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ABSTRACT

In this research, two related research topics were investigated. The first one is the
use of scalar diffraction theory for the purpose of simulating and implementing
diffractive optical elements (DOES). The main focus was on the optimal design of
computer- generated holograms (CGHs). Two existing methods were combined to
improve the reconstructed image of a CGH. The new method combines the Optimal
Decimationin-Freguency lterative Interlacing Technique (ODIFIIT) with the Lohmann
coding scheme. Simulations indicate that the reconstructed image produced with this
method has less error than reconstructions with either method alone. Physical
reconstructions were performed and compared to the simulated results.

Near field diffraction from DOEs with feature sizes on the order of a
wavelength were also ssmulated and analyzed. Both the small feature size and the close
observation distance make scalar diffraction theory inaccurate. For this situation, a
compl ete electromagnetic theory is necessary to achieve accurate results. XFDTD
software made by Remcom was used to simulate these elements and their diffracted
fields. XFDTD calculates the diffracted fields by using a leapfrog finite difference time
domain algorithm to solve Maxwell’s curl equations directly. Fresnel zone plates and
reflection and amplitude gratings were simulated. An amplitude grating was aso
combined with a Fresnel zone plate to imitate a Fourier lens system like that used for
reconstructing the image from a computer-generated hologram. The angular spectrum of
plane waves was also used to study these systems, and results were compared.

Results showed that XFDTD can accurately ssmulate small-scale DOEs. Precise
knowledge of the diffracted field from small-scale DOEs will play an important and
useful role in future optical systems as feature sizes reach the nano-scale level.



1 INTRODUCTION

Diffractive optics is used in many applications such as optical storage, processing,
sensing, and communications. Diffractionis often described as the bending, or deviation
of waves from a straight line due to interaction with an obstacle or aperture. To
completely describe diffractive effects, electromagnetic theory is necessary. In many
situations, an exact description of the diffracted field from an aperture cannot be obtained
analytically, and requires numerical techniques. Under certain conditions, analytical
results can be achieved using scalar diffraction theory. For it to be sufficiently accurate,
two conditions must be met [1]: (1) the diffracting aperture must be large compared to the
wavelength of the incident wave and (2) the diffracted field must not be observed too
close to the diffracting aperture. The second condition often requires that the field be
observed many meters behind the aperture caled the far field, creating space issuesin a
confined lab. Fortunately, alens can be used to overcome this problem.

Scalar diffraction theory is used in the first part of the thesis for the design of
diffractive optical elements (DOEs). The genera purpose of a DOE is waveshaping.
While standard refractive optical elements such as mirrors and lenses are often bulky,
expensive and limited to a specific use, DOESs are generally light-weight, compact, easily
replicated, and can modulate complicated wavefronts. DOESs are also useful in
mani pulating multi-spectral signals.

A computer-generated hologram (CGH) is a specific type of DOE. CGHSs have
found applications in many areas involving waveshaping, laser machining [2], 3-D
displays, and optical pattern recognition. CGHs have recently found usesin optical
interconnects and security devices[3,4]. A particular setup for designing and testing a
CGH isan optical Fourier transform system. In this system, the desired wavefront plane
and its transform plane, called the input plane and observation plane, respectively, are
placed in the front and back focal plane of athin lens. The CGH is placed in the input
plane and its far-field diffraction pattern, which will be seen to be the Fourier transform

of the hologram’s transmission function, occurs in the observation plane.
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Advances in computing and integrated circuit production technology are making
the application of DOEs more attractive. Designing a CGH consisting of a large number
of points can be computationally demanding. However, many points are necessary to
achieve the bandwidth required to reconstruct a complicated wavefront. As computers
become faster, the ability to rapidly design CGHs and to adjust them in real time will
increase, alowing them to be used in ways not previously possible. One exampleisin
the use of gpatial light modulators (SLM). In general, a CGH modulates the amplitude
and/or phase of awave to create a desired wavefront, just likea SLM. Rapid design of
CGH can alow SLMs to implement the hologram in real time.

A limiting factor in the production of DOEs is the ability of the device to spatially
modulate the amplitude and phase of a wavefront. Current technologies impose
resolution limits, and require discretization and quantization of the amplitude and/or
phase function of the DOE. The option is often limited to two levels of quantization.
Two typical types of binary quantizations are to restrict the output functionto 1 or 0
representing transmission and no transmission, respectively, and 1 or -1, where -1
represents a 180 degree phase shift.

Integrated circuit technology, specifically lithography and reactive ion etching
(RIE), can be used to produce diffractive optical elements. Lithography and RIE are used
to print patterns in materials like silicon using surface relief. Surface relief is used to
implement phase modulation. |C technologies alow for better resolution and more levels
of quantization, which increases efficiency. As these technologies mature, so will the
output and efficiency of diffractive optical elements. Thiswill result in DOES being used
in many more applications. Thus, it isimportant to study and optimize the design of
diffractive optical elements.

This thesis discusses three methods of designing computer-generated holograms.
The first method was introduced by Lohmann and Brown [5]. The hologram is divided
into an array of rectangular cells each containing an aperture. The size of the apertureis
adjusted to modulate amplitude, and the position of the aperture is shifted to control
phase. This method is referred to throughout this thesis as the Lohmann method. The
desired amplitude and phase at each point is obtained by computing the Fourier transform

of the desired image. The second method is the Optima Decimationin-Frequency
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Iterative Interlacing Technique (ODIFIIT) developed by Ersoy and Zhuang [6]. Itisan
iterative method which utilizes the decimation-in-frequency property of the Fourier
transform to interlace several smaller holograms into one large hologram. Similar to
Lohmann’s method, the hologram plane is divided into an array of rectangles. However,
the output function of each rectangle, called a cell, has the same value for al pointsinside
that cell. The output of each cell is determined using the projection onto constraint sets
(POCY) algorithm [7]. The third method is a new scheme developed in this thesis
incorporating aspects of both Lohmann’s method and the ODIFIIT. The new design
procedure seeks to take advantage of the interlacing property of the ODIFIIT while using
Lohmann’s coding scheme to have more control over amplitude and phase when
designing each cell. ODIFIIT isaso applied to a quantized version of Lohmann’s
method to reduce the error in the reconstructed image.

All of the diffractive optical elements discussed so far are designed with the
assumption that scalar diffraction theory applies. However, due to the advancesin
semiconductor technologies, there is an increasing demand for devices with feature sizes
on the nanometer scale. On such asmall scale, scalar diffraction theory breaks down.
Refractive optical elements are not useful in these situations because their resolution is
limited for small aperture sizes, which is due to diffractive effects. Therefore, a good
understanding of diffractive effects on a small scale and the ability to use diffraction as
an advantage is becoming more important. As devices reach the nano-scale level,
efficient DOE design will be crucial.

Scalar diffraction theory becomes incomplete when the field is observed very
close to an aperture, or when the size of the aperture is on the order of a wavelength.
When this is the case, electromagnetic theory is needed to accurately predict diffractive
effects. There are several numerical techniques used to simulate wave propagation using
electromagnetic theory. Finite elements, beam propagation, and finite difference are
examples of such methods [8,9]. In the second part of this thesis, the finite difference
time domain (FDTD) method is used to simulate and analyze diffractive optical elements
with small feature sizes and short characteristic lengths, like foca length. The FDTD
method can be used to numerically solve partia differential equations, such as the wave

equation and Maxwell’s curl equations. FDTD methods use a grid representing the
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region of interest, which is made up of many small cells. The quantities of interest are
calculated at each cell. In the case of diffraction of electromagnetic waves, the quantities
of importance are the electric and magnetic fields. For accurate results, each cell has a
size on the order of 1/10 to 1/30 of a wavelength. In general, accuracy of results
improves with decreasing cell size.

There are other factors besides the minimum resolution of the defined grid that
can cause error in the results. The most notable is the application of absorbing boundary
conditions (ABCs), which are not perfect. ABCstry to smulate a situation where waves
encountering the boundary of the interest region are free to propagate as if thereis no
boundary. Effective FDTD methods reduce reflections at the boundary to a fraction of a
percent.

In this research, XFDTD software by Remcom was used to simulate Fresnel zone
plates, reflective gratings, and binary transmission gratings imitating computer-generated
holograms. Feature sizes and observation lengths were made on the order of several
wavelengths. The accurate ssimulation of these elements is important when considering if
such diffractive devices could be used in micro and nano-scale applications.

The angular spectrum of plane waves [1] was also used to analyze the same
elements as XFDTD. Theoreticaly, the angular spectrum method is valid for regions
close to a diffracting aperture, but it is a Fourier transform method which does not
directly solve Maxwell’ s equations. It also does not allow for specification of material
properties and advanced geometries.

The results from XFDTD and the angular spectrum method were analyzed and
compared. The angular spectrum gave good results in certain situations, but does not

have the accuracy or versatility of XFDTD.
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2 DIFFRACTION

2.1 Introduction

Diffraction is a phenomenon of considerable importance in the fields of physics
and engineering whenever wave propagation isinvolved. Sommerfeld defined
diffraction as “any deviation of light rays from rectilinear paths which cannot be
interpreted as reflection or refraction” [1]. In 1665, the first account of diffractive
phenomena was published by Grimaldi when he observed the shadow resulting from an
aperture in an opague screen illuminated by a light source. He observed that the
transition from light to shadow was gradual rather than sharp, which we now know is due
to diffraction. Sommerfeld’ s definition implies that diffraction only appliesto light rays.
In redlity, diffraction occurs with all types of waves including electromagnetic, acoustic,
and water waves, and is present at all frequencies. The content of this research deals
exclusively with electromagnetic radiation at optical frequencies.

Diffraction was initially considered to be a nuisance when designing optical
systems because diffraction at the apertures of an optical imaging system is often the
limiting factor in the system’s resolution. However, by the mid 1900’ s, methods and
devices utilizing the effects of diffraction began to emerge. Examples include analog
holography, synthetic aperture radar and computer-generated holograms and kinoforms,
generally known as diffractive optical elements (DOE’s). Computer-generated
holograms will be one of the main topics of thisthesis. Diffractive elements are a'so
being combined with refractive elements to correct aberrations associated with refractive
lenses.

The propagation of waves can often be described by rays which travel in straight
lines. However, the behavior of wave fields encountering obstacles cannot be described
by rays. Some of the wave encountering an obstacle will deviate from its origina
direction of propagation causing the resulting wave field to differ from the initial field at
the obstacle. Thisis called diffraction. Classic examples include diffraction of light from

aknife’' s edge and a wave field passing though an aperture in an opaque screen.



2.2 Rayleigh-Sommerfeld Diffraction

In scalar diffraction theory, predicting the diffracted wave field from an aperture
is usually done by using Green’s theorem to convert the Helmholtz equation into a
meaningful integral equation. A discussion of this procedure and the various
assumptions made along the way can be found in [1]. Scalar diffraction theory considers
only the scalar amplitude of one transverse component of the wave field, and assumes
that other components can be treated independently in asimilar way. Scalar theory can
lead to very accurate results if the diffracting aperture is large compared to the
waveength, and if the diffracted fields are observed at a reasonable distance from the
aperture. What satisfies as a reasonable distance will be clarified later.

Fig. 2.2.1 illustrates diffraction from an aperture A illuminated by a wave field U,
where the field at the output of the apertureis U (X, y,0) . Fig. 2.2.2 shows a cross section
of the aperture and specifies the important geometries. On this plane, the field is
assumed to be zero anywhere outside the aperture. Applying the Kirchhoff
approximation [10], the diffracted field of a monochromatic wave at a point behind the
aperture in vacuum is given by the expression [1]

jkros

1 N\
U (X, Yo, 2) = T a (% .0 dxdy . (2.2.1)
A

ze

r.Ol 01

This is the Rayleigh-Sommerfeld diffraction formula, where r, isthe distance from
1/ 2

P, to P, givenby 1o, =[(%, - X)2 +(y, - y)? +2°|"°.

| iswavelength, k is the wave- number defined as k = , and c isthe velocity of

2 _ 2pf
I C

light in vacuum.



U(x y.2)

Fig. 2.2.1 Diffraction from an aperture illuminated by a wavefield



U(x,y,2) R (% Yo, 2)

R(xy.0)

Fig. 2.2.2 Geometry of an aperture illuminated by a wavefield



2.3 Fresnd and Fraunhofer Diffraction

The Rayleigh-Sommerfeld formula can be made easier to compute by making
approximations based on the size of the aperture, the distance z of the output plane from

the aperture, and the observed region of the output plane. Let the aperture be contained
inside aradius L, suchthat U (x,y,0) =0 if 4/x?+y? > L, and the observed wave field
U (X, Y,,2) @ the output plane be restricted to aregion L, so that

U (X, Yy,2) =0 if Jxoz +y02 >L,. If

|Z|3 >> k(Ll + L2)2

: 231
5 (23.)
then (2.2.1) can be approximated with good accuracy as [1]
p
U (Xo» Yo, 2) = c‘,‘y(x yioyelta e ey g (23.2)

Thisis known as the Fresnel diffraction formula, and any region satisfying (2.3.1) is
called the Fresnel region.
For even greater z distances known as the Fraunhofer region, or far field,

255K (x FY) k;l (233)

(2.2.1) is approximately given by [1]
ke ik
U (X4, Yo 2) :el—eIZZ(XO e )@J (x,y,0)e izt ) dixdly . (2.3.4)
Itz
This is the Fraunhofer diffraction formula. Notice that it is the Fourier transform of the

field at the diffracting apertureU (x, y,0) a the frequencies f, = |X° ad f, =0

Yoz
multiplied by some factors.

It is important to notice that for atypical aperture size, the distance z required to
meet the condition in (2.3.3) isrelatively large for experimentsin alab or other confined
space. Fortunately, alens can be used to overcome this potential problem. Neglecting
edge effects due to its finite size, the phase transformation generated by a lens produces a

Fourier transform of the input wave at its focal plane. A lenswith an illuminated
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diffracting aperture placed at one focal plane will produce the Fraunhofer diffraction
pattern of that aperture at the opposite focal plane. If the diffracting plane is moved away
from the focal plane of the lens, the field in the opposite focal planeis just multiplied by
a phase factor dependent on the distance moved. However, when viewing the intensity of
light, which is the square of the field magnitude, the phase factor isirrelevant. Thus, the

output is independent of the position of the diffracting aperture.

2.4 Conclusions

The Rayleigh-Sommerfeld (R-S) diffraction formula provides a starting point for
finding the diffraction pattern from an aperture. For certain regions behind the aperture,
approximations can be made to smplify the R-Sformula. By considering the diffracted
field in the Fresnel and Fraunhofer regions, diffraction patterns of simple apertures such
as rectangles and circles can be determined analytically. Most importantly, the
Fraunhofer diffraction pattern is simply the Fourier transform of the diffracting aperture.
So, aslong as the field at the output of a diffractive element can be represented
mathematically, afast Fourier transform algorithm can be used to determine its
Fraunhofer diffraction pattern. Thiswill be the basis for the design of the computer-
generated holograms relevant to this thesis when scalar diffraction theory isused. The
next chapter will present the basic theory behind computer- generated holograms, which

fall under the general category of digital holograms.
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3 DIGITAL HOLOGRAPHY

3.1 Introduction

Digital holography [11] is a branch of diffractive optics covering the theory,
calculation and fabrication of thin diffractive e ements.

Classically, to make a hologram, a wave reflected from an object is combined
with areference wave to produce an interference pattern which is recorded on a
photosensitive material. This interference pattern contains amplitude and phase
information which allows an image of the original object to be recovered. This process
requires very stable conditions, and can take a considerable amount of time.

Computer generated holograms (CGHSs), which are the main focus of this thesis,
were introduced by Lohmann [5]. He introduced a purely digital implementation called
the detour- phase method. The design of his CGH’ s is based on a desired Fraunhofer
diffraction pattern. A more detailed description of Lohmann’s method will be presented
later. In general, CGHs are diffractive elements (DE’s). DE’sthat modulate only the
amplitude of an illuminating wave are called diffractive amplitude elements (DAE'’s).
DE’s which only affect the phase of an illuminating wave are known as diffractive phase
elements (DPE’s). Unlike DAE s which have a binary quantization (transmission or no
transmission), DPE’s may have several possible quantization levels. In general, the more
possible levels of quantization a DPE has, the closer it can recreate the desired phase.
This results in a more effective diffractive element in terms of reconstruction error and
efficiency.

CGHs are usually designed based on scalar diffraction theory. This means that
the typical feature size of the element must be large compared to the wavelength of the
illuminating wave, and the element must be sufficiently thin [1]. Otherwise, rigorous
diffraction theory is needed to describe diffraction from the CGH.

3.2 Methods of Coding

The optical function of a Fourier diffractive element with transmittance H (U) is

designed to generate the Fraunhofer diffraction pattern f (X- X,). Mathematically, we
write [11],
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F[H ()] = h(x) =af (X- X,), xI R (3.2.1)
The diffracted wave is proportional to the desired wave f (X) insdeawindow Rinthe
observation plane. X, represents an offset of the window R, and F designates Fourier

transform.

If only the intensity of the wave is considered, then (3.2.1) is changed to,
&) =a?|f(x- %), x1 R (32.2)

This makes the phase of the desired wave a free parameter.
Three assumptions are made about the desired wave and its spectrum [11]:

1. The magnitude of the spectrum of f (X- X,)is normalized:
F{f(x- %)) =|F @] £1

where F, () = F(T)e'*™

2. The desired wave f (X) must be bandlimited due to the finite size of the
diffractive element.
3. f (X- X,)isapproximately restricted to the window R:
f(X-X,)»0, xI R

Condition 3 implies the neglect of sinc-oscillations outside of R due to the finite size of
the element.

In order to make implementation easier, the transmittance H (U) of the diffractive
element has to satisfy certain digital constraints C. For aDAE, each pointin H (G) must
allow either transmission or no transmission represented by 1 and O respectively.
Therefore, H (0)1 {0,3 for every U representing a point in the hologram, and C={0,1}.
For abinary diffractive phase element H (G) T {- 1,1} or more generaly, |H (T)| =1.
Coding of the input signal by the digital hologram requires finding a H (U) that satisfies
the transmittance conditions exactly and the conditionsin (3.2.1) and (3.2.2) to agood
approximation. In general, there are two different coding techniques [11]:

1. lteratively search for the H (i) T C that best approximates f (X) . Given an initial

H, (U), successively generate H,(U), H,(U),... H (0)to satisfy the constraints

in the image plane. This can be written as,
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H, (@) =0,H,@)T C
where hy (X) = F[H  (U)] satisfies (3.2.1) or (3.2.2) to agood approximation.
O,; represents the iterative algorithm. Or,

2. Startingwith F (U), find H(d). The constraint in the image plane is already
satisfied. A coding operator O, maps F, (1) onto H (U)such that image plane
constraints are satisfied, i.e.

H (t) =O.[F_(@)]T C
where h(X) is given approximately by (3.2.1) or (3.2.2). The coding operator

could be iterative or noniterative. Lohmann's method and ODIFIIT discussed
later in this thesis both fall into this category.

3.3 Diffraction Efficiency
The diffraction efficiency of a DE with transmittance H (U)is defined as[11]

h= <|h(>?)|2>R (33.1)

where ()R isan integration over R, the image region. This assumes the energy of the

illuminating wave is normalized. Efficiency is ameasure of how much of the energy in
the initia illuminating wave is diffracted into the desired region R. In generd,
diffractive phase elements have greater efficiency than diffractive amplitude elements.

The efficiency of a DPA increases with the number of phase levels.

3.4 Conclusions

The basics of digital holography provide a general foundation for the design of
computer- generated holograms. All the CGHs designed in this research use the second
general coding method mentioned. How the hologram plane is divided and the specific
method used to encode amplitude and phase at each point in the hologram have a
significant effect on the reconstructed image and the hologram’s efficiency. The next
three chapters discuss how the basic theory from this chapter is used to design computer-
generated holograms using Lohmann’s method, Optimal Decimationin-Frequency

Iterative Interlacing Technique, and an original method combining these two methods.
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4 LOHMANN'SMETHOD FOR DESIGNING COMPUTER-GENERATED
HOLOGRAMS

4.1 Introduction

The goal in producing a synthetic hologram, or computer generated hologram
(CGH), isto find a diffractive object with a predetermined Fraunhofer diffraction pattern.
Thisisthe inverse of the familiar problem where one wants to find the diffraction pattern
resulting from an object. In generating a CGH, it is the diffraction pattern which is
known, and the geometry of the object needs to be determined. The optical system
assumed for generating synthetic holograms in the case of Fourier transform geometry
consists of a hologram plane and an image plane, each a distance f from opposite sides of
alens (Fig. 4.1.1). fisthefoca length of the lens. In generd, the hologram planeis
illuminated by awave. Due to the Fourier transforming properties of alens, the
Fraunhoffer diffraction pattern, or Fourier transform, of the hologram plane occurs at the

image plane. In other words, the wavefront at the hologram plane F(n,,n ) hasthe
Fraunhoffer diffraction pattern f (x,y) a the image plane. By knowing the desired

diffraction pattern, one can determine the wavefront needed at the hologram plane,
namely,

F(n,.n,) = ¢ f(x y)e ™™ dxdy. (4.1.1)
The coordinates (n,,n, ) are related to the physical coordinates (Xx;,y;) by the
following: x; =1fn, and y, =1fn . Inactua implementation, one must find away to

if (ny,ny)

implement the complex amplitude F(n,,n,) = A(,,n)e
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Observation Plane
CGH Pane

Fig. 4.1.1 A Fourier lens system for the design of CGHs

4.2 Lohmann’s Method

In the method developed by Lohmann [5,12], the hologram plane is divided into
smaller rectangles each containing an aperture. An example of aLohmann cell is
shownin Fig.4.2.1. The size of the aperture is used to control amplitude, and its position

is changed to adjust phase. Thisresultsin abinary transmission pattern. If h(x, y)is
taken as the diffracted amplitude from the hologram H({, ,n ), thenit should be
proportional to the desired image f (Xx,y). The binary amplitude of the hologram’s

transmission is described by
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o o é,- (n+P,_)dny ény-mdnu
Hh,n,)= rect a— ——Jecta ¥
o)z a e W

(4.2.1)

When atilted plane wave, exp(2pixj, ) falls on the binary hologram, the complex
amplitude behind the hologram is H (n, n ) exp(2pixy, ). A tilted plane wave is needed

in order to manipulate phase in the hologram plane. Fourier transform of the hologram at

the image plane results in the complex amplitude:

(( HO N y)ezpi[(x+xo)nx+yny]dn an , = (4.2.2)

c(dn)?sincfcdn (x+ x,)]& & Wy, sinc( YW, dn)exp{2pi[dn((x + x, J(n+ P,,)+ ym)}

n m

P

nm 1

Now, the parameters W,

nm ?

and the two constants X, ,c are chosen such that the
complex amplitude in the image plane matches the desired image f (x,y).

Eq.(4.2.2) can be compared to the desired image by writing f (x,y) intheform

f(%Y)=OF 0, )e® ™ ™ dn,dn, = & & F(ndn,mdn)e®® vl (42.3)

The two sinc functions and the factor exp[Zpi(xandn)] in (4.2.2) can al be assumed to

be close to unity. The validity of this assumption will be discussed in Section 4.3. Then,
by equating the Fourier coefficients, we get [12]

c(dn)*W,,, exp{2pi[x,dn(n +P,,)} 4 F(ndn, mdn);
F(ndn, mdn) p c(dn)® A, exp[ 20i(f ,/ 20)];
W, » A, P,tn»f  /2px,dn. (4.2.4)
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Fig. 42.1 The (n,m)th cell of a Lohmann-type binary hologram [12].

This shows that the height W and the position P of the aperture in each cell are

responsible for generating the amplitude A and the phase f of the complex amplitude F
at the cell. By choosing x,dn equal to an integer M, we obtain
P.»f [20M . (4.2.5)

This completes the information needed to generate a Lohmann-type binary synthetic
hologram.

4.3 Approximationsin Lohmann’s Method

The transmission pattern of a binary hologram was described in the previous
section by a summation of rectangular functions that are shifted and scaled to represent
the position and size of each aperture in the hologram plane:
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o o é,- (n+P,)dnu é]y-n’dnl‘j
Hh,n, )= rect &= o Tect a ¢ 43.1
0.ony) an E?n. & cdn O g W, dn H ( )

When the hologram is illuminated by a tilted plane wave exp(2pixf1,), the resulting

Fraunhofer diffraction pattern is the Fourier transform of the product of the transmission

pattern and the illuminating wave. The result is,

((H(O N )eP e idn dn = (432
o(dn)? sncfodn (x+ %) & Winsine( yWi,dn) exp{2pildn ((x+ %, Jn + Ryy) + ym]]

In the previous section, the three approximations (a)s'nc[cdn(x+ xo)] » const, (b)
anc( YW, dn) » 1, and (c) exp[ 2pi(xP,.d,)] »1 were made for smplicity. The effects of
these approximations on the reconstructed image depend on several factors, and with
proper design, can be minimized.

The sinc function snc[cdn(x+ x,)|creates a drop-off in intensity in the x-

direction proportional to the distance from the center of the image plane. Approximation

(a) considers this sinc factor to be nearly constant inside the image region. If the size of
the image region is Dx” Dy, then at the edges x = t% where the effects are most

severe, we havesinc[cM J_rc/2]. This implies that a small aperture size ¢ results in less
drop-off in intensity. However, this also reduces the brightness of the image. For
cM =1/2, the brightness ratio between the center and the edge of the image region is
9:1. By reducing this product to cM =1/3, theratio dropsto 2:1[12]. So, depending on
the situation, or the preference of the designer, brightness can be sacrificed for a
reduction in intensity drop-off at the edges of the reconstructed image.

The sinc function sinc( yW,.dn) indicates a drop-off in intensity similar to (a),

but in the ydirection. This approximation is a little less dangerous because Dxdn =1,
which means |den| < % Therefore, the sinc factor in (b) has a minimum of 0.64 in the

image region [12]. Basically, the sinc function acts like a slight decrease in amplitude
transmission by a factor snc( yW, dn). It is well known that amplitude errors in

apertures of coherent imaging systems have little effect on the image because they do not
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deviate rays like phase errors do [12]. To reduce the effects of this approximation, every
W could be reduced by a constant factor. However, some brightness must be sacrificed.
A possible solution to the sinc roll-off in the x direction is to divide the desired

fxy)

image by sinc[cdn(x+x,)]. The desired image f(x,y) becomes — .
sinc [cdn (x + X, )]

The same thing cannot be done for the y direction because sinc( yW, dn) depends on the

aperture parameter W, which is yet to be determined. Luckily, this sinc factor is less

influential than the x dependent sinc, and design of the hologram can be altered to reduce
its effects.

Last, the phase shift exp[ 2pi(xP,d,)] causes a phase error that varies with x

location in the image plane. The range of this phase error depends on x and P. Since

|x|£%:i and |P|£i, the phase error ranges from zero to P Atits
2 2dn 2M M

maximum, the phase error corresponds to an optical path length of 4|W For M=1, this

iswithin the lz Rayleigh criterion for wave aberrations [12].

The detrimental effects of these approximations are less when the size of the
image region is restricted. Simply put, differences between approximated and actual
results increase with distance from the center of the image plane. If the image region is
smaller, its edges are closer to the center of the image plane, which lessens the difference.
A rigorous solution to reduce the effects of these three approximations is worked out in
the paper by Lohmann and Paris[12]. This procedure is not included in this thesis.

4.4 A Moadification of Lohmann’s Method: Constant Aperture Size

From the previous discussion on the approximations made in Lohmann’s method,
the sinc oscillation due to the variable size of each aperture is the most difficult
approximation to deal with. Therefore, it would be desirable, also for the purpose of
simpler implementation, to somehow have the height of each aperture constant. This
would allow for the desired image to be divided in the y-direction by the y-dependent
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sinc drop-off just as was done in the x-direction for the sinc factor associated with the
constant width of the aperture.

Logicaly, if every aperture has the same size, then only the positioning of the
apertures is affecting the output. This means that all the information is contained in the
phase. The following method is used to “shift” information in the hologram plane from
the amplitude to the phase.

If only the magnitude of the desired image is of concern, then the phase at each

sampling point in the observation plane is afree parameter. For this situation, the range

of height W, values can be reduced by iterative methods [2]. Suppose the sampled
desired image has amplitudes a,,, each with an unspecified corresponding phase q,,,.
The discrete Fourier transform of the image is {W,,, exp(i2oP,,)} , where {..}..
indicates the sequence for all points n and m. The first step in reducing the range of W, .

valuesisto assign valuesof g, to theinitial desired image which are independent and
identically distributed phase samples with a uniform distribution over (-p,p) [2]. The
resulting DFT of the image samplesis denoted by

DFT[{a,, exp(id )} ] ={ Aun €XP(iY 1)}, - Then, the spectral amplitudes A, are set
equal to any positive constant A. The inverse DFT of the spectrum with adjusted
amplitudesis DFT[{ Aexp(iy ,,.)J] = {5nm exp(iq. nm)}. The original image amplitudes a, _
are now combined with the new phase values a .m to form the new desired image
samples. This process is repeated for a prescribed number of iterations. The image phase
obtained from the last iteration becomes the new image phase. The fina image phase
values are used with the original image amplitudes to generate W, exp(i2pP,,,) used for
designing the hologram function.

By constraining the amplitude in the hologram domain and performing iterations,
information in the hologram plane is transferred from the amplitude to the phase.
Therefore, this reduces the negative effects caused by making all the apertures the same
height. If al the apertures have the same height, then approximation (b) in section 4.3

can be handled the same way as approximation (a).
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4.5 Experiments and Simulations with Lohmann’sM ethod

Thefirst step in creating a computer-generated hologram was to pick an image
and represent it mathematically. For example, a binary image can be represented by a
two dimensional array of 0'sand 1's. Next, the discrete Fourier transform of thisimage
was computed. The Fourier transform becomes the desired hologram function. The
binary transmission pattern was generated from the hologram function using Lohmann’s
method. Matlab code was written to implements Lohmann’s coding algorithm. The
binary transmission pattern obtained from Lohmann’s method was displayed in one of
two ways. To display the exact Lohmann hologram (i.e. aperture size and positions are
exactly as specified), the pattern is drawn into a CAD layout. The code using Lohmann’s
method includes commands that generate a ~.dxf file, which draws the pattern into an
AutoCAD layout. An aternative method involves dividing each hologram cell into an
NXN array. Thisrestricts the possible center positions and heights of each aperture.
Thus, the phase and amplitude of each cell is quantized. Specifically, there are N
possible positions for the center of the aperture (phase), and N /2 potential height values
(amplitudes) since the cell is symmetric in they direction. Obvioudly, alarger N
produces a pattern closer to that of the exact hologram. For convenience, when Lohmann
cellsare divided into NxN pixels, thiswill be referred to as N -level quantization.

All holograms were designed using parameter valuesof ¢ =1/2 and M =1.
Setting ¢ =1/2 means that each aperture has a width equal to half that of the cell. It can
also be shown that this value of ¢ maximizes the brightness of theimage [2]. After
choosing ¢ =1/2, the only alowable valueis M =1 [12]. Also, each approximation
mentioned in Section 4.3 was assumed to be valid.

Fig. 4.5.1 shows a binary E image and its Fourier transform amplitude. The entire
image is of size 64x64. Notice that the E image is placed completely on one side of the
image plare. Because the field in the hologram planeis real, Fourier theory demands that
the image plane have Hermitian symmetry. This means that for an image plane of size
NxM , h(n,m) =h(N - n,M - m), where h is the reconstructed image.

Fig. 4.5.2 displays the transmission pattern generated by Lohmann’s method
using the E image in Fig. 4.5.1. Inthis case, 16-level phase quantization, and 8-level

amplitude quantization were used.  Fig. 4.5.3 shows the simulated reconstruction. The
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reconstructed image clearly shows the Hermitian symmetry due to the real- valued binary
transmission pattern. In reality, the reconstruction seen here is repeated in both the x and
y directions due to the finite size of the hologram.

Simulated reconstruction of a gray-scale image was also performed. Fig. 4.5.4
displays the image and its reconstruction. The entire image plane is 512x512.

One modification was made to Lohmann’s method in the hope of improving the
outcome of the reconstructed image. Since phase information in the Fourier, or
hologram, plane is more important than amplitude in regards to the outcome in the image
plane, Lohmann’s method was modified to keep the amplitude of each cell constant and
only manipulate phase. This was achieved by performing the iterative method discussed
in Section 4.4 to move information from the amplitude to the phase in the hologram

plane, thus alowing the size of each aperture to remain the same. Each aperture was still



Fig. 4.5.1 @ A binary E image b) Amplitude of the Fourier transform of the E imagein
@).
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Fig. 4.5.2 The Lohmann hologram designed from the E image in Figure 4.5.1a.
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Fig. 4.5.3 The simulated reconstruction of the Lohmann hologram in Figure 4.5.2.
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(b)

Fig. 454 a) A Girl image. b) Simulated reconstruction of the girl image by a Lohmann
hologram.
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shifted to produce the desired phase. This modification was made in the hope of
increasing the brightness of the reconstructed image without significantly reducing its
quality. As seen from Fig. 4.5.2, much of the hologram is black, which means that
incoming light is being blocked, and thus energy is being lost. By keeping the amplitude
of each block constant, and only adjusting phase, the average amplitude is greater, while
hopefully maintaining reconstruction quality. An example of the transmission pattern
generated using this modification is shown in Fig. 4.5.5a. The resulting simulated
reconstruction is shown in Fig. 4.5.5b. Fig. 4.5.6 shows a reconstruction of the girl image
from Fig. 4.5.4 using the constant amplitude method.

In order to make the transition between a computer generated hologram and a
physical binary hologram, the designed binary transmission pattern must be realized.
One way of achieving thisisto print the designed hologram pattern onto a transparency.
This was done for a Lohmann hologram, a modified Lohmann hologram with constant
amplitude. Both hologram functions were represented in MATLAB using 16-level
guantization, and saved as image files. The images were reduced in the computer and
then printed at the desired size. The Lohmann holograms contained 64x64 cells, and
were reduced to asize of 1.2x1.2cm. Therefore, the sampling period in the hologram
plane was approximately 0.19mm. Each hologram was designed to reconstruct the E
image seen in Fig. 4.5.1a, and tested using a HeNe laser. The reconstructions can be seen
inFig. 45.7.

4.4 Discussion

Probably the first thing noticed about a Lohmann hologram is that it closely
resembles the amplitude of the actual Fourier transform of the desired image. This can be
seen by comparing the hologram function in Fig. 4.5.1. Clearly, this should be the case if
the hologram is representing the amplitude of the Fourier transform correctly. The
greater the amplitude of the Fourier transform, the larger the aperture should be, which
results in more transmittance. Depending on the preference of the designer, the
transmission and no-transmission regions in the hologram may be interchanged. This can

be done because the value of 1 for transmission and O for no-transmission was an
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Fig. 4.5.6 Simulated reconstruction of girl image with the constant amplitude Lohmann
method.
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(b)

Fig. 4.5.7 a) Optica reconstruction from a Lohmann hologram b) Optical
reconstruction from a constant amplitude Lohmann hologram.
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arbitrary choice. The choice of O for transmission and 1 for no-transmission could have
been used. It does not match with the usual conception that zero means nothing, but as
long as the binary coding is consistent throughout the hologram, either method will work.

Another option would be to use a (-1,1) binary system. Thiswould be the desired
choice if a phase shift is going to be used when physically implementing the hologram.
Creating a phase hologram was not an option given the resources for this research, so
only binary amplitude holograms where considered.

Next, the iterative method mentioned in Section 4.4 was used to design a
Lohmann hologram where each aperture has constant amplitude. When compared to the
other Lohmann holograms, the modified constant amplitude hologram clearly hasa
greater overall amplitude. In fact, each aperture was given the maximum relative height
of 1 in order to maximize the brightness of the image.

Based on ssimulations, the image is indeed brighter in the constant amplitude case,
but the sharpness of the E appears to have decreased dlightly. The reduction in image
sharpness might be attributed to ignoring any information that was still contained in the
amplitude of the Fourier transform of the image. This amplitude information is of course
lost when the aperture size is made constant. The reduction in image sharpness may also
be due to noise around the edges of the E as aresult of the all around increased intensity.
If thisis the case, this unwanted reconstruction at the edges smply may not have been
visible in the original reconstruction due to alack of brightness. Also, the constant
amplitude hologram produced significantly less noise in the corners of the image plane,
which is an advantage over the original method. The “noise” has moved from the corners
of the image plane to the area around the image.

For the girl image reconstructed from a constant amplitude design, the image was
again brighter and exhibited less noise in the corners of the image plane when compared
to the original method. There is no noticeable error around the image for the constant
amplitude case like there was for the binary image.

The two physical Lohmann holograms produced recognizable optical
reconstructions of the letter E. A hole was cut in the observation screen to remove the
bright, zero-order spot in the center of the image plane. Asthe simulations predicted, the

origina Lohmann method produced a more well-defined image than the constant
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amplitude method. Also supporting the simulated results, the constant amplitude
Lohmann hologram generated a brighter image and less reconstruction outside the image
region. The amount of noise in the center of the image plane is noticeably greater using
the original Lohmann method.

Holograms for larger, more complex images suchas the girl seen in Fig. 4.5.4a
were also made. The optical reconstructions from these holograms were not
recognizable. Thiswas due to resolution limitsin printing. For the 512x512 hologram
designed for the girl image, a hologram 1.2cm x 1.2cm has a sampling period of
approximately 0.023mm. Furthermore, if each cell has only 8-level quantization, a
resolution of 0.003mm is required. The accessible method was only capable of 0.02mm

resolution.

4.7 Conclusions

Lohmann’s method was used to design binary computer-generated holograms.
Simulated reconstructions were performed for binary and gray-scale images. Holograms
having constant aperture amplitude were designed in addition to standard Lohmann
holograms. Holograms with constant aperture amplitude were designed following an
iterative Fourier transform algorithm. Simulated reconstructions due to the constant
amplitude Lohmann holograms had brighter images and less noise outside the image
region, but displayed less image definition. Optical reconstructions from these

holograms supported the simulation predictions.
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5 INTERLACING AND INTERATIVE INTERLACING TECHNIQUESFOR
DESIGNING COMPUTER-GENERATED HOLOGRAMS

5.1 Introduction

In the previous chapters we have seen that, in general, a hologram is an optical
pattern that records the amplitude and phase information of a wavefront (or image) in
order to reconstruct the original image. A computer-generated hologram can simulate the
reconstruction of an image, as long as that image can be represented mathematically.
Therefore, the original object is not needed in order to create the hologram.

The optical system assumed in the synthesis of a computer-generated hologram
using the interlacing technique (IT) and the iterative interlacing technique (11T) is the
same Fourier lens system used for CGH design by Lohmann’s method. Under the
Fresnel approximation, the wavefronts at the two planes are related by a Fourier
transform pair [1]. The image in the observation plane will be defined as the inverse
Fourier transform of the wavefront at the CGH plane. Thus, the transmittance values of
the CGH are designed based on the Fourier transform of the desired image. The
objective, as before, is to design a transmittance pattern for the CGH, which resultsin a
reconstructed image at the observation plane that resembles some desired image.

InIT and 1T, the CGH consists of an array of discrete points. The transmittance

function of a hologram consisting of anM * N array of Dn, * Dn  sized pixels can be

represented by the sum,

a1 _Dn.6 a@.-1Dn.o
A a KON, 8 ety 1 2 (5.1.1)
k=

M
G(nX!ny):a :
y 4]

0 1=0

an
H (k,l)rectg—=
(kD g Dn, g4 Dn

where H (k,1) isthe binary transmittance of the (k,l)th point. The reconstructed image
in the observation plane is given by the Fourier transform of the transmittance:

a(x,y) = ( (‘G(nx’n y)e2pi[xnx+yny] dn,dn y = (5.1.2)

Dn, Dn ys'nc[DnXx]s'nc[Dnyy]é aH (k,I)e><p[2pi(kanX +IyDny)]

By ignoring the two constants and the two sinc factors outside the sums, the

reconstructed image is approximated by the two-dimensional inverse discrete Fourier
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transform (2D-IDFT) of the transmittance valuesH (k,1) . Ignoring the sinc factorsis the

same approximation that was made in the Lohmann procedure. For discussion on how to
deal with this approximation, refer to section 4.3.

5.2 Projection-Onto-Constraint -SetsM ethod

As discussed in the basic theory of digital holography, there are severa encoding
methods available to generate binary transmittance values. The method used in IT and 11T
is the Projection-Onto- Congtraint- Sets (POCS) algorithm [7]. The POCS method uses the
amplitude information of the desired image as the constraint that is imposed on the
observation plane during transformation between the discrete-space domain (i.e. the
observation plane) and the discrete-spatial- frequency domain (i.e. the CGH plane).

L etting the dimensions of both the observation and CGH planes be MxN, the
relationship between the wavefronts at the observation plane h(m, n) and the CGH plane

H (k,l) isgiven by the following discrete Fourier transform pair:

IN-1

1 %y
h(m,n) =— H (k, DWW

whee OEmMEM-1 OEnNEN-1

M-1N-1
Hk,D) =23 3 h(m nWw,™w_"
( ) rna:.ogo ( ) M N (522)

whee OEKEM-1 O£lE£N-1

W, =exp(iZp /u)
The goa of the POCS method is to generate the CGH whose reconstructed image most
accurately resembles the desired image.
Given adesired image f (m,n) inaregion Rof the observation plane, the POCS
method works as follows:

1) Using (5.2.2), compute F(m,n) fromf (m,n).
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3)

4)

5)
6)
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Generate the binary transmittance values H(k,l) from F(k,|) based on the

condition,
i1 if ReF(k,1)]3 0

Hlkl)= 10 othewise

(5.2.3)

Using (5.2.1), find the reconstructed image h(m,n). The accuracy of the
reconstructed image is measured based on the MeanSquare-Error (MSE)
between f (m,n)and h(m,n) within R, the region of the desired image. The
MSE is defined as [13],
MSE =—— & & |f(mn)- I himn)? (5.2.4)
(mn)R
where | isascaling factor. The minimum MSE for h(m,n) is achieved if,
a a f(mnh'(mn)
| =imolE (5.25)
a ah(m n)|2

(mn)i R

Define a new input image f (m, n) such that
ad) Outsde R, f(m,n) equas h(m,n)
b) Insde R f (m,n) hasthe amplitude of the original image f (m,n)
and the phaseof h(m,n).
Letting f (m,n)= f (m,n), go to step 1).
Repeat steps 1 through 5 until the M SE converges or specified conditions are
met.

5.3 Thelnterlacing Technique (IT)

Another method of designing CGH’s is the interlacing technique (1T) [6], which

can be incorporated into any existing CGH synthesis method in order to improve its

performance. The IT method divides the entire hologram plane into a set of

subholograms. A subhologram consists of a set of cells, or points, referred to as a

“block”. All the subholograms are designed separately and then interlaced, or entangled,

to create one hologram.
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In the IT method, once the entire hologram is divided into smaller subholograms,

the first subhologram is designed to reconstruct the desired image f (m,n). The
reconstructed image due to the first subhologram is h, (m, n) . Because the subhologram

cannot perfectly reconstruct the desired image, there is an error image e;(m,n) defined as,
e.(mn)=f(mn)- I h(mn) (53.1)

In order to eiminate this error, the second subhologram is designed with _el(lm, n)

1

asthe

desired image. Since the Fourier transform is a linear operation, the total reconstruction

due to both subholograms is ssimply the sum of the two individual reconstructions. If the
second subhologram were perfect and its scaling factor matched | ,, the sum of the two
reconstructed images would produce f (m,n) . However, as with the first subhologram,
there will be error. So, the third subhologram serves to reduce the left over error from the
first two subholograms. Therefore, each subhologram is designed to reduce the error

between the desired image and the sum of the reconstructed images of all the previous
blocks. This procedure is repeated until each subhologram has been designed.

Each subhologram is generated sub-optimally by the POCS algorithm. However,
the total CGH may not yet reach the optimal result even after all the subholograms are
utilized once. To overcome this problem, there is the Iterative Interlacing Technique
(7).

5.4 Thelterative Interlacing Technique (11T)

1T issmply an iterative version of the IT method, which is designed to achieve
the minimum MSE [6]. After each subhologram has been designed using the IT method,
the reconstruction due to the entire hologram h, (m,n) hasafina error e, (m,n). To
apply the iterative interlacing technique, start a new sweep through the subholograms,
where the new desired image f (m n) for the first subhologram is the original desired
image f (m n)minus the reconstruction created by all of the subholograms except the
first (divided by the scaling factor). So, the first subhologram attempts to reconstruct,
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e, (mn)
I

f ¢mn)=h,(m,n)- (5.4.1)

where e, (m,n)=f (mn)- 1 ,h, (m,n),and | , isthe scaling factor after the last
subhologram. Once the first subhologram is re-designed, the error image due to the
entire hologram is calculated using the new reconstruction created by the first
subhologam. Similarly, the second subhologram is designed to reconstruct

& (mn)

h, (m, n) - T

, which is the error image due to the reconstruction of all

l f
subholograms except the second, and e, ((m, n) is the updated final error. Convergence is

achieved when the absolute different between successive reconstructed images

M-1IN-1

D,=a a |h{, (mn)- hi*(m, n)| (5.4.2)

m=0n=0

reaches zero. By using the IIT method, the convergence tends to move away from the
local- minimum M SE to reach the global- minimum MSE of the existing CGH [13].

5.5 Optimal Decimation-in-frequency Iterative I nterlacing Technique (ODIFIIT)

Now that the IT and II'T methods have been presented, it istime to see how they
can be applied most efficiently. The Optimal Decimationin-Frequency Iterative
Interlacing Technique (ODIFIIT) was designed to optimize the results of the 1T
procedure [6]. ODIFIIT exploits the decimationin-frequency property of the Fast
Fourier Transform (FFT) when dividing the hologram into subholograms, and has two
important advantages over 11 T. It decreases computation time by reducing the
dimensions of the Fourier transform and itsinverse. Also, only the image inside the
desired image region Risinvolved in the transformation. This makes the design of each
subhologram optimal because only contributions from the data of interest are taken into
consideration.



40

The geometry of the image plane for the ODIFIIT method is shown in Fig 5.5.1.
The desired amplitude fo(m,n) is ared-valued array of size A x B. It will be the constraint
throughout the design of the CGH. Therefore, the desired image f(m,n) at any given time
will be fo(m,n) times a floating phase, which is determined by the phase of the current
reconstruction insideregion R f (m,n) is placed within region R, whichbegins at the
point (M1,N1). The Hermitian conjugate of the reconstructed image exists in the region
R* dueto the real-valued CGH transmittance. Since the binary CGH has cell magnitude
equal to unity, it isimportant that the desired image is scaled so that its DFT is

normalized to allow adirect comparison between it and the reconstructed image h(m, n).

Thetotal CGH isdivided into m x n subholograms, or blocks, where

m:MKandn = % mandn are guaranteed to be integersif M, N, A, and B are all

powers of two. Utilizing decimationinfrequency, the blocks are interlaced such that the
(@, b)th block consists of the cells (nk +a,nl +b),where OEKE£ A-1, O£l £B- 1,

Ofa£m-1,and O£ b £n - 1. Fig. 5.5.2 shows an examplewith m =n =2.
Expressing H (k,1) as the sum of all the blocks and using (5.4.1), the expression for the

reconstructed image becomes
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(O.N)

(M,N,)

(0,0) (M,0)

Fig. 5.5.1 Image plane geometry for ODIFIIT.
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Fig. 5.5.2 Interlacing with u=v=2.
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1 '\é-l’\‘l)l mky nl
h(m,n) =——a a H k)W, Wy (5.5.1)
MN 2o 120
miln-1 A <
- LA B EL & & Hmkranl+ bywrwy Bvrews
M ,-0,-06AB 2012 u

whee OEmMEM-1 OEnEN-1
The reconstructed image in region Ris computed by replacing mand nby m+ M and
n+ N,, respectively, and letting m and n span just the image region.
h(m+M;,n+N,) =

1m1nl 1AlBl

=4 é & é & H(nk+anl +b)W(m+M1)k\NB(n+N1)| HNhslli)aW’E‘le)b
u

M ;06 206AB (2o 120

where OEmE A-1, OEnEB-1 (5.5.2)

Let h, , (mn) bethesize A x Binverse discrete Fourier transform of the (a, b)th

subhologram:
h, » (mn) = IDFT,[H (nk +a,nl +b)],.,
= i%{% H (nk +a,nl + bW, W,
AB % ’ ATE (5.5.3)

where Ofa £mr-1, OEb £En-1 OEmME A-1 OEnEB- 1.

The IDFT above is of size A x B. The reconstructed image inside region R becomes

mlnl

h(m+M,,n+N,) = Ea a h o, (M+ M, 0+ N W™ M2y (e

a=0b=0

(5.5.49)
whee OEmMEA-1 O£nEB-1

The indices(m+ M, ) and (n+N,) of h, , (m+M,,n+N,) areimplicitly assumed to be
(m+M,) modulo A and (n+ N,) modulo B, respectively. (5.5.4) givesthe

reconstructed image in Rin terms of the size A x BIDFT’ s of al the blocks. From this

equation, it can be seen that the reconstructed image in Rdueto the (a, b)th block is
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h¢, (m+M,,n+N,) = rmi h, , (M+ M, n+ N, WM M2y rnoe (5.5.5)

which is the IDFT of the (a,b)th block times the appropriate phase factor, divided by
m .
We now define an array, which will be useful later on:
h,, (M+M,,n+N,)=h(m+M,,n+N,)- h¢, (m+M ,n+N,). (5.5.6)
Thisis the reconstruction in Rdue to all except the (a,b)th block.

Conversdly, given the desired image in R, the transmittance values canbe
obtained. From (5.2.2)

A-1B-1
Hk,1) =23 & h(m+M,,n+ N,)W; MMk @)
() r%o?:.o( ' M N (5.5.7)

where OEKEM -1 O£l£N-1
Dividing H (k,!) intou x v blocks as before,

mln-1 AA- -
o olés R

H(nk+a,nl+b)=3 & g 8 h(m+M,n+ N, Wy mHoaw by iy, (ol o

a=0b=0 En=0n=0 u
min-1
=W, "MW A A DFT, g lh(m e+ My, e+ N W, ™ w0 |
a=0b=0
OEfKEA-1 Of£I£B-1 Ofafnm-1 O0£DbE£n-1. (5.5.8)

Therefore, the transmittance values of block (a,b) that create the image
h(m+ M,,n+ Nl) inregion Rare given by

H (i +a,nl +b) =W, "W ¥ DFT g [h(m+ My, n -+ NyW, MMy (e | 559
where 0£K£ A-1, OE£1£B-1 -

Using (5.5.5) and (5.5.9), we can compute the reconstruction in R due to each
individual block, or, given adesired image in R determine the transmittance values
needed to reconstruct that desired image. Therefore, we can now utilize the I T to design
aCGH.

Letting f,(m+M,;,n+N,;),0EmE A-1 OE£n£ B- 1, bethe amplitudes of a

desired image of size A x B, the ODIFIIT algorithm procedure is as follows:
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1) Definethe parameters M, N, A, B, M1, and N, and determine m and n. Then,
divide thetotal CGH into r x n interlaced subholograms, or blocks.

2) Create aninitial M x N hologram with random transmittance values of 0 and 1.

3) Takethe M x N IDFT of the total hologram. The reconstruction in the image
region Ris obtained simply by using only the pointsinside R That is
h(im+M;,n+N,), 0£mE A-1, OEnE£B- 1.

4) Thedesredimage f (m+ M ,n+ N,) isobtained by applying the phase of each
point h(m+ M,,n+ N,) totheamplitude f,(m+M,,n+N,) asinthe POCS
method. So,

f(m+My,n+N,)=fo(m+My,n+N,) epif o nen) (5.5.10)

where f =ag{h(m+M_ n+N,)}

m+Mg,n+ Ny

5) Find the optimization parameter | using (5.2.5).

6) Using (5.5.3), (5.5.5), and (5.5.6), find Ea’b (m+M;,n+N,). Thisisthe
reconstruction in Rdue to all except the (a,b)th block.

7) Determine the image that the (a,b)th block needs to reconstruct (i.e. the error
image) by subtracting | ﬁa,b (m+M,,n+N,) from f(m+M,,n+N,). Divide

thedifferenceby | . Thisyields,

f(m+tM,,n+N,) Ha,b (m+M,.n+N,) |

em+M;,n+N,)=

which is equivaent to the error image in the 11T method.

8) Using (5.5.9), find the transmittance values E(nk +a ,nl + b) for the current

block that reconstructs the error image.
9) Design the binary transmittance values of the current block using the condition

il if RgE(nk+a,nl+b)]3 0
H(mk+anl +b)= - " RAE( neo
10 othewise

10) Find the new reconstruction in Rdue to the current block, h{ (m+ M ,n+N,).

11) Determine the new total reconstructed image h(m+ M,,n+ N,) by adding the

new h{ (m+M, ,n+N,) to ﬁa,b (m+M,;,n+N,).
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12) Withthenew h(m+ M, ,n+ N,), use (5.5.10) to update f (m+M,,n+N,).

13) Repeat steps 7) through 12) until the transmittance value at each point in the
current block converges.

14) Update the total hologram with the newly designed transmittance values.

15) Keeping | the same, repeat steps 3) through 14) (except step 5) for all m
blocks.

16) After al blocks are designed, compute the MSE from (5.2.4).

17) Repeat steps 3) through 16) until the MSE converges. Convergence indicates that
the optimal CGH has been designed for the current | .

5.6 Experimentswith ODIFIIT

The ODIFIIT method was used to design computer-generated holograms of the
same binary E and girl images that were used in testing Lohmann’s method. These two
images are shown in Fig. 4.5.1aand Fig. 4.5.4a. Simulated reconstructions of both
images are shown in Fig. 5.6.1. A higher resolution 256x256 grayscale image was aso
reconstructed using ODIFIIT. The desired image and simulated reconstruction are shown
inFig. 5.6.2.

All holograms designed using ODIFIIT used the interlacing pattern shown in Fig.
5.5.2. There are many different ways in which the subholograms could be interlaced.
However, it has been shown that this interlacing method minimizes the MSE and thus
produces the best results [13]. Also, each hologram was divided into 4x4 blocks, or
subholograms. S0, the binary E image was contained in a 16x16 desired image region
inside the entire 64x64 image plane. Similarly, the 128x128 desired image region of the
girl image is within atotal image plane of size 512x512. Various numbers of divisions

have been tried [13]. Simulated experiments have shown that dividing the hologram into
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(b)

Fig. 5.6.1 Simulated reconstructed images from CGHs designed using ODIFIIT. @)
Binary E image b) Gray-scale girl image.
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(b)

Fig. 5.6.2 a) 256x256 gray
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4x4 blocks leads to the lowest MSE, and that increasing the number of divisions does not
improve outcome [13].
A physical CGH was designed with ODIFIIT to reconstruct the binary E image.
The optical reconstruction is shown in Fig. 5.6.3.

5.7 Resultsand Discussion

The simulated reconstructions using ODIFIIT show very good results. The
images inside the desired image regions are well defined, and little reconstruction is seen
outside the desired image region for both the binary and gray-scale images.

By simple observation of the simulated reconstructions, there are severa
noticeable differences between the ODIFIIT method and Lohmann’s method. In the
reconstruction of the binary image, ODIFIIT produced a more uniform image. The
intensity of the “E” reconstructed with ODIFIIT is amost constant for all points
contained in the image. Conversely, the Lohmann reconstruction has light and dark
patches inside the image. There is aso no noticeable reconstruction inside the image
region that is “misplaced.” All extrareconstruction is moved out of the image region R.
Thisisin contrast to the constant amplitude L ohmann’s method where considerable noise
is present around the E in the reconstruction.

Optical reconstructions from ODIFIIT also produced recognizable binary E
images. The brightness of the image was comparable to that of the original Lohmann
method, but not as bright as the constant amplitude method’simage. The quality of the
ODIFIIT and constant amplitude Lohmann images appear to be about the same. The
ODIFIIT reconstruction is not as sharp as that produced with the original Lohmann
method. However, the ODIFIIT images have less noise directly next to the E within the
desired image region. This supports the simulated results. Also, reconstruction outside
the image region seems to be relatively dispersed. Thisisin comparison to the
concentrated noise in the center of the Lohmann reconstructions, and the excess noise
around the E in the constant amplitude Lohmann image.

Like the CGHs designed with Lohmann’s method, the transmittance function
designed with ODIFIIT can also be coded as (-1,1) to make a binary phase hologram.
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Fig. 5.6.3 Optical reconstruction of binary E image with an ODIFIIT hologram.
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ODIFIIT also has the flexibility to code transmittance functions with multiple levels of
phase quantization. This corresponds to a multi-level phase element. For example, four
levels of phase quantization could be implemented when encoding the hologram. So at

each point in the hologram there would be a phase shift of O,p/2,p,or 3/2. This

generates a reconstruction with lower M SE because the hologram function is a closer
approximation to the actual desired phase at each point. More levels of quantization also
greatly increases the efficiency of the hologram. Since the transmittance can be
imaginary at some points, the image plane does not have Hermitian symmetry, which
also aids the increase in efficiency. Advances in semiconductor technology would make
such high efficiency CGHs more practical. The current difficulty in making multi-level
surface relief is that once the first round of surface relief is done, the element must be re-

aligned very precisdly. Thisiswhere much error can occur.

5.8 Conclusions

Computer-generated holograms were designed using ODIFIIT. Simulation results
showed very accurate reconstructions of desired images. Compared to results from
Lohmann’s method, there was a significant increase in reconstruction quality for high
resolution gray-scale images. Optical reconstruction was also performed, which
produced a recognizable binary image. Optical reconstructions produced similar
qualitative results to theoretical predictions. Quality of the optical reconstruction was
similar to optical reconstruction using a Lohmann or constant amplitude Lohmann
hologram. Optical reconstructions supported many of the expected differences between
methods based on simulation.

Thus far, no quantitative descriptions of the reconstruction quality has been
mentioned. In the next chapter, a new method is introduced. Quantitative analysis will
be used to compare the new method with both Lohmann's method and ODIFIIT.
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6 COMBINING LOHMANN'SMETHOD WITH ODIFIIT FOR DESIGNING
COMPUTER-GENERATED HOLOGRAMS

6.1 Introduction

Lohmann’s coding scheme was implemented into the interlacing technique to
create a new method for designing computer- generated holograms. This new method
will be called the Lohmann-ODIFIIT method, or LM-ODIFIIT for short. The desired
amplitude and phase of each subhologram point is encoded using a Lohmann cell, but the
hologram is divided into interlaced subholograms like in ODIFIIT.

Recall that IT involves dividing the hologram plane into subholograms, where
each subhologram is designed based on the difference between the desired image and the
reconstruction due to all other subholograms. Since the aperture inside a Lohmann cell
has an infinite number of possible positions, to determine the exact reconstruction of a
Lohmann hologram, the hologram function must be made physical and the reconstruction
performed optically. This can be alengthy process. Therefore, a smulated
reconstruction is needed to realistically use IT. The ssimulated reconstructions are done as
they were in Chapter 4. The hologram plane is represented as the sum of the products of
two rectangular functions and the reconstructed image is calculated by taking the Fourier
transform of this function. This makes combining Lohmann’s coding method with IT

feasible.

6.2 Incorporating Lohmann’s Coding Schemeinto ODIFIIT

Based on the nature of Lohmann’s coding technique, is there any advantage to
using an iterative version of the Lohmann-IT method? The answer is“yes’. Since the
detour-phase method used in binary Lohmann holograms cannot code amplitude and
phase exactly, there will aways be some amount of inherent error in the reconstruction.
Therefore, iterations should be effective in reducing error. What this ultimately meansis
that if Lohmann’s method is incorporated into ODIFIIT, it will likely produce better

results than Lohmann’s method alone.
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6.3 Quantized Lohmann’s Method and ODIFIIT

Optimal decimation-in-frequency iterative interlacing technique (ODIFIIT)
created by Ersoy and Zhuang [6] is an iterative interlacing technique, which exploits
decimation-in-frequency to optimize the interlacing of subholograms. The ODIFIIT
method uses a binary coding scheme that considers only the phase of each sampling point
and incorporates projection onto constrained sets (POCS) which is an iterative Fourier
transform agorithm.

The origina goa in trying to combine Lohmann’s coding technique with
ODIFIIT was to supply more information at each sampling cell. But, Lohmann’s method
allows for an infinite number of aperture sizes and positions, which is not practical for
many methods of implementation. To overcome this obstacle, a discrete method was
used to quantize the size and position of the aperturesin each cell. The generd idea
behind Lohmann’s method is still used; size of each aperture controls amplitude, and
phase is controlled by shifting the aperture. However, now the possible values of
amplitude and phase are restricted (quantized). For example, imagine a Lohmann cell
divided into 4x4 smaller squares. For avalue of ¢ =1/2 in the Lohmann algorithm,
which means that the width of the aperture isfixed at half the width of the entire cell, this
cell permits three values of normalized amplitude (0,1/2, and 1) and three values of phase

(— p/2,0adp / 2) for atotal of seven possible combinations (an amplitude of zero has

no phase). Vaues of phase greater than p /2, which create overlap between cells, were
not allowed. Quartization means there will be error when coding amplitude and phase.
Therefore, it makes sense to incorporate POCS and to design subholograms iteratively
until a convergence condition is met. Simulations were performed for various cell
guantizations.

Quarntizing aperture positions makes sense when realization of the fina CGH is
considered. Current spatia light modulators (SLM) can be used in real time to control
transmission or phase at each point. Thisis the same function that a binary amplitude
hologram serves. Unfortunately, the resolution of a SLM cannot accurately re-create an
exact Lohmann cell, thus quantization is needed to make realization practical. Similarly,
technology used to make integrated circuits can be used for realizing CGH’ s as

diffractive phase elements. Since precise, continuous surface relief is very difficult, this
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technology requires quantization of phase. In general, when it comes to realization of a
CGH, quantization is often preferred or even required. Thisis generally true for al
advanced technologies of implementation.

6.4 Accounting for Approximationsin Lohmann’s Method with LM -ODIFIIT

It was mentioned in chapter 3 describing Lohmann’s method that three
approximations were made for simplicity: (a) s'nc[cdn(x+ X, )] » const , (b)
sanc( yW,.dn) » 1, and (c) exp[ 2pi(xP,.d,)] » 1. The affects of these approximations on
the reconstructed image depend on severa factors.

The sinc function snc[cdn(x+ x,)]creates a drop-off in intensity in the x-
direction proportional to the distance from the center of the image plane. Approximation
(&) considers this sinc factor to be nearly constant inside the image region. A small
aperture size c results in less drop-off in intensity. However, this aso reduces the
brightness of the image.

The sinc function snc( yW,.dn) indicates a drop-off in intensity similar to (a),
but in the y-direction. This sinc function acts like a dlight decrease in amplitude
transmission by a factor snc( yw, dn). If one wants to reduce the effects of this
approximation by sacrificing some brightness, every W could be reduced by a constant
factor.

Last, the phase shift exp[ 2pi(xP,.d,)] causes a phase error that varies with x
location in the image plane. This phase error depends on x and P, and ranges from zero

toL

2M
The solution used to account for the sinc roll-off in the x direction is to divide the
desired image by snc[cdn(x+x,)].  The desired image f(xy) becomes,

f(xy)
sncfcdn(x +x,)]

The same thing cannot be done for the y direction because

snc( yW.,.dn) depends on the aperture parameters W,, which are determined based on
the desired image. An iterative method in LM-ODIFIIT and quantized LM -ODIFIIT was
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used to account for this sinc factor. The desired image is divided by the sinc factor
affecting the x direction, and the hologram function is designed. Then, the y dependent
sinc factors due to al apertures are calculated and summed to determine the effect on the
output image. The desired image is now divided by the y dependent sinc factor just as it
was for the x dependent factor. Next, the hologram is designed again, the effect on the
output due to the new aperture heights is calculated, and the original desired image is
divided by this new factor. This process is repeated until the reconstructed image does
not change, or a convergence condition is met.

Lastly, by ignoring the phase factorexp[ 2pi(xP,d,)], the output image is
deteriorated as if there is a phase error due to an improper aperture shift [12]. In the
guantized LM-ODIFIT al of the apertures are shifted improperly due to quantization
anyway. Neglecting this phase factor is accounted for by successive iterations while

designing the hologram function.

6.5 Experimentsand Simulationswith LM -ODIFIIT Method

Table 1 shows mean square error (MSE) and efficiency data based on simulations.
M SE represents the difference between the desired and reconstructed image inside the
desired image region, and efficiency is a measure of how much of the incident wave is
diffracted into the desired image region. The table includes data for ODIFIIT,
Lohmann’s method (LM), Lohmann’s method using a constant amplitude for each cell
(LMCA), ODIFIIT using Lohmann’s coding method (LM-ODIFIIT), and LM-ODIFIT
with constant cell amplitude (LM CA-ODIFIIT). All results are for binary amplitude
holograms. Vauesof c=1/2and M =1 from Lohmann's method were used throughout.
For comparison purposes, the MSE occurring from Lohmann’s method was normalized
to one, so all other MSE data is relative to Lohmann’s method. Binary desired images
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Table 6.5.1: Simulation data for binary amplitude computer-generated holograms

1. Method 2. M SE 3. Efficiency
LM 1 1.2%
ODIFIT 0.33 5.7%
4. LMCA 5. 2.03 6. 5.9%
7. LM- 8. 59-10"-31 | 9. 1.2%
ODIFIIT
10. LMCA- 11. 1 12. 2.1%
ODIFIIT
Table 6.5.2. LM-ODIFIIT and LMCA-ODIFIIT data
13. L evels of 14. M SE 15. Efficiency
Quantization (N)
16. 2 17. 2.33 18. 0.6%
19. 2-CA 20. 0.42 21. 1.4%
22, 4 23. 0.19 24, 1.1%
25. 4-CA 26. 0.93 27. 1.1%

were used for the purposes of this experiment. Table 2 gives data from simulations

where the amplitude and phase of each cell took on quantized values, and ODIFIIT was

applied. Each Lohmann cell isdivided into NxN smaller squares. Thisisreferred to as

N -level quantization. Initiating quantization of amplitude and phase is done as
mentioned in Section 6.3. MSE is till relative to the MSE from Lohmann’s method

aone.

Fig. 6.5.1 shows simulated LM-ODIFIIT reconstructions of the binary ‘E’ and

gray-scale girl images. Fig. 6.5.2 displays optical results for LM-ODIFIIT. A

comparison between the output of Lohmann’s method, ODIFIIT, and LM-ODIFIIT for a

16x16 gray-scale image was aso performed. The simulated and optical results are shown
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in Fig. 6.5.3 and Fig. 6.5.4, respectively. The simulated and optical reconstructions from
a CGH designed with LM-ODIFIIT and 4-level quantization are shown in Fig. 6.5.5.

6.6 Discussion

Looking at the ssimulation data of the two basic methods, ODIFIIT is better than
Lohmann’s method in terms of both MSE and efficiency. This supports the simulated
results of these two methods. In Chapters 4 and 5, we saw that ODIFIIT produced a
more uniform image with less “noise” inside the desired image region, and less
reconstruction outside the desired image region when compared to Lohmann. However,
the optical reconstructions did not support these predictions. Optically, Lohmann's
method produced a sharper image than ODIFIIT, with about the same brightness. This
indicates that the MSE for Lohmann should be lower than that of ODIFIIT, and that their
efficiencies should be approximately the same. The difference in MSE is likely due to
the fact that the MSE is only computed inside the desired image region. Although
Lohmann produced a sharper image, the extra reconstruction near the image, which is
considerably less for ODIFIIT, increases the MSE.

By altering Lohmann’s method, applying the iterative Fourier transform
algorithm, and using a constant amplitude in every cell, error in the image region

increased, but efficiency was significantly improved. Basicaly, this means



59

Fig. 6.5.1 Simulated reconstructions with LM-ODIFIIT.
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Fig. 6.5.2 Optica reconstruction from a LM
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Fig. 6.5.3 Simulation results for a gray-scale images. a) Desired image b) Lohmann’s
method ¢) ODIFIIT d) LM-ODIFIIT.
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Fig. 6.5.4 Optical results for agray



(b)

Fig. 6.5.5 Recongtructions using LM-ODIFIIT and 4-level quantization. a) Simulated b)
Optical.
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reconstruction of a brighter image with less definition. This result seems reasonable for
the following reasons: less information is used in LMCA, which increases the error, but
the amplitude values throughout the hologram are greater due to aperture size always
being as large as possible, which increases the brightness. This quantitative anaysis
supports the visua results from Chapter 4. The output displays a reconstruction of the
desired image which is brighter, but has “fuzzy” edges. Less reconstruction occurs
outside the desired image region further confirming the efficiency increase. In fact, the
efficiency of LMCA surpassed the efficiency of ODIFIIT, but the significant increase in
MSE negates it as a superior method.

The data indicates that LM-ODIFIIT produces an output most resembling the
desired image (lowest MSE), while its efficiency is the same as the origina Lohmann
method (LM). Simulations show that, qualitatively, LM-ODIFIIT generated an
extremely sharp and uniform image inside the image region, while excess reconstruction
outside the image region is limited.

Note how low the error from LM-ODIFIIT is when compared to al other
methods. This indicates a reconstruction inside the image region which is far superior to
any other method. Thisis supported by the visual resultsin Fig. 6.5.1. The smulated
reconstruction of the girl image especially demonstrates the accuracy of LM-ODIFIIT,
and should be compared to the LM and ODIFIIT results of the same image.

This dramatic increase in image quality for LM-ODIFIIT is not obvious in the
optical reconstruction. The image in Fig. 6.5.2 shows a significant decrease in brightness
from the LM and ODIFIIT results. Because of the large contrast in intensity, it is
difficult to compare the quality of the image with the other two methods. At firgt, it
appears that the LM -ODIFIIT image is the worst of the three. However, based on
smulations, if the image were brighter, it is likely that the results would be smilar to, or
better than, the other methods.

To further test the legitimacy of the LM-ODIFIIT results, CGHs were designed to
make the gray-scale image shown in Fig. 6.5.3a. LM-ODIFIIT shows a clear
improvement over LM and ODIFIIT in the simulated results. Optical results followed the

same trend as in the binary image reconstructions. The LM-ODIFIIT image is less
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intense than the other two, and appears to be least accurate in representing the desired
image.

The MSE for LMCA-ODIHIT is equal to the MSE for LM, greater than that of
LM-ODIFIIT, and less than the MSE of LMCA. We see that incorporating ODIFIIT into
LMCA reduces the error, just asit did for LM. The increase from LM-ODIHIT is
expected because of the previously mentioned consequences of making the amplitude
constant. However, due to the extremely small MSE of LM-ODIFIIT, it is somewhat
surprising that the MSE of LMCA-ODIFIIT isnot less. As expected, the efficiency of
LMCA-ODIHIT is greater than for LM-ODIFIIT.

Quantized LM-ODIFIT with N =2 had the largest MSE and the lowest
efficiency of all the methods By using so few quantization levels, not enough
information remains after encoding to allow for good reconstruction. Anytime the
normalized amplitude is less than Y%, the amplitude is quantized to zero and phase
information islost. This accounts for the high error and very poor efficiency. By
implementing the constant amplitude technique, more phase information isretained. This
resultsin better MSE and efficiency.

For N =4, MSE dropped significantly, creating a very good reconstruction of the
desired image. This method produced a low M SE, second only to the extremely low
value of the origind LM-ODIFIIT. Also, its efficiency is comparable to al other
methods except ODIFIIT and LMCA. Making the amplitude a constant maintains the
efficiency, but increases the error.

The optical reconstruction from LM -ODIFIT with 4-level quantization is
comparable to that of LM-ODIFIIT and has similar qualities to the simulated
reconstruction.

All optical results so far have had 64x64 hologram and image planes. To improve
reconstructions, the sampling rate was doubled in the image plane. Reconstructions
resulting from the 128x128 holograms are shown in Fig. 6.6.1 and Fig. 6.6.2. The results
indicate that reconstruction quality increases with the sampling rate as expected. The
images are clearer and less reconstruction occurs in the center of the image plane.

The increase in image qudity is most noticeable in the LM-ODIFIIT image. For
this method, the noise in the center of the 128x128 images has dramatically decreased
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from the 64x64 images, which helps to see the reconstructions better. But, the brightness
of the other two methods is still greater. The 128x128 LM -ODIFIIT images appear to be
as sharp as the other methods, but the lack of brightness still prevents areliable
conclusion. Based on improvement of the LM-ODIFIIT reconstruction with increased
sampling, it is possible that with sufficient resolution and large enough sampling, the
quality of its results could surpass those of the other methods.

Fig. 6.6.1 and Fig. 6.6.2 show that the 128x128 LM and LM -ODIFIIT images
display periodic arrays of dots. The horizontal array in the LM image occurs because of
the periodic nature of the hologram. Thisis dueto all the cells being symmetric relative
to the direction in which the aperture height is adjusted. The horizontal array in the LM-
ODIFIIT image occurs for the same reason. However, inthe LM-ODIFIIT hologram, it
was observed that the phase at each point of the subholograms converged to the same
value. Thiswas observed for every subhologram except the first. This gives a periodic
nature to the other direction of the hologram, which resultsin the vertical array of dots.

The experimental results presented in this thesis provide a starting point for more
effective methods of CGH implementation. There are several aspects of the physical
holograms used in this research which should be addressed when considering the
accuracy of the results. The quantification of aperture positions due to finite resolution
has already been mentioned. Two other topics are the resolution of the aperture edges
and the actual transmission at each point in the hologram. Lohmann’s method represents
the edge of each aperture as a perfect step function. In reality, the physical holograms
likely have afinite drop-off at the edge of the aperture due to finite resolution. Also, the
print used was not perfectly opaque. Therefore, points where zero transmission is desired
are actually dslightly trarsparent. These are both reasons for error in the experimental
reconstructions.

Up to now, al simulations neglected the sinc roll-off that actually occurs in the
physical reconstruction from a binary CGH. The accommodating methods mentioned in
Section 6.4 were used in simulations, which included this sinc roll-off behavior. This
basically comes down to the ability to design a hologram of a gray-scale image.
Simulated reconstructions showed excellent homogeneity in the x direction indicating

that the x dependent sinc factor was accurately accounted for. Slight variations were
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present in the y direction, but can be reduced to a desired level by continued iterations.
Fig. 6.6.3 shows the simulated reconstructed gray-scale image and then the final image
when the sinc roll-offs are factored into the outpui.

6.7 Conclusions

By incorporating ODIFIIT into the principles of the coding scheme used in
Lohmann holograms, mean square error in the smulated reconstructed image wes
reduced. Interlacing and iterative interlacing techniques were effective in reducing
reconstruction error. Overal, LM-ODIFIIT produced the best MSE, by far, with a MSE
on the order of 10°%, relative to the MSE of Lohmann’s method. LMCA had the highest
efficiency.

For situations where quantization is required, a quantized Lohmann’s method
incorporating ODIFIIT was created. The best quantized technique was LM -ODIFIIT
with N =4, which decreased the MSE by 80% from LM while maintaining about the
same efficiency.

Optical reconstructions using LM-ODIFIIT did not support the simulated results.
Images produced by LM-ODIFIIT were not as bright as the Lohmann and ODIFIIT
images. The contrast in brightness made it difficult to compare the quality of the LM -
ODIFIIT image with that of the other two methods.
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Fig. 6.6.1 Optical reconstruction of 128x128 E image. a) Lohmann b) ODIFIIT c) LM-
ODIFIT.
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Fig. 6.6.2 Optical reconstruction of 128x128 gray image.
a) Lohmann b) ODIFIIT c) LM-ODIFIIT.
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(b)

Fig. 6.6.3 a) Gray-scae image from LM-ODIFIIT hologram and b) Image after
approximations are factored into the outpui.
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7 IMPLEMENTATION OF DIFFRACTIVE OPTICAL ELEMENTS

7.1 Introduction

In general, lithography is the technology used to print patterns onto a substrate
[14]. The most common useis printing the patterns of integrated circuits onto a
semiconductor substrate. Advances in lithography techniques have alow for the
production of precise, small-scale patterns. There exist various forms of lithography.
These include optical lithography, e-beam lithography, EUVL (extreme ultraviolet
lithography), and x-ray lithography [14]. There are two basic steps involved in
lithography. The first gep isto create a desired pattern. The second is to transfer this
pattern into the substrate. The quality of a lithographic method is measured primarily by
its resolution. Resolution is the minimum feature size that can be obtained. Resolution is
not just determined by the lithography method, but also by the ability of the resist to
reconstruct the pattern.

For producing unique DOES, the popular lithography technique is e-beam
lithography. E-beam lithography requires an intense, yet uniform, electronsource with a
small spot size, high stability, and long life. The main attributes of e-beam lithography
technology are 1) it is capable of very high resolution; 2) it work with a variety of
materials and patterns; 3) it is slow compared to optical lithogaphy; and 4) it is
expensive and complicated. Electron beam lithography tools can cost many millions of
dollars and require frequent service to stay properly maintained.

Electron beam lithography is an effective and appropriate method for producing
diffractive optical elements (DOEs). Combined with reactive ion etching (RIE), creation
of DOEs with very fine resolution and high efficiency is possible. A binary phase
hologram consists of a 2-dimensional array of points, and at each point a phase shift of
either O or 180 degreesisinduced. The phase shift is invoked by introducing a third
dimension. At points where a 180 degree phase shift is desired, a hole is etched such that
awave reflected off aholeis 180 degrees out of phase with a wave of the same
wavelength reflected from a point with no hole. Ebeam lithography allows such holes to

be made with great accuracy. The E-beam exposes a pattern onto an e-beam sensitive
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resist indicating where holes are to be made, and RIE is used to “dig” the holes to the
desired depth.

The JEOL JSM6400 scanning electron microscope (SEM) [15] at Purdue
University has been modified to give it e-beam lithography capabilities. The JEOL
machine is capable of generating a beam with a spot size around 10nm. Therefore, it is
capable of exposing patterns with lines of widths lessthan 0.1 mm or 100nm. For
binary phase holograms, each square hole has a size of approximately 1 mm x 1 mm. The
JEOL is easily capable of exposing features with these dimensions. For feature sizes
around one square micron, atotal pattern size of 1mm x 1mm can be achieved, while
maintaining high resolution. Patterns much greater than one square millimeter risk losing
resolution around the edges of the pattern due to increased beam deflection at points
along the edge.

The Semi Group 1000TP RIE System at Purdue University isadry etch system
that enables very fine surface relief. The 180 degree phase change needed for binary
phase holograms occurs over a distance of half awavelength. For visible light, that
corresponds to a length on the order of half amicron. RIE makes it possible to induce

surface relief of such small dimensions with very high accuracy.

7.2 DOE Production Procedure

The basic procedure for producing a binary phase hologram using e-beam
lithography isillustrated in Fig. 7.2.1. First, aresist is spin-coated onto asilicon
substrate. Next, E-beam lithography is performed to write the desired pattern into the
resist. The sample isthen developed to remove the exposed resist. Once the exposed
resist is removed, reactive ion etching is used to transfer the pattern into the substrate.
Finally, the resist is removed. This process can be repeated to create multi-level DOES.

Since reactive ion etching will eventually be done on the sample, a high-percent

resist spun to arelatively large thickness is used so that the RIE does not etch through the
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1) Spin on e-beam resist
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2) Exposeresist with e-beam and develop
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4) Removeremaining resist

Fig. 7.2.1 Procedureto create a diffractive optical element.

resist. A realistic combination isa 9% 950K PMMA resist spun at 6000 rpm for 30 sec
[16]. This produces aresist thickness of approximately 1micron. Next, e-beam
lithography is used to write the desired pattern onto the resist. The first step in using the
SEM for lithography purposes is to produce a good image using it as a microscope. This
involves properly aligning and focusing the electron beam. Proper alignment of the
SEM'’s electron gun is achieved when the beam of electrons is perpendicular to the

surface of the sample. Optimum focusing of the beam occurs when the beam diameter is
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minimized at the surface of the sample. The astigmatism of the beam and aperture
centering are associated with the beam’s focus. The aperture must not interfere with the
e-beam. Since lithography requires the smallest aperture setting, positioning of the
aperture is very important. Astigmatism of the beam should also be minimized, asit is
the primary limiting factor in lithography performance. Proper adjustment of stigmation
ensures that the beam is symmetrical at the sample surface. Thus, thereis no variation in
the resolution of vertical and horizontal lines. Both alignment and focusing are important
in maximizing the machine's capabilities as a microscope and for lithography. In
addition, lithography specifically requires an accel eration voltage between 35-40 kV and
aworking distance of 15mm between the electron gun and the sample surface [17]. Once
asample is prepared, mounted, and loaded into the SEM, and the beam is aligned and
focused, lithography is done automatically by an NPGS system connected to the SEM.

Once the pattern is written, the exposed resist is removed by developing the
sample with a combination of MIBK and IPA and then rinsing with just IPA. Next,
reactive ion etching is performed to transfer the exposed pattern into the silicon substrate.
Finally, the PMMA resist is striped off using acetone, leaving just the silicon substrate
with the desired pattern etched into it. This process can be repeated to create multi- level
diffractive elements.

7.2 Nanometer Pattern Generation System

The NPGS (Nanometer Pattern Generation System) package [17] and beam
blanker incorporated into the JEOL system makes lithography possible. NPGS
automatically controls the beam blanker and deflection of the E-beam during exposure.
In order to run, NPGS requires an ~.RF2 file (known as arun file) of the desired
exposure pattern. The run file is produced by first creating the desired exposure pattern
with a CAD package called DesignCAD. Usualy a pattern is smply drawn using
DesignCAD just like one would create a pattern in any CAD software, such as AutoCAD.
However, abinary hologram of size 512 x 512, for example, contains approximately
260,000 points. Thisis unreasonable to draw into DesignCAD by hand. Therefore, code
was written to convert the binary hologram array into a DesignCAD file. DesignCAD

generates a~.DC2 file, which is just atext file representing a pattern drawn into
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DesignCAD. Therefore, the code writes a~.DC2 file, which represents each point in the
hologram array as a 1 square micron box in DesignCAD.

Next, the ~.DC2 file is converted into a run file using the Run File Editor option
in DesignCAD. Therun file editor alows the user to adjust several exposure parameters.
These include the center-to-center and line-to- line spacing of the e-beam. The center-to-
center spacing determines the distance between consecutive exposure points, while line-
to-line spacing indicates the e-beam step size as it moves from left to right. The exposure
dose, which is the amount of electrons the sample gets exposed to, can also be varied.
Dose can be specified in terms of current per length, current per area, or a point dose.
The appropriate magnitude of the exposure dose depends on several factors, such as the
type and thickness of the resist being used as well as the dimensions of the pattern being
exposed. Experimenting with different values for these parameters allows the user to
optimize the e-beam’ s capabilities for his or her particular needs. Once the JEOL
machine is properly adjusted (aperture centered, astigmatism of the beam minimized, and
magnification set appropriately) and the run file is processed, the pattern is exposed
automatically by the NPGS system.

7.4 Conclusions
This chapter has discussed how semiconductor technology can be used to produce
diffractive phase elements. As the minimum feature size capable of being produced by
these methods decreases, the design of diffractive elements will have to change. Since
scalar diffraction theory does not hold for aperture sizes less than a wavelength, and the
near field problem is quite different from the far field problem, the Fourier transform
based method of designing DOEs will have to be replaced. The next chapter discusses
methods of analyzing diffraction in the near field and for small aperture sizes.
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8 NEAR FIELD DIFFRACTION FROM SMALL-SCALE DIFFRACTIVE
OPTICAL ELEMENTS

8.1 Introduction

Scalar diffraction theory relies on the assumptions that the size of the diffractive
aperture is large relative to the wavelength of the incident wave. Characterization of
diffraction is aso quite different in the near field versus the far field. With the increasing
trend to produce smaller and smaller devices where refractive optical components
become impractical, there is a demand for diffractive elements with sizes and
characteristics on the order of awavelength or smaller. However, in this size range,
scalar diffraction theory breaks down and analytical results are not possible. For near-
field problems, one method is the angular spectrum of plane waves, which uses Fourier
transform and propagation of plane waves. Another alternative isto solve Maxwell’s
equations directly using numerical methods. XFDTD software by Remcom uses afinite
difference time domain method to solve Maxwell’ s equations. This allows simulation of
diffractive elements with sizes and characteristics (such as focal length) that are too small
for scalar diffraction theory to accurately predict. Simple elements like Fresnel zone
plates, reflective gratings, and transmission gratings combined with zone plates were

analyzed, as reported in this chapter.

8.2 The Angular Spectrum

One way to analyze how a wave behaves as it propagates is to look at its angular
spectrum [1]. Consider awave field U (X, y, z) propagating in the zdirection. The
wavelengthis | sothat k =2p /| . Letting z = Oinitially, the two dimensiona Fourier
representation of U (x, y,0) is given by

¥
— \\ 'm(fxx+fy )
U(x y,0) = Af,.f,.0¢ Vdf df, (8.2.1)
-¥
where

¥

A, 1,,0) = @ U(x y.00e > dxdy (822)
-¥
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i2p (fux+fyy-ft)

By including time variation, A(f,, f,,0)e represents aplanewave at z = 0.

The direction of propagation is given by the direction cosines,

cosa, = 2pf, and cosa , = 2pf, . Therefore, A(f 0) is called the angular spectrum of

X! y ’
U (x v,0) .
Similarly, the angular spectrum at any z position of awave field U (x, y, 2) is

¥

A, f,.2)= GD U(xy,2)e ' ? " axdy. (8.2.3)

So, in terms of its angular spectrum,

¥

U(xY.2) =) Af,, f,,20e' " df df, (8.2.4)
-¥

X y1

Now, U (x, y, 2) must satisfy the Helmholtz equation at all points in a source-free region.

N2U (x,y,2) +kU(x,y,2) =0 (8.2.5)
Substituting (8.2.4) into (8.2.5),
@‘)'322 Af,, f y,z)+[k S apP(RR 4, 5)|act,, f y,z)i/)dfdf =0 (8.2.6)

If thisisto be true for all waves, the integrand must be zero.

d? 2
JA(fX, y,z)+[k 4p 3 (f.° +f, )]A(fx, f,,2=0 (8.2.7)
The solution to the differential equation in (8.2.7) is
At f,,2) = A(f,, y,O)e”” (8.2.8)
where
m= k2 - 4p 2(f,” + f,°) (8.29)

So, each angular spectrum component at z =0 is multiplied by the phase factor e'™to

give the new angular spectrum.
When k2 > 4p ?(f,”+ f %), r isreal, and the wave propagates freely. Plane
waves with this property are known as homogeneous waves. When

2 2 .. .
k? <4p?(f."+f°), misimaginary, and
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At .2 = AT, y,O)e (8.2.10)
where = jk . Therefore, the amplitude of the plane wave component is attenuated in

the zdirection. Waves attenuated in the zdirection are called evanescent waves.

Given A(f,, f,,2) intermsof A(f,, f, ,0), substituting (8.2.8) into (8.2.4) yields
¥

U (% Y,2) = gy A, 00 T 0gi2 ot g (8.2.11)
-¥

So, if U(X,y,0)isknown, U (x,y,2) can be determined by the following procedure:
1) Take the Fourier transform of U (X, y,0) to determine A(f,, f,,0).
2) Multiply A(f,, f,,0) by e'™whererr isgivenin (8.2.9) toget A(f , f 2.

3) Taketheinverse Fourier transform of A( f z) to determine U (X, Y, 2) .

o Ty
The angular spectrum method can be implemented in the computer using FFT to

compute the diffracted field from aDOE. First, the field at the DOE U (X, y,0) is

sampled in increments of Dx and Dy sothat X =mDx and y =nDy. Theinitia field is

represented by U (m,n,0). The angular spectrum at z=0 is computed by taking the FFT

of the sampled field at the diffractive element. So, A(k,l,0) = FFT[U (m,n,0)], where

f, =kDf, and f =IDf . The angular spectrum at z=0 is then multiplied by the

appropriate phase factor asin (8.2.8) to get the angular spectrum at the new z position.

Therefore, A(k,1,2) = A(k,1,0)e'™, where m = J(2p 11)? - 4p 2[(kDf )2 + (IDf,)?] -
Finaly, the inverse Fast-Fourier transform of the result is computed to determine the new
sampled fild at z; U (m, n, z) = IFFT [ A(k,I, 2)].

8.3 Maxwell’s Equations

Maxwell’ s equations connect the electric and magnetic fields in a set of partial
differential equations which successfully predict electromagnetic phenomena. Maxwell’s
equations need to be solved to completely describe diffractive effects when scalar
diffraction theory fails.
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For a source-free region (no electric or magnetic current sources) which may
contain material capable of absorbing electric or magnetic field energy, Maxwell’s
equations are given by [9]:

® .

=-N"E-J 83.1
it m (8.31)
D _q G5
—=N"H- J, (8.3.2)
qt

NxD =0 (8.3.3)

NxB=0 (8.3.4)

E isedlectric field, D isthe electric flux density, H is magnetic field, B is magnetic flux
density, je is the electric conduction current density, and jm is the equivalent magnetic

conduction current density used to account for magnetic loss. In linear, isotropic

nondispersive media, Bisrelatedto H and D to E by ascalar:

B=nH (8.3.5)
D=eE (8.3.6)
where n is magnetic permeability and e is electric permittivity. Similarly,
J,=sE (8.3.7)
J. =r¢ (8.3.8)
where s iséelectric conductivity and r ¢ isan equivalent magnetic resistivity.
Substituting (8.3.5)-(8.3.8) into (8.3.1) and (8.3.2) yields
H_o g e 1% (83.9)
it m m
E_Igh-Se (8.3.10)
it e e

The vector components of the curl operatorsin (8.3.9) and (8.3.10) result in six coupled
scalar equations equivalent to Maxwell’ s curl equations in three dimensions [9]:

ﬂHx_iﬂEY_ﬂEz_rq:_' 9

= T 8.3.11
ot e v (8:3.112)




’ )
RLATE - (8.3.11b)
it mefx 1z 2
- )
H, 1888, T& ¢ 0 (8.3.11¢)
t m&fy fix g
H )
Ex J1@H, Ty g ? (8.3.124)
é fy 1z @

E
TE, _ 1§THX _JH, SE, 2 (8.3.12b)
it eez X 7}

’ )
TEz _1gdH, fH, SE, 2 (8.3.120)
t eg™x Ty 2

These coupled partial differential equations are the foundation of FDTD

algorithms for describing the interaction of electromagnetic waves with arbitrary three
dimensional objects. Theoreticaly, (8.3.3) and (8.3.4) for source free regions are a direct
consequence of the curl equations. Therefore, they do not need to be explicitly enforced.
However, the space grid used in the FDTD must be formed to uphold the relations.

8.4 Finite Differences

The Taylor’s series expansion of u(x,t,) about the point x, to x; + Dx for afixed

time t, isgiven by [9]

—u|“ +Dxﬂu| +DET

ax 2 X
DX3 ﬂ3 DX4 ﬂ4
611x”t 24 qx* et

The last term is an error term, where x, isapoint in theinterval (x,x +Dx). Similarly,

(8.4.1)

an expansion to the point x, - Dx for fixed time t,, is given by

_ Dx T%u
ty _U|Mn ) _|Mn W2
x 2 %2
] DX3 ﬂ3u N DX4 ﬂ4u
6 ﬂx3 X tn 24 ﬂx4 X2.tn

u(x; -

(8.4.2)

where X, isintheinterval (x - Dx,x) . Adding the two expansions gives
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2 4 q4
_ > T°u Dx* T"u
u(x; +Dx) +u(x; - DX)‘2U|mn +Dx o X + 12 T e

where x, liesintheinterval (x - Dx, x + Dx). Rearranging the above expression, we

(8.4.3)

get

@| _ €u(x_+Dx)- 2u(x) +u(x - DX)u
LS (D? i

n

+0[(Dx)?] (8.4.4)

Thisis a second-order accurate, central-difference approximation to the second partial
derivative of u. The remainder term O[(Dx) 2] goes to zro as the square of the space

increment. Using shorthand notation, (8.4.4) takes the form

2 _n _ _n+ _n
T, =22 of o] (8.45)
= (DY)
Following a similar procedure, the second partial derivative of u with respect to timeis
given by
2 _n+1 _ ny _n—l
o U - AU Gliy?] (8.4.6)
= (Dt)

8.5 TheYeeAlgorithm

Y ee' s agorithm [18] solves Maxwell’s curl equations from a set of finite-
difference equations. The original set of equations introduced by Yee in 1966 assumed
lossdess mateials r (=0and s =0, but show the fundamentals of FDTD algorithms.
Each electric field component in three dimensional space is surrounded by four
circulating magnetic field components, and every magnetic field component is
surrounded by four circulating electric field components (Fig. 8.5.1). The finite
difference expressions for the space derivatives are central in nature and second order
accurate [9]. The field component locations in the Y ee grid and the central difference
operations on the field components ensure the two Gauss Law relations are upheld.

Electric and magnetic field components are also centered in time in a leapfrog

arrangement. This means al the electric components are computed and stored for a
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particular time using previously stored magnetic component data. Then, al magnetic
datais determined using the electric field data just computed.

For auniform, rectangular lattice, a point in space is represented by three
components (i, j,k) = (iDx, jDy,kDz) where Dx, Dy, and Dz are the space increments in
the x, y, and z directions respectively. i, j, and k are integers. So, afunction
u(r,t) evaluated at a discrete space point at a discrete point intimeis

u(iDx, j Dy, kDz,nDt) = Ufj,k where Dt isthe time increment and n is an integer.

Now, Yee's centered finite-difference expression for the first partial space derivative of u

in the x-direction, evaluated at time t, = nDtis given by [9]:

U 1D, jDy, kDz, nDt) = —ir2ak ” Bevzik | ofipy)2] (85.1)
X Dx

Notice that Y ee uses data only a distance Dx/2away from the point in question as
opposedto Dx. Similarly, the first partial derivative of u with respect to time for a
particular space point is given by

n+l/2 _ n-1/2

T4 D, jDy, kDz,nDty =k~ ik ofpry?] (85.2)
a0 Dt

These difference equations are now applied to Maxwell’ s curl equations.
Consider (8.3.12a)
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Fig. 8.5.1 Electric and magnetic field vectorsin a cell of the Yee mesh [9].
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Substituting in the space and time derivatives for point (i, j,k) a time n yields

n
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bk 1 Dy
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i,jk-1/2
Dz
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i,j,k + Ex

E

X
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(8.5.3)
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Now, al terms on the right side of the equation are evaluated at time step n. Remember,
all the magnetic field components at time n have aready been determined and stored, but
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E, a timenhasnot. Only valuesof E,uptotime n- 1/2 arestored. For aregion
without loss, thistermis zero. If s ;  is nonzero, then E, can be estimated by a semi-

implicit approximation [9]:

Eiie +Ediie
Whik =—— o (8.5.3b)

E

which is the average of the known value of E, at time n- 1/2 and the unknown value at

time n+1/2. Using (8.3.21) and multiplying both sidesby Dt , (8.3.20) becomes

SEHz in,j+1/2,k - Hz in,j—llz,k ) Hy in,j,k+1/2 - Hy in,j,k-llzg
E,| "2 +E TN = o 8 by bz ~(8.5.3¢)
Ciixg E | + B *
g- S ik =
2 [}
Collecting like terms and solving for E,|!'? yields the final expression:
ai S'Jth 0 ge Dt Q?_Iz in,j+1/2,k - H, in,j—1/2,k 9
n+ (s: 2eI - n- Q ei,' _(s; -
Bk = (;;—jlkJ Bk te S L Dt S ) by i + (8.5.43)
§1+ Lik H §1+—"”k ¢ Holi ke - Hy ijk-1/2
2ei'j'k ﬂ Zei'j'k % Dz ﬂ
It follows that [9]
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5 %k & Dx o
% S| lth O f? Dt Q(}ﬁ-ly in+l/2,j,k - Hy in—1/2,j,k 9
" 2t . e . = +
E, |n11|/<2 :g S ]Bt z i,j,lliz +g—S’J'k Dt 3¢ N Dx . + (8.5.4¢)
L4k + 1+L—5(}_ H, i+l 2k T H, ij-1/2k ~
é Zei,j,k p é 2e”.,k % Dy E
- r iq:J'th.;g ée Dt QéiEEy irtjr,llifllz B Ey ir:'r,lli-zl/z 9
a _C 2Myk = ¢ Mk =€ Dz +
H |k = o H [l F o5 ¢ . L, + (8553
" g1+r‘q:1'—'thf B 914. r '¢l th =G Ez in,j}r/lfz,k - Ez in,j?/132k -
é 2Mix g é 2M ik & Dy 2



n+l/ 2

a- I’Zﬂ:] 'ku 9 (? Dt %&Z in++11//22,j,k - E, i-1/2,j .k 9

n+1 _Q m,j,k - n (; rn,j,k _(; DX _
Hy Lk _g r-¢-th+Hy i,j,k+(; r¢th_(; E n+l/ 2 -E n+l/2 - (855b)

§1+ Ll : §1+ aik i Ex|ikee X i,j,k—llzi

2M ik & 2M & Dz 2

a_ rzg:Jthg (;7% D Egﬁzx Pji/jZk - Ex Imj-lII?Zk 9

n+ v m,j,k - n G m,J,k : W -
H|M™ ¥~ < hgn 4 . =~ (8.5.5¢0)

zlijk 7€ r¢ Dt~ zlhik ¢ r ¢ Dt_(; n+ n+ .

§1+ ik N §1+ Lk ‘9_ E, i+11//22,j,k - E, i-11/I22,j,k -

Zm,j,k 7 Zm,j,k % Dx 5

8.6 XFDTD

The software package XFDTD made by Remcom uses a leapfrog, finite
difference, time domain algorithm to solve Maxwell’s curl equations. XFDTD allows the
user to design a structure and visualize results in a graphical interface. Geometry design,
project setup, and result viewing can al be done utilizing pull-down menus.

The region of interest is a cubical mesh, where each mesh edge is given different
material propertiesin order to ssmulate a specified geometry. For each cell, the user may
choose the material to be a perfect conductor or free space, or may define the exact
physical properties of the material. The sampling in space is sub-wavelength, typically in
the range of 1/10 to 1/30 of awavelength. The region of interest is excited by either a
plane wave or multiple voltage sources. The excitation may be pulsed or sinusoidal.

After the geometry and excitation are specified, the duration of the smulation is
set by specifying the number of desired time steps. Time sampling is chosen to ensure
numerical stability of the algorithm [9].

When the model ed region extends to infinity, absorbing boundary conditions
(ABCs) are used at the boundary of the grid. This alows al outgoing waves to leave the
region with negligible reflection. The region of interest can also be enclosed by a perfect
electrical conductor such asin the case of awaveguide.

Once all these parameters are set, XFDTD calculates the magnetic field at the
surface of every cell inside the three dimensional region of interest for the first time step.
From these magnetic field components, all electric field components can be calculated

and saved. Time is stepped forward by one increment and magnetic field is computed
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again for the new time. The electric field is then determined from the newly calculated
magnetic field. This procedure continues until the final time step is reached.

Once the fields are calculated for the specified number of time steps, near zone
transient and steady state fields can be seen as color intensity images, or afield
component at a specific point can be plotted versus time. When performing smulations
where the steady-state output is desired, observing a specific point over time helps to
indicate whether a steady-state had been reached.

8.7 More Diffractive Optical Elements

8.7.1 Fresndl zone plates
Fresnel zone plates are diffractive elements, which can often serve the same
purpose asalens. Fig. 8.7.1 shows the geometry of acircular aperture from the side.

The path difference between aray traveling along SOP and SAP is

D(r)=(ro+r)- (2 +2) :\/rz +202 +r2+ 22 - (zo + 2) (8.7.1.1)
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N

Fig. 8.5.1 Electric and magnetic field vectorsin a cell of the Y ee mesh [9].
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The Fresnel-zone parameter, n, is defined such that the path difference is an integer

multiple of half wavelengths[19]:

nIE =D(r) (8.7.1.2

Theareabetween r, and r,_, iscalled the nth Fresnel zone. Since the field at P coming

from theradius r,, ishaf awavelength out of phase with the field from radius r,, , if the

nel
field coming from each zone has equal amplitude, then adjacent zones serve to cancel
each other out. Therefore, the total field at P will increase if either all even or all odd
zones are blocked out, creating afocal point at distance z. When thisis done, the
resulting structure is called a Fresnel zone plate (FZP).

If the zone plate isilluminated by a plane wave, z, » ¥ , then solving (8.7.1.1) for

ryields,

oo fog 1o, (2n- D)7 (8.7.1.3)
[ | & 29 16

where z is a constant f, called the focal point. In this case, each zone is “centered”

around the radii found if (8.7.1.2) is substituted into (8.7.1.1). Thereisdtill a IE path
length difference across each zone, but the edges occur where thereisa + IZ path length

difference from the D = n% points. (8.7.1.3) is found by using the following relation in

place of (8.7.1.2)

201 - pr (8.7.1.4)

Similarly, the focal length can be expressed as afunction of n, implying that
there are several focal points. Indeed, there exist points of increased intensity at f, /3,

f,/5 f,/7, andsoon[19]. Thisisone main difference between a FZP and a

conventional refractive lens.
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8.7.2 Diffraction gratings

A diffraction grating is a repetitive array of diffracting el ements which creates
periodic modulations in the phase, amplitude, or both of an incoming wave [19]. These
diffracting elements may be apertures or obstacles. An array of alternating opaque and
transparent regions is called a transmission amplitude grating. If the entire grating is
transparent, but varies periodically in optical thickness, it is called a transmission phase
grating. A reflective material with periodic surface relief also produces distinct phase
relationships upon reflection of awave. These are known as reflection phase gratings.

Fig. 8.7.2 illustrates a transmission amplitude grating. For awave normally
incident upon the grating, the path difference between parallel, transmitted wavesis

d sn q,,. Now, if this path difference is an integer multiple of wavelengths, then the
transmitted waves interfere constructively. Otherwise, there is destructive interfererce,
and the transmitted waves are canceled. Therefore, the grating equation for normal
incidence is

dsnqg, = ml (8.7.2.1)
This equation holds for all the types of gratings previously mentioned. For a given
grating period, d, equation (8.7.2.1) shows that constructive interference may happen at

several angles corresponding to different values of m, referred to as modes.

8.7.3 Fourier transform of a periodic grating
Consider a periodic amplitude grating with period d and opening size X, . For
an incident wave of constant amplitude A across the grating, the field at the output of the

grating can be represented by the Fourier series [20]:

¥
o
U,(x)= g c,e’*™' (8.7.3.1)

n=-¥

where

0 (8.7.3.2)
9



Fig. 8.7.2 Periodic amplitude grating.
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Now, suppose alens of focal length f, is used to produce the Fourier transform of the

output field at the grating. The Fraunhofer diffraction pattern is given by

¥
U,(x,) =C Of c,e™@n/drialtgy, (8.7.33)

¥ n
where C isacomplex factor. Using the fact that

¥
dw) = % o dx (8.7.3.4)

-¥

The Fourier transform of the grating’ s output becomes [20]

U, (xz) = 2pCé c.d Eﬂ% + %g (8.7.3.5)
n 1 o

Analyzing this last expression, the intensity pattern at the focal plane of alens resulting

. : . . . . f
from agrating of period d isa series of evenly spaced lines. The spacing is Tl Thus

the separation is proportional to the focal length and inversely proportional to the grating

period relative to wavelength. It should also be noted that ¢, decreases with increasing

n, which means the intensity of the lines gets smaller the farther they are from the axis.

8.8 Angular Spectrum and XFDTD Results

All XFDTD simulations used acell sizeof | /20. The excitation was a y-
polarized sinusoidal plane wave propagating in the zdirection. All diffracting structures
are made of perfect electrical conductors. All edges of the diffracting structures are
paralel to the x-axis to avoid canceling the y-polarized electric field.

Using XFDTD, aone dimensional FZP (Fig. 8.8.1b) with athicknessof 0.1 and
focal length 3l was simulated. Its output was analyzed for the first three modes. The
mode corresponds to the number of even or odd zones that are blocked. The intensity
along the axis passing through the center of the plate is plotted as a function of distance
from the plate. Thisisseenin Fig. 8.8.2. The plot shows that the intensity peak near
3l behind the plate gets higher and narrower as the mode increases. The peak also gets

closer to the desired focal length of 31 for higher modes. We can aso look at the cross



93

Fig.88.1 a) 2

section of the intensity along the plane of maximum intensity. The intensity in the focal
planeis plotted in Fig. 8.8.3. The plot suggests that the spot size decreases with
increasing mode and that side lobe intensity is reduced for higher modes. It should be
noted that intensity at f, /3, where an additional focal point is expected, increases with

the mode. However, the increase could not be described as a peak.

The same FZP was simulated using the angular spectrum method. A plane wave
incident on the zone plate is represented by a sampled version of the field at the output of
the plate. Thefield is zero inside every blocked zone, and given a value of 1 between
blocked zones. The polarization of the wave is not specified in angular spectrum
computations because it is based on scalar diffraction theory. All diffractive elements
investigated with the angular spectrum method were represented in thisway. The main
difference from the XFDTD simulation is that the angular spectrum method does not
allow for the width of the zone plate to be specified. The intensities along the axis of
propagation and in the focal plane are plotted in Fig. 8.8.4 and Fig. 8.8.5, respectively.

The angular spectrum results again show a higher and narrower peak for higher
order modes. They also predict lower side lobes in the focal plane as the mode increases.

Two characteristics stand out between the different methods. The angular

spectrum method shows the build up of a second focal point at f, / 3as the mode

increases. This peak is not as pronounced in the XFDTD results. Secondly, thereisa

distinctly different intensity drop-off past the main focal point.



9
Next, using XFDTD FZPs of order three were made with thicknesses of 0.21 and
0.4l . Theintensity in aong the axis and in the focal planeis plotted in Fig. 8.8.6 and
Fig. 8.8.7. Now, thereisadlight buildup of intensity at f, / 3as the thickness of the plate

increases. Another notable feature is that the focal point gets closer to 3l as the thickness
increases. There was no significant change in the focal plane as the thickness was varied.
Fig. 8.8.8 shows the XFDTD output for a FZP of mode three and thickness 0.4l .
Angular spectrum results could not be performed to simulate varying plate thickness.
Reflective gratings with periods of | and 1.5 were designed in XFDTD. For a
period of | , only the zero order mode exists. Therefore, the reflected wave should form
a standing wave pattern with the normally incident incoming wave. Fig. 8.8.9 shows the

Intensity vs. z/A
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Fig. 8.8.2 XFDTD results for the intensity along the axis passing through the center of a
FZP for modes 1
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Fig. 8.8.3 XFDTD results for the intensity in the foca plane of a FZP for modes 1
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Intensity vs. z/A
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Fig. 8.8.4 Angular spectrum results for the intensity along the axis of propagation for
FZPs of modes 1
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Fig. 8.8.5 Angular spectrum results for the intensity in the focal plane of a FZP for
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Fig. 8.8.6 Intensity plot from XFDTD results for third order FZPs of varying thickness.
Focal lengthis 31 .
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Fig. 8.8.7 Intensity in the focal plane for various FZP thicknesses (m=3).
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dB scale, EyM
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Fig. 8.8.8 XFDTD image for Fresnel zone plane of mode 3 and thickness 0.41 .




101

dB scale, EyM
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Fig. 8.8.9 Reflective grating with period | .
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simulation results of this grating. The results support the expected outcome. It is seen
that a standing wave pattern is produced. For agrating with period 1.5 , the grating
equation says that there will be a zero order mode reflected back onto the normally
incident wave as well as afirst order mode propagating at an angle of 41.8 degrees. The
simulation results of the 1.5 period grating are shown in Fig. 8.8.10. The results show
that a standing wave pattern is created at an angle of zero degrees, but the pattern is not
uniform across the image. At the edges, the field is propagating out to the sides. This
represents the expected first-order mode.

The third set of smulations explored the Fraunhoffer diffraction pattern of a
diffractive element. The general purpose of computer-generated holograms is to change
the shape of abeam into adesired pattern. Thisis usually done by creating a binary filter
that approximates the amplitude and phase of the Fourier transform of the desired beam
shape.

When the binary filter is placed in the path of the beam, alensis used to produce the
Fourier transform of the modulated beam, which produces the desired shape at the
opposite focal point of the lens. With conventional optics, good results require a lens
with alarge aperture and focal length. XFDTD simulations were done to see if this might
be possible at short distances, where arefractive lensis replaced by a Fresnel zone plate.

A system where a transmission grating with period d = 2| is placed a distance
2.5l infront of a Fresnel zone plate with focal length 31 was simulated in XFDTD.
From the preceding analysis, several evenly spaced lines decreasing in intensity should
be observed in the focal plane of the FZP. The lines should be separated by 1.9 . The
XFDTD simulation results are shown in Fig. 8.8.11 and Fig. 8.8.12. They show the field
along the direction of propagation and the field in the focal plane respectively. Fig.
8.8.13 plots the intensity across the focal plane of the lens, which is where the desired
pattern of linesisto be observed. The plot displays severa peaksin intensity. From
(8.7.3.5), we expect to see peaks at 0, 1.9 ,and 3 away from the center of the focal
plane. The results show a series of three evenly spaced peaks at O, 2| ,and 41 that
decrease in intensity. The spacing is not precisely what was expected, but the general
pattern isthere. Thereisaso apeak at about | away from the center of the plane. This
peak is likely “left over” from the peak that is seen at this same place in the focal plane
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when no grating is present. But, the intensity of this peak has decreased due to the
presence of the grating and the field it is trying to impose there.

A primary reason for the discrepancy in the spacing of the linesis probably the
reflection at the incident surface of the zone plate, which interferes with the diffracted
wave from the grating. Even so, the qualitative results compare well with theory.

The same Grating/FZP system was simulated using the angular spectrum method. The
intensity in the focal plane of the FZP is shown in Fig. 8.8.14. In this case, the angular
spectrum results are considerably different from XFDTD. The intensity in the focal plane
shows a series of peaks, but their positions do not correspond to those predicted in
(8.7.3.5). Most notably, there is no peak in the middle of the plane. This suggests that

the XFDTD results are more accurate in this case.

8.9 Conclusions

The angular spectrum method and XFDTD software were used to simulate small-
scale diffractive elementsin the near field. Simulation results of Fresnel zone plate and
diffraction gratings compared well with theoretical predictions. XFDTD provided greater
freedom in generating the desired geometry and specifying material parameters than the
angular spectrum. Also, the angular spectrum method is still based on scalar diffraction
theory. XFDTD is more useful, and yields more accurate results, when scalar diffraction
theory cannot be used with sufficient accuracy (i.e. when aperture sizes are on the order

of awavelength).
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dB scale, EyM
0dB=2.57e+000¥/m

Fig. 8.8.10 Reflective grating withperiod 1.5 .
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dB scale, EyM
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Fig. 8.8.11 XFDTD image of grating (d =21 )and FZP ( f =3I ) results.
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Fig. 8.8.12 XFDTD image of grating (d =21 ) and FZP ( f =3 ) resultsin the foca
plane of the FZP.
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Fig. 8.8.14 Angular spectrum results for the intensity in the focal plane of a grating/FZP
system. Grating periodis 2| .
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9 CONCLUSIONS

This research discussed scalar diffraction theory and its use in designing diffractive
optical elements. Specifically, computer- generated holograms were designed using
several methods. Simulated and optical reconstructions were performed for holograms
designed using Lohmann’s method (LM). LM utilizes a two dimensional array of
apertures with varying size and position to modulate the amplitude and phase of a
wavefront. Simulated reconstructions from Lohmann holograms showed similar
characteristics to actual optical results. Brightness of the reconstructed image was
increased by making the amplitude of each cell the same maximum value. The increased
brightness came at the expense of a decrease in image quality in both simulated and
optical outputs.

The interlacing technique (1T) and iterative interlacing technique (I1T) were
studied and explored in order to implement the optimal decimation-in-frequency iterative
interlacing technique (ODIFIIT). TheIT works by dividing the hologram plane into
smaller subholograms. Each subhologram is designed to reduce the error of the image
created from all the other subholograms. The subholograms are then interlaced together
to create one larger hologram. When this procedure is performed iteratively, it is called
the [IT. ODIFIIT exploits the decimation-in-frequency characteristic of the FFT when
dividing the hologram plane to optimize the 11 T. Simulated and optical reconstructions
from holograms designed using ODIFIIT produced accurate results, and shared many
similar qualities. Brightnessin the optical results of ODIFIIT was similar to the
brightness of the optical Lohmann results, but LM produced a distinctly sharper image.
The image quality was similar to that of the constant amplitude Lohmann’s method
(LMCA), but with a decrease in brightness.

Next, ODIFIIT was incorporated into Lohmann’s coding scheme in the hope of
improving performance. Simulations indicate a significant decrease in the error of the
reconstructed image using Lohmann’s method with ODIFIIT (LM-ODIFIIT). The MSE,
which measures the difference between the desired image and the actual reconstructed
image inside the desired image region, was 10 times less than the MSE using LM alone.

This means that the reconstructed image inside the image region matches the desired
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image almost exactly, within a constant scalar factor. ODIFIIT was also used with the
constant amplitude Lohmann’s method (LMCA-ODIFIIT). Reconstructed error
decreased from LMCA aone, but MSE and efficiency were almost the same as the
original Lohmann’s method.

A quantized Lohmann’s method was created and used with ODIFIIT. The
iterative nature of ODIFIIT makes accurate reconstruction possible with the quantized
LM. The significant error introduced by course quantization of amplitude and phase in
LM is effectively overcome by successive iterations. Quantization is also practical when
considering implementation of the CGH. In general, current methods of implementation
have limited resolution, which makes quantization necessary. Quantized LM-ODIFIIT
effectively reduced M SE below the value set by LM, while maintaining approximately
the same efficiency.

The second part of this thesis explored the near-field diffraction patterns from
small-scale diffractive optical elements. Scalar diffraction theory breaks down under
these conditions. The angular spectrum method, which is theoretically valid in the near-
field, was one of the methods used. The angular spectrum of plane wavesis a Fourier-
transform:based method which still depends on scalar diffraction theory. It becomes
inaccurate when aperture sizes get too small. The angular spectrum method was used to
analyze the effects that small aperture size has on its results.

XFDTD software was also used to determine the near-field diffraction patterns
from small-scale DOEs. XFDTD uses a finite-difference time-domain algorithm to solve
Maxwell’s curl equations directly. Diffractive elements are represented by specifying the
physical properties at each point in a cubical mesh. All elements were considered to be
perfect electrical conductors excited by a polarized plane wave.

Diffraction from Fresnel zone plates (FZPs) of various modes and thicknesses
was simulated. Angular spectrum and XFDTD simulations both showed a build-up of
intensity at the focal point of the zone plate with increasing mode. Both methods also
showed a reduction in spot-size and a decrease in side-1obe intensity as the mode
increased. These results support theoretical predictions. Only the angular spectrum
method indicated a build-up of the expected second focal point at 1/3 the distance of the
primary focal point. XFDTD simulations indicate that the point of maximum intensity of
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athird-order FZP moved closer to the expected focal point as the thickness of the zone
plate increased. As the plate was widened, the second focal point began to grow.

Reflection gratings with periods of | and 1.5/ were explored with XFDTD. The
standing wave pattern resulting from reflection off the first grating (d = | ) supports the
theoretical prediction that all modes except the zero-order mode is suppressed. The
grating equation predicts that a grating with period 1.5/ should have a zero and a first-
order mode. XFDTD results supported this claim by illustrating a standing wave pattern
at an angle other than zero relative to the axis normal to the grating surface.

Finally, atransmission grating/FZP pair was analyzed to simulate a system similar
to those used for computer-generated holograms. XFDTD results produced a diffraction
pattern at the focal point of the FZP resembling the Fourier transform of the grating. In
this case, the angular spectrum method results did not make any particular sense.

Asthe desire to produce devices on the micro and nano-scale becomes redlity, the
ability to implement effective diffractive elements will be very important. This thesis has
focused on only a small portion of the possible research in the area of computer-
generated holograms and small-scale diffractive el ements.

There are severa possihilities for future research in the areas of CGHs and small-
scale DOEs. If high resolution implementation techniques are available, high quality
physica CGHs could be made using all the coding methods discussed in this thesis.
Optical reconstructions could be performed to better verify the smulated results that were
presented. Of particular interest is a high resolution CGH designed using LM-ODIFIIT,
which produced results far superior to all other methods in terms of the reconstruction
error. Also, multi-level DOEs are of considerable interest. In general, more levels of
guantization allows for significantly greater efficiency. This potential increase in
efficiency should be taken seriously. The information on E-beam lithography and
reactive ion etching could be used as a starting point for producing such high resolution
diffractive phase elements.

The advantage of using CGHs in optical communications is another area for
future research. CGHSs could be tested at optical communications wavelengths to verify

their effectiveness at such wavelengths. Then one could explore techniques to optimize



112

CGHs for a particular wavelength. This would alow for specialized elements, which
perform optimally at the desired frequency, or range of frequencies.

Realization and testing of small-scale elements like the Fresnel zone plates and
gratings in Chapter 8 to verify ssimulated and theoretical predictions would expand upon
the work in thisthesis. Once it is determined how well actual results compare with
theory, research could be performed to optimize the design of small-scale elements. Or, a
new theory for determining the diffracted field from small-scale elements, which is less
computationally demanding, might possibly be devel oped.

For the previously mentioned future research ideas, once experimental results are
compared with theoretical predictions and optimization techniques are developed, ideas
for revolutionary products should be addressed. Efficient diffractive optical el ements
could offer a promising solution to many current and future engineering problems. With
dedicated research and some educated intuition, diffractive elements have the potentia to

be applied in situations not previously considered.
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