conflicts that occur in
this step is determined by the number of elements of the result-vector that are
generated in each layer (of data). For example, if the non-zero elements of the matrix
are stored in a row-major format, for large problems (that is, Nejys > Nyroc), €l€ments
from arelatively small number of rows will be present in each layer, and so a smaller
number of results are likely to be generated in each layer (comparec! to the column-
major format, say). This, in turn reduces the probability of communication conflicts.
On the other hand, if the non-zero elements of the matrix are mapped in a column-
major format, partial resultsfor alarger number of rows are likely to be generated in
each layer, thusincreasing the probability communication conflicts.
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3.3.6 Summary

In this section, specific requirements of each phase of the matrix-vector
multiplication in terms of the data distribution were reviewed. To minimize
communication conflicts, the vector elements should be distributed evenly among the
processors. This has the added benefit of distributing the memory :requirement for
vectors among the processors. A column-major distribution of the (non-zero elements
of) the matrix is best for thefetch phase, while arow-major distributicn is best for the
reduction phase.

For unstructured sparse matrices, a data structure that is designed to satisfy the
requirements of both the phases (the fetch phase and the reduction phase) is unlikely
to have an acceptable load balance among the processors; a data structure that reduces
the load imbalance has been implemented in [OgA93] with the help of randomization
techniques.

3.4 Data Structures for Sparse Matrices on SIMD Computers

3.4.1 Introduction

As described in Section 3.3, the fetch phase can be carried out by using regular
communication primitives if the elements of the matrix are distributed in a column-
major format, whereas the reduction phase can be carried out by using (only) regular
communication if the elements of the matrix are distributed in arow maor format. A
data-structure that simultaneously allows arow-major and a column-major mapping is
said to preserve theintegrity of the matrix [OgA93]. For unstructured sparse matrices,
it is difficult (NP-complete, [OgA93]) to design a data structure that simultaneously
preserves the integrity of the matrix, and also distributes the elements evenly among
the processors. A data structure that preserves the integrity of the matrix has been
implemented on the MP-1 [OgA93]; randomization techniques are used to reduce the
lcad imbalance among the processors.
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The data structures considered in this thesis enforce an even distribution of the
load among the processors, and do not attempt to preserve the integrity of the matrix.
In this section, three data structures are considered: the row-major format, the
column-major format, and the diagonal format. The row-major format forms the basis
of the data structure used for the algorithm developed in the next chapter, while the
diagonal format is used to show how data structures can be designed to exploit
specific sparsity structures; the column-major format isconsidered herefor the sake of
compl eteness.

3.4.2 The" Row-Mgjor** Format

A row-major mapping of the (non-zero) elements of the matrix allows the use of
regular communication primitives in the reduction phase; partial products can be
summed using either local additions or recursive doubling across processors, or both.
However, in the general case, this mapping will result in an arbitrary distribution
(among the processors and layers of data) of the non-zero elements of a column.
Consequently, using a row-magjor format results in an inefficient implementation of
thefetch phase.

Depending on how many non-zero elements are present in the :rowsaof a given
matrix, a row-major mapping will result in elements from a relatively few rows being
present in each layer of data (especially if the elements of arow are distributed in the
same layer along adjacent (rather than one or two) processors). Thus, on an average
(for alarge problem), there will be a small number of (non-zero) elements from each
column of the matrix in a given layer of data As a result, the implementation of the
fetch phase will not involve alarge amount of serialization.

3.4.3 The" Column-Magjor"" Format

Mapping the matrix in a ""column-major** format allows the use of regular
communications (using the X-Net) to fetch the vector elements during the fetch phase.
Cn the other hand, the partial products can no longer be efficiently summed in the
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reduction phase without modifying their distribution (by sorting them, for example).
For large problems with relatively dense columns, however, if the elements from a
column are distributed in adjacent processors (and in the same layer of data), there
will be a relatively few partial productsfrom any one row in a given layer of data,
Consequently, there is not much work involved in the reduction phase; but the work
required to arrange the elements of the result-vector increases (because results from a
larger number of rows are present in a given data layer).

Under the assumptionthat it is easier to resolve " one-to-many** (multiple reads)
conflicts than it is to resolve "*many-to-one' (multiple writes), if the rows and the
cclumns of a given matrix contain approximately the same number of non-zero
elements, the row-major format will result in better performance than the column-
major format.

For example, on the MP-1, the router automatically resolves communication
conflicts; if multiple processors attempt to communicate with a single processor, the
communication requests are serialized in some (unspecified) order. However, if
multiple processors attempt to send data to one (memory) location in a single
processor, the last value that is communicated overwritesthe others. Because of this,
if multiple values are to be sent to a single processor (the partial products, in this
case), it is necessary to "‘reduce’ the values to one single value before the
communication operation.

3.4.4 The'" Diagond' Format

The agorithm based on the row-magjor format exploits the fact that the non-zero
elements from each row of the matrix are mapped in aregular fashion in the processor
array, rather than being randomly spread across it. On the other hand, mapping the
non-zero elements in a column maor format allows one to use the adjacency of the
non-zero elements in each column to advantage. A third possibility is to store the
non-zero elements of the matrix in terms of diagonals; that is, elements from one
diagonal are stored in adjacent processors.
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If, instead of storing only the non-zero elements, one were to store (entirely) any
diagonal that had at least one non-zero element in it, one would be able to exploit the
advantages of both - the row-major format, and the column-major fonnat. Obvioudly,
this approach would only work for matriceswith relatively ** dense™ diagonals; that is,
any diagonal that is not empty has arelatively small percentage of zero elements. For
miitrices where this not true, a significant amount of computation time and memory
resources will be spent on **zero™ elements.

One possible way of implementing this method is asfollows. Consider a matrix
‘A" of size'N'. Assign anumber to each diagonal based on itsdistance from the main
diagonal; positive numbers refer to diagonals above the main diagonal, and negative
numbers refer to the ones below. For example, the number assigned to the main
diagonal is ‘0’, and the numbers assigned to the diagonals just above, and just below
the main diagonal are '1' and ‘-1, respectively. Assume that the rows and the
columns of the matrix 'A', and the elements of the vector (x) are numbered from zero
toN-1.

Now, consider diagonal number ‘+i’. The first element of the diagona is in
column number 'i’, and the last element isin column number ‘N-1" (the last column).
The length of the diagonal (that is, the number of elementsin the diagonal) isequal to
‘N - i'. Then, for the vector-fetch phase, a *'chunk™ of the vector, from element
number 'i' to element number ‘N-1" is needed. The entire **chunk'* can be fetched
using the X-Net because all the elements of the vector need to be communicated
across the same distance and in the same direction (the elements of the diagonal are
stored in adjacent processing elements). Thus, the vector elements can be efficiently
fetched by using regular communication patterns.

The reduction phase can aso be executed efficiently, though the actual
computation proceeds in adifferent order. Consider arelatively large matrix that maps
into several 'layers’ in the Processor Array. If the row-major mapping is used, then a
relatively small number of result-vector elements are computed (completely) in each
layer (each layer is processed sequentially). On the other hand, if the diagonal format
is used, a relatively large number of result-vector elements are partially computed in

42




each layer. Because of this, and because the mapping allows the use of regular
communication patterns, the partial products can be reduced quickly without the use
of Recursive Doubling. For example, if the size of the matrix isapproximately half the
number of processing elements in the processor array, approximately two diagonals
are stored in each layer (assuming that the diagonals are close to the main diagonal).
This means that the reduction phase involves only one addition per row of the matrix;
for larger matrices, the addition phase may be ** eliminated’* completely.

A similar analysis can be done for negatively numbered diagonals, the only
difference being that the first element of the diagonal is aways in the first column of
the matrix. On the whole, an algorithm using the diagonal format for the matrix (for
appropriate matrices, of course) can be expected to work faster than either the
algorithms using the row-major format or the column-major format.

A preliminary version of the algorithm was coded and implernented, and the
above analysis was verified for relatively small test cases. However, this algorithm is
not considered further in thisthes's.

3.5 Conclusions

The MasPar MP-1 is a SIMD computer with between 1,024 and 16,384
processors, and a two-dimensional toroidal mesh interconnection network. A 16,384
processor system can achieve 650 MFLOPS (average 64-bit of add and multiply
operations). Interprocessor communication is handled by two networks; the X-Net is
an eight nearest-neighbor two-dimensional mesh network, while the router network is
a distance-insensitive multistage network that can support arbitrary communication
patterns.

The analysis in Chapter 2 was based on the assumptions that processors can
support one incoming and one outgoing communication simultaneously, and that
interprocessor communication involving any permutation of processorscan bedonein
one paralel operation. On the MP-1, even though the router can handle arbitrary
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communication patterns, the communications are not conflict-free. That is, each
communication operation may involve several sequential steps. Consequently, sparse
matrix-vector multiplication on the MP-1 will take more time than estimated by the
analysis in Chapter 2 if the router is used for interprocessor communication; each
communication operation in the analysis in Chapter 2 will become a number
(indeterminate, in general) of steps. The X-Net can be much faster than the router
network (81 cyclesfor an adjacent processor vs. an average of 5000 cyclesfor arouter
operation with all processors enabled), but the communication is limited to rows,
columns, or diagonals of the processor array - and all enabled processors have to
communicate in the samedirection, at agiven time.

Thus, given the limitations of the X-Net, it is desirable to design a data structure
that can utilize it (the X-Net) as much as possible. As stated earlier, there is an
implicit assumption in the analysis that the data is distributed evenly across the
processor array. In Section 3.3, adata structure that utilizes regular communication is
described for each (individual) phase; the cost of using a different data structure is
also discussed.

As seen in Chapter 2 (Table 2.1), most of the work involved in parallel matrix-
vector multiplication is concentrated in the fetch phase and the reduction phase. If
regular communication is to be used for both these phases, two different data
structures will be required (for unstructured matrices). Then, unless the (non-zero)
elements of the matrix are dynamically redistributed (in the processor array) for one
of' the two phases, it is necessary to use the router network for at least one of the fetch
aid the reduction phases (not true if the matrix has a diagonal sparsity structures, for
example). If the matrices under consideration have the same number of non-zero
elements in the rows and columns (or, obviously, a lower number of non-zero
elements in the columns), it is more efficient to use the router network for the fetch
phase (Section 3.4.3).




In the next chapter, we propose a new algorithm that is based on a modified
row-major distribution of the elements of the matrix. Specifically, in addition to the
nen-zero €lements, some (specified by a parameter) zero elements are stored to obtain
amore "'regular” data structure.
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CHAPTER 4
THE BLOCK ROW ALGORITHM

4.1 Introduction

In the block row agorithm, elements from each row of a sparse matrix are
grouped into blocks, with blocksize elements in each block; zero elernents are stored
only if the number of non-zero elements in a particular row is not a multiple of the
blocksize. Then, each block (rather than each element) is processed as a basic unit,
which facilitates the design of a data structure whose **regularity’* can be varied by
changing a parameter (the blocksize). The reduction phase and the result phase have
to be executed only once for every block because of the regular nature of the
associated data structure, which resultsin afaster agorithm.

In Section 4.2, the working of the block row algorithmisexplained with the help
of' an example. The algorithm is formally described in Section 4.3, and its
performance is analyzed in Section 4.4. Section 4.5 deals with some of the practical
aspects of the algorithm. For matrices with wide variations in the number of non-zero
elements between the rows, an ""adaptive’ version of the block row algorithm is
described (Section 4.6); this algorithm allows the use of different blocksizes within
one matrix by partitioning the matrix along rows. Finally, the chapter is concluded in
Section 4.7.

4.2 TheBlock Row Algorithm: An Example

Consider the matrix and the vector shown in Figure 4.1, and a processor array
with four processors. The matrix is a 6 x 6 ""sparse’ matrix with 17 non-zero
elements, and the corresponding vector is assumed to be dense (note that the indexes
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ago 0 agz 0 0 ags X0
0 all 0 a;3 ay &5 X1
A= 0 a1 a2 0 ay &5 Lo 2
& 0 0 &8 0 0 X3
0 0 0 0 ay O X4
&H 0 0 £/ 0 7+ X5

Figure 4.1: An example " sparse™™ matrix with N = 6 and 17 non-zero elements, and
the corresponding vector.

RowO || ap, a2 aps 0 0 0

Rowl ||l a;; a3 ay a5 0 0

Row2 | ay; a2 ay a5 0 0

Row3 ||azp &8 O 0O 0 O

Row 4 || ay 0 0 0 0O O

RowS | &80 &3 a6 0 0 0

Figure 4.2: Theintermediate-stage representation of the matrix shown in Figure 4.1.

48




of the elements of the matrix and the vector start from zero, rather than one). Assume
the intermediate-stage representation of the matrix shown in Figure 4.2; this
representation is obtained by **compressing’” the non-zero elements in each row of
the matrix - that is, by moving them to the left hand side of the zero elements.

From this intermediate-stage representation, data structures with different
amounts of ""regularity’” can be obtained by changing the value of a parameter (the
blocksize). The elements within each row o the intermediate-stage representation are
divided into blocks such that the number of elementsin each block is equal to the
value of blocksize; zero elements can be added to the intermediate-stage
representation if the number of elementsin arow is not a multiple of the blocksize.
Then, al blocks that contain at least one non-zero element are mapped on to the
processor array, whereas blocks that have only zero elements are discarded. Let Spi
be the value of the blocksize. Then, Ni,/Spik blocks are mapped on to the processor
array, where Ny, isthe total number of elementsin the blocks.

Consider a blocksize of one; each row isdivided into blocks, with one element
per block. The resulting data structure (Figure 4.3) does not have any zero elements
because any number is an exact multiple of one; observe (Figure 4.3) that this data
sbructureis simply a row-major mapping of the non-zero elements of the matrix. This
data structure is then mapped into the processor array as shown in Figure 4.4. Each

processor reads i_Nm/Npm/SbugJ (= 4, in this case) blocksfrom the data structurein a

row-major format; thus, there are four complete layers of data in the memory of the
processors. The remaining blocks are mapped into incomplete layers of data, with
each processor (starting from the first one) being assigned one block. The vector is
also distributed among the processors, as shown in the figure.

In general, to multiply a sparse matrix by a vector, the fetch phase, the
multiplication phase, the reduction phase, and the result phase must be executed (in
that sequence) for each layer of data (in the processor memory). In the block row
algorithm, however, the reduction phase and the result phase are executed only once
for each block; with a blocksize of one, though, each block has only one element, and
all phases must be executed for each layer of data. In general, for a given processor,
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ROWO | ay | agy | ags

Row1 | gl | a;3 | awg | ags

Row2 || ay | apn | ax | ax

Row 3 a3p a3z

Row 4 |[ aygy

Row 5 asp as3 ass

Figure4.3: The data structure for the matrix shown in Figure 4.1 witlh a blocksize of
one; single vertical linesindicate block boundaries.

PE 0 PE1 PE 2 PE 3
apo 413 az 433
a2 a4 a4 44

dos | A | | & || e
a1 a1 azp as3
ass - - -
X0 X1 X2 X3
X4 X5 -

Figure4.4: Didribution o the elements of the matrix shown in Figure 41 on a
processor array with four processorsfor a blocksize of one.
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the reduction phase and the result phase do not need to be executed for layer 'i* (of
data) if the element in layer ‘i+1’ belongsto the same row as the element in layer 'i".
In Figure 4.4, an underscore below a particular element indicates that the reduction
phase and the result phase need to be executed for that layer (by the corresponding
processor). Obvioudly, for thelast layer of data, all phases must be executed.

For a blocksize of one, the reduction phase and the result phase need to be
executed by at least one processor for every layer (Figure 4.4); in a SIMD computer,
because of implicit synchronization, processors that do not need to execute the
reduction/result phases must be disabled, and cannot do any useful work
(simultaneously).

Now consider a blocksize value of two - the resulting data structure is shown in
Figure 4.5. Notice that this data structure ismore **regular** than the data structure for
a blocksize of one; this regularity, however, is obtained at the cost of' having to store
zero elements. For the reduction phase, the zero elements are assumed to belong to a
specific block (specified by the row index), whereas for the fetch phase, the zero
entries are ignored (indicated by a ““**’ for the column index in Figure 4.6). The
entries in the data structure are mapped on to the processor array as shown in Figure

4.6. Again, each processor first reads [Ntot/Nproc/Sb]kJ (= 2, in this case) blocks

corresponding to the complete layers of data; the remaining (two) blocks
corresponding to the incomplete layers of data are distributed evenly among the
processors in the processor array (by *“flattening'* them; Figure 4.6). Note that this
"flattening’* of the blocks in the incomplete layers of data has an interesting side-
effect; the reduction phase can become more expensive because the elements from a
given block are distributed across a larger number of processors (because of the
flattening).

In this case (because the blocksize is equal to two), the reduction phase and the
result phase need to be executed once every two layers, as indicated by the
underscores in Figure 4.6; also observe that not al processors execute the
reduction/result phases at each block boundary. Thus, at the cost of storing three zero
elements, the values of tagy and tarange have been reduced by almost: a factor of two
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ROWO® || apy agy | aps O

Row1l |l ol a;3 | ayg  ass

Row 2 a1 az as ass

Row3 | a3y ass

Rowd | ay 0

ROWS | as9 &8 | ass 0

Figure 4.5: The data structure for the matrix shown in Figure 4.1 witlh a blocksize of
two; singlevertical linesindicate block boundaries.

PE O PE1 PE 2 PE3
ao0 a1 a2 a3Q
a02 a3 az2 a33
ags 14 ax a4
Oox ajs as Ogx
aso as3 ass 0Osx
X0 X1 X2 X3
X3 X5 -

Figure 4.6: Distribution of the elements of the matrix shown in Figure 4.1 on a
processor array with four processorsfor ablocksize of two.
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(assuming that each execution of the reduction and the result phase takes the same
amount of time).

Finally, consider a blocksize of four: the corresponding data structureisshown in
Figure 4.7, and the data distribution in the processors is shown in Figure 4.8. As
before, the two blocks in the incomplete layers of data are flattened to maximize the
utilization of the processors. With this blocksize, the reduction/result phases are
executed only twice (compared to five times for a blocksize of one) for each matrix-
vector multiplication. Observe that a further increase in the blocksize will add only
zero elements; a meaningful increase in the blocksize is limited by the maximum
number of non-zero elementsin any one row of the given matrix.

4.3 Description of the Block Row Algorithm

As explained in Chapter 2, sparse matrix-vector multiplication on a SIMD
computer can be divided into four phases, namely, the fetch phase, the multiplication
phase, the reduction phase, and the result phase. Of these, tgercn, and tygq account for
the largest fraction of the total time required for the matrix-vector multiplication
(Chapter 2 and Chapter 3). For the matrices associated with our applications, the
cclumns tend to be more (or about equally) sparse than the rows. Consequently, the
algorithm is based arow-major mapping of data (Section 3.4.3).

Consider a sparse matrix of size N xN with N, non-zero elements, and a
processor array with Ny, processors. Assume that the non-zero elementsin each row
of' the matrix are "*compressed'” (as in the example in Section 4.2) to obtain the
intermediate-stage representation of the matrix. Also assume that the elements from
each row of the intermediate-stage representation are grouped into blocks, with Sy
elements in each block. Let Ny, be the total number of elements; in the blocks,
including the zero elements.

Then, the blocks are distributed in the processor array as follows: each
processor, starting with the first one, initially reads thot/NpIoc/SblkJ blocks




Row 0

agp apz aps O

Rowl | a;y  a;3  as  ass

Row2 (| a3; ay; ayy aps

Row4 || a4 0 0 0

Figure 4.7: The data structure for the matrix shown in Figure 4.1 with a blocksize of
four; single vertical lines indicate block boundaries.

PE 0 PE1 PE 2 PE 3
a0 a a1 a3p
a02 413 az; a33
ags a4 a4 03+
00* a15 ass 03*
344 O asg ass
04* 04* as3 05*
X0 X1 X2 X3
X4 X5 -

Figure 4.8. Distribution of the elements of the matrix shown in Figure 4.1 on a
processor array with four processors for a blocksize of four.
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Matrix-vector Multiplicationy = Ax

initialize
in paralld in all processors
partial —product = 0,
for k=0,..., Lyeet — 1
result_vect_elt[k] = 0.
end for

for block =0,..., Lot _ 1
Sbik
for layer =0,..., Spi — 1
in paralld in all processors
if a;; in the current layer = 0
temp = processor(j % Npocl-X[j / Nprocl,
partial —product += a;; x temp.
end if
end for
in paralld in all processors
reduced-result=0,
if next block does not belong to the same row as this block
reduced-result = reduce(partial_product),
partial —product=0.
end if
in paralld in thelast processor in each reduction set

processor([i % Npmc].result__vect_elt[i / Norocl += reduced_result.

end for

Figure4.9: Pseudocode for the block row algorithm; Ly (Lyee) iS the number of
layers that the elements of the matrix (vector) map into, and Ny, is the
number of processorsin the processor array.
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corresponding to the complete layers of data. Then, the remaining blocks (k, say) are
distributed among the first ‘k’ processors, with one block per processor. The number
of layersof data that the elements are mapped into is given by

Lot = X Spi - 4.1

Note that, for this analysis, the blocks in the incomplete layers of data are not
flattened; this results in aclearer explanation, and **flattening'* can be added to the
algorithm with relatively minor modifications.

For the given setup, the pseudocode for sparse matrix-vector multiplication using
the block row algorithm is given in Figure 4.9. With reference to the figure, observe
that the fetch phase and the multiplication phase are executed for all layers of data,
whereas the reduction phase and the result phase are executed only once for each
block. In practice, asexplained in Section 4.2, if a processor has more than one block
from a given row of the matrix, the reduction/result phases only have to be executed
after the last block (in that processor) belonging to that row has been processed.

The fetch phase is not executed for zero entries. Consequently, changing the
value of the blocksize does not directly affect this phase; in practice, though, the fetch
phase is dependent on the data distribution, which changes for different blocksizes.
Also, avery high overhead (in terms of storing zero elements) can result in the under-
utilization of the bandwidth of the interprocessor communication :network of the
processor array - which, in turn, can cause an increase in the value of tgep,.

4.4 Timing Analysisfor the Block Row Algorithm

For this analysis, the setup in Section 4.3 is assumed. In general, for any value of
the blocksize other than one, there will be some zero entries in the data structure
corresponding to that blocksize. Thus, it can be expected that L, will be greater than
Leys for any blocksize other than one (in the general case).
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Consider the fetch phase: as explained in Section 2.3.34, ts, depends on the
number of non-zero elements in the columns of the matrix, and on the distribution of
the non-zero elements from any one column among the layers of data. In the general
case, different values of the blocksize will result in different data distributions (of the
elements of the matrix) in the processor array. Consequently, even if no zero entries
need to be stored, tecr, Will be different for different values of the blocksize. If this
dependence of tgep, ON the data distribution is ignored, tg., remain:; approximately
constant independent of the blocksize (because the fetch phase is not executed for
zero entries), aslong as there are arelatively few zero elementsin each layer of data
(otherwise, the communications would effectively be serialized due to the under-
utilization of the communication network). Thus, up to a point, as the number of
layers of data increase because of the storage of zero entries, the average fetch time
per layer (proportionally) decreases because of the reduced amount of communication
conflicts.

The time required for the multiplication phase is proportional to the number of
layers that are processed (Liot). As aresult, the increase in tmynipty 1S proportional to
the number of zero entries that are stored. However, this does not have an adverse
effect on the overall performance of the algorithm (except, possibly, for very small
problems) because the multiplication phase is inexpensive as compared to the other
phases (Table 2.1).

In the reduction phase, if the partial products belonging to a given row are on
multiple processors, they are ‘‘reduced’ - that is, they are summed. Thus, if the
elements of a specific row are distributed across ‘n’ processors, ‘n-1" addition and ‘n-
1’ communication operations are required for the reduction. Also, because the
elements of a row are always in adjacent processors, the communication operations
are conflict free.

Then, the reduction time for a given layer is proportional to the maximum
number of processors across which the elementsfrom a single row are distributed (in
that layer). The total time taken for the reduction phase depends on the reduction time
for each individual layer, and the number of layers for which the recluction phase is
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executed. As the blocksize increases, both these values decrease; for a higher
blocksize, a given number of elements will be mapped across a fewer number of
processors, and additionally, the reduction phase is executed less often. In practice, if
a given processor has more than one block from a specificrow, the reduction phaseis
executed only once - after the last block of that row is processed.

Finaly, consider the result phase: tarange iS dependent on the data distribution
among the layers (of data). If this effect isignored, then, tarrange is (usually) lower for
higher values of the blocksize. This can be explained asfollows. Consider arow ‘7’
that has six elements that are divided into two blockswhich are on separate processors
(Figure 4.10). Then, asindicated by the underscores, the result phase will be executed
twice for this row (no reduction is necessary for thisrow). Generalizing this, it can be
seen that, for one matrix-vector multiplication, there may be as nnany as 2 x N
messages generated in the result phase (if all rowsare similarly distributed in multiple
processors). For higher values of the blocksize, more rows are likely to be stored on
one processor, thus reducing the number of messages (down to N messages, if all rows
arc appropriately distributed). Consequently, tarange is likely to be lower for higher
blocksizes.

Given these results, the time taken to do one matrix-vector multiplication using
the block row algorithm, in the general case (Neys > Nproe aNd Nyeer > Nproc ), is given

by:

k<L,
tblock_mw = Z [tfetch, kT tmultiply + tadd, kt tzmange, k] s (4.2a)
k=0
where
tfetch, k = C1 X Cmax(eff), ko (4.2b)
tmultiply = €2 » (4.2¢)
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Figure4.10: Execution of the reduction phase (indicated by an underscore) for row r.
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: {c3x(wblk(m),k_1) ifk=ixSpy i=l, 2,..
add, k =

4.2d
0 otherwise » and (4.2d)
Cq X ifk=ibe]k‘ i=1, 2,...
tarrange, k = { 04 Lveat otherwise (4.2¢)

In Equation 4.2b, Cax(efp), k represents the maximum number of processors that need
to fetch any one of the vector elements stored in any given processor in layer ‘k’, as
defined in Section 2.3.34. Whymax), k (Equation 4.2d) represents the maximum
number oOf processors across which the blocks from any one row are distributed, for
the k™ layer of data.

45 Practica Considerations

4.5.1 Selection of the Optimal Blocksize

In general, alarger blocksize meanslower values of tagq and tarange- On the other
hand, a larger blocksize can result in more overhead in terms of storing zero elements,
which, in turn, inCreases tnyuiiply, and can increase the value of tgc, because of
under-utilization of the communication bandwidth of the interprocessor
communication network in the processor array. Thus, there is an optimal blocksizefor
which the sum of treich, tmultiply» tadd> 8N tarrange 18 Minimized.

In general, however, finding this optimal blocksize is not easy because the
relative importance of a higher blocksize versus a lower overhead is not known, and
because the execution times also depend on the specific data distribution achieved;
obvious choices for the blocksize include a value that is equal to the number of non-
zero elementsin most rows (if such a value exists), or a common submultiple of the
number of non-zero elements in each row. Given an upper limit for the acceptable
overhead, an iterative procedure to find the best blocksizeis described below.
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Blocksize Selection

Spik = max(#non-zeros in arow).
while Sy > 1
overhead = 0.

for each row i in the intermediate-stage representation
#non—zeros in row i].

blocks =
[ Sbik
overhead += blocks x Sy — #non-zeros in row i.

end for
if overhead < MAX-OVERHEAD
break while
else
Spix = next_max(#non-zeros in arow).
end if
end while
if Spic <1

Sblk = ].,
end if

Figure 4.11: Algorithm for the selection of the largest blocksize that results in an
acceptable amount of overhead; a call to next_max() returns the next
highest value of its argument (compared to the previous call to
next_max() or max() ), or azero if there are no more enbies.
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Observe that the blocksize is bounded on both sides - a blocksize of one is a
“trivial”’ choice, requiring no preprocessing, while a blocksize value that is greater
than the maximum number of non-zero elements in any row only adds zero elements
to the data structure. Then, if alimit isimposed on the number of zero elements that
are allowed, the best blocksize can be determined as shown in Figure 4.11. The
function ‘max()’ returns the maximum of a set of numbers, while the function
‘next_max()’ returns the highest value (in the set) that islower than the value returned
by the most recent call to either max() or next—ma(). This procedure iterates through
the values of the number of non-zero elements in the rows, starting from the highest
value, and selects the first (largest) value of the blocksize that results :in an acceptable
overhead. The procedure can also be modified to iterate through all integer values,
from the maximum number of non-zero elements, down to a value of one.

452 " Flattening' Incomplete Layers of Datain the Processor Memory

With reference to Figure 4.12a, if for a given blocksize, the number of blocksis
not a multiple of the number of processors in the processor array, then there will be
scme "'incomplete layers' of data (as shownin thefigure). If the number of blocksin
the incomplete layers is such that a relatively small part of the processor array is
utilized, the overal time for the matrix-vector multiplication will increase because of
under-utilization of the resources of the machine (sequential processing). This
problem can be avoided by using adifferent blocksize for the blocks in the incomplete
layers of data (Figure4.12b).

The following procedure is used to flatten the blocksin the incomplete layers. If,
for the current blocksize, the number of active processorsin the incomplete layersis
less than (or equal to) half the total number of processorsin the processor array, then
the blocksin the incomplete layers are split into two blocks; otherwise:, no flattening is
done. If, after splitting the blocks, the new blocksize is greater than one, and if the
number of active processors is still less than (or equal to) haf the total number of
processors, the above process is repeated; otherwise, the current (new) value of the
blocksize is assigned to the blocks in the incomplete layers of data. If, at some point,
the blocksize is not an even value, a zero element is added at the end of each block,
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""flattening™ theincomplete layers.
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and the blocksize is increased by one before dividing it by two; this alows the
processor utilization to be maximized regardiess of the value of the blocksize,
possibly at the cost of adding more zero entries.

The procedure described above is not optimal; as the blocks are flattened, the
time required for the reduction phase increases because elements from each block
(which belong to one row) are now distributed across a greater number of processors.
On the other hand, the fetch time decreases (up to a point) because more fetch
operations are being run in parallel, and the multiplication time decreases becauseit is
proportional to the number of layers of data in which the elements are stored. The
time required for the result phase is not affected directly because it is executed only
once regardless of the new blocksize; it is, however, dependent on the data
distribution, which is specific to each blocksize. Then, in the general case, there will
be an optimal blocksize for which the sum of tgech, tmultiply> and taga will be
minimized - in effect, thisis the exact problem of finding the optimal blocksize for a
given matrix.

It should be noted that the analysisin thischapter does not include the effects o
flattening the blocks in the incomplete layers of data; however, the modifications
required are minor. The main side-effect of flattening the blocks is that t,gqg may
increase as the blocksize isincreased (instead of staying constant or decreasing); this
increase is only significant for relatively small problems where the incomplete layers
arc arelatively large fraction of the total number of layers of data. This increase in
tadg Can be minimized by sorting the rows of the intermediate-stage representation in
the decreasing order of the number of non-zero elements before generating the
blocksize-specific data structure, and modifying the algorithm to ignore zero entries in
theincomplete layers.

4.5.3 Coding the Block Row Algorithm

In the code for the algorithm, the implementation of each of the four phasesis
optimized as described in Chapter 3. The fetch phaseis optimized for relatively small
matrices (N < Nyc) by making additional copies of the vector, and interprocessor
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communication in the reduction phaseisrestricted to nearest-neighbor communication
viathe X-Net. Additionally, all frequently used variables are kept in registers (register
operations are up to ten timesfaster than local memory operations on the MP-1). The
code for the block row algorithm (written in MPL) can be found in the appendix;
additional routines are required to load the matrix and the vector elements in the
processor array.

4.5.4 Loading the Matrix in the Processor Array

To utilize the parallel read capability of the MP-1, the data for a given sparse
matrix is stored in four files- the header file, the row-index file, the column-index file,
and the data file. The header file contains the matrix size, the total number of elements
to be stored (including any zero elements), and the blocksize. The row-index
(column-index) file contains the row (column) indexes, while the data file contains the
values of the matrix entries to be stored. The entries in each of the row-index,
column-index and the data files are ordered so that the £ entry in: the row-index
(column-index) file represents the row (column) index of the k™ entry in the datafile;
the entries are stored in arow-major format. The vector is stored in a separate file (the
vector is assumed to be dense). Using this storage format, all files except for the
header file areread in parallel; on the MP-1, a matrix with approximately one million
non-zero el ementsset up in thisformat can be read in about 1.5 seconds.

4.6 The ' Adaptive' Block Row Algorithm

Asexplained earlier, it is difficult to find the optimal blocksize for an arbitrary
gparse matrix. Additionally, for matrices with complex structures, the optimal
blocksize may result in a large number of zero entries, for a relatively small
improvement in the performance. On the other hand, it isrelatively easy to find a good
blocksize for ssimple matrices by using the iterative procedure described in Figure
4.11. Thus, it would be advantageous to be able to partition a complex matrix into
simpler blocks.
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Figure 4.13: Intermediate-stage representation of an example matrix.
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As an example, consider the intermediate-stage representation of a matrix
(Figure 4.13), and a processor array with four processors. It can be seen that any
choice of a blocksize, other than one, will result in some zero elements being stored.
In general, thisoverhead isincreases with increasing values of the blocksize.

Now, consider partitioning the intermediate-stage representation as indicated by
the double horizontal lines in Figure 4.13. Then, the best blocksize value for each
individual partition is obvious (the number of non-zero elements in one row of that
partition). Consequently, if we allow a matrix to be partitioned on the basis of the
number of non-zero elements in the rows, and assign a different blocksize to each
partition, we should be able to achieve improved performance with a smaller amount
of overhead.

This observation forms the basis for the *"adaptive' block row algorithm. A
sorted (in the decreasing order of the number of non-zero elements per row)
intermediate-stage representation of an arbitrary matrix can be divided into partitions
such that each partition contains rows with a ssmilar number of non-zero elements.
Then, each partition can be assigned an individual blocksize that isequal to the largest
number of non-zero elements in a row in a given partition, if the partition contains
enough elements ( 2 Nproc X Spic). The largest feasible blocksize for a given partition
is the smaller of: &) the largest number of non-zero elements in one row within the
partition, and b) the total number of elements in the partition divided by the number of
processors in the processor array.

The optimization problem associated with the partitioning of the matrix issimilar
to the problem involving the selection of the optimal blocksize. In general, a smaller
partition will result in alower overhead (in terms of storing zero elements), whereas a
bigger partition allows alarger blocksize to be selected. Once the partitions have been
made, however, the algorithm in Figure 4.9 can be directly applied to each individual
partition.




4.7 Conclusions

The block row algorithm allows the "*regularity** of a data structure that uses a
row-major mapping to be varied by a changing a parameter (the ‘*blocksize’”). The
(block row) agorithm assumesthat the number of non-zero elementsin each row isa
multiple of the blocksize; (additional) zero entries are stored to satisfy this condition.
The blocksize can be varied from one to N, where N is the size of the matrix; a
blocksize of one results in a row-magjor distribution of the non-zero elements of the
matrix (no overhead of storing zero elements), while a blocksize of' N results in a
row-major distribution corresponding to that of adense matrix. However a meaningful
increase in the blocksize is limited by the maximum number of non-zero elements in
any row of the matrix.

Of thefour phasesin parallel sparse matrix-vector multiplication, the fetch phase
and the multiplication phase are executed for each layer of data, while the reduction
phase and the result phase are executed only oncefor each block. Consequently, as the
blocksize increases, the values of tygq and tarange decrease. On the other hand, for
arbitrary unstructured sparse matrices, as the blocksize is increased, the number of
zero entries that are stored aso increases, leading to more overhead. The increase in
the value of tyuypy is proportional to the overhead; teen is aso affected if the
overhead is more than a certain threshold. As aresult, there is an optimal blocksize at
which the sum of tfetch, tmultiply> tadd> @d tarange IS Minimized, leading to the best
performance.

An iterative method for determining a ""good'" blocksize is explained; the
determination of the optimal blocksizeis difficult because the execution times depend
on the data distribution - which changes with a change in the value of the blocksize.
Also, the improvement in t,gq and tarange Obtained by alarger blocksize can be offset
by a high overhead (in terms of storing zero elements); the impact of the overhead
depends on the distribution of the zero elements among the layers of data. In practice,
the reduction timeis also dependent on the data distribution. If a given processor has
multiple blocksfrom onerow of the matrix, the reduction phase is executed only once
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for that row - after the last block (for that row) is processed. Flattening the blocksin
the incomplete layers of data causes the reduction time to increase slightly - but the
overall performanceisimproved because of better processor utilization..

For matrices that have a wide variation of non-zero elements between rows, it is
advantageous to use different blocksizes for different parts of the matrix. This
observation is the basis for the design of an adaptive block row agorithm. This
algorithm allows a matrix to be partitioned along its rows; each partition can then be
assigned an independent blocksize, and the basic algorithm described in this chapter is
applied to each partition of the matrix; this algorithm is not evaluated further in this
thesis.

In the next chapter, an experimental analysis of the block row is provided, using
the matrices associated with our applications. It is shown that higher blocksizes result
in improved performance, for a given amount of overhead. A comparative analysis of
the algorithm is also given; the block row algorithm isfaster for al the problems that
were tested.
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CHAPTER S
EXPERIMENTAL EVALUATION

5.1 Introduction

In this chapter, we present an experimental analysis and a comparative
evaluation of the block row agorithm. The chapter isdivided into two parts. Thefirst
part describes the experimental results obtained for the block row algorithm for
matrices associated with our applications (the finite element method, and the
scattering matrix approach). In the second part, the performance of' the block row
algorithm is compared with the performance of the segmented-scan agorithm
[Ham92], the snake-like method [RoZ93], and a randomized packing algorithm
presented in [OgA93]. The block row algorithmisfaster for all the matrices tested.

5.2 Experimental Analysisof the Block Row Algorithm

5.2.1 Introduction

The data in this section is obtained by evaluating the performance of the block
row algorithm for four different matrices. The first three matrices represent systems
discretized by using the finite element method, and the fourth matrix is a scattering
matrix for a silicon device. A brief description of the finite element problem can be
found in Chapter 7; a more detailed description is provided in [Lic93]. The scattering
matrix approach isdescribed in some detail in Chapter 6; a more thorough description
can befound in [Ste91]. The execution timesfor the individual phases (tfewchs tmuttiply
taid> @Nd tarrange, @S defined in Chapter 2), as well as the (average) total time (ty,;)
taken to perform one matrix-vector multiplication are listed in the tables in this
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chapter. It should be pointed out that, in some cases the total time may be less than the
sum of the timesfor the individual phases because of the (time) overhead involved in
recording the execution times of the individual phases.

The matrices associated with the finite element approach have four to eight non-
zero elements in each row. This makes them ideal for testing the performance of the
block row algorithm because the blocksize only needs to be varied from one to eight
for exhaustive testing. On the other hand, because any row has at most eight non-zero
elements, the reduction phase can be expected to take arelatively small fraction of the
time required for the matrix-vector multiplication (compared to a matrix with
relatively dense rows). Consequently, optimizing this phase does not show up as a
large change in the total timerequired for the matrix-vector multiplication. In the first
matrix associated with the finite element problem (MI1; 1633 unknowns),
approximately 87% of the rows have exactly seven non-zero elements, and in the
other two matrices (M2; 9385 unknowns, and M3; 36818 unknowns) more than 94%
o the rows have seven non-zero elements. This distribution indicates that a blocksize
of seven islikely to be the best choice. As an example, a matrix representing a (6 x
0.1)A conducting scatterer in acircular domain with a radius of 5h and a node density
of 20 nodes/A is shown in Figure 5.1. Note that each ‘.” in the figure represents a
square matrix (of size 184 = the resolution of the map) with at /east one non-zero
element, and so the number of 'dots do not directly indicate the number of non-zero
elements in the matrix.

Matrices associated with the scattering matrix approach, unfortunately, are more
complicated. For the matrix used here, the number of non-zero elements in a row
rangesfrom O to 20,488. In addition, the variation in the number of non-zero elements
in arow isrelatively smooth; that is, there is no ** common submultiple’’ that can be
chosen as a ""good™ blocksize. Consequently, **sample’ data for eight different
blocksizes is presented in this section. The sparsity structure of a scattering matrix
evaluated at an electric field of 300kV/cm is shown in Figure 5.2. As before, each ‘.’
represents a non-empty submatrix (of size 486 thistime).
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Matrix Size: 36818
Total H enent s: 255406
Map> Resol uti on: 1:184

Figure5.1: The sparsity structure of a matrix representing a (6 x 0.1)A conducting
scatterer in acircular domain of radius SA and node density 20 nodes/A.
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Matrix Size: 93602
Total Elements: 1427614
Map Resolution: 1:468

Figure 5.2: The spardgty dructure of a scattering matrix evaluated at an eectric field
of 300kV/cm.
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5.2.2 Part | - The Finite Element Approach

The matrices associated with this application have complex (as opposed to real)
entries, however, for the experiments in this chapter, the matrices and vectors are
assumed to be real (the imaginary parts are set to zero). If complex values are used,
the execution time for each of the phases (and the total time) is almost exactly twice
the time reported here.

The matrix (M1) associated with the first problem has 1,633 unknowns and
11,065 non-zero elements. The problem represents a homogeneous mesh (no scatterer
in the domain) with aradiusof 2h and a node density of 10 nodes/A. The experimental
resultsfor this problem are shownin Table 5.1.

In this case, the best performance is obtained for a blocksize of one. This is
explained by the "*smal** size of the problem - it involves only 11,065 non-zero
elements, which means that even with a blocksize of one, all the processors in the
processor array are not utilized. Nevertheless, it is instructive to see that the lowest
values of tagq and tarange are obtained for a blocksize of eight. Asexpected, t,qq €ither
decreases or stays constant as the blocksize is increased; t,q¢4 does not change when
the blocksize is increased from four to five, and from five to six because rows with
seven non-zero elements will be mapped into two blocks for each of these blocksizes
(and more than 87% of the rows of the matrix have seven non-zero elements), thus
keeping the work in the reduction phase constant. Because of the small size of the
problem, the result phase is executed only once for any value of the blocksize.
Consequently, in this case, turange 1S dependent only on the distribution of the non-
zero elements among the layers (of data) - for different blocksizes, the source and
destination processors in the result phase are different, thus resulting in a different
number of router conflicts(or cycles).

The fetch time does not remain constant as the blocksizeis varied; the variations
in. the distribution of the non-zero elements (of the matrix) in the processor array for
different blocksizes result in a different number of router conflicts. Finaly, as
expected, tmuriply iNCreases with an increase in the number of layers into which the
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data is mapped; that is, the increase in tyuply is proportiona to the overhead (in
terms Of storing zero elements).

The second matrix (M2) is of size 9,385 and has 64,837 unknowns. The
associated problem is a homogeneous mesh with a radius of 2.51 and a node density
o 20 nodes/A. For this problem, the best performance is obtained with the largest
blocksize - that is, a blocksize of eight (Table 5.2). This performance is obtained in
spite of the fact that, for a blocksize of eight, the number of zero elements that are
stored is approximately eight times the number of zero elements that are stored for a
blocksize of seven. Observe that, in this case, t,gq increases as the blocksize is
increased (for some values of the blocksize). The reduction timeis proportional to the
largest number o processors across which elements of a row are spread.
Consequently, when the last few layers of data are **flattened™® in the memory to
maximize processor utilization, t,g¢ may increase dlightly depending on the
distribution of the matrix elements; this effect is seen clearly in this problem because
d its relatively small size (no "*flattening™ is done for the first problem). tarange
depends on the distribution of the non-zero elements among the layers (of data), but,
in genera, it is lower for higher blocksizes (Section 4.4). As before, the fetch time
depends on the distribution of the non-zero elements (of columns) in the memory, and
the multiplication time is proportional to the overhead (in terms of the number of zero
elements that are stored).

The third matrix (M3) for the finite element approach arises from a system
consisting of 36,818 nodes, and 255,406 non-zero elements. It represents a (6 x 0.1)A
conducting scatterer in a mesh o radius 51 with a node density of 20 nodes/A (actual
application problem with no analytical solution). The timing information for this
problem is shown in Table 5.3. For this problem, blocksizes of seven and eight result
in approximately the same performance, which is better than the performance
obtained with lower blocksizes. As expected, the lowest values of tagq and tarange are
obtained for the largest blocksize. However, the large increase in the overhead
(approximately fifteen times) when going from a blocksize of seven to a blocksize of
eight offsets thisimprovement (for the overall time). Notethat t,44 either decreases, or
remains constant with an increase in the blocksize; **flattening™ the last few layers (of
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data) has a smaller effect on t,gg because of the relatively large size of this problem.
Also, on the whole, tyrange decreases with increasing blocksizes. Finaly, trech
depends on the distribution of the non-zero elements of the matrix, and tmyuiply
depends on the number of layers into which the data is distributed.

5.2.3 PartII - The Scattering Matrix Approach

The results for a matrix-vector multiplication operation involving a scattering
matrix (M4) evaluated at an electric field of 300kV/cm are presented in Table 5.4. As
stated before, the scattering matrix (N = 93,602; 1,427,614 non-zero elements) is not
as tractable as the matrices arising from the finite element approach It can be seen
(Table 5.4) that better performance can be obtained at higher blocksizes, but it is not
clear how to select a "*good'* blocksize. Note, however, that, in general, t,qq and
tarange €Crease as the blocksize increases. The data in Table 5.4 represents selected
blocksizes that include the best and the worst performance obtained when varying the
blocksize from one to twenty five.

5.3 A Comparative Analysisaf the Block Row Algorithm

5.3.1 Introduction

In this section, the performance of the block row algorithm is compared with the
performance of three other algorithms discussed in literature. A variation of the
“‘snake-like method [RoZ93], the ‘‘segmented-scan' method [Ham92], and a
randomized packing algorithm [OgA93] were implemented on the MasPar MP-1, and
compared with our algorithm. Each agorithm is described in brief before presenting
the comparative anaysis.
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Table5.1: Variationsin the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize’ is varied (M1; finite
element approach).

N: 1633 Ng: 11065

Blocksize j ]

(% Over head) Cretch \ tmultiply tadd tarrange | total

1(0%) 1.60E-03 | 1.06E-04 | 1.17E-03 | 3.06E-04 | 3.39E-03

2(13%) 3.03E-03 | 2.12E-04 | 597E-04 | 3.82E-04 | S.00E-03

3 (28%) 2.79E-03 | 3.20E-04 | 4.53E-04 | 3.28E-04 | 4.73E-03

4(15%) 2.77E-03 | 4.24E-04 | 3.08E-04 | 4.38E-04 | 4.70E-03

5@41%) 2.72E-03 | 531E-04 | 3.08E-04 | 3.60E-04 | 4.82E-03
6(67%) 3.02E-03 | 6.37E-04 | 3.08E-04 @ 3.51E-04 | 5.20E-03
7(6%) 3.01E-03 | 743E-04 | 296E-04 | 3.83E-04 | 5.16E-03
8 (18%) 2.84E-03 | 8.52E-04 | 1.59E-04 | 2.30E-04 | 4.81E-03
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Table5.2: Variationsin the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize’ is varied (M2, finite
element approach).

N: 9385 Neits: 64837

Blocksi:
(% Ove:lllze;d) bteten tmultiply tada tarrange tiotal

1(0%) 494E-03 | 425E-04 | 1.95E-03 | 1.08E-03 | 8.93E-03

2 (14%) 5.34E-03 | 5.32E-04 | 1.63E-03 | 1.12E-03 | 9.19E-03

3 (28%) 5.24E-03 | 6.37E-04 | 9.00E-04 | 7.93E-04 | 8.15E-03

4 (15%) 5.01E-03 | 5.32E-04 | 143E-03 | 7.42E-04 | 8.31E-03

5 (42%) 5.48E-03 | 6.37E-04 | 1.75E-03 | 7.36E-04 | 9.17E-03

6 (70%) 5.49E-03 | 745E-04 | 2.05E-03 | 7.14E-04 | 9.57E-02

T(2%) 3.39E-03 | 744E-04 | 3.02E-04 | 4.39E-04 | 5.48E-03

8 (16%) 3.24E-03 | 8.51E-04 | 1.61E-04 | 2.29E-04 | 5.08E-03

79




Table 53: Variations in the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize’ is varied (M3; finite
element approach).

N: 36818 Neiis: 255406

Blocksi
(% OOSers ;lz;ad) Fretch tmultiply tadd tarrange tiotal

1(0%) 2.18E-02 | 1.70E-03 | 3.59E-03 | 8.14E-03 | 3.47E-02

2 (14%) 2.04E-02 | 1.91E-03 | 1.89E-03 | 6.43E-03 | 3.04E-02

3(28%) 2.11E-02 | 2.23E-03 | 142E-03 | 6.01E-03 | 3.05E-02
4 (15%) 1.98E-02 | 191E-03 | 1.23E-03 | 4.41E-03 | 2.73E-02
5(43%) 2.34E-02 | 244E-03 | 1.23E-03 | 4.96E-03 | 3.19E-02

6 (70%) 2.60E-02 | 2.86E-03 | 1.23E-03 | 4.95E-03 | 3.49E-02

|
7(1%) 1.76E-02 | 1.81E-03 | 1.18E-03 | 2.87E-03 | 2.34E-02
8 (15%) 1.83E-02 | 1.91E-03 | 8.71E-04 | 2.31E-03 | 2.35E-02

80



Table 5.4. Variationsin the times (in seconds) for the individual phases of the sparse
matrix-vector multiplication as the 'blocksize' is varied (M4; scattering

matrix approach).
N: 93602  Ni: 1427614
(%B(l.)md) etch Enultiply tadd tarrange tiotal
1(0%) 1.23E-01 | 9.29E-03 | 5.07E-02 | 6.24E-02 | 2.41E-01
2(3%) 1.23E-01 | 9.48E-03 | 4.80E-02 | 3.79E-02 | 2.16E-01
3 (6%) 1.25E-01 | 9.80E-03 | 4.25E-02 | 2.98E-02 | 2.05E-01
4 (9%) 1.26E-01 | 1.01E-02 | 3.92E-02 | 2.49E-02 | 1.98E-01
7 (21%) 1.30E-01 | 1.11E-02 | 3.09E-02 | 2.01E-02 | 1.90E-01
18 (64%) 147E-01 | 1.52E-02 | 2.59E-02 | 1.19E-02 | 1.99E-01
20 (71%) 1.52E-01 | 1.58E-02 | 2.35E-02 | 1.34E-02 | 2.03E-01
23 (83%) 1.56E-01 | 1.69E-02 | 2.23E-02 | 1.11E-02 | 2.05E-01
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5.3.2 The ' Snake-like"* Method

This method requires the non-zero elements of a matrix to be stored in a
column-major format; that is, the non-zero elements from one column of the matrix
are stored in connected (adjacent) processors of the processor array. This distribution
allows the fetch phase of the matrix-vector multiplication to be implemented using
regular communication primitives (the X-Net on the MP-1), but results in an
inefficient implementation of the reduction phase. This method performs well for
matrices that have relatively sparse rowsand (relatively) dense columns.

5.3.3 The"" Segmented Scan'* Method

A detailed discussion of the implementation of this method can be found in
[FHam92]. A row-maor storage format, along with a **scan' primitive is used to
optimize the reduction phase. Each row is considered to be a **segment’*, and the
reduction of partial productsin all rows can beimplemented in parallel. This method
can be used for matrices that have relatively sparse columns.

534 The "' Randomized Packing’* Algorithm

The randomized packing algorithm implemented here is the second (better)
algorithm presented in [OgA93]. The data structure for this algorithm preserves the
integrity of the matrix by requiring both, the non-zero elements from a row and from a
column, to be stored in adjacent processors. Asaresult, both, the fetch phase and the
reduction phase can be simultaneously optimized. However, this data structure no
longer guarantees a good load balance among the processors, depending on the
gparsity structure of the matrix, most of the non-zero elements may be distributed
among a relatively few processorsin the processor array. The algorithm presented in
[OgA93] reduces this problem by randomly permuting the rows and columns of the
matrix before mapping it on the processor array - as aresult of the randomization, the
non-zero elements are more uniformly distributed in the permuted matrix, and
consequently a better load distribution is obtained.
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As described in [OgA93], the randomized packing algorithm involves five
""phases™ - the vector distribution phase, the scatter phase, the multiplication phase,
the gather phase, and the row-sum phase. For the purposes of this analysis, the vector
distribution phase and the scatter phase are grouped together to form the fetch phase,
and the gather phase and the row-sum phase are grouped together to form the
""reduction *+ result’” phase. The algorithm, as presented in the paper, has different
storage formats for the input vector and the output (result) vector:; because most
programs will require that the result vector be in the same format as the input vector,
we have added afew lines of code to do that, and included the time in the ** reduction
*+ result’’ phase.

The randomization changes the matrix 'A’ to ‘PAQT’, and this effect must be
reversed at the end of the computations. The time required to permute and
subsequently unpermute the matrix isignored in this analysis. It should be mentioned,
however, that it took severa minutes of CPU time to permute the rows and columns
for the largest problem described above (as compared to tens of seconds for the
preprocessing stage of the block row algorithm). Our implementation of the
randomized packing algorithm achieved approximately 110 MFLOPS for the largest
dense matrix-vector multiplication problem that could be solved on a MP-1 with 256
MBytes of memory - versus the approximately 116 MFLOPS achieved by the authors.
Consequently, the times quoted for the randomized packing algorithm in this thesis
are accurate to within a few percent (of the authors implementation), for a given
randomization.

5.3.5 Experimental Results

The agorithms described above are compared with the block row algorithm in
this section. For each algorithm, the **best™ performance is used for the evauation;
for the snake-like method and the segmented-scan method, the best time of several
(ten) runs is used, for the randomized packing algorithm, the best randomization (of
ten, using two different random number generators) is used, and the best blocksize is
used for the block row algorithm. To give anideaof the structure of the matrices after
the randomization, randomized versions of the two matrices shown in Figure 5.1 and
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Figure 5.2 are shown in Figure 5.3 and Figure 5.4, respectively (as explained earlier,
tht: 'dots’ represent non-empty submatrices). The normalized time in the tablesin this
section IS the total execution time, normalized with respect to the time taken by the
block row algorithm.

The results for the matrix with 1,633 unknowns and 11,065 non-zero €lements
(M1) are shown in Table 5.5. Without randomization, the data structure for the
randomized packing algorithm would have resulted in a maximum processor load of
63, and a minimum processor load of 0; the best randomization (of ten) improved the
load distribution to a maximum load of 5, and a minimum load of 0 (as opposed to an
ideal load of one).

Because of the small size of the problem, the performance of all the algorithmsis
approximately the same, though the block row algorithm is faster by about 10%. The
randomized packing algorithm is slower than all the other algorithms because it is
designed for relatively dense matrices [OgA93]; oursare less than 1% full.

The results in Table 5.6 represent the problem with 9,385 nodes, and 64,837
non-zero elements (M2). For the randomized packing algorithm, the best
randomi zation resulted in a maximum processor load of 13, and a minimum processor
load of O (without randomization: 450 and O, respectively; ideal load: 4). Again, it
should be emphasized that the main reason for the poor performance o the
randomized packing agorithm is because the matrices associated with our
applications are extremely sparse (the amount of sequential computation in the
randomized packing algorithm is proportional to the size of the matrix). For this
problem, the block row algorithm is more than twice as fast as the segmented-scan
algorithm (whichis the next fastest algorithm).

For the third problem, the matrix (M3) has 36,818 unknowns and 64,837 non-
zero elements. Randomization achieved a maximum (minimum) load of 31 (4), and
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Matrix Size: 36818
Total Elements 255406
PE Load: Min 2, Max 3L
Mayy Resolution: 1:184

Figure 5.3: The sparsity dructure of the randomized verson of the matrix
representing a (6 x 0.1)A conducting scatterer in a circular domain of
radius 5A and node density 20 nodes/A.
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Marrix Size: 93602

Total Elements. 1427614
PE Load: Min 48. Max 289
Ma» Resolution: 1:468

Figure 5.4: The spargty sructure of the randomized version of the scattering matrix
evaluated at an eectric field of 300kV/cm.
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the maximum (minimum) load without randomization was 1880 (0); the ideal load for
this problem was 16. The results are similar to those obtained in the earlier problems,
with the block row algorithm being about twice as fast as the ‘‘segmented-scan’’
algorithm (Table5.7).

The matrix for the fourth problem (M4) is a scattering matrix which is evaluated
at 300kV/cm; the size of the matrix is 93,602 x 93,602, and it has 1,427,614 non-zero
elements. The (best) random permutation of the rows and columns of the matrix
resulted in a maximum processor load of 275, and a minimum processor load of 44.
The ideal load was 88, and without randomization, the maximum processor |load
would have been 4654 (minimum 0). In this case, the block row algorithm is about 1.7
times faster than any of the other algorithms.

5.4 Conclusions

In general, it can be expected that t,3g Will decrease (or stay constant) as the
value of the blocksize is increased; the experimental results in the first part of this
chapter (Tables 5.1 - 5.4) agree with this - with one exception. For the second problem
(M2; Table 5.2), t,qq increases when the blocksize is increased from three to four,
from four to five, and from five to six; as explained earlier, thisincrease in thetime is
a result of ""flattening' the last few layers of data in the memory (experimentally
verified), and can be eliminated by sorting the rows in the decreasing order of the
number of non-zero elements before the *row compression®™ stage. This situation
does not arise in larger problems (M3 and M4) because, for larger problems, thelayers
of datain the memory that are "*flattened"” represent a relatively small fraction of the
total number of layers.

tarange dEPENdS ON the distribution of the non-zero elements across the layers of
data and on the blocksize. The distribution of the elements determines the
communication patterns involved in the result phase, which in turn. determines the
number Of router cycles necessary to complete the communication. On the other hand,
the value of the blocksize determines the total number of (partial) results that are
communicated in the result phase (Section 4.4). As expected, tyrange IS lOwer for
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Table 5.5 A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithm for test problem 1. Normalized times are with respect to the
block row agorithm.

N: 1633 Nens: 11065
Algorithm Yetch tiultiply tada tarrange teotal | Nox:rn;:ll:z od
Snake-like 9.90E-04 | 6.80E-05 5.55E-03 6.80E-03 1.75
Seg-Scan 1.60E-03 | 6.90E-05 | 1.52E-03 | 3.10E-04 || 4.26E-03 1.10
Randomized | 1.31E-03 | 4.50E-(4 8.87E-03 1.07E-02 2,76
Block-Row 1.60E-03 | LO6E-04 | 1.17E-03 | 3.06E-04 || 3.88E-03 1.00
| |
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Table 5.6: A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithmfor test problem 2. Normalized times are with respect to the
block row algorithm.

N: 9385 Negts: 64837
1
] Normalized

Algorithm tetch trnultiply tadd tarrange tiotal ‘ Time

Snake-like 420E-03 | 2.73E-04 1.18E-02 2.27E-02 447

Seg-Scan 6.82E-03 | 2.74E-04 | 1.96E-03 | 1.22E-03 | 1.09E-02 2,15
Randomized || 6.56E-03 | 1,15E-03 4.73E-02 5.48E-02 10.79
Block-Row 3.24E-03 | 8.51E-04 | 161E-04 | 2.29E-04 || 5.08E-03 1.00
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Table 5.7. A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row algorithm for test problem 3. Normalized times are with respect to the
block row agorithm.

N: 36818 Neits: 255406
|
. Normalized
Algonthm t'fetch tmultiply tadd tarnmge ttotz:l Time
Snake-like 191E-02 | 1.09E-03 8.35E-02 1.04E-01 4.44
Seg-Scan 3.29E-02 | 1.09E-03 | 5.59E-03 | 7.91E-03 || 4.74E-02 203
Randomized || 2.44E-02 | 3.24E-03 1.82E-01 2.06E-01 880
Block-Row 1.76E-02 | 1.81E-03 | 1.18E-03 | 2.87E-03 | 2.34E-02 1.00
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Table 5.8: A comparison of the best times (in seconds) for the snake-like algorithm,
the segmented-scan algorithm, the randomized algorithm, and the block
row agorithm for the scattering matrix problem. Normalized times are
with respect to the block row algorithm.

N:93602 Ny 1427614
Algorithm treteh trmultiply tadd tarrange tiotal Nofl‘nilﬂeiz ed
Snake-like 4.01E-01 | 6.09E-03 9.08E-01 1.31E-00 6.89
Seg-Scan 1.66E-01 | 6.01E-03 | 1.03E-01 | 4.93E-02 | 3.23E-01 1.70
Randomized | 7.40E-02 | 2.40E-02 4.83E-01 5.75E-01 3.03
Block-Row 130E-01 | 1.11E-02 | 3.09E-02 | 2.01E-02 ‘ 1.90E-01 1.00
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higher values of the blocksize (it does not strictly decrease with each increment in the
blocksize, though).

Thefetch time depends on the distribution of the non-zero elements of the matrix
among the layers of data (because this affects the communication patterns), and to a
smaller extent on the total number of elements stored (including the zero elements),
whereas the multiplication time depends only on the total number of elements stored.
Then, ignoring the variation of tgcn, With changesin the distribution of data, it can be
concluded that, for a given overhead (of storing zero elements), the performance will
improve as the blocksize is increased. However, it is not clear what the relative
weights of the blocksize and the overhead should be; that is, it is not clear how to find
the point at which the performance drops even with an increase in the blocksize,
because of the increase in the overhead. For example, in the second problem (M2), a
blocksize of eight results in better performance even though the number of zero
elements stored increases by a factor of eight (compared to a blocltsize of seven),
whilein the third problem (M3), the performance of the algorithm drops slightly for a
blocksize of eight as compared to the performance for a blocksize of seven, with the
overhead being fifteen times higher.

The comparative analysisin this chapter shows that the block row algorithm is
faster than the snake-like method, the segmented-scan algorithm, and the randomized
packing algorithm. Though the improvement in the performance is limited to afactor
of' two (over the segmented-scan algorithm, approximately), this result needs to be
qualified. For the matrices associated with the finite element approach, there are at
most eight non-zero elements in arow; thislimits the speedup that can be obtained by
optimizing the reduction phase because the time taken by that phaseis already small.
On the other hand, though the scattering matrix considered has a maximum of 20,488
non-zero elements in arow, the variation of the non-zero elements across the rowsis
such that it is not possible to select a (one) good blocksize. An ** adaptive™ version of
the block row algorithm that allows multiple blocksizes for a single matrix would be
more appropriate for this application.
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CHAPTER 6
THE SCATTERING MATRIX APPROACH

6.1 The Scattering Matrix Approach to Device Analysis

The Scattering Matrix Approach [Das90, Ste91] is a method used to simulate
carrier transport in modern semiconductor devices. In this approach, the device is
viewed asa set of interconnected thin slabs, where each slab is thin enough so that the
electric field and the doping density can be considered constant within the dlab.
Carrier transport across each dlab is described by a matrix equation which relates the
incident fluxes to the emerging fluxesthrough transmission and reflection coefficients.

Az

Figure 6.1: Electron transport across a thin slab of semiconductor in terms of incident
and emerging fluxes.

The carrier fluxesemerging from the slab are related to those incident on the slab
by
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where t, ¢+, and r, r» give the transmission and reflection probabilities for fluxes
incident from theleft (&) and right (67), respectively (Figure 6.1). The matrix,

t rs
S =
rte

iscalled the scattering matrix, and its coefficients are dependent on the electric field,
scattering mechanisms, and the recombination-generation processes that occur within
the dab. As stated above, a semiconductor device is analyzed by dividing it into a
number of small dabs. The scattering matrix S; describes the transport across a thin
dlab centered at z; with doping density Np; and electric fidd E; (Figure 6.1). To
simulate the carrier transport in the entire device, the scattering matrices representing
the slabsin the device are cascaded as shown in Figure 6.2.

+ +

at br
-

a, bk

Figure 6.2: Cascading of individua scattering matrices(S;).

The carrier transport in a device is ssimulated by using an iterative technique.
With reference to Figure 6.1, the emerging fluxes for a slab are computed by
iteratively solving the equation f;,; = Sf;, where the initia value off is[a »~T, and
Sisthe scattering matrix for the dab. First, the emerging fluxes are evaluated for each
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slab, starting from the left-most slab. An emerging flux for one slab acts as an incident
flux for an adjacent dab. Also, when periodic boundary conditions are used, the
emerging fluxes at the ends of the device are "wrapped around” to the other end
(af =b}, and bg =ag in Figure 6.2). Once the emerging fluxes for the last (right-
most) slab have been evaluated, the process is repeated backwards - that is, from the
right hand side of the device towards the |eft. The above steps are repeated until all
the emerging fluxesconverge.

6.2 The Multi-Flux Scattering Matrix Approach

To be applicable to modern devices with submicron dimensions, the flux method
described above needs to be extended. This is done by resolving the incident and
emerging fluxesin terms of energy and the angle to the normal axis of the dab.

The incident and emerging fluxesare discretized into a finite number (say M) of
subfluxes, and each subflux is called a mode. As a result, the transmission and
reflection coefficients t, ¢+, r, and r» become M by M submatrices relating all the
individual incoming and outgoing subfluxes, and the scattering matrix is 2M by 2M.
The fluxes are treated as M by 1 vectors. The individual elements of the scattering
matrix are real numbers between zero and one, and represent the transmission and
reflection probabilitiesfor the incident fluxes.

Several different discretizations of the energy space are possible; one of thoseis
discussed here. Consider a carrier with crystal momentum HKi incident on a thin
isolated dlab. The carrier is assigned a mode based on the Cartesian components of K
Then, element z;; (r;;) in each of the transmission (reflection) submatrices represents
the probability of a carrier that isincident in mode i being transmitted (reflected) in
mode j, for a given electric field. The element accounts for both, scattering, and the
acceleration by the electric field. Figure 6.3 shows an isolated slab for which each of
the incident and emerging fluxes have been resolved into M modes, and the
corresponding 2M by 2M scattering matrix.
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Figure6.3: Discretization of incident and emerging fluxes.
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The accuracy of the Scattering Matrix Approach strongly depends on the number
of modes used to discretize the energy space. More modes mean a higher resolution,
thus increasing the accuracy of the computation. A higher resolution also increases the
computation time and the amount of memory required to solve the problem. The
Multi-Flux Scattering Matrix Approach can result in very large prolblem sizes. For
example, the simulation of carrier transport in a typical semiconductor device could
involve scattering matrices with several hundred thousand non-zero elements, and
several thousand matrix vector multiplications.

6.3 SimulationsInvolving Multi-band Transitions

Any change in the energy or the direction of travel of an incident carrier can
causeit to change modes. In addition, depending on the material of the semiconductor
device and the electric field strength, a carrier can also make transitions between
different conduction bands. This effect can be ignored in devices made of specific
semiconductors, if the electric field strength is below a specified threshold. In other
cases, it becomes necessary to take the transitions between different bands into
account.

Consider a simulation where a carrier may make transitions between B bands.
Then, for this case, each of the transmission and reflection submatrices of the
scattering matrix is made up of B> M by M submatrices, where M is the number of
modes. The elements of submatrix ji of the transmission (reflection) submatrix
represent the probabilities of carriers in band | making a transition to bandj. Each
individual element still represents the probability of a carrier in one mode being
transmitted (reflected) in another mode, as described earlier.

For example, consider a two-band simulation. The transmission submatrix, t, is
made up of four submatricesasfollows.

. T Ty
Ty Ty
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The element T,; represents the probability of acarrier incident in some mode in band
1 emerging in some modein band 2. Similar comments can be made about the other
three submatrices, ¢+, r, and rs. Thus, for a two-band simulation, the size of the
complete scattering matrix is4M by 4M.

6.4 The Sparsity Pattern of the Scattering Matrix

The scattering matrix for a slab can be generated using Monte Carlo simulation.
The Monte Carlo simulation is a statistical method which involves simulating the
individual trajectories and scattering events of thousands of carriers as they pass
through a device. Several thousand electrons distributed in mode i areinjected into the
semiconductor slab, and the elementsz;; and r;; are determined by keeping track of the
mode in which the electrons exit. This processis repeated for each mode to evaluate
thr: entire scattering matrix. Because the scattering matrices are evaluated using a
statistical solution method, the sparsity structure of the matrices has a certain amount
of **fuzziness' toiit.

A carrier injected into the slab in one mode can emerge in a different mode either
by gaining or losing energy, or by being deflected, or both. Both, the change in
energy, and the change in tragjectory can occur because of either the scattering effects
or the electric field. The amount of energy that an electron carrier could gain or loseis
dependent upon the electric field strength and the scattering in the slab. The actual
sparsity structure of a scattering matrix depends on how the energy space is
discretized; the structures of two scattering matrices based on the discretization
discussed earlier are shownin Figure 5.2 and Figure 6.4. Both scattering matrices are
for the same semiconductor and slab thickness- the first one isevaluated at an electric
field strength of 300kV/cm, and the second one is evaluated at a much lower electric
field strength of 1kV/cm.
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Matrix Size: 93602
Total Elements: 1544881
Map Resolution: 1:468

Figure6.4: The spardty patiern of a scattering matrix evaluated at an electric field
grength of 1kV/gm
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6.5 Experimental Results

To benchmark the performance of the block row algorithm for the scattering
matrix approach, parallel versions of two simulation programsexisting on a IBM RS
6000/580 were written on a 16,384 processor MasPar MP-1. The sequential programs
were written in FORTRAN, and were made available by [HuL93]. Sparse matrix-
vector multiplications forms the computational core of the programs, and more than
98.5% of thetotal computation timeis spent doing the matrix-vector multiplications.

The IBM RS 60001580 is a superscalar processor which is capable of issuing
multiple instructions (up to four) in every cycle, and it has a floating point multiply-
add instruction that can execute in one clock cycle (16ns) [War90]. In comparison, the
MasPar MP-1is a SIMD computer with up to 16,384, and can do a double precision
addition (multiplication) on the processing elements in approximately 189 (557) 70ns
clock cycles [MPA93]. The IBM RS 60001580 is rated at 62.5 MFLOPS for double
precision (64-bit) floating point operations (38.1 MFLOPS for LINPACK), whereas a
16.384 processor MP-1 israted at 630 MFLOPS peak (440 MFLOPS for LINPACK)
for double precision floating point operations (average of add and multiply times).
This makes the RS 60001580 significantly faster than an individual processing element
on the MP-1; a 16k processor MP-1 is a the most about ten timesfaster (peak) than a
RS 60001580.

The first program involves the simulation of carrier transport in a bulk
semiconductor, which is a ""thin"" device with a uniform electric field; that is, the
device consists of just one slab. This program was run on both machines with the
300kV/cm scattering matrix shown in Figure 5.2; the timing results for the simulation
are shown in Table 6.1. It can be seen that the MP-1 is approximately seven times
faster than the RS 60001580.

The second program simulates carrier transport in a device with a low-high-low
(1kV/cm - 300kV/cm - 1kV/cm) electric field distribution; the device was divided into
sixty slabs. The scattering matrices shown in Figure 5.2 (300kV/cm) and Figure 6.4
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(1kV/cm) were used; the results of the simulation on the two machines are shown in
Table 6.2. This program also runs approximately seven timesfaster on the MP-1.

6.6 Conclusions

The simulations on the MP-1 ran approximately seven times faster than the
corresponding simulations on the RS 6000/580 - as compared to a theoreticaly
possible speedup of approximately ten (peak). However, the speedup obtained in
terms of the number of floating point operationsis higher than the figure indicated by
the experimental results because of several reasons. The sparse matrix-vector routine
on the RS 6000/580 has been optimized to take advantage of sparse vectors (with the
cwrent discretization for the generation of the scattering matrices, entire blocks of the
vector, adding to approximately 20% of the total size, consist of zero elements),
whereas the sparse matrix-vector routine on the MP-1 was not designed to take this
sparsity into account. Also, for matrix-vector multiplication, the RS 6000 can take
advantage of its multiply-add instruction; if this instruction is considered to be two
FLOPS, the peak speed of the RS 6000/580 can be as much as 125 MFLOPS.

Additionally, as mentioned in Chapter 5, the scattering matrices have a rather
complex structure, thus making it difficult to find the best blocksize for the basic
version of the block row algorithm. The performance of the algorithm, was tested for
blocksize values from one to twenty five for each matrix, and the best blocksize was
used (for each matrix) to obtain the run times presented in this chapter.
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Table6.1: Computation times on the RS 6000/580 and the MP-1 for carier
simulation in a bulk semiconductor.

Bulk Semiconductor Simulation

S-Matrix: 300kV/em, N = 93602,1427614 non-zero elements.

. . RunTime | Normalized
Machine Iterations -
(seconds) Run Time
IBM RS 60001580 42 57.00 7.05
MasPar MP-1 42 8.09 100

Table6.22 Computation times on the RS 6000/580 and the MP-1 for carrier
smulation in a semiconductor device with a low-high-low eectric fied
distribution.

Lo-Hi-Lo Simulation

Lo-Field S-Matrix: 1kV/cm, N = 93602,1544881 non-zero elements.
Hi-Field S-Matrix: 300kV/cm, N = 93602,1427614 non-zero elements.

. . Run Time Normalized

Machine Iterations (seconds) Ruin Time
IBM RS 60001580 80 14,198 "7.39
MasPar MP-1 80 1,920 1.00
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CHAPTER7

A FEM APPROACH FOR MODELING
DIFFRACTIVE AND SCATTERING OBJECTS

7.1 Introduction

This chapter provides a short description of the finite element approach for the
numerical analysis and modeling of diffractive and scattering objects [Lic93], and a
brief summary of the resultsfor a sample problem involving the solution of acomplex
matrix System associated with the finite element implementation. The complex
conjugate gradient squared method [NaR92] is implemented on a 16,384 processor
MasPar MP-1, and its performance is compared to the performance of the same
method and the performance of acomplex direct solver on serial machines.

7.2 Numerical Analysisof Diffractive and Scattering Objects [Lic93]

Several applications such as seismology, geophysics, weather prediction, and
electromagnetics, require the solution of wave-like equations in an infinite domain.
Fer such problems involving the computation of scattering and diffractive effects of
objects in open regions, it is necessary to limit the computational domain to a finite
size. Thiscan be done either by mapping the infinite region onto a bounded one, or by
constructing an artificial boundary and imposing conditions on the boundary to
sitnulate the infinite region.

In order to compute an efficient numerical solution without too much reflection
from the outer boundary, it is desirable to get as close as possible to the scattering
object. Normally, the artificial boundariesare circular or spherical in shape. However,
for elongated scatterers (objects), these special boundaries are inefficient because a
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large computational domain is required. The work done in [Lic93] focuses on
generalizing the circular boundary condition to an arbitrary boundary shape for two-
dimensional geometries.

A finite element implementation is used to discretize a variational form of the
wave equation, which results in a unsymmetric, complex sparse system (typicaly,
with afill-in of less than 1%); the sparsity structure of the matrix depends on the size
and the shape of the scatterer(s) in the domain (the structure is symmetric, however).
A parallel iterative solver for complex systems using the conjugate gradient squared
method was implemented on the MasPar MP-1; the results for one of the problems
solved are presented in the next section.

7.3 Numerica Results

Consider adomain with aradius of 5A that contains a conducting scatterer of size
(6 x 0.1)A, where A is the wavelength of the incident waveform. A node density of 20
ncdes/A is used to discretize the domain, resulting in a sparse system with 36,818
unknowns and 255,406 non-zero coefficients (matrix elements). It is required to find
the transverse magnetic polarization in the domain when a plane wave with unit
magnitude isincident at 45° to the normal.

This problem was solved with the help of seridl and massively parallel
implementations of the conjugate gradient squared (CGS) method, and with the help
of a direct (serial) sparse matrix solver (the Y12M, developed in Copenhagen,
Denmark). The massively parallel implementation uses the block row algorithm (with
a blocksize of seven). For the iterative solutions, a residual norm of 1E-03 is used as
the stopping condition; this residua norm was verified to result in an accurate
solution.

A comparison of the number of iterations and the solution times for the CGS
method on three different machines is presented in Table 7.1. Recall that a 16,384
processor MP-1 is rated at 630 MFLOPS (440 MFLOPS for LINPACK); the RS

104




60001560 is rated at 50 MFLOPS (30.5 MFLOPS for LINPACK), and the Ardent
Titan isafour processor vector computer with each processor rated at 16 MFLOPS (6
MFLOPS for LINPACK). Code on the RS 60001560 was compiled with the *¢-O”’
option, and the code on the Ardent Titan was compiled with the **-04"" option.
Iterative methods converge faster if the starting vector isagood guess - if theincident
field is used as an initial guess, the number of iterations required to converge
decreases somewhat (Table 7.2). Table 7.3 shows the relative speeds of the direct
method on the Ardent Titan, and the CGS method on the MP-1 (with the incident field
as the initial guess); the CGS method on the MP-1 is faster by a factor of seven.
Finally, the verification of the accuracy of the result is shown in Table 7.4; the result
was also verified graphically.

7.4 Conclusions

The CGS method on the MP-1 runs approximately 3.5 timesfaster than the same
method on the RS 60001560, and approximately 23.5 times faster than the CGS
method on a four processor Ardent Titan as compared to the theoretically possible
(peak) speedups of about thirteen and ten over the RS 60001560 and the Ardent Titan,
respectively. Note that the RS 60001560 can perform a double precision multiply-add
every cycle [War90]; if the multiply-add instruction is considered to be two FLOPS,
then a 16,384 processor MP-1 is only about six times faster than the RS 6000/560.
The CGS method on the MP-1 aso ran seven times faster than the direct method on
the Ardent Titan; a higher speedup can be achieved with a better initial guess for the
iterative method.
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Table 7.1: A comparison of the iterations and the execution times for the solution of
the problem using the conjugate gradient sguared method; stopping
condition: residual norm < |e-03.

Conjugate Gradient Squared Method
N: 36,818  Neys: 255,406 -
ized
- terations | Computation | Normalfzed
Machine ! Time (seconds) Timg—
J
Ardent Titan 5359 11,867 23.45
5
RS 6000/560 5362 1,747 345
0
MasPar MP-1 4616 506 1.00___|

Table 7.2:  Effect of an initial guess vector on the number of iterations required to
converge.

Conjugate Gradient Squared Method

N: 36,818  Nejs: 255,406

Starting (terations | _Computation
Vector Time (seconds)
Xo = 1.0

2 =00,i#0 4616 505.72

x =Incident Field 4497 49253
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Table 7.3: A comparison of the performance of the paralld implementation of the
conjugate gradient squared method with that of a serial sparse direct

solver.
N: 36,818 Neits: 255,406
Method/ Solution Time . Time
Machine (seconds) Normalized
Direct Solver
on Ardent Titan 3,413 7.0
CGS Method
on MasPar MP-1 473 L0

Table 7.4: The change in the eror norm of the solution from the CGS method
(relative to the solution from the direct method) with a change in the
stopping condition.

Il Xdirect = Xcgs Il2

Il Xgirect |l2

N: 36,818  Ngys: 255,406

Residual Norm: 1E-03 | Residual Norm: 1E-06

4371 %107 4.330% 1073
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CHAPTER 8
CONCLUSIONS

8.1 Summary

Sparse matrix-vector multiplication is an integral component of a large number
o problemsin numerical analysis. In spite of the inherent parallelism available in the
procedure, it is difficult to design an agorithm for distributed memory machines that
performs well for general unstructured sparse matrices. We have proposed a new
algorithm that is designed for unstructured sparse matrices that have relatively sparse
columns,

The procedure of sparse matrix-vector multiplication is analyzed for serial and
parallel machines with a distributed memory system. The parallel procedure isdivided
into four phases - the fetch phase, the multiplication phase, the reduction phase, and
the arrange phase. For distributed memory machines, the fetch phase and the
reduction phase account for most of the interprocessor communication. It isdifficult to
simultaneously optimize the fetch phase and the reduction phase, and also achieve a
good load balance between the processors, for unstructured sparse matrices.

A SIMD architecture represents an additional restriction on the design of the
algorithm because all enabled processors must perform the same operation at any
given time. The restrictions imposed by a SIMD computer with a two-dimensional
mesh interconnection network on the design of an algorithm for sparse mamx-vector
multiplication are studied, and the block row algorithm is developed based on the
conclusions of the study.
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A detailed description of the block row agorithm is presented., along with an
example. The algorithm is then analyzed, and the anaysis is supported with
experimental evidence. For the types of matrices that are associated with the problems
being considered, the experimental analysis presented in Chapter 5 shows that the
block row agorithm is faster than the ** snake-like' method, the ** segmented scan**
method, and the randomized packing algorithm.

8.2 Future Work

The work presented in this thesis only optimizes the **reduction" phase and the
“result’” phase. As seen from the experimental datain Chapter 5, the performance of
the block row algorithm islimited by the fetch phase. This bottleneck occurs because
a processor can only process one communication request at a time. While it is not
possible to completely optimize the fetch phase simultaneously, it would be possible
to permute the elements in the individua **blocks™ in the block row algorithm so as
to minimize the number of elements from any single column that are mapped to any
one layer of memory. This could result in a significant improvement in the
performance of the algorithm because the router conflicts will be minimized.

As seen in Chapter 5, the matrices arising from the scattering matrix approach
are not very tractable for the block row agorithm because the number of non-zero
elements in the different rows are very different. As aresult, it is difficult to obtain
one "*good'* blocksize. The block row algorithm can be extended to an "* adaptive'*
block row algorithm, where different blocksizes can be used for different parts of the
matrix. This algorithm needs to be implemented and tested.
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APPENDIX: CODE LISTING FOR THE BLOCK ROW ALGORITHM

#define  SEND 0
#define  EDGE 1
#define  NO-SEND 2
#define INVALID-ROW -1
#define  INVALID-COL -1

void mat_vect_mul(plural doublere_coef[], plural doubleim_coef]],
plural int row—index(], plural int col_index(],
plural double re-vector|], plural double im_vectorf],
plural doublere_result[], plural double im_result[],
Int matrix—size, int total —elts, int blocksize[])

register int i, j, k;

register int vector—layers, complete_elt_layers, reg-blocksize;
register int processors, remaining-elts;

register int step, step2;

register plural int base;

register plural int remote-pe, layer;

register plural int temp—col—index;

register plural double re-reg-vector, im_reg_vector;

plura double re-temp-result, im_temp_result;

1egister plural double re-temp-vector, im_temp_vector;

/* Compute necessary variables and copy frequently used varsto registers */
Processors = nproc;
if(matrix_size <= nproc)
{
vector—layers=1;
step = matrix_size/nxproc * ((matrix_size%nxproc) != 0);
step2 = nxproc ﬁe&;
base = (iproc/step2) " step2;
re—reg—-vector =rte_vector[(];
im_reg_vector = im_vector[0];
re_result[0] = 0.0;
im_result[0] = 0.0;
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/* Make copies of the vector, if possible*/
if(iproc >= step2)
for(i=step2; i < nproc && i < total_elts; i += step2)

re-reg-vector = xnetN[step].re_reg_vector;
im_reg_vector = xnetN[step].im_reg_vector;

}

else
{

vector—layers= matrix_size/nproc + ((matrix_size%nproc) != 0);
for(i=0; i < vector-layers, i++)

re_result[i] = 0.0;
im_result[i] = 0.0;
}
)

reg_blocksize = blocksize[0];

complete_elt_layers = ((total_elts/reg_blocksize)/nproc)*reg_blocksize;
i=0;

re—temp-result=0.0;

im_temp_result = 0.0;

while(i < complete_elt_layers)

for(k=0; k < reg_blocksize; k++, i++)

{
/* Fetch AppropriateVector Elements*/
temp-col—index = col_index[i];
if(temp_col_index !=INVALID-COL)
{

if(matrix_size > nproc)
{
remote—pe = temp_col_index%nproc;
layer = temp_col_index/nproc;
for(j=0; j < vector-layers, j++)
if(layer ==})
{

re—regvector = re-vectorlj];

im_reg_vector = im_vector[jl;

re—temp-vector = router[remote_pe].re—reg—vector,
im_temp_vector = router[remote_pe].im_reg_vector;

}

else

{
remote—pe = base + temp—col-index;
if(processors > matrix—size)
remote—pe -= (remote—pe >= processors)*step2;
re—temp-Vvector = router[remote_pe].re_reg_vector,
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im—temp-vector = router[remote_pe].im_reg_vector;

}

}

/* Multiply corresponding elements */

re—temp—result += re_coef[i]* re-temp-vector - im_coef[i]*im_temp_vector;
im_temp_result += re_coef[i]*im_temp_vector *+ im_coef[i]*re-temp-vector;

send_part_product(re_result, im_result, & re-temp-result, &im_temp_result,
row-index, i, vector—layers, matrix—size,
complete_elt_layers, nproc);

}

remaining_elts = total —elts- complete_elt_layers*nproc;
if(remaining_elts == 0)
return;
reg—blocksize= blocksize[1];
processors = remaining_elts/reg_blocksize;

re—temp-result= 0.0;
im_temp_result = 0.0;

for(k=0; k < reg-blocksize; k++, i++)
{

if(iproc < processors)
{

/* Fetch Appropriate Vector Elements */
temp—col—index = col_index[i];
if(temp_col_index != INVALID-COL)

{

if(matrix_size > nproc)
{
remote-pe = temp_col_index%nproc;
layer = temp_col_index/nproc;
for(j=0; j < vector-layers, j++)
if(layer =)
{

re_reg_vector =re_vector[j];

im_reg_vector = im_vectorfj];

re—temp-vector = router[remote_pe].re—regvector;
Im—temp—Vvector = router[remote_pe].im_reg_vector;

}

else

{
remote—pe = base + temp-col —index;
if(processors > matrix—size)
remote—pe -= (remote—pe>= processors)*step2;

re—temp-vector = router[remote_pe].re_reg_vector;
im-temp-vector = router[remote_pe].im_reg_vector;

}
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/* Multiply corresponding elements */
re—temp-result += re_coef[i]*re_temp_vector - im_coef[i]*im_temp_vector;
im_temp_result += re_coef[i]*im_temp_vector + im_coef[i]*re_temp_vector;
}
send_part_product(re_result, im_result, & re-temp-result, &im_temp_result,
row—index, i, vector—layers, matrix—size,
complete-elt—layerstl, processors);
return;

}

void send_part_product(plural double re-result[], plural doubleim_result[],
plura double*re—temp-result,
plura double *im_temp_result,
plural int row_index[], register int i,
Int vector—layers,int matrix—size, int last—layer,
int processors)

register int j;

register plural char send—flag, temp-flag;
register plura int itempl;

register plural int temp-row—index;

register plural int remote—pe, layer;

register plural double re—dtempl, im_dtempl;
register plural doublere_dtemp2, im_dtemp?2;
register plural double re_dtemp3, im_dtemp3;
register plural double re—dbuffer, im_dbuffer;

re_dtemp?2 = *re—temp-result;
im_dtemp2 = *im_temp_result;
temp-row—-index = row_index[i-1];
all send-flag = NO-SEND;

if(i < last—layer)
itempl =row_index[i];
else

itempl = INVALID-ROW,

/* Collect Partial Results (of each row) from Adjacent Processors */
if((iproc < processors) && (itempl !'= temp-row-index))
I

k/* Reset Partial Products to zero (vaue held in temp register) */

*re—temp-result = 0.0;
*im_temp_result = 0.0;
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[* Create the 'send mask' vector needed for reduction */
send-flag = SEND;

if((iproc+1) % nxproc==0)

{

if(xnetSE[ 1].temp-row—index = temp-row—index)
send-flag= EDGE;

}

elseif(xnetE[1].temp-row-index != temp-row—index)
send-flag= EDGE;

if(processors < nproc)
proc[processors-1].send-flag= EDGE;

if(send_flag == EDGE)
{

re_dbuffer =0.0;
im—-dbuffer =0.0;
}
else

re—dbuffer = re—dtemp2;
im—dbuffer = im_dtemp2;

}

while(send_flag == SEND)
{
dl

re_dtemp3 =0.0;
im_dtemp3 =0.0;

}
if((iproc+1) % nxproc == 0)
f

xnetSE[1].re_dtemp3 = re—dbuffer;
xnetSE[1].im_dtemp3 = im-dbuffer;
}
else

xnetE[1].re_dtemp3 = re_dbuffer;
xnetE[1].im_dtemp3 = im-dbuffer;

}
all

re_dbuffer = re_dtemp3;
im—dbuffer = im_dtemp3;
if(send_flag — EDGE)

{

re_dtemp?2 += re—dbuffer;
im_dtemp2 += im_dbuffer;

re_dbuffer = 0.0;
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im_dbuffer = 0.0;
}
temp-flag = send-flag;
}

if(iproc % nxproc ==10)
{

if(xnetNWJ[ 1].temp-flag '= SEND)
send-flag = NO-SEND;

else if (xnetW[1].temp—flag '= SEND)
send-flag = NO-SEND;
}
}

/* Send Collected Results to Respective Processors */
if(send_flag == EDGE)
{

/* Send Result-Vector Elements to Appropriate Processors */
if(matrix_size > nproc)
{

remote_pe = temp_row_index%nproc;

layer = temp_row_index/nproc;

for(j=0; j < vector—layers, j++)

al

{
re_dtempl =0.0;
im_dtempl =0.0;

i{f(layer ==j)

router[remote_pe].re_dtempl = re_dtemp2;
router[remote_pe].im_dtemp1 = im_dtemp2;
1
dal
{
re—resultti] += re—dtempl;
im_result[j] +=im_dtempl;

else

{
al

{
re_dtempl =0.0;

im_dtemp1 =0.0;
}
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router[temp_row_index].re_dtempl = re—dtemp2;
router[temp_row_index].im_dtempl = im_dtemp2;

re_result[0] += re_dtempl;
im_result[0] += im_dtempl;
}
}
}

return;
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