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ABSTRACT

Lu, Ying Ph.D.,  Purdue University, August 2003.  Dense Wavelength Division
Multiplexing/Demultiplexing by the Method of Irregularly Sampled Zero Crossings.
Major Professor: Okan K. Ersoy.

The tremendous growth of Internet traffic has created increasing demand on high

capacity optical communications networks. Dense wavelength division multiplexing

(DWDM) networks has emerged as a very attractive option. Systems for optical

wavelength demultiplexing have generated much interest in research and development.

Since its first appearance, the Arrayed Waveguide Grating (AWG) has become the

mainstay for the high channel count demultiplexing applications. In classical AWG

design, the number of wavelength channels to be resolved is directly limited by the Free

Spectral Range (FSR), and ultimately the channel count of an AWG is limited by the

number of arrayed waveguides that could be fit on the substrate on which the AWG is

fabricated. The harmonic images generated outside the FSR limit additional channels

beyond FSR. In this work, a novel array waveguide grating (AWG) design method is

proposed to achieve large channel count in a single stage. The Method of Irregularly

Sampled Zero Crossings (MISZC) with a spherical wave applies non-periodic/irregular

placement of apertures of the grating structure combined with holographic techniques

based on zero crossings with a virtual spherical reference wave. As a result, the



restriction of free spectral range (FSR) for the regular AWG is eliminated.  Thus, high

channel count (>500) can be achieved in a single stage with reasonable noise level.

Theoretical derivation and analysis of MISZC is presented. Detailed simulations using

BeamPROP™ and Matlab™ tools are reported to show good agreement with the theory

and analysis.
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1. LITERATURE REVIEW

1.1 Background in WDM Communication Networks

In recent years, the tremendous growths in Internet activities such as multimedia

communications and networking have created an ever-increasing demand on network

capacity. The wavelength division multiplexing/dense wavelength division multiplexing

(WDM/DWDM) based networks have emerged as a very attractive option to gradually

upgrade network transport capacity without huge investment in laying new optical cables.

In the WDM/DWDM scheme, the existing fiber cables are used to carry increasing

number of wavelengths instead of single wavelength carried by the fiber cables in the

early 1990’s. Originally started at 4 wavelength channels per fiber in the mid 1990’s,

current systems transporting up to 128 wavelength channels in a single fiber are

commercially available (for example DWDM systems by Cisco). However, more

commonly deployed systems support 32 to 64 channels. Aggregate system capacity has

reached Tera bits/second milestone in system demonstrations by major vendors in 1998

[1-3]. Wavelength multiplexing and demultiplexing is seen as one of the enabling

technologies to implement a WDM network. It provides functions for components such

as optical amplifiers, wavelength converters, and optical cross-connects that are crucial to

the performance of an entire system. Figure 1.1 shows the evolution of optical networks

and functions of various components.

1.2 Wavelength Demultiplexing In WDM Networks

As a result of intensive research and development effort, the WDM technology is

advancing at a brisk pace. In terms of laser source and transmission technology, the

current industry record is set in a system which generated 1,022 channels using a single

laser, and transmitted all 1,022 wavelength channels on a single fiber [4]. Future systems

that can generate and transmit 10,000 channels in one fiber are envisioned. Noteworthy is
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the channel wavelength spacing in the Lucent demonstration which shrank from common

DWDM standard of 50GHz to 10GHz with the goal of below 5GHz for future

experiments [4]. The current trend is to pack more channels on a single fiber, with the

long term objective of creating a revolutionary all optical and more intelligent network

providing benefits of improved network efficiency and quality of service (QoS) in

addition to a quantum leap in system capacity. These developments have created a large

demand for high performance and flexible devices such as Wavelength Add/Drop

Multiplexer (WADM) and Optical Cross-Connect (OCC), which are able to manipulate

data paths through wavelength channels by optical means. One of the core functions

repeatedly used in these devices is wavelength multiplexing and demultiplexing. It is not

surprising that research to develop high performance wavelength demultiplexers with low

channel cross talk, flat transmission characteristics, polarization independence, high

channel count, and the ability to integrate with active components such as detectors,

modulators, optical amplifiers has attracted strong interest in both academia and industry.

The objective of these efforts is to produce a wavelength demultiplexer with 1) very high

channel count, 2) good filter characteristics for each channel such as low cross talk, flat

passing band, low signal to noise ratio, and so on, 3) ability for miniaturization and

monolithic fabrication with active devices.

1.3 Implementations of Wavelength Demultiplexers

Wavelength multiplexers and demultiplexers other than arrayed waveguide

gratings (AWG), which will be discussed separately, have been realized in a number of

technologies, such as liquid crystals, fiber Bragg gratings, thin-film, and conventional

concave gratings among others. While these devices have performed well in particular

experiments and some of them are currently deployed in practical systems, they all suffer

from various limitations; such as their limited potential for very high channel count (>64)

and inability for monolithic integration with other active devices. Furthermore, liquid

crystal based devices are free space devices; they use liquid crystal pixels as voltage

controlled diffractive phase elements to modulate the output wave phase front and to

demultiplex the input signal. Due to the limitation of available phase levels in these
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materials, a large number of pixels have to be used to bring a satisfying control of the

output phase front to achieve large channel count, which requires a complex driving

circuitry, resulting in a relatively large overall size while providing limited number of

channels. The thin-film wavelength filters are interference devices, using alternating

layers of high and low refraction index materials to produce a Fabry-Perot like resonant

cavity. They are thermally stable and easy to construct. However they tend to have wide

channel spacing, and a major obstacle is their inability to scale up the channel count. A

single device can provide usually no more than 32 channels [5]. In order to increase

channel count, these filters need to be cascaded. Then, insertion loss (loss occurs between

successive optical components) may be unsustainable. Fiber Bragg-grating filters are

made of fibers having chirped or periodically varying index of refraction along the

longitudinal direction. When the Bragg diffraction condition is met, as a result of the

variation of index of reflection, each of these individual reflection planes can cause

partial backward reflection of a particular frequency that is propagating forward along the

fiber, and they will add up in phase. This induces a strong reverse propagation of a

particular frequency component of the forward propagating input signal. As wavelength

demultiplexers, they are constructed as bandstop filters to reflect different wavelength

channels. Tunable fiber Bragg gratings are reported [6]; they can be used in N to 1

wavelength demultiplexing applications. Nevertheless, due to the two terminal nature of

the fiber, N×N wavelength demultiplexing is difficult to construct [7]. A moderate

channel count (32 channels) already requires a large number of filters to be cascaded in

addition to auxiliary couplers and optical circulators to provide the demultiplexing

function. Furthermore, the fiber grating based wavelength demultiplexers cannot function

as multiplexers as Arrayed Waveguide Grating (AWG) based devices do when the input

and output are reversed.

1.4 Wavelength Demultiplexing Using Arrayed Waveguide Gratings (AWG)

Here we give a brief description of the conventional AWG demultiplexer.

Different names such as phased arrays (PHASAR), arrayed waveguide gratings (AWG),

and waveguide grating router (WGR) all have been applied to this type of wavelength
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demultiplexer. In open literature, the name of arrayed waveguide gratings (AWG) is most

frequently used, and we follow this convention in this thesis.

The Arrayed Waveguide Grating (AWG) based demultiplexers are actually phase-

modulating gratings arranged to bring sampling and synthesis functions together. An

AWG demultiplexer essentially comprises of two usually identical Free-Propagation

Ranges (FPR)/Focusing Slabs/Star Couplers, and an array of waveguides that connect the

two focusing couplers as shown in Figure 1.2. The input coupler samples the diffracted

input wave phase front at the apertures connected to the arrayed waveguides.

Disregarding the effects of the arrayed waveguide, we assume that the sampled phase

front is transferred to the apertures connected to the arrayed waveguides in the output

coupler, and then the diffraction of these samples in the output coupler can be used to

reverse the diffraction process having occurred in the input coupler. The original input

image to the input coupler is reproduced at the output end of the output coupler. So the

two couplers function to sample and synthesize the input image, noting that such periodic

sampling and synthesis do generate multiple harmonics at the output end of the output

coupler. With proper choice of geometry such as the confocal geometry [12], the

diffraction process resembles an approximate Fourier transform relationship.  The

arrayed waveguides between the input and output couplers provide wavelength dependent

linear phase shift for the input wavefront to the output coupler so that different

wavelength inputs can be separated at the output. The linear wavelength-dependent phase

shift is achieved by increasing the lengths of arrayed waveguides linearly in spatial order.

Thus a linear displacement of focusing points with respect to their wavelengths is

obtained. Figure 1.3 presents a one-to-one comparison of the AWG demultiplexer with its

system theory interpretation.

Major advantages of AWG demultiplexers over other currently available

implementations are their compactness in size and their potential to offer very high

channel count. Furthermore, the insertion loss of an AWG does not increase linearly with

channel counts as it does for the thin-film and fiber Bragg gratings. InP-based AWG

devices with 16 channels have the typical device size of 4.0 mm × 5.3 mm [15]. Silica-

based AWG devices with cascaded stages have achieved channel count as high as 320
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and 480 [16, 17]. The AWG demultiplexers are the most promising to meet the need of

the future ultra-dense WDM systems (>1000 channels).

The original Arrayed Waveguide Grating was proposed by Smit [11] in 1988.

Since then, it has remained an active research area for more than a decade. First

wavelength demultiplexer design of arrayed waveguide grating was accomplished with

optical lens arrangement and glass waveguide with 0.63 nm resolution [14]. The AWG as

we see now was reported in 1991 [12, 13], which integrated the optical lens function on

the same silicon substrate with the arrayed waveguide gratings by star coupler

arrangements to provide the focusing function. In 1993, InP AWG demultiplexer was

demonstrated, which paved way for further miniaturization and integration with active

components [18]. Currently, AWG demultiplexers are implemented on both Silicon and

InP substrates. The silicon-based AWGs utilize more mature processing techniques, and

coupled with their larger size, they offer better cross talk performance characteristics. As

a result, the silicon based AWGs provide high channel count. In comparison to the silicon

based AWG’s, the InP based AWGs tend to have lower channel count. Only 64-channel

devices have been reported thus far, due partially to high cross talk margin [19].

Nevertheless, because of their reduced size and their potential for larger scale integration,

the InP based AWGs are posed to gain ground in the future. The typical size of InP based

AWGs is two orders of magnitude smaller than already highly integrated silicon based

AWGs, for example from several cm2 to several mm2 [15]. Furthermore, the InP based

AWGs are capable of integrating with a large number of active GaAs based opto-

electronic components, which can be grown on the InP substrate as a result of InP and

GaAs lattice structure match, whereas integration of large number of GaAs components

on silicon substrate is limited. While silicon-based AWGs up to 40 channels are

commercially available now, and higher channel count silicon based AWGs are in the

pipeline, more attention has been given to develop the InP based AWGs for

communications applications. In order to achieve high channel count for the InP based

AWGs, gains need to be made to improve cross talk margin, flatness of pass band,

channel gain variation, and polarization dependency. Some of the difficulties lie in the

fact that the fabrication process of InP AWGs is extremely stringent due to small device
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dimensions [18]. The typical InGaAsP raised strip waveguide grown on an InP substrate

has a cross section dimension of 2.60µm ×1.90µm [20]. As we see previously, in order to

increase the channel count, the sampling rate has to be increased. The size and fabrication

condition of InP based AWGs limit the number of waveguides available on the devices.

Once the number of waveguides is fixed, the size of Free Spectral Range (FSR), which is

linearly proportional to the number of waveguides, is limited [32]. Due to the diffraction

of the limited extent of the arrayed waveguide coverage at the interface of the arrayed

waveguides and the output coupler, each wavelength channel has a finite width, i.e., the

number of wavelength channels is limited given the fixed FSR. Adding more wavelength

channels only generates interference patterns. It will be helpful if there is a way to reduce

higher order harmonics and extend the FSR of a grating structure. Then, more

wavelength channels can be added.

1.4 Wavelength Demultiplexing Using MISZC

In this work, a novel wavelength-demultiplexing scheme is proposed and

investigated in detail. This scheme is based on the Method of Irregularly Sampled Zero

Crossings (MISZC), which can be used to suppress higher harmonic order diffractions

when used in grating structures. The application of this method in grating structures for

wavelength demultiplexing can in theory extend the Free Spectral Range of such gratings

to infinity. This design is used to improve conventional arrayed waveguide gratings

(AWG), which is currently the popular wavelength demultiplexer implementation. The

results show MISZC can extend advantage of high channel count provided by

conventional AWG, at the cost of increased but tolerable floor noise.

1.4.1 A Brief Description of the Method of Irregularly Sampled Zero Crossings

The proposed method of AWG design takes advantage of irregular and zero-

crossing sampling techniques [1]. In the Fraunhofer region, through the diffraction

process, the relationship between the field originated from a grating structure to the field

on object/focal plane can be closely expressed as a Fourier Transform relation. The

output wavefront generated at the focal plane is the Fourier Transform of the wavefront
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originated at the grating output. So the multiple orders of diffraction output pattern at the

focal plane can be viewed as a result of the periodic sampling of light waves by the

grating structure. In addition, quantization of phase leads to other harmonic images.

Contrary to periodic sampling of wavefront by grating structures, MISZC is a non-

periodic sampling method. It samples the output wave phasefront at irregularly placed

zero crossings. In this way, fields of higher diffraction orders are turned into background

noise. The algorithm involves two major steps: 1) Generate randomized points preferably

based on a uniformly spaced grid, 2) For each point, find the closest zero crossing point

to the  sampling point. By adjusting the randomness measure, the power in the higher

order diffractions/harmonics can be reduced to noise. This algorithm is used to modify

the existing AWG demultiplexer.

1.4.2 Applying MISZC to AWG Structure

To apply MISZC to the regular AWG structure, modulation by an additional

reference wave is useful, a spherical reference wave in our case. One consequence of

spherical phase modulation is to generate rapid phase variation and to make extremely

large number and closely spaced zero crossing points available on the phasefront.

Therefore, once a randomized point is generated; a closeby zero-crossing point can be

easily determined. The spherical reference wave or a similar wave, for example, with

parabolic phase variation, is also necessary for the removal of harmonics due to nonlinear

encoding of phase. The wavelength demultiplexing function originally provided by

uniformly spaced and linearly increasing arrayed waveguide lengths is replaced by an

irregularly spaced and probably still incorporating linearly increasing arrayed waveguide

lengths, in addition to the length changes due to the spherical reference wave. The

effectiveness of the method is shown through a rigorous derivation and numerical

simulation using both Matlab and industry standard software (Rsoft BeamPROP™). The

BeamProp simulation clearly shows the potential of this technique to extend Free

Spectral Range (FSR) of a conventional AWG.
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1.5 Organization of the Dissertation

The following is an outline of the contents of the thesis. In Chapter 2, Wavelength

demultiplexing using the method of irregularly sampled zero crossings (MISZC) is

covered. Theories of zero crossing sampling and irregular sampling are derived

separately. The theories show both zero crossing and irregular sampling methods are

effective in removing high harmonic focal points. Matlab simulation results based on

derivation of both zero crossing sampling and irregular sampling are presented and

compared with theoretical predictions. In Chapter 3, simulation of AWG using Matlab

tools is described. An in-depth discussion of general AWG simulation utility is presented,

which can be used to simulate MISZC enhanced AWG structures. It is fast and

accommodates high channel count capabilities that is provided in MISZC enhanced

AWG device. Chapter 4 covers Implementation of MISZC using Rsoft BeamPROP™

AWG layout software and simulation results as well as discussion on the Beam

Propagation Method (BPM) used for simulation; Chapter 5, a discussion of noise effect

of ISZC based AWGs and channel capacity are given; Chapter 6 provides conclusions

and future research.
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Figure 1.1 Evolution of optical networks
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Figure 1.2. Essentials of an AWG demultiplexer

Figure 1.3. System theory interpretation of the AWG structure
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2. WAVE OPTICS MODELING Of AWG DEVICES

In this chapter, an introduction to the operation of regular AWG’s is provided.

Based on the discussion of AWG, a scalar wave model of an AWG is constructed.

Simulation results of this model have shown good agreement with the commercial

software package introduced in later chapters. The motivation is to create an in-house

tool for fast trial runs. It also provides flexibility to implement design features that are

difficult to deal with in most commercial software that are based on assumptions of

regular AWG. The simulations for irregularly spaced zero crossing (ISZC) AWG design

were developed based on this model. The framework of our model leaves room for more

accurate waveguide computing routines using BPM and FDTD techniques to further

improve accuracy. Before going any further, an introduction to the operation principles of

regular AWG device is in order.

2.1 Introduction to the Operation of Regular AWG

The AWG demultiplexers are wavelength varying imaging devices. As shown in

Figure 2.1.a, an AWG device is built on semiconductor substrate; it consists of three

major parts: an input coupler (IC), an output coupler (OC), and an array of waveguides

(AW) connecting the two couplers. There are also input and output waveguides (IW/OW)

that couple the input and output light to and from the AWG demultiplexer. In general, the

input/output couplers could be filled with either air or dielectric [32]. The input/output

couplers are identical and designed using either the Rowland or the confocal geometry.

For a multi-wavelength input, wavelength demultiplexing is achieved by forming

separate focal points for every wavelength presented at the end of OC. The demultiplexed

signal is then coupled to the output transmission waveguides. The major steps in

achieving wavelength demultiplexing are the diffraction, which occurs in both couplers,

and the wavelength induced linear phase dispersion, which occurs in AW’s. These steps

are discussed in detail in the following before deriving key equations.
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Through a single mode waveguide, the multi-wavelength input signal enters and

diffracts in IC. A diffraction pattern is formed at the end of the input coupler region. The

light wave is then coupled into the AW’s at the interface of IC and AW (IC/AW). Due to

the path length difference arranged in the AW’s, such that linear phase dispersion is

generated among different wavelength components of the multi-wavelength input signal

as the light wave travels through the arrayed waveguides. In this way, the AW’s provide

wavelength dependent linear phase dispersion much like a conventional grating. At the

AW/OC interface, the light wave is launched to the output coupler and diffracted. Given

that the interfaces of IC/AW and AW/OC are mirror images of each other, the diffraction

process in OC mirrors that in IC, except the phase front at AW/OC is altered by the AW.

In fact, AW’s provide wavelength induced phase dispersion and IC/OC provide the

focusing function.

To illustrate the wavelength demultiplexing mechanism of regular AWG, we first

examine the path-lengths of the arrayed waveguides. These lengths of individual

waveguide and the constant path length difference ΔL between adjacent waveguides are

chosen in such a way that the phase retardation for the light wave of the center

wavelength is 2mπ. So the phase front of the light wave coupled to the AW’s from the IC

is reproduced exactly at the AW/OC interface for the center wavelength, assuming all

AW’s are de-coupled. As the light wave propagates through the OC region, at least one

focal point can be formed at the end of the OC, given the center wavelength is applied.

For the light waves of other wavelengths propagating through the AW’s, due to

the chromatic dispersion in the AW’s, the phase-fronts of different wavelengths are tilted

by wavelength dependent linear phase dispersion as the light wave reaches the AW/OC.

As a result, the focal points of different wavelengths will be dispersed linearly at the end

of OC. By controlling the path difference ΔL, i.e. the order of diffraction, the focal point

of each wavelength component can be determined.

The analysis of the AWG demultiplexers consists of the analysis of the three

major components of the device, the two focusing couplers and the AW’s. The

waveguides are standard single mode waveguides, which are pretty well understood. An

accurate description of the diffraction processes in the two focusing couplers is much
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more complicated. There are different proposals for the focusing-coupler geometry [32-

34]. The classical Rowland geometry is used in early AWG structures [32], later the

confocal geometry is used [33], and multiple Rowland geometry is also proposed [34].

The classical Rowland geometry was first used in concave gratings for spectroscopy [40].

It was invented by Rowland in a reflection concave grating design in 1882. The spherical

concave gratings using Rowland geometry provide the advantage of combined focusing

and dispersion function over the planar gratings. Early designs of AWG’s adopted this

geometry. The confocal geometry is most easily analyzed and provides the same

function. It consists of two spheres of same radius with centers on the surface of each

other. In the Fraunhofer diffraction region, the paraxial approximation can be applied.

The diffraction process, which relates the original image and the diffracted image on the

two spherical surfaces, can be accurately modeled by a spatial Fourier transform [23].

This greatly facilitates the analysis of focusing couplers of the AWG devices. Most

current AWG designs use the confocal geometry [12-14, 32, and 36-39]. Differing from

classical gratings, for AWG demultiplexers, the dispersion function is provided by the

arrayed waveguides, and the coupler geometry needs only to provide the focusing

function. So in this work, the confocal geometry is investigated.

Similar analyses of the AWG demultiplexers have been put forth in literature [32,

35, and 36]. They assume that the interfaces at the ends of the couplers with the arrayed

waveguides are planar. It is a good approximation; usually the ends of the couplers are

arcs of small radial angle and large radius compared to the arcs. The following is a first-

order analysis of the AWG demultiplexer adopted from a paper by Okamoto [32]. It gives

accurate focusing and dispersion properties of the demultiplexing operation, which is

then used to test the simulation results of the scalar wave model.

Consider Figure 2.1b. In the IC region, the spacing between the ends of adjacent

input transmission waveguides on the IC is D1, the separation of AW’s at the IC/AW

interface is d1, and distance measured from the center of the input side of the IC is x1. The

radius of the IC/AW interface is f1. In the OC region, the spacing between the ends of

adjacent waveguides connected to the array waveguides is d. The spacing between the

ends of adjacent output transmission waveguides is D. And the radius of the AW/OC
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interface is f. As mentioned earlier, the path differences between two adjacent AW’s is

ΔL and the phase retardation is 2mπ with respect to the center wavelength for ΔL and all

AW’s. In Figure 2.1.c, the OC is illustrated. The AW’s are located at the lower portion of

the diagram; the upper portion of the diagram shows the output transmission waveguides.

Light wave propagates from the bottom to the top of the diagram. Let us consider the

light beams passing through the ith and (i-1)th array waveguide shown in the lower portion

of the diagram. In order for the two light beams to interfere constructively at the output of

the OC, their phase difference should be multiples of 2π as they reach the output end of

the focusing coupler region. So the condition for constructive interference is,
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where ks and kc denote the propagation constants in coupler region and array waveguide,

m is an integer, λ0 the center wavelength of the multiple wavelength input and Lc the

minimum array waveguide length. Subtracting common terms from Equation (2.1), we

obtain
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When the condition kc(λ0)ΔL=2mπ or

 
m

LncΔ=0λ      (2.3)

is satisfied for λ0, the light input position x1 and the output position x should satisfy the

condition

 
f

dx

f

xd
=

1

11      (2.4)

In Equation (2.3), nc is the effective index of the array waveguide (nc = kc/γ, γ  : wave

number in vacuum), and m is called the diffraction order. The above equation determines

the output position x, given that light is coupled to the IC at input position x1. Usually the

waveguide parameters in the input and output coupler regions are the same. So input and



15

output distances are equal as x1=x. Thus for the center wavelength, output is the mirror

image of the input. Since the AW’s gives only integer multiples of 2π phase shifts, the IC

and OC essentially functions as a lens. For demultiplexing purpose, the input

transmission waveguide is located at the center of the input of the IC. Given the

symmetry, the center wavelength is located at the center of the end of the OC. For a

general wavelength λ, the dispersion of the focal position x from the focus of the center

wavelength for the fixed light input position x1 is given by differentiating Equation (2.2)

with respect to λ as

      
0λλ dn

LfNx

s

c Δ⋅
=

Δ

Δ
     (2.5)

where ns is the effective index in the coupler region, and Nc is the group index of the

effective index nc of the array waveguide (Nc = nc - λdnc/dλ), respectively. The dispersion

of the input side position x1 with respect to the wavelength λ for the fixed light output

position x is given by
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The input and output waveguide separations are |Δx1| = D 1 and |Δx | = D, respectively

when Δλ is the channel spacing of the WDM signal. Putting these relations into

Equations (2.5) and (2.6), the wavelength spacing in the output side for the fixed light

input position x1 is given by
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And the wavelength spacing in the input side for the fixed light output position x is given

by
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 Given D1 = D, d1 = d and f1 = f, the channel spacing are same as Δλin = Δλout ≡ Δλ. The

path length difference ΔL is obtained from Equation (2.7) or (2.8) as
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Comparing to Equation (2.3), we get
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In Equation (2.9.b), all the parameters on the right side are typically given, as they are

either mostly related to waveguide fabrication process or specification for a given design.

m, the grating order of the AWG device, can be determined by this equation. The spatial

separation of the pth and (p+1)th focused beams for the same wavelength is given from

Equation (2.2) as
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XFSR represents the spatial free spectral range of the AWG. The number of available

wavelength channels Nch is given by dividing XFSR with the output waveguide separation

D as
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Examining Equation (2.11), for a given AWG device to achieve high channel count, d

and D need to be small. Nevertheless, d and D cannot be infinitely small; they are limited

by the waveguide fabrication process, and are usually taken as constants. Therefore,

given the requirements of a given Nch, the input and output coupler curvature radius, f,

can be determined. Then using Equation (2.9.b), the AWG grating order can be found.

After that, _L is determined from Equation (2.3). Thus, the basic AWG parameters are

calculated. Based on these parameters and through a few more rounds of iterative

processes through simulations, all AWG device parameters can be determined and used

in layout design. More details on layout design are included in Chapter 4.

The diagram in Figure 2.2 illustrates the definition of the Free Spectral Range

(FSR) and spatial free spectral range (XFSR) for AWG devices. At the output end of the

OC, the primary order of the output is located at the center of the output arc of the OC.

The higher order harmonics are the spatially shifted version of the primary order output.

The dashed intensity profiles in red and violet showing the extra wavelength channels

added at the input. One can see from the diagram that there is overlapping between the



17

primary order and higher order outputs, when additional wavelength channels are

applied. In order to increase the wavelength channel, the higher harmonic order outputs

should be eliminated. The cause of the higher harmonic orders is related to the geometry

of the output coupler and the placement of the arrayed waveguides at AW/OC interface.

Note that the mapping of temporal and spatial wavelengths on the same set of outputs.

The wavelength span that covers the repeated spatial harmonic order is called FSR.

2.2 Scalar Wave Based AWG Simulation

In this section, we discuss a scalar wave based model for AWG simulation. The

scalar wave AWG formulation is based on a two-step process. First, consider a single

mode waveguide guiding the input light source into the input coupler. Since the single

mode waveguide supports only LP01 mode, as input wave field propagates and expands in

the IC, the field reaching the end of the IC can be modeled accurately as Gaussian. Then,

this wave front is coupled into the AW’s. The coupling is determined by the overlapping

integral between the illuminating field and the waveguide modes. Due to the size of the

couplers, far field diffraction appears in both input and output couplers, so the

illumination can be considered constant over the width of the modal field of a single

arrayed waveguide [39]. The amplitude and phase of the sampled field at the IC/AW

interface can be determined by computing the distance from the end of the input

waveguide to each AW. Then these sampled fields go through individual AW of different

path lengths. As a result, at the end of the AW’s, i.e. at the AW/OC interface, the

aggregate field is a phase-shifted and amplitude-reduced (due to losses) version of the

original Gaussian wavefront sampled at the IC/AW interface. In the second step, these

fields are then launched into the output coupler. At the end of the output coupler region, a

diffraction pattern is formed, and individual wavelengths are demultiplexed and coupled

to the output transmission waveguides. The following formulation is based on this two-

step process. The light field emanating out of the input transmission waveguide, before

being launched in to the input coupler region, is modeled as input. The output coupler

region diffraction process is modeled as a linear transform system. The image formed at

the output arc of the output coupler region is considered as output.
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2.2.1 The linear system formulation of AWG

As discussed previously, the light that travels through the input coupler can be

modeled as a Gaussian beam for each wavelength. The input to the arrayed waveguide is

ordered from 1 to M as in the geometry shown in Figure 2.3.a. Given wavelength _ and

propagation constant k, for a Gaussian beam, the field amplitude and phase that are

coupled in to the AW’s are defined as the following [40]:
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Where Ein is the wavefront that impinges on the IC/AW interface, _ represents the

Gaussian beam, the rest of the parameters are given as
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WWG is the width of the waveguide; the waist size of the Gaussian beam w0 is taken as the

effective width of the waveguide; V is the normalized frequency for the single mode

waveguide (2<V<4) [41]; ns is the refractive index for the coupling slab material; M is

the number of arms of the AWG, _in is the angular variable, the symmetry of the confocal
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configuration is the zero reference as shown in Figure 2.3.a. _in is positive above the

reference, and negative below the reference.

As the light wave propagates through the mth arrayed waveguide and emerges at

its end, we have

            ( )   1      )(),()()(1 MmmzmrEmfmE ininin L==             (2.15.a)

         ( )mm jamf ψexp)( =             (2.15.b)

       ))(( LmLk ccm Δ+= λψ             (2.15.c)

where E1(m) is the output field at the end of the mth arrayed waveguide; f(m) is the overall

amplitude and phase modulation factor induced by each arrayed waveguide, in addition

to the coupling effect from the slab region into the arrayed waveguides; φm is the

wavelength dependent phase dispersion, and am is the amplitude and phase factor

accounting for coupling and waveguide loss. In our model, since the waveguide loss is

not considered, and due to the constant irradiation of the input wave, coupling factor is a

constant for all waveguides. Therefore, am is taken as unity. kc is the propagation constant

in the arrayed waveguide.

We next consider the output coupler shown in Figure 2.3.b. E1(m) gives the initial

phase and amplitude of the Gaussian field to be launched from the mth arrayed waveguide

into the output coupler; _1 is the angular variable representing the arc on the right. There

are N output ports on the right arc as shown in the diagram, and the entire right arc is

sampled by P points. So _1 is discretized and presented as a vector with P elements.

Again, we note that P is the number of sampling points at the end of the output coupler,

and P>N is satisfied, N being the number of the output wavelength channels. E2(m) is the

field that is originated from the mth waveguide, and has reached the right arc of the OC.

The total field at the right arc of the OC is a scalar summation of all Gaussian field

launched from every arrayed waveguide. The total field at point p is expressed as,
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m
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     )()()( 12 mEpmE mε=             (2.16.b)

_m represents a diffracted Gaussian field launched from the mth aperture of width WWG on

the AW/OC interface, is given as
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E1 in matrix form can be expressed as,

  Σ⋅Ψ⋅= 01 EE              (2.19.a)

given
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Electric field E1 can be regarded as the input to the linear system, i.e. the OC. The output

of the linear system is Eout impinging on the right arc of the OC, so the system model is

given as

        Σ⋅Ψ⋅⋅= GEEout 0   (2.20)

where E0 is a constant related to the initial magnitude and phase of the Gaussian profile

emanating from the input transmission waveguide. _ is a 1 x M vector representing the

phase accumulated over free propagation of Gaussian beam in the IC before the

wavefront is coupled into M arms of the AW’s. _ is a diagonal matrix of dimension M _

M, the main diagonal representing the phase and amplitude change occurring in each of

the arrayed waveguide. All other elements of _ are zero, since all AW’s are decoupled. G

is the linear transformation describing the OC which is an M x P matrix. P is the number

of discrete sampling points used representing the right arc of the OC. We note that the

matrix formulation simulates one wavelength at a time. Eout as shown in the formulation

presents the spatial output of the AWG. When wavelength scan is applied at the input, by

recording the output power at each one of the N output ports on the right arc of the OC,

the transmission spectrum of individual output port is obtained. The transmission

spectrum of AWG is obtained by plotting transmission spectrum of all output ports in

same wavelength range. Figure 2.4.a shows how the transmission spectrum is obtained,

noting Figure 2.4.b is shown as an example of loss spectrum which gives the decibel ratio

of input to output power, is equivalent to transmission spectrum with the sign of the

vertical axis reversed.

Simulation results are shown in the following section. Nevertheless, if a mask is

need for AWG fabrication, the device layout should to be obtained. This can be

accomplished in one of the standard commercial software package BeamPROP™ in the

following chapter.
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2.2.2 Application to ISZC AWG Simulation

Implementing the ISZC AWG is very convenient in our model, _in and _1m can be

defined using parameters calculated in Chapter 3 for irregular AW placement on the

IC/AW and AW/OC interfaces; f(m) can also be substituted using calculated values

obtained in Chapter 3. The major difference between the regular AWG and ISZC AWG

design is the irregularly spaced arrayed waveguides and nonlinear increment of arrayed

waveguide lengths. When the position and length increments of each arrayed waveguide

is determined, given the flexibility of our model, the application to ISZC AWG

simulation is straightforward. Chapter 3 has shown the details of determining xi, the

initial value of xi is a random guess, using Equations (3.31) to (3.33), the correction _ can

be found to determine the exact xi location. As it is shown in Figure 3.3, once xi’s

determine the vertical coordinates of a circular curvature, the location of each waveguide

is obtained. In the scalar wave model, the spatial information of arrayed waveguides are

contained in _in(m) and _1m , which can be obtained through a simple transformation

between vertical coordinates and radial angle from center of the curvature. The

information for the lengths of each AW is determined by Equations (3.12.c) and (3.13).

Then replacing _m as

           ))(( cioiiccm rrxLk ++⋅+= αλψ    (2.21)

After these simple changes, the model can be used for ISZC simulation. In most

commercial simulation packages such as BeamPROP, the features of regular AWG,

uniform waveguide spacing and constant length increment in subsequent waveguides are

utilized to simplify design and simulation, and are hard-wired in coding. It is burdensome

to work around these settings. The scalar wave model provides a fast and easy way to test

ISZC AWG designs. Because the size of the coupler is much larger compared to the input

light wavelength, the distortions of phase of the field due to coupling between coupler

and arrayed waveguide and waveguide aperture size is negligible. The disadvantage is

that the absolute loss cannot be simulation in this model; only normalized transmission is

presented.
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2.2.3 Simulation Results

A Matlab simulation program is written using the formulation discussed in this

chapter. It is relatively simple to implement, and useful in providing quick results. To

verify the correctness of the program, several tests have been performed to simulate

standard AWG devices, and they yielded excellent agreement with the results obtained in

Section 3.1. ISZC AWG results are also presented.

As we discussed in the previous chapter, as the output light wave is focused to the

center of the right arc of the OC, the dispersion equation, Equation (2.5), describes

demultiplexing in space. We used linear relations provided by this formulation to verify

the simulation program. Equations (2.3) and (2.5) are repeated below for convenience,

m

LncΔ=0λ     (2.3)

          
0λλ dn

LfNx

s

c Δ=
Δ

Δ
    (2.5)

In the analysis we used Nc=1.47332, ns=1.45013, nc=1.45213 [39, 57], and _0=1.55_m,

f=0.8mm, m=100 d=2.96_m. The ratio of 
0λdn

LfN

s

c Δ =29.08 _m/nm is required. Results are

shown in Figure 2.5 They are in excellent agreement with our computer experiment. The

ratio from the simulation was obtained as 29.05_m/nm. The graphs are shown below.

Figure 2.5 used same conditions showing different wavelength separation. Figure 2.6 has

m=60 with same other parameters, the ratio computed being 17.50_m/nm, and the

simulation gives 17.56_m/nm. For regular AWG with 20nm operation range the

deviation from design is 0.8 _m (for m=100) and 0.6 _m (for m=60) at the output, which

can be corrected in mask generation. We also show the transmission spectrum of a

regular AWG with 300 AW’s in Figure 2.7. In Figures 2.8.a, 2.8.b, 2.8.c, transmission

spectrums of ISZC AWG designs, which are based on the regular AWG shown in Figure

2.7 with same number of AW’s (300), are presented. The channel counts have increased

from 36 for the regular AWG to 48, 72 and 96. The noise floor of an ISZC AWG is

higher than regular AWG, however, as channel count increases, as long as the number of

AW’s are fixed, the noise level varies very little. The tradeoff is that when this noise is
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tolerable, ISZC AWG can package more channels given the same number of arrayed

waveguides. More detailed discussion on channel capacity is provided in Chapter 5. In

the following section, using a simple Fourier transform relation, we can gain better

understanding of the cause of FSR and the factors affecting channel bandwidth for

regular AWG’s.

2.3 Discussion

To specify approaches for optimizing the AWG demultiplexer design, an

alternative view of the output coupler region from scalar diffraction theory perspective

may provide additional insight into the interplay of the physical parameters such as AW

spacing and overall aperture sizes of IC/AW and AW/OC interface (AW-spacing _ # of

AW’s) with device spatial characteristics such as spatial FSR (XFSR) and spot size of

individual focal points, which can be converted to the AWG frequency domain

performance characteristics FSR and wavelength channel bandwidth. The following

discussion is intended to illustrate these relations through Fourier analysis of focusing

couplers starting from the scalar diffraction theory.

For two confocal spherical surfaces, the scalar diffraction theory asserts that the

image forming on the right surface is the Fourier transform of the source field on the left

surface [23]:

ηξηξ
λ

ηξ
λ

π

ddeU
zj

e
yxU

yx
z

jjkz )(
2

),(),(
+−

∫∫=    (2.22)

In order for this result to be valid, the dimensions of the two caps shown in Figure 2.9

should be small compared to the separation distance between them. This is satisfied in the

AWG design [32, 33, 38, and 39]. This Fourier transform relation leads to a spatial

domain to frequency domain transformation, which gives rise to the diffractive harmonic

orders in regular AWG devices. Given a regular AWG, the input light entering the IC can

be considered as a point source. The expanding wavefront in the IC can be regarded as

spherical as it reaches the end of the IC. The circular arc at the IC/AW interface closely

matches the expanded input wavefront. So, the waves coupled into the AW’s have
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approximately equal phase and amplitude. Since the wavelength of the input signal

doesn’t play a major role in FSR and channel bandwidth, to simplify our discussion, we

consider only the center wavelength for now. Rigorous derivation is carried out in

Chapter 5 to address other wavelengths in detail. At AW/OC interface, light wave at the

end of each waveguide still retains the same phase, because integer multiples of 2! phase

shifts are generated in each waveguide by design (Section 2.1). Each AW launches a

Gaussian field into the output coupler. When the output coupler is considered as a linear

system, its input field is a repetition of Gaussian fields uniformly (periodically) placed in

space (its left arc). The field at the right arc of the output coupler is the spatial Fourier

transform of the input field at the left arc. The input field can be expressed as a product of

the periodic δ function and a window function together convoluted with a Gaussian

function. Using Fourier transform properties, the output becomes a periodic sinc function

weighted by a Gaussian function in frequency domain. The process is shown below.

In Figure 2.10, the spatial domain represents the input field at the left arc in

Figure 2.9; and the frequency domain represents the output field at the right arc in Figure

2.9. Compared to Figure 2.9, in Figure 2.10, the dimension is reduced from 3D to 1D. In

Figure 2.10, the output of the center wavelength channel, which is repeated at the output,

is shown. The distance between two center wavelength outputs is XFSR. The rest of the

demultiplexed multi-wavelength outputs in FSR should fall between the repeated outputs

of the center wavelength channel. From this simple analysis, we can see that the XFSR is

inversely proportional to the spacing of the arrayed waveguides at the input side of the

focusing coupler. This is consistent with the ray optics calculation [32]. So closer spacing

can result in larger XFSR, which means a larger FSR, yet this is limited by the spacing

between adjacent waveguides. The sharpness of the sinc function, which is the image of

the focusing spot, is positively correlated to the size of the window function. Therefore,

the larger the total aperture window, the sharper the focus, i.e. narrower individual

channel bandwidth, which means more channels can be accommodated. The maximum

size of the aperture window is limited by the size of the substrate the AWG device is

built. This analysis agrees with reports in the literature [33], which proposed that the

profile of the window be changed to a Gaussian instead of a rectangular, the individual
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channel profile would be changed from a sinc function to a Gaussian. Therefore the

secondary sidelobes can be reduced. This can help to lower cross talk between individual

channels. Another observation is that the shape of the Gaussian amplitude profile of each

waveguide relates to the overall passband flatness, i.e. output channel uniformity. The

narrow the waveguide, the flatter is the overall amplitude profile at output of IC, i.e. the

right arc in Figure 2.9.

Even though this analysis is restrained by the Fresnel approximation, the

observation should point to the direction of optimization. In other words, a large number

of waveguides and close spacing between them are required to achieve large channel

count regular AWG’s. The limited space on a semiconductor substrate and minimum

distance required to keep the arrayed waveguides uncoupled put a limit on the maximum

number of channels achievable by a regular AWG. By placing arrayed waveguides

irregularly, we can eliminate FSR; therefore the limit on number of wavelength channels

due to FSR can be lifted. However, simply placing arrayed waveguides irregularly may

eliminate FSR. It can also comprise the wavelength demultiplexing function of an AWG.

To achieve both objectives, ISZC has proven to be an excellent approach.
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Figure 2.1.a. A sketch of AWG demultiplexer.

Figure 2.1.b. Definition of AWG demultiplexer parameters [11].
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Figure 2.1c. Enlarged view of the output coupler [8].
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Figure 2.2. FSR of the regular AWG: the output coupler is shown here, D=20µm,

Δλ=1.6nm.
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Figure 2.3.a. A diagram of input coupler and arrayed waveguides.

Figure 2.3.b Output coupler input-output diagram.



31

Figure 2.4.a Obtaining Transmission Spectrum of an AWG.

                          

Figure 2.4.b Example of an AWG Transmission Spectrum [38].
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Figure 2.5. AWG output dispersion as a function of wavelength separation (m=100).

Figure 2.6. AWG output dispersion as a function of wavelength separation (m=60).
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Figure 2.7. An AWG 36 channel demultiplexing output in spatial coordinates.

Figure 2.8.a. Transmission spectrum of a 48-channel-0.4 nm spacing ISZC AWG.
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Figure 2.8.b. Transmission spectrum of 72-channel-0.2 nm spacing ISZC AWG

Figure 2.8.c. Transmission spectrum of a 96-channel ISZC AWG.
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Figure 2.9. The confocal geometry

                             window    periodic δ      Gaussian

Spatial domain                   × …     … …   ⊗                  =
                       
                                  w                    d (input field)

Frequency domain

         ⊗  …   …   …   ×   =

                                 1/w               1/d=XFSR       XFSR

(output field)

Figure 2.10. Spatial and frequency domain conversion in the output coupler.



36

3. METHOD OF IRREGULARLY SAMPLED ZERO CROSSINGS

FOR WAVELENGTH DEMULTIPLEXING

The Method of Irregularly Sampled Zero Crossings (MISZC) modifies the array

of waveguides sandwiched between the input and output couplers (free propagation

ranges), whose function is to couple the light in and out of the arrayed waveguides.

MISZC can be understood as a combination of zero crossing sampled phased array and

irregular sampled phased array techniques applied to wavelength demultiplexing. The

combined approach for phased array wavelength demultiplexing has its roots in

holography. Holography is a technique that reconstructs an image by recording the

interference pattern of an image and a reference wave on a hologram. When the same

reference wave is applied on the hologram again, the original image can be reconstructed.

In general, the hologram can be considered as a modulation of the reference wave by the

object wave, and the modulation produces a wavefront at the output of the hologram. The

lengths of arrayed waveguides provide effective phase modulation of the reference wave.

This modulation is designed using a zero crossing method to provide the image (a single

focal point) at the desired location. The linear increase of the lengths of the arrayed

waveguides shifts the image locations according to their wavelengths. To illustrate the

development of the MISZC, we start from fundamental holography equations and then

Ersoy’s [8, 10] equations for one-image-only derivation. This is followed by a derivation

of the dispersion relation for wavelength demultiplexing. After that, the implementation

of irregular sampling and zero crossing for wavelength demultiplexing is discussed in

more detail. The major benefit of the ISZC phased array is the elimination of higher order

diffractions. As a result, when more wavelength channels are added at the demultiplexer

input, there is no overlapping between the fundamental output and higher order

diffractions. In other words, the Free Spectral Range (FSR) related to regular grating

device is theoretically extended to infinity; nevertheless in actuality the power in the

eliminated higher order diffractions converts to noise. Therefore, there is a limit to the

number of wavelength channels the ISZC phased array can accommodate in order to keep
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the noise at a tolerable level. However, the experiments reported in later chapters indicate

that noise does not increase much when the number of channels increases. There are two

mechanisms that could generate higher order harmonics. One is the phase quantization

and the symmetry of images for a plane wave input [8]; the second is due to the regular

sampling of the input wavefront. Spherical reference wave, zero-crossings of phase, and

irregular sampling are used to eliminate multiple hologram outputs in the MISZC. In this

work, Ersoy’s results are further extended to include the effect of linear phase term

related to the lengths of arrayed waveguides. The irregularly sampled phased arrays were

studied in the past for radar applications [26-31]. The effect of eliminating high

harmonics due to irregular sampling is shown by a probabilistic analysis later in this

chapter. Monte Carlo simulations confirm this analysis. At the end, simulation results are

presented for MISZC wavelength demultiplexing. They show excellent agreement with

the theoretical analysis.

3.1 Holography Basics

Holography was invented by Gabor [21] in 1948. The objective is to construct a

desired wavefront by recording the intensity of the interference pattern of the desired

wavefront φ0 with a reference wavefront φr.

 *
0

*
0

22

0

2

0 rrrrI φφφφφφφφ +++=+=     (3.1)

The recording is then illuminated by the reference wave φs, and the reconstruction

wavefront φ becomes

 ( ) 0
**

0

22

0 φφφφφφφφφφ srsrsr +++∝     (3.2)

The first term is the intensity of the desired wavefront and the reference wavefront which

is considered as noise, the second term records φ0
*, and the third term records φ0. Gabor

chose sr φφ =  in his original work, yielding a real image and a virtual image overlapping

each other. Leith and Upatnieks used an off-axis reference wave to separate the real and

the virtue image as follows [2],

 ( )zyxjk
sr Ae γβαφφ ++==     (3.3)

where A is the amplitude, k=2π/λ, λ is the wavelength, and α, β, and γ are the direction
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cosines. Then, equation (2) can be written as

       ( ) ( )
0

2*
0

222

0 φφφφφ γβα AAeA zyxjk
s +++∝ ++     (3.4)

In computer-generated holograms, a hologram is designed by computation and coding of

amplitude and phase in an array of sampled phasefront. Given the reference wave, this

usually involves two steps: 1) deciding the sampling points used for the object and

hologram fields, 2) computing the hologram field at the sampling points given the object

field. Usually either the Fourier hologram or the Fresnel hologram is used depending on

whether a lens is used in the reconstruction process. Both types of holograms are usually

computed by using the Fast Fourier Transform, for which the hologram field is sampled

using a periodic spacing lattice structure [23]. During reconstruction, the reference wave

is modulated by the hologram, and after going through the diffraction process, the image

field is generated. Various methods have been introduced to encode the hologram [24,

25]. The nonlinear encoding process and periodic sampling of the hologram resulted in

multiple images produced in the reconstruction process [8, 10]. The ISZC was developed

by Ersoy in the late 1970’s. It was originally called one-image-only holography. The

algorithm calculates the locations of the aperture points such that the modulated reference

wave emanating from the hologram apertures add up in phase at the desired object points.

The ISZC method is non-periodic, and it is also a technique for phased array encoding.

This hologram method is investigated in the thesis under wavelength demultiplexing

context to examine the locations of possible higher order harmonics, and how they are

filtered out of the region of interest.

3.2 One-Image-Only Holography

The algorithm for One-Image-Only holography is illustrated here following the

development in the original paper [8]. If (xo, yo, zo) is the observation point, and (xi, yi, zi)

is the position of a phase-shifting aperture, the Huygens-Fresnel principle for a collection

of N apertures on a plane (z=0) leads to

              ( ) ( ) ( )
∑∫∫ ⋅=
N

i
ii

oi

oi
iiiooo dydx

r

jkr

j
zyxUzyxU δ

λ
cos

exp1
,,,,      (3.5)

where δ is the angle between the z-axis and the vector from the center of the aperture to
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the observation point whose length is roi, λ is the wavelength, and k is the wavenumber.

For small hologram dimensions, cos(δ) can be assumed to be constant. If the

phase variations on the hologram plane are also small compared to the phase variations of

exp(jkroi), the above equation can be approximated by

    ( ) ( ) ( )
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N

i
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oi
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iyxooo dydx
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Udd

Rj
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,, θ
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    (3.6)

where θi is the phase shift of the reference wave at the ith aperture.

Assume that each aperture is rectangular on the x-y plane with dimensions dx and dy, and

has a central point (xsi, ysi, 0) whose radial distance from the observation point is given by

 integer   2 =+= nnkr ioi θπ      (3.7)

using far field approximation [23,10],  the source field at the apertures can be considered

as point sources approximated by narrow sinc functions. Thus, the integral in Equation

(3.6) turns to a double summation.
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if all θi are set equal to θ, and xi, yi << roi, the sinc functions can be replaced by 1, and
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Therefore, the amplitude of the field will be proportional to dxdyN, and its phase will be θ

for a plane wave incident on the hologram at a right angle, an on-axis plane wave. If the

incoming wave has phase variations on the hologram, its phase being Φ i at each

hologram point, then Equation (3.7) should be written as

 integer         2 =+=Φ+ nnkr iioi θπ    (3.10)

We can choose the aperture locations (xi, yi), such that the resulting θi will be a constant.

An object point is then obtained since all wavefronts generated by the hologram apertures
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will add up in phase at the specified object point location. It can be written as

         ( ) 02, φπϕ +=+ nkryx oiii     (3.11)

ϕ(xi, yi) is the phase shift caused by the wave propagation from the origin of the reference

wave front (xc, yc, zc) to the hologram plate apertures (xi, yi); kroi is the phase shift caused

by the wave propagation from the apertures (xi, yi) on hologram plate to the focal point

(object point) located at (xo, yo, zo).

The most common types of reference waves are plane waves and spherical waves.

For a plane wave ( )zyxjk
r Ae γβαφ ++= , ϕ(xi, yi) is given as

            )(),( zyxkyx ii γβαϕ ++=             (3.12.a)

For a divergent spherical wave originating at (xc, yc, zc) as shown in Figure 3.1, ϕ(xi, yi) is

given by

          ciii kryx =),(ϕ            (3.12.b)

   222 )()( cicicci zyyxxr +−+−=            (3.12.c)

The spherical reference wave is an approximation of the Gaussian wavefront from

the output of a single mode waveguide. However, when far field diffraction is concerned

the approximation is quite accurate. In our work for wavelength demultiplexing, the focal

plane is located in the far field region. Therefore the divergent spherical wave is a

reasonable assumption to start in the following derivation. The geometry of one-image-

only digital holography design is shown in Figure 3.1. In the following, we examine a

phased array demultiplexing design based on the one-image-only analysis for digital

holography.

3.3 The Dispersion Relation for Zero Crossing Phased Array Wavelength

Demultiplexing

The zero crossing phased array uses the arrangement very similar to the AWG

demultiplexer. Figure 3.2.a below is a sketch of the design. A single mode waveguide is

used to bring in the multi-wavelength input. The wavefront from the input waveguide

diffracts in the free propagation region (the input coupler). Light wave is coupled to an

array of waveguides. Then, the output wavefront from the phased array waveguides goes
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through another diffraction process in the second free propagation region (the output

coupler). The major departure from the regular AWG design is the placement of the

phased array waveguides and special care with phase used for modulation. The arrayed

waveguides are not evenly spaced as in AWG design, yet their lengths still incorporate

linear increase with respect to the displacement of apertures on the interface with the

output coupler, in addition to a length perturbation due to the spherical reference wave.

The waveguide coupling aperture placements on both of the interfaces between

the arrayed waveguides and the couplers are the same. In principle this symmetry is not

necessary, and asymmetric design of waveguide placement can provide another degree of

freedom. This feature could be explored in the future work. Currently, we restrict

ourselves to identical aperture placement on both interfaces. The output field emanating

from the single-mode input waveguide can be accurately modeled by a spherical wave

originating from the end of the input waveguide. The additional consideration is the

dispersion provided by the phased array waveguides as a function of wavelength.

. There are practical obstacles to implementing the couplers as shown in Figure

3.2.a. Consider the figure shown above, in the input coupler, when the wavefront

impinges on the end of the coupler, the phase varies fast along the flat surface. The errors

in waveguide placement on the interface due to fabrication can result in large phase

errors. It is difficult to determine and correct this error. Borrowing from conventional

AWG design, the coupler’s end is changed to a circular surface matching the spherical

wave as shown in Figure 3.2.b. The spherical wave is then implemented by adjusting the

lengths of the arrayed waveguides. 

Zero crossings refer to points at which phases are zero or multiples of 2!. The

general equation for zero crossing phased array design using spherical reference wave is

given as [6]

 ( ) ( ) 0
1 2,, φπθϕ +=++ nrkyxyx oiiiii    (3.13)

where 0φ is set to equal to zero for zero crossings, k is the propagation constant in free

space, corresponding to Figure 3.1, ϕ(xi, yi) is the phase shift caused by the wave

propagation from the origin of the spherical reference wave (xc, yc, zc) to the ith aperture

(xi, yi) on the hologram. The zero crossing model in Equation (3.13) is implemented in
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waveguides for ISZC AWG shown in Figures 3.2.b, and 3.2.c. For the ith waveguide,

ϕ(xi, yi) is computed by

      ci
m
wii rkyx 1),( =ϕ              (3.14.a)

            
c

ci
ci n

r
r =1             (3.14.b)

where r1ci is the distance from the origin of the spherical reference wave front (xc,yc,zc) to

the waveguide aperture locations (xi, yi) incorporated in the arrayed waveguide for the

center wavelength _1; and kw
m is the propagation constant inside the waveguide for mth

wavelength _m, nc is index of reflection of the waveguide for the center wavelength _1.

For convenience rci is used in place of r1ci in rest of the thesis. Whenever the rci notation

may cause confusion, a special note will be given.

_(xi, yi) is the spatial dependent linear phase shift corresponding to linear length

increase in subsequent AW’s designed for regular AWG’s. For the ith waveguide;

therefore we have,

      ( ) αθ i
m
wii xkyx =,            (3.14.c)

 li is the length of the ith waveguide as follows:

 coiciii Lrrxl +++= α            (3.14.d)

_ is a constant, xi is the displacement of the ith coupling aperture on the interface between

the propagation region and the waveguide. k1roi is the phase shift caused by the wave

propagation from the apertures (xi, yi) to the focal point (object point) located at (xo, yo,

zo), where roi is the distance from the interfacing aperture (xi, yi) to the focal point (xo, yo,

zo) in the second free propagation region. They are given by
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So applying Equation (3.13) for the center wavelength _1, for which the apertures

locations xi are designed, ignoring the common waveguide length Lc, we can write

       πα nrkxkrk oiiwciw 2111 =++   (3.16)
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Substituting roi and rci in the above, and effective index inside waveguide nc=kw
1/k1, we

get
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The terms ocF  represent constant phase, and can be neglected without changing final

conclusions. Let

    δα =cn         (3.18)

Then, Equation (3.17) for general wavelength _m can be simplified as

 m
co

i

o

o

c

c
ii n

zz

x

z

x

z

x
xx λδ =








++








+−

11

2

2

  (3.19)

Now we apply Equation (3.19) to wavelength _, and __ to compute the dispersion at the

output focal plane where wavelength demultiplexing occurs.
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where xo′ and zo′ constitute the location of the new focal point. xiδ is the linear phase shift

related to the ith waveguide and placed at ith aperture location xi. Since the image

wavefront at distance zo away is close to a Fourier transform of the original object wave.

A linear phase-shift with respect to spatial variable of the object wave produces linear

displacement in the spatial frequency domain after Fourier transform. According to the

diffraction theory, the image plane spatial variable is a scaled version of the spatial

frequency variable of the object plane. If f(x) is a spatial function in the object plane and

x is the spatial variable, F(fx) is the corresponding Fourier transform. Applying a linear
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phase modulation proportional to the spatial variable to the object wave, the object wave

becomes f(x)exp(jδx). Taking Fourier transform, we have FT{f(x)exp(j_x)} = F(fx-_/2!),

And fx is the spatial frequency variable of the object wave as well as the scaled spatial

variable of the image plane y, 
o

x z
yf λ= . If _ is the linearly dependent on wavelength,

the task of wavelength demultiplexing is accomplished on the image plane. A more

detailed treatment is provided in Chapter 5.

After taking the ratio of the two equations in Equation (3.20), we have
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In Equation (3.22) the location of the apertures (xi, yi) are fixed. The only way to satisfy

this equation is to equate the corresponding terms of powers of xi. So we have
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Solving the above system, we obtain the new focal point (xo′, zo′) as
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From the above derivation we see that the focal point location zo’ is very close to

the original zo This indicates that the focal points for different wavelength components

are focused relatively close in z direction i.e. on the same z-plane, which is desirable for

wavelength demultiplexing. Since the wavelength induced dispersion is proportional to x,

the output is demultiplexed in x-axis according to wavelength. The dispersion

relationship is given as
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3.4 A Practical Algorithm for the Irregularly Sampled Zero Crossing Phased Array

Wavelength Demultiplexing

Zero crossings are points on the interfaces of IC/AW and AW/OC, through which

the light wave of the center wavelength accumulate phases of integer multiples of 2!.

This algorithm starts with an initial guessing point, after that the phase error is calculated,

then using the phase error, the true zero crossing is determined by calculating the

displacement from the true zero crossing to the initial guessing point. There are three

major steps for a practical implementation of MISZC wavelength demultiplexing. Firstly,

an array of points is placed on a uniform grid. Secondly, a vector of random numbers is

generated to give a shift to each point placed on the grid, and these points are used as

initial guesses for zero crossings. Thirdly, using a computation algorithm to find a

correction for each guessing point and then, add the correction to the respective point.

Both the design algorithm and the computation algorithm are discussed in detail in the

following.

3.4.1 Design algorithm

The three major steps are illustrated in the following diagrams. In Figure 3.3.a, a

series of points xi’s are placed on a uniform grid with a fixed separation of _x. In Figure

3.3.b a series of random numbers ui’s, uniformly distributed between 0 and 1 are

generated. The ui’s are multiplied by _x and added to xi’s. So the initial estimates for zero

crossings can be written as,

       η⋅Δ⋅+⋅Δ= xuixx ii   (3.26)
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where

η: controls the degree of randomness,  η∈(0,1)

i is an integer, i = 0, 1, 2, 3, …, N-1;

N is the number of zero crossing points;

ui is a random number uniformly distributed in (0, 1).

In Figure 3.3.c the correction Δi’s are found and added to xi’s. The corrected zero

crossing coordinate is xi′. So we have,

             iii xx Δ+=′    (3.27)

where Δi is the correction term for the ith estimate xi.

3.4.2 Calculation of the coordinates for sampling points

To calculate the correction term Δi, using Equation (14) and (16.b), considering

the xi as the guessing point, and xi′ as the zero crossing point, we can write

  π
λφλδ 2
i

oiici nrxr +=++    (3.28)

            λδ nrxr oiici =′+′+′    (3.29)

where r′ci, r′oi are prime version of rci and roi replacing xi with xi′.

Since xi is the guessing point, the residue phase at the focal point for the

wavefront propagate through xi is φi. However, the xi′ is the zero crossing so residue

phase is a constant φ0 for all zero crossings xi′. Let φ0 = 0. The residue phase φi can also

be found simply. Subtracting Equation (26) from (25), we have

        Bxrrrxr ioicioiici −′+′+′=++ δδ    (3.30)

where π
λφ
2

iB −= .

Simplifying Equation (27) and squaring both sides yields

        ( ) ( )22 Brrrr oicioici ++Δ−=′+′ δ    (3.31)

We expand r′ci and r′oi as follows:
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We write this equation as a polynomial in powers of Δ as
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When Δ is solved using Equation (3.34), the correction to the zero crossing estimates is

found, and the true zero crossing is located.

3.5 Elimination of High Order Harmonic Diffractions

Having discussed the algorithm of ISZC AWG design, in this section, we show

the effectiveness of the ISZC AWG in eliminating higher order harmonic diffractions

through a rigorous derivation. As it is mentioned at the beginning of this chapter, the

major benefit of ISZC phased array is the elimination of high order harmonic diffractions.

This feature enables ISZC modified AWG to provide more wavelength channels. The



48

modification only makes slight adjustments in the placement and length of arrayed

waveguides. The cost of having an infinite FSR is the increased but tolerable noise level,

since the power in the eliminated high order diffractions is scattered as background noise.

As a result, given almost identical physical size of the modified AWG and original AWG,

the modified AWG can add considerably many more wavelength channels until the

output intensity drops at the edge of the output spectrum due to diffraction limit. There

are two mechanisms that produce high order harmonic diffractions in AWG devices. The

first cause is the nature of the zero-crossing method rooted in hologram, which can cause

multiple output images when a plane wave is used as the reference wave to encode the

hologram. The origin and solution to multiple output images generated in the hologram

image reconstruction is discussed in detail by Ersoy [8]. The spherical reference wave

and zero-crossings of phase are used to shift the high order diffractions away from the

fundamental image in hologram image reconstruction. Around the location of the

fundamental image, the high order diffractions are scattered as background noise. The

second cause is the periodic sampling of the input wavefront by the linearly spaced

arrayed waveguide placement. The sampling theory indicates periodic sampling produces

repetitions of desired spectrum at reconstruction. Irregular sampling eliminates higher

order diffractions of this nature by turning them also to background noise. Irregular

sampling is also known to generate better quality beams with reduced grating lobes and

lower side lobe levels [26-31]. Closed-form analysis on random sub-array grating power

is presented in [28]. The grating power is found to be reduced compared to the uniformly

spaced arrays. A Green’s function based treatment is presented for the unequally spaced

arrays on circular curvatures [26]. In this chapter, a probabilistic analysis is carried out

for the irregularly (randomly) placed array elements with uniform distribution on a

circular arc.

3.5.1 Eliminating Higher Order Diffractions By Zero Crossing Sampling

The origin of the higher order harmonics in zero-crossing sampling hologram

with a spherical reference wave is a result of spatial symmetry on both sides of the

hologram [4, 5], in that there are points that can be found satisfying the phase matching
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condition, i.e. there are certain spatial locations that wavefront emanating from all

apertures add up just as those designated focal points. These points tend to exist when the

designated focal points are far away from the hologram, because further away from the

hologram the phase variations among closely spaced points in the far field become slow,

so that it’s easier for phases to add up forming higher order harmonics. In the following,

we closely examine the higher order harmonics when the multi-wavelength reference

wave is applied to the grating assisted zero-crossing sampling hologram including a

spherical reference wave.

From Equation (3.19), the focal points of high harmonics occur when the

hologram equation satisfies
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where (xo_, zo_) is the focus of higher harmonics. Similarly to the procedure that gives

the focal points for different wavelengths, we take the ratio of Equation (3.37) and the

Equation (3.19) for the single wavelength. Thus we can write
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Solving for xo′ and zo′ in a similar fashion, we obtain the higher order harmonic focal

points for multiple wavelengths.

         
)1(1

1

−
≈

+
−

=′
m

z

z

m

z

m
z c

oc

o             (3.39.a)

 

( )

oc

c
c

cc

o

o

oc

c

c

o

o

o

 z  z

z
z

x

m

z

z

x

zz

m

z

x
m

z

x

x

<<









−−

−
≈

+
−









−−−

=′

given 

111

1

δ

δ

           (3.39.b)



50

From the above equation, we can see a significant move of the focal points of

high order diffractions in z direction, as zo_ quickly shrinks as harmonic orders increase.

This indicates the conversion of higher harmonic diffraction power to background noise

in the image plane.

3.5.2 Eliminating Higher Order Diffractions By Irregular Sampling

The irregular phased array has been investigated in the past three decades in the

radio and microwave regions. The optical regular phased array has been investigated in

recent years. In regular phased arrays, in order to avoid multiple grating orders the

spacing between the phase elements are required to be less than half the wavelength. For

optical waves this requirement poses some serious challenges in fabrication [31]. The

irregular phased array has been proposed to lessen the requirements on spacing between

phase elements while still avoiding higher order grating lobes (harmonics) [18]. As

alluded in the previous chapter, the higher order harmonics power in regular AWG’s is

caused by the periodic sampling of the wavefront through regular spacing of sampling

points. Irregular sampling destroys the periodicity in the sampling process so that the

higher order grating lobes are suppressed. The effect of irregular sampling has been

known for sometime. There are iterative methods based on Monte Carlo simulation and

analytical approaches to characterize the main grating lobe [27], but no detailed

derivation has been found in the literature addressing the power of high order harmonics.

In the following we present a detailed analysis of the effects of irregular sampling on

higher order harmonics.

The location of the phased array elements will be assumed to be on a circular arc

as shown in the diagram below. These elements are considered as point sources with

same initial phase. The locations of the phased array elements X0, X1, X2…XN, are

specified by the radial angles θ0, θ1, θ2…, and θN with respect to the center of the circle.

These angles are randomly arranged. This assumption captures the essence of the

diffraction process in the output coupler of an ISZC AWG. The locations of the phased

array elements are at the end of the waveguides, and the length of waveguides can be

designed to produce desired phase at their output. In the derivation, we first set up a



51

randomness measure η, which describes the degree of randomness for a particular

selection of phased array element locations under examination. Then, we calculate where

the high order harmonic peaks are located. Finally we show that the power at these

locations vary as a function of the randomness measure _. At the largest degree of

randomness, the peak power in high order harmonics is proportional to N. At the lowest

degree of randomness, i.e. uniformly spaced phased array, the peak power in harmonics

is proportional to N2. The result shows the coherence of the phased array output field is

related to the degree of randomness in the placement of the phased array elements.

The arrangement is shown in Figure 3.4. The placement of the phase elements is

not asymmetric. The arrangement can be generalized by rotating the coordinate system

with respect to point O . The set up in Figure 3.4 is used to ease mathematical

formulation. The circular arc presents the AW/OC interface. Since the output field around

and beyond the y-axis is in the far field region, the focus in the far field has a line pattern.

So the higher harmonic would also be lines crossing the y-axis. By finding field intensity

across the y-axis, we can examine all harmonic peaks. Same as for a regular AWG, the

primary focus, i.e. the zeroth order harmonic of the phase elements is the center of the

circle. The θn’s are given as

         ),0( θηθθ unn ⋅+=    (3.40)

θ : a constant;

n : 0, 1, 2, …, N;

η: randomness measure, 0 ≤ η ≤ 1;

u: a uniformly distributed random number, 0 ≤ u ≤ θ.

Therefore, as η→0, θn is uniformly spaced on the arc; as η→1, θn has the largest degree

of randomness by the above definition.

Let P(y) be the total field along y-axis resulting from wave propagation from the

phased array. We can write
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φn is the initial phase of the nth phase elements, as discussed previously. These phases can

be adjusted to be integer multiples of 2π by giving the proper lengths of the waveguides

for AWG applications. rn is the distance from the nth phase element to the point (0,y). So,

         ∑
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n

yjkrneyP
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)()(     (3.42)

At y=0, we have P(0) = N.

As shown in Figure 3.5, to find rn(y), we can write

     22 )cos()sin()( nnn RRyyr θθ ++=    (3.43)

Assuming R>>y, sin_n<<1, applying paraxial approximation [23], we have
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We define
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From Equation (3.44.b), we can write Pn(y) as
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Now we can calculate the locations of high order harmonic peaks. Consider

uniform spacing case, θn =n⋅θ. With η=0, and for small θn, we have
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Considering the mth order harmonic, we get

 πmyQyQ nn 2)()(1 =−+    (3.48)
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Using Equation (3.47), and (3.48), and solving for y; the location of the mth order

harmonic peak Ym is expressed as

          
θ
π
k

m
Ym

2
=    (3.49)

To calculate the power at the peak of the high order harmonics for an irregular phased

array, the total field at Ym is given as
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The power at Ym can be written as
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where    ( ) [ ]( ))(expexp)( θηθθ imimmi uijkYjkYY ⋅+⋅==Π    (3.52)

Assuming the random number un is identically and independently distributed, and taking

the expectation operation inside the summation we have
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Substituting 
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= in the above equation, we have
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Defining
x

x
xc

π
π )sin(

)(sin = , we can write
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        [ ] [ ] )(sin)()( 2* ηmcYEYE mjmi =ΠΠ .   (3.55)

So the power at the mth harmonic peak is

     [ ] )(sin)()( 222
ηmcNNNYPE m −+= .   (3.56)

As η→0, the phased array is uniformly spaced; the mth harmonic power is given

as the coherent vector sum of N phased array elements, and [ ] 22
)( NYPE m = . As η→1,

the spacing of phased array elements has the largest degree of randomness; the resulting

power for the mth harmonic is the sum of incoherent power addition of N phased array

elements, and [ ] NYPE m =
2
)( .

3.6 Simulation Results

A series of simulations are performed using Matlab to test the correctness of the

zero crossing sampling using spherical reference waves, the dispersion relation for multi-

wavelength inputs, and the elimination of high order harmonic powers by irregularly

sampled phase arrays. A more detailed discussion of simulating the ISZC AWG in

Matlab is presented in the following chapter. The results show very good agreement with

theory.

3.6.1 Formation the Focal Points

In section 3.3 we discussed the focal point location of zero crossing phased array

design using paraxial approximations [8]. This method can be used to eliminate multiple

harmonics due to symmetry caused by the plane reference wave and the quantization of

phase at the apertures and was confirmed with experimental results [6]. However, in the

experiments the focuses were formed 10cm away from the hologram. In AWG design,

the focuses are to be formed in the nearer field. So a set of simulations is performed to

test if the image points can be generated in the nearer field region and the deviation of the

placement of these image points compared to designed location. The simulations below

show good agreement with the theory. The images are able to form as shown in Figures

3.6 and 3.7, and the deviations are indeed negligible as shown in Figures 3.8, 3.9.a, 3.9.b,

Tables 3.1 and 3.2. The source of these errors is the spatial quantization used in
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simulation. The spatial resolution is chosen to be 0.2_m, which is comparable to current

fabrication technology. Figures 3.8, 3.9.a, 3.9.b, and 3.9.c show the formation of the

focuses with changing displacement from the input. Figure 3.8 shows a very near field

image formation at 1mm away from the input. Note a dark red dot very close to the left

hand side of the Figure. In medium to far field conditions of 5mm and 20mm, the images

are brighter and begin to be stretched out. This is largely due to phase variation in the

field in the longitudinal direction. In the near field the phase varies much faster than far

field, so the focuses are more stable and tends to stretch out in longitudinal direction. The

x-axis is in vertical direction, which is the transverse direction, and the z-axis is in

horizontal direction, which is the longitudinal direction (as shown in demultiplexing

output in Figures 3.8, 3.9.a and 3.9.b. So the x-axis deviation is compared to the

dispersion of wavelength spacing used for regular demultiplexing (the dispersion

relationship is shown in the following), which is indeed negligible. Precise placement of

image points allows the demultiplexing operation to be performed. The field intensity at

the designed location is compared to the field intensity measured at the actual image

point. The change in intensity due to shift of image point is also very small. This

simulation validates that the method of One-Image-Only hologram can be adapted to

AWG design.

3.6.2 Zero crossing dispersion relation

The dispersion relation is derived in Equation (3.25); it is repeated below for

convenience.

    







−

′
Δ

−≈−=Δ
c

cc
o z

xn
zxxx δ

λ
λ

0
'
0    (3.25)

Throughout this simulation, __, xc, and zc are fixed (xc= zc=3.5mm, __=1550nm). In

Figure 3.10, the line shows the spatial dispersion of two images formed due two input

waves of varying wavelength separation. The linear factor _ is fixed (_=30) while each

line represents a different zo. The measured dispersion factor is compared to the

theoretical values in Table 3.3. Similarly in the Figure 3.11, dispersion relationship is

shown over the selected _ values, while zo is fixed at 45mm. A comparison with the
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theoretical dispersion factor is also made in Table 3.3. The simulation shows excellent

agreement between theoretical and simulation dispersion factors.

3.6.3 Output intensity in harmonics for irregularly spaced phased array

As shown in Equation (3.56), the intensity of higher harmonics decreases as the

randomness of the phased array increases. The intensity at the peak of a harmonic is

given as

 [ ] )(sin)()( 222
ηmcNNNYPE m −+=    (3.56)

Figure 3.12 shows the intensity of 1st and 2nd harmonics vs. the change of randomness

measure _. _=1 indicates maximum degree of randomness defined in section 2.5.2, _=0

indicates minimum randomness i.e. uniformity in phase element spacing.

3.6.4 Discussion

The simulations shown in this section validate the theoretical results obtained

from derivation, the forming focuses by zero cross sampling of spherical reference wave,

demultiplexing of multi-wavelength inputs, and elimination of harmonics using

irregularly sampled phased arrays. The tiny errors are caused by spatial quantizations in

the simulations. This quantization error would also be present in actual fabrication

process. The spatial resolution is chosen at 100nm. As for the ISZC AWG, electro-

magnetic field propagation is in different semiconductor media and propagation distances

are shorter. Propagation in single mode waveguides can be better approximated by

Gaussian beams. In the following chapter, a Gaussian beam based model for ISZC AWG

simulation is discussed.
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Figure 3.1. Geometry of one-image-only digital holography

with spherical reference wave.
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Figure 3.2.a. Zero crossing phased array wavelength demultiplexing.

Figure 3.2.b. Zero crossing phased array wavelength demultiplexing with virtual

spherical reference wave implemented in waveguides.
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Figure 3.2.c. Corresponding phase terms implemented in the ith arrayed waveguide.

Figure 3.3.a. The uniform grid.
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Figure 3.3.b. Initial estimate for zero crossings.

Figure 3.3.c. Zero crossings determined.

Figure 3.4. Illustration of irregular phased array on a circular arc.
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Figure 3.5. Geometry of rn(y)

Table 3.1 Percentage difference of x-axis deviation to dispersion at selected wavelengths.

                __
Zo 0.4nm 0.8nm 1.2nm 1.6nm

20mm 2.4% 1.2% 0.8% 0.4%

40mm 1.8% 0.9% 0.5% 0.3%

80mm 0.8% 0.4% 0.2% 0.1%
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Table 3.2 Intensity variation of designed image points and simulation results.

Zo (mm) 5 10 20 30

Intensity variation % 4.3% 1.2% 1.1% 1.1%

Figure 3.6. Focal point deviation in the near field.
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Figure 3.7. Focal point deviation in the far field.

Figure 3.8. Near field focal point (1mm).
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Figure 3.9.b. Near field focal point (10mm).

Figure 3.9.c. Mid-field focal point (20mm)
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Figure 3.10. Dispersion relation for selected image planes.
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Figure 3.11. Dispersion relation for selected _ values.

Table 3.3 Dispersion factor with fixed _ and fixed zo

Dispersion slope Dispersion slope

_ Simu. Theo. % diff. Zo Simu. Theo. % diff.

40 0.958E6 1.13E6 15.4% 20mm 0.238E6 0.274E6 13.1%

60 1.447E6 1.71E6 15.5% 40mm 0.638E6 0.548E6 28.3%

80 1.939E6 2.29E6 15.3% 80mm 0.983E6 1.096E6 10.3%

100 2.437E6 2.87E6 15.2%
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Figure 3.12.  Monte Carlo simulation of 1st and 2nd Harmonic peak intensity vs. random

measure.

4. IMPLEMENTATION OF ISZC PHASED ARRAY USING

BEAMPROP AWG UTILITY BY RSOFT

The ISZC phased array demultiplexing design is implemented using the AWG

utility included in the BeamPROP™ professional simulation package. In this chapter, we
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first discuss the implementation of a spherical wavefront modulation related to zero-

crossing sampling, wavelength dependent linear phase change as well as irregular

sampling by adjusting lengths and placement of arrayed waveguides. Then the layout of

ISZC phased array using BeamPROP™ AWG utility, and transfer of ISZC design in

BeamPROP™ simulation are presented. An explanation of the Beam Propagation

Method (BPM), which BeamPROP™ is based on, is given. Finally we show the

simulation results of ISZC modified AWG in comparison with the original AWG.

4.1 Waveguide Implementation of ISZC Phased Array Wavelength Demultiplexing

4.1.1 Overview and motivation for waveguide implementation

First we look closely at the phase evolution of the input wavefront in a regular

AWG. Observing the input coupler in a regular AWG, we see the input field is coupled to

the input coupler via a waveguide; the field then propagates and expands in the coupler

until the wavefront reaches the output coupling apertures ready to be coupled to the

arrayed waveguides at the end of the input coupler. Assuming all waveguides are single

mode, the field emerging from the input waveguide is approximately TEM00 Gaussian

mode [44]; in most cases the coupler is sufficiently large compared to wavelength of the

input field [33, 15]. Then as the field reaches the end of the coupler, its wavefront can be

considered a spherical wave.  The end of the input coupler is shaped to be circular (in 2D)

to match the expanded spherical wavefront. The input field is then coupled to the arrayed

waveguide by apertures placed uniformly at the end of the input coupler. So the initial

phases of the wavefronts inside each arrayed waveguides are almost identical. As these

wavefronts propagate through the arrayed waveguides, each alters its phase depending on

the length of the waveguide it travels in. Since the lengths of the arrayed waveguides

increase in a linear fashion, a linear phase change proportional to spatial displacement is

added to these wavefronts at the output of the arrayed waveguides. All the wavefronts are

then coupled to the output coupler. As each wavefront emanates from the coupling

aperture placed on the interface between the arrayed waveguides and the output coupler,

each of them goes through a diffraction process in the output coupler. The resulting

interference pattern accomplishes the focusing and demultiplexing functions.



69

Following the above discussion, we observe the initial phases are the same in all

arrayed waveguides, and then a linear phase shift is accumulated as the waves travel

through the entire lengths of the arrayed waveguides. The key in implementing the ISZC

method on AWG is to introduce a spherical wave modulation to the input wavefront in

the arrayed waveguide section, which is done by properly adding a stretch of waveguide

for each individual AW. There are two justifications for this modulation. Firstly, as we

have seen in the previous chapter, the spherical reference wave can remove high order

diffractions due to discretization of phases in zero crossing sampling. Secondly, the

additional spherical wave makes random placement of AW’s on the AW/OC interface

possible. To modify the regular AWG with ISZC method, three constraints are needed.

The first two are zero crossing phase condition and irregular sampling for the placement

of the phase elements, i.e., coupling apertures, on the AW/OC interface.  The third

constraint is the linear phase change from waveguide to waveguide, which induces

wavelength related phase dispersion. The regular AWG already satisfies the zero crossing

condition and the linear phase dispersion requirement. If randomness of the placement for

the phase elements is introduced, the zero crossing phase matching and the linear phase

dispersion cannot be satisfied simultaneously. The parts of the total phase shift are shown

in Figure 4.1. In Figue 4.2, the phase elements are placed on circular arcs at the IC/AW

and AW/OC interfaces, and all phase elements are the same distance away from the

symmetric focal points for the two circular arcs. To illustrate this point, from the phase

relation given in Equation (3.29), we have

+=++ λδ nrxr oiici  constant     (4.1)

In this case, without the spherical wave, we have a plane wave input as argued

previously: rci = constant; constant distance to focal points: roi = R, _ is the center

wavelength, eliminating the constants the equation becomes

λδ nRxi =+      (4.2)

n = 1, 2, 3…; i = 1, 2, 3, …,N; α, R are constants, therefore the location of phase

elements (end of arrayed waveguides) xi’s cannot be random.
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Introduction of spherical wave modulation generates additional phase fluctuation

across the arrayed waveguides. This enables us to find zero crossing points while still

including the spatial linear phase modulation. So the equation becomes

+=+++ 0λδ nRrxr oiici constant     (4.3)

Additional lengths of rci and roi can be stretches of waveguides added to each arrayed

waveguide, so that xi can assume random positions.

4.1.2 The modification of regular AWG

In order to modify a regular AWG with ISZC method, the placement and length

of the regular AWG arrayed waveguide should be altered. The placement of the phase

elements follows the ISZC design algorithm described in detail in Chapter 3. The

algorithm involves two steps: laying out a uniformly spaced angular grid and then

introducing a random shift on each grid point within the range of a unit step length. The

length of individual arrayed waveguide is controlled by three factors: 1) spherical

modulation, 2) linear phase modulation, and 3) zero crossing phase matching. Note the

arrayed waveguide length calculation and phase element placement are satisfied

simultaneously.  When the spherical modulation is properly chosen (the radius of the

sphere is not too large), the zero-crossing phase matching and irregular sampling are

decoupled, due to the fact all phase elements have the same distance to the focal point,

and ZC phase correction is done by adjusting the length of the individual waveguide.

Therefore the calculated location is both a random point and it also satisfies zero-crossing

phase match condition. We note that the zero-crossing points can also be generated by the

shifting of position of the aperture as discussed in Chapter 3.

The overall design procedure to implement ISZC technique on regular AWG

requires two major steps: 1) setting up the random points, and 2) calculating the

compensation to the random points for zero crossing phase condition. Since Step 1 has

been illustrated previously, this discussion is centered more on Step 2.

Step 1) Setting up the random points. The geometry is shown in Figure 4.2 above.

The random points are on a circular curvature, and their coordinates θn’s are given as:

        ),0( θηθθ unn ⋅+=      (4.4)
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θ : a constant;

n : 0, 1, 2, …, N;

η: randomness measure, 0 ≤ η ≤ 1;

u: a uniformly distributed random number, 0 ≤ u ≤ θ;

R: radius of the circular curvature.

Therefore, as η→0, θn is uniformly spaced on the curvature; as η→1, θn has the largest

degree of randomness. The coordinates of the random points are then transferred from

polar coordinates to Cartesian coordinates.

Step 2) Calculating the individual waveguide length. The length of each arrayed

waveguide is made up of three sections as shown in Figure 4.3, spherical wave

modulation Ls, linear phase dispersion Lp, and zero crossing phase matching Lz. They are

given in the following:

       rRL ns −′= θcos      (4.5)

       ns RRL θcos′−′=      (4.6)
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)])(mod[( λλ psz LLL +−=      (4.9)

Equation (4.5) and (4.6) are for divergent and convergent spherical wave respectively; r

is the distance from the center of the virtual spherical wave away to the virtual phase

plane; Xmax is maximum width of the coupler; xi is x-axis coordinates for random points;

Lz is the length that makes total waveguide length (Ls+Lp+Lz) multiples of wavelength λ,

so the zero crossing phase matching is satisfied.

4.2 ISZC Modified AWG Layout and Simulation Using BeamPROP™

BeamPROP™ is a Beam Propagation Method (BPM) based waveguide simulation

package. BPM is the most widely used numerical method for integrated optical devices

simulation and is the method of choice for most commercial software. There are many

benefits of the BPM. One is its simplicity in concept and implementation. It has good
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efficiency. The computation complexity is linearly proportional to the number of grids in

the computation domain. It is also easily adapted into complex geometries for different

devices. The BPM also readily includes the guided and scattering fields, as well as mode

coupling and conversion. Finally, the BPM is also a very flexible method. On the other

hand, the basic BPM assumes scalar and paraxial field conditions as well as lacking

capacity to account for backward reflection. In BeamPROP™ Version 4.0, with some

extension of the basic BPM, the vector field and nonlinearity effects can be included. The

paraxial field condition can also be relaxed to a more general wide-angle implementation.

The bidirectional algorithm can be implemented to account for back reflection waves.

The AWG Utility is part of the BeamPROP™ package. It has a CAD layout program,

which generates waveguide layout for the standard AWG’s. There is also a script

program that generates script files to simulate the AWG structure using the core BPM

program.

4.2.1 Overview of regular and ISZC modified AWG layout and simulation

The procedures for regular AWG layout and simulation are illustrated in the

BeamPROP™ AWG Utility Version 2.1 [45]. A brief description of both procedures is

presented here for later discussion to extend the design to generate the ISZC modified

AWG layout and simulation. BeamPROP™ simulation package uses the WDM Router

Layout File option under the Utility pull down menu in the main BeamPROP™ window

to generate related layout files. The parameters of the number of Wavelength Channels,

number of input/output ports, and number of Arrayed Waveguides, Center Wavelength,

and Channel Spacing should be provided in the dialog box. (A step-by-step procedure can

be found in detail in the BeamPROP™ AWG Utility, Chapter 4). The layout files for a

desired regular AWG design can also be generated by using command line to run the

executable of the stargen.c CAD layout program. The modified AWG layout design is

accomplished by modifying the CAD program. The generated layout files are

<meta-prefix>in.ind input start coupler

<meta-prefix>out.ind output star coupler
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<meta-prefix>full.ind full layout with “round” array turn

<meta-prefix>flat.ind full layout with “flat” array turn

The star coupler files are used for simulation; the full layout files are used for mask

generation. Based on the completed AWG layout design, a script file is generated using

the WDM Router Simulation option under the Utility pull down menu. The script file

calls the various executables and handles data movement among these programs. Then by

selecting the Run Script option under the Run  pull down menu in the main

BeamPROP™ window; simulation of the designed AWG can be processed. When the

simulation is complete, a plot showing the results in wavelength axis is displayed.

The ISZC enhanced AWG design layout is carried out by a modified CAD

program, which is run from a DOS command window in Windows PC environment.

Using the ISZC modified layout files; the script for processing the simulation is

generated in the same way as regular AWG simulations. The execution and result of

simulation also follow the same procedure as regular AWG simulations. The key to

successfully implement the ISZC in AWG design is to modify the layout design

equations provided in the AWG Utility Version 2.1, and incorporate them into the CAD

layout program. In the following, the regular AWG layout is discussed, and then, it is

followed by an extension to incorporate the ISZC features.

4.2.2 Layout design for regular AWG

Given all the required parameters of a regular AWG design, two types of layout

geometries “flat” and “round” can be generated by the stargen.c layout program. Since

the AWG Utility Version 2.1 manual only provides the “round” layout design, this

discussion is limited to the “round” layout. Both layouts are shown schematically in

Figure 4.4. The following variables are important with respect to the full router layout:

A central angle of star couplers with respect to z axis
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Rin/Rout radius of input/output waveguide bends

Rz minimum radius of arrayed waveguide bends

Lg length along z of arrayed waveguide structure

Lextra additional length added to Lg

Lin/Lout straight length of input/output waveguides

Sin/Sout lateral separation if input/output waveguides

The constraint equations for the option 1 are given as follows

                                zLi + (zAai*zRi)  -  (A0*Rz) = (i-1)*dL/2   (4.10)

         zRi*sin(zAai) + (Rend + zLi)*cos(zAai) = Rz*sin(A0) + Rend*cos(A0)   (4.11)

The definitions of the variables are illustrated in Figures 4.5 and 4.6. Both figures show

half of the Full Layout configuration shown in Figure 4.4; the other half is symmetrical as

shown in Figure 4.4. Two constraints are needed to generate the Full Layout. One is the

progressive path length differences between successive waveguides. The other one is the

alignment of waveguides along the z-axis, so that when flipped along the plane of

symmetry (shown in Figure 4.4), the waveguides can connect smoothly. Corresponding

to Figure 4.5, Equation (4.10) describes the path length difference between the first

waveguide, which is located at A0 (=zAa1), and the ith waveguide placed at zAai. The

radius of the first waveguide is Rz (=zR1). As shown in Figure 4.6, Equation (4.11)

describes the alignment of all waveguides along the z-axis; they are equal to the

dimension of the first waveguide in z-axis. Solving Equations (4.10) and (4.11), given

zAai as constant, zRi and zLi can be found, which determines the layout of the ith

waveguide. Equations (4.10) and (4.11) are coded in the layout program stargen.c along

with other auxiliary equations to calculate the entire Full Layout design.  In the following

section, this design method is extended to incorporate ISZC techniques.

4.2.3 Adopting regular AWG layout design to ISZC based AWG
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Since only Full Layout constraint equations are provided, the ISZC method is

implemented for the Full Layout. Once the design equations of the Flat Layout are

available, the same principle used for Full Layout also applies.  The essential difference

between regular AWG design and ISZC enhanced design is the irregular spacing of

waveguides on the input and output couplers. There are three major issues needed to be

addressed. Two of them involve the modification of the layout program STRAEGEN.C.

The third uses a feature in the WDM Router Simulation option under the Utility pull

down menu in the main BeamPROP™ window to compensate for phase calculation

(phasecore.exe) based on uniform path length increment in regular AWG device.

The first modification is the placement of waveguides on the input/output

couplers. For the ith waveguide the waveguide is placed at an angle zAai away from

reference as shown in Figure 4.5. In regular AWG implementation, zAai is calculated

uniformly (zAai=(i-Aso)*Ao) in stargen.c. Before design layout for ISZC modified

AWG, the arrayed waveguide path lengths and location of waveguide placement at

input/output coupler are calculated in a Matlab™ program. The second modification is to

Equation (4.10); the RHS of the equation is the path difference between the first

waveguide and the ith waveguide, which is calculated uniformly in regular AWG case. In

implementing ISZC, this path difference should be random, which can also be calculated

in the Matlab™ program. Equation (4.11) stays the same. The system of Equation (4.10)

and Equation (4.11) is again solved in the Matlab program for zRi and zLi.  When

carrying out ISZC modified AWG layout, zAai, zRi, and zLi are required parameters for

defining the layout using stargen.c. In the original STARGEN.C zAai, zRi, and zLi are

calculated within the program. In the modified layout program, these three sets of data

are imported to STARGEN.C using results from Matlab™ program calculation.

4.2.4 A Note on PHASCORE.EXE

During the BeamPROP™ simulation of the AWG layout, both input and output

couplers are simulated using the main BPM program. The phase retardation in the array

waveguide is simulated by adding phase induced by the path length of waveguide to the

field profile entering the arrayed waveguides from the input coupler. This simplification



76

is justified since the traveling wavefront inside single mode waveguides is a plane wave

only accumulating phase in longitudinal direction. This phase calculation is accomplished

in an executable program called PHASECOR.EXE. However, this executable code is

designed for regular AWG devices, and it assumes uniform length increments in the

arrayed waveguides. Some modification is in order to incorporate the ISZC method.

The initial phase at the starting of each arrayed waveguide involves the coupling

due to the interface between the coupler and the starting of every waveguide section. This

coupling effect is simulated by the main BeamPROP™ BPM simulator. As illustrated

below, the BPM simulator propagates the input field in a series of xy planes (n=1,2,3..,N)

throughout the input coupler along the z-axis. The Nth xy plane stops just crossing the

tangential (indicated by the X’ axis in Figure 4.7) of the circular arc at the end of the IC.

So, on the xy plane of the last BPM step, the fields are coupled into all arrayed

waveguides. The fields in some AW’s have traveled further than that in the middle. The

phases at the starting of each waveguide can be calculated by retracing back the distance

traveled in each of the waveguides, since all AW’s are straight and in radial direction

from the center of the arc.

So let _i0 be the phase in the ith waveguide at the end of BPM calculation, and _i0

be the initial phase at the interface of the coupler slab region and ith arrayed waveguide.

Then, _i, the overall phase for the ith waveguide is given as
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The executable PHASCORE.EXE takes the initial phase calculated in the above

fashion, and adds the phase accumulated by field in each AW according to individual

AW length. Therefore, in simulating ISZC based AWG structures, the nonlinear

increment of waveguide-stretch for each arrayed waveguides can not be provided in

PHASCORE.EXE. This can be remedied by using a phase correction feature provided by

BeamPROP™. Under the WDM Router Simulation option in the Utility menu, the

WDM Router Description File Generator dialog box offers the Design Info File

option as shown in Figure 4.9. Design Info Files can include phase, transmission, and



77

length corrections to the arrayed waveguides information. In this case, only length

correction information is needed. This length correction is given by first finding out the

path lengths of the arrayed waveguide of the regular AWG to be modified, then

subtracting it from the results of ISZC enhanced version of the arrayed waveguide. The

format of the Design Info File is specified in BeamPROP™ AWG Utility Version 2.1,

Appendix C. An example is given below to correct an ISZC AWG router with 3 arms for

the arrayed waveguide:

PhaseCorDataForma1 <fixed title>

3   1 <number of arms><number of data field columns>

dL <data-name 1><data-name 2>  …

11.3 <data-name 1><data-name 2>  … (for arm 1)

-5.4 <data-name 1><data-name 2>  … (for arm 2)

7.8 <data-name 1><data-name 2>  … (for arm 3)

Table 4.1 Example of Design Info File used to correct PHASCORE.EXE.

<data-name> could be taken from “Tansmission”, “Phi”, or “dL” to adjust power, phase,

and length of every arrayed waveguide. The file is saved as a text file, and its name is

used in the Design Info File option under the WDM Router Description File

Generator dialog box. Thus the PHASCORE.EXE can be used in ISZC AWG

simulation successfully.

4.3 Discussion of BPM Methods

To better comprehend the simulation results obtained from the BeamPROP, it is

critical to understand the strengths and limits of the simulation method employed. Like

most simulation tools in optical component design, BeamPROP is based on the Beam

Propagation Method (BPM), which is the most widely applied technique in optical

component design. This section discusses the underlying approach used for BeamPROP

implementation of BPM, and its advantages and some inherent weakness as well as

remedies to the limitations in the basic BPM formulation. It starts with the development
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of a basic FD-BPM [5, 6], which is different from conventional Fourier based approach

[7, 8]. Then it goes on to cover the extension to Wide-angle BPM and vectorial BPM,

which relaxes the assumption of scalar field and paraxial propagation in the basic FD-

BPM formulation. Both extensions are available options in the BeamPROP software

package.

4.3.1 General BPM

The BPM/scalar paraxial approximation is actually a way of solving the

Helmholtz equation. The scalar time independent Helmholtz equation is given as
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where the scalar electric field is written as tiezyxtzyxE ωφ −= ),,(),,,( ; and the notation

),,(),,( 0 zyxnkzyxk = is the spatially dependent wavenumber with λ
π2

0 =k  being the

wavenumber in free space. The refractive index of the region of interest is given

as ),,( zyxn . The paraxial approximation is that the wave propagation in the waveguide is

primarily along the longitudinal direction, the z-axis. The phase variation of the

wavefront due to propagation in z-axis is the most rapid component. The scalar

Helmholtz equation can be simplified by factoring out the phase variation in z-axis. Let

ziezyxuzyx βφ ),,(),,( =    (4.16)

Here β is a constant number representing the average phase variation of the field φ, and is

referred to as the reference wave number. The reference wave number can also be

expressed as β=k0n0; n0 is the reference refractive index. Using the above relationship, the

Helmholtz equation can be simplified as
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This equation describes the slowly varying field u. Assume the variation of u with z is

sufficiently slow so that the first term above can be neglected with respect to the second.

The result is the familiar slowly varying envelope approximation, and in this context, it is
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referred to as the paraxial or parabolic approximation. Using this approximation and

rearranging the equation, we get
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This is the basic BPM equation in three dimensions; the two-dimensional BPM equation

is obtained by omitting the dependency on y. Once the input field )0,,( =zyxu  is given,

the above equation determines the evolution of the field in the space z>0.

There are two major benefits in this approach. First, once the rapid phase

variation is factored out, the slowly varying field can be represented numerically along

the longitudinal grid, which can be many orders of magnitude larger than that of the

wavelength. This effect makes the BPM much more efficient than purely finite difference

based techniques, which requires grid spacing of one tenth of the wavelength. Secondly,

eliminating the second order derivative term in z enables the problem to be treated as a

first order initial value problem instead of a second order boundary value problem. A

second order boundary value problem usually requires iteration or eigenvalue analysis,

yet a first order initial value problem can be solved by simple integration of the equation

in the z-direction. This effect similarly decreases the computational complexity greatly

compared to full numerical solution of the Helmholtz equation. There are also prices paid

for the reduction of computational complexity by the BPM formulation. The slow

envelope approximation assumes the field propagation primarily along the z-axis (i.e. the

paraxial direction), and it also limits the index contrast of the waveguide. Removing the

second derivative in the approximation also eliminates the backward traveling wave

solutions. So reflection based devices are not suited for using this approach. However,

these issues can be resolved by recasting the approximations, so the assumptions can be

relaxed. Extensions such as wide-angle BPM and bi-directional BPM have been

formulated, and they will be discussed later. BeamPROP uses a finite difference based

numerical method to implement the basic BPM formulation, which is reviewed in the

following section.

4.3.2 Finite difference based BPM
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Most early BPM techniques use the well-known split-step Fourier method

proposed by Feit and Fleck [48]. Later a finite difference method based on equation

(4.18) was developed [46]. It can be shown that the finite difference based method is

more accurate in dealing with waveguides with larger index contrast [47, 49]. It can also

use larger longitudinal step size to ease the computation complexity without

compromising accuracy [51]. It has consequently become the standard approach, and is

reviewed below.

Using the finite-difference approach, the field is represented by discrete points on

a grid in transverse planes, which is located along the longitudinal or propagation

direction (z). Once the input field is known (at z=0), the field on the next transverse plane

in the propagation direction can be calculated. Repeating this procedure, the field of

propagation waves can be calculated one step a time along the propagation direction

through the domain of interest. This approach is illustrated for a scalar field in 2D (xz);

extension to 3D is easily obtained.

Let n
iu denote the field at transverse grid point i and longitudinal plane n, and

assume the grid points and planes are equally spaced by Δx and Δz apart, respectively. In

the Crank-Nicholson method, Equation (4.18) is represented at the midplane between the

known plane n and the unknown plane n+1 as follows:
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The Crank-Nicholson method is illustrated above in Figure 4.10. Here δ2

represents the standard second order difference operator, )2( 11
2

iiii uuuu −+= −+δ , and

2/2/1 zzz nn Δ+≡+ . The above equation can be rearranged into the form of a standard

tridigonal matrix equation for the unknown field 1+n
iu  in terms of known quantities,

resulting in:
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Given h=Δz and ρ=Δz/Δx2, the variables ai, bi, ci, and di are given as follows:
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Once the field is known at grids n=1..N along the x-axis, on plane i along the z-axis, the

field on plane i+1, which is the next plane along the z-axis, can be calculated using

Equation (4.20). Thus, the propagating field can be calculated along the z-axis [51].

Equation (4.20) can be used to calculate the field in O(N) operations, where N is the

number of grid points in x.

Since the field can only be represented in a finite computational domain

( 1...1 −= Ni ), when the above equation is applied at the boundary points i=0 and N, it

requires the knowledge of unknown quantities outside the domain. These unknown

quantities are replaced by appropriate boundary conditions to complete the system of

equations. Proper choice of these boundary conditions is critical. In case of a poor choice,

it can cause artificial reflection of light incident on the boundary back into the

computation domain. The transparent boundary condition is used in BeamPROP™

implementation of BPM. More details can be found in [52].

4.3.3. Wide angle extension to FD-BPM

The paraxial approximation used to carry out the BPM derivation restricts the

application of BPM to straight waveguides or waveguides with large bands, as well as

restrictions on index contrast and multimode propagation. The cause for the restriction is

the elimination of the second derivative term in Equation (4.17). By including the second

derivative term at the start of derivation, the paraxial approximation can be relaxed.

Various extensions known as Wide-angle BPM have applied this approach successfully

to relax the restriction of paraxiality. The Pade-based wide-angle technique is most

popular and is used in BeamPROP™. It is reviewed below.

Consider the slowly varying field in Equation (4.17):
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Let D be the differential operator denoting z∂∂ , and let D2 represent z22 ∂∂ . The slowly

varying envelope can be expressed as

0)(2 22
2

2

2

2
2 =








−+

∂

∂
+

∂

∂
++ uk

yx
DuiuD ββ    (4.22)

The formal solution for the first derivative can be found by putting aside u and solving a

quadratic equation for D [53]. After substituting back u, the formal solution for the first

derivative is given as,

            

( )









−+

∂

∂
+

∂

∂
=

−+=
∂

∂

)(
1

,11

22
2

2

2

2

2
β

β

β

k
yx

P

uPi
z

u

   (4.23)

The above equation only gives the one-way propagation solution. It is one of the two

possible solutions to the quadratic equation for D.  The backward solution can be found

by changing the sign of the square root term. Either solution is exact. There is no

approximation involved in this derivation. To solve for u, the radical in the first

derivative solution needs be approximated. Pâdé expansion has been found to have best

accuracy with fewest terms applied [53]. Using Pâdé approximation, the first derivative

can be written as
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Here Nm and Dn are polynomials in terms of the operator P. The set (m, n) gives the order

of the Pâdé approximation. Examples of the first few terms of the Pade expansion are

given below.

Table 4.2 The first few terms of Pâdé expansion [12].

Order(m,n) Nm Dn

(1,0) P1/2 1
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(1,1) P1/2 1+P1/4β

(2,2) P1/2+βP2/4 1+3P1/4β+P2/16

where
β
P

P =1 and
4

2

2 β
P

P = .

As the Pâdé order increases, the accuracy of the solution improves. The (1, 1) order Pâdé

approximation is highly accurate up to 30 deg while the (3, 3) Pâdé approximation is

equivalent to the 15th order Taylor expansion of the exact square root term in Equation

(4.23). Therefore, this approach can be employed to analyze large propagation angle,

high reflective index contrast, and complex mode structures in waveguides and free

space.

4.3.4 Vectorial extension of FD-BPM

Polarization effects can be included in the BPM when the electric field E is

introduced as a vector. Instead of scalar Helmholtz equation, the derivation can be started

from the vector wave equation [54].  In terms of the transverse field components, the set

of coupled equations for the slowly varying field are given as
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The Aij’s are complex differential operators given by
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The operators Axx and Ayy are related to polarization dependence due to different

boundary conditions at interfaces, and address effects of different propagation constants,

field shapes, bend loss for TE and TM fields. The off-diagonal terms Axy and Ayx relate to

polarization coupling and hybrid modes due to geometric effects, for instance, the

influence of corners or sloping walls in the cross-sectional structure. The above equations

are generally known as the full-vectorial BPM. The simplification Axy=Ayx=0 is called

semi-vectorial BPM, which east the computation load significantly. In most cases, the

coupling of the polarization fields is very weak, so the semi-vectorial BPM provides

excellent results.

4.4 Simulation Results

4.4.1 Interpretation of simulation results

The simulation results are obtained by detecting the power output at each output

port (waveguide) while a light source with fixed power scans through designated

wavelength range at the input of the AWG. Power readings from different output ports

are plotted with different colors over the wavelength axis. The simulations are set up to

illustrate the effect of eliminating high order harmonics using ISZC AWG device.

Regular AWG’s are grating devices, which have repeated harmonics orders. The

range of output repetition in wavelength or frequency is called the FSR. When the range

of input wavelength moves beyond FSR, different harmonic orders overlap with one

another, as illustrated in Figure 4.11.  Therefore, the range of input wavelength is limited

by the FSR for regular AWG. The ISZC AWG devices greatly reduce the power of high

order harmonics, thus effectively extending FSR to the infinity. In this way, the limit on

the range of the input wavelength by the FSR is eliminated. Figure 4.11 shows an

example of the output field of a regular AWG. The output is displayed in harmonic

orders, and input wavelengths beyond the FSR are added. As shown, if new wavelengths

outside FSR are introduced, the AWG output port will have overlapping outputs. When

plotted along the wavelength axis using different colors to indicate output ports, same

wavelengths, may have two peaks of different color and same color lines may have
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double peaks, indicating same wavelength coming out from different output ports and

same outputs producing light signals of different wavelengths.

The ISZC AWG devices are designed by modifying regular AWG’s. The benefit

is to remove the limit of FSR. So when wavelengths beyond the original FSR of regular

AWG are applied at the input, no overlapping outputs would appear at output port. If the

number of the output ports were same as the original AWG, the wavelengths outside the

FSR of the AWG, which is applied at the input of an ISZC AWG would not appear in the

output. If additional output ports are attached at the ISZC AWG’s output coupler, the

wavelengths outside the original FSR can be guided to the output. In the following

section, simulations are performed to demonstrate these propositions.

4.4.2 Simulation results for 200 channel ISZC AWG

Two sets of simulations are presented here. The first simulation presents a 28

channel ISZC AWG design based on a 24 channel regular AWG. The second is a

simulation of a 200 channel ISZC AWG based on a 180 channel regular AWG design.

The first simulations illustrate the overlapping of wavelengths at the output, when

additional wavelength channel beyond the FSR is scanned at input, and the elimination of

high order diffraction achieved by ISZC AWG. The second set of simulations shows the

result of carrying the principle to high channel count applications, converting a 180-

channel regular AWG into a 200 channel ISZC AWG.

Figures 4.12 to 4.18 show the layout of a regular/ISZC AWG including the device

as whole and individual sections. The ISZC AWG has similar layouts as a regular AWG,

and uses same parameters; the irregularly spaced arrayed waveguide section is what

differentiates a regular AWG from an ISZC AWG. This is emphasized in a close up view

of the arrayed waveguide section in Figure 4.18.

Figures 4.19 to 4.21 show the results of converting a regular 24 channel AWG

device to a 28 channel ISZC AWG by adding 4 more wavelength channels. Simulations

are carried out to show the frequency overlapping when 4 additional output ports are

present and input field scans the entire 28 wavelength channels. The physical parameters

are: coupler radius R=8.4mm, grating order=40, number of waveguides=100, arrayed
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waveguide spacing=20_m, output waveguide spacing=18.5_m, waveguide width=6_m,

and __=1.6nm. All simulations of 24/28-channel regular/ISZC AWG use these

parameters. In figure 4.19, the input field scans 4 extra wavelength channels into the 24

channel regular AWG, with 4-output port to couple the extra wavelength channels. 4

outputs at both ends of the spectrum containing overlapping wavelengths are present.

This is illustrated in Figure 4.11. Figures 4.20 and 4.21 plot the transmission spectrum of

the ISZC AWG with 24 and 28 output ports attached to the output coupler. In both

simulations 28 wavelength channels were scanned. Figure 4.11 shows the elimination of

high order diffraction, i.e. eliminating FSR. Figure 4.21 shows the ability of ISZC to

function normally in wavelength demultiplexing for the additional 4 wavelength

channels. The full functionality of an ISZC AWG is demonstrated in Figures 4.19 to 4.21,

namely providing wavelength demultiplexing without FSR. Currently, this function

comes at a cost of losing about 10dB in output signal strength.

In Figures 4.22 to 4.31, a 180-channel regular AWG is converted to an ISZC

AWG. The parameters for the regular/ISZC AWG pair are: Coupler radius R=61.8mm,

Grating order=29, Number of waveguides=400, Arrayed waveguide spacing=20_m,

Output waveguide spacing=18.5_m, Waveguide width=6_m, and __=0.3nm. In order to

achieve high channel count the Coupler radius is fairy high compared to 3~36mm in

general AWG design [32]. This may due to the extreme low grating order. Attempts have

been made to try different parameters, but are unsuccessful. Grating order is determined

by BeamPROP™, and we are not able to alter the software to generate more desirable

parameters. As in Figures 4.19 to 4.21, the capability of ISZC AWG to eliminate FSR

and function as a wavelength demultiplexer in high channel count application is

demonstrated. BeamPROP™ regularly can only support up to 140 channels. After

working with the vendor, we are able to increase channel count to 200. Due to the limit

on the size of coupler, currently 210 or more channels are not possible to be implemented

on BeamPROP™. Overall currently, there is still a 10dB power tradeoff to apply the

method of ISZC to high channel count AWG design to eliminate FSR of a regular AWG.

4.4.3. Conclusions
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In this chapter the design procedure of ISZC AWG devices using Rsoft BPM

software is presented. The ISZC AWG design eliminates the high harmonic diffractions

caused by the grating patterns of the regular AWG, and greatly extends the FSR of

original AWG. Simulation results of ISZC AWG based on the regular AWG design

demonstrated the removal of high order diffractions. The limiting factor of channel count

to ISZC AWG demultiplexers becomes the envelope of the overall intensity profile and

the width of each wavelength channel.  This issue is further explored in the following

chapter to determine the maximum channel count available to an ISZC AWG

demultiplexer. We note this is not a fundamental limitation, and can be externally

eliminated by making output-coupling apertures very small.
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Figure 4.1. Implementing a virtual spherical modulation in the arrayed waveguide

Figure 4.2. Setting up of random points
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Figure 4.3. Sections of ISZC modified arrayed waveguide lengths.

Figure 4.4. Layouts for AWG device [45].
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Figure 4.5. Array Design for Full Layout [45].
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Figure 4.6. Array Design for Full Layout [45].
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Figure 4.7. Domain of BPM Calculation.

Figure 4.8. Geometry for calculating initial phase in arrayed waveguides.
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Figure 4.9. The input window for WDM Router Description File Generator.

Figure 4.10. Crank-Nicholson method (CN)
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Figure 4.11. Illustration of diffraction orders for AWG output
(The dashed lines represent wavelengths outside of FSR).
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Figure 4.12. Full layout of a 24 channel 100 waveguide regular AWG (m=40).

Figure 4.13. The input coupler of the 24-channel AWG.
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Figure 4.14. The output coupler of the 24 channel AWG.
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Figure 4.15. Full layout of ISZC AWG based on the 24 channel regular AWG.

Figure 4.16. The input coupler of the ISZC AWG

.
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Figure 4.17. A close-up view of the AWG arrayed waveguide section.

Figure 4.18. A close-up view of the ISZC AWG arrayed waveguide section.
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Figure 4.19. 24-channel AWG transmission spectrum scanned for 28 channels.

Figure 4.20. Transmission characteristic of the ISZC AWG with 24 output ports
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Figure 4.21. Transmission characteristics of the ISZC AWG with 28 output ports.
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Figure 4.22. 180 channel 0.3 nm spacing regular AWG transmission spectrum.

Figure 4.23 A closeup view of the 180 channel 0.3 nm spacing regular AWG

transmission spectrum.
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Figure 4.24. ISZC AWG based on 180-channel 0.3nm regular AWG with 180 output

ports (200 channels scanned).

Figure 4.25. First 100 channels scanned for the ISZC AWG in Figure 4.24.
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Figure 4.26. Rest of the 80 channels scanned for ISZC AWG in Figure 4.24.

Figure 4.27. A close up view of 200 channel ISZC AWG with 180 output ports.



104

Figure 4.28. ISZC AWG based on the regular AWG in Figure 4.22 with 200 output ports

200 channels scanned.

Figure 4.29. First half of the transmission spectrum shown in Figure 4.28 with the

first100 channels scanned.
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Figure 4.30. Second half of the transmission spectrum shown in Figure 4.28 with the

second 100 wavelength channels scanned.

Figure 4.31. A close up view of 200 channel ISZC AWG
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5. ISZC AWG NOISE AND CHANNEL CAPACITY

CONSIDERATIONS

The main benefit of ISZC AWG design is the increased channel capacity by the

elimination of the FSR. For a regular AWG, with respect to the center wavelength, the

phase change between adjacent waveguides at their outputs is 2m!. Since the input

coupler physically matches the wavefront of the expanding field of the input wave, a

plane wavefront is coupled into the arrayed waveguide. Therefore, a plane wavefront is

reproduced at the arrayed waveguide output. In the process of applying MISZC, a

spherical phase modulation is added to the arrayed waveguide section. At the end of the

arrayed waveguide section, instead of the original plane phase front, a fast varying phase

front is created, which produces abundant zero crossings. In this way, when a random

location is picked for an arrayed waveguide, a zero crossing, which can both satisfy the

phase match condition and generate wavelength dependent linear factor, can be found in

a close by position. This is of key importance to focusing outputs of the arrayed

waveguides in the output coupler, since all arrayed waveguides are placed on the circular

curvature.

As we shall see in the following discussion, the wavelength dependent linear

phase factor provides wavelength demultiplexing function through the spatial Fourier

transform provided by the coupler geometry, which is present in both regular AWG

design and ISZC AWG design. The previous discussion shows that, in ISZC AWG

design, an additional phase factor is introduced to each arrayed waveguide to provide

zero crossings for focusing purpose, when waveguide locations are randomly positioned.

This nonlinear phase modulation turns harmonic images into noise in ISZC AWG design.

In the following, the nature of wavelength demultiplexing is illustrated and the phase

term that generates noise is discussed in detail. Then, channel capacity of ISZC AWG is

derived using Fraunhofer diffraction approximation and the ratio of the AW count over
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the maximum channel count is obtained for comparing channel capacity of an ISZC

AWG and a regular AWG with same number of AW’s.

5.1 Noise Considerations

As discussed previously, the noise in the ISZC AWG output is mainly due to the

additional phase modulation in the arrayed waveguide section, after the diffraction

process in the output coupler, which can be accurately modeled as a Fourier transform.

To investigate the noise in the output of ISZC, we first establish the field at the output of

the arrayed waveguides, then proceed to take the Fourier transform in space. The fields at

AW/OC interface are a series of Gaussian mode amplitude profiles affected by two

factors, a spatial function that describes the location of each arrayed waveguide, and a

complex phase function that describes the phase change in each arrayed waveguide.

The overall phase change in the ith arrayed waveguide is given in Equation (3.29).

Adjusting the wave number in free space k1 to wave number in waveguide k1
w due to

implementation in waveguide for the center wavelength _1, this equation is repeated

below

      πα nrkxkrk oiwiwciw 2111 =++     (5.1)

k1
w is wave number inside waveguide, xi_ is the waveguide section generating

wavelength dependent phase shift, rci and roi together provide zero crossing phase match

condition. So we define for mth wavelength the phase factor Sm
i as,
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The superscript stands for the wavelength index, subscript stands for the waveguide

index. Sm
i stands for the complex phase factor induced by the mth wavelength in the ith

waveguide for M input wavelengths and P waveguides as shown in Figure 5.1.

In Figure 5.1, the IC/AW interface is the arc on the left. Fields in the OC

propagates from the left to the right, and the OC is in the confocal geometry. Since the

radial angle of the arc is small (<10°), as discussed in section 2.3, the fields at the right

arc (assigned as the x-axis) and the left arc (assigned as the y-axis) are related by the

Fourier transform. The field on the AW/OC interface (the left arc) consists of identical
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Gaussian mode profiles located at xi’s with initial phase determined by Sm
i. The Gaussian

amplitude profiles can be expressed by the convolution of a summation of Kronecker

delta functions and the Gaussian mode function. Thus, the field at the AW/OC interface

is modeled as a double summation over wavelength and xi’s. Then, we can write h(x), the

field at the end of the arrayed waveguides as
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ui is a random number uniformly distributed in (0, 1), and g(x) is the Gaussian mode

profile; w is the effective waveguide width. Note that, in Equation (5.3), ri is defined the

same as in Equation (5.1) for the center wavelength _1; the total net phase change in

every waveguide is integer multiples of 2!. This is not the case for other wavelengths in

general, since ri are constants, and are only calculated for the center wavelength. Due to

the nonlinear nature of the complex phase function, this phase factor can be considered

random for all other wavelengths. Using the property of the Kronecker delta function, the

discrete phase factor related to waveguide section xi_ can be expressed as a continuous

function. Thus, we write
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km
w is the wave number inside waveguide for the mth wavelength, and the mth wavelength

is give as

 λλλ Δ⋅−+= )1(1 mm      (5.5)

Assume the chromatic (total) dispersion in the waveguide is linear shown in Figure 5.2.

We write
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Given ξλ
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=∂∂

= 1

m
wk . Then, the field at the output of the arrayed waveguide can be

expressed as
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The Fourier transform of Equation (5.7) is given by
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It’s simple to obtain the Fourier transform of the first term inside summation over

variable m,
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Therefore the Fourier transform of the Gaussian mode function determines the overall

amplitude envelope. In most cases, since the width of the waveguide is small, the Fourier

transform of the Gaussian mold function is broad. As a result, its effect to cross talk can

largely be ignored. Equations (5.8) and (5.9) show the wavelength demultiplexing is

accomplished by the wavelength dependent linear phase term in Equation (5.7). As long

as the chromatic dispersion is linear, the output noise can be considered to be due to the

Fourier transform of the term inside the second summation in Equation (5.8). It is defined

below as
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_(x) is random in nature; it contributes to the noise in ISZC output. To find the spectral

content of _(x), we first calculate R_(t) the autocorrelation function of _(x), then its power

spectral density function can be expressed as FT{R_(t)}. We have



110

    

{ }

{ }∑∑

∑∑

= =

==

−⋅⋅+⋅=









−+=+⋅=

P

i

P

l
l

m
wi

m
w

P

l
l

m
w

P

i
i

m
w

rjkrjktxqxqE

rjktxqrjkxqEtxxEtR

1 1

11

*

)exp()exp()()(          

)exp()()exp()()()()( ϕϕϕ

   (5.11)

Since, xuxix ii Δ+Δ⋅−= )1( , xi’s are a series of random locations placed in the bins of _x

in size on the real axis as illustrated in Figure 5.3.

Given that xi’s and ri’s are independent, we write
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Assuming ri’s are uniformly distributed in (0, _], the second term inside double

summation is easy to carry out.
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The random variable z is a function of two random variables, km
w ri and km

w rl, which are

independently and uniformly distributed in the interval of (0, _]. The probability density

function of z is a convolution of density functions of km
w ri and km

w rl centered at 0, as

shown in Figure 5.4. Performing integration, we have
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The independent uniform distribution for random variables kmri and kmrl are first order

approximations. Both phases are a result of matching phase for randomly selected

waveguide locations at center wavelength _1. Uniform distribution is reasonable since no

preference is known. The value of _ is in the range of (0, _x). If the phase modulation

introduces fast phase variation in the arrayed waveguides, there will be a large number of
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zero crossings available along the interface of AW/OC. We may introduce certain

selection rules in the algorithm for random points to control _, which may provide

opportunities to reduce noise in the future. It is quite challenging to derive an analytical

expression for the first expectation operation in Equation (5.12). As t=0, R_(0)=P. As t ≠

0, the problem turns to a Random Poisson Points problem.  Computation of R_(t) is

carried out by Monte Carlo simulations as discussed below. Using different sampling

rates, we can gain insight about the noise spectrum by such simulations.

Figures 5.5.a, 5.5.b, and 5.5.c show a Monte Carlo simulation of the

autocorrelation function R_(t) and its Fourier transform _(fx), which is the power spectral

density function. In Figures 5.5.a, 5.5.b, and 5.5.c, we note that zero spatial shift for

autocorrelation functions and zero spatial frequency for power spectral density functions

are at the middle of the horizontal axis.  The impulse at the center of the autocorrelation

function, R_(0), is caused by the white noise behavior of the locations of xi’s. As t

increases or decreases, the number of possible terms inside the double summation in

Equation (5.12) decreases, and goes to zero as the spatial shift reaches the entire length of

_(x). As a result, autocorrelation is higher in the middle, and reduces to zero at the two

ends. The power spectral density is plotted in dB scale. Considering Equation (5.8), we

have
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Therefore, the output of the ISZC AWG is a shifted version of _(fx) scaled by the

envelop of the Fourier transform for the Gaussian field mold profile at individual arrayed

waveguides. _(fx) is the square root of the power spectral density shown in Figures 5.5.a-

5.5.c.

The -20dB noise around the center impulse is comparable with simulations

performed in previous chapters for regular AWG’s. The impulse is the result of the white

noise behavior of the autocorrelation function. The interesting phenomenon is rise and

fall of the noise spectrum. As sampling rate increases, more spectrum content is revealed.
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This could be understood in regular spaced grating context. The spatial frequency in _(x)

power spectral density function is equivalently the physical coordinates of the receiving

end of the output coupler. The harmonic peaks present in regular grating structure should

fall as the harmonic order increases, i.e. physically further away from the fundamental

order. The randomly spaced phase elements turn those harmonic peaks into noise around

their original locations. As the power in higher harmonic peaks decrease for regular

gratings, the noise around those peaks should reduce as well in irregularly sampled

grating structures. This feature suits the demultiplexing purpose of the ISZC device. As

the noise is further away from the original channel, the crosstalk to the far away channels

would not increase. Therefore, increasing wavelength channels will not result in

accumulating crosstalk noise in far away channels. The near by channels will be affected.

Even though the -20dB noise floor is higher than the regular AWG device (-25dB) [55,

56]. It is still tolerable. High channel count ISZC AWG is a trade off between more

wavelength channels and higher crosstalk. The crosstalk in wavelength scale is not

accumulative, as long as the maximum crosstalk from individual wavelength channel is

under a certain level. Simulating the ISZC AWG using Matlab, the crosstalk noise further

investigated below and found to be shown comparable between different channel counts.

In order to have a more comprehensive understanding of the various effects

different parameters have on the ISZC AWG noise level, extensive simulations are

carried out using the scalar wave model developed in Chapter 3. These simulations are

designed to investigate the relationship between the noise performance of an ISZC AWG

and important device parameters over aperture size, number of arrayed waveguides and

waveguide spacing.

The results are summarized in Figures 5.6a-5.6.c. Figure 5.6.a shows effects of

constant AW count (200) with varying average waveguide spacing (i.e. the spacing of

initial uniform grid). The results show the crosstalk margins stay relatively constant;

average waveguide spacing (center to center), equivalently the overall-aperture-size

(#AW _ average spacing, OAS), determines the bandwidth of the wavelength channel.

Figure 5.6.b summarizes results for constant average spacing with varying AW count. It

shows reduction of crosstalk margins as number of AW increases, and channel bandwidth
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decreases as the OAS increases. Figure 5.6.c shows the results for fixed OAS (3mm) with

varying numbers of AW’s, noting a different OAS (4.5mm) for 1024-ch case. Again it

shows the decrease of crosstalk with increase of AW count, and channel bandwidth

remains constant. In summary, the results indicate crosstalk decreases with increasing

AW count for varying channel counts, thus crosstalk is unrelated to channel count.

Another observation is that channel bandwidth is inversely correlated to the OAS as

expected, since the couplers of AWG’s are effectively a lens and OAS is the aperture of

it.

Examples are shown in Figures 5.7.a-5.7.c for the results in Figures 5.6.a-5.6.c.

Figure 5.7.a shows the output spectrum of a 1024-channel ISZC AWG. Figures 5.7.b and

5.7.c show a close up view for different AW count and OAS. The relationships between

crosstalk/AW count and channel bandwidth/OAS are illustrated. Given 500 AW count,

the crosstalk margin is reduced to -20dB. The larger than usual crosstalk is a trade off for

large channel count (>500). Similar channel count would be achieved by more complex

multi-stage cascaded systems.

5.2 Channel Capacity Consideration

The emanation of field from a single mode waveguide can be approximated as the

TEM00 Gaussian mode. The far field Fraunhofer diffraction can be found using the

Rayleigh-Sommerfeld diffraction formula [23]. The observing point P0 is in spherical

coordinate, and the source point P1 is in cylindrical coordinate as shown in Figure 5.8.

Starting with the Rayleigh-Sommerfeld diffraction formula, we have

 ∫∫=
s

dsrn
r

jkr
PE

j
PE ),cos(

)exp(
)(

1
)( 01

01

01
10 λ

  (5.16)

Using the above diagram, we can express r01 as
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In the 2-D case, we have
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In the following, we work with a more general 3-D case. Since R>>r, we have

 )cos(sin01 φ−ΦΘ+= rRr    (5.19)

Since Θ≈Θ′= coscos),cos( 01rn , the wave propagates forward in a narrow cone, the

paraxial approximation gives cos_≈1. We can substitute r01 and further simplify the

denominator while keeping r01 for the phase factor. We have,
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Since the emanating field is Gaussian, its field profile can be written as
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where w0 is the waist size of the Gaussian beam. After integration, we have
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The effective width we of a Gaussian profile is given as
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The relation between the effective width and physical width of a waveguide [33] is given

as
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where V is the normalized frequency. The curve in Equation (5.24) is found empirically

through curve fitting [33]. For a single mode waveguide, let 2<V<4; as a result, we can

conclude we≈0.5wWG.

To calculate the width of the Gaussian profile at the output side of the coupler, we

express the intensity profile as
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Comparing to Equation (5.22), and setting sin_=_, we have
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Therefore the Gaussian profile width _0 can be found as
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The channel bandwidth in wavelength can be found using Fraunhofer diffraction

calculation. The channel bandwidth in wavelength is the main lobe of the image, which is

determined by the overall aperture size, which is made up of the output ends of the

arrayed waveguides at their interface with the output coupler as shown in Figures 5.9 and

5.10. Considering Figure 5.10, given the aperture size D=NWG_WWG and propagation

distance R as shown in the diagram, the main lobe of the diffraction pattern, i.e. the

bandwidth, is [23]
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where CW is the channel bandwidth in wavelength, NWG is the number of waveguides,

WWG is the width of waveguides, and R is the radius of the input arc of the coupler. So

the maximum channel count (see Figure 5.9), disregarding the effect of FSR, can be

found as
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The ratio of the maximum channel count over the AW count can be used to compare the

channel capacity of an ISZC AWG or a regular AWG device for given number of AW’s.

Defining channel capacity measure _ as
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Taking ns=1.45, we have _=1.8 in Equation (5.30), while in literature, the ratio have

reported for high channel count AWG’s are greater than 3 [55, 56]. We note this

derivation does not necessary give the upper bound of _ for ISZC AWG.
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5.3 Conclusions

In this chapter the origin of noise is considered, and channel capacity of an ISZC

AWG is derived. The output noise of ISZC is mainly due to the modulation of spherical

wave in the arrayed waveguide section. The noise spectrum generated by each channel

falls away from its pass band. This makes the accumulative crosstalk for each wavelength

channel tolerable. This is due to the implementation of irregular sampling. The adjacent

channel noise floor does increase since the irregular placement of the AW apertures on

the IC/AW and AW/OC interfaces turns harmonic power to background noise. The

maximum channel capacity for given AW’s for ISZC AWG is derived using diffraction

theory and waveguide analysis, and the ratio of the AW count over the maximum channel

count shows improvement for an ISZC AWG in accommodating more channels for given

number of AW’s over a regular AWG.
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Figure 5.1. Output coupler input-output diagram.

Figure 5.2. Dispersion in single-mode optical fiber as a function of wavelength.
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Figure 5.3. Random locations of xi’s on the x-axis

Figure 5.4. Probability function of z (z = km
w( ri - rl) ).
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Figure 5.5.a. Noise Spectrum with 500 points, _x=20 _m.

Figure 5.5.b. Noise Spectrum with 1000 points, _x=4 _m.
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Figure 5.5.c. Noise Spectrum with 2000 points, _x=4 _m.

Figure 5.6.a. Crosstalk noise and wavelength channel width of ISZCSW AWG’s for fixed
number of waveguides (M=200).
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Figure 5.6.b. Crosstalk noise and wavelength channel width of ISZCSW AWG’s for
fixed average waveguide spacing (15_m).

Figure 5.6.c. Crosstalk noise and bandwidth of wavelength channel for ISZCSW AWG’s
with fixed total aperture size 3mm (the total length covered by the arrayed waveguides on

the interface to couplers).
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Figure 5.7.a. 1024-Channel ISZC AWG with 300 waveguides, overall aperture 4.5mm

Figure 5.7.b. 256-Channel ISZC AWG with 200 waveguides, overall aperture size 1mm.
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Figure 5.7.c. 512-Channel ISZC AWG with 500 waveguides, overall aperture size 3mm.

Figure 5.8. The coordinate systems for Gaussian beam diffraction process
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Figure 5.9. The overall Gaussian intensity profile at the coupler output.

Figure 5.10. The line width of individual wavelength channels.
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6. CONCLUSIONS AND FUTURE RESEARCH

6.1 The Need for Large Channel Count Wavelength Demultiplexers

As the internet and wireless based communications reach deeper into society, the

telecommunication industry becomes more driven by consumer needs. These needs vary

widely from low bandwidth applications of simple email or pager messages to intensely

bandwidth demanding applications such as downloading movies on Internet, live video

stream for high definition Internet broadcasting and so on. This and similar environments

put pressure on the new generation of networks that are able to use available bandwidth

efficiently. Dense Wavelength Division Multiplexing (DWDM) techniques can provide

wavelength channels that are blind to data rates of different Time Division Multiplexing

(TDM) formats. Nowadays data is routinely sent at 2.5Gbps (OC-48); more recently

10Gbps (OC-192) has become increasingly available, and current goal is to achieve

40Gbps (OC-768). Yet the cost and maintenance of new equipment is high. The approach

of DWDM is to provide large number of smaller bandwidth channels; this may prove to

be more economical. 0.4nm (25GHz) or even lower wavelength spacing (1GHz) are

proposed [56]. This will provide DWDM extremely large number of wavelength channels

(~500) even when only the C band (1530-1570nm) is considered. Multiplexing and

demultiplexing such large number of wavelength channels would mostly accomplished

by cascaded AWG devices. However, to avoid insertion loss occurring in multistage

wavelength multiplexing and demultiplexing, large channel count AWG devices with

tolerable insertion loss will be in urgent demand. Due to the limited number of

waveguides to be fabricated on the semiconductor substrate, the FSR can not be made as

wide as desired. We propose the MISZC method to be an attractive option.

As we have shown earlier, the number of maximum channel count is proportional

to the number of waveguides available on the semiconductor substrate, ρWGch NN = . _

varies from 3~4 for regular AWG’s, and is found to be 1.8 for ISZC AWG’s using

diffraction and waveguide analysis in the previous chapter. However, this is not an upper
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bound. There is potential to further improve channel count. Lenses can also be

incorporated to make wavelength channel width much smaller. Therefore, the

fundamental limitation with regular AWG is its FSR.

6.2 Research Summary

The method of ISZC is based on the combined techniques of irregularly sampled

phase array and zero crossing sampling. This approach is novel in the sense of its

application in AWG design resulting in the removal of FSR of a regular AWG. Due to

the coupling between the input wavefront and the physical shape of the input coupler, the

input wavefront is coupled into the arrayed waveguide approximately as a plane wave. In

the case of regular AWG, in order to provide linear dispersion and refocus the input

image at the center of the receiving end of output coupler, the arrayed waveguide section

has to generate 2m! phase shifts in successive arrayed waveguides at center frequency,

which forces uniform spacing of the arrayed waveguides and constant waveguide length

increment. As waves enter the output coupler, a spatial Fourier transform relation is

formed by the output coupler geometry between the input and output fields. So at the end,

repetitive diffraction orders appear at the output of the output coupler. This limits the

number of maximum possible wavelength channels.

The zero crossing and the irregular phased array are the two underlying

techniques used in ISZC AWG design. The zero crossing technique alters the lengths of

arrayed waveguides in such a way as both to provide linear dispersion, and to

simultaneously modulate the plane wave with a fast varying phasefront in the waveguide

section. This enables the abundant zero crossing phase matching along all possible

locations for placing the arrayed waveguides. This design enables the arrayed waveguides

to be placed at semi-random locations to eliminate grating harmonics. Harmonics due to

nonlinear encoding of phase is also eliminated due to special geometry provided by the

spherical reference wave. Through simulation and theoretical analysis, we have shown

ISZC is a viable approach to optical wavelength demultiplexing. ISZC AWG trades more

wavelength channel for higher but tolerable noise. Noise is caused by harmonic images

turning into noise. For the irregular phased array, given the fixed array of phase elements
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placed on a circular arc, each emanating fields toward the center of the circle, for both

regular and irregular placed arrays, a constructive interference pattern is formed at center

of the arc. The power delivered to this focus is the same for both cases. If the elements

are placed regularly, harmonics will appear, whereas for irregularly spaced elements the

harmonic power is changed to background noise.

In Chapter 1, we set the context for the development of large channel count

wavelength demultiplexers; it is one of the enabling technology in future optical

networks. In Chapter 2, the description of MISZC is provided, and its capacity of

wavelength demultiplexing and elimination of higher harmonic orders are derived. In

Chapter 3, a scalar wave model of AWG device is described; day to day simulations of

ISZC AWG design can be carried out using this model due to its speed and accuracy. The

model and simulation results are tested satisfactorily against accepted AWG governing

equations [32]. In Chapter 4, we describe implementation issues of ISZC AWG on

BeamPROP optical design software. BeamPROP has features designed exclusively for

regular AWG’s. We discuss in depth ways to incorporate ISZC by altering layout

generation codes provided Rsoft. The simulation results using BeamPROP are shown; the

goal of eliminating FSR is clearly demonstrated. The elimination of FSR is at the cost of

increased noise. In Chapter 5, we analyze issues of noise and channel capacity for ISZC

AWG’s. Using spatial Fourier transform framework, we show the properties of

wavelength demultiplexing and describe noise in a compact form. More simulations are

carried out to investigate the noise under high channel count conditions. It is shown the

noise level is higher because of the increased noise in immediate vicinity of each

wavelength channel. With limited crosstalk in far away channels, the noise increase is

tolerable. Simulations also reveal influence of ISZC AWG parameter on the noise level.

A rigorous analysis of ISZC AWG is challenging because of the nonlinear manner

the zero crossings are located and the random way the initial waveguide location is

chosen. Due to the nonlinear nature of the zero crossings and irregular sampling,

stochastic tools should be applied for further analysis of noise.
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6.3 Future Research

For future research in ISZC AWG, the following issues that may provide

opportunities for performance improvement and deeper understanding of noise in ISZC

AWG design.

1. Optimization of zero crossings. The abundance of zero crossings should

provide some ground for optimization. Based on stochastic analysis of noise, certain rules

can be applied in the algorithm in selecting the zero crossings so that the overall noise

level could be reduced.

2. Asymmetric layout of the arrayed waveguides. The placements of the arrayed

waveguides on the interfaces with the input and output couplers are identical in the ISZC

design that we discuss in this thesis. It is necessary to place the arrayed waveguides

irregularly at their interface with the output coupler, but such placement is not necessary

at their interface with the input coupler. The result of such design at the interface of the

arrayed waveguides and the input coupler is the reduced coupling of the input wavefront.

In regular AWG design, the tapered waveguides provide better coupling of input

wavefront. Therefore, at the input coupler interface the arrayed waveguides can be spaced

regularly. And irregular spacing is enforced at the output coupler interface with the

arrayed waveguide.

3. Analysis of noise in depth. The noise formulation in autocorrelation in Chapter

5 Equation (11) could be turned to a random point problem in calculation of expected

value. The probability of two randomly distributed points over the same line segment is

dealt with by the classical Poisson random points problem. Then, their joint probability

density function can be found once their probability function is known, and be used in

computing the expectation value. The result may provide ways to understand the noise

issue better.

4. Improve fault tolerance for regular AWG. Better understanding of ISZC AWG

may help to better control noise in regular AWG design as phase error due to defects is

unavoidable as in manufacturing process.

5. Fabricate the device on chip and characterize it. Empirical studies should help

establish the theory on a firm foundation. BeamPROP has features to produce masks of
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finished design. The fabrication of ISZC AWG should be a significant milestone in its

development.

In conclusion, ISZC AWG design is a novel approach to wavelength

demultiplexing design. It provides much expanded bandwidth for wavelength

demultiplexers. Theoretical development and simulations have confirmed the capacity of

ISZC AWG design method. The cost of eliminating FSR in regular AWG is higher noise

floor is higher for ISZC AWG compared to regular AWG. As the further research is

conducted, the noise may be better understood and controlled to improve the overall

performance of the ISZC AWG.
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APPENDIX

  An Example of an ISZC AWG Layout

An example of an ISZC AWG layout is presented with data on its physical

dimensions. An ISZC AWG is based on modification of a regular AWG. In Figure A.1,

two layout schemes of regular AWG’s are shown. We used the full layout.

. Figure A.1. Layout options for AWG design [45].
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Important constants are defined as following

A central angle of star couplers with respect to z axis

Rin/Rout radius of input/output waveguide bends (5000_m)

Rz minimum radius of arrayed waveguide bends (5000_m)

Lg length along z of arrayed waveguide structure

Lextra additional length added to Lg (Lextra=0)

Lin/Lout straight length of input/output waveguides (100_m)

Sin/Sout lateral separation if input/output waveguides (23_m)

The constraint equations (4.10, 4.11) and waveguide length equation (A.1) for the full

option (see Figures A.2 and A.3) are given as

                                zLi + (zAai*zRi)  -  (A0*Rz) = (i-1)*dL/2   (4.10)

         zRi*sin(zAai) + (Rend + zLi)*cos(zAai) = Rz*sin(A0) + Rend*cos(A0)   (4.11)

Li=2*(Lo+zLi+zRi*zAai)    (A.1)

The parameters for the constraint equations are defined as

Lot the length of out put taper (500_m)

Ro  the radius of confocal arc’s for the IC/OC

zAai the radial angle of the ith waveguide from the z-axis in degrees

zLi the variable waveguide stretch generating zero crossings

zRi the radius of the curvature used to control placement of waveguides

Lo a constant used to satisfy layout constrains (1000_m)

Lom internal geometry parameter (14.24_m)

Li total length of the ith AW.
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Figure A.2. Length constraint of array design for Full Layout [45].
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Figure A.3. Vertical constraint of array design for Full Layout [45].

For the full layout scheme, the index of the AW’s starts from 0. The layout data

for a 200-AW-128ch ISZC AWG is given as, zAa0=A0=45, zR0=Rz=5000_m,

dL=18.5_m, Ro=61802.75862_m, Rend=Ro+Lo=62802.75862_m, n_c=1.451293777,

n_s=1.4532. The rest of the data is listed below from 0-199 in columns, where Li, and

zRi are in _m and zAai is in degrees.
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Li

   200304.67637418

   200340.98370957

   200368.75073406

   200408.26860998

   200427.50285557

   200449.93941454

   200502.26982777

   200525.76524655

   200540.70387198

   200584.50164093

   200625.08439391

   200644.31372799

   200683.81954014

   200705.17484587

   200742.57095020

   200781.00549091

   200792.76424198

   200831.21043150

   200857.90196291

   200897.41870563

   200918.79438769

   200956.16733143

   200986.07356760

   201020.24939884

   201025.58888551

   201057.63689405

   201101.41764483

   201125.98987413

   201147.33966886

   201201.81166865

   201210.35920841

   201247.73164711

   201279.78173531

   201324.63529300

   201329.96966417

   201375.90113627

   201410.07748342

   201433.57756660

   201458.13338310

   201510.47287097

   201543.57786663

   201572.41762598

   201586.29449078

   201625.82056721

   201652.51901195

   201672.80839067

   201705.91236733

   201728.34974260

   201758.24901775

   201819.12758770

   201843.68449135

   201873.59483449

   201907.76566310

   201915.24933370

   201945.15477530

   201990.01367067

   202003.89712831

   202038.07207649

   202065.83325126

   202118.16577509

   202127.77916527

   202179.05009183

   202191.86500098

   202236.71790583

   202263.42158966

   202295.46294562

   202321.09511784

   202343.52113544

   202379.83587172

   202418.28028944

   202437.50667549

   202467.40956645

   202510.13142479

   202534.69853758

   202560.33202211

   202603.05237596

   202629.75090306

   202657.52064807

   202708.78201886

   202724.80488081

   202749.37054321

   202797.42773610

   202812.38145755

   202834.80944090

   202895.68828926

   202910.63968589

   202944.81460679
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   202973.65290871

   203018.50881099

   203027.05342394

   203070.84175313

   203085.79428266

   203124.24202123

   203146.66984313

   203184.05080168

   203221.43153824

   203236.38354077

   203273.76460011

   203310.07721392

   203332.50553553

   203373.09010353

   203392.31431999

   203452.12341068

   203473.48397828

   203502.32020419

   203533.29283133

   203570.67380717

   203606.98533282

   203620.87014343

   203664.65870936

   203681.74700622

   203713.78683296

   203759.71084011

   203773.59562403

   203818.45416883

   203855.83298472

   203880.39693866

   203913.50610313

   203938.07288140

   203957.29637463

   203987.20192646

   204024.58025022

   204060.89357418

   204086.52585402

   204128.18019876

   204136.72158073

   204189.05199888

   204221.09853983

   204259.54062531

   204272.36133326

   204293.71833203

   204334.30667338

   204374.88712674

   204406.93154104

   204419.74267478

   204477.41770989

   204495.57529795

   204538.29785984

   204551.11111876

   204594.90353175

   204616.25697426

   204663.25294317

   204668.59265721

   204705.97347443

   204748.69211690

   204781.79971396

   204814.90764036

   204852.28865234

   204873.64869552

   204908.89243500

   204936.66476319

   204953.74881158

   204987.92924312

   205035.99228632

   205054.15287371

   205093.66818382

   205113.95236453

   205166.28771882

   205185.51294975

   205229.29936974

   205246.38877379

   205289.10489405

   205299.79395251

   205331.83352906

   205384.16162131

   205409.79152768

   205449.31194146

   205464.26819469

   205504.84876210

   205533.69004495

   205545.43205137

   205587.08297532

   205609.52059429

   205640.49040723

   205693.89272320

   205721.65385158

   205749.43319956
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   205795.35853660

   205806.02517024

   205833.79164754

   205877.57979239

   205905.35736551

   205934.20013287

   205954.48781689

   205996.13684035

   206047.40766571

   206066.62696091

   206104.01332616

   206131.76745588

   206165.95895771

   206179.82884087

   206219.35444974

   206239.65446388

   206297.32150641

   206327.22730513

   206342.18634665

   206392.38056313

   206420.13391250

   206432.94633724

   206482.08218561

zRi

     5000.00000000

     4918.13643955

     4836.57739024

     4762.17243259

     4682.51818273

     4613.05788605

     4544.30108269

     4471.67720115

     4404.64283879

     4332.13791907

     4274.63016918

     4221.05786911

     4153.24826511

     4103.62951775

     4051.35687403

     3993.82580320

     3942.93895196

     3897.86428938

     3857.20872250

     3808.66055282

     3769.97435133

     3727.24520812

     3686.69705473

     3653.84169292

     3615.67864279

     3584.79980501

     3550.63003999

     3522.42956268

     3492.99035462

     3462.03114163

     3434.94825370

     3410.43622502

     3387.94521019

     3362.00833087

     3341.07865859

     3320.02120018

     3304.33497306

     3283.98013194

     3267.07874407

     3252.79953535

     3236.23454297

     3222.47115477

     3211.75464391

     3198.32864264

     3188.30303350

     3177.48455436

     3168.70023058

     3160.96183519

     3153.92748347

     3147.18272286

     3142.28787896

     3137.07873784

     3133.78923878

     3130.11520712

     3127.80981224

     3126.18838090

     3125.28381738

     3125.10940929

     3125.48586008

     3126.51207199
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     3128.42050660

     3130.50045491

     3133.52874026

     3137.64178471

     3141.57748667

     3146.62193022

     3151.53355678

     3156.66130794

     3163.11950457

     3170.69566849

     3178.56230919

     3185.03582613

     3193.33681189

     3202.84891484

     3212.36614434

     3221.58871391

     3232.78255534

     3242.77663409

     3252.58579664

     3265.08855413

     3276.77622372

     3289.48976144

     3302.89324668

     3314.07853948

     3326.84476179

     3342.38511435

     3354.76608977

     3370.67959707

     3385.45318731

     3397.89578715

     3414.39507903

     3428.48958987

     3444.78874611

     3460.96285640

     3478.65453718

     3494.53298411

     3511.06120689

     3528.25550970

     3545.67687817

     3564.65861195

     3580.29733794

     3598.82382316

     3616.18539896

     3637.44944677

     3656.61026578

     3673.13410667

     3692.17856828

     3714.78494277

     3732.74146468

     3751.33784037

     3770.06341282

     3792.44679633

     3810.97827369

     3834.18112403

     3852.49333285

     3872.43573032

     3897.15757435

     3916.85545050

     3939.26836809

     3958.12434019

     3979.74160760

     4001.47952475

     4024.36230055

     4044.16274780

     4069.44181226

     4088.31797091

     4111.66379854

     4134.51199675

     4157.50611558

     4179.41771571

     4201.46676069

     4226.34496644

     4245.75278078

     4269.08555309

     4294.22336153

     4318.24492746

     4340.68980376

     4362.11183555

     4387.46963406

     4410.05466612

     4435.02172818

     4457.72590191

     4480.45720578

     4506.15123896

     4527.83667020

     4550.10622737

     4575.34326844

     4599.41974169

     4622.42675252

     4647.18099683
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     4674.25939059

     4697.29372695

     4720.98586342

     4742.95393556

     4768.99750933

     4791.55153290

     4817.66702807

     4843.72873801

     4866.91454005

     4890.20855431

     4914.00267848

     4939.55612676

     4963.37952215

     4989.56537150

     5016.90157740

     5038.42451568

     5065.15187816

     5086.67602866

     5114.02341525

     5138.51161063

     5161.74936379

     5190.29096038

     5215.26024669

     5239.11395359

     5264.69587588

     5287.36310211

     5311.17246005

     5337.83924253

     5362.81589261

     5386.60852064

     5413.25254385

     5437.55407192

     5460.18044999

     5486.16969783

     5509.90549173

     5534.77560820

     5561.85655178

     5584.95845207

     5613.75862249

     5636.82368055

     5659.76868318

     5688.54117948

     5712.66896818

     5735.61591507

     5763.69390389

     5788.86334687

     5813.41348880

     5836.25607107

     5862.46842023

     5885.86121343

zAai in degrees

       32.35252695

       32.47715625

       32.60516067

       32.72588179

       32.86060892

       32.98097946

       33.10471889

       33.23886882

       33.36929384

       33.51359597

       33.63308453

       33.74890646

       33.89960228

       34.01508192

       34.14089175

       34.28396298

       34.41636508

       34.53814481

       34.65281763

       34.79509092

       34.91290738

       35.04786533

       35.18262739

       35.29650476

       35.43435220

       35.55136343

       35.68540329

       35.80210351

       35.92893770

       36.06928636

       36.19918156

       36.32207788

       36.44140994
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       36.58781610

       36.71021865

       36.84264769

       36.94778366

       37.09004604

       37.21858235

       37.33344667

       37.47515411

       37.60319169

       37.71088547

       37.85541681

       37.97290534

       38.11371125

       38.23759261

       38.36132327

       38.48490418

       38.62167142

       38.73495047

       38.87803758

       38.98439310

       39.13045493

       39.24980857

       39.37895556

       39.51125002

       39.63347554

       39.75226307

       39.88080074

       40.01905400

       40.12755730

       40.25564843

       40.39998061

       40.52120344

       40.65210471

       40.76978312

       40.88080913

       41.01128620

       41.15137931

       41.28479387

       41.38881279

       41.51545689

       41.65168548

       41.78127637

       41.90101804

       42.04002157

       42.15949622

       42.27240031

       42.41096240

       42.53649427

       42.66832042

       42.80321074

       42.91229647

       43.03409890

       43.17818017

       43.29012548

       43.43071148

       43.55837758

       43.66360294

       43.80058122

       43.91514531

       44.04549396

       44.17253387

       44.30896027

       44.42940203

       44.55289609

       44.67943424

       44.80584938

       44.94160957

       45.05200874

       45.18121652

       45.30085822

       45.44554489

       45.57437405

       45.68425350

       45.80972185

       45.95700096

       46.07283389

       46.19169724

       46.31045983

       46.45097054

       46.56639748

       46.70977143

       46.82187760

       46.94322817

       47.09244434

       47.21046648

       47.34390453

       47.45552834

       47.58255450

       47.70947405

       47.84247133
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       47.95681869

       48.10194897

       48.20993699

       48.34250642

       48.47188572

       48.60116018

       48.72418218

       48.84711088

       48.98529523

       49.09269186

       49.22147621

       49.35934962

       49.49099027

       49.61335548

       49.72952178

       49.86698655

       49.98908681

       50.12329961

       50.24522355

       50.36706484

       50.50403854

       50.61962547

       50.73817904

       50.87184136

       50.99933969

       51.12068726

       51.25105045

       51.39344037

       51.51454191

       51.63859426

       51.75350100

       51.88949042

       52.00727478

       52.14309645

       52.27882993

       52.39940880

       52.51991971

       52.64337372

       52.77578345

       52.89909396

       53.03435667

       53.17554499

       53.28663223

       53.42466675

       53.53563583

       53.67652216

       53.80235113

       53.92212818

       54.06877637

       54.19739735

       54.31997570

       54.45145874

       54.56794557

       54.69035123

       54.82761851

       54.95587158

       55.07810451

       55.21518119

       55.34028121

       55.45639766

       55.59032189

       55.71229012

       55.84015609

       55.97985687

       56.09870296

       56.24719949

       56.36594879

       56.48465633

       56.63298322

       56.75752942

       56.87610464

       57.02130698

       57.15164477

       57.27897749

       57.39738934

       57.53351968

       57.65481511
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