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ABSTRACT 

Deng, Shi-Wee. Ph.D., Purdue University, May 1992. Nonlinear Adaptive Signal 
Pr~~cessing. Major Professor: Okan K. Ersoy. 

Nonlinear techniques for signal processing and recognition have the promise 

of achieving systems which are superior to linear systems in a number of ways 

such as better performance in terms of accuracy, f a u l t  tolerance, resolution, 

highly parallel architectures and cloker similarity to biological intelligent systems. 

The nonlinear techniques proposed are in the form of multistage neural networks 

in which each stage can be a particular neural network and all the stages operate 

in parallel. The specific approach focused upon is the parallel, self-organizing, 

hierarchical neural networks (PSHNN's). A new type of PSHNN is discussed such 

tha.t the outputs are allowed to be continuous-valued. The perfo:rmance of the 

resulting networks is tested in problems of prediction of speech and of chaotic 

tinieseries. Three types of networks in which the stages are learned by the delta 

rule, sequential least-squares, and the backpropagation (BP) algolrithm, respec- 

tively, are described. In all cases studied, the new networks achieve better perfor- 

marnce than linear prediction. This is shown both theoretically and experimen- 

tally. A revised BP algorithm is discussed for learning input nonlinearities. The 

advantage of the revised BP algorithm is that  the PSHNN with revised BP stages 

can be extended to  use the sequential leastsquares (SLS) or the least mean abso- 

lule value rule (LMAV) in the last stage. 

A forward:backward training algorithm for parallel, self-organiizing hierarch- 

iczcl neural networks is described. Using linear algebra, it is sllown that the 



fol-ward-backward training of an n-stage PSHNN until convergence is equivalent 

to the pseudo-inverse solution for a single, total network designed in the least- 

squares sense with the total input vector consisting of the actual input vector and 

its additional nonlinear transformations. These results are also valid when a sin- 

gle long input vector is partitioned into smaller length vectors. A number of 

advantages achieved are small modules for easy and fast learning, parallel imple- 

mentation of small modules during testing, faster convergence rate, better numer- 

ical e r r~ r~ reduc t ion ,  and suitability for learning input nonlinear transformations 

by the backpropagation algorithm. Better performance in terms of deeper 

minimum of the error function and faster convergence rate is achieved when a 

single BP network is replaced by a PSHNN of equal complexity in which each 

stage is a BP network of smaller complexity than the single BP network. 



CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

Linear signal processing is useful in many applications and relatively simple 

from conceptual and implementational view points, but there are still many 

applications in which nonlinear techniques of signal processing ;are effective. 

No:nlinear filters are very useful in modeling biological phenome~la (KaPo851, 

myoelectrical signal processing [JaMF84], image processing and several other 

areas [AgErQl]. The method of adaptive polynomial filters which use Volterra 

series expansion was discussed by Mathews [Mathgl]. The Volterria filters with 

large enough order terms can approximate complex nonlinear systems; the 

disadvantage is large computational complexity and training time. Some neural 

networks can be characterized as nonlinear adaptive filters. lJsing neural 

networks, one can reduce the computational and the implementational 

cornplexity of adaptive polynomial filters. In this thesis, the spec'ific approach 

focused upon for the purpose is the parallel, self-organizing, hierarchical neural 

net,works. 

Parallel, self-organieing, hierarchical neural networks (PSHNN's) are 

multistage networks in which stages operate in parallel rather t:han in series 

du:ring testing [ErHogO], [ErHoII]. The PSHNN is self-organizing in. the sense of 

nu:mber of stages. Each stage is a particular neural network referred to as the 



stage neural network (SNN). At the output of each SNN in previous PSHNN's, 

there is an error detection scheme which allows acceptance or rejection of input 

vt:ctors. If an input vector is rejected, it goes through a nonlinear transformation 

before being inputted to the next stage. Only those input vectors which are 

rejected by present stage are fed into the next stage after nonlinear 

tl*ansformations. The PSHNN has many attractive properties. The experiments 

performed in comparison with backpropagation training indicated the 

superiority of the new architecture in the sense of classification accuracy, 

training time, parallelism and robustness [HonggO]. 

The PSHNN's as developed previously assumed quantieed or continuous- 

valued inputs and quantized, say, binary outputs. In this thesis, a new type of 

F'SHNN is discussed such that the outputs are allowed to be continuous-valued 

[ErDegll], (ErDe9121. In order to achieve this, all the input vectors are fed into 

ILII the stages after nonlinear transformations. The resulting networks are 

zrpplied to the applications of predicting speech signals and simulating chaotic 

z~ystems. The PSHNN's with continuous inputs and outputs are both 

t.heoretically and experimentally shown to make the square error sum (SES) 

:3maller than that of linear filters [ErDeQll], [ErDe912]. It is aJso shown that 

,any input nonlinear transformation helps the system to achieve smaller SES 

than one-stage filters. During testing, the speed of processing with the PSHNN's 

are almost the same as with the one stage networks. In real applications, the 

square error sum we get by using the delta rule or backpropagation a t  each 

stage of the PSHPN is based on a suboptimal leastsquare solution. The 

suboptimal error reduction property is derived in Chapter 2. We find that the 

error reduction .property still holds when the delta rule is used (ErDe9121. 



Even though any kind of ir~plit nonlinearity guarantees better perfor~narlce 

over a one-stage network, how to  optimize the nonlinearities remain an open 

research issue. In this thesis, a revised backpropagation (RBP) network is 

proposed for learning input nonlinear transformations (NLT's) [ErlDe912]. The 

RB:P algorithm consists or two training steps, denoted as step I and step 11, 

respectively. The  RBP is the same as usual backpropagation IRurne881 during 

step I. During step 11, we fix the weights between the input layer and the hidden 

layers, but  retrain the weights between the last hidden and the output layers by 

the delta rule. There are several reasons why the RBP network may be 

preferable over the usual network with the B P  algorithm. The first advantage is 

that  the algorithm used during step I1 of RBP can be extended to satisfy other 

criteria such as the absolute error. The second reason is that  the RBP algorithm 

allows faster learning. For this purpose the gain factor is chosen large for 

learning the input NLT during the first step, and the gain factor is reduced for 

fine training during the second step. 

In adaptive signal processing, the sequential leastsquares algorithm (SLS) 

allows each input sample to be used without the need for previous i:nput samples 

[Grau84]. One advantage of the PSHNN with linear output nodes is that the 

SLS algorithm can be used [ErDegll]. This is generally not possible with other 

multistage neural networks. Sequential learning allows recursive updating of 

weight vectors in terms of the previous weight vectors, and the present input. 

Foir real-time signal processing, the SLS algorithm is essential. In Chapter 3, the 

PSHNN with the RBP stages and the SLS algorithm during st'ep I1 is also 

discussed [DeEr922]. If a large block of N da t a  points is being processed by the 

SLS or  the least mean square (LMS) algorithm, we can choose the first K data  

poi.nts of the block (K << N) t o  learn the input NLT a t  each stage of the 



PSHNN by the RBP. This technique can be repeated every N d i h  points. In 

this way, short-time quasistationary signals like speech can be processed in real 

tirne. 

In Chapter 2, we also discuss further error reduction in an n-stage network 

by circularly transmitting the remaining error through the stages a number of 

times until convergence IDeEr9lJ. Another important technique we propose in 

Chapter 4 is called the PSHNN with forward-backward training [DeEr921]. 

Asymptotic properties of the PSHNN with forward-backward training are 

discussed on a rigorous mathematical basis, in addition to  providing additional 

e~rperimental results. It  is shown that the forward-backward training of an n- 

stage PSHNN until convergence is equivalent to the pseudo-inverse solution for 

a single, total network designed in the least-squares sense with !,he total input 

vector consisting of the actual input vector and its additional nonlinear 

t:ransformations. These results are also valid when a single long input vector is 

partitioned into smaller vectors. The suboptimal asymptotic properties of the 

F'SHNN's due to the use of the delta rule @re also proved in Chapter 4. 

Among deterministic optimi~ation techniques, there is a method called the 

c.oordinate-descent algorithm (Luen841. Given a pth order weight vector 

W=(wlw2 wp), descent with respect to the coordinate wi rneans that one 

minimizes the cost function f(W) with respect to wi, with other weight values 

jixed. Thus, changes in the single weight wi are allowed in seeking a new and 

lbetter weight vector W. The convergence rate of the coordinate-descent 

,algorithm is usually slower than steepest descent. There is a simiilar phenomenon 

when the PSHNN with forward-backward training is comparecl to a one-stage 

total network. If we divide the linear input vectors of length p into p segments, 

then we can use a pstage PSHNN with forward-backward training (each stage 



with only one weight). The convergence rate of p-stage PSHNN with forward- 

backward training is usually slower than the one-stage network with p inputs. 

The PSHNN with forward-backward training can divide input vector into 

arbitrary segments with arbitrary length segments. For example, in function-link 

net,-works with higher order terms, the input vector gets very long IPao891. 

Usi:ng the PSHNN, we divide the input vector into a number of segments. Then, 

we observe in many cases that  the PSHNN with forward-backward training 

converges faster than the function-link networks without partitioning. Beside 

faster convergence rate, another advantage of the PSHNN's is that  each stage is 

much easier to implement than the function-link networks without partitioning. 

Other criteria like least mean absolute value (LMAV) is superior to mean 

square error (MSE) in some applications. The LMAV rule is robust to outliers in 

a da ta  set [Be1187]. In Chapter 5, the algorithm used during step 11 alf the RBP is 

extsended to the incorporation of the LMAV rule [DeEr922]. We a.lso illustrate 

another method which use the BP algorithm with forward-backward training to  

learn input NLT's of the PSHNN. In this case, the interconnection weights 

between the input and the hidden layers are allowed to change sweep by sweep. 

The  error reduction property by forward-backward training stated in Chapter 4 

is laased on the fixed input NLT of each stage of the PSHNN in every sweep. 

The PSHNN with BP stages and forward-backward training has different input 

NLT at each stage and a t  every sweep. We show the reason why the error 

red.uction property still holds for this method in Chapter 5. Using this technique 

of learning input NLT's, better performance in terms of deeper minimum of the 

error function and faster convergence rate is achieved when a single BP network 

is replaced by a PSHNN of equal complexity in which each st'age is a BP 

network of smaller complexity than the single B P  network. 



1.2. Thesis Organization 

This thesis consists of six chapters. Chapter 2 illustrates the background for 

the model of the PSHNN with continuous inputs and outputs. Error reduction 

property is discussed both with single and multivariate inputs and outputs. The 

suboptimal error reduction property due to the use of the delta rule in practise 

is proved. A revised B P  algorithm is proposed for learning input NLT's. In 

Chapter 3, we focus on incorporation of sequential learning. The PSHNN with 

SLS algorithm during step I1 of the RBP is also discussed. We introduce an 

algorithm called the PSHNN with forward-backward training and prove the 

asymptotic properties, both with optimal and suboptimal least-squares, in 

Chapter 4. Chapter 5 illustrates other methods of learning input NLT1s. The 

RBP with the LMAV rule and the PSHNN with B P  stages and forward- 

backward training are discussed. Conclusions and further research issues are 

presented in Chapter 6. 



PARALLEL, SELF-ORGANZING, 
HIERARCHICAL NEURAL NETWORKS 

WITH CONTINUOUS INPUTS AND OUTPUTS 

2.1. Introduction 

Parallel, self-organizing, hierarchical neural networks (PSHNN's) are 

multistage networks in which stages operate in parallel rather than in series 

during testing IErHo901, [ErHoII]. The PSHNN's as developed previously assume 

quamtized or continuous-valued inputs and quantized, say, binary outputs 

[ErDegl:~.]. In this chapter, a new type of PSHNN is proposed such that the 

out,puts are allowed to be continuous-valued. A revised bac:kpropagation 

algorithm (RBP) is discussed for learning input nonlinear tra.nsformations 

(MJT's) [ErDe912]. In order to achieve this, all the input vectors are fed into all 

the stages after nonlinear transformations. The performance of the resulting 

network is studied in the application of predicting speech signal !samples from 

past samples. 

Given a linear discrete-time system, the object of linear prediction is to 

estimate the output sequence from a linear combination of tbe past input 

samples. There are several ways to compute LPC (linear predictive coding) 

coefficients. One way is to solve the autocorrelation equations to find the LPC 

caefficients [Pars86]. Another way ia by using the linear delta rule learning 

allcorithm in a one-stage network (Rume881. 



The PSHNN is both theoretically and experimentally shown to  make the 

mean square error (MSE) smaller than with linear prediction. I t  is also shown 

that  any input nonlinear transformation helps the system to achieve smaller 

mean square error than the MSE with linear prediction. By implementing the 

PSHNN stages in parallel, the speed of processing with several stages is almost 

the same as with one stage. 

The chapter consists of 7 sections. In Sec. 2.2, the system model with a 

univariate output signal is discussed. The error reduction properties of the 

system are proved in Sec. 2.3. The results are generalized to a multivariate 

output signal in Sec. 2.4. The suboptimal error reduction property due to the 

use of the delta rule is derived in Sec. 2.5. The experimental results testing the 

model and the theory of the preceding sections with speech data  are discussed in 

Sec. 2.6. So far the input nonlinear transformations are assumed to be known 

and constant. In Sec. 2.7, we describe how to learn the input NLT's by a revised 

backpropagation (RBP) network. Simulation results of learning input NLT's by 

the RBP are also given in this section. 

2.2. System Model with Univariate Output Signal 

The new PSHNN architecture proposed is shown in Fig. 2.1. In this 

section, we will assume a single output. SNN(i) represents the ith stage neural 

network which is trained by using the delta rule as discussed below. X(n) is the 

input vector sequence, and d(n) is the desired output sequence. X'(n), Y(n) and 

Z(n) are obtained by nonlinear transformations NLT1, NLT2 and NLT3 of X(n), 

respectively. NLT1, NLT2 and NLT3 are all different. 



After SNNl is trained with the delta rule, the error signal is 

e ,  (n)=d(n)-o, (n) . 

We use e l (n)  as the desired output of SNN2, and Y(n) as the input signal to 

train SNN2 by the delta rule. The error signal for the second stage i~s 

After SNN2 is trained, we use e2(n) as the desired output of SNN3 to train 

SKN3 by using the delta rule. This process of adding stages is continued until 

the final error is negligible with white noise properties. Assuming three stages, 

the final output is 

The delta rule is identically used in all the stages. For example, in the first 

sta.ge, the sum of squared error minized by the delta rule is given by 

a l , a 2  ,% are the weights to be learned. 

Fii-st, SNNl generates the output ol(n)  corresponding to the input vector 

X(n)=[x(n-1), x(n-2), ... ,x(n-p)]. The value of a;, ( i=l ,  ...,P) is modified a t  each 

iteration according to 

Ak%=rl(d(k)-ol (k))x(i) 1 (2.3) 

where q is the gain factor of SNN(i). 

The iterations are continued un ti1 Ak ai becomes negligible. The procedure 



described above for the first stage also applies to the succeeding stages. The final 

error signal er(n) is 

with of (n)=ol (n)+02(n)+03(n) . 
In Fig. 2.1, i t  is observed that  

01 (n)=d(n)-e,(n) 

02(n)-1 (n)--z(n) 

03 (~) -2 (~ )*3(~)  

=> ef (n)=e3(n). (2 .5 )  

Let the error vectors for the first, second, and third stages be the following : 

el =(el (l),e1(2), , . . ,el (41, 

ez=(e2(1)*e2(2), . . ,e2(n)), 

e3=(ea(l),e3(2), . . ,e3(n)). 

We define 

I Ier I 12=1 Ie3 I I24<e3a3>. 

We prove ( lei 1 I2LI le2 1 I2LI le3 I I f  in sections 2.3 and 2.4. 

2.3. Error Reduction 

In order to  prove the properties of error reduction, we will first consider a 

two-stage PSHNN as shown in Fig. 2.1, and then generalize the properties to n 

stages. Assuming m training input vectors of length p and NLTl to  be the 

identity operator (X(n)=X1(n)), we define 



t 
W, = [a1 a2 a,] 

t 
W2 = [bl b2 . . b,] . 

X and Y are m X p matrices. Each row of X or Y represents input vector of 

SNNl or SNN2, respectively. D is the desired output vector of length m. W1 and 

W1 are vectors of length p. W1 and Wp are the weight vectors of SNNl and 

SNN2, respectively. The elements al  ,a2 . ,ap in W1 are actual.ly the LPC 

coefficients. Usually rn is greater than p. Using the delta rule to train W1 and 

Ws! corresponds approximately t o  finding the leastsquares solution to the 

equation 

The leastsquares solution is [Erso88] 



where X+ is the pseudo-inverse of X. 

The output of SNNl is 01 ,  which can be expressed as 

The error vector of SNNl is 

We define AbXX', which is positive semidefinite [DuHa73]. A is known as the 

projection operator. 

The squared error ( lei I I Z  is given by 

Since (I-A) is symmetric and idempotent [Stra86], 

I lei I I Z  = ~ ~ ( 1 - A ) D .  (2.11) 

For SNN2, the input vector matrix is Y, and the desired output vector is el .  A 

similar derivation yields 

mz = e l ,  

- 
WZ = Y+el,  

Y+ is pseudeinverse of matrix Y, and therefore 

o2 = YY'e, = Bel, 

where we define YY+&3, which is also positive semidefinite. Then, 

since (I-B) is also symmetric and idempotent. 

Because B is positive semidefinite, we have 



This reasoning can be continued to any number of stages. For example, we let Z 

be the input vector matrix to stage 3, and define C ~ Z Z '  which is symmetric, 

ideinpotent and positive semidefinite. We conclude that 

I l e ~  1 l 2  = e!(I-~)e2 

< I le2 1 12 .  - 

Fmlm Eqs. (2.5), (2.6), (2.13), and (2.14), i t  follows that 

Iler1I2 = Ile31l2 L Ile21I2 I lleil12. 

Let us again consider the twestage PSHNN. We can improve the results 

dislcussed above further by forward-backward training of stages. After we have 

trained W1 and W2, we use D'=ol +e2 as our new desired signal to 1,rain W1 and 

W2 once more. The new trained weights for SNNl become 

wt1 = X+ (0, *2), 

So, the new output of SNNl is 

since A is the projection operator, ol is already in the space spanned by A, and 

thereby Aol=ol. The new error signal a t  the output of SNNl is 

Then, we get 



The new desired output for SNN2 is et1+02. Following the same procedure, the 

error vector for this stage is 

L 

el2 = (I-B)e11. (2.18) 

And also, 

I Jef2 1 = elT ( I - ~ ) e ' ~  , (2.19) 

=> I le12 I l 2  5 I Ie11 I 1 2 .  (2.20) 

From Eqs. (2.17) and (2.20), we conclude that  

I le12 1 l 2  < 11% I 1 2 .  (2.21) 

Eq. (2.21) shows that  we can make further error reduction by forward-backward 

training in which the desired output of each stage is modified as the previous 

output plus the remaining error from the previously trained stage, and the 

training with the delta rule is repeated. It  is straightforward to generalize the 

procedure above for any number of stages. 

2.4. System Model with Multivariate Output Signal 

If the output signal di is not a scalar but a n X 1 vector denoted as Q, then 

the desired output D becomes 

W1 and W2 of Section 2.3 become 



where a. and 4 are vectors of length n. 
7 

Now, D is an m X n matrix. W1 and Wq are p X n matrices. Based on the 

same derivation as in Section 2.3, the output of SNNl is an output matrix O1 

which is ideally 

The error of SNNl is 

El is an m X n matrix, and can be expressed as 

We can define square error sum of stage 1 (ERR1) as 

112, I 1 2 + 1  1% l  12+ . +I 1% I I2 . 

Therefore, 

Sinnilar to Eq. (2.10), we get 

Let: ERR2 be the square error sum of SMV2. Repeating the same procedure, we 

gel, 

ERR2 = ~~(ET(I -B)E~) .  (2.26) 

Since B is positive semidefinite, we conclude that  
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The procedure discussed above can be easily extended to any number of stages. 

2.5. Suboptimal Error Reduction Property 

Assuming a two-stage network, the square error sum 1 Je2 ( l 2  in Eq. (2.12), 

is based on the optimal least-squares solution for the second stage. The least- 

squares error vector e2 is in the null space of w'. Defining [l,kl le2 1 1 2 ,  Eq. 

(2.12) can be written as 

where PNjw~] is the projection matrix to the null space of YYt. 

In reality, the square error sum we get by using the delta rule is based on a 

suboptimal least-squares solution. The suboptimal square error sum denoted as 

&, can be expressed as [Alex86], [Haykg l] 

where m denotes the number of input vectors. tmi, is the minimum mean square 

error (MSE) by solving the normal equation 

where YN(n)=[y(n),y(n-l), . , y (n -~+ l ) ] t ,  and N denotes the number of 

weights of SNN2 of Fig. 2.1; Ce,, is due to the actual LMS weights jitter, and is 

sometimes referred to as the excess MSE. If we assume the sequence y(n) is 

stationary and ergodic, then rntmi, in Eq. (2.29) will gradually approach the 

optimal square error sum as m grows. Thus, approximating mCmi, by ti,, 
Eq. (2.29) can be written a s  



Ferc is proportional to gain 7 used in training. Choosing smaller 7 aclhieves better 

suboptimal square error sum &,, but then the learning rate is slower. So, there is 

a trade-off involved in choosing the value of 7. 

We show below that  the error reduction properties in Sec. 2:.3 still hold 
A 

with the square error sum CIS based on a suboptimal least-squares solution. 

Referring to Eq. (2.12), we let col[YYt] denote the column space of [ ' k T t ]  and 

wbtre Pcdlwtl is the projection matrix to  the column space of [w'']. Then, the 

output vector of the second stage based on the optimal least square-solutions is 

[HoKu71], [RaMi7 1 ] 

The output vector G2 based on the suboptimal least-squares solution Wf2 is 

h2 =YWf2. (2.34) 

Eq.. (2.34) shows that i52 is in the column space of [YY'], since it is generated by 

the da ta  matrix Y. Consequently, 62 can be written as 

62 =PCOI(W'] el +b 1 (2.35) 

where the vector b also belongs to the column space of [ ~ l " ] .  This is 

gr~~phically shown in Fig. 2.2. The magnitude of b can be written as  

~ ~ ~ ~ ~ ~ ~ ~ P c o ~ [ Y Y ~ ] ~ I  1 1  9 (2.36) 

where c satisfies O<c<l in practise since the delta rule is a good approximation 

to the leastsquares solution. Thus, the error vector of SNN2 is 



Since PNlnl le l  and b are orthogonal to each other, the magnitude of i2 satisfies 

I le2 1 I25I 162 I 1 2 = 1  I P N ~ Y Y ~ ~ ~ ~  1 1 2 + 1  1b1 I*, (2.38) 

I 162 1 1 2 < 1  I P N [ Y Y ' ] ~ ~  1 l 2 + 1  l P ~ ~ [ ~ ' l e l  1 l 2 = 1  Iel 1 1 2 -  (2..39) 

Thus, 1 1 l 2  is less than 1 lei 1 l 2  as long as c is less than 1, which is definitely 

true in practise. 

2.6. Experimental Results 

The theoretical results discussed above were tested in the application of 

speech prediction. For this purpose, 100 speech samples a t  the sampling rate of 

10 Khz were used to train and to  test the network. A sliding window of length 

between 4 and 10 data points were used to  predict the next signal value 

following the window. 

Properly choosing the value of the gain factor 7 in Eq. 2.3 is important. If 

we choose 7 too small, the convergence speed is too slow, but  choosing too large 

makes network oscillate. After trying different values of the gain factor, it was 

found that  using a value between 0.001 to 0.1 was reasonable. In our 

experiments, we did not use momentum term. 

We started with a two-stage PSHNN. The pointwise nonlinear 

transformations used in the experiments were the following: 

(A) SIGMOID 1 (Sig. I) 

(B) SIGMOID 2 (Sig. 11) 



Y(x) = 2 X sigmoid (x) - 1 

(C) THRESHOLD 1 (Th. I) 

y = 1  i f x z O  

y =  0 i f x  < O  

(D) THRESHOLD 2 (Th.11) 

y = 1  i f x > O  

y = - 1  i f x < O  

In the experiments, we first normalized the data  in the range (-1, 11. In all 

experiments, NLTl of the first stage is the identity operator, and 100 iterations 

of training were used for the first stage. 

Table 2.1 shows the results, with 10 weight values as a functiorr of the four 

types of nonlinearities. We used q=0.001 in the case of Th.1, Th.[I and Sig.1, 

and q=0.1 in the case of Sig.11. The second stage converged after 31DO iterations 

with Th.1 and Th.11, and 100 iterations with Sig.1 and Sig.11. It  is observed in 

Table 2.1 that  the two-stage PSHNN is always better in error performance than 

the one-stage network, the best result being the case of Sig.1 non1i:nearity. It  is 

also observed tha t  there is negligible error reduction in the case of Sig.II. This is 

because the input data was normalized in the range (-1,1], and this causes X and 

Y t o  be almost the same in this range. 

The  comparative performances of the one-stage and two-stage networks as 

a fi~nction of the length nc of the sliding window are shown in Table 2.2. The 

input nonlinearity used was Th.11. It  is observed tha t  both net,works reach 

maximal performance at about nc equal to 10. Again, in all cases, t'he two-stage 

network has better error performance. In these experiments, the number of 

iterations in the two stages were 100 and 300, respectively. 



The experiments discussed above were extended to three stages, with nc=5 

for each stage. The results are shown in Table 2.3. It  is observed that  further 

reduction of error depends on the combination of nonlinearities used. An 

important research issue is how to optimize the nonlinearities. An effective 

approach is by using the revised backpropagation (RBP) network discussed in 

the next section. 

2.7. Learning Input Wnlinear Transformation by Revised Backpropagation 

In the proceeding sections, it became clear tha t  how to choose the input 

nonlinearities for optimal performance is an important issue. In this section, a 

revised backpropagation (RBP) network is proposed for this purpose. 

The RBP network consists of linear input and output units and nonlinear 

hidden units. One hidden layer is often sufficient. The hidden layers represent 

the nonlinear transformation of the input vector. The output of the jth unit of 

the kth layer is of the form 

where Nk-l is the number of output nodes of the (k-1)th layer; Ok-l is the 

output vector of the (k-1)th layer; Wk(.,.) are the weights connecting the (k-1)th 

and the kth layers, and f(.) is the nonlinear activation function, assumed to be 

differentiable and usually chosen monotone nondecreasing. 

Fig. 2.3 is a two-stage PSHNN with RBP Stages. The RBP algorithm 

consists of two training steps, denoted as step I and step 11, respectively. During 

step I, the RBP is the same as the usual backpropagation (BP) algorithm 



(Rume881. During step 11, we fix the weights between the input layer and the 

hidlden layers, but  retrain the weights between the last hidden anti the output 

1ayc.r~ by the delta rule. 

Each stage of the PSHNN now consists of a RBP network, except possibly 

the first stage which can be learned by the delta rule alone, with NLTl equal to 

the identity operator. In this way, the first stage can be considered as the linear 

part  of the system. 

There are a numbei  of reasons why the two-step training described above is 

preferable over the usual training with the BP algorithm. The first reason is 

tha t  it is possible t o  use the PSHNN with RBP stages together with the SLS 

alglorithm or the delta rule. For this purpose, we assume that  the signal is 

reasonably stationary for short time duration. Thus, the weights between the 

input and the hidden layers of the RBP stages can be kept constant during such 

a time window. Only the last stage of the RBP network is then made adaptive 

by the SLS algorithm or the delta rule, which is much faster than the BP 

algorithm requiring many sweeps over a data  block. 

The second reason is tha t  the two-step algorithm allows falter learning. 

During the first step, the gain factor is chosen rather large for fast learning. 

During the second step, the gain factor is reduced for fine training. The end 

result is considerably faster learning than with the regular B P  algorithm. It can 

be argued tha t  the final error vector may not be as optimal as the error vector 

with the regular B P  algorithm. We believe tha t  this is not a problem since 

successive RBP stages compensate for the error. ks a matter of fact, 

co~nsiderably larger errors, for example, due to imperfect implementation of the 

inlmrconnection~ weights and nonlinearities can be tolerated due to error 

compensation [ErHoII]. 



The results of the computer experiments carried out  with the same speech 

data  are shown in Table 2.4. In these experiments, the length of the input vector 

was five; the gain factor was 1.0 in step I and 0.03 in step 11; tbe number of 

iterations was 1000 in step I and 100 in step 11. I t  is observed in Table 2.5 that  

the best performance is obtained with four bidden units. It  is also observed that  

the error performance is considerably better than the results in the previous 

tables with fixed NLT's. 



Table 2.1. Performance of One-Stage and Two-Slage PSHNN as a Function 
of Input Nonlinearities (err1 = ( lei 1 1 2 ,  err2 = 1 (e2 ( l 2  ). 



Table  2.2. Performance of One-Stage and Two-Stage PSHNN's as a Function 
of the Length of the  Weight Vector When the  Input Nonlinearity 

2 is ~ h . 1 1  (err] = I Jel  1 I , err2 = 1 le2 1 l 2  ). 

- - - 

square error sum 



Table 2.3. Performance of One-Stage, Two-Stage and Three-Stage PSHNN's 
as a Function of Input Nonlinearities (errl= 1 ) e ,  ) I 2 ,  err2= 
1le2Il2, err3= lle3Il2 1. 

Type of NLT 

Sig.11 

Sig.11 

Sig.11 

square error sum Number of Iterations 

loo 

100 500 



Table 2.4. Performance when the Input NLT is Learned by RBP 
(errl=l lei I I2,err2=I le2 1 I2,err3=l lea I I2,err4=l le, 1 12). 

Number 

of Hidden 

Nodes 

square 

error sum 

err1 

err2 

err3 

err4 

2 

step I 

2.1369 

2.1047 

1.6779 

step I1 

2.1352 

2.1347 

2.0974 

1.6646 

3 

step I 

1.4857 

1.1818 

1.0795 

4 

step I1 

2.1352 

1.4625 

1.1357 

1.0731 

step I 

1.2191 

1.1675 

1.0164 

5 

step I1 

2.1352 

1.1917 

1.1697 

0.9790 

step I 

1.8991 

1.6982 

1.3681 

- 

step 11 

2.1352 

1.8333 

1.5758 

1.3527 



Figure 2.1. Block Diagram for a Three-Stage PSHNN. 
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Figure 2.2. Representation of Suboptimal Solution. 



Second RBP Stage 

I Delta Rule I I 

Figure 2.3. Two-Stage PSHNN with RBP Stages. 



CHAPTER 3 

INCORPORATION OF SEQUENTIAL LEAST-SQUARES 

3.1. Introduction 

One advantage of PSHNN is that the sequential leastsquares (SLS) 

algorithm can be used for learning. This does not seem possible with other 

multistage neural networks. 

The leastsquares solution discussed in Chapter 2 is commonly referred to 

as batch processing leastsquares because the data D=(dld2 . . . dm) are 

processed simultaneously [Sore85]. If new data d,+l are to be processed after 

having determined an estimate based on the data D, it  is necessary to 

completely reprocess the old data with previous neural networks. To avoid this 

inefficient procedure, we need to consider the determination of the leastsquares 

estimate from an estimate based on D and the new data dm+1 without explicitly 

using D in PSHNN. 

In adaptive signal processing, the SLS algorithm allows each input samples 

to be used without the need for previous input samples. In real-time adaptive 

signal processing, it is not possible to use a batch method with long training 

time, and the SLS algorithm is essential. In this chapter, the algorithm used 

during step I1 of the RBP is extended with the incorporation of the SLS. In this 

way, the RBP' networks with the SLS can be used to process shorttime 

stationary signals in real time. 



The chapter consists of 4 sections. In Sec. 3.2, the PSliNN wilh the  SI,S 

algclrithm is discussed. The RBP network with the SLS is proposed in Sec. 3.3. 

Experimental results are provided in Sec. 3.4. 

3.2. Incorporation of Sequential Learning 

In Chapter 2, we found optimal solutions for the weight vectors in terms of 

the generalized inverse of the input data matrix X. Sequential learning allows 

recilrsive updating of weight vectors in terms of the previous weight vectors, and 

the present input. In this way, it is not necessary to store past data vectors in 

memory. 

It can be shown that the SLS algorithm reduces to the following set of two 

recursive equations [Ke1190] [Grau84]. 

Wl  (r) = Wl (r-I) + P,X,(x, - XTWI (r-1)) , 

Heire X, is the column vector containing the input signals x , -~ to x , -~ ,  r is an 

ind.ex representing the current input signal, and p is the number of LPC 

coefficients. Wl (r) is the present estimate of LPC coefficients expressed as a 

column vector, and Wl(r-1) is the previous estimate of this vector a t  time r-1. 

P, is a pXp matrix which corresponds to the rth iteration. The value of P, can 

be calculated recursively by Eq.(3.2). Initially, W1 (O), which is a column vector, 

is :ceroed, and the matrix Po is set equal to some constant product ,of the p by p 

identity matrix [Mend73]. 



For SNN2, we replace X, by Y,, and the recursive SLS equations are 

W2(r) = W2(r-1) + P,Yr(el ( r )  - Y:w~(~-1)) , 

Here el(r)  is the error signal for the SNNl a t  the present time, given by 

el(r) = xr - ol(r)  . 

For SNN3, we replace X, by Z,, and get 

W3(r) = W3(r-1) + PrZr(e2(r) - ~ 3 3 ( r - l ) )  , 

Where e2 (')=el (r)-02 (r) . 
The final output is 

3.3. The RBP Networks with the SLS Algorithm 

We have discussed the revised backpropagation (RBP) algorithm in 

Chapter 2. Referring to Fig. 3.1, the RBP network with the SLS uses the 

sequential least-squares during step I1 of the RBP algorithm. Thus, the weights 

between the input and the hidden layers of the RBP stages can be kept constant 

during such a time window. Only the last stage of the RBP network is made 

adaptive by the SLS algorithm, which is much faster than the BP algorithm 

requiring many.sweeps over a data block. For this purpose, we assume that  the 

signal is reasonably stationary for N data points. While the block of N data 



points is being processed with the SLS algorithm, the first M << hI data points 

of tfhe block can be used to train the stages of the PSHNN by the BP algorithm. 

At the start of the next time window of N data points, the RB:P stages are 

renewed with the new weights between the input and the hidden layers of the 

RBP stages. This process is repeated periodically every N data points. In this 

wait, nonstationary signals which can be assumed to be stationary over short 

tim.e intervals can be effectively processed. 

3.4. Experimental Results 

We experimented with tw-stage PSHNN's using the SLS learning 

algorithm. The nonlinear transformations used in the experiments are the same 

as in Chapter 2. The error performance results are shown in Tablea 3.1 and 3.2. 

Previous conclusions are again valid in this case. Another observaCion is that it 

is necessary to optimize the networks both in terms of the length of the weight 

vectors and the number of stages. 

Fig.3.2 through Fig.3.4 show the prediction results with sequerltial learning. 

The prediction was started after 7 initial speech samples. Nonlineiarity of Th.11 

was used and the length of the weight vector was 7. Figs. 3.2 and 3.3 show the 

original speech signal versus the predicted speech signal with onestage and 

tw-stage networks, respectively. Fig.3.4 shows the prediction error with the 

same networks. These results show that the tw-stage network with SLS 

lecvning has better prediction performance than the traditioilal onestage 

network with SLS learning. Since the two stages are implemented i:n parallel, the 

gains are achieved with almost the same processing time as  the one-stage 



network. 

The simulations in Table 3.3 and Table 3.4 used a RBP stage with the SLS 

rule in place of the second stage of the PSHNN of the previous experiments. In 

these two simulations, the RBP networks had 5 input units, and 1 output unit; 

five hidden nodes were used in Table 3.3 and four hidden nodes in Table 3.4. 

The gain factors used during step I were 0.5 in Table 3.3 and 1.0 in Table 3.4. 

Tables 3.3 and 3.4 show that  the performance of learning input NLT2 by the 

RBP stage is better than any pointwise NLT2. 

Figs. 3.5 thru 3.7 show the prediction results with sequential learning. The 

prediction was started after 5 initial speech samples. Th.n  was used as the 

nonlinearity and the length of the sliding window was 5. Figs. 3.5 and 3.6 show 

the original speech signal versus the predicted speech signal with the one-stage 

and the two-stage networks, respectively. Fig. 3.7 shows the prediction error 

with both networks. These results also show tha t  the two-stage network with 

SLS learning has better prediction performance than the traditional one-stage 

network with SLS learning. Fig. 3.8 shows the original versus the predicted 

signals of the twestage PSHNN with the FU3P and the SLS rule in the second 

stage and 1000 iterations used during step I of RBP. Fig. 3.9 shows the 

predicted error of the two-stage network with Th. II pointwise NLT2 versus the 

predicted error of the two-stage network with the FU3P and the SLS rule in the 

second stage. 



Table 3.1. Nonlinear Speech Prediction Performance of One-Stage and Two- 
Stage PSHNN's Trained with SLS Learning (nc=7, err1 = ) )el  ) ) * ,  
err2= Ile211Z 1. 



Table 3.2. Nonlinear Speech Prediction Performance of One-Stage and Two- 
Stage PSHNN's Trained with SLS Learning (nc=5, errl= I Ie, ( (*, 
err2= l l ez l lZ  1. 



Table 3.3. Performance of a 5 Hidden Unit TweStage PSHNN with the RBP 
and the SLS Rule in the Second Stage. 

# of 

training 

500 

600 

700 

800 

900 

lo00 

square error sum 

step I 

1.4783 

1.4042 

1.3387 

1.2748 

1.1935 

1.1189 

step I1 

1.4711 

1.4002 

1.3360 

1.2718 

1.1903 

1.1178 



Table 3.4. Performance of a 4 Hidden Unit Two-Stage PSHNN with the RBP 
and the SLS Rule in the Second Stage. 

square error sum 
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Figure 3.1. Two-Stage PSHNN with RBP Stages and the SLS Alglorithm. 
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Figure 3.2. Original Speech Signal (solid line) and the Predicted Speech Signal 
(dotted line) with One-Stage HNN Trained with the SLS 
Algorithm. 
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Figure 3.3. Original Speech Signal (solid line) and the Predicted Speech Signal 
(dotted line) with Two-Stage HNN Trained with the SLS 
Algorithm. 
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Figure 3.4. The Error Signals with One-Stage HNN (solid line) and TweStage 
HNN (dotted line) Trained with the SLS Algorithm. 
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Figure 3.5. Original Speech Signal (Solid Line) and the Predicted Speech 
Signal (Dotted Line) with One-Stage PSHNN Trained with the 
SLS Algorithm (nc=5). 
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Figure 3.6. Original Speech Signal .(Solid Line) and the Predicted Speech 
Signal (Dotted Line) with Two-Stage PSHNN Trained with the 
SLS Algorithm (nc=5). 



Figiure 3.7. The Error Signals with One-Stage PSHNN (Solid Linie) and Two- 
Stage PSHNN (Dotted Line) Trained with the SLS Algorithm 
(nc=5). 
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Figure 3.8. Original Speech Signal (Solid Line) and the Predicted Speech 
Signal Dotted Line) with TweStage PSHNN with the RBP and 
SLS Ru \ e on the Second Stage (nc=5). 
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Figure 3.9. The Error Signals with Two-Stage PSHNN (Solid Line) with 
NLTB=Th.II and Two-Stage PSHNN Line:) with the RBP 
and the SLS Rule on the Second Stage 



CHAPTER 4 

PARALLEL, SELF-ORGANIZING, 
HIERARCHICAL N E W  NETWORKS 

WITH FORWARD-BACKWARD TRAINING 

4.1. Introduction 

In Chapter 2, we discussed the generalization of parallel, self-organizing, 

hierarchical neural networks (PSHNN's) to continuous inputs as well as 

continuous outputs [ErDe912]. The block diagram for such a 3-stage PSHNN is 

shown in Fig. 2.1. It  was shown that  the stages are generated by nonlinearly 

transforming input vectors, and each new stage attempts to correct the errors of 

the previous stage. It was also discussed that further error reduction in an n- 

stage network is possible by circuiariy transmitting the remaining error through 

the stages a number of times until convergence. Running through all the stages 

once can be called one sweep. At each successive sweep, the de~ired output of 

each stage is modified as the previous output of the stage plus the remaining 

error from the previous stage. The first stage receives the error from the last 

s8tage. Both in Ref. (ErDe9121 and in this Chapter, the output nodes are assumed 

tx, be linear. 

In this chapter, forward-backward t~aining of n-stage PSHNN's are 

introduced and discussed on a rigorous msbhematicaI basis, in addition to 

providing experimental results. The results are actually valid for all linear 

leastsquares problems if we consider the input vector and the vectors generated 



from it by nonlinear transformations as the decomposition of a single, long 

vector. In this sense, the techniques discussed represent the decomposition of a 

large problem into smaller problems whicb are related through errors and 

forward-backward training (DeEr9211. Generation of additional nodes a t  the 

input is common to  a number of techniques such as generalized discriminant 

functions [DuHa73], higher order networks (GiMa871, and function-link networks 

[Pao89]. After this is done, a single total network can be trained by the delta 

rule [WiHo60]. At convergence, the result is approximately the same as tbe 

pseudeinverse solution, disregarding any possible numerical problems 

IErDe9121. The PSHNN's are different because the single total network are 

replaced by a number of subnetworks. 

The main result in this chapter is that forward-backward training of an n- 

stage network until convergence is equivalent to the pseudeinverse solution for 

a single total network with the total number of input nodes if each stage is 

optimized in the sense of leastsquares. There are a number of advantages in 

achieving the pseudeinverse solution in this fashion. The most obvious 

advantage is that  each stage is much easier to implement as a mmode to be 

trained than the whole network. In addition, all stages can be processed in 

parallel during testing. If the complexity of implementation without parallel 

stages is denoted by f(N) where N is the length of input vectors, the parallel 

complexity of the forward-backward training algorithm during testing is f(K) 

where K equals N/M with M equal to the number of stages. 

The chapter consists of six sections. In Sec. 4.2, the forward-backward 

training algorithm is described in detail. In Sec. 4.3, the asymptotic properties 

with a twestage network are discussed. These properties are extended to n-stage 

networks in Sec. 4.4. The suboptimal asymptotic properties due to the use of 



the delta rule during training are proved in Sec. 4.5. Experimentla1 results are 

provided in Sec. 4.6. 

4.2. PSHNN with Forward-Backward Training 

The  system model is shown in Fig. 2.1. In this section, a single output is 

ass,umed. In Fig. 2.1, SNN(i) represents the i-th stage neural network. In this 

chispter, the stage neural network is assumed to be trained by the delta rule 

[R.ume88]. The output nodes are assumed to  be linear. X(n) is the input vector 

sequence; d(n) is the desired output sequence; X'(n), Y(n) and Z(n) are obtained 

by different nonlinear transformations NLT1, NLT2 and NLT3. 

We first consider a twestage PSHNN, and then generalize the properties to 

n stages. Assuming m training vectors of length p and NLTl in Fig. 2.1 to  be 

the identity operator (X(n)=X'(n)), we define 



X and Y are m X p matrices. Each row of X or Y represents a n  input 

vector of SNNl or SNNZ, respectively. D; is the desired output vector of length 

m. Using the delta rule to train SNNl corresponds ideally to finding the least 

squares solution for X W ~ = D ~ .  The output of SNNl is oi which can be 

expressed as [DeErgl] 

where X+ is the generalized inverse of X, and the projection operator A is XX', 

which is positive semidefinite. 

The error vector of SNNl  is 

We use e f  as the desired output for SNNZ, to be also trained by the delta rule. 

The output of SNNZ after training can be expressed as 

where we define w + ~ B ,  which is also positive and semidefinite. Then, 

With two stages, o!+o: is the output, and the system error q is 

er =D -(o: + ~ i ) = e k .  (4.5) 

The above results can be considered to be the first sweep in a number of sweeps 

of forward-backward training. In the second sweep, the desired vector for SNNl  

is set equal to 



The new output of SNNl is 

of =A(O I +el)-; +Aei, (4-7) 

because A is the projection operator, o i  is in the space spanned by A, and 

Ao1':=0,'. 

The new error signal for SNNl is 

After a straightforward derivation, we get 

If we terminate the training a t  this point, the system output is o:+oi. 

Therefore e: is just the error of the system. If we continue to  t r a i n s ~ ~ 2 ,  the 

new desired signal for SNN2 is 

D$O;i-e:. (4.10) 

The output of SNN2 becomes 

O$=BD;=~;+B~:, 

since oi is in the space spanned by B. 

The error vector for SNN2, is 

Using the same derivation leading to Eq.(9), we get 

eg =D -(of +og), 

where ef is the error signal of the system a t  the end of the second sweep. 



At the nth sweep, the desired output signal for SNNl is 

D;=O;-'+e;-'. 

After training, the output of SNNl is 

0: =AD~=o~- '  +Ae;-'. 

The error vector is 

e; =D; -of =(I-A)e;-'. 

The error vector can also be written as 

ef =D: -(o; $0 ; - I ) .  

At the nth sweep, the desired signal for SNN2 is 

D;=o;-'+e;. 

The  output is 

of =BD;=o;-' +Be;. 

The error is 

e;=Df-of=(I-B)ey, 

Again, we note that  

e;=D: -(of b;), 

where ef is the system error after the nth sweep. 

From Eq. (4.2) and Eq. (4.4), we get 

I lei 1 1 2 = ( ~ : ) t ( ~ - ~ ) ( ~ : ) ,  



Frorn Eq.(4.8) and Eq.(4.12), we get 

I 14 1 12=(e:)t(~-~)(e:)Ll 14 1 1 2 ,  (4.24) 

I lei 1 12=(e!)t(~-~)(e:)<l 1,: 1 I * ,  (4.25) 

From Eq.(4.16) and Eq.(4.20). we conclude that 

1 le: 1 12=(ei-1)t(1-~)(e$-1)<l lei-' 1 1 2 ,  (4.26) 

I 1.; 1 12=(e;)t(~-~)(e?)<l lei' 1 1 2 .  (4.27) 

Therefore, 

1 2  I leg 1 1211 lei' 1 I25I 14-' 1 121 . . 51 lei 1l251 lei 1 12Ll lei 1 I (4.28) 

We will see in the next section that 

lim I lef 1 I 2 = l  14 l 2  , (4.30) 
n+oo 

where ( (el l 2  is the square error sum of the function-link network which has the 

same input NLT's as used in the PSHNN. 

4.3. Asymptotic Properties of a Two-Stage PSHNN with 
Forward-Backward Training 

Consider a function-link network as shown in Fig. 4.1. Let X denote an 

input vector, Y -be a nonlinear transformation of X and D be the d.esired output 

ve'ctor. X and Y are mXn matrices, D is an mX1 vector, and 'W is a 2nX1 



weight matrix. 

Using the delta rule to train W corresponds approximately to finding the 

leastsquares solution for 

(X, Y) W =D , 

where (X,Y) denotes the concatenation of X and Y. The leastsquares solution is 

W=(X,Y)+D, 

where (X,Y)+ is the pseudo-inverse of (X,Y). 

The output vector is 

Therefore, the error vector is 

If we use PSHNN with forward-backward training, Eqs. (4.2), (4.4), (4.8), (4.13) 

and D: = D in this case lead to 



We will need the following properties to prove the main theorem of this 

section: 

Property 1: The null space N(XXt+YYt) is equivalent to the intersection of the 

null space N(XXt) and the null space N(YY~). 

Proof: 

, 

(i) ]?or any vector ~ € N ( X X ~ ) ~ N ( Y Y ' )  

i t  ie obvious that y€N(XXt +YYt). 

(ii) FOT any vector y ~ ~ ( ~ t + Y Y " )  

=:> XXty=--Yyty 

Therefore, y t~ ty=-y tYY'y  

Since XX' and YY' are positive semidefinite 

yev(XX') m d  ;EN(YY~) 



In addition, the following properties are needed: 

Property 2: The  projection operators PN(Xxl) and PN(wl) satisfy 

lim (PN(xx')~N(w')  ) n = P ~ ( n l ) n ~ ( ~ ' )  I (4.39) 
n+OC 

which can be found in Nakano [Naka53]. This property tells us tha t  the 

projection not in the intersection of N(XX~) and N(YY~)  will gradually vanish as 

n goes to infinity. The  projection in the intersection of N(XX~)  and N(YY~)  will 

be preserved. 

Property 3: 

p ~ ( r c ~ ) p ~ p u c ~ ) n ~ ( w ~ ~ )  =PN(XXI)~N(WL) 9 (4.40) 

which can be found in Hartwig and Drazin [HaDr82] and Nakano [Naka53]. 

Next, we will s ta te  and prove the main theorem: 

Theorem 1: 

lim e:+' = lim e; 3e, 
P+W D+W 

lim eq-. 
D+W 

Proof: 

T h e  projection matrices are  

( I - I U C + ) & P N ~ )  , 



Cornparing Eqs. (4.31), (4.37) and (4.38), sufficient conditions for Eq. (4.41) and 

Eq. (4.42) to hold are 

Iim (I-XX+ )[(I-YY+)(I-XX+)ID =[I-(X,Y)(X, Y)+ 1, (4.43) . 
n + c c  

lim [(I-YY+)(I-XX+)jD=[I-(X,Y)(X,Y)+]. (4.44) 
n+cc 

Using the projection operators, we get 

[(I-YY+ )(I-XX+ ) I D  =(PN(w~)PN(xxL) In.  

From Property 1, we have 

N(XX')~N(YY')=N(XX'+YY')=N((X,Y)(X,Y)~). 

Therefore, 

P N ( X X L ) ~ ( W L )  =PN((x,Y)(x,Y)~ - 

We know that 

PN((x,Y)(x,Y)L) =lI-(X,Y)(X,Y)+ I 

From Eqs. (4.39), (4.45), (4.46) and (4.47), we conclude that 

Eq. (4.44) to be proved follows directly from Property 3: 



The theorem proved above means that, as n grows larger, the error vectors 

ey and e i  approach the error vector e for the pseudoinverse solution if a single 

total network was built without stages with the total input vector. 

4.4. Asymptotic Properties for an N-Stage Network 

When the number of stages is 2, forward-backward training is the same as 

circular training discussed in Ref. [ D e E r ~ l ] .  In the circular training algorithm 

with n stages, after training SNN(n), we train SNN(1). In forward-backward 

training, we will train SNN(n-1) after training SNN(n), followed by SNN(n-2) 

and so on. From the first stage to the last stage, we have a forward path 

training, and then from the last stage to the first stage, we have a backward 

path training. One sweep training consists of a forward path and a backward 

path training. We will call this training procedure the forward-backward traing 

algorithm. 

For the sake of brevity , we will discuss the 3-stage PSHNN. All the 

properties of the 3-stage network can be derived for the n-stage network in the 

same way. Referring to Fig. 2.1 and supposing X=X1, we define N ~ ~ ] = A ,  

N[w~]=B, and N[ZZ~]=C to  represent the null space of m), (YYt) and ( zz~) ,  
respectively. Mter  the first stage is trained, the error vector is 

e ; r = [ P a ] ~ ,  (4.48) 

where PA is the projection matrix of A, and D is the desired output vector. The 

superscript of the error vector denotes the number of sweeps, the Arabic number 

on the subscript denotes the number of stages, and the letter "f" on the subscript 

means forward path training. Following the same procedure as in Section 4.3, 



we have 

After training three stages in the forward path, we transmit the error of the 

third stage to  the second stage and modify the desired output of the second 

stage in order to train the second stage, and get the error vector 

~!~~=[PBPcPBPA]D, (4.51) 

where the letter "b" in the subscript means backward training path. After 

training the second stage, we train the first stage and get the error vcxtor 

e :b=[PA~BPCPBPA]D.  (4.52) 

Now, the first sweep is over, and the second sweep starts. 

Following the same procedure as above, we get the following error vectors 

in the second sweep: 

e:f=pA [ P A ~ B ~ C ! P B ~ A ] D  

= [ P A ~ B P A ~ B ~ A ] ~  

-:b, 



After the nth sweep training, the error vector of the first stage becomes 

e t b - t f + l = [ ~ A ~ B ~ c ~ B ~ A ] n ~ .  (4.58) 

Similar to the derivation of Eq, (4.31), the error vector for a 3-stage 

function-link network is 

e=[I-(X,Y, Z)(X,Y, Z)+]D 

=~PN(xxL+w~+zz~) ID, (4.59) 

where N(xx'+YY'+zz~) denotes the null space of (xx~+YY'+zz~). 

We also need the following properties: 

Property 1.a: The null space N(XXt+YYt+zzt) is equivalent to the intersection 

of the null space N(XXt), the null space N ( w t )  and the null space N(zzt). 

Proof: 

(i) For any vector a€N(XXt)n~(YY')nN(zZt) ,  

it is obvious that  ~EN(xx~+YY~+zz'). 

(ii) For any vector ~EN(xX'+YY~+ZZ~) ,  

then (XXt +YY'+zz')~=o. 

Therefore, at (xx~+YY~+zz~)~=o, 

= > a t X X t a + a t ~ t a + a ~ ~ t a ~ .  

Because (XXt), (YYt), and (ZZt) are positive semidefinite, 

we have a t X X t a 4 ,  atYY'a=O and atzzta=O. 



These imply ~ E N ( x x ~ ) ,  ~ E N ( Y Y ~ ) ,  and ~ E N ( z z ~ ) .  0 

Property 2.a: 

lim (PAPBPcPBPA)'=PAypnc 
D + c c  

which was proved by Pyle [Pyie67]. 

From Eq. (4.59) and property l.a, we get 

e = ( P ~ ( x x ~ + w ~ + z z ~ )  ) D = ( P A ~ ~ ,  ID. (4.61) 

By using Property 2.a, Eq. (4.58) and Eq. (4.61), we obtain the main theorem of 

this section: 

Theorem 2: 

lim eib=e. 
n+oo 

Since Property 2.a still holds for the intersection of n projection matrices, the 

generalization of Theorem 2 to the n-stage PSHNN with forward-backward 

training is obvious. 

The results of Theorem 1 of Sec. 4.3 is based on the two-stage PSHNN. 

For the two-stage PSHNN, circular training is the same as t'he forward- 

backward training. An interesting question is whether circular training gives the 

same results as forward-backward training for the n-stage networks. This is 

conjectured to be true since many experiments show that [Pyle67] 

lim (PCPePA)n=PA,-pn,. 
n+oo 

Experimentally, we have also observed that circular training gives the same 

resiults as forward-backward training. 



4.5. Asymptotic Properties for the Suboptimal Solutions 

In Sec. 4.4, we discussed the asymptotic property of PSHNN with forward- 

backward training when each stage gives the exact leastsquares solution. In this 

section, we generalize the asymptotic property to the suboptimal leastsquares 

solution due to the use of the delta rule. We discuss the case of the two-stage 

PSHNN, and the results can be easily extended to the n-stage PSHNN. 

Assuming a two-stage network, the square error sum ( le: 1 I *  in Eq. (4.23) is 

based on the optimal least-squares solution for the second stage. The least- 

squares error vector e i  is in the null space of [Wt]. Defining cl,sl lei 1 1 2 ,  Eq. 

(4.23) can be written as 

f,.=I l ( ~ - ~ + ) e i  1 I 2 = I  l P ~ ( w t ) e I  1 1 2 ,  (4.64) 

where PN(yytJ is the projection matrix to the null space of Wt. 

In reality, the square error sum we get by using the delta rule is based on a 

suboptimal leastsquares solution. The suboptimal square error sum denoted as 

6, can be expressed as [Alex86], [Haykgl] 

where m denotes the number of input vectors. tmin is the minimum mean 

square error (MSE) by solving the normal equation 

E [ Y N ( ~ ) Y N ( ~ ) ~ ] w N = E [ ~ :  (n)y~(n) l ,  (4.66) 

where YN(n)=[y(n),y(n-l), . ,y(n--~+l)]t ,  and N denotes the number of 

weights of SNN2 of Fig. 2.1; c,,, is due to the actual LMS weights jitter, and is 

sometimes referred to as the excess MSE. If we assume the sequence y(n) is 

stationary and.  ergodic, then rntmin in Eq. (4.65) gradually approaches the 

optimal square error sum cl, as m grows. Thus, approximating rncmi, by El,, 



Eq. (4.65) can be written as 

teX,, is proportional to gain 77 used in training. Choosing smaller 7 achieves better 
- 

suboptimal square error sum ti,, but then the learning rate is slower. So, there 

is a trade-off involved in choosing the value of q. 

We show below that the error reduction properties derived in Sec. 4.2 still 

hold in practise with the square error sum PIS based on a subo:ptimal least- 

squares solution. 

For the sake of brevity, we consider a two-stage PSHNN with NLTl being 

the identity operator. Di is the desired vector for the first stage network in the 

first sweep. The output vector of the first stage based on the optimal least  

squiares solution is (HoKu711, [RaMi'll] 

1 
The output vector 61 based on the suboptimal leastsquares solutions Wtl is 

written as 

This shows that  8: €col[XXt~. 6; can be written as 

6 : = ~ ~ ~ ~ ~ ~ ~ ~ ~ + b ~  , (4.70) 

where the vector b; also belongs to the column space of [3Xt]. This is 

gr;~phically shown in Fig. 4.2. The magnitude of b; can be written :as 

I lbl 1 I*; 1 I ~ r n l p X ~ ] ~ ;  1 1 9 (4.71) 

where c: satisfi.es O<C; <1 in practise. Thus the error vector of SNNl in the 

first sweep is 



6: is also the desired vector for the second stage network in the first sweep. 

Referring to Fig. 4.3, and using the same procedure as above, we get the 

1 
suboptimal output vector b2 of SNNP in the first sweep as 

where the vector b i  belongs to the column space of [YY~], and the magnitude of 

b l  is 

1 lb: I 1 l ~ c O l ~ n ' ~ ~ :  I 1 (4.74) 

where c; also satisfies O<C: <1 in practise. The error vector of SNN2 in the first 

sweep is 

Since ~ ~ ~ ~ t ~ i :  and b: are orthogonal to each other, we get 

1 2  I 16: I l 2 = 1  I P ~ ~ ~ G :  I 1 2 + 1  1b2 I I 

51 I P ~ ~ ~ ~ ~ ~ :  I 1 2 + 1  I P ~ ~ ~ W ~ ~ ~ :  I I ~ = I  14 I 1' . (4.76) 

1 
Thus, ( 10: 11'  is less than 1 lh l  ( 1 '  as long as ck is less than 1, which is definitely 

true in practise. 

-1 1 
On the second sweep, the desired vector of SNNl is e 2 G 1 .  Following the 

same procedure as above, the suboptimal output vector 8; of SNNl in the 

second sweep is found as 

1 1  
6: =P,~~XX~~ (62 -6l)+b: 

=ti: + ~ , l ~ ~ G : + b :  , 

and 



2 
where ~ ~ E C O I [ X X ' ] ~  b:€collXXt] and 0<c;<l. The error vector i l  of SNNl in 

the second sweep is 

2 1 
The desired vector of SNN2 in the second sweep is GIG2. The suboptimal 

oul.put vector 8: of SNN2 in the second sweep is 

and 

1 
where b2~col [YYt] ,  b:~col[YY'], and 0<c:<l. The error vector 6: of SNN2 in 

the second sweep is 

Using Eq. (4.72) and Eq. (4.75), and letting A&N[XX~] ,B~~N[YY'] ;  the 

1 
suboptimal error vector i l  of the first stage in the first sweep becomes 

1 
The suboptimal error vector i2 of the second stage in the first sweep becomes 



Using Eq. (4.79) and Eq. (4.84), the suboptimal error vector 6; of the first stage 

in the second sweep becomes 

6 :=(pApB)pA~:  -pApBb; -pAbi-b; , (4.85) 

2 
where b : € c o l [ ~ ~ ~ ] .  The suboptimal error vector i2 of the second stage in the 

second sweep becomes 

6:  = ( P ~ P ~ ) ~ D  i -(PBPA)PBb -(PBPA)b: -pB b: -b: , (4.86) 

where b €col [YY~]. 

Following the same procedure, the suboptimal error vector 6; of the first 

stage in the nth sweep becomes 

The suboptimal error vector 6; of the second stage in the nth sweep becomes 

where b ~ ~ c o l [ ~ ] ,  and b \ ~ e o l ~ ~ ]  for any positive integer i. Since the 

directions of bil and bh are random, the magnitudes of the summation terms in 

Eq. (4.87) and Eq. (4.88) are amall in the mean sense. Therefore, the first term 

on the right hand side of Eq. (4.87) or Eq. (4.88) can be considered as the 

dominant term in real-world applications. Then, the error reduction property of 

Eq. (4.28) in Sec. 4.2 still holds for this suboptimal case. 

In practise, if n is large enough such that  (PBPA)"=PAm, and m>n, we 

can rewrite Eq. (87) and Eq. (88) as follows: 



and 

, m 
e2  ==e- ( P ~ P ~ ) ~ - ~ P ~ ~ ~ -  , (4.90) 

k - r n - n + l  k-rn-n+l  

The error vector e in Eq. (4.89) and Eq. (4.90) is the vector in Eq. (4.31), which 

is the optimal least-squares error vector of the function-link network as shown jn 

Fig.. 4.1. We also see that no matter how big m is, there are at  most n vectors in 

each summation term of Eq. (4.89) and Eq. (4.90). 

4.6. Experimental Results 

The theoretical results discussed above were tested with a speech signal 

sampled at 10 khz. 100 Samples were used to train the network by the delta 

rulc!. The gain factor we used in the experiments was 0.001. No monlentum term 

I used. The input pointwise nonlinear transformations used in the 

experiments are the following: 

(A) SIGMOID 1 (Sig. I) :(O<y<l) 

(B) SIGMOID 2 (Sig. 11) : (-l<y<l) 

y = 2 X sigmoid (x) - 1 

(C]. THRESHOLD 1 (Th. I): 

y = - 1  i f x L 0  

y = O  i f x  < O  



(D) THRESHOLD 2 (Th. 11): 

y =  1 i f x > O  

y = - 1  i f x < O  

(E) SQUARE : 

In the experiments,.we first normalized the input data in the range {-l,l}. 

Five weights were used for each stage of a two-stage PSHNN. Ten weights were 

used for the function-link network. The initial matrix of the network was set 

equal to  the covariance matrix of the input data. 

Table 4.1 are the results of the function-link network with the ten weights 

listed as a function of the five types of NLT's. 

Tables 4.2 thru 4.6 are the results of the two-stage PSHNN with forward- 

backward training. Table 4.2 is for Sig.1, Table 4.3 for Sig.11, Table 4.4 for Th.1, 

Table 4.5 for Th.11, and Table 4.6 for the square NLT. 

Tables 4.2 and 4.3 for Sig.1 and Sig.11 cases show that the PSHNN with 

forward-backward training has more error reduction aod faster convergence rate 

than the function-link network. With Th.11 and square NLT's, the PSHNN and 

the function-link network are about the same both in error reduction and 

convergence rate. With Sig.11 NLT, there is negligible error reduction both in 

the PSHNN and the function-link network. This is because the input data was 

normalized in the range {-],I), and this causes x and y to be almost the same in 

this range. 



Tables 4.7 and Table 4.8 are the  results of the function-link network with 

three-stage input  vectors of length 5 concatenated as a total input vector to  the 

network. Tables 4.9 thru 4.11 show the error reductiori pcrforr~lancc of tile 

corresponding three-stage PSHNN with forward-backward training, In the first 

stage, 100 iterations were used during the first sweep, and 300 iterations were 

used during the  succeeding sweeps. The  number of iterations of thle second and 

the  third stages were 500, and 900, respectively. In Tables 4.9, 4.10 ;and 4.11, the 

notations used mean err l f  = 1 leir 1 1 2 ,  err2f = I leir 1 1 2 ,  err3f = I leir 1 1 2 ,  and 

14. I 4  

err2b = ( l e i b l  1'. The  superscript 1 denotes the number of sweeps as in 

Section 4.2. F rom Tables 4.7 and 4.8, we see tha t  the convergence irate is rather 

slow for the  function-link networks. Comparing Tables 4.7 and 4.8 to  Tables 

4.9, 4.10 and 4.11, we observe t ha t  PSHNN with forward-backward training is 

superior to  the  function-link network in terms of both convergence rate and 

error reduction. 



Table 4.1. Performance of the Function-Link Network in Speech Prediction 
(err=l lei 1 2 ) .  

number of 

iterations 

1000 

1000 

lo00 

600 

1000 

type 

of NLT 

Sig.1 

Th.11 

Sig.11 

Th.1 

Sqre. 

err 

2.1344 

2.027 

2.1291 

2.0459 

1.8862 



Table 4.2. Performance of PSHNN with NLT Si .I in Speech Prediction B (errl=I lell I I2,err2=l lei I I ). 

n-th 

sweep 

n = l  

n=2 

n=3 

err1 

2.1353 

1.8718 

1.8460 

err2 

1.9336 

1.8524 

1.8416 

# of iterations 

stage1 

100 

900 

900 

stage2 

lo00 

100 

100 



Table 4.3. Performance of PSHNNIwith NLT Sil.11 in Speech Prediction 
(errl=I lei I I ,err2=l lei 1 I ). 

err2 

2.1390 

2.1385 

- 

n- th 

sweep 

n = l  

n=2 

n=3 

# of iterations 

err1 

2.1353 

2.1343 

2.1336 

stage1 

100 

900 

900 

stage2 

1000 

100 

- 



Table 4.4. Performance of PSH,NN with NLT Th.1 in Speech Prediction 
(errl=l lei I I2,err2=l lei [ I 2 ) .  

n-th 

sweep 

n=1 

n=2 

n=3 

n=4 ' 

err2 

2.0925 

2.0585 

2.0481 

2.0448 

err1 

2.1352 

2.0699 

2.0514 

2.0457 

# of iterations 

stage1 

100 

900 

900 

900 

stage2 

200 

200 

200 

200 



Table 4.5. Performance of PSHNN2with NLT Th.11 in Speech Prediction 
(errl=l lei I I ,err2=l lei 1 1 2 ) .  

n-th 

sweep 

n = l  

n=2 

n=3 

# of iterations 

err1 

2.1353 

2.0312 

2.0034 

stage1 

100 

500 

600 

err2 

2.0282 

2.0250 

- 

stage2 

100 

100 

- 



Table 4.6. Performance of PSHNN with NLT S uare in Speech Prediction 
(errl=l lei I 12,err2=l lei t2). 

n-th 

sweep 

n = l  

n=2 

n=3 

n=4 

err1 

2.1353 

1.8973 

1.8872 

1.8864 

err2 

1.9326 

1.8896 

1.8867 

1.8863 

# of iterations 

stage1 

100 

900 

900 

900 

stage2 

600 

600 

600 

600 



Table 4.7. 3-Stage Function-Link Network as a Function of Input 
Nonlinearity with 900 Iterations (err= 1 l e J  1 2 ) .  

Table  4.8. &Stage Function-Link Network as a Function of Input 
Nonlinearity with 2900 Iterations (err= ( le 1 12) .  

err 

2.0167 

1.9980 

1.8818 

Type of NLT 

Stage I1 Stage 111 

Sig.1 

Th.1 

Square 

Th.11 

Sig.1 

Sig.1 

err 

2.0149 

1.9906 

1.8811 

Type of NLT 

Stage I1 Stage I11 

Sig.1 

Th.1 

Square 

Th.11 

Sig.1 

Sig.1 



Table 4.9. Performance of PSHNN with NI,Tl Sig.1 & NI,'I12 'I'h.11 
in Speech Predictio11. 

Table 4.10. Performance of PSHNN with NLTl Th.1 & NLT:! Sig.1 
in Speech Prediction. 

n-th 

Sweep 

Training 

n= 1 

n=2 

Square Error Sum 

n-th 

Sweep 

Training 

n = l  

n=2 

err lf 

2.1353 

1.8122 

Square Error Sum 

err2f 

1.9377 

1.7584 

err2b 

1.8957 

- 

errlf  

2.1353 

1.8750 

err3f 

1.8393 

1.7543 

err2b 

1.8758 

- 

err2f 

2.0924 

1.8592 

err3f 

1.9210 

1.8264 



Table 4.1 1. Performance of PSHNN with NLTl Square & NLTB Sig.1 
in Speech Prediction. 

n-th 

Sweep 

Training 

n = l  

n=2 

Square Error Sum 

errlf 

2.1353 

1.6705 

err2b 

1.6812 

err2f 

1.9330 

1.6631 

err3f 

1.6973 

1.6399 



Figure 4.1. Block Diagram of a Function-Link Network. 
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Figure 4.2. Graphical Representation of Suboptimal Solution for SNNI. 



Figure 4.3. Graphical Representation of Suboptimal Solution for SNN2. 



CHAPTER 5 

LEARNING INPUT NONLINEAR TRANSFORMATIONS 

5.1. Introduction 

In Chapter 2, we discussed the generalieation of the PSHNN's with 

continuous input and output (ErDeBll]. I t  was shown that stages are generated 

by nonlinearly transforming input vectors, and each new stage attempts to 

correct the errors of the previous stage. I t  is also shown that any input nonlinear 

transformation helps the system achieve smaller mean square error (MSE) than 

the MSE with linear prediction. By implementing the PSHNN stages in parallel, 

the speed of processing with several stages is the same as with one stage. The 

suboptimal error reduction property was also proved. An important research 

issue is how to minimiee the input NLT's. We proposed an effective approach 

called the revised backpropagation (FU3P) network (ErDe9121. The RBP 

algorithm consists of two training steps, denoted as step I and step II, 

respectively. During step I, the FU3P is the same as the usual backpropagation 

(BP) algorithm. During step 11, we fix the weights between the input layer and 

the hidden layers, but  retrain the weights between the last hidden and the 

output layers by the delta rule. In this chapter, the algorithm used during step 

I1 of the RBP is extended to incorporate the least mean absolute value (LMAV) 

criterion. 



It was discussed in Chapter 4 that further error reduction can be achieved 

in a s  n-stage PSHNN by forward-backward or circular training. The asymptotic 

properties show that the forward-backward training of n-stage PSHNN's until 

convergence is equivalent to the pseudo-inverse solution for a single total 

network designed in the least-squares sense to the total input vector consisting 

of the actual input vector and its additional nonlinear transformations [DeErgl], 

[De'Er921.]. The error reduction property by forward-backward training stated 

above was based on the fixed input NLT of each stage of the PSHNN in every 

fonvard-backward sweep. In this chapter, we illustrate the technique which uses 

the BP algorithm with forward-backward training to learn the input NLT's of 

the PSHNN. In this case, the interconnection weights between the input and the 

hidden layers are allowed to change sweep by sweep. This means the PSHNN 

has different input NLT a t  each stage sweep by sweep. In this chapter, we also 

show the reason why the error reduction property still holds for this technique. 

The chapter consists of 5 sections. In Sec. 5.2, we illustrate the method 

whkh uses the LMAV algorithm during step I1 of RBP. In Sec. 5.3, we show the 

reason why error reduction property of PSHNN which has BP stages with 

forward-backward training still holds. The experimental results of nonlinear 

speech prediction are given in Sec. 5.4. Simulations on nonlinear prediction of 

chamtic time series are discussed in Sec. 5.5. 

6.2. REP with the LMAV Algorithm 

The RBP network consists of linear input and output units and nonlinear 

hidlden units. One hidden layer is often sufficient [Miya88]. The hidden layers 

represent the nonlinear transformation of the input vector. The alutput of the 



jth unit of the kth layer is of the form 

where Nk-l is the number' of output nodes of the (k-1)th layer; Ok-l is the 

output vector of the (k-1)th layer; Wk(.,.) are the weights connecting the (k-1)th 

and the kth layers, and f(.) is the nonlinear activation function, assumed to be 

differentiable and usually chosen monotone nondecreasing. 

The RBP with the LMAV algorithm also consists of two training steps, 

denoted as step I and step 11, respectively. During step I, the RBP is the same as 

the usual backpropagation (BP) algorithm [Rume88]. During step 11, we fix the 

weights between the input layer and the hidden layers, but retrain the weights 

between the last hidden and the output layers by the LMAV rule. 

The RBP network with the LMAV algorithm is shown in Fig. 5.1. Let X(n) 

be the input vector sequence; the output vector of the last hidden layer is Y(n) 

which can be considered as the result of nonlinear transformation of X(n). W are 

weights between the last hidden and the output layers. The least mean absolute 

value (LMAV) rule for the weight vector W is [Bell871 

W(n+l)=W(n)+qY(n+l) sign e(n+l) , 

where sign e is +1 if e is positive, and -1 otherwise. The adaptation step factor rl 

is a positive constant. We now want to study the convergence of LMAV rule by 

considering the'weight vector W as it  moves toward the optimum W,. Eq. (5.1) 

can be rewritten as 



W(n+l)-W, =W(n)-W, +rjY(n+l) sign e(n+l) . (5.3) 

Taking the square error sum of both sides, we get 

I I w ( ~ + I ) - W ,  I I 2 = I  Iw(n)-W, I I2+q2 I Jy(n+l) I  12-2rl(e(n+1)I 

+2q sign e(n+l)[d(n+l)-Yt(n+l)w,] , (5.4) 

and 

I Iw(n+l)-w* 1 I2LI Iw(n)-w* 1 I2+q2 I l ~ ( n + l ) l  12-2rlle(n.+l)I 

+2v(d(n+l)-Yt(n+l)w, I . (5.5) 

Let, the length of W be N; taking the expectation of both sides yields 

E(I lw(n+l)-w* I I2)<E(I Iw(~)-w* I 12)+q2~02y 

-WE( Ie(n+l) I ) + 2 ~ ~ m i n  , (5.6) 

where the minimal error Emin is 

Emin =E(I  d(n+l)-yt(n+l)w* I )  . (5.7) 

Convergence is obtained for any positive q, and the residual error ER is bounded 

by [Bell871 

where ER is 

The advantage of RBP networks with the LMAV rule is thart the LMAV 

rule is robust to outliers in a data set [MoTu87]. 



5.3. Error Reduction Property of PSHNN with BP Stages and 
Forward-Backward Training 

Each stage of PSHNN can be any type of neural network. In this section, 

BP stages are utilized together with forward-backward training [DeEr921]. The 

BP stages are chosen as linear input and output units and a single hidden layer. 

The input vector is fed into all the BP stages in parallel as shown in Fig. 5.2. 

With a k-stage network, the first, the second, ... , the kth BP stage are trained 

in this order, followed by retraining of the (k-l)th, the (k-2)th, ... , the second 

BP stage. This constitutes one sweep. The  interconnection weights between the 

input and the hidden layers are allowed to change sweep by sweep. Therefore, 

we generate a different input NLT in each sweep a t  every stage. 

Referring to Fig. 5.2, X is the input vector and Di is the desired vector in 

the first sweep. After the first BP stage is trained, Y1 is the vector .after input 

NLTl of X, and o: is the output vector of the first stage in the first sweep. 

When the number of training iterations is sufficiently large, the weight vector 

between the hidden and the output layer will be near the least-squares solution. 

The simulation results in Table 3.3 also show this fact. Thus, we have 

approximately, [DeEr922] 

o ~ = P ~ ~ [ Y , Y : ] D ~  9 (5.10) 

~ ~ = P N [ Y , Y ; I D I  I (5.11) 

where Pwl~YIY~I  is the projection matrix to the column space of [ Y ~ Y ~ ]  and 

PN~Y,Y;I is the projection matrix to the null space of [Y~Y~]. After the second 

stage is trained, Z1 is the vector after input NLT2 of X; o: is the output vector 

of the second stage of the first sweep, and similarly, 

1 
o : = ~ ~ ~ [ z , z : ] e l  9 (5.12) 



In the second sweep, the desired vector for the first stage becomes 

~ 2 -  1 -ol+e:. 1 A sufficient condition for further error reduction in the :second sweep 

is that the BP network produces the vector Yp after input NLTl of X in the 

second sweep such that C O ~ [ Y ~ Y ~ ] C C O ~ [ Y ~ Y ~ ] ,  or equivalently, 

N [ ' ~ ~ Y ~ ] c N [ Y ~ Y ~ ] .  In other words, the vector Y2 is obtained by a better input 

NLTl of X in the second sweep than that in the first sweep. All the: experiments 

discussed in Sec. 5 always showed that further error reduction is achieved in khe 

second sweep. Hence, we assume that the BP network has the ability to produce 

Y2 satisfying the above sufficiency condition. Then, the output vector o: of the 

first stage in the second sweep is 

since O : E C O ~ [ Y ~ Y ~ ]  and C O ~ [ Y ~ Y ~ ] C C O ~ [ Y ~ Y ~ ] .  The error vector e l  of the first 

stage in the second sweep is 

2 2 2  e l=DI-ol  

Therefore, l (el((2LlIe:1 12.  
The desired vector ~f of the second stage in the second sweep is e:+o:. 

The vector Z2 is obtained after the input NLT2 of X in the second sweep. Under 

the same assumption discussed above, we have col[Z1 z ;]Ct:ol [z2 Z% or 

eqaivalently, N ~ z ~ z ! ~ ] c N [ z ~ z ~ ] .  The output vector of of the second stage in the 

second sweep is 



The error vector e i  of the second stage in the second sweep is 

=PN[Z,Z.',]~: . 
2 2 Therefore, I lei 1 1251 lei 1 I . 

Following the same procedure and under the same assumption, the vector 

Y, is obtained after the input NLTl of X in the nth sweep. The error vector ef 

of the first stage in the nth sweep becomes 

ef = P N ~ Y , , Y ; ] ~ ~ - ~  , (5.18) 

w~~~~N[Y,Y~]cN[Y,~Y~-~]C CN{Y~Y~~CN[YIY:] .  h 

Therefore, ( le: I 1'5 I lei-' 1 12. The vector 2, is obtained after the input NLT2 

of X in the ~ t h  sweep, end the error vector ei of the second stege in the nth 

where N[z,z~]cN[z,-I z ~ - ~ ] c  C N [ Z ~ Z ~ ] C N [ Z ~  Z:]. 

We conclude that 

This result can be generali~ed to n-stage PSHNN's. 



5.4. Experiments on Nonlinear Speech Prediction 

The  theoretical results discussed above were tested in the application of 

speech prediction. For this purpose, 100 speech samples a t  the sanlpling rate of 

10 Khz were used to  train and to test the network. In the experiments, we first 

no]-malized the data  in the range 1-1, I.]. A sliding window of length 5 data 

points was used to  predict the next signal value following the window. 

Table 5.1 shows the performance in terms of the absolute error sum 

I lerrl l 1  of a one stage network with the RBP stage and the LMAV rule, 

tabulated as a function of the training iterations of step I and step 11. In this 

experiment, the gain factor q=1.0 was used during step I, and q==0.01 during 

step 11; five input nodes and eight hidden nodes were used, resulting in 40 

weights between the input and the hidden layers, and 8 weights between the 

hidden and the output layers. Thus, 48 weights need to be learned during step I, 

and only 8 weights need to  be revised during step 11. This indicjates tha t  the 

learning time of six iterations during step I1 is approximately the :learning time 

of one iteration during step I. We see from Table 5.1 that  the a,bsolute error 

sum 1 (err(  1 4.9461 after 500 learning iterations in step I and 200 learning 

iterations in step 11. The  learning time of 500 iterations in step I and 200 

iterations in step 11 for this one stage network with RBP and the 1,MAV rule is 

approximately the learning time of 534 iterations for the same network with the 

usiial BP algorithm. The  network with the usual BP algorithm achieved 

1 lerrl Il=7.1472 after 650 iterations. In other words, the network with the RBP 

an'd the LMAV rule is observed to achieve a deeper minimum in absolute error 

suin by a shorter learning time than the network with the usual BP algorithm. 

Next we discuss the experimental results when using PSHINN with BP 

sta.ges and forward-backward training. Tables 5.2 thru 5.5 are the experiments 



on the PSHNN's with BP stages and forward-backward training as discussed in 

Sec. 5.3. The length of the input layer a t  each stage is five, and a gain factor of 

0.5 is used throughout. Table 5.2 shows how error was reduced as a function of 

the number of iterations with a single BP network having 12 hidden units. The 

corresponding PSHNN's with the same number of interconnection weights were 

chosen as 3-stage, 3-stage and 4-stage networks in which each stage hqd 6, 4, 

and 3 hidden nodes respectively, and its training was based on backpropagation. 

Tables 5.3, 5.4 and 5.5 show how error was reduced stage by stage and sweep by 

sweep of forward-backward training. 1000 forward-backward sweeps of Zstage 

network, 750 forward-backward sweeps of 3-stage network and 666 forward- 

backward sweeps of 4-stage network are equivalent to 50000 iterations of the 

previous single BP network since 50 iterations were used to train each stage of 

the PSHNN's. It  is observed that the error reduction properties of the PSHNN's 

with two stages and three stages are better than those of the single BP network. 

The PSHNN's achieve the same error performance a t  about 600 sweeps with the 

2-stage PSHNN and a t  423 sweeps with the 3-stage PSHNN as the single BP 

network achieves with 50000 iterations. Both %stage and 3-stage PSHNN's had 

a reduction of learning time by about 40%. It  also appears that both Zstage and 

3-stage PSHNN's converge towards a deeper minimum than the single stage BP 

network. However, the 4-stage PSHNN performed actually worse than the 

single BP network. Thus, there exists on optimal number of hidden nodes per 

stage for best performance. The bstsge PSHNN performs best in terms of 

deeper minimum and faster convergence rate. More experiments with different 

sets of data are needed to substantiate this property. However, we think that 

this is the case since the same property was observed in other applications with 

systems having nonlinearities (AgEr9 11, (ErZB901. 



5.5. Nonlinear Prediction of Chaotic Time Series 

Chaotic systems arise in many physical situations such as onset of 

tul-bulence in fluids [RuTa7l], [SwGo78], chemical reactions (ToKa791, lasers 

[H:nke75], and plasma physics [RuH080]. We selected two chaotic 1,ime series to 

test the RBP networks. The first chaotic time series was generated according to 

the classic logistic, or ~ e i ~ e n b a u m  map given by [Feig78], [LaFa87] 

In the following simulations, we used 100 data points generated b:y the chaotic 

system according to the equation above, and normalized the data in the range 

lo, 11. 

Tables 5.6 thru 5.8 are the simulation results with the RBP networks using 

tht! delta rule, tabulated as a function of the number of training iterations 

during step I. The number of hidden units are 2, 4 and 8, resp~ectively. The 

number of training iterations was 200 during step II. The gain factor during step 

I was 0.1 in Tables 5.6 and 5.8, and was 1.0 in Table 5.8. The gain factor was 

0.01 during step 11. In Table 5.6, we see that the RBP network with 360 

iterations during step I and 200 iterations during step II can reach the same 

square error sum by the usual BP network with 2000 training iterations. This 

means we need only 21% training time with the RBP network to achieve the 

same performance 8s with the usual BP network trained with 2000 iterations. In 

Table 5.7, after 120 iterations during step I and 200 iterations during step 11, the 

RBP network reached the same performance as with the usual BP trained with 

2000 iterations. Therefore, the training time of the RBP network is 10% of the 

training time of the usual BP network for the same performance. In Table 5.8, 

after 60 iterations and 200 iterations during step I and step 11, res]>ectively, the 



RBP network achieved the same performance as the usual BP trained with 2000 

iterations. In this case, the training time of the RBP network is 6% of the usual 

BP network. 

Tables 5.9 thru 5.11 show the simulation results using the RBP networks 

with the LMAV rule, tabulated as a function of training iterations during step 1. 

The number of hidden units are 2, 4 and 8, respectively. The number of training 

iterations was 100 during step 11. The gain factor during step I was 1 in Tables 

5.10 and 5.11, and was 0.1 in Table 5.8. The gain factor was l.E-6 during step 

11. In Table 5.9, we see that the RBP network with 460 iterations during step I 

and 100 iterations during step I1 can reach the same absolute error sum as the 

usual BP network with 600 training iterations. This means we need only 81% 

training time with the RBP network with the LMAV rule to achieve the same 

performance by usual BP with 600 training iterations. In Table 5.10, after 412 

iterations during step I and 100 iterations during step 11, the RBP network with 

the LMAV rule can reach the same performance as with the usual BP network 

with 600 training iterations. Therefore, the training time by the RBP network 

with delta rule is 76% of the training time by the usual BP network. In Table 

5.8, after 220 iterations and 100 iterations during step I and step II, respctively, 

the RBP with LMAV rule achieved the same performance as with the usual BP 

network with 600 training iterations. In this case, the training time of the RBP 

network is 42% of the usual BP network. Fig. 5.3 shows the normalized 

Feigenbaum chaotic time series data versus the predicted time series data of the 

one-stage network (4 hidden node) with the RBP stage and the delta rule. 2000 

iterations and 200 iterations were used during step I and step II, respectively. 

Fig. 5.4 shows the normalieed Feigenbaum chaotic time aeries data versus the 

predicted time seriea data of the one-atage network (4 hidden node) with the 



RB:P stage and the LMAV rule. In this experiment, there were 600 training 

iterations during step I, and 100 iterations during step 11. 

The second time series we used to  test the RBP network was the Mackey- 

Glass time series. The Mackey-Glass equation in the discrete-time domain can 

be .written as [Farm821 

The constant were taken to be a=0.2, b=0.1 and c=10. Cho0sin.g A=17, we 

generated 500 data points which were used in the following experiments. 

Table 5.12 shows the performance using the RBP networks with the delta 

rule, listed as a function of training iterations during step I. The length of input 

vector is 4 and 10 hidden units were used. The gain factor was 0.1 (during step I 

ant1 0.01 during step 11. In this table, we see that  the RBP network with 100 

iterations during step I and 200 iterations during step I1 can reach a deeper 

miriimum than the usual BP network with 1000 iterations. Therefore, we need 

only 14% training time with the RBP network to  achieve better performance 

tha,n tha t  by the usual BP network with 1000 iterations. Table 5.13 shows the 

performance using the RBP network with the LMAV rule, listed as a function of 
\ 

training iterations during step I. The length of the input vector was 4 and 10 

hid.den units were used. The gain factor was 0.1 during step I and. 1.E-6 during 

step 11. In this table, we see that  the RBP network with 100 iter:stions during 

step. I and 100 iterations during, step I1 can reach a deeper minim.um than the 

usual BP network with 1000 iterations. We also need only 12% training time 

with the RBP network with LMAV rule to achieve better performance than that 

by the usual BP network with 1000 iterations. Fig. 5.5 shows the original 

Mrrckey-Glass chaotic time series data versus the predicted time series data of 



the one-stage network with the RBP stage and the delta rule. 1000 iterations 

and 200 iterations were used during step I and step 11, respectively. Fig. 5.6 

shows the original Mackey-Glass chaotic time series data versus the predicted 

time series data of the one-stage network with the RBP stage and the LMAV 

rule. In this experiment, there were 1000 training iterations during step I, and 

100 iterations during step 11. 



Ta'ble 5.1. Nonlinear Speech Prediction Performance of a One-Stage RBP 
Network and the LMAV Rule (err=l (el I l ) .  

# of iterations err 

step I 

400 

450 

500 

550 

600 

650 

step I 

8.1649 

7.8115 

7.4919 

7.3080 

7.2612 

7.1472 

step I1 

200 

200 

200 

200 

200 

200 

step I1 

7.6647 

7.2349 

6.9461 

6.9169 

6.8658 

6.7187 



Table 5.2. Error Reduction with a Sin le Stage Network with 12 Hidden 
Units Trained by BP (errl= (reI I I 2  ). 

# of 

iterations 

lo00 

2000 

5000 

10000 

20000 

30000 

40000 

50000 

err 

1.1454 

0.8413 

0.6822 

0.4464 

0.2424 

0.2506 

0.2205 

0.1962 



Table 5.3. Error Reduction with a Two-Stage PSHNN with 6 Hidden Units 
per SNN Trained by Forward-Backward BP 
(errl=I le, 1 I2,err2=( (e2 1 1 2 ) .  

# of 

sweeps 

20 

40 

100 

200 

300 

400 

500 

600 

700 

800 

900 

lo00 

err1 

1.0528 

0.8962 

0.6031 

0.4374 

0.3367 

0.2714 

0.2133 

0.1927 

0.1895 

0.1771 

0.1731 

0.1658 

err2 

1.0473 

0.8945 

0.6023 

0.4368 

0.3364 

0.2711 

0.2133 

0.1925 

0.1962 

0.1816 

0.1859 

0.1708 



Table 5.4. Error Reduction with a Three-Stage PSHNN with 4 Hidden Units 
per SNN Trained by Forward-Backward BP. 

# of 

sweep 

10 

50 , 

100 

200 

300 

423 

500 

600 

700 

750 

errlf 

1,2380 

0.6486 

0.5240 

0.4488 

0.2825 

0.1965 

0.1705 

0.1604 

0.1551 

0.1529 

err2f 

1.2157 

0.6464 

0.5236 

0.4487 

0.2823 

0.1965 

0.1704 

0.1604 

0.1551 

0.1529 

err3f 

1.2138 

0.6462 

0,5236 

0.4483 

0.2819 

0.1962 

0.1704 

0.1604 

0.1551 

0.1529 

err2b 

1.1982 

0.6447 

0.5235 

0.4484 

0.2817 

0.1962 

0.1703 

0.1603 

0.1551 

0.1529 



Ta.ble 5.5. Error Reduction with a Four-Stage PSHNN with 3 Hidden Units 
per SNN Trained by Forward-Backward BP. 

# of 

sweep 

10 

50 

100 

200 

300 

400 

500 

600 

666 

errlf 

1.3594 

0.6716 

0.5121 

0.4136 

0.3540 

0.3093 

0.2620 

0.2306 

0.2210 

err2f 

1.3561 

0.6707 

0.5119 

0.4136 

0.3540 

0.3093 

0.2619 

0.2306 

0.2209 

err3f 

1.3238 

0.6682 

0.5116 

0.4134 

0.3539 

0.3092 

0.2618 

0.2305 

0.2209 

err4f 

1.3195 

0.6682 

0.5116 

0.4134 

0.3538 

0.3091 

0.2618 

0.2304 

0.2208 

err3b 

1.2963 

0.6662 

0.5115 

0.4134 

0.3538 

0.3090 

0.2618 

0.2303 

0.2208 

err2b 

1.2914 

0.6662 

0.5114 

0.4132 

0.3537 

0.3090 

0.2617 

0.2304 

0.2208 



Table 5.6. Prediction with Feigenbaum Chaotic Time Series Data Using a 2 
Hidden Node Network with the RBP Stage and the Delta Rule 
(err=[ lei 1 2 ) .  

jf of iterations 

step1 

100 

200 

360 

500 

1000 

1500 

2000 

err 

step11 

200 

200 

200 

200 

200 

200 

200 

step1 

1.463-3 

8.283-4 

7.153-4 

6.523-4 

5.573-4 

5.273-4 

5.10E-4 

step I1 

6.183-4 

5.683-4 

5.073-4 

4.783-4 

4.463-4 

4.403-4 

4.343-4 



Table 5.7. Prediction with Feigenbaum Chaotic Time Series Daka Using a 4 
Hidden Node Network with the RBP Stage and the Delta Rule 
(err=l lei I*). 

# of iterations err 

step I 

100 

120 

200 

500 

1000 

1500 

2000 

step I 

1.71E-2 

1.233-3 

1.9 1E-4 

1.81E-4 

17lE-4 

1.653-4 

1.60E-4 

step 11 

200 

200 

200 

200 

200 

200 

200 

step I1 

7.913-4 

1.40E-4 

1.243-4 

1.21E-4 

1.19E-4 

1.18E-4 

1.18E-4 



Table 5.8. Prediction with Feigenbaum Chaotic Time Series Data Using a 8 
Hidden Node Network with the RBP Stage and Delta Rule 
(err=] lei 1 2 ) .  

# of iterations 

1 2000 1 ,  200 I s . s e - s  / 3.44.-s I 

err 

step1 

60 

100 

200 

500 

1OOO 

1500 

s tep1 

4.333-4 

8.813-5 

8.343-5 

7.313-5 

6.343-5 

5.823-5 

step11 

200 

200 

200 

200 

200 

200 

step 11 

4.813-5 

4.383-5 

4.213-5 

3.873-5 

3.613-5 

3.503-5 



Ta.ble 5.9. Prediction with Feigenbaum Chaotic Time Series Data Using a 2 
Hidden Node Network with the RBP Stage and the LMAV Rule 
(err=l lelI1). 

# of iterations err 

step I 
i 

200 

300 

400 

452 

500 

600 

step I 

0.5290 

0.4532 

0.4075 

0.3907 

0.3782 

0.3622 

step I1 

100 

100 

100 

100 

100 

100 

step I1 

0.4949 

0.4206 

0.3789 

0.3619 

0.3519 

0.3336 



Table 5.10. Prediction with Feigenbaum Chaotic Time Series Data Using a 4 
Hidden Node Network with the RBP Stage and the LMAV Rule 
(err=l lel I ,  1. 

# of iterations 

step I 

200 

300. 

400 

4 12 

500 

600 

err 

step I1 

100 

100 

100 

100 

100 

100 

step I 

0.2772 

0.2340 

0.1983 

0.1945 

0.1693 

0.1462 

step I1 

0.2148 

0.1778 

0.1492 

0.1460 

0.1258 

0.1076 



Ta'ble 5.11. Prediction with Feigenbaum Chaotic Time Series Data Using a 8 
Hidden Node Network with tbe RBP Stage and the LMAV Rule 
(err=l lel I,). 

# of iterations err 

step I 

200 

220 

300 

400 

500 

600 

step I 

0.2077 

0.2036 

0.1881 

0.1705 

0.1550 

0.1412 

step I1 

100 

100 

100 

100 

100 

100 

step I1 

0.1493 

0.14 10 

0.1298 

0.1174 

0.1062 

0.0965 



Table 5.12. Prediction with Mackey-Glass Chaotic Time Series Data Using a 
10 Hidden Node Network with the RBP Stage and the Delta Rule 
(err=l l e i  I*). 

# of iterations err 

step I 

100 

200 

300 

500 

7 00 

900 

1000 

step I 

0.7201 

0.6766 

0.6378 

0.5717 

0.5173 

0.4715 

0.4512 

step II 

200 

200 

200 

200 

200 

200 

200 

step II 

0.1702 

0.1621 

0.1542 

0.1393 

0.1256 

0.1130 

0.1071 



Ta.ble 5.13. Prediction with Mackey-Glass Chaotic Time Series Data Using a 
10 Hidden Node Network with the RBP Stage and the LMAV Rule 
(err=l lelI1). 

# of iterations err 

step I 

100 

200 

400 

600 

800 

lo00 

step I 

15.5708 

15.0856 

14.2424 

13.5287 

12.9120 

12.3674 

step I1 

100 

100 

100 

100 

100 

100 

step I1 

9.9 152 

9.6504 

9.1584 

8.7164 

8.3077 

7.9273 



RBP Stage 

Figure 5.1. One-Stage Network with the RBP and the LMAV Rule. 



First BP Stage 

Second BP Stage 

Figure 5.2. TwctStage PSHNN with BP Stages and Forward-Backward 
Training. 



20 40 60 80 100 
time index 

Figure 5.3. Normalized Feigenbaum Time Series (Solid Line) and the 
Predicted Time Series (Dotted Line) with the RBP and the Delta 
Rule. 



40 60 
time index 

Figure 5.4. Normalized Feigenbaum Time Series (Solid Line) and the 
Predicted Time Series (Dotted Line) with the RBP and the LMAV 
Rule. 



200 300 
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Figure 5.5. Mackey-Glass Time Series (Solid Line) and the Predicted Time 
Series (Dotted Line) with the RBP and the Delta Rule. 
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Figure 5.6. Mackey-Glass Time Series (Solid Line) and the Predicted Time 
Series (Dotted Line) with the RBP and the LMAV Rude. 



CHAPTER 6 

CONCLUSIONS 

6.1. Conclusions 

PSHNN's with continuous inputs and outputs have many advantages such. 

as error reduction, better prediction than linear prediction, parallel operation of 

stages, self-organizing number of stage, realizability of sequential learning, and 

error criterion other than mean-square error. 

Computer experiments showed that  linear outputs give better results when 

the outputs are continuous. Consequently, nonlinearities were used a t  other 

layers. In addition, linear outputs allow the use of sequential leastsquares. Even 

though any kind of input nonlinearity guarantees better performance over a 

one-stage network, the optimization of the input nonlinearities is an important 

issue to minimize output errors. The RBP algorithm is one effective solution to 

this problem. Another advantage of the RBP algorithm is that  we have 

flexibility of choosing a different training rule due to different error criterion 

during step 11. For example, the delta rule, the SLS and the LMAV rule can be 

used during step I1 of the RBP algorithm. Other criteria such as total leas t  

squares can also be applied. 

We showed theoretically that PSHNN's with forward-backward training of 

n-stage networks will achieve the same error reduction as the total function-link 

network with the leastsquares pseudoinverse solution. In practice , 



experimental results show that PSHNN's in many cases have faster convergence 

rate and better numerical error reduction than the total function-link networks. 

The property that PSHNN's can divide a large size network into several smaller 

size networks which can learn faster and more easily in training arrd operate in 

pal-allel in testing is believed to be significant for real-time implementation. 

We proved that the PSHNN's with any input nonlinear tr,ansformation 

have better performance than one-stage networks (ErDe9111. By using 

additional neural networks, one can learn input NLT's a t  every parallel stage of 

the PSHNN. The PSHNN with BP stages and forward-backward training is one 

effective solution to this problem. When backpropagation is to be used, 

experiments indicate that better performance in terms of a deeper minimum and 

convergence rate is achieved when a single BP network is replaced by a PSHNN 

of equal complexity in which each stage is a BP network of smalle!r complexity 

than the single BP network. With these properties, PSHNN's with continuous 

inputs and outputs and forward-backward training are expected tc~ be useful in 

val-ious applications of neural networks, adaptive signal processing, system 

identification and adaptive control. 

6.21. Further Research 

The following is an outline of future research topics. 

(1) The proof of Theorem 4.la has been based on n-stage PSHNN's with 

forward-backward training. Experimentally, we have also observed that circular 

training gives the same results as forward-backward training. It  its desirable to 

give a rigorous proof for the n-stage PSHNN with circular training. 



(2) The theoretical and experimental investigations so far have been carried out 

with stages based on the delta rule, the usual BP or the RBP. An interesting 

question is whether these and/or similar results are valid for stages based on 

other learning algorithms. 

(3) The input nonlinearities may be replaced by output nonlinearities. However, 

we have not investigated the simultaneous use of input and output nonlinearities 

yet. This is especially an important problem in the case of forward-backward 

training. In this case, it is no longer possible to compare the PSHNN stages with 

forward-backward training to a single total network which converges to the 

pseudoinverse solution. 

(4 )  A major consideration is whether it is possible with the forward-backward 

training algorithm to achieve a minimum the same as or closer to the global 

minimum than what other architecture yield. 

(5) One important advantage of the PSHNN with continuous inputs and outputs 

is the ability to incorporate sequential learning so that the network continues to 

learn with each new input data without requiring the storage of past 

information. This has been implemented with stages without forward-backward 

training. It is desirable to apply SLS learning with forward-backward training as 

well as more complex networks. 

(6) Another important problem is how to optimize input and/or output 

nonlinearities. It is desirable to have simple, pointwise nonlinearities for real- 

time implementation, and they should be learned, probably adaptively in time, 



for optimal performance. It  is possible to incorporate fast transforrrrs in addition 

to pointwise nonlinearities as preprocessing to the network. The fast transforms 

provide a number of advantages such as feature selection, achieving invariance 

to a number of distortions like translation, rotation and scaling, and minimizing 

nel,work size. 

(7) The theoretical and experimental results obtained are mostly with respect to 

the mean-square error criterion. We have also developed the method which uses 

thct LMAV rule during step I1 of the RBP stages. Other error criteria such as 

weighted leastsquares and total leastsquares during step I1 of the RBP stages 

should be investigated. 

(8) An interesting area in systems and signal processing is system inodeling and . 

identification. Neural networks with nonlinear activation functions are an 

effective way to construct a model for the transfer function of an unknown 

system with only a finite data set of inputs, and associated outputs of the 

system. Techniques concerning nonlinear system modeling by I'SHNN's are 

exipected to be useful in spectral estimation, biomedical signal modeling, and 

otlier applications. Further studies need to be carried out on such topics. 



LIST OF REFERENCES 

S. Aghagolzadeh, 0. K. Ersoy, "Optimal Multistage Transform 
Image Coding", IEEE Tran. Circuits and Systems for Video 
Technology, December 1991. 

11 S. T. Alexander, ~ d a ~ t i v e  Signal Processing, Theory and 
Applications", Springer-Verlag, New York, pp. 68-85, 1986. 

M. G. Bellanger, "Adaptive Digital Filter and Signal Analysis", 
Maurice1 Dekker Inc., pp. 114-121, 1987. 

S-W. Deng, 0. K. Ersoy, 'Parallel, Self-Organizing, Hierarchical 
Neural Networks with Circular Training", Purdue University 
Tech. Report No. TR-EE-91-16, April 1991. 

S-W. Deng, 0. K. Ersoy, "F'arallel, Self-Organizing, Hierarchical 
Neural Networks with Forward-Backward Training*, submitted to 
Circuits, Systems and Signal Processing, January 1992. 

S-W. Deng, 0. K. Ersoy, *'Parallel, Self-organiring Neural 
Networks for Nonlinear Prediction, Filtering and System 
Identification", submitted to IEEE Tran. Neural Networks, 1992. 

R. 0. Duda, P.E. Hart, "Pattern Classification and Scene 
~nalysis", John Wiley & Sons Inc., pp. 159-162, 1973. 

0. K. Ersoy and S-W. Deng, "F'arallel, Self-Organieing, 
Hierarchical Neural Networks with Continuous Inputs and 
Outputs", Proc. Hawaii Int. Conf. System Sciences, HICCS-24, pp. 
486-492, Kauai, January 1991. 

0. K. Ersoy and S-W. Deng, "Parallel, Self-organicing, 
Hierarchical Neural Networks, with Continuous Inputs and 
Outputs", Purduc University Tech. Report, No. TR-EE-81-51? 
December 1991, and to appear in IEEE Tran. Neural Networks. 

0. K. Ersoy, D. Hang, *Parallel, Self-Organizing, Hierarchical 
Neural Networks", IEEE Trans. Neural Networks, Vol. 1, No. 2, 
pp. 167-178, June 1990. 



IEr HoII] 

[Er so881 

[E r.ZB901 

0. K. Ersoy, D. Hong, "F'arallel, Self-Organizing, Hierarchical 
Neural Networks II", to  appear in IEEI.: Tran. Industrial 
Electronics, Special lssue on Neural Networks. 

0. K. Ersoy, "A Study of Associative Memory Based on the Delta 
Rule", IEEE Int. Conf. Neural Networks , San Diego, Calif., July 
1988. 

0. K. Ersoy, J. Y. Zhuang, J. Brede, "An Iterative Interlacink 
Approach to  the Synthesis of Computer-Generated Holograms', 
Purdue University Tech. Report, No. TR-EE-90-5!2, November 
1990, and submitted to  Applied Optics. 

J.  D. Farmer, "Chaotic Attractors of an Infinite-Dimensional 
Dynamical System", Physica D, Vol. D 4, pp. 366-393, 1982. 

M. Feigenbaum, "Quantitative Universality for a Class of 
Nonlinear Transformations", J. Statistical Physics, Vol. 19, pp. 
25-52, 1978. 

C. L. Giles, T .  Maxwell, "learning, Invariance and C;eneralization 
in Higher Order ~e tworks , "  Applies Optics, Vol. 26, No.23, pp. 
4972-4978, December 1987. 

D. Graupe, "Time Series Analysis, Identafication, and Adaptive 
Filtering', Robert F. Krieger, 1984. 

R. E. Hartwig and M. P. Drazin, 'Lattice Properties of the *-Order 
for Complex Matrices", J. of Math. Analysis and Applications, 
Academic Press, Inc. 1982. 

H. Haken, "Analogy between Higher Instabilities in Fluids and 
Lasers", Physics Letters, Vol. A53, pp. 77-78, 1975. 

Simon Haykin, "Adaptive Filter Theory", 2nd ed., .Prentice-Hall, 
Inc., pp. 299-341, 1991. 

D. Hony, "Parallel, Self-Organizing, Hierarchical Neural 
Networks , Ph.D. Dissertation, Purdue University, August 1990. 

K. Hoffman, R. Kunze, "Linear ~ l ~ e b r a ' :  2nd ed., Prentice-Hall, 
Inc., p. 211, 1971. 

S. C. Jacobsen, S. G. Meek, R. R. Fullmer, "An Adaptive 
Myoelectric Filter", 6th IEEE Conf. Eng. in Med. and Biol. Soc., 
1984. 



IMath9l.j 

[Mend 7 31 

[Miya88] 

[MoTu77] 

M. F. Kelly, "The Application of Neural Networks to Myoelectric 
Signal Analysis: A Preliminary Study", IEEE Transaction on 
Biomedical Engineering, Vol. 37 No. 3, March 1990. 

T. Koh, E. J. Powers, "Second-Order Volterra Filtering and its 
Application to Nonlinear System Identification", IEEE Tran. on 
ASSP, Vol. ASSP-33, No. 6, pp. 1445?1455, December 1985. 

A. Lapedes, R. Farber, "Nonlinear Processin6 Using Neural 
Networks: Prediction and System Modeling , Los Alamos 
National Laboratory, LA-UR-87-2662, 1987. 

D. G, Luenberger, "Introduction to Linear and Nonlinear 
Programming", Addison-Wesley Pub. Company, second edition, 
pp. 227-230, 1984. 

V. J. Mathewa, "~dap t ive  Polynomial Filter", IEEE Signal 
Processing Magazine, Vol. 8, No. 3, pp. 10-26, July 1991. 

J. M. Mendel, "Discrete Techniques of Parameter Estimation", 
Marcel Dekker, pp. 91-107, 1973. 

Irie, Miyake, "Capabilities of Three-Layered Perceptrons", Proc. 
IEEE ICNN, Vol. 1, pp. 641-648, San Diego, July 1988. 

F. Mosteller, J. Tukey, "Data Analysis and Regression: a Second 
Course in Statistics", Addison-Wesley Publishing Company, pp. 
365-369, 1977. 

H. Nakano, "Spectral Theory in the Hilbert Space", Japan Society 
for the Promotion of Science, 1953. 

T. W. Parson, "Voice and Speech Processing", McGraw-Hill, 
pp.138-145, 1986. 

Y-M. Pao, "Adaptive Pattern Recognition and Neural Networks", 
Addison-Wesley Pub. Company, Inc., 1989. 

L. D. Pyle, "A Generalieed Inverse €-Algorithm for Constructing 
Intemction Projection Matrices with Applications", Numerisehe 
Mathematik 10, pp 86-102, 1967. 

C. R. Rao, S. K. Mitra, "Generalized Inverse of Matrices and its 
Application8", John Wiley & Sons, Inc., pp. 106-107, 1971. 

D. Russell, J. Hanson, E. Ott, "Dimeneion of Strange Attractors", 
Physical Review Letters, Vol. 45, pp. 1175-1178, 1980. 



[Rume88] D. E. Rumelhart, "Parallel Distributed Processin!q", The MIT 
Press, Cambridge Mass. , 1988. 

[RuTa71] D. Ruell, F. Takens, "On the Nature of Turbulence", 
Communications in Mathematical Physics, Vol. 20, pp. 167-192, 
1971. 

[Sore851 H. W. Soremen, "Parameter Estimation, Principles and 
Problems", M. Dekker, New York, 1985. 

[S,tra86] 
I t  

G. Strang, Linear Algebra and its ApplicationsH, Gilbert Strang, 
third edition, 1986. 

[S.wGo78] H. Swinney, J. P .  Gollub, "The Transition for Turbulence", 
Physics To.day, Vol. 45 PP 41-49, August 1978. 

[ToKa79] K. Tomita, T.  Kai, "Chaotic Response of a Limik Cycle", J. 
Statistical Physics, Vol. 21, pp. 65-86, 1979. 

[V,'iHo60] G. Widrow, M. E. Hoff, "Adaptive Switching Circuits," Inst. 
Radio Engineers Western Electronic Show and Convention Record, 
P a r t  4, pp. 96-104, 1960. 


	Purdue University
	Purdue e-Pubs
	4-22-1992

	NONLINEAR ADAPTIVE SIGNAL PROCESSING
	S.-W. Deng
	O.K. Ersoy


