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ABSTRACT 

 
In this research, two related research topics were investigated. The first one is the 

use of scalar diffraction theory for the purpose of simulating and implementing 

diffractive optical elements (DOEs).  The main focus was on the optimal design of 

computer-generated holograms (CGHs).  Two existing methods were combined to 

improve the reconstructed image of a CGH.  The new method combines the Optimal 

Decimation-in-Frequency Iterative Interlacing Technique (ODIFIIT) with the Lohmann 

coding scheme.  Simulations indicate that the reconstructed image produced with this 

method has less error than reconstructions with either method alone.  Physical 

reconstructions were performed and compared to the simulated results. 

   Near field diffraction from DOEs with feature sizes on the order of a 

wavelength were also simulated and analyzed.  Both the small feature size and the close 

observation distance make scalar diffraction theory inaccurate.  For this situation, a 

complete electromagnetic theory is necessary to achieve accurate results.  XFDTD 

software made by Remcom was used to simulate these elements and their diffracted 

fields.  XFDTD calculates the diffracted fields by using a leapfrog finite difference time 

domain algorithm to solve Maxwell’s curl equations directly.  Fresnel zone plates and 

reflection and amplitude gratings were simulated.  An amplitude grating was also 

combined with a Fresnel zone plate to imitate a Fourier lens system like that used for 

reconstructing the image from a computer-generated hologram.  The angular spectrum of 

plane waves was also used to study these systems, and results were compared.   

Results showed that XFDTD can accurately simulate small-scale DOEs.  Precise 

knowledge of the diffracted field from small-scale DOEs will play an important and 

useful role in future optical systems as feature sizes reach the nano-scale level. 
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1  INTRODUCTION 

 

Diffractive optics is used in many applications such as optical storage, processing, 

sensing, and communications.  Diffraction is often described as the bending, or deviation 

of waves from a straight line due to interaction with an obstacle or aperture.  To 

completely describe diffractive effects, electromagnetic theory is necessary.  In many 

situations, an exact description of the diffracted field from an aperture cannot be obtained 

analytically, and requires numerical techniques.  Under certain conditions, analytical 

results can be achieved using scalar diffraction theory.  For it to be sufficiently accurate, 

two conditions must be met [1]: (1) the diffracting aperture must be large compared to the 

wavelength of the incident wave and (2) the diffracted field must not be observed too 

close to the diffracting aperture.  The second condition often requires that the field be 

observed many meters behind the aperture called the far field, creating space issues in a 

confined lab.  Fortunately, a lens can be used to overcome this problem. 

Scalar diffraction theory is used in the first part of the thesis for the design of 

diffractive optical elements (DOEs).  The general purpose of a DOE is waveshaping.  

While standard refractive optical elements such as mirrors and lenses are often bulky, 

expensive and limited to a specific use, DOEs are generally light-weight, compact, easily 

replicated, and can modulate complicated wavefronts.  DOEs are also useful in 

manipulating multi-spectral signals. 

A computer-generated hologram (CGH) is a specific type of DOE.  CGHs have 

found applications in many areas involving waveshaping, laser machining [2], 3-D 

displays, and optical pattern recognition.  CGHs have recently found uses in optical 

interconnects and security devices [3,4].  A particular setup for designing and testing a 

CGH is an optical Fourier transform system.  In this system, the desired wavefront plane 

and its transform plane, called the input plane and observation plane, respectively, are 

placed in the front and back focal plane of a thin lens.  The CGH is placed in the input 

plane and its far-field diffraction pattern, which will be seen to be the Fourier transform 

of the hologram’s transmission function, occurs in the observation plane. 
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Advances in computing and integrated circuit production technology are making 

the application of DOEs more attractive.  Designing a CGH consisting of a large number 

of points can be computationally demanding.  However, many points are necessary to 

achieve the bandwidth required to reconstruct a complicated wavefront.  As computers 

become faster, the ability to rapidly design CGHs and to adjust them in real time will 

increase, allowing them to be used in ways not previously possible.  One example is in 

the use of spatial light modulators (SLM).  In general, a CGH modulates the amplitude 

and/or phase of a wave to create a desired wavefront, just like a SLM.  Rapid design of 

CGH can allow SLMs to implement the hologram in real time. 

A limiting factor in the production of DOEs is the ability of the device to spatially 

modulate the amplitude and phase of a wavefront.  Current technologies impose 

resolution limits, and require discretization and quantization of the amplitude and/or 

phase function of the DOE.  The option is often limited to two levels of quantization.  

Two typical types of binary quantizations are to restrict the output function to 1 or 0 

representing transmission and no transmission, respectively, and 1 or -1, where -1 

represents a 180 degree phase shift.   

Integrated circuit technology, specifically lithography and reactive ion etching 

(RIE), can be used to produce diffractive optical elements.  Lithography and RIE are used 

to print patterns in materials like silicon using surface relief.  Surface relief is used to 

implement phase modulation.  IC technologies allow for better resolution and more levels 

of quantization, which increases efficiency.  As these technologies mature, so will the 

output and efficiency of diffractive optical elements.  This will result in DOEs being used 

in many more applications.  Thus, it is important to study and optimize the design of 

diffractive optical elements. 

This thesis discusses three methods of designing computer-generated holograms.  

The first method was introduced by Lohmann and Brown [5].  The hologram is divided 

into an array of rectangular cells each containing an aperture.  The size of the aperture is 

adjusted to modulate amplitude, and the position of the aperture is shifted to control 

phase.  This method is referred to throughout this thesis as the Lohmann method.  The 

desired amplitude and phase at each point is obtained by computing the Fourier transform 

of the desired image.  The second method is the Optimal Decimation- in-Frequency 
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Iterative Interlacing Technique (ODIFIIT) developed by Ersoy and Zhuang [6].  It is an 

iterative method which utilizes the decimation- in-frequency property of the Fourier 

transform to interlace several smaller holograms into one large hologram.  Similar to 

Lohmann’s method, the hologram plane is divided into an array of rectangles.  However, 

the output function of each rectangle, called a cell, has the same value for all points inside 

that cell.  The output of each cell is determined using the projection onto constraint sets 

(POCS) algorithm [7].  The third method is a new scheme developed in this thesis 

incorporating aspects of both Lohmann’s method and the ODIFIIT.  The new design 

procedure seeks to take advantage of the interlacing property of the ODIFIIT while using 

Lohmann’s coding scheme to have more control over amplitude and phase when 

designing each cell.  ODIFIIT is also applied to a quantized version of Lohmann’s 

method to reduce the error in the reconstructed image. 

All of the diffractive optical elements discussed so far are designed with the 

assumption that scalar diffraction theory applies.  However, due to the advances in 

semiconductor technologies, there is an increasing demand for devices with feature sizes 

on the nanometer scale.  On such a small scale, scalar diffraction theory breaks down.  

Refractive optical elements are not useful in these situations because their resolution is 

limited for small aperture sizes, which is due to diffractive effects.  Therefore, a good 

understanding of diffractive effects on a small scale and the ability to use diffraction as 

an advantage is becoming more important.  As devices reach the nano-scale level, 

efficient DOE design will be crucial. 

Scalar diffraction theory becomes incomplete when the field is observed very 

close to an aperture, or when the size of the aperture is on the order of a wavelength.  

When this is the case, electromagnetic theory is needed to accurately predict diffractive 

effects.  There are several numerical techniques used to simulate wave propagation using 

electromagnetic theory.  Finite elements, beam propagation, and finite difference are 

examples of such methods [8,9].  In the second part of this thesis, the finite difference 

time domain (FDTD) method is used to simulate and analyze diffractive optical elements 

with small feature sizes and short characteristic lengths, like focal length.  The FDTD 

method can be used to numerically solve partial differential equations, such as the wave 

equation and Maxwell’s curl equations.  FDTD methods use a grid representing the 
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region of interest, which is made up of many small cells.  The quantities of interest are 

calculated at each cell.  In the case of diffraction of electromagnetic waves, the quantities 

of importance are the electric and magnetic fields.  For accurate results, each cell has a 

size on the order of 1/10 to 1/30 of a wavelength.  In general, accuracy of results 

improves with decreasing cell size.   

There are other factors besides the minimum resolution of the defined grid that 

can cause error in the results.  The most notable is the application of absorbing boundary 

conditions (ABCs), which are not perfect.  ABCs try to simulate a situation where waves 

encountering the boundary of the interest region are free to propagate as if there is no 

boundary.  Effective FDTD methods reduce reflections at the boundary to a fraction of a 

percent. 

In this research, XFDTD software by Remcom was used to simulate Fresnel zone 

plates, reflective gratings, and binary transmission gratings imitating computer-generated 

holograms.  Feature sizes and observation lengths were made on the order of several 

wavelengths.  The accurate simulation of these elements is important when considering if 

such diffractive devices could be used in micro and nano-scale applications. 

The angular spectrum of plane waves [1] was also used to analyze the same 

elements as XFDTD.  Theoretically, the angular spectrum method is valid for regions 

close to a diffracting aperture, but it is a Fourier transform method which does not 

directly solve Maxwell’s equations.  It also does not allow for specification of material 

properties and advanced geometries.  

The results from XFDTD and the angular spectrum method were analyzed and 

compared.  The angular spectrum gave good results in certain situations, but does not 

have the accuracy or versatility of XFDTD. 
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2  DIFFRACTION 

 

2.1  Introduction 

Diffraction is a phenomenon of considerable importance in the fields of physics 

and engineering whenever wave propagation is involved.  Sommerfeld defined 

diffraction as “any deviation of light rays from rectilinear paths which cannot be 

interpreted as reflection or refraction”  [1].  In 1665, the first account of diffractive 

phenomena was published by Grimaldi when he observed the shadow resulting from an 

aperture in an opaque screen illuminated by a light source.  He observed that the 

transition from light to shadow was gradual rather than sharp, which we now know is due 

to diffraction.  Sommerfeld’s definition implies that diffraction only applies to light rays.  

In reality, diffraction occurs with all types of waves including electromagnetic, acoustic, 

and water waves, and is present at all frequencies.  The content of this research deals 

exclusively with electromagnetic radiation at optical frequencies. 

Diffraction was initially considered to be a nuisance when designing optical 

systems because diffraction at the apertures of an optical imaging system is often the 

limiting factor in the system’s resolution.  However, by the mid 1900’s, methods and 

devices utilizing the effects of diffraction began to emerge.  Examples include analog 

holography, synthetic aperture radar and computer-generated holograms and kinoforms, 

generally known as diffractive optical elements (DOE’s).  Computer-generated 

holograms will be one of the main topics of this thesis.  Diffractive elements are also 

being combined with refractive elements to correct aberrations associated with refractive 

lenses. 

The propagation of waves can often be described by rays which travel in straight 

lines.  However, the behavior of wave fields encountering obstacles cannot be described 

by rays.  Some of the wave encountering an obstacle will deviate from its original 

direction of propagation causing the resulting wave field to differ from the initial field at 

the obstacle.  This is called diffraction.  Classic examples include diffraction of light from 

a knife’s edge and a wave field passing though an aperture in an opaque screen. 
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2.2  Rayleigh-Sommerfeld Diffraction 

In scalar diffraction theory, predicting the diffracted wave field from an aperture 

is usually done by using Green’s theorem to convert the Helmholtz equation into a 

meaningful integral equation.  A discussion of this procedure and the various 

assumptions made along the way can be found in [1].  Scalar diffraction theory considers 

only the scalar amplitude of one transverse component of the wave field, and assumes 

that other components can be treated independently in a similar way.  Scalar theory can 

lead to very accurate results if the diffracting aperture is large compared to the 

wavelength, and if the diffracted fields are observed at a reasonable distance from the 

aperture.  What satisfies as a reasonable distance will be clarified later.    

 Fig. 2.2.1 illustrates diffraction from an aperture A illuminated by a wave field U, 

where the field at the output of the aperture is )0,,( yxU .  Fig. 2.2.2 shows a cross section 

of the aperture and specifies the important geometries.  On this plane, the field is 

assumed to be zero anywhere outside the aperture.  Applying the Kirchhoff 

approximation [10], the diffracted field of a monochromatic wave at a point behind the 

aperture in vacuum is given by the expression [1] 

∫∫=
A

jkr

dxdy
r

e
r
z

yxU
j

zyxU
0101

00

01

)0,,(
1

),,(
λ

.   (2.2.1) 

This is the Rayleigh-Sommerfeld diffraction formula, where 01r  is the distance from 

10   to PP  given by [ ] 2/122
0

2
001 )()( zyyxxr +−+−= . 

λ is wavelength, k is the wave-number defined as 
c
f

k
π

λ
π 22

== , and c is the velocity of  

light in vacuum. 
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Fig. 2.2.1  Diffraction from an aperture illuminated by a wavefield 
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Fig. 2.2.2  Geometry of an aperture illuminated by a wavefield 
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2.3  Fresnel and Fraunhofer Diffraction 

 

The Rayleigh-Sommerfeld formula can be made easier to compute by making 

approximations based on the size of the aperture, the distance z of the output plane from 

the aperture, and the observed region of the output plane.  Let the aperture be contained 

inside a radius 1L  such that 1
22x if  0)0,,( LyyxU >+= , and the observed wave field 

),,( 00 zyxU at the output plane be restricted to a region 2L so that 

2
2

0
2

000 x if  0),,( LyzyxU >+= .  If  

8
)( 2

213 LLk
z

+
>> ,     (2.3.1) 

 then (2.2.1) can be approximated with good accuracy as [1] 

 
[ ]

∫∫
−+−

=
A

yyxx
z

jjkz

dxdyeyxU
zj

e
zyxU

2
0

2
0 )()(

00 )0,,(),,( λ
π

λ
.  (2.3.2) 

This is known as the Fresnel diffraction formula, and any region satisfying (2.3.1) is 

called the Fresnel region. 

 For even greater z distances known as the Fraunhofer region, or far field, 

2
)(

2

2
1

max
22 kL

yx
k

z =+>>     (2.3.3) 

(2.2.1) is approximately given by [1] 

∫∫
+−+

=
A

yyxx
z

jyx
z

k
jjkz

dxdyeyxUe
zj

e
zyxU

)(
2

)(
2

00
00

2
0

2
0

)0,,(),,( λ
π

λ
.  (2.3.4) 

This is the Fraunhofer diffraction formula.  Notice that it is the Fourier transform of the 

field at the diffracting aperture )0,,( yxU  at the frequencies 
z

y
f

z
x

f yx λλ
00   and  == , 

multiplied by some factors. 

 It is important to notice that for a typical aperture size, the distance z required to 

meet the condition in (2.3.3) is relatively large for experiments in a lab or other confined 

space.  Fortunately, a lens can be used to overcome this potential problem.  Neglecting 

edge effects due to its finite size, the phase transformation generated by a lens produces a 

Fourier transform of the input wave at its focal plane.  A lens with an illuminated 



 10 

diffracting aperture placed at one focal plane will produce the Fraunhofer diffraction 

pattern of that aperture at the opposite focal plane.  If the diffracting plane is moved away 

from the focal plane of the lens, the field in the opposite focal plane is just multiplied by 

a phase factor dependent on the distance moved.  However, when viewing the intensity of 

light, which is the square of the field magnitude, the phase factor is irrelevant.  Thus, the 

output is independent of the position of the diffracting aperture. 

 

2.4  Conclusions  

The Rayleigh-Sommerfeld (R-S) diffraction formula provides a starting point for 

finding the diffraction pattern from an aperture.  For certain regions behind the aperture, 

approximations can be made to simplify the R-S formula.  By considering the diffracted 

field in the Fresnel and Fraunhofer regions, diffraction patterns of simple apertures such 

as rectangles and circles can be determined analytically.  Most importantly, the 

Fraunhofer diffraction pattern is simply the Fourier transform of the diffracting aperture.  

So, as long as the field at the output of a diffractive element can be represented 

mathematically, a fast Fourier transform algorithm can be used to determine its 

Fraunhofer diffraction pattern.  This will be the basis for the design of the computer-

generated holograms relevant to this thesis when scalar diffraction theory is used.  The 

next chapter will present the basic theory behind computer-generated holograms, which 

fall under the general category of digital holograms. 
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3  DIGITAL HOLOGRAPHY 

 

3.1  Introduction 

Digital holography [11] is a branch of diffractive optics covering the theory, 

calculation and fabrication of thin diffractive elements. 

Classically, to make a hologram, a wave reflected from an object is combined 

with a reference wave to produce an interference pattern which is recorded on a 

photosensitive material.  This interference pattern contains amplitude and phase 

information which allows an image of the original object to be recovered.  This process 

requires very stable conditions, and can take a considerable amount of time. 

Computer generated holograms (CGHs), which are the main focus of this thesis, 

were introduced by Lohmann [5].  He introduced a purely digital implementation called 

the detour-phase method.  The design of his CGH’s is based on a desired Fraunhofer 

diffraction pattern.  A more detailed description of Lohmann’s method will be presented 

later.  In general, CGHs are diffractive elements (DE’s).  DE’s that modulate only the 

amplitude of an illuminating wave are called diffractive amplitude elements (DAE’s).  

DE’s which only affect the phase of an illuminating wave are known as diffractive phase 

elements (DPE’s).  Unlike DAE’s which have a binary quantization (transmission or no 

transmission), DPE’s may have several possible quantization levels.  In general, the more 

possible levels of quantization a DPE has, the closer it can recreate the desired phase.  

This results in a more effective diffractive element in terms of reconstruction error and 

efficiency.   

CGHs are usually designed based on scalar diffraction theory.  This means that 

the typical feature size of the element must be large compared to the wavelength of the 

illuminating wave, and the element must be sufficiently thin [1].  Otherwise, rigorous 

diffraction theory is needed to describe diffraction from the CGH.  

 

3.2  Methods of Coding 

The optical function of a Fourier diffractive element with transmittance )(uH
r

 is 

designed to generate the Fraunhofer diffraction pattern )( 0xxf
rr

− .  Mathematically, we 

write [11], 
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RxxxfxhuHF ∈−==
rrrrr

          ),()()]([ 0α    (3.2.1) 

The diffracted wave is proportional to the desired wave )(xf
r

 inside a window R in the 

observation plane.  0x
r

 represents an offset of the window R , and F designates Fourier 

transform.   

 If only the intensity of the wave is considered, then (3.2.1) is changed to, 

Rxxxfxh ∈−=
rrrr

          ,)()(
2

0
22

α         (3.2.2) 

This makes the phase of the desired wave a free parameter. 

 Three assumptions are made about the desired wave and its spectrum [11]: 

1. The magnitude of the spectrum of )( 0xxf
rr

− is normalized: 

[ ] ,1)()( 0
1 ≤=−− uFxxfF T

rrr
 

where 02)()( xuj
T euFuF

rrrr π=  

2. The desired wave )(xf
r

must be bandlimited due to the finite size of the 

diffractive element. 

3. )( 0xxf
rr

− is approximately restricted to the window R : 

.           ,0)( 0 Rxxxf ∉≈−
rrr

 

Condition 3 implies the neglect of sinc-oscillations outside of R due to the finite size of 

the element. 

 In order to make implementation easier, the transmittance )(uH
r

of the diffractive 

element has to satisfy certain digital constraints C .  For a DAE, each point in )(uH
r

must 

allow either transmission or no transmission represented by 1 and 0 respectively.  

Therefore, }1,0{)( ∈uH
r

 for every u
r

 representing a point in the hologram, and C ={0,1}.  

For a binary diffractive phase element }1,1{)( −∈uH
r

or more generally, 1)( =uH
r

.  

Coding of the input signal by the digital hologram requires finding a )(uH
r

 that satisfies 

the transmittance conditions exactly and the conditions in (3.2.1) and (3.2.2) to a good 

approximation.  In general, there are two different coding techniques [11]: 

1. Iteratively search for the CuH ∈)(
r

that best approximates )(xf
r

.  Given an initial 

)(1 uH
r

, successively generate )(2 uH
r

, )(3 uH
r

,… )(uH N
r

to satisfy the constraints 

in the image plane.  This can be written as, 
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CuHOuH ITN ∈= )()( 1
rr

 

where )]([)( uHFxh NN
rr

=  satisfies (3.2.1) or (3.2.2) to a good approximation.  

ITO represents the iterative algorithm.  Or, 

2. Starting with )(uFL
r

, find )(uH
r

.  The constraint in the image plane is already 

satisfied.  A coding operator CO  maps )(uFL
r

 onto )(uH
r

such that image plane 

constraints are satisfied,  i.e. 

CuFOuH LC ∈= )]([)(
rr

 

where )(xh
r

is given approximately by (3.2.1) or (3.2.2).  The coding operator 

could be iterative or noniterative.  Lohmann’s method and ODIFIIT discussed 

later in this thesis both fall into this category. 

 

3.3  Diffraction Efficiency 

 The diffraction efficiency of a DE with transmittance )(uH
r

is defined as [11] 

R
xh 2)(
r

=η       (3.3.1) 

where 
R

...  is an integration over R , the image region.  This assumes the energy of the 

illuminating wave is normalized.  Efficiency is a measure of how much of the energy in 

the initial illuminating wave is diffracted into the desired region R .  In general, 

diffractive phase elements have greater efficiency than diffractive amplitude elements.  

The efficiency of a DPA increases with the number of phase levels.   

 

3.4  Conclusions  

 The basics of digital holography provide a general foundation for the design of 

computer-generated holograms.  All the CGHs designed in this research use the second 

general coding method mentioned.  How the hologram plane is divided and the specific 

method used to encode amplitude and phase at each point in the hologram have a 

significant effect on the reconstructed image and the hologram’s efficiency.  The next 

three chapters discuss how the basic theory from this chapter is used to design computer-

generated holograms using Lohmann’s method, Optimal Decimation-in-Frequency 

Iterative Interlacing Technique, and an original method combining these two methods.  
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4  LOHMANN’S METHOD FOR DESIGNING COMPUTER-GENERATED 

HOLOGRAMS 

 

4.1  Introduction 

The goal in producing a synthetic hologram, or computer generated hologram 

(CGH), is to find a diffractive object with a predetermined Fraunhofer diffraction pattern.  

This is the inverse of the familiar problem where one wants to find the diffraction pattern 

resulting from an object.  In generating a CGH, it is the diffraction pattern which is 

known, and the geometry of the object needs to be determined.  The optical system 

assumed for generating synthetic holograms in the case of Fourier transform geometry 

consists of a hologram plane and an image plane, each a distance f from opposite sides of 

a lens (Fig. 4.1.1).  f is the focal length of the lens.  In general, the hologram plane is 

illuminated by a wave.  Due to the Fourier transforming properties of a lens, the 

Fraunhoffer diffraction pattern, or Fourier transform, of the hologram plane occurs at the 

image plane.  In other words, the wavefront at the hologram plane ),( yxF νν  has the 

Fraunhoffer diffraction pattern ),( yxf at the image plane.  By knowing the desired 

diffraction pattern, one can determine the wavefront needed at the hologram plane, 

namely, 

∫ +−= .),(),( )(2 dxdyeyxfF yx yxi
yx

ννπνν    (4.1.1)  

The coordinates ),( yx νν are related to the physical coordinates ),( ff yx  by the 

following: xf fx νλ=  and yf fy νλ= .  In actual implementation, one must find a way to 

implement the complex amplitude ),(),(),( yxi
yxyx eAF ννφνννν = . 
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Fig. 4.1.1  A Fourier lens system for the design of CGHs. 

 

 

4.2  Lohmann’s Method 

In the method developed by Lohmann  [5,12], the hologram plane is divided into 

smaller rectangles each containing an aperture.  An example of a Lohmann cell is  

shown in Fig.4.2.1.  The size of the aperture is used to control amplitude, and its position 

is changed to adjust phase.  This results in a binary transmission pattern.  If  ),( yxh is 

taken as the diffracted amplitude from the hologram ),( yxH νν , then it should be 

proportional to the desired image ),( yxf .  The binary amplitude of the hologram’s 

transmission is described by 

CGH Plane 
Observation Plane 

f f 
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When a tilted plane wave, )2exp( 0 xix νπ falls on the binary hologram, the complex 

amplitude behind the hologram is ),( yxH νν )2exp( 0 xix νπ .  A tilted plane wave is needed 

in order to manipulate phase in the hologram plane.  Fourier transform of the hologram at 

the image plane results in the complex amplitude: 

=∫ ∫ ++
yx

yxxi
yx ddeH yx νννν ννπ ])[(2 0),(     (4.2.2) 

[ ] ( )( )( )[ ]{ }ymPnxxiyWWxxcc nmnm
n m

nm ++++ ∑∑ 00
2 2exp)sinc()(sinc)( δνπδνδνδν  

Now, the parameters  nmW ,  nmP , and the two constants 0x ,c are chosen such that the 

complex amplitude in the image plane matches the desired image ),( yxf . 

 Eq.(4.2.2) can be compared to the desired image by writing ),( yxf  in the form 

[ ]∑∑∫ ∫ ++ ==
n m

ymxni
yx

yxi
yx emnFddeFyxf yx )(2)(2 ),(),(),( δνπννπ δνδννννν      (4.2.3) 

The two sinc functions and the factor [ ])(2exp δνπ nmxPi  in (4.2.2) can all be assumed to 

be close to unity.  The validity of this assumption will be discussed in Section 4.3.  Then, 

by equating the Fourier coefficients, we get [12] 

[ ]{ } );,()(2exp)( 0
2 δνδνδνπδν mnFPnxiWc nmnm ∝+  

)];2/(2exp[)(),( 2 πφπδνδνδν nmnm iAcmnF ∝  

;nmnm AW ≈  δνπφ 02/ xnP nmnm ≈+ .   (4.2.4) 



 18 

 

 
Fig. 4.2.1  The (n,m)th cell of a Lohmann-type binary hologram [12]. 

 

This shows that the height W and the position P of the aperture in each cell are 

responsible for generating the amplitude A and the phase φ of the complex amplitude F  

at the cell.  By choosing δν0x  equal to an integer M, we obtain 

MP nmnm πφ 2/≈ .     (4.2.5) 

This completes the information needed to generate a Lohmann-type binary synthetic 

hologram. 

 

4.3  Approximations in Lohmann’s Method 

 The transmission pattern of a binary hologram was described in the previous 

section by a summation of rectangular functions that are shifted and scaled to represent 

the position and size of each aperture in the hologram plane: 
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When the hologram is illuminated by a tilted plane wave )2exp( 0 xix νπ , the resulting 

Fraunhofer diffraction pattern is the Fourier transform of the product of the transmission 

pattern and the illuminating wave.  The result is, 

=∫ ∫ ++
yx

yxxi
yx ddeH yx νννν ννπ ])[(2 0),(     (4.3.2) 

[ ] ( )( )( )[ ]{ }ymPnxxiyWWxxcc nmnm
n m

nm ++++ ∑∑ 00
2 2exp)sinc()(sinc)( δνπδνδνδν  

In the previous section, the three approximations (a) [ ] constxxc ≈+ )(sinc 0δν , (b) 

1)sinc( ≈δνnmyW , and (c) 1)](2exp[ ≈xnmxPi δπ  were made for simplicity.  The effects of 

these approximations on the reconstructed image depend on several factors, and with 

proper design, can be minimized. 

 The sinc function [ ])(sinc 0xxc +δν creates a drop-off in intensity in the x-

direction proportional to the distance from the center of the image plane.  Approximation 

(a) considers this sinc factor to be nearly constant inside the image region.  If the size of 

the image region is yx ∆×∆ , then at the edges 
2
x

x
∆

±=  where the effects are most 

severe, we have [ ]2/sinc ccM ± .  This implies that a small aperture size c results in less 

drop-off in intensity.  However, this also reduces the brightness of the image.  For 

2/1=cM , the brightness ratio between the center and the edge of the image region is 

9:1.  By reducing this product to 3/1=cM , the ratio drops to 2:1 [12].  So, depending on 

the situation, or the preference of the designer, brightness can be sacrificed for a 

reduction in intensity drop-off at the edges of the reconstructed image. 

 The sinc function )sinc( δνnmyW  indicates a drop-off in intensity similar to (a), 

but in the y-direction.  This approximation is a little less dangerous because 1=∆ δνx , 

which means 
2
1

<δνyW .  Therefore, the sinc factor in (b) has a minimum of 0.64 in the 

image region [12].  Basically, the sinc function acts like a slight decrease in amplitude 

transmission by a factor )sinc( δνnmyW .  It is well known that amplitude errors in 

apertures of coherent imaging systems have little effect on the image because they do not 
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deviate rays like phase errors do [12].  To reduce the effects of this approximation, every 

W could be reduced by a constant factor.  However, some brightness must be sacrificed. 

 A possible solution to the sinc roll-off in the x direction is to divide the desired 

image by [ ])(sinc 0xxc +δν .  The desired image ),( yxf  becomes [ ] )(sinc
),(

0xxc
yxf
+δν

.  

The same thing cannot be done for the y direction because )sinc( δνnmyW depends on the 

aperture parameter nmW  which is yet to be determined.  Luckily, this sinc factor is less 

influential than the x dependent sinc, and design of the hologram can be altered to reduce 

its effects. 

Last, the phase shift )](2exp[ xnmxPi δπ causes a phase error that varies with x 

location in the image plane.  The range of this phase error depends on x and P.  Since 

δν2
1

2
=

∆
≤

x
x  and 

M
P

2
1

≤ , the phase error ranges from zero to 
M2
π

.  At its 

maximum, the phase error corresponds to an optical path length of 
M4
λ

.  For M=1, this 

is within the 
4
λ

 Rayleigh criterion for wave aberrations [12]. 

 The detrimental effects of these approximations are less when the size of the 

image region is restricted.  Simply put, differences between approximated and actual 

results increase with distance from the center of the image plane.  If the image region is 

smaller, its edges are closer to the center of the image plane, which lessens the difference. 

A rigorous solution to reduce the effects of these three approximations is worked out in 

the paper by Lohmann and Paris [12].  This procedure is not included in this thesis. 

 

4.4  A Modification of Lohmann’s Method:  Constant Aperture Size  

From the previous discussion on the approximations made in Lohmann’s method, 

the sinc oscillation due to the variable size of each aperture is the most difficult 

approximation to deal with.  Therefore, it would be desirable, also for the purpose of 

simpler implementation, to somehow have the height of each aperture constant.  This 

would allow for the desired image to be divided in the y-direction by the y-dependent 
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sinc drop-off just as was done in the x-direction for the sinc factor associated with the 

constant width of the aperture. 

Logically, if every aperture has the same size, then only the positioning of the 

apertures is affecting the output.  This means that all the information is contained in the 

phase.  The following method is used to “shift” information in the hologram plane from 

the amplitude to the phase. 

If only the magnitude of the desired image is of concern, then the phase at each 

sampling point in the observation plane is a free parameter.  For this situation, the range 

of height nmW values can be reduced by iterative methods [2].  Suppose the sampled 

desired image has amplitudes nma  each with an unspecified corresponding phase nmθ .  

The discrete Fourier transform of the image is { }nmnmnm PiW )2exp( π , where { }nm...  

indicates the sequence for all points n and m.  The first step in reducing the range of nmW  

values is to assign values of nmθ  to the initial desired image which are independent and 

identically distributed phase samples with a uniform distribution over ),( ππ−  [2].  The 

resulting DFT of the image samples is denoted by 

{ }[ ] { }nmnmnmnmnmnm iAiaDFT )exp()exp( ψθ = .  Then, the spectral amplitudes nmA  are set 

equal to any positive constant A.  The inverse DFT of the spectrum with adjusted 

amplitudes is { }[ ] { })~
exp(~)exp( nmnmnm iaiADFT θψ = .  The original image amplitudes nma  

are now combined with the new phase values nmθ
~

 to form the new desired image 

samples.  This process is repeated for a prescribed number of iterations.  The image phase 

obtained from the last iteration becomes the new image phase.  The final image phase 

values are used with the original image amplitudes to generate )2exp( nmnm PiW π  used for 

designing the hologram function. 

By constraining the amplitude in the hologram domain and performing iterations, 

information in the hologram plane is transferred from the amplitude to the phase.  

Therefore, this reduces the negative effects caused by making all the apertures the same 

height.  If all the apertures have the same height, then approximation (b) in section 4.3 

can be handled the same way as approximation (a). 
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4.5  Experiments and Simulations with Lohmann’s Method 

The first step in creating a computer-generated hologram was to pick an image 

and represent it mathematically.  For example, a binary image can be represented by a 

two dimens ional array of 0’s and 1’s.  Next, the discrete Fourier transform of this image 

was computed.  The Fourier transform becomes the desired hologram function.  The 

binary transmission pattern was generated from the hologram function using Lohmann’s 

method.  Matlab code was written to implements Lohmann’s coding algorithm.  The 

binary transmission pattern obtained from Lohmann’s method was displayed in one of 

two ways.  To display the exact Lohmann hologram (i.e. aperture size and positions are 

exactly as specified), the pattern is drawn into a CAD layout.  The code using Lohmann’s 

method includes commands that generate a ~.dxf file, which draws the pattern into an 

AutoCAD layout.  An alternative method involves dividing each hologram cell into an 

NxN  array.  This restricts the possible center positions and heights of each aperture.  

Thus, the phase and amplitude of each cell is quantized.  Specifically, there are N  

possible positions for the center of the aperture (phase), and 2/N  potential height values 

(amplitudes) since the cell is symmetric in the y direction.  Obviously, a larger N  

produces a pattern closer to that of the exact hologram.  For convenience, when Lohmann 

cells are divided into NxN  pixels, this will be referred to as N -level quantization. 

All holograms were designed using parameter values of 2/1=c  and 1=M .  

Setting 2/1=c  means that each aperture has a width equal to half that of the cell.  It can 

also be shown that this value of c maximizes the brightness of the image [2].  After 

choosing 2/1=c , the only allowable value is 1=M  [12].  Also, each approximation 

mentioned in Section 4.3 was assumed to be valid. 

Fig. 4.5.1 shows a binary E image and its Fourier transform amplitude.  The entire 

image is of size 64x64.  Notice that the E image is placed completely on one side of the 

image plane.  Because the field in the hologram plane is real, Fourier theory demands that 

the image plane have Hermitian symmetry.  This means that for an image plane of size 

NxM , ),(),( mMnNhmnh −−= , where h is the reconstructed image. 

Fig. 4.5.2 displays the transmission pattern generated by Lohmann’s method 

using the E image in Fig. 4.5.1.  In this case, 16- level phase quantization, and 8- level 

amplitude quantization were used.    Fig. 4.5.3 shows the simulated reconstruction.  The 
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reconstructed image clearly shows the Hermitian symmetry due to the real-valued binary 

transmission pattern.  In reality, the reconstruction seen here is repeated in both the x and 

y directions due to the finite size of the hologram. 

Simulated reconstruction of a gray-scale image was also performed.  Fig. 4.5.4  

displays the image and its reconstruction.  The entire image plane is 512x512.   

One modification was made to Lohmann’s method in the hope of improving the 

outcome of the reconstructed image.  Since phase information in the Fourier, or 

hologram, plane is more important than amplitude in regards to the outcome in the image 

plane, Lohmann’s method was modified to keep the amplitude of each cell constant and 

only manipulate phase.  This was achieved by performing the iterative method discussed 

in Section 4.4 to move information from the amplitude to the phase in the hologram 

plane, thus allowing the size of each aperture to remain the same.  Each aperture was still  
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Fig. 4.5.1  a)  A binary E image  b) Amplitude of the Fourier transform of the E image in 

(a). 

(a) 

(b) 
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Fig. 4.5.2  The Lohmann hologram designed from the E image in Figure 4.5.1a. 
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Fig. 4.5.3  The simulated reconstruction of the Lohmann hologram in Figure 4.5.2. 
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Fig. 4.5.4  a)  A Girl image.  b)  Simulated reconstruction of the girl image by a Lohmann 
hologram. 

 

(a) 

(b) 
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shifted to produce the desired phase.  This modification was made in the hope of 

increasing the brightness of the reconstructed image without significantly reducing its 

quality.  As seen from Fig. 4.5.2, much of the hologram is black, which means that 

incoming light is being blocked, and thus energy is being lost.  By keeping the amplitude 

of each block constant, and only adjusting phase, the average amplitude is greater, while 

hopefully maintaining reconstruction quality.  An example of the transmission pattern 

generated using this modification is shown in Fig. 4.5.5a.  The resulting simulated 

reconstruction is shown in Fig. 4.5.5b.  Fig. 4.5.6 shows a reconstruction of the girl image 

from Fig. 4.5.4 using the constant amplitude method. 

In order to make the transition between a computer generated hologram and a 

physical binary hologram, the designed binary transmission pattern must be realized.  

One way of achieving this is to print the designed hologram pattern onto a transparency.  

This was done for a Lohmann hologram, a modified Lohmann hologram with constant 

amplitude.  Both hologram functions were represented in MATLAB using 16-level 

quantization, and saved as image files.  The images were reduced in the computer and 

then printed at the desired size.  The Lohmann holograms contained 64x64 cells, and 

were reduced to a size of 1.2x1.2cm.  Therefore, the sampling period in the hologram 

plane was approximately 0.19mm.  Each hologram was designed to reconstruct the E 

image seen in Fig. 4.5.1a, and tested using a HeNe laser.  The reconstructions can be seen 

in Fig. 4.5.7.  

 

4.4  Discussion 

Probably the first thing noticed about a Lohmann hologram is that it closely 

resembles the amplitude of the actual Fourier transform of the desired image.  This can be 

seen by comparing the hologram function in Fig. 4.5.1.  Clearly, this should be the case if 

the hologram is representing the amplitude of the Fourier transform correctly.  The 

greater the amplitude of the Fourier transform, the larger the aperture should be, which 

results in more transmittance.  Depending on the preference of the designer, the 

transmission and no-transmission regions in the hologram may be interchanged.  This can 

be done because the value of 1 for transmission and 0 for no-transmission was an  
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Fig. 4.5.5  a)  Constant amplitude Lohmann hologram  b)  Simulated reconstruction by 

the const. amp. Lohmann method. 

 

(a) 

(b) 



 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5.6  Simulated reconstruction of girl image with the constant amplitude Lohmann 
method. 
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Fig. 4.5.7  a) Optical reconstruction from a Lohmann hologram  b)  Optical 
reconstruction from a constant amplitude Lohmann hologram. 

(a) 

(b) 
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 arbitrary choice.  The choice of 0 for transmission and 1 for no-transmission could have 

been used.  It does not match with the usual conception that zero means nothing, but as 

long as the binary coding is consistent throughout the hologram, either method will work.   

Another option would be to use a (-1,1) binary system.  This would be the desired 

choice if a phase shift is going to be used when physically implementing the hologram.  

Creating a phase hologram was not an option given the resources for this research, so 

only binary amplitude holograms where considered.  

 Next, the iterative method mentioned in Section 4.4 was used to design a 

Lohmann hologram where each aperture has constant amplitude.  When compared to the 

other Lohmann holograms, the modified constant amplitude hologram clearly has a 

greater overall amplitude.  In fact, each aperture was given the maximum relative height 

of 1 in order to maximize the brightness of the image. 

Based on simulations, the image is indeed brighter in the constant amplitude case, 

but the sharpness of the E appears to have decreased slightly.  The reduction in image 

sharpness might be attributed to ignoring any information that was still contained in the 

amplitude of the Fourier transform of the image.  This amplitude information is of course 

lost when the aperture size is made constant.  The reduction in image sharpness may also 

be due to noise around the edges of the E as a result of the all around increased intensity.  

If this is the case, this unwanted reconstruction at the edges simply may not have been 

visible in the original reconstruction due to a lack of brightness.  Also, the constant 

amplitude hologram produced significantly less noise in the corners of the image plane, 

which is an advantage over the original method.  The “noise” has moved from the corners 

of the image plane to the area around the image. 

For the girl image reconstructed from a constant amplitude design, the image was 

again brighter and exhibited less noise in the corners of the image plane when compared 

to the original method.  There is no noticeable error around the image for the constant 

amplitude case like there was for the binary image. 

The two physical Lohmann holograms produced recognizable optical 

reconstructions of the letter E.  A hole was cut in the observation screen to remove the 

bright, zero-order spot in the center of the image plane.  As the simulations predicted, the 

original Lohmann method produced a more well-defined image than the constant 
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amplitude method.  Also supporting the simulated results, the constant amplitude 

Lohmann hologram generated a brighter image and less reconstruction outside the image 

region.  The amount of noise in the center of the image plane is noticeably greater using 

the original Lohmann method.  

Holograms for larger, more complex images such as the girl seen in Fig. 4.5.4a 

were also made.  The optical reconstructions from these holograms were not 

recognizable.  This was due to resolution limits in printing.  For the 512x512 hologram 

designed for the girl image, a hologram 1.2cm x 1.2cm has a sampling period of 

approximately 0.023mm.  Furthermore, if each cell has only 8- level quantization, a 

resolution of 0.003mm is required.  The accessible method was only capable of 0.02mm 

resolution.   

 

4.7  Conclusions  

Lohmann’s method was used to design binary computer-generated holograms.  

Simulated reconstructions were performed for binary and gray-scale images.  Holograms 

having constant aperture amplitude were designed in addition to standard Lohmann 

holograms.  Holograms with constant aperture amplitude were designed following an 

iterative Fourier transform algorithm.  Simulated reconstructions due to the constant 

amplitude Lohmann holograms had brighter images and less noise outside the image 

region, but displayed less image definition.  Optical reconstructions from these 

holograms supported the simulation predictions.    
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5  INTERLACING AND INTERATIVE INTERLACING TECHNIQUES FOR 

DESIGNING COMPUTER-GENERATED HOLOGRAMS 

 

5.1  Introduction 

In the previous chapters we have seen that, in general, a hologram is an optical 

pattern that records the amplitude and phase information of a wavefront (or image) in 

order to reconstruct the original image.  A computer-generated hologram can simulate the 

reconstruction of an image, as long as that image can be represented mathematically.  

Therefore, the original object is not needed in order to create the hologram.   

The optical system assumed in the synthesis of a computer-generated hologram 

using the interlacing technique (IT) and the iterative interlacing technique (IIT) is the 

same Fourier lens system used for CGH design by Lohmann’s method.  Under the 

Fresnel approximation, the wavefronts at the two planes are related by a Fourier 

transform pair [1].  The image in the observation plane will be defined as the inverse 

Fourier transform of the wavefront at the CGH plane.  Thus, the transmittance values of 

the CGH are designed based on the Fourier transform of the desired image. The 

objective, as before, is to design a transmittance pattern for the CGH, which results in a 

reconstructed image at the observation plane that resembles some desired image. 

 In IT and IIT, the CGH consists of an array of discrete points.  The transmittance 

function of a hologram consisting of an NM × array of yx νν ∆×∆ sized pixels can be 

represented by the sum, 
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where ),( lkH  is the binary transmittance of the thlk ),(  point.  The reconstructed image 

in the observation plane is given by the Fourier transform of the transmittance: 

== ∫ ∫ +
yx

yxi
yx ddeGyxg yx νννν ννπ ][2),(),(       (5.1.2) 

[ ] [ ] [ ]∑∑ ∆+∆∆∆∆∆ )(2exp),(sincsincy yxyxx lykxilkHyx ννπνννν  

By ignoring the two constants and the two sinc factors outside the sums, the 

reconstructed image is approximated by the two-dimensional inverse discrete Fourier 
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transform (2D-IDFT) of the transmittance values ),( lkH .  Ignoring the sinc factors is the 

same approximation that was made in the Lohmann procedure.  For discussion on how to 

deal with this approximation, refer to section 4.3. 

 

5.2  Projection-Onto-Constraint -Sets Method 

As discussed in the basic theory of digital holography, there are several encoding 

methods available to generate binary transmittance values. The method used in IT and IIT 

is the Projection-Onto-Constraint-Sets (POCS) algorithm [7]. The POCS method uses the 

amplitude information of the desired image as the constraint that is imposed on the 

observation plane during transformation between the discrete-space domain (i.e. the 

observation plane) and the discrete-spatial- frequency domain (i.e. the CGH plane). 

Letting the dimensions of both the observation and CGH planes be MxN , the 

relationship between the wavefronts at the observation plane ),( nmh and the CGH plane 

),( lkH  is given by the following discrete Fourier transform pair: 
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and 

)/2exp( uiWu π=  

The goal of the POCS method is to generate the CGH whose reconstructed image most 

accurately resembles the desired image. 

 Given a desired image ),( nmf  in a region R of the observation plane, the POCS 

method works as follows: 

1) Using (5.2.2), compute ),( nmF  from ),( nmf . 
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2) Generate the binary transmittance values H(k,l) from ),( lkF  based on the 

condition, 

( )


 ≥

=
otherwise0

0)],(Re[ if1
,

lkF
lkH     (5.2.3) 

3) Using (5.2.1), find the reconstructed image h(m,n). The accuracy of the 

reconstructed image is measured based on the Mean-Square-Error (MSE) 

between ),( nmf and ),( nmh within R, the region of the desired image.  The 

MSE is defined as [13], 
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         where λ  is a scaling factor. The minimum MSE for h(m,n) is achieved if, 
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4) Define a new input image ),( nmf ′ such that 

a) Outside R, ),( nmf ′  equals ),( nmh  

b) Inside R, ),( nmf ′  has the amplitude of the original image ),( nmf  

and the phase of ),( nmh . 

5) Letting ),( nmf = ),( nmf ′ , go to step 1). 

6) Repeat steps 1 through 5 until the MSE converges or specified conditions are 

met. 

 

5.3  The Interlacing Technique (IT) 

Another method of designing CGH’s is the interlacing technique (IT) [6], which 

can be incorporated into any existing CGH synthesis method in order to improve its 

performance.  The IT method divides the entire hologram plane into a set of 

subholograms.  A subhologram consists of a set of cells, or points, referred to as a 

“block”.  All the subholograms are designed separately and then interlaced, or entangled, 

to create one hologram. 



 38 

In the IT method, once the entire hologram is divided into smaller subholograms, 

the first subhologram is designed to reconstruct the desired image ),( nmf .  The 

reconstructed image due to the first subhologram is ),(1 nmh . Because the subhologram 

cannot perfectly reconstruct the desired image, there is an error image e1(m,n) defined as,  

 ( ) ( ) ( )nmhnmfnme ,,, 111 λ−=    (5.3.1) 

In order to eliminate this error, the second subhologram is designed with 
( )

1

1 ,e
λ

nm
 as the 

desired image. Since the Fourier transform is a linear operation, the total reconstruction 

due to both subholograms is simply the sum of the two individual reconstructions.  If the 

second subhologram were perfect and its scaling factor matched 1λ , the sum of the two 

reconstructed images would produce ),( nmf . However, as with the first subhologram, 

there will be error. So, the third subhologram serves to reduce the left over error from the 

first two subholograms.  Therefore, each subhologram is designed to reduce the error 

between the desired image and the sum of the reconstructed images of all the previous 

blocks.  This procedure is repeated until each subhologram has been designed.  

 Each subhologram is generated sub-optimally by the POCS algorithm.  However, 

the total CGH may not yet reach the optimal result even after all the subholograms are 

utilized once. To overcome this problem, there is the Iterative Interlacing Technique 

(IIT).   

 

5.4  The Iterative Interlacing Technique (IIT) 

 IIT is simply an iterative version of the IT method, which is designed to achieve 

the minimum MSE [6].  After each subhologram has been designed using the IT method, 

the reconstruction due to the entire hologram ( )nmh f ,  has a final error ( )nme f , .  To 

apply the iterative interlacing technique, start a new sweep through the subholograms, 

where the new desired image ( )nmf ,′  for the first subhologram is the original desired 

image ( )nmf , minus the reconstruction created by all of the subholograms except the 

first (divided by the scaling factor).  So, the first subhologram attempts to reconstruct, 
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where ( )nme f , = ( ) ),(, nmhnmf ffλ− , and fλ  is the scaling factor after the last 

subhologram.  Once the first subhologram is re-designed, the error image due to the 

entire hologram is calculated using the new reconstruction created by the first 

subhologram.  Similarly, the second subhologram is designed to reconstruct 

( ) ( )
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−

f

f nme
nmh

λ

,
,2 , which is the error image due to the reconstruction of all 

subholograms except the second, and ( )nme f ,′  is the updated final error. Convergence is 

achieved when the absolute different between successive reconstructed images 
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reaches zero.  By using the IIT method, the convergence tends to move away from the 

local-minimum MSE to reach the global-minimum MSE of the existing CGH [13]. 

 

5.5  Optimal Decimation-in-frequency Iterative Interlacing Technique (ODIFIIT) 

 Now that the IT and IIT methods have been presented, it is time to see how they 

can be applied most efficiently.  The Optimal Decimation- in-Frequency Iterative 

Interlacing Technique (ODIFIIT) was designed to optimize the results of the IIT 

procedure [6].  ODIFIIT exploits the decimation- in-frequency property of the Fast 

Fourier Transform (FFT) when dividing the hologram into subholograms, and has two 

important advantages over IIT.  It decreases computation time by reducing the 

dimensions of the Fourier transform and its inverse.  Also, only the image inside the 

desired image region R is involved in the transformation.  This makes the design of each 

subhologram optimal because only contributions from the data of interest are taken into 

consideration.  
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 The geometry of the image plane for the ODIFIIT method is shown in Fig 5.5.1. 

The desired amplitude f0(m,n) is a real-valued array of size A x B.  It will be the constraint 

throughout the design of the CGH.  Therefore, the desired image f(m,n) at any given time 

will be f0(m,n) times a  floating phase, which is determined by the phase of the current 

reconstruction inside region R.  ),( nmf  is placed within region R, which begins at the 

point (M1,N1).  The Hermitian conjugate of the reconstructed image exists in the region 
+R  due to the real-valued CGH transmittance.  Since the binary CGH has cell magnitude 

equal to unity, it is important that the desired image is scaled so that its DFT is 

normalized to allow a direct comparison between it and the reconstructed image ( )nmh , .   

 The total CGH is divided into νµ x  subholograms, or blocks, where 

B
N

A
M

== νµ  and .  νµ  and  are guaranteed to be integers if M, N, A, and B are all 

powers of two.  Utilizing decimation-in-frequency, the blocks are interlaced such that the 

th),( βα  block consists of the cells ),( βναµ ++ lk , where 10 −≤≤ Ak , 10 −≤≤ Bl , 

10 −≤≤ µα , and 10 −≤≤ νβ .  Fig. 5.5.2 shows an example with 2==νµ .  

Expressing ),( lkH as the sum of all the blocks and using (5.4.1), the expression for the 

reconstructed image becomes 
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Fig. 5.5.1  Image plane geometry for ODIFIIT. 
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Fig. 5.5.2  Interlacing with u=v=2. 
 

: Block (0,0) 

: Block (0,1) 

: Block (1,0) 

: Block (1,1) 
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The reconstructed image in region R is computed by replacing m and n by 1Mm +  and 

1Nn + , respectively, and letting m and n span just the image region. 
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 where ,10 −≤≤ Am  10 −≤≤ Bn     (5.5.2) 

Let ( )nmh ,,βα  be the size A x B inverse discrete Fourier transform of the ( )βα, th 

subhologram: 
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where ,10 −≤≤ µα  ,10 −≤≤ νβ  ,10 −≤≤ Am  10 −≤≤ Bn . 

The IDFT above is of size A x B.  The reconstructed image inside region R becomes 

( )
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The indices ( )1Mm +  and ( )1Nn +  of ( )11, , NnMmh ++βα  are implicitly assumed to be 

( )1Mm +  modulo A and ( )1Nn +  modulo B, respectively.  (5.5.4) gives the 

reconstructed image in R in terms of the size A x B IDFT’s of all the blocks.  From this 

equation, it can be seen that the reconstructed image in R due to the ( )βα, th block is  



 44 

βα
βαβα µν

)()(
11,11,

11),(
1

),( Nn
N

Mm
M WWNnMmhNnMmh ++++=++′    (5.5.5) 

which is the IDFT of the ( )βα, th block times the appropriate phase factor, divided by 

µν .   

We now define an array, which will be useful later on: 

 ),(
~

11, NnMmh ++βα = ),(),( 11,11 NnMmhNnMmh ++′−++ βα .  (5.5.6) 

This is the reconstruction in R due to all except the ( )βα, th block. 

Conversely, given the desired image in R, the transmittance values can be 

obtained.  From (5.2.2) 
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Dividing ( )lkH ,  into u x v  blocks as before, 
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Therefore, the transmittance values of block ( )βα,  that create the image 

( )11 , NnMmh ++  in region R are given by 
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 (5.5.9) 

 Using (5.5.5) and (5.5.9), we can compute the reconstruction in R due to each 

individual block, or, given a desired image in R, determine the transmittance values 

needed to reconstruct that desired image.  Therefore, we can now utilize the IIT to design 

a CGH.   

Letting ),( 110 NnMmf ++ , ,10 −≤≤ Am  10 −≤≤ Bn , be the amplitudes of a 

desired image of size A x B, the ODIFIIT algorithm procedure is as follows: 
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1) Define the parameters M, N, A, B, M1, and N1, and determine νµ  and  .  Then, 

divide the total CGH into νµ x  interlaced subholograms, or blocks.  

2) Create an initial M x N hologram with random transmittance values of 0 and 1. 

3) Take the M x N IDFT of the total hologram.  The reconstruction in the image 

region R is obtained simply by using only the points inside R.  That is 

),( 11 NnMmh ++ , ,10 −≤≤ Am  10 −≤≤ Bn . 

4) The desired image ),( 11 NnMmf ++  is obtained by applying the phase of each 

point ),( 11 NnMmh ++  to the amplitude ),( 110 NnMmf ++  as in the POCS 

method.  So, 

),( 11 NnMmf ++ = ),( 110 NnMmf ++ ( )
11 ,exp NnMmi ++φ    (5.5.10) 

where )}(arg{ 1,1, 11
NnMmhNnMm ++=++φ  

5) Find the optimization parameter λ using (5.2.5).            

6) Using (5.5.3), (5.5.5), and (5.5.6), find ),(
~

11, NnMmh ++βα .  This is the 

reconstruction in R due to all except the ( )βα, th block.   

7) Determine the image that the ( )βα, th block needs to reconstruct (i.e. the error 

image) by subtracting λ ),(
~

11, NnMmh ++βα  from ),( 11 NnMmf ++ .  Divide 

the difference by λ .  This yields,  

),( 11 NnMme ++ =
λ

),( 11 NnMmf ++
- ),(

~
11, NnMmh ++βα  , 

which is equivalent to the error image in the IIT method. 

8) Using (5.5.9), find the transmittance values ),( βναµ ++ lkE  for the current 

block that reconstructs the error image. 

9) Design the binary transmittance values of the current block using the condition 

( )


 ≥++

=++
otherwise0

0)],(Re[ if1
,

βναµ
βναµ

lkE
lkH  . 

10) Find the new reconstruction in R due to the current block, ),( 11, NnMmh ++′ βα . 

11) Determine the new total reconstructed image ),( 11 NnMmh ++  by adding the 

new ),( 11, NnMmh ++′ βα  to ),(
~

11, NnMmh ++βα .  
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12) With the new ),( 11 NnMmh ++ , use (5.5.10) to update ),( 11 NnMmf ++ . 

13) Repeat steps 7) through 12) until the transmittance value at each point in the 

current block converges. 

14) Update the total hologram with the newly designed transmittance values. 

15) Keeping λ  the same, repeat steps 3) through 14) (except step 5) for all µν  

blocks.   

16) After all blocks are designed, compute the MSE from (5.2.4). 

17) Repeat steps 3) through 16) until the MSE converges.  Convergence indicates that 

the optimal CGH has been designed for the current λ . 

 

5.6  Experiments with ODIFIIT 

The ODIFIIT method was used to design computer-generated holograms of the 

same binary E and girl images that were used in testing Lohmann’s method.  These two 

images are shown in Fig. 4.5.1a and Fig. 4.5.4a.  Simulated reconstructions of both 

images are shown in Fig. 5.6.1.  A higher resolution 256x256 grayscale image was also 

reconstructed using ODIFIIT.  The desired image and simulated reconstruction are shown 

in Fig. 5.6.2. 

All holograms designed using ODIFIIT used the interlacing pattern shown in Fig. 

5.5.2.  There are many different ways in which the subholograms could be interlaced.  

However, it has been shown that this interlacing method minimizes the MSE and thus 

produces the best results [13].  Also, each hologram was divided into 4x4 blocks, or 

subholograms.  So, the binary E image was contained in a 16x16 desired image region 

inside the entire 64x64 image plane.  Similarly, the 128x128 desired image region of the 

girl image is within a total image plane of size 512x512.  Various numbers of divisions 

have been tried [13].  Simulated experiments have shown that dividing the hologram into  
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Fig. 5.6.1  Simulated reconstructed images from CGHs designed using ODIFIIT.  a)  

Binary E image  b) Gray-scale girl image. 
 

(a) 

(b) 
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Fig. 5.6.2  a) 256x256 gray 

 

(a) 

(b) 
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4x4 blocks leads to the lowest MSE, and that increasing the number of divisions does not 

improve outcome [13]. 

A physical CGH was designed with ODIFIIT to reconstruct the binary E image.  

The optical reconstruction is shown in Fig. 5.6.3. 

 

5.7  Results and Discussion 

The simulated reconstructions using ODIFIIT show very good results.  The 

images inside the desired image regions are well defined, and little reconstruction is seen 

outside the desired image region for both the binary and gray-scale images. 

By simple observation of the simulated reconstructions, there are several 

noticeable differences between the ODIFIIT method and Lohmann’s method.  In the 

reconstruction of the binary image, ODIFIIT produced a more uniform image.  The 

intensity of the “E” reconstructed with ODIFIIT is almost constant for all points 

contained in the image.  Conversely, the Lohmann reconstruction has light and dark 

patches inside the image.  There is also no noticeable reconstruction inside the image 

region that is “misplaced.”  All extra reconstruction is moved out of the image region R.  

This is in contrast to the constant amplitude Lohmann’s me thod where considerable noise 

is present around the E in the reconstruction.  

Optical reconstructions from ODIFIIT also produced recognizable binary E 

images.  The brightness of the image was comparable to that of the original Lohmann 

method, but not as bright as the constant amplitude method’s image.  The quality of the 

ODIFIIT and constant amplitude Lohmann images appear to be about the same.  The 

ODIFIIT reconstruction is not as sharp as that produced with the original Lohmann 

method.  However, the ODIFIIT images have less noise directly next to the E within the 

desired image region.  This supports the simulated results.  Also, reconstruction outside 

the image region seems to be relatively dispersed.  This is in comparison to the 

concentrated noise in the center of the Lohmann reconstructions, and the excess noise 

around the E in the constant amplitude Lohmann image. 

Like the CGHs designed with Lohmann’s method, the transmittance function 

designed with ODIFIIT can also be coded as (-1,1) to make a binary phase hologram.   
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Fig. 5.6.3  Optical reconstruction of binary E image with an ODIFIIT hologram. 
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ODIFIIT also has the flexibility to code transmittance functions with multiple levels of 

phase quantization.  This corresponds to a multi- level phase element.  For example, four 

levels of phase quantization could be implemented when encoding the hologram.  So at 

each point in the hologram there would be a phase shift of /2.3or  ,,2/,0 πππ   This 

generates a reconstruction with lower MSE because the hologram function is a closer 

approximation to the actual desired phase at each point.  More levels of quantization also 

greatly increases the efficiency of the hologram.  Since the transmittance can be 

imaginary at some points, the image plane does not have Hermitian symmetry, which 

also aids the increase in efficiency.  Advances in semiconductor technology would make 

such high efficiency CGHs more practical.  The current difficulty in making multi- level 

surface relief is that once the first round of surface relief is done, the element must be re-

aligned very precisely.  This is where much error can occur. 

 

5.8  Conclusions  

Computer-generated holograms were designed using ODIFIIT.  Simulation results 

showed very accurate reconstructions of desired images.  Compared to results from 

Lohmann’s method, there was a significant increase in reconstruction quality for high 

resolution gray-scale images.  Optical reconstruction was also performed, which 

produced a recognizable binary image.  Optical reconstructions produced similar 

qualitative results to theoretical predictions.  Quality of the optical reconstruction was 

similar to optical reconstruction using a Lohmann or constant amplitude Lohmann 

hologram.  Optical reconstructions supported many of the expected differences between 

methods based on simulation. 

Thus far, no quantitative descriptions of the reconstruction quality has been 

mentioned.  In the next chapter, a new method is introduced.  Quantitative analysis will 

be used to compare the new method with both Lohmann’s method and ODIFIIT. 
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6  COMBINING LOHMANN’S METHOD WITH ODIFIIT FOR DESIGNING 

COMPUTER-GENERATED HOLOGRAMS 

 

6.1  Introduction 

Lohmann’s coding scheme was implemented into the interlacing technique to 

create a new method for designing computer-generated holograms.  This new method 

will be called the Lohmann-ODIFIIT method, or LM-ODIFIIT for short.  The desired 

amplitude and phase of each subhologram point is encoded using a Lohmann cell, but the 

hologram is divided into interlaced subholograms like in ODIFIIT.  

Recall that IT involves dividing the hologram plane into subholograms, where 

each subhologram is designed based on the difference between the desired image and the 

reconstruction due to all other subholograms.  Since the aperture inside a Lohmann cell 

has an infinite number of possible positions, to determine the exact reconstruction of a 

Lohmann hologram, the hologram function must be made physical and the reconstruction 

performed optically.  This can be a lengthy process.  Therefore, a simulated 

reconstruction is needed to realistically use IT.  The simulated reconstructions are done as 

they were in Chapter 4.  The hologram plane is represented as the sum of the products of 

two rectangular func tions and the reconstructed image is calculated by taking the Fourier 

transform of this function.  This makes combining Lohmann’s coding method with IT 

feasible. 

 

6.2  Incorporating Lohmann’s Coding Scheme into ODIFIIT 

Based on the nature of Lohmann’s coding technique, is there any advantage to 

using an iterative version of the Lohmann-IT method?  The answer is “yes”.  Since the 

detour-phase method used in binary Lohmann holograms cannot code amplitude and 

phase exactly, there will always be some amount of inherent error in the reconstruction.  

Therefore, iterations should be effective in reducing error.  What this ultimately means is 

that if Lohmann’s method is incorporated into ODIFIIT, it will likely produce better 

results than Lohmann’s method alone. 
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6.3  Quantized Lohmann’s Method and ODIFIIT 

Optimal decimation-in-frequency iterative interlacing technique (ODIFIIT) 

created by Ersoy and Zhuang [6] is an iterative interlacing technique, which exploits 

decimation- in-frequency to optimize the interlacing of subholograms.  The ODIFIIT 

method uses a binary coding scheme that considers only the phase of each sampling point 

and incorporates projection onto constrained sets (POCS) which is an iterative Fourier 

transform algorithm. 

The original goal in trying to combine Lohmann’s coding technique with 

ODIFIIT was to supply more information at each sampling cell.  But, Lohmann’s method 

allows for an infinite number of aperture sizes and positions, which is not practical for 

many methods of implementation.  To overcome this obstacle, a discrete method was 

used to quantize the size and position of the apertures in each cell.  The general idea 

behind Lohmann’s method is still used; size of each aperture controls amplitude, and 

phase is controlled by shifting the aperture.  However, now the possible values of 

amplitude and phase are restricted (quantized).  For example, imagine a Lohmann cell 

divided into 4x4 smaller squares.  For a value of 2/1=c  in the Lohmann algorithm, 

which means that the width of the aperture is fixed at half the width of the entire cell, this 

cell permits three values of normalized amplitude (0,1/2, and 1) and three values of phase 

( )2 /  and 0, ,2/ ππ−  for a total of seven possible combinations (an amplitude of zero has 

no phase).  Values of phase greater than 2/π , which create overlap between cells, were 

not allowed. Quantization means there will be error when coding amplitude and phase.  

Therefore, it makes sense to incorporate POCS and to design subholograms iteratively 

until a convergence condition is met.  Simulations were performed for various cell 

quantizations. 

Quantizing aperture positions makes sense when realization of the final CGH is 

considered.  Current spatial light modulators (SLM) can be used in real time to control 

transmission or phase at each point.  This is the same function that a binary amplitude 

hologram serves.  Unfortunately, the resolution of a SLM cannot accurately re-create an 

exact Lohmann cell, thus quantization is needed to make realization practical.  Similarly, 

technology used to make integrated circuits can be used for realizing CGH’s as 

diffractive phase elements.  Since precise, continuous surface relief is very difficult, this 
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technology requires quantization of phase.  In general, when it comes to realization of a 

CGH, quantization is often preferred or even required.  This is generally true for all 

advanced technologies of implementation. 

 

6.4  Accounting for Approximations in Lohmann’s Method with LM-ODIFIIT 

It was mentioned in chapter 3 describing Lohmann’s method that three 

approximations were made for simplicity: (a) [ ] constxxc ≈+ )(sinc 0δν , (b) 

1)sinc( ≈δνnmyW , and (c) 1)](2exp[ ≈xnmxPi δπ .  The affects of these approximations on 

the reconstructed image depend on several factors. 

 The sinc function [ ])(sinc 0xxc +δν creates a drop-off in intensity in the x-

direction proportional to the distance from the center of the image plane.  Approximation 

(a) considers this sinc factor to be nearly constant inside the image region.  A small 

aperture size c results in less drop-off in intensity.  However, this also reduces the 

brightness of the image.  

 The sinc function )sinc( δνnmyW  indicates a drop-off in intensity similar to (a), 

but in the y-direction.  This sinc function acts like a slight decrease in amplitude 

transmission by a factor )sinc( δνnmyW .  If one wants to reduce the effects of this 

approximation by sacrificing some brightness, every W could be reduced by a constant 

factor. 

Last, the phase shift )](2exp[ xnmxPi δπ causes a phase error that varies with x 

location in the image plane.  This phase error depends on x and P, and ranges from zero 

to 
M2
π

.   

The solution used to account for the sinc roll-off in the x direction is to divide the 

desired image by [ ])(sinc 0xxc +δν .  The desired image f(x,y) becomes, 

[ ] )(sinc
),(

0xxc
yxf
+δν

.  The same thing cannot be done for the y direction because 

)sinc( δνnmyW depends on the aperture parameters nmW  which are determined based on 

the desired image.  An iterative method in LM-ODIFIIT and quantized LM-ODIFIIT was 
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used to account for this sinc factor.  The desired image is divided by the sinc factor 

affecting the x direction, and the hologram function is designed.  Then, the y dependent 

sinc factors due to all apertures are calculated and summed to determine the effect on the 

output image.  The desired image is now divided by the y dependent sinc factor just as it 

was for the x dependent factor.  Next, the hologram is designed again, the effect on the 

output due to the new aperture heights is calculated, and the original desired image is 

divided by this new factor.  This process is repeated until the reconstructed image does 

not change, or a convergence condition is met. 

Lastly, by ignoring the phase factor )](2exp[ xnmxPi δπ , the output image is 

deteriorated as if there is a phase error due to an improper aperture shift [12].  In the 

quantized LM-ODIFIIT all of the apertures are shifted improperly due to quantization 

anyway.  Neglecting this phase factor is accounted for by successive iterations while 

designing the hologram function. 

 

6.5  Experiments and Simulations with LM-ODIFIIT Method 

Table 1 shows mean square error (MSE) and efficiency data based on simulations.  

MSE represents the difference between the desired and reconstructed image inside the 

desired image region, and efficiency is a measure of how much of the incident wave is 

diffracted into the desired image region.   The table includes data for ODIFIIT, 

Lohmann’s method (LM), Lohmann’s method using a constant amplitude for each cell 

(LMCA), ODIFIIT using Lohmann’s coding method (LM-ODIFIIT), and LM-ODIFIIT 

with constant cell amplitude (LMCA-ODIFIIT).  All results are for binary amplitude 

holograms.  Values of 1 and 2/1 == Mc  from Lohmann’s method were used throughout.  

For comparison purposes, the MSE occurring from Lohmann’s method was normalized 

to one, so all other MSE data is relative to Lohmann’s method.  Binary desired images   
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Table 6.5.1:  Simulation data for binary amplitude computer-generated holograms 

1. Method 2. MSE 3. Efficiency 

LM 1 1.2% 

ODIFIIT 0.33 5.7% 

4. LMCA 5. 2.03 6. 5.9% 

7. LM-

ODIFIIT 

8. 5.9• 10^-31 9. 1.2% 

10. LMCA-

ODIFIIT 

11. 1 12. 2.1% 

 

 

Table 6.5.2:  LM-ODIFIIT and LMCA-ODIFIIT data 

13. Levels of 

Quantization (N) 

14. MSE 15. Efficiency 

16. 2 17. 2.33 18. 0.6% 

19. 2-CA 20. 0.42 21. 1.4% 

22. 4 23. 0.19 24. 1.1% 

25. 4-CA 26. 0.93 27. 1.1% 

 

 were used for the purposes of this experiment.  Table 2 gives data from simulations 

where the amplitude and phase of each cell took on quantized values, and ODIFIIT was 

applied.  Each Lohmann cell is divided into NxN  smaller squares.  This is referred to as 

N -level quantization.  Initiating quantization of amplitude and phase is done as 

mentioned in Section 6.3.  MSE is still relative to the MSE from Lohmann’s method 

alone. 

   Fig. 6.5.1 shows simulated LM-ODIFIIT reconstructions of the binary ‘E’ and 

gray-scale girl images.  Fig. 6.5.2 displays optical results for LM-ODIFIIT.  A 

comparison between the output of Lohmann’s method, ODIFIIT, and LM-ODIFIIT for a 

16x16 gray-scale image was also performed.  The simulated and optical results are shown 
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in Fig. 6.5.3 and Fig. 6.5.4, respectively.  The simulated and optical reconstructions from 

a CGH designed with LM-ODIFIIT and 4-level quantization are shown in Fig. 6.5.5. 

 

6.6  Discussion 

Looking at the simulation data of the two basic methods, ODIFIIT is better than 

Lohmann’s method in terms of both MSE and efficiency.  This supports the simulated 

results of these two methods.  In Chapters 4 and 5, we saw that ODIFIIT produced a 

more uniform image with less “noise” inside the desired image region, and less 

reconstruction outside the desired image region when compared to Lohmann.  However, 

the optical reconstructions did not support these predictions.  Optically, Lohmann’s 

method produced a sharper image than ODIFIIT, with about the same brightness.  This 

indicates that the MSE for Lohmann should be lower than that of ODIFIIT, and that their 

efficiencies should be approximately the same.  The difference in MSE is likely due to 

the fact that the MSE is only computed inside the desired image region.  Although 

Lohmann produced a sharper image, the extra reconstruction near the image, which is 

considerably less for ODIFIIT, increases the MSE. 

By altering Lohmann’s method, applying the iterative Fourier transform 

algorithm, and using a constant amplitude in every cell, error in the image region 

increased, but efficiency was significantly improved.  Basically, this means  
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Fig. 6.5.1  Simulated reconstructions with LM-ODIFIIT. 
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Fig. 6.5.2  Optical reconstruction from a LM 
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Fig. 6.5.3  Simulation results for a gray-scale images.  a) Desired image   b) Lohmann’s 

method  c) ODIFIIT d) LM-ODIFIIT. 

(a) (b) 

(c) (d) 
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Fig. 6.5.4  Optical results for a gray 
 

(a) (b) 

(c) 
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Fig. 6.5.5  Reconstructions using LM-ODIFIIT and 4- level quantization. a) Simulated  b) 

Optical. 
 

(a) 

(b) 
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reconstruction of a brighter image with less definition.  This result seems reasonable for 

the following reasons: less information is used in LMCA, which increases the error, but 

the amplitude values throughout the hologram are greater due to aperture size always 

being as large as possible, which increases the brightness.  This quantitative analysis 

supports the visual results from Chapter 4.  The output displays a reconstruction of the 

desired image which is brighter, but has “fuzzy” edges.  Less reconstruction occurs 

outside the desired image region further confirming the efficiency increase.  In fact, the 

efficiency of LMCA surpassed the efficiency of ODIFIIT, but the significant increase in 

MSE negates it as a superior method.   

The data indicates that LM-ODIFIIT produces an output most resembling the 

desired image (lowest MSE), while its efficiency is the same as the original Lohmann 

method (LM).  Simulations show that, qualitatively, LM-ODIFIIT generated an 

extremely sharp and uniform image inside the image region, while excess reconstruction 

outside the image region is limited. 

Note how low the error from LM-ODIFIIT is when compared to all other 

methods.  This indicates a reconstruction inside the image region which is far superior to 

any other method.  This is supported by the visual results in Fig. 6.5.1.  The simulated 

reconstruction of the girl image especially demonstrates the accuracy of LM-ODIFIIT, 

and should be compared to the LM and ODIFIIT results of the same image. 

This dramatic increase in image quality for LM-ODIFIIT is not obvious in the 

optical reconstruction.  The image in Fig. 6.5.2 shows a significant decrease in brightness 

from the LM and ODIFIIT results.  Because of the large contrast in intensity, it is 

difficult to compare the quality of the image with the other two methods.  At first, it 

appears that the LM-ODIFIIT image is the worst of the three.  However, based on 

simulations, if the image were brighter, it is likely that the results would be similar to, or 

better than, the other methods. 

To further test the legitimacy of the LM-ODIFIIT results, CGHs were designed to 

make the gray-scale image shown in Fig. 6.5.3a.  LM-ODIFIIT shows a clear 

improvement over LM and ODIFIIT in the simulated results.  Optical results followed the 

same trend as in the binary image reconstructions.  The LM-ODIFIIT image is less 
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intense than the other two, and appears to be least accurate in representing the desired 

image.    

The MSE for LMCA-ODIFIIT is equal to the MSE for LM, greater than that of 

LM-ODIFIIT, and less than the MSE of LMCA.  We see that incorporating ODIFIIT into 

LMCA reduces the error, just as it did for LM.  The increase from LM-ODIFIIT is 

expected because of the previously mentioned consequences of making the amplitude 

constant.  However, due to the extremely small MSE of LM-ODIFIIT, it is somewhat 

surprising that the MSE of LMCA-ODIFIIT is not less.  As expected, the efficiency of 

LMCA-ODIFIIT is greater than for LM-ODIFIIT. 

Quantized LM-ODIFIIT with 2=N  had the largest MSE and the lowest 

efficiency of all the methods  By using so few quantization levels, not enough 

information remains after encoding to allow for good reconstruction.  Anytime the 

normalized amplitude is less than ½, the amplitude is quantized to zero and phase 

information is lost.  This accounts for the high error and very poor efficiency.  By 

implementing the constant amplitude technique, more phase information is retained.  This 

results in better MSE and efficiency. 

For 4=N , MSE dropped significantly, creating a very good reconstruction of the 

desired image.  This method produced a low MSE, second only to the extremely low 

value of the original LM-ODIFIIT.  Also, its efficiency is comparable to all other 

methods except ODIFIIT and LMCA.  Making the amplitude a constant maintains the 

efficiency, but increases the error. 

 The optical reconstruction from LM-ODIFIIT with 4- level quantization is 

comparable to that of LM-ODIFIIT and has similar qualities to the simulated 

reconstruction.  

All optical results so far have had 64x64 hologram and image planes.  To improve 

reconstructions, the sampling rate was doubled in the image plane.  Reconstructions 

resulting from the 128x128 holograms are shown in Fig. 6.6.1 and Fig. 6.6.2.  The results 

indicate that reconstruction quality increases with the sampling rate as expected.  The 

images are clearer and less reconstruction occurs in the center of the image plane. 

The increase in image quality is most noticeable in the LM-ODIFIIT image.  For 

this method, the noise in the center of the 128x128 images has dramatically decreased 
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from the 64x64 images, which helps to see the reconstructions better.  But, the brightness 

of the other two methods is still greater.  The 128x128 LM-ODIFIIT images appear to be 

as sharp as the other methods, but the lack of brightness still prevents a reliable 

conclusion.   Based on improvement of the LM-ODIFIIT reconstruction with increased 

sampling, it is possible that with sufficient resolution and large enough sampling, the 

quality of its results could surpass those of the other methods. 

Fig.  6.6.1 and Fig. 6.6.2 show that the 128x128 LM and LM-ODIFIIT images 

display periodic arrays of dots.  The horizontal array in the LM image occurs because of 

the periodic nature of the hologram.  This is due to all the cells being symmetric relative 

to the direction in which the aperture height is adjusted.  The horizontal array in the LM-

ODIFIIT image occurs for the same reason.  However, in the LM-ODIFIIT hologram, it 

was observed that the phase at each point of the subholograms converged to the same 

value.  This was observed for every subhologram except the first.  This gives a periodic 

nature to the other direction of the hologram, which results in the vertical array of dots. 

The experimental results presented in this thesis provide a starting point for more 

effective methods of CGH implementation.  There are several aspects of the physical 

holograms used in this research which should be addressed when considering the 

accuracy of the results.  The quantification of aperture positions due to finite resolution 

has already been mentioned.  Two other topics are the resolution of the aperture edges 

and the actual transmission at each point in the hologram.  Lohmann’s method represents 

the edge of each aperture as a perfect step function.  In reality, the physical holograms 

likely have a finite drop-off at the edge of the aperture due to finite resolution.  Also, the 

print used was not perfectly opaque.  Therefore, points where zero transmission is desired 

are actually slightly transparent.  These are both reasons for error in the experimental 

reconstructions. 

Up to now, all simulations neglected the sinc roll-off that actually occurs in the 

physical reconstruction from a binary CGH.  The accommodating methods mentioned in 

Section 6.4 were used in simulations, which included this sinc roll-off behavior.  This 

basically comes down to the ability to design a hologram of a gray-scale image.  

Simulated reconstructions showed excellent homogeneity in the x direction indicating 

that the x dependent sinc factor was accurately accounted for.  Slight variations were 
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present in the y direction, but can be reduced to a desired level by continued iterations.  

Fig. 6.6.3 shows the simulated reconstructed gray-scale image and then the final image 

when the sinc roll-offs are factored into the output. 

 

6.7  Conclusions  

By incorporating ODIFIIT into the principles of the coding scheme used in 

Lohmann holograms, mean square error in the simulated reconstructed image was 

reduced.  Interlacing and iterative interlacing techniques were effective in reducing 

reconstruction error.  Overall, LM-ODIFIIT produced the best MSE, by far, with a MSE 

on the order of 3110− , relative to the MSE of Lohmann’s method.  LMCA had the highest 

efficiency.   

For situations where quantization is required, a quantized Lohmann’s method 

incorporating ODIFIIT was created.  The best quantized technique was LM-ODIFIIT 

with 4=N , which decreased the MSE by 80% from LM while maintaining about the 

same efficiency. 

Optical reconstructions using LM-ODIFIIT did not support the simulated results.  

Images produced by LM-ODIFIIT were not as bright as the Lohmann and ODIFIIT 

images.  The contrast in brightness made it difficult to compare the quality of the LM-

ODIFIIT image with that of the other two methods.    
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Fig. 6.6.1  Optical reconstruction of 128x128 E image.  a) Lohmann  b) ODIFIIT  c) LM-

ODIFIIT. 
 

(a) (b) 

(c) 
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Fig. 6.6.2  Optical reconstruction of 128x128 gray image. 

a) Lohmann  b) ODIFIIT  c) LM-ODIFIIT. 
 

(a) (b) 

(c) 
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Fig. 6.6.3  a)  Gray-scale image from LM-ODIFIIT hologram and b)  Image after 
approximations are factored into the output. 

 

(a) 

(b) 
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7  IMPLEMENTATION OF DIFFRACTIVE OPTICAL ELEMENTS 

 

7.1  Introduction 

In general, lithography is the technology used to print patterns onto a substrate 

[14].  The most common use is printing the patterns of integrated circuits onto a 

semiconductor substrate.  Advances in lithography techniques have allow for the 

production of precise, small-scale patterns.  There exist various forms of lithography.  

These include optical lithography, e-beam lithography, EUVL (extreme ultraviolet 

lithography), and x-ray lithography [14].  There are two basic steps involved in 

lithography.  The first step is to create a desired pattern.  The second is to transfer this 

pattern into the substrate.  The quality of a lithographic method is measured primarily by 

its resolution.  Resolution is the minimum feature size that can be obtained.  Resolution is 

not just determined by the lithography method, but also by the ability of the resist to 

reconstruct the pattern.  

For producing unique DOEs, the popular lithography technique is e-beam 

lithography.  E-beam lithography requires an intense, yet uniform, electron source with a 

small spot size, high stability, and long life.  The main attributes of e-beam lithography 

technology are 1) it is capable of very high resolution; 2) it work with a variety of 

materials and patterns; 3) it is slow compared to optical lithography; and 4) it is 

expensive and complicated. Electron beam lithography tools can cost many millions of 

dollars and require frequent service to stay properly maintained.  

Electron beam lithography is an effective and appropriate method for producing 

diffractive optical elements (DOEs).  Combined with reactive ion etching (RIE), creation 

of DOEs with very fine resolution and high efficiency is possible.  A binary phase 

hologram consists of a 2-dimensional array of points, and at each point a phase shift of 

either 0 or 180 degrees is induced.  The phase shift is invoked by introducing a third 

dimension.  At points where a 180 degree phase shift is desired, a hole is etched such that 

a wave reflected off a hole is 180 degrees out of phase with a wave of the same 

wavelength reflected from a point with no hole.  E-beam lithography allows such holes to 

be made with great accuracy.  The E-beam exposes a pattern onto an e-beam sensitive 
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resist indicating where holes are to be made, and RIE is used to “dig” the holes to the 

desired depth. 

The JEOL JSM6400 scanning electron microscope (SEM) [15] at Purdue 

University has been modified to give it e-beam lithography capabilities.  The JEOL 

machine is capable of generating a beam with a spot size around 10nm.  Therefore, it is 

capable of exposing patterns with lines of widths less than  0.1 mµ  or 100nm.  For 

binary phase holograms, each square hole has a size of approximately 1 mµ  x 1 mµ .  The 

JEOL is easily capable of exposing features with these dimensions.  For feature sizes 

around one square micron, a total pattern size of 1mm x 1mm can be achieved, while 

maintaining high resolution.  Patterns much greater than one square millimeter risk losing 

resolution around the edges of the pattern due to increased beam deflection at points 

along the edge. 

The Semi Group 1000TP RIE System at Purdue University is a dry etch system 

that enables very fine surface relief.  The 180 degree phase change needed for binary 

phase holograms occurs over a distance of half a wavelength.  For visible light, that 

corresponds to a length on the order of half a micron.  RIE makes it possible to induce 

surface relief of such small dimensions with very high accuracy. 

 

7.2  DOE Production Procedure 

The basic procedure for producing a binary phase hologram using e-beam 

lithography is illustrated in Fig. 7.2.1.  First, a resist is spin-coated onto a silicon 

substrate.  Next, E-beam lithography is performed to write the desired pattern into the 

resist.  The sample is then developed to remove the exposed resist.  Once the exposed 

resist is removed, reactive ion etching is used to transfer the pattern into the substrate.  

Finally, the resist is removed.  This process can be repeated to create multi- level DOEs. 

Since reactive ion etching will eventually be done on the sample, a high-percent 

resist spun to a relatively large thickness is used so that the RIE does not etch through the  
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Fig. 7.2.1  Procedure to create a diffractive optical element. 

 

resist.  A realistic combination is a 9% 950K PMMA resist spun at 6000 rpm for 30 sec 

[16].  This produces a resist thickness of approximately 1micron.  Next, e-beam 

lithography is used to write the desired pattern onto the resist.  The first step in using the 

SEM for lithography purposes is to produce a good image using it as a microscope.  This 

involves properly aligning and focusing the electron beam.  Proper alignment of the 

SEM’s electron gun is achieved when the beam of electrons is perpendicular to the 

surface of the sample.  Optimum focusing of the beam occurs when the beam diameter is 

1)  Spin on e-beam resist 

2)  Expose resist with e-beam and develop 

3)  Reactive Ion Etching 

4)  Remove remaining resist 
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minimized at the surface of the sample.  The astigmatism of the beam and aperture 

centering are associated with the beam’s focus.  The aperture must not interfere with the 

e-beam.  Since lithography requires the smallest aperture setting, positioning of the 

aperture is very important.  Astigmatism of the beam should also be minimized, as it is 

the primary limiting factor in lithography performance.  Proper adjustment of stigmation 

ensures that the beam is symmetrical at the sample surface.  Thus, there is no variation in 

the resolution of vertical and horizontal lines.  Both alignment and focusing are important 

in maximizing the machine’s capabilities as a microscope and for lithography.  In 

addition, lithography specifically requires an acceleration voltage between 35-40 kV and 

a working distance of 15mm between the electron gun and the sample surface [17].  Once 

a sample is prepared, mounted, and loaded into the SEM, and the beam is aligned and 

focused, lithography is done automatically by an NPGS system connected to the SEM. 

 Once the pattern is written, the exposed resist is removed by developing the 

sample with a combination of MIBK and IPA and then rinsing with just IPA.  Next, 

reactive ion etching is performed to transfer the exposed pattern into the silicon substrate. 

Finally, the PMMA resist is striped off using acetone, leaving just the silicon substrate 

with the desired pattern etched into it.  This process can be repeated to create multi- level 

diffractive elements. 

 

7.2  Nanometer Pattern Generation System 

The NPGS (Nanometer Pattern Generation System) package [17] and beam 

blanker incorporated into the JEOL system makes lithography possible.   NPGS 

automatically controls the beam blanker and deflection of the E-beam during exposure.  

In order to run, NPGS requires an  ~.RF2 file (known as a run file) of the desired 

exposure pattern.  The run file is produced by first creating the desired exposure pattern 

with a CAD package called DesignCAD.  Usually a pattern is simply drawn using 

DesignCAD just like one would create a pattern in any CAD software, such as AutoCAD.  

However, a binary hologram of size 512 x 512, for example, contains approximately 

260,000 points.  This is unreasonable to draw into DesignCAD by hand.  Therefore, code 

was written to convert the binary hologram array into a DesignCAD file.  DesignCAD 

generates a ~.DC2 file, which is just a text file representing a pattern drawn into 
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DesignCAD.  Therefore, the code writes a ~.DC2 file, which represents each point in the 

hologram array as a 1 square micron box in DesignCAD.   

Next, the ~.DC2 file is converted into a run file using the Run File Editor option 

in DesignCAD.  The run file editor allows the user to adjust several exposure parameters.  

These include the center-to-center and line-to- line spacing of the e-beam.  The center-to-

center spacing determines the distance between consecutive exposure points, while line-

to-line spacing indicates the e-beam step size as it moves from left to right.  The exposure 

dose, which is the amount of electrons the sample gets exposed to, can also be varied.  

Dose can be specified in terms of current per length, current per area, or a point dose.  

The appropriate magnitude of the exposure dose depends on several factors, such as the 

type and thickness of the resist being used as well as the dimensions of the pattern being 

exposed.  Experimenting with different values for these parameters allows the user to 

optimize the e-beam’s capabilities for his or her particular needs.  Once the JEOL 

machine is properly adjusted (aperture centered, astigmatism of the beam minimized, and 

magnification set appropriately) and the run file is processed, the pattern is exposed 

automatically by the NPGS system. 

 

7.4  Conclusions 

This chapter has discussed how semiconductor technology can be used to produce 

diffractive phase elements.  As the minimum feature size capable of being produced by 

these methods decreases, the design of diffractive elements will have to change.  Since 

scalar diffraction theory does not hold for aperture sizes less than a wavelength, and the 

near field problem is quite different from the far field problem, the Fourier transform 

based method of designing DOEs will have to be replaced.  The next chapter discusses 

methods of analyzing diffraction in the near field and for small aperture sizes.    
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8  NEAR FIELD DIFFRACTION FROM SMALL-SCALE DIFFRACTIVE 

OPTICAL ELEMENTS 

 

8.1  Introduction 

 Scalar diffraction theory relies on the assumptions that the size of the diffractive 

aperture is large relative to the wavelength of the incident wave.  Characterization of 

diffraction is also quite different in the near field versus the far field.  With the increasing 

trend to produce smaller and smaller devices where refractive optical components 

become impractical, there is a demand for diffractive elements with sizes and 

characteristics on the order of a wavelength or smaller.  However, in this size range, 

scalar diffraction theory breaks down and analytical results are not possible.  For near-

field problems, one method is the angular spectrum of plane waves, which uses Fourier 

transform and propagation of plane waves.  Another alternative is to solve Maxwell’s 

equations directly using numerical methods.  XFDTD software by Remcom uses a finite 

difference time domain method to solve Maxwell’s equations.  This allows simulation of 

diffractive elements with sizes and characteristics (such as focal length) that are too small 

for scalar diffraction theory to accurately predict.  Simple elements like Fresnel zone 

plates, reflective gratings, and transmission gratings combined with zone plates were 

analyzed, as reported in this chapter. 

 

8.2  The Angular Spectrum 

One way to analyze how a wave behaves as it propagates is to look at its angular 

spectrum [1].  Consider a wave field ),,( zyxU propagating in the z-direction.  The 

wavelength is λ so that λπ /2=k .  Letting z = 0 initially, the two dimensional Fourier 

representation of )0,,( yxU is given by 

yx
yfxfj

yx dfdfeffAyxU yx )(2)0,,()0,,( +
∞

∞−
∫∫= π    (8.2.1) 

where 

dxdyeyxUffA yfxfj
yx

yx )(2)0,,()0,,( +−
∞

∞−
∫∫= π    (8.2.2) 
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By including time variation, )(2)0,,( ftyfxfj
yx

yxeffA −+π  represents a plane wave at z = 0.  

The direction of propagation is given by the direction cosines, 

yyxx ff παπα 2cos and 2cos == .  Therefore, )0,,( yx ffA is called the angular spectrum of 

)0,,( yxU . 

 Similarly, the angular spectrum at any z position of a wave field ),,( zyxU is 

dxdyezyxUzffA yfxfj
yx

yx )(2),,(),,( +−
∞

∞−
∫∫= π .  (8.2.3) 

So, in terms of its angular spectrum, 

yx
yfxfj

yx dfdfezffAzyxU yx )(2),,(),,( +
∞

∞−
∫∫= π   (8.2.4) 

Now, ),,( zyxU must satisfy the Helmholtz equation at all points in a source-free region. 

0),,(),,( 22 =+∇ zyxUkzyxU     (8.2.5) 

Substituting (8.2.4) into (8.2.5), 

[ ] 0),,()(4),,( 2222
2

2

=








+−+
∞

∞−
∫∫ yxyxyxyx dfdfzffAffkzffA

dz
d

π  (8.2.6) 

If this is to be true for all waves, the integrand must be zero. 

[ ] 0),,()(4),,( 2222
2

2

=+−+ zffAffkzffA
dz
d

yxyxyx π   (8.2.7) 

The solution to the differential equation in (8.2.7) is 
zj

yxyx effAzffA µ)0,,(),,( =      (8.2.8) 

where 

)(4 2222
yx ffk +−= πµ     (8.2.9) 

So, each angular spectrum component at 0=z  is multiplied by the phase factor  zje µ to 

give the new angular spectrum. 

 When )(4 2222
yx ffk +> π , µ  is real, and the wave propagates freely.  Plane 

waves with this property are known as homogeneous waves.  When 

)(4 2222
yx ffk +< π , µ is imaginary, and  
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z
yxyx effAzffA κ−= )0,,(),,(     (8.2.10) 

where κµ j=  .  Therefore, the amplitude of the plane wave component is attenuated in 

the z-direction.  Waves attenuated in the z-direction are called evanescent waves. 

 Given ),,( zffA yx  in terms of )0,,( yx ffA , substituting (8.2.8) into (8.2.4) yields 

yx
yfxfjffkjz

yx dfdfeeffAzyxU yxyx )(2)(4 2222

)0,,(),,( ++−
∞

∞−
∫∫= ππ  (8.2.11) 

So, if )0,,( yxU is known, ),,( zyxU  can be determined by the following procedure: 

1)  Take the Fourier transform of )0,,( yxU to determine )0,,( yx ffA . 

2) Multiply )0,,( yx ffA  by zje µ where µ  is given in (8.2.9) to get ),,( zffA yx . 

3) Take the inverse Fourier transform of ),,( zffA yx to determine ),,( zyxU . 

The angular spectrum method can be implemented in the computer using FFT to 

compute the diffracted field from a DOE.  First, the field at the DOE )0,,( yxU  is 

sampled in increments of x∆  and y∆  so that xmx ∆=  and yny ∆= .  The initial field is 

represented by )0,,( nmU .  The angular spectrum at z=0 is computed by taking the FFT 

of the sampled field at the diffractive element.  So, )]0,,([)0,,( nmUFFTlkA = , where 

xx fkf ∆=  and yy flf ∆= .  The angular spectrum at z=0 is then multiplied by the 

appropriate phase factor as in (8.2.8) to get the angular spectrum at the new z position.  

Therefore, zjelkAzlkA µ)0,,(),,( = , where ])()[(4)/2( 2222
yx flfk ∆+∆−= πλπµ .  

Finally, the inverse Fast-Fourier transform of the result is computed to determine the new 

sampled field at z; )].,,([),,( zlkAIFFTznmU =          

 

8.3  Maxwell’s Equations  

Maxwell’s equations connect the electric and magnetic fields in a set of partial 

differential equations which successfully predict electromagnetic phenomena.  Maxwell’s 

equations need to be solved to completely describe diffractive effects when scalar 

diffraction theory fails.    
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 For a source-free region (no electric or magnetic current sources) which may 

contain material capable of absorbing electric or magnetic field energy, Maxwell’s 

equations are given by [9]: 

mJE
t
B rrr

−×−∇=
∂
∂

         (8.3.1) 

eJH
t
D rrr

−×∇=
∂
∂

         (8.3.2) 

0=⋅∇ D
r

     (8.3.3) 

0=⋅∇ B
r

     (8.3.4) 

E
r

 is electric field, D
r

 is the electric flux density, H
r

is magnetic field, B
r

 is magnetic flux 

density, eJ
r

 is the electric conduction current density, and mJ
r

 is the equivalent magnetic 

conduction current density used to account for magnetic loss.  In linear, isotropic 

nondispersive media, B
r

is related to H
r

and D
r

 to E
r

 by a scalar: 

HB
rr

µ=      (8.3.5) 

ED
rr

ε=      (8.3.6) 

where µ  is magnetic permeability and ε  is electric permittivity.  Similarly,  

EJ e

rr
σ=      (8.3.7) 

HJ m

rr
ρ ′=      (8.3.8) 

where σ is electric conductivity and ρ ′  is an equivalent magnetic resistivity.  

Substituting (8.3.5)-(8.3.8) into (8.3.1) and (8.3.2) yields 

HE
t
H rrr

µ
ρ

µ
′

−×∇−=
∂
∂ 1

    (8.3.9) 

EH
t
E rrr

ε
σ

ε
−×∇=

∂
∂ 1

         (8.3.10) 

The vector components of the curl operators in (8.3.9) and (8.3.10) result in six coupled 

scalar equations equivalent to Maxwell’s curl equations in three dimensions [9]: 









′−

∂
∂

−
∂

∂
=

∂
∂

x
zyx H

y
E

z

E

t
H

ρ
µ
1

   (8.3.11a) 
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





 ′−

∂
∂

−
∂

∂
=

∂

∂
y

xzy H
z

E
x

E
t

H
ρ

µ
1

   (8.3.11b) 
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∂

∂
−

∂
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=
∂

∂
z

yxz H
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E
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E
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ρ
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   (8.3.11c) 









−

∂

∂
−

∂
∂

=
∂

∂
x

yzx E
z

H

y
H

t
E

σ
ε
1

   (8.3.12a) 







 −

∂
∂

−
∂

∂
=

∂

∂
y

zxy E
x

H
z

H
t

E
σ

ε
1

   (8.3.12b) 
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∂
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∂

∂
=

∂
∂

z
xy E
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H

x

H

t
Ez

σ
ε
1

   (8.3.12c) 

These coupled partial differential equations are the foundation of FDTD 

algorithms for describing the interaction of electromagnetic waves with arbitrary three 

dimensional objects.  Theoretically, (8.3.3) and (8.3.4) for source free regions are a direct 

consequence of the curl equations.  Therefore, they do not need to be explicitly enforced.  

However, the space grid used in the FDTD must be formed to uphold the relations. 

 

8.4  Finite Differences 

The Taylor’s series expansion of ),( ntxu  about the point ix  to xx i ∆+  for a fixed 

time nt  is given by [9] 

nini

nininin

ttx

txtxtxtni

x
ux

x
ux

x
ux

x
u

xutxxu

,4

44

,3

33

,2

22

,,

246
                                      

2
),(

ξ∂
∂∆

+
∂
∂∆

+

∂
∂∆

+
∂
∂

∆+=∆+
  (8.4.1) 

The last term is an error term, where 1ξ  is a point in the interval ),( xxx ii ∆+ .  Similarly, 

an expansion to the point xx i ∆−  for fixed time nt  is given by 

nni

nininin

ttx

txtxtxtni

x
ux

x
ux

x
ux

x
u

xutxxu

,4

44

,3

33

,2

22

,,

2246
                                     

2
),(

ξ∂
∂∆

+
∂
∂∆

−

∂
∂∆

+
∂
∂

∆−=∆−
  (8.4.2) 

where 2ξ  is in the interval ),( ii xxx ∆− .  Adding the two expansions gives 
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nnini ttxtxii x
ux

x
u

xuxxuxxu ,4

44

,2

2
2

, 312
2)()( ξ∂

∂∆
+

∂
∂

∆+=∆−+∆+       (8.4.3) 

where 3ξ  lies in the interval ),( xxxx ii ∆+∆− .  Rearranging the above expression, we 

get 

[ ]2
2,2

2

)(
)(

)()(2)(
xO

x
xxuxuxxu

x
u

n

ni

t

iii
tx ∆+








∆

∆−+−∆+
=

∂
∂

  (8.4.4) 

This is a second-order accurate, central-difference approximation to the second partial 

derivative of u.  The remainder term [ ]2)( xO ∆  goes to zero as the square of the space 

increment.  Using shorthand notation, (8.4.4) takes the form 

 

[ ]2
2

11
,2

2

)(
)(

2
xO

x
uuu

x
u n

i
n
i

n
i

tx ni
∆+

∆
+−

=
∂
∂ −+    (8.4.5) 

Following a similar procedure, the second partial derivative of u with respect to time is 

given by 

[ ]2
2

11

,2

2

)(
)(

2
tO

t
uuu

t
u n

i
n
i

n
i

tx ni
∆+

∆
+−

=
∂
∂ −+

   (8.4.6) 

 

8.5  The Yee Algorithm 

 Yee’s algorithm [18] solves Maxwell’s curl equations from a set of finite-

difference equations.  The original set of equations introduced by Yee in 1966 assumed 

lossless mateials 0=′ρ and 0=σ , but show the fundamentals of FDTD algorithms.  

Each electric field component in three dimensional space is surrounded by four 

circulating magnetic field components, and every magnetic field component is 

surrounded by four circulating electric field components (Fig. 8.5.1).  The finite 

difference expressions for the space derivatives are central in nature and second order 

accurate [9].  The field component locations in the Yee grid and the central difference 

operations on the field components ensure the two Gauss’ Law relations are upheld. 

 Electric and magnetic field components are also centered in time in a leapfrog 

arrangement.  This means all the electric components are computed and stored for a 
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particular time using previously stored magnetic component data.  Then, all magnetic 

data is determined using the electric field data just computed. 

 For a uniform, rectangular lattice, a point in space is represented by three 

components ),,(),,( zkyjxikji ∆∆∆=  where zyx ∆∆∆  and , , are the space increments in 

the x, y, and z directions respectively.  i, j, and k are integers.  So, a function 

),( tru
r

evaluated at a discrete space point at a discrete point in time is 

n
kjiutnzkyjxiu ,,),,,( =∆∆∆∆  where t∆  is the time increment and n is an integer. 

Now, Yee’s centered finite-difference expression for the first partial space derivative of u 

in the x-direction, evaluated at time tntn ∆= is given by [9]: 

[ ]2,,2/1,,2/1 )(),,,( xO
x

uu
tnzkyjxi

x
u

n
kji

n
kji ∆+
∆

−
=∆∆∆∆

∂
∂ −+   (8.5.1) 

Notice that Yee uses data only a distance 2/x∆ away from the point in question as 

opposed to x∆ .  Similarly, the first partial derivative of u with respect to time for a 

particular space point is given by 

[ ]2
2/1

,,
2/1

,, )(),,,( tO
t

uu
tnzkyjxi

t
u

n
kji

n
kji ∆+

∆

−
=∆∆∆∆

∂
∂

−+

   (8.5.2) 

 These difference equations are now applied to Maxwell’s curl equations.  

Consider (8.3.12a) 
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Fig. 8.5.1  Electric and magnetic field vectors in a cell of the Yee mesh [9]. 
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Substituting in the space and time derivatives for point ),,( kji at time n  yields 
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  (8.5.3a) 

Now, all terms on the right side of the equation are evaluated at time step n.  Remember, 

all the magnetic field components at time n have already been determined and stored, but 
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xE at time n has not.  Only values of xE up to time 2/1−n  are stored.  For a region 

without loss, this term is zero.  If kji ,,σ  is non-zero, then xE  can be estimated by a semi-

implicit approximation [9]: 

2
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,,
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,,

,,

−+ +
=

n
kjix

n
kjixn

kjix

EE
E     (8.5.3b) 

which is the average of the known value of xE  at time 2/1−n  and the unknown value at 

time 2/1+n .  Using (8.3.21) and multiplying both sides by t∆ , (8.3.20) becomes 
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Collecting like terms and solving for 2/1
,,

+n
kjixE yields the final expression: 
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It follows that [9] 
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8.6  XFDTD 

The software package XFDTD made by Remcom uses a leapfrog, finite 

difference, time domain algorithm to solve Maxwell’s curl equations.  XFDTD allows the 

user to design a structure and visualize results in a graphical interface.  Geometry design, 

project setup, and result viewing can all be done utilizing pull-down menus.  

The region of interest is a cubical mesh, where each mesh edge is given different 

material properties in order to simulate a specified geometry.  For each cell, the user may 

choose the material to be a perfect conductor or free space, or may define the exact 

physical properties of the material.  The sampling in space is sub-wavelength, typically in 

the range of 1/10 to 1/30 of a wavelength.  The region of interest is excited by either a 

plane wave or multiple voltage sources.  The excitation may be pulsed or sinusoidal. 

After the geometry and excitation are specified, the duration of the simulation is 

set by specifying the number of desired time steps.  Time sampling is chosen to ensure 

numerical stability of the algorithm [9]. 

When the modeled region extends to infinity, absorbing boundary conditions 

(ABCs) are used at the boundary of the grid.  This allows all outgoing waves to leave the 

region with negligible reflection.  The region of interest can also be enclosed by a perfect 

electrical conductor such as in the case of a waveguide. 

Once all these parameters are set, XFDTD calculates the magnetic field at the 

surface of every cell inside the three dimensional region of interest for the first time step.  

From these magnetic field components, all electric field components can be calculated 

and saved.  Time is stepped forward by one increment and magnetic field is computed 
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again for the new time.  The electric field is then determined from the newly calculated 

magnetic field.  This procedure continues until the final time step is reached. 

Once the fields are calculated for the specified number of time steps, near zone 

transient and steady state fields can be seen as color intensity images, or a field 

component at a specific point can be plotted versus time.  When performing simulations 

where the steady-state output is desired, observing a specific point over time helps to 

indicate whether a steady-state had been reached. 

 

8.7  More Diffractive Optical Elements 

 

8.7.1  Fresnel zone plates 

 Fresnel zone plates are diffractive elements, which can often serve the same 

purpose as a lens.  Fig. 8.7.1 shows the geometry of a circular aperture from the side.  

The path difference between a ray traveling along SOP and SAP is 

)()()()( 0
222

0
2

00 zzzrzrzzr +−+++=+−+=∆ ρρ    (8.7.1.1) 
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Fig. 8.5.1  Electric and magnetic field vectors in a cell of the Yee mesh [9]. 
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The Fresnel-zone parameter, n , is defined such that the path difference is an integer 

multiple of half wavelengths [19]:  

)(
2

rn ∆=λ      (8.7.1.2) 

The area between nr  and 1−nr  is called the nth Fresnel zone.  Since the field at P coming 

from the radius nr  is half a wavelength out of phase with the field from radius 1±nr , if the 

field coming from each zone has equal amplitude, then adjacent zones serve to cancel 

each other out.  Therefore, the total field at P will increase if either all even or all odd 

zones are blocked out, creating a focal point at distance z.  When this is done, the 

resulting structure is called a Fresnel zone plate (FZP). 

 If the zone plate is illuminated by a plane wave, ∞≈0z , then solving (8.7.1.1) for 

r yields, 

16
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frn

λλ
   (8.7.1.3) 

where z is a constant 0f called the focal point.  In this case, each zone is “centered” 

around the radii found if (8.7.1.2) is substituted into (8.7.1.1).  There is still a 
2
λ  path 

length difference across each zone, but the edges occur where there is a 
4
λ± path length 

difference from the 
2
λ

n=∆  points.  (8.7.1.3) is found by using the following relation in 

place of (8.7.1.2) 

)(
4

12
r

n ∆=− λ     (8.7.1.4) 

Similarly, the focal length can be expressed as a function of n , implying that 

there are several focal points.  Indeed, there exist points of increased intensity at ,3/0f  

,5/0f  ,7/0f  and so on [19].  This is one main difference between a FZP and a 

conventional refractive lens. 
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8.7.2  Diffraction gratings 

A diffraction grating is a repetitive array of diffracting elements which creates 

periodic modulations in the phase, amplitude, or both of an incoming wave [19].  These 

diffracting elements may be apertures or obstacles.  An array of alternating opaque and 

transparent regions is called a transmission amplitude grating.  If the entire grating is 

transparent, but varies periodically in optical thickness, it is called a transmission phase 

grating.  A reflective material with periodic surface relief also produces distinct phase 

relationships upon reflection of a wave.  These are known as reflection phase gratings.   

Fig. 8.7.2 illustrates a transmission amplitude grating.  For a wave normally 

incident upon the grating, the path difference between parallel, transmitted waves is 

md θsin  .  Now, if this path difference is an integer multiple of wavelengths, then the 

transmitted waves interfere constructively.  Otherwise, there is destructive interference, 

and the transmitted waves are canceled.  Therefore, the grating equation for normal 

incidence is 

λθ md m =sin        (8.7.2.1) 

This equation holds for all the types of gratings previously mentioned.  For a given 

grating period, d , equation (8.7.2.1) shows that constructive interference may happen at 

several angles corresponding to different values of m , referred to as modes.  

 

8.7.3  Fourier transform of a periodic grating 

Consider a periodic amplitude grating with period d  and opening size 0x .  For 

an incident wave of constant amplitude A across the grating, the field at the output of the 

grating can be represented by the Fourier series [20]: 
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Fig. 8.7.2  Periodic amplitude grating. 
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Now, suppose a lens of focal length 1f  is used to produce the Fourier transform of the 

output field at the grating.  The Fraunhofer diffraction pattern is given by 

∫ ∑
∞

∞−

+=
n

fkxdnjx
n dxecCxU 1

)//2(
22

121)( π   (8.7.3.3) 

where C is a complex factor.  Using the fact that  
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The Fourier transform of the grating’s output becomes [20] 
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Analyzing this last expression, the intensity pattern at the focal plane of a lens resulting 

from a grating of period d  is a series of evenly spaced lines.  The spacing is 
d
f1λ

.  Thus 

the separation is proportional to the focal length and inversely proportional to the grating 

period relative to wavelength.  It should also be noted that nc  decreases with increasing 

n , which means the intensity of the lines gets smaller the farther they are from the axis. 

 

8.8  Angular Spectrum and XFDTD Results 

 All XFDTD simulations used a cell size of 20/λ .  The excitation was a y-

polarized sinusoidal plane wave propagating in the z-direction.  All diffracting structures 

are made of perfect electrical conductors.  All edges of the diffracting structures are 

parallel to the x-axis to avoid canceling the y-polarized electric field.      

Using XFDTD, a one dimensional FZP (Fig. 8.8.1b) with a thickness of λ1.0 and 

focal length λ3 was simulated.  Its output was analyzed for the first three modes.  The 

mode corresponds to the number of even or odd zones that are blocked.  The intensity 

along the axis passing through the center of the plate is plotted as a function of distance 

from the plate.  This is seen in Fig. 8.8.2.  The plot shows that the intensity peak near 

λ3 behind the plate gets higher and narrower as the mode increases.  The peak also gets 

closer to the desired focal length of λ3 for higher modes.  We can also look at the cross 
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Fig. 8.8.1  a) 2 
 

section of the intensity along the plane of maximum intensity.  The intensity in the focal 

plane is plotted in Fig. 8.8.3.  The plot suggests that the spot size decreases with 

increasing mode and that side lobe intensity is reduced for higher modes.  It should be 

noted that intensity at 3/0f , where an additional focal point is expected, increases with 

the mode.  However, the increase could not be described as a peak. 

 The same FZP was simulated using the angular spectrum method.  A plane wave 

incident on the zone plate is represented by a sampled version of the field at the output of 

the plate.  The field is zero inside every blocked zone, and given a value of 1 between 

blocked zones.  The polarization of the wave is not specified in angular spectrum 

computations because it is based on scalar diffraction theory.  All diffractive elements 

investigated with the angular spectrum method were represented in this way.  The main 

difference from the XFDTD simulation is that the angular spectrum method does not 

allow for the width of the zone plate to be specified.  The intensities along the axis of 

propagation and in the focal plane are plotted in Fig. 8.8.4 and Fig. 8.8.5, respectively. 

 The angular spectrum results again show a higher and narrower peak for higher 

order modes.  They also predict lower side lobes in the focal plane as the mode increases. 

 Two characteristics stand out between the different methods.  The angular 

spectrum method shows the build up of a second focal point at 3/0f as the mode 

increases.  This peak is not as pronounced in the XFDTD results.  Secondly, there is a 

distinctly different intensity drop-off past the main focal point.   
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 Next, using XFDTD FZPs of order three were made with thicknesses of λ2.0 and 

λ4.0 .  The intensity in along the axis and in the focal plane is plotted in Fig. 8.8.6 and 

Fig. 8.8.7.  Now, there is a slight buildup of intensity at 3/0f as the thickness of the plate 

increases.  Another notable feature is that the focal point gets closer to λ3 as the thickness 

increases.  There was no significant change in the focal plane as the thickness was varied. 

Fig. 8.8.8 shows the XFDTD output for a FZP of mode three and thickness λ4.0 .  

Angular spectrum results could not be performed to simulate varying plate thickness. 

 Reflective gratings with periods of λ and λ5.1 were designed in XFDTD.  For a 

period of λ , only the zero order mode exists.  Therefore, the reflected wave should form 

a standing wave pattern with the normally incident incoming wave.  Fig. 8.8.9 shows the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.8.2  XFDTD results for the intensity along the axis passing through the center of a 
FZP for modes 1 
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Fig. 8.8.3  XFDTD results for the intensity in the focal plane of a FZP for modes 1 
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Fig. 8.8.4  Angular spectrum results for the intensity along the axis of propagation for 

FZPs of modes 1 
 



 97 

 
Fig. 8.8.5  Angular spectrum results for the intensity in the focal plane of a FZP for 
modes 1 
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Fig. 8.8.6  Intensity plot from XFDTD results for third order FZPs of varying thickness.  
Focal length is 3 λ . 
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Fig. 8.8.7  Intensity in the focal plane for various FZP thicknesses (m =3). 
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Fig. 8.8.8  XFDTD image for Fresnel zone plane of mode 3 and thickness λ4.0 . 
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Fig. 8.8.9  Reflective grating with period λ . 
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simulation results of this grating.  The results support the expected outcome.  It is seen 

that a standing wave pattern is produced.  For a grating with period λ5.1 , the grating 

equation says that there will be a zero order mode reflected back onto the normally 

incident wave as well as a first order mode propagating at an angle of 41.8 degrees.  The 

simulation results of the λ5.1 period grating are shown in Fig. 8.8.10.  The results show 

that a standing wave pattern is created at an angle of zero degrees, but the pattern is not 

uniform across the image.  At the edges, the field is propagating out to the sides.  This 

represents the expected first-order mode. 

The third set of simulations explored the Fraunhoffer diffraction pattern of a 

diffractive element.  The general purpose of computer-generated holograms is to change 

the shape of a beam into a desired pattern.  This is usually done by creating a binary filter 

that approximates the amplitude and phase of the Fourier transform of the desired beam 

shape. 

When the binary filter is placed in the path of the beam, a lens is used to produce the 

Fourier transform of the modulated beam, which produces the desired shape at the 

opposite focal point of the lens.  With conventional optics, good results require a lens 

with a large aperture and focal length.  XFDTD simulations were done to see if this might 

be possible at short distances, where a refractive lens is replaced by a Fresnel zone plate. 

 A system where a transmission grating with period λ2=d is placed a distance 

λ5.2 in front of a Fresnel zone plate with focal length λ3 was simulated in XFDTD.  

From the preceding analysis, several evenly spaced lines decreasing in intensity should 

be observed in the focal plane of the FZP.  The lines should be separated by λ5.1 .  The 

XFDTD simulation results are shown in Fig. 8.8.11 and Fig. 8.8.12.  They show the field 

along the direction of propagation and the field in the focal plane respectively.  Fig. 

8.8.13 plots the intensity across the focal plane of the lens, which is where the desired 

pattern of lines is to be observed.  The plot displays several peaks in intensity.  From 

(8.7.3.5), we expect to see peaks at 0, λ5.1 , and λ3  away from the center of the focal 

plane.  The results show a series of three evenly spaced peaks at 0, λ2 , and λ4  that 

decrease in intensity.  The spacing is not precisely what was expected, but the general 

pattern is there.  There is also a peak at about λ  away from the center of the plane.  This 

peak is likely “left over” from the peak that is seen at this same place in the focal plane 
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when no grating is present.  But, the intensity of this peak has decreased due to the 

presence of the grating and the field it is trying to impose there. 

 A primary reason for the discrepancy in the spacing of the lines is probably the 

reflection at the incident surface of the zone plate, which interferes with the diffracted 

wave from the grating.  Even so, the qualitative results compare well with theory. 

The same Grating/FZP system was simulated using the angular spectrum method.  The 

intensity in the focal plane of the FZP is shown in Fig. 8.8.14.  In this case, the angular 

spectrum results are considerably different from XFDTD.  The intensity in the focal plane 

shows a series of peaks, but their positions do not correspond to those predicted in 

(8.7.3.5).  Most notably, there is no peak in the middle of the plane.  This suggests that 

the XFDTD results are more accurate in this case. 

 

8.9  Conclusions  

 The angular spectrum method and XFDTD software were used to simulate small-

scale diffractive elements in the near field.  Simulation results of Fresnel zone plate and 

diffraction gratings compared well with theoretical predictions.  XFDTD provided greater 

freedom in generating the desired geometry and specifying material parameters than the 

angular spectrum.  Also, the angular spectrum method is still based on scalar diffraction 

theory.  XFDTD is more useful, and yields more accurate results, when scalar diffraction 

theory cannot be used with sufficient accuracy (i.e. when aperture sizes are on the order 

of a wavelength). 
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Fig. 8.8.10  Reflective grating with period λ5.1 . 
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Fig. 8.8.11  XFDTD image of grating ( d =2 λ ) and FZP ( f = λ3 ) results. 
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Fig. 8.8.12  XFDTD image of grating ( d =2 λ ) and FZP ( f = λ3 ) results in the focal 
plane of the FZP. 
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Fig. 8.8.13  XFDTD results for the intensity  in the focal 
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Fig. 8.8.14  Angular spectrum results for the intensity in the focal plane of a grating/FZP 
system.  Grating period is λ2 . 



 109 

9  CONCLUSIONS 

This research discussed scalar diffraction theory and its use in designing diffractive 

optical elements.  Specifically, computer-generated holograms were designed using 

several methods.  Simulated and optical reconstructions were performed for holograms 

designed using Lohmann’s method (LM).  LM utilizes a two dimensional array of 

apertures with varying size and position to modulate the amplitude and phase of a 

wavefront.  Simulated reconstructions from Lohmann holograms showed similar 

characteristics to actual optical results.  Brightness of the reconstructed image was 

increased by making the amplitude of each cell the same maximum value.  The increased 

brightness came at the expense of a decrease in image quality in both simulated and 

optical outputs.  

The interlacing technique (IT) and iterative interlacing technique (IIT) were 

studied and explored in order to implement the optimal decimation- in-frequency iterative 

interlacing technique (ODIFIIT).  The IT works by dividing the hologram plane into 

smaller subholograms.  Each subhologram is designed to reduce the error of the image 

created from all the other subholograms.  The subholograms are then interlaced together 

to create one larger hologram.  When this procedure is performed iteratively, it is called 

the IIT.  ODIFIIT exploits the decimation- in-frequency characteristic of the FFT when 

dividing the hologram plane to optimize the IIT.  Simulated and optical reconstructions 

from holograms designed using ODIFIIT produced accurate results, and shared many 

similar qualities.  Brightness in the optical results of ODIFIIT was similar to the 

brightness of the optical Lohmann results, but LM produced a distinctly sharper image.  

The image quality was similar to that of the constant amplitude Lohmann’s method 

(LMCA), but with a decrease in brightness.      

Next, ODIFIIT was incorporated into Lohmann’s coding scheme in the hope of 

improving performance.  Simulations indicate a significant decrease in the error of the 

reconstructed image using Lohmann’s method with ODIFIIT (LM-ODIFIIT).  The MSE, 

which measures the difference between the desired image and the actual reconstructed 

image inside the desired image region, was 3110  times less than the MSE using LM alone.  

This means that the reconstructed image inside the image region matches the desired 
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image almost exactly, within a constant scalar factor.  ODIFIIT was also used with the 

constant amplitude Lohmann’s method (LMCA-ODIFIIT).  Reconstructed error 

decreased from LMCA alone, but MSE and efficiency were almost the same as the 

original Lohmann’s method. 

A quantized Lohmann’s method was created and used with ODIFIIT.  The 

iterative nature of ODIFIIT makes accurate reconstruction possible with the quantized 

LM.  The significant error introduced by course quantization of amplitude and phase in 

LM is effectively overcome by successive iterations.  Quantization is also practical when 

considering implementation of the CGH.  In general, current methods of implementation 

have limited resolution, which makes quantization necessary.  Quantized LM-ODIFIIT 

effectively reduced MSE below the value set by LM, while maintaining approximately 

the same efficiency. 

The second part of this thesis explored the near- field diffraction patterns from 

small-scale diffractive optical elements.  Scalar diffraction theory breaks down under 

these conditions.  The angular spectrum method, which is theoretically valid in the near-

field, was one of the methods used.  The angular spectrum of plane waves is a Fourier-

transform-based method which still depends on scalar diffraction theory.  It becomes 

inaccurate when aperture sizes get too small.  The angular spectrum method was used to 

analyze the effects that small aperture size has on its results. 

XFDTD software was also used to determine the near- field diffraction patterns 

from small-scale DOEs.  XFDTD uses a finite-difference time-domain algorithm to solve 

Maxwell’s curl equations directly.  Diffractive elements are represented by specifying the 

physical properties at each point in a cubical mesh.  All elements were considered to be 

perfect electrical conductors excited by a polarized plane wave. 

Diffraction from Fresnel zone plates (FZPs) of various modes and thicknesses 

was simulated.  Angular spectrum and XFDTD simulations both showed a build-up of 

intensity at the focal point of the zone plate with increasing mode.  Both methods also 

showed a reduction in spot-size and a decrease in side- lobe intensity as the mode 

increased.  These results support theoretical predictions.  Only the angular spectrum 

method indicated a build-up of the expected second focal point at 1/3 the distance of the 

primary focal point.  XFDTD simulations indicate that the point of maximum intensity of 
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a third-order FZP moved closer to the expected focal point as the thickness of the zone 

plate increased.  As the plate was widened, the second focal point began to grow. 

Reflection gratings with periods of λ and λ5.1 were explored with XFDTD.  The 

standing wave pattern resulting from reflection off the first grating (d  = λ ) supports the 

theoretical prediction that all modes except the zero-order mode is suppressed.  The 

grating equation predicts that a grating with period λ5.1 should have a zero and a first-

order mode.  XFDTD results supported this claim by illustrating a standing wave pattern 

at an angle other than zero relative to the axis normal to the grating surface. 

Finally, a transmission grating/FZP pair was analyzed to simulate a system similar 

to those used for computer-generated holograms.  XFDTD results produced a diffraction 

pattern at the focal point of the FZP resembling the Fourier transform of the grating.  In 

this case, the angular spectrum method results did not make any particular sense. 

As the desire to produce devices on the micro and nano-scale becomes reality, the 

ability to implement effective diffractive elements will be very important.  This thesis has 

focused on only a small portion of the possible research in the area of computer-

generated holograms and small-scale diffractive elements. 

There are several possibilities for future research in the areas of CGHs and small-

scale DOEs.  If high resolution implementation techniques are available, high quality 

physical CGHs could be made using all the coding methods discussed in this thesis.  

Optical reconstructions could be performed to better verify the simulated results that were 

presented.  Of particular interest is a high resolution CGH designed using LM-ODIFIIT, 

which produced results far superior to all other methods in terms of the reconstruction 

error.  Also, multi- level DOEs are of considerable interest.  In general, more levels of 

quantization allows for significantly greater efficiency.  This potential increase in 

efficiency should be taken seriously.  The information on E-beam lithography and 

reactive ion etching could be used as a starting point for producing such high resolution 

diffractive phase elements. 

The advantage of using CGHs in optical communications is another area for 

future research.  CGHs could be tested at optical communications wavelengths to verify 

their effectiveness at such wavelengths.  Then one could explore techniques to optimize 
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CGHs for a particular wavelength.  This would allow for specialized elements, which 

perform optimally at the desired frequency, or range of frequencies. 

Realization and testing of small-scale elements like the Fresnel zone plates and 

gratings in Chapter 8 to verify simulated and theoretical predictions would expand upon 

the work in this thesis.  Once it is determined how well actual results compare with 

theory, research could be performed to optimize the design of small-scale elements.  Or, a 

new theory for determining the diffracted field from small-scale elements, which is less 

computationally demanding, might possibly be developed. 

For the previously mentioned future research ideas, once experimental results are 

compared with theoretical predictions and optimization techniques are developed, ideas 

for revolutionary products should be addressed.  Efficient diffractive optical elements 

could offer a promising solution to many current and future engineering problems.  With 

dedicated research and some educated intuition, diffractive elements have the potential to 

be applied in situations not previously considered.                     
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