
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-22-1992

NONLINEAR ADAPTIVE SIGNAL
PROCESSING
S.-W. Deng
Purdue University School of Electrical Engineering

O.K. Ersoy
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Deng, S.-W. and Ersoy, O.K., "NONLINEAR ADAPTIVE SIGNAL PROCESSING" (1992). ECE Technical Reports. Paper 290.
http://docs.lib.purdue.edu/ecetr/290

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages

NONLINEAR ADAPTIVE SIGNAL PROCESSING

S.-W. Deng and O.K. Ersoy

School of Electrical Engineering

Purdue University

West Lafayette, Indiana 47907-1 285

TABLE OF CONTENTS

Page

... LIST OF TABLES vi

LIST OF FIGURES .. ix

C H W T E R 1 - INTRODUCTION ... I

... I . . 1. Introduction 1
... I. .2. Thesis Organization 6

CHAPTER 2 - PARALLEL, SELF-ORGANIZING,
HIERARCHICAL NEURAL NETWORKS
WITH CONTINUOUS INPUTS AND OUTPUTS 7

.. 1 Introduction 7
:!.2. System Model with Univariate Output Signal 8
:!.3. Error Reduction ... 10
:!.4. System Model with Multivariate Output Signal 14
5 Suboptimal Error Reduction Property .. 16

... 6 Experimental Results 18
:!.7. Learning Input Nonlinear Transformation by

... Revised Backpropagation 20

CHAPTER 3 - INCORPORATION OF SEQUENTIAL
.. LEAST-SQUARES 30

.. 3.1. Introduction30
2 Incorporation of Sequential Learning .. 31
3.3. The RBP Networks with the SLS

.. Algorithm 32

Page

.. 3.4. Experimental Results 33

C I W T E R 4 . P A W L E L . SELF.ORGANIZING.
HIERARCHICAL NEURAL NETWORKS
WITH FORWARD-BACKWARD TRAINING 48

4.1. Introduction .. 48
4.2. PSHNN with Forward-Backward Training 50
4.3. Asymptotic Properties of a Two-Stage PSHNN

with Forward-Backward Training ... 54
4.4. Asymptotic Properties for ap

N-Stage Network ... 5Q
4.5. Asymptotic Properties for the

Suboptimal Solutions ... 63
4.6. Experimental Results 68

C W T E R 5 . LEMNING INPUT NONLINEAR TRANSFORMJ~TIONS . 83

5.1. Introduction .. 83
5.2. RBP with the LMAV Algorithm ... 84
5.3. Error Reduction Property of PSHNN

with BP Stages and Forward-Backward
Training .. 87

5.4. Experiments on Nonlinear Speech Prediction 90
.................................... 5.5. Nonlinear Prediction of Chaotic Time Series 92

. ... CHAPTER 6 CONCLUSIONS 115

6.1. Conclusions ... 115
6.2. Further Research ... 116

L. IST OF REFERENCES ... 119

LIST OF TABLES

Table P.age

2.1. Performance of One-Stage and Two-Stage PSHNN as a
Function of Input Nonlinearities .. 23

2.2. Performance of One-Stage and Two-Stage PSHNN's as a
Function of the Length of the Weight Vector When
the Input Nonlinearity is Th.11 ... 24

2.3. Performance of One-Stage, Two-Stage and Three-Stage
PSHNN's as a Function of Input Nonlinearities 25

2.4. Performance when the Input NLT is Learned by RBP 26

3.1. Nonlinear Speech Prediction Performance of One-Stage
and Two-Stage PSHNN's Trained with SLS Learning 35

3.2. Nonlinear Speech Prediction Performance of One-Sage
and Two-Stage PSHNN's Trained with SLS Learning 36

3.3. Performance of a 5 Hidden Unit Two-Stage PSHNN with
the RBP and the SLS Rule in the Second Stage 37

3.4. Performance of a 4 Hidden Unit Two-Stage PSHNN
with the RBP and the SLS Rule in the Second Stage 38

4.1. Performance of the Function-Link Network in
Speech Prediction ... 71

4.2. Performance of PSHNN with NLT Sig.1 in
Speech Prediction72

4.3.. Performance of PSHNN with NLT Sig.11 in
Speech Prediction ... 73

Titble Page

4 . 4 . Performance of PSHNN with NLT Th.1 in
Speech Prediction ... 74

4.5. Performance of PSHNN with NLT Th.11 in
Speech Prediction ... 75

4.6. Performance of PSHNN with NLT Square in
Speech Prediction 76

4 .7 . 3-Stage Function-Link Network as a Function of
Input Nonlinearity with 900 Iterations .. .77

4.8. 3-Stage Function-Link Network as a Function of
Input Nonlinearity with 2800 Iterations ... 77

4.9. Performance of PSHNN with NLTl Sig.1 & NLT2 Th.11
... in Speech Prediction 78

4.10. Performance of PSHNN with NLTl Th.1 & NLTZ Sig.1
in Speech Prediction. .. 78

4.11. Performance of PSHNN with NLTl Square & NLT2 Sig.1
... in Speech Prediction 79

5#.1. Nonlinear Speech Prediction Performance of a One-Stage
RBP Network and the LMAV Rule .. 96

5.2. Error Reduction with a Single Stage Network with 12
Hidden Units Trained by BP .. 97

5.3. Error Reduction with a Two-Stage PSHNN with 6 Hidden
Units per SNN Trained by Forward-Backward BP 98

5.4. Error Reduction with a Three-Stage PSHNN with 4 Hidden
Units per SNN Trained by Forward-Backward BP 99

5.5. Error Reduction with a Four-Stage PSHNN with 3 Hidden
............................ Units per SNN Trained by Forward-Backward BP 100

viii

Table Page

5.6. Prediction with Feigenbaum Chaotic Time Series Data Using a
2 Hidden Node Network with the RBP Stage and the Delta Rule 101

5.7. Prediction with Feigenbaum Chaotic Time Series Data Using a
4 Hidden Node Network with the RBP Stage and the Delta Rule 102

5.8. Prediction with Feigenbaum Chaotic Time Series Data Using a
8 Hidden Node Network with the RBP Stage and the Delta Rule 103

5.9. Prediction with Feigenbaum Chaotic Time Series Data Using a
.... 2 Hidden Node Network with the RBP Stage and the LMAV Ruile 104

5.10. Prediction with Feigenbaum Chaotic Time Series Data Using a
4 Hidden Node Network with the RBP Stage and the LMAV Rule 105

5.11. Prediction with Feigenbaum Chaotic Time Series Data Using a
8 Hidden Node Network with the RBP Stage and the LMAV Rule 106

5.12. Prediction with Mackey-Glass Chaotic
Time Series Data Using a 10 Hidden

..................... Node Network with the RBP Stage and the Delta Rule 107

5.13. Prediction with Mackey-Glass Chaotic
Time Series Data Using a 10 Hidden

................... Node Network with the RBP Stage and the LMAV Rule 108

LIST OF FIGURES

Figure Page

2.1. Block Diagram for a Three-Stage PSHNN ... 27

... 2.2. Represen tation of Suboptimal Solution -28

2:.3. Two-Stage PSHNN with RBP Stages ... 29

1 Two-Stage PSHNN with RBP Stages and the SLS Algorithm 39

2 Orig i~a l Speech Signal (solid line) and the
Predicted Speech Signal (dotted line) with

................................ One-Stage HNN Trained with the SLS Algorithm 40

3.3. Original Speech Signal (solid line) and the
Predicted Speech Signal (dotted line) with
Two-Stage HNN Trained with the SLS Algorithm 41

3.4. The Error Signals with One-Stage HNN (solid line)
and Two-Stage HNN (dotted line) Trained with the SLS
Algorithm 42

3.5. Original Speech Signal (Solid Line) and the Predicted
Speech Signal (Dotted Line) with One-Stage PSHNN
Trained with the SLS Algorithm (nc=5) ... 43

3.6. Original Speech Signal (Solid Line) and the Predicted
Speech Signal (Dotted Line) with Two-Stage PSHNN
Trained with the SLS Algorithm (nc=S) ... 44

3.7. The Error Signals with One-Stage PSHNN (Solid Line)
and Two-Stage PSHNN (Dotted Line) Trained with the
SLS Algorithm (ne=5) ... 45

Fig11 re Page

3.8. Original Speech Signal (Solid Line) and the Predicted
Speech Signal (Dotted Line) with Two-Stage PSHNN

.................... with the RBP and SLS Rule on the Second Stage (nc=5) 46

3.9. The Error Signals with Two-Stage PSHNN (Solid Line)
with NLT2=Th.II and Two-Stage PSHNN (Dotted Line)
with the RBP and the SLS Rule on the Second
Stage (nc=5) .. 47

4.1. Block Diagram of a Functional-Link Network 80

4.2. Graphical Representation of Suboptimal
Solution for SNNl .. 81

4.3. Graphical Representation of Suboptimal
Solution for SNN2 .. 82

5.1. One-Stage Network with the RBP and the LMAV Rule 109

5.2. TweStage PSHNN with BP Stages and
Forward-Backward Training .. 110

5.3. Normalized Feigenbaum Time Series (Solid Line)
and the Predicted Time Series (Dotted Line)
with the RBP and the Delta Rule ... 111

5.4. Normalized Feigenbaum Time Series (Solid Line)
and the Predicted Time Series (Dotted Line)
with the RBP and the LMAV Rule ... 112

5.5. Mackey-Glass Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the
RBP and the Delta Rule ... 113

5.6. Mackey-Glass Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the
RBP and the LMAV Rule .. 114

ABSTRACT

Deng, Shi-Wee. Ph.D., Purdue University, May 1992. Nonlinear Adaptive Signal
Pr~~cessing. Major Professor: Okan K. Ersoy.

Nonlinear techniques for signal processing and recognition have the promise

of achieving systems which are superior to linear systems in a number of ways

such as better performance in terms of accuracy, f a u l t tolerance, resolution,

highly parallel architectures and cloker similarity to biological intelligent systems.

The nonlinear techniques proposed are in the form of multistage neural networks

in which each stage can be a particular neural network and all the stages operate

in parallel. The specific approach focused upon is the parallel, self-organizing,

hierarchical neural networks (PSHNN's). A new type of PSHNN is discussed such

tha.t the outputs are allowed to be continuous-valued. The perfo:rmance of the

resulting networks is tested in problems of prediction of speech and of chaotic

tinieseries. Three types of networks in which the stages are learned by the delta

rule, sequential least-squares, and the backpropagation (BP) algolrithm, respec-

tively, are described. In all cases studied, the new networks achieve better perfor-

marnce than linear prediction. This is shown both theoretically and experimen-

tally. A revised BP algorithm is discussed for learning input nonlinearities. The

advantage of the revised BP algorithm is that the PSHNN with revised BP stages

can be extended to use the sequential leastsquares (SLS) or the least mean abso-

lule value rule (LMAV) in the last stage.

A forward:backward training algorithm for parallel, self-organiizing hierarch-

iczcl neural networks is described. Using linear algebra, it is sllown that the

fol-ward-backward training of an n-stage PSHNN until convergence is equivalent

to the pseudo-inverse solution for a single, total network designed in the least-

squares sense with the total input vector consisting of the actual input vector and

its additional nonlinear transformations. These results are also valid when a sin-

gle long input vector is partitioned into smaller length vectors. A number of

advantages achieved are small modules for easy and fast learning, parallel imple-

mentation of small modules during testing, faster convergence rate, better numer-

ical e r r~ r~ reduc t ion , and suitability for learning input nonlinear transformations

by the backpropagation algorithm. Better performance in terms of deeper

minimum of the error function and faster convergence rate is achieved when a

single BP network is replaced by a PSHNN of equal complexity in which each

stage is a BP network of smaller complexity than the single BP network.

CHAPTER 1

INTRODUCTION

1.1. Introduction

Linear signal processing is useful in many applications and relatively simple

from conceptual and implementational view points, but there are still many

applications in which nonlinear techniques of signal processing ;are effective.

No:nlinear filters are very useful in modeling biological phenome~la (KaPo851,

myoelectrical signal processing [JaMF84], image processing and several other

areas [AgErQl]. The method of adaptive polynomial filters which use Volterra

series expansion was discussed by Mathews [Mathgl]. The Volterria filters with

large enough order terms can approximate complex nonlinear systems; the

disadvantage is large computational complexity and training time. Some neural

networks can be characterized as nonlinear adaptive filters. lJsing neural

networks, one can reduce the computational and the implementational

cornplexity of adaptive polynomial filters. In this thesis, the spec'ific approach

focused upon for the purpose is the parallel, self-organizing, hierarchical neural

net,works.

Parallel, self-organieing, hierarchical neural networks (PSHNN's) are

multistage networks in which stages operate in parallel rather t:han in series

du:ring testing [ErHogO], [ErHoII]. The PSHNN is self-organizing in. the sense of

nu:mber of stages. Each stage is a particular neural network referred to as the

stage neural network (SNN). At the output of each SNN in previous PSHNN's,

there is an error detection scheme which allows acceptance or rejection of input

vt:ctors. If an input vector is rejected, it goes through a nonlinear transformation

before being inputted to the next stage. Only those input vectors which are

rejected by present stage are fed into the next stage after nonlinear

tl*ansformations. The PSHNN has many attractive properties. The experiments

performed in comparison with backpropagation training indicated the

superiority of the new architecture in the sense of classification accuracy,

training time, parallelism and robustness [HonggO].

The PSHNN's as developed previously assumed quantieed or continuous-

valued inputs and quantized, say, binary outputs. In this thesis, a new type of

F'SHNN is discussed such that the outputs are allowed to be continuous-valued

[ErDegll], (ErDe9121. In order to achieve this, all the input vectors are fed into

ILII the stages after nonlinear transformations. The resulting networks are

zrpplied to the applications of predicting speech signals and simulating chaotic

z~ystems. The PSHNN's with continuous inputs and outputs are both

t.heoretically and experimentally shown to make the square error sum (SES)

:3maller than that of linear filters [ErDeQll], [ErDe912]. It is aJso shown that

,any input nonlinear transformation helps the system to achieve smaller SES

than one-stage filters. During testing, the speed of processing with the PSHNN's

are almost the same as with the one stage networks. In real applications, the

square error sum we get by using the delta rule or backpropagation a t each

stage of the PSHPN is based on a suboptimal leastsquare solution. The

suboptimal error reduction property is derived in Chapter 2. We find that the

error reduction .property still holds when the delta rule is used (ErDe9121.

Even though any kind of ir~plit nonlinearity guarantees better perfor~narlce

over a one-stage network, how to optimize the nonlinearities remain an open

research issue. In this thesis, a revised backpropagation (RBP) network is

proposed for learning input nonlinear transformations (NLT's) [ErlDe912]. The

RB:P algorithm consists or two training steps, denoted as step I and step 11,

respectively. The RBP is the same as usual backpropagation IRurne881 during

step I. During step 11, we fix the weights between the input layer and the hidden

layers, but retrain the weights between the last hidden and the output layers by

the delta rule. There are several reasons why the RBP network may be

preferable over the usual network with the B P algorithm. The first advantage is

that the algorithm used during step I1 of RBP can be extended to satisfy other

criteria such as the absolute error. The second reason is that the RBP algorithm

allows faster learning. For this purpose the gain factor is chosen large for

learning the input NLT during the first step, and the gain factor is reduced for

fine training during the second step.

In adaptive signal processing, the sequential leastsquares algorithm (SLS)

allows each input sample to be used without the need for previous i:nput samples

[Grau84]. One advantage of the PSHNN with linear output nodes is that the

SLS algorithm can be used [ErDegll]. This is generally not possible with other

multistage neural networks. Sequential learning allows recursive updating of

weight vectors in terms of the previous weight vectors, and the present input.

Foir real-time signal processing, the SLS algorithm is essential. In Chapter 3, the

PSHNN with the RBP stages and the SLS algorithm during st'ep I1 is also

discussed [DeEr922]. If a large block of N da t a points is being processed by the

SLS or the least mean square (LMS) algorithm, we can choose the first K data

poi.nts of the block (K << N) t o learn the input NLT a t each stage of the

PSHNN by the RBP. This technique can be repeated every N d i h points. In

this way, short-time quasistationary signals like speech can be processed in real

tirne.

In Chapter 2, we also discuss further error reduction in an n-stage network

by circularly transmitting the remaining error through the stages a number of

times until convergence IDeEr9lJ. Another important technique we propose in

Chapter 4 is called the PSHNN with forward-backward training [DeEr921].

Asymptotic properties of the PSHNN with forward-backward training are

discussed on a rigorous mathematical basis, in addition to providing additional

e~rperimental results. It is shown that the forward-backward training of an n-

stage PSHNN until convergence is equivalent to the pseudo-inverse solution for

a single, total network designed in the least-squares sense with !,he total input

vector consisting of the actual input vector and its additional nonlinear

t:ransformations. These results are also valid when a single long input vector is

partitioned into smaller vectors. The suboptimal asymptotic properties of the

F'SHNN's due to the use of the delta rule @re also proved in Chapter 4.

Among deterministic optimi~ation techniques, there is a method called the

c.oordinate-descent algorithm (Luen841. Given a pth order weight vector

W=(wlw2 wp), descent with respect to the coordinate wi rneans that one

minimizes the cost function f(W) with respect to wi, with other weight values

jixed. Thus, changes in the single weight wi are allowed in seeking a new and

lbetter weight vector W. The convergence rate of the coordinate-descent

,algorithm is usually slower than steepest descent. There is a simiilar phenomenon

when the PSHNN with forward-backward training is comparecl to a one-stage

total network. If we divide the linear input vectors of length p into p segments,

then we can use a pstage PSHNN with forward-backward training (each stage

with only one weight). The convergence rate of p-stage PSHNN with forward-

backward training is usually slower than the one-stage network with p inputs.

The PSHNN with forward-backward training can divide input vector into

arbitrary segments with arbitrary length segments. For example, in function-link

net,-works with higher order terms, the input vector gets very long IPao891.

Usi:ng the PSHNN, we divide the input vector into a number of segments. Then,

we observe in many cases that the PSHNN with forward-backward training

converges faster than the function-link networks without partitioning. Beside

faster convergence rate, another advantage of the PSHNN's is that each stage is

much easier to implement than the function-link networks without partitioning.

Other criteria like least mean absolute value (LMAV) is superior to mean

square error (MSE) in some applications. The LMAV rule is robust to outliers in

a da ta set [Be1187]. In Chapter 5, the algorithm used during step 11 alf the RBP is

extsended to the incorporation of the LMAV rule [DeEr922]. We a.lso illustrate

another method which use the BP algorithm with forward-backward training to

learn input NLT's of the PSHNN. In this case, the interconnection weights

between the input and the hidden layers are allowed to change sweep by sweep.

The error reduction property by forward-backward training stated in Chapter 4

is laased on the fixed input NLT of each stage of the PSHNN in every sweep.

The PSHNN with BP stages and forward-backward training has different input

NLT at each stage and a t every sweep. We show the reason why the error

red.uction property still holds for this method in Chapter 5. Using this technique

of learning input NLT's, better performance in terms of deeper minimum of the

error function and faster convergence rate is achieved when a single BP network

is replaced by a PSHNN of equal complexity in which each st'age is a BP

network of smaller complexity than the single B P network.

1.2. Thesis Organization

This thesis consists of six chapters. Chapter 2 illustrates the background for

the model of the PSHNN with continuous inputs and outputs. Error reduction

property is discussed both with single and multivariate inputs and outputs. The

suboptimal error reduction property due to the use of the delta rule in practise

is proved. A revised B P algorithm is proposed for learning input NLT's. In

Chapter 3, we focus on incorporation of sequential learning. The PSHNN with

SLS algorithm during step I1 of the RBP is also discussed. We introduce an

algorithm called the PSHNN with forward-backward training and prove the

asymptotic properties, both with optimal and suboptimal least-squares, in

Chapter 4. Chapter 5 illustrates other methods of learning input NLT1s. The

RBP with the LMAV rule and the PSHNN with B P stages and forward-

backward training are discussed. Conclusions and further research issues are

presented in Chapter 6.

PARALLEL, SELF-ORGANZING,
HIERARCHICAL NEURAL NETWORKS

WITH CONTINUOUS INPUTS AND OUTPUTS

2.1. Introduction

Parallel, self-organizing, hierarchical neural networks (PSHNN's) are

multistage networks in which stages operate in parallel rather than in series

during testing IErHo901, [ErHoII]. The PSHNN's as developed previously assume

quamtized or continuous-valued inputs and quantized, say, binary outputs

[ErDegl:~.]. In this chapter, a new type of PSHNN is proposed such that the

out,puts are allowed to be continuous-valued. A revised bac:kpropagation

algorithm (RBP) is discussed for learning input nonlinear tra.nsformations

(MJT's) [ErDe912]. In order to achieve this, all the input vectors are fed into all

the stages after nonlinear transformations. The performance of the resulting

network is studied in the application of predicting speech signal !samples from

past samples.

Given a linear discrete-time system, the object of linear prediction is to

estimate the output sequence from a linear combination of tbe past input

samples. There are several ways to compute LPC (linear predictive coding)

coefficients. One way is to solve the autocorrelation equations to find the LPC

caefficients [Pars86]. Another way ia by using the linear delta rule learning

allcorithm in a one-stage network (Rume881.

The PSHNN is both theoretically and experimentally shown to make the

mean square error (MSE) smaller than with linear prediction. I t is also shown

that any input nonlinear transformation helps the system to achieve smaller

mean square error than the MSE with linear prediction. By implementing the

PSHNN stages in parallel, the speed of processing with several stages is almost

the same as with one stage.

The chapter consists of 7 sections. In Sec. 2.2, the system model with a

univariate output signal is discussed. The error reduction properties of the

system are proved in Sec. 2.3. The results are generalized to a multivariate

output signal in Sec. 2.4. The suboptimal error reduction property due to the

use of the delta rule is derived in Sec. 2.5. The experimental results testing the

model and the theory of the preceding sections with speech data are discussed in

Sec. 2.6. So far the input nonlinear transformations are assumed to be known

and constant. In Sec. 2.7, we describe how to learn the input NLT's by a revised

backpropagation (RBP) network. Simulation results of learning input NLT's by

the RBP are also given in this section.

2.2. System Model with Univariate Output Signal

The new PSHNN architecture proposed is shown in Fig. 2.1. In this

section, we will assume a single output. SNN(i) represents the ith stage neural

network which is trained by using the delta rule as discussed below. X(n) is the

input vector sequence, and d(n) is the desired output sequence. X'(n), Y(n) and

Z(n) are obtained by nonlinear transformations NLT1, NLT2 and NLT3 of X(n),

respectively. NLT1, NLT2 and NLT3 are all different.

After SNNl is trained with the delta rule, the error signal is

e , (n)=d(n)-o, (n) .

We use e l (n) as the desired output of SNN2, and Y(n) as the input signal to

train SNN2 by the delta rule. The error signal for the second stage i~s

After SNN2 is trained, we use e2(n) as the desired output of SNN3 to train

SKN3 by using the delta rule. This process of adding stages is continued until

the final error is negligible with white noise properties. Assuming three stages,

the final output is

The delta rule is identically used in all the stages. For example, in the first

sta.ge, the sum of squared error minized by the delta rule is given by

a l , a 2 ,% are the weights to be learned.

Fii-st, SNNl generates the output ol(n) corresponding to the input vector

X(n)=[x(n-1), x(n-2), ... ,x(n-p)]. The value of a;, (i=l , ...,P) is modified a t each

iteration according to

Ak%=rl(d(k)-ol (k))x(i) 1 (2.3)

where q is the gain factor of SNN(i).

The iterations are continued un ti1 Ak ai becomes negligible. The procedure

described above for the first stage also applies to the succeeding stages. The final

error signal er(n) is

with of (n)=ol (n)+02(n)+03(n) .
In Fig. 2.1, i t is observed that

01 (n)=d(n)-e,(n)

02(n)-1 (n)--z(n)

03 (~) -2 (~)*3(~)

=> ef (n)=e3(n). (2 .5)

Let the error vectors for the first, second, and third stages be the following :

el =(el (l),e1(2), , . . ,el (41,

ez=(e2(1)*e2(2), . . ,e2(n)),

e3=(ea(l),e3(2), . . ,e3(n)).

We define

I Ier I 12=1 Ie3 I I24<e3a3>.

We prove (lei 1 I2LI le2 1 I2LI le3 I I f in sections 2.3 and 2.4.

2.3. Error Reduction

In order to prove the properties of error reduction, we will first consider a

two-stage PSHNN as shown in Fig. 2.1, and then generalize the properties to n

stages. Assuming m training input vectors of length p and NLTl to be the

identity operator (X(n)=X1(n)), we define

t
W, = [a1 a2 a,]

t
W2 = [bl b2 . . b,] .

X and Y are m X p matrices. Each row of X or Y represents input vector of

SNNl or SNN2, respectively. D is the desired output vector of length m. W1 and

W1 are vectors of length p. W1 and Wp are the weight vectors of SNNl and

SNN2, respectively. The elements al ,a2 . ,ap in W1 are actual.ly the LPC

coefficients. Usually rn is greater than p. Using the delta rule to train W1 and

Ws! corresponds approximately t o finding the leastsquares solution to the

equation

The leastsquares solution is [Erso88]

where X+ is the pseudo-inverse of X.

The output of SNNl is 01 , which can be expressed as

The error vector of SNNl is

We define AbXX', which is positive semidefinite [DuHa73]. A is known as the

projection operator.

The squared error (lei I I Z is given by

Since (I-A) is symmetric and idempotent [Stra86],

I lei I I Z = ~ ~ (1 - A) D . (2.11)

For SNN2, the input vector matrix is Y, and the desired output vector is el . A

similar derivation yields

mz = e l ,

-
WZ = Y+el,

Y+ is pseudeinverse of matrix Y, and therefore

o2 = YY'e, = Bel,

where we define YY+&3, which is also positive semidefinite. Then,

since (I-B) is also symmetric and idempotent.

Because B is positive semidefinite, we have

This reasoning can be continued to any number of stages. For example, we let Z

be the input vector matrix to stage 3, and define C ~ Z Z ' which is symmetric,

ideinpotent and positive semidefinite. We conclude that

I l e ~ 1 l 2 = e!(I-~)e2

< I le2 1 12 . -

Fmlm Eqs. (2.5), (2.6), (2.13), and (2.14), i t follows that

Iler1I2 = Ile31l2 L Ile21I2 I lleil12.

Let us again consider the twestage PSHNN. We can improve the results

dislcussed above further by forward-backward training of stages. After we have

trained W1 and W2, we use D'=ol +e2 as our new desired signal to 1,rain W1 and

W2 once more. The new trained weights for SNNl become

wt1 = X+ (0, *2),

So, the new output of SNNl is

since A is the projection operator, ol is already in the space spanned by A, and

thereby Aol=ol. The new error signal a t the output of SNNl is

Then, we get

The new desired output for SNN2 is et1+02. Following the same procedure, the

error vector for this stage is

L

el2 = (I-B)e11. (2.18)

And also,

I Jef2 1 = elT (I - ~) e ' ~ , (2.19)

=> I le12 I l 2 5 I Ie11 I 1 2 . (2.20)

From Eqs. (2.17) and (2.20), we conclude that

I le12 1 l 2 < 11% I 1 2 . (2.21)

Eq. (2.21) shows that we can make further error reduction by forward-backward

training in which the desired output of each stage is modified as the previous

output plus the remaining error from the previously trained stage, and the

training with the delta rule is repeated. It is straightforward to generalize the

procedure above for any number of stages.

2.4. System Model with Multivariate Output Signal

If the output signal di is not a scalar but a n X 1 vector denoted as Q, then

the desired output D becomes

W1 and W2 of Section 2.3 become

where a. and 4 are vectors of length n.
7

Now, D is an m X n matrix. W1 and Wq are p X n matrices. Based on the

same derivation as in Section 2.3, the output of SNNl is an output matrix O1

which is ideally

The error of SNNl is

El is an m X n matrix, and can be expressed as

We can define square error sum of stage 1 (ERR1) as

112, I 1 2 + 1 1% l 12+ . +I 1% I I2 .

Therefore,

Sinnilar to Eq. (2.10), we get

Let: ERR2 be the square error sum of SMV2. Repeating the same procedure, we

gel,

ERR2 = ~~(ET(I -B)E~) . (2.26)

Since B is positive semidefinite, we conclude that

16

The procedure discussed above can be easily extended to any number of stages.

2.5. Suboptimal Error Reduction Property

Assuming a two-stage network, the square error sum 1 Je2 (l 2 in Eq. (2.12),

is based on the optimal least-squares solution for the second stage. The least-

squares error vector e2 is in the null space of w'. Defining [l,kl le2 1 1 2 , Eq.

(2.12) can be written as

where PNjw~] is the projection matrix to the null space of YYt.

In reality, the square error sum we get by using the delta rule is based on a

suboptimal least-squares solution. The suboptimal square error sum denoted as

&, can be expressed as [Alex86], [Haykg l]

where m denotes the number of input vectors. tmi, is the minimum mean square

error (MSE) by solving the normal equation

where YN(n)=[y(n),y(n-l), . , y (n -~+ l)] t , and N denotes the number of

weights of SNN2 of Fig. 2.1; Ce,, is due to the actual LMS weights jitter, and is

sometimes referred to as the excess MSE. If we assume the sequence y(n) is

stationary and ergodic, then rntmi, in Eq. (2.29) will gradually approach the

optimal square error sum as m grows. Thus, approximating mCmi, by ti,,
Eq. (2.29) can be written a s

Ferc is proportional to gain 7 used in training. Choosing smaller 7 aclhieves better

suboptimal square error sum &,, but then the learning rate is slower. So, there is

a trade-off involved in choosing the value of 7.

We show below that the error reduction properties in Sec. 2:.3 still hold
A

with the square error sum CIS based on a suboptimal least-squares solution.

Referring to Eq. (2.12), we let col[YYt] denote the column space of [' k T t] and

wbtre Pcdlwtl is the projection matrix to the column space of [w'']. Then, the

output vector of the second stage based on the optimal least square-solutions is

[HoKu71], [RaMi7 1]

The output vector G2 based on the suboptimal least-squares solution Wf2 is

h2 =YWf2. (2.34)

Eq.. (2.34) shows that i52 is in the column space of [YY'], since it is generated by

the da ta matrix Y. Consequently, 62 can be written as

62 =PCOI(W'] el +b 1 (2.35)

where the vector b also belongs to the column space of [~ l "] . This is

gr~~phically shown in Fig. 2.2. The magnitude of b can be written as

~ ~ ~ ~ ~ ~ ~ ~ P c o ~ [Y Y ~] ~ I 1 1 9 (2.36)

where c satisfies O<c<l in practise since the delta rule is a good approximation

to the leastsquares solution. Thus, the error vector of SNN2 is

Since PNlnl le l and b are orthogonal to each other, the magnitude of i2 satisfies

I le2 1 I25I 162 I 1 2 = 1 I P N ~ Y Y ~ ~ ~ ~ 1 1 2 + 1 1b1 I*, (2.38)

I 162 1 1 2 < 1 I P N [Y Y '] ~ ~ 1 l 2 + 1 l P ~ ~ [~ ' l e l 1 l 2 = 1 Iel 1 1 2 - (2..39)

Thus, 1 1 l 2 is less than 1 lei 1 l 2 as long as c is less than 1, which is definitely

true in practise.

2.6. Experimental Results

The theoretical results discussed above were tested in the application of

speech prediction. For this purpose, 100 speech samples a t the sampling rate of

10 Khz were used to train and to test the network. A sliding window of length

between 4 and 10 data points were used to predict the next signal value

following the window.

Properly choosing the value of the gain factor 7 in Eq. 2.3 is important. If

we choose 7 too small, the convergence speed is too slow, but choosing too large

makes network oscillate. After trying different values of the gain factor, it was

found that using a value between 0.001 to 0.1 was reasonable. In our

experiments, we did not use momentum term.

We started with a two-stage PSHNN. The pointwise nonlinear

transformations used in the experiments were the following:

(A) SIGMOID 1 (Sig. I)

(B) SIGMOID 2 (Sig. 11)

Y(x) = 2 X sigmoid (x) - 1

(C) THRESHOLD 1 (Th. I)

y = 1 i f x z O

y = 0 i f x < O

(D) THRESHOLD 2 (Th.11)

y = 1 i f x > O

y = - 1 i f x < O

In the experiments, we first normalized the data in the range (-1, 11. In all

experiments, NLTl of the first stage is the identity operator, and 100 iterations

of training were used for the first stage.

Table 2.1 shows the results, with 10 weight values as a functiorr of the four

types of nonlinearities. We used q=0.001 in the case of Th.1, Th.[I and Sig.1,

and q=0.1 in the case of Sig.11. The second stage converged after 31DO iterations

with Th.1 and Th.11, and 100 iterations with Sig.1 and Sig.11. It is observed in

Table 2.1 that the two-stage PSHNN is always better in error performance than

the one-stage network, the best result being the case of Sig.1 non1i:nearity. It is

also observed tha t there is negligible error reduction in the case of Sig.II. This is

because the input data was normalized in the range (-1,1], and this causes X and

Y t o be almost the same in this range.

The comparative performances of the one-stage and two-stage networks as

a fi~nction of the length nc of the sliding window are shown in Table 2.2. The

input nonlinearity used was Th.11. It is observed tha t both net,works reach

maximal performance at about nc equal to 10. Again, in all cases, t'he two-stage

network has better error performance. In these experiments, the number of

iterations in the two stages were 100 and 300, respectively.

The experiments discussed above were extended to three stages, with nc=5

for each stage. The results are shown in Table 2.3. It is observed that further

reduction of error depends on the combination of nonlinearities used. An

important research issue is how to optimize the nonlinearities. An effective

approach is by using the revised backpropagation (RBP) network discussed in

the next section.

2.7. Learning Input Wnlinear Transformation by Revised Backpropagation

In the proceeding sections, it became clear tha t how to choose the input

nonlinearities for optimal performance is an important issue. In this section, a

revised backpropagation (RBP) network is proposed for this purpose.

The RBP network consists of linear input and output units and nonlinear

hidden units. One hidden layer is often sufficient. The hidden layers represent

the nonlinear transformation of the input vector. The output of the jth unit of

the kth layer is of the form

where Nk-l is the number of output nodes of the (k-1)th layer; Ok-l is the

output vector of the (k-1)th layer; Wk(.,.) are the weights connecting the (k-1)th

and the kth layers, and f(.) is the nonlinear activation function, assumed to be

differentiable and usually chosen monotone nondecreasing.

Fig. 2.3 is a two-stage PSHNN with RBP Stages. The RBP algorithm

consists of two training steps, denoted as step I and step 11, respectively. During

step I, the RBP is the same as the usual backpropagation (BP) algorithm

(Rume881. During step 11, we fix the weights between the input layer and the

hidlden layers, but retrain the weights between the last hidden anti the output

1ayc.r~ by the delta rule.

Each stage of the PSHNN now consists of a RBP network, except possibly

the first stage which can be learned by the delta rule alone, with NLTl equal to

the identity operator. In this way, the first stage can be considered as the linear

part of the system.

There are a numbei of reasons why the two-step training described above is

preferable over the usual training with the BP algorithm. The first reason is

tha t it is possible t o use the PSHNN with RBP stages together with the SLS

alglorithm or the delta rule. For this purpose, we assume that the signal is

reasonably stationary for short time duration. Thus, the weights between the

input and the hidden layers of the RBP stages can be kept constant during such

a time window. Only the last stage of the RBP network is then made adaptive

by the SLS algorithm or the delta rule, which is much faster than the BP

algorithm requiring many sweeps over a data block.

The second reason is tha t the two-step algorithm allows falter learning.

During the first step, the gain factor is chosen rather large for fast learning.

During the second step, the gain factor is reduced for fine training. The end

result is considerably faster learning than with the regular B P algorithm. It can

be argued tha t the final error vector may not be as optimal as the error vector

with the regular B P algorithm. We believe tha t this is not a problem since

successive RBP stages compensate for the error. ks a matter of fact,

co~nsiderably larger errors, for example, due to imperfect implementation of the

inlmrconnection~ weights and nonlinearities can be tolerated due to error

compensation [ErHoII].

The results of the computer experiments carried out with the same speech

data are shown in Table 2.4. In these experiments, the length of the input vector

was five; the gain factor was 1.0 in step I and 0.03 in step 11; tbe number of

iterations was 1000 in step I and 100 in step 11. I t is observed in Table 2.5 that

the best performance is obtained with four bidden units. It is also observed that

the error performance is considerably better than the results in the previous

tables with fixed NLT's.

Table 2.1. Performance of One-Stage and Two-Slage PSHNN as a Function
of Input Nonlinearities (err1 = (lei 1 1 2 , err2 = 1 (e2 (l 2).

Table 2.2. Performance of One-Stage and Two-Stage PSHNN's as a Function
of the Length of the Weight Vector When the Input Nonlinearity

2 is ~ h . 1 1 (err] = I Jel 1 I , err2 = 1 le2 1 l 2).

- - -

square error sum

Table 2.3. Performance of One-Stage, Two-Stage and Three-Stage PSHNN's
as a Function of Input Nonlinearities (errl= 1) e ,) I 2 , err2=
1le2Il2, err3= lle3Il2 1.

Type of NLT

Sig.11

Sig.11

Sig.11

square error sum Number of Iterations

loo

100 500

Table 2.4. Performance when the Input NLT is Learned by RBP
(errl=l lei I I2,err2=I le2 1 I2,err3=l lea I I2,err4=l le, 1 12).

Number

of Hidden

Nodes

square

error sum

err1

err2

err3

err4

2

step I

2.1369

2.1047

1.6779

step I1

2.1352

2.1347

2.0974

1.6646

3

step I

1.4857

1.1818

1.0795

4

step I1

2.1352

1.4625

1.1357

1.0731

step I

1.2191

1.1675

1.0164

5

step I1

2.1352

1.1917

1.1697

0.9790

step I

1.8991

1.6982

1.3681

-

step 11

2.1352

1.8333

1.5758

1.3527

Figure 2.1. Block Diagram for a Three-Stage PSHNN.

col [YYt]

Figure 2.2. Representation of Suboptimal Solution.

Second RBP Stage

I Delta Rule I I

Figure 2.3. Two-Stage PSHNN with RBP Stages.

CHAPTER 3

INCORPORATION OF SEQUENTIAL LEAST-SQUARES

3.1. Introduction

One advantage of PSHNN is that the sequential leastsquares (SLS)

algorithm can be used for learning. This does not seem possible with other

multistage neural networks.

The leastsquares solution discussed in Chapter 2 is commonly referred to

as batch processing leastsquares because the data D=(dld2 . . . dm) are

processed simultaneously [Sore85]. If new data d,+l are to be processed after

having determined an estimate based on the data D, it is necessary to

completely reprocess the old data with previous neural networks. To avoid this

inefficient procedure, we need to consider the determination of the leastsquares

estimate from an estimate based on D and the new data dm+1 without explicitly

using D in PSHNN.

In adaptive signal processing, the SLS algorithm allows each input samples

to be used without the need for previous input samples. In real-time adaptive

signal processing, it is not possible to use a batch method with long training

time, and the SLS algorithm is essential. In this chapter, the algorithm used

during step I1 of the RBP is extended with the incorporation of the SLS. In this

way, the RBP' networks with the SLS can be used to process shorttime

stationary signals in real time.

The chapter consists of 4 sections. In Sec. 3.2, the PSliNN wilh the SI,S

algclrithm is discussed. The RBP network with the SLS is proposed in Sec. 3.3.

Experimental results are provided in Sec. 3.4.

3.2. Incorporation of Sequential Learning

In Chapter 2, we found optimal solutions for the weight vectors in terms of

the generalized inverse of the input data matrix X. Sequential learning allows

recilrsive updating of weight vectors in terms of the previous weight vectors, and

the present input. In this way, it is not necessary to store past data vectors in

memory.

It can be shown that the SLS algorithm reduces to the following set of two

recursive equations [Ke1190] [Grau84].

Wl (r) = Wl (r-I) + P,X,(x, - XTWI (r-1)) ,

Heire X, is the column vector containing the input signals x , -~ to x , -~ , r is an

ind.ex representing the current input signal, and p is the number of LPC

coefficients. Wl (r) is the present estimate of LPC coefficients expressed as a

column vector, and Wl(r-1) is the previous estimate of this vector a t time r-1.

P, is a pXp matrix which corresponds to the rth iteration. The value of P, can

be calculated recursively by Eq.(3.2). Initially, W1 (O), which is a column vector,

is :ceroed, and the matrix Po is set equal to some constant product ,of the p by p

identity matrix [Mend73].

For SNN2, we replace X, by Y,, and the recursive SLS equations are

W2(r) = W2(r-1) + P,Yr(el (r) - Y:w~(~-1)) ,

Here el(r) is the error signal for the SNNl a t the present time, given by

el(r) = xr - ol(r) .

For SNN3, we replace X, by Z,, and get

W3(r) = W3(r-1) + PrZr(e2(r) - ~ 3 3 (r - l)) ,

Where e2 (')=el (r)-02 (r) .
The final output is

3.3. The RBP Networks with the SLS Algorithm

We have discussed the revised backpropagation (RBP) algorithm in

Chapter 2. Referring to Fig. 3.1, the RBP network with the SLS uses the

sequential least-squares during step I1 of the RBP algorithm. Thus, the weights

between the input and the hidden layers of the RBP stages can be kept constant

during such a time window. Only the last stage of the RBP network is made

adaptive by the SLS algorithm, which is much faster than the BP algorithm

requiring many.sweeps over a data block. For this purpose, we assume that the

signal is reasonably stationary for N data points. While the block of N data

points is being processed with the SLS algorithm, the first M << hI data points

of tfhe block can be used to train the stages of the PSHNN by the BP algorithm.

At the start of the next time window of N data points, the RB:P stages are

renewed with the new weights between the input and the hidden layers of the

RBP stages. This process is repeated periodically every N data points. In this

wait, nonstationary signals which can be assumed to be stationary over short

tim.e intervals can be effectively processed.

3.4. Experimental Results

We experimented with tw-stage PSHNN's using the SLS learning

algorithm. The nonlinear transformations used in the experiments are the same

as in Chapter 2. The error performance results are shown in Tablea 3.1 and 3.2.

Previous conclusions are again valid in this case. Another observaCion is that it

is necessary to optimize the networks both in terms of the length of the weight

vectors and the number of stages.

Fig.3.2 through Fig.3.4 show the prediction results with sequerltial learning.

The prediction was started after 7 initial speech samples. Nonlineiarity of Th.11

was used and the length of the weight vector was 7. Figs. 3.2 and 3.3 show the

original speech signal versus the predicted speech signal with onestage and

tw-stage networks, respectively. Fig.3.4 shows the prediction error with the

same networks. These results show that the tw-stage network with SLS

lecvning has better prediction performance than the traditioilal onestage

network with SLS learning. Since the two stages are implemented i:n parallel, the

gains are achieved with almost the same processing time as the one-stage

network.

The simulations in Table 3.3 and Table 3.4 used a RBP stage with the SLS

rule in place of the second stage of the PSHNN of the previous experiments. In

these two simulations, the RBP networks had 5 input units, and 1 output unit;

five hidden nodes were used in Table 3.3 and four hidden nodes in Table 3.4.

The gain factors used during step I were 0.5 in Table 3.3 and 1.0 in Table 3.4.

Tables 3.3 and 3.4 show that the performance of learning input NLT2 by the

RBP stage is better than any pointwise NLT2.

Figs. 3.5 thru 3.7 show the prediction results with sequential learning. The

prediction was started after 5 initial speech samples. Th.n was used as the

nonlinearity and the length of the sliding window was 5. Figs. 3.5 and 3.6 show

the original speech signal versus the predicted speech signal with the one-stage

and the two-stage networks, respectively. Fig. 3.7 shows the prediction error

with both networks. These results also show tha t the two-stage network with

SLS learning has better prediction performance than the traditional one-stage

network with SLS learning. Fig. 3.8 shows the original versus the predicted

signals of the twestage PSHNN with the FU3P and the SLS rule in the second

stage and 1000 iterations used during step I of RBP. Fig. 3.9 shows the

predicted error of the two-stage network with Th. II pointwise NLT2 versus the

predicted error of the two-stage network with the FU3P and the SLS rule in the

second stage.

Table 3.1. Nonlinear Speech Prediction Performance of One-Stage and Two-
Stage PSHNN's Trained with SLS Learning (nc=7, err1 =))el)) * ,
err2= Ile211Z 1.

Table 3.2. Nonlinear Speech Prediction Performance of One-Stage and Two-
Stage PSHNN's Trained with SLS Learning (nc=5, errl= I Ie, ((*,
err2= l l ez l lZ 1.

Table 3.3. Performance of a 5 Hidden Unit TweStage PSHNN with the RBP
and the SLS Rule in the Second Stage.

of

training

500

600

700

800

900

lo00

square error sum

step I

1.4783

1.4042

1.3387

1.2748

1.1935

1.1189

step I1

1.4711

1.4002

1.3360

1.2718

1.1903

1.1178

Table 3.4. Performance of a 4 Hidden Unit Two-Stage PSHNN with the RBP
and the SLS Rule in the Second Stage.

square error sum

Second RBP Stage

I

Figure 3.1. Two-Stage PSHNN with RBP Stages and the SLS Alglorithm.

- -

0 2

SNN2 NLT2

SLS

1

Y

I I I I
20 40 60 80 I

msec

Figure 3.2. Original Speech Signal (solid line) and the Predicted Speech Signal
(dotted line) with One-Stage HNN Trained with the SLS
Algorithm.

20 4 0 60 80 100
msec

Figure 3.3. Original Speech Signal (solid line) and the Predicted Speech Signal
(dotted line) with Two-Stage HNN Trained with the SLS
Algorithm.

I I I I
20 40 60 80 1

msec

Figure 3.4. The Error Signals with One-Stage HNN (solid line) and TweStage
HNN (dotted line) Trained with the SLS Algorithm.

20 40 60 80 100
msec

Figure 3.5. Original Speech Signal (Solid Line) and the Predicted Speech
Signal (Dotted Line) with One-Stage PSHNN Trained with the
SLS Algorithm (nc=5).

20 4 0 60 80 100
msec

Figure 3.6. Original Speech Signal .(Solid Line) and the Predicted Speech
Signal (Dotted Line) with Two-Stage PSHNN Trained with the
SLS Algorithm (nc=5).

Figiure 3.7. The Error Signals with One-Stage PSHNN (Solid Linie) and Two-
Stage PSHNN (Dotted Line) Trained with the SLS Algorithm
(nc=5).

I

0.:; -

0 -

-O.!i -

-:1 I I I I
20 40 60 80 100

msec

msec

Figure 3.8. Original Speech Signal (Solid Line) and the Predicted Speech
Signal Dotted Line) with TweStage PSHNN with the RBP and
SLS Ru \ e on the Second Stage (nc=5).

I I I I
20 4 0 60 80 100

msec

Figure 3.9. The Error Signals with Two-Stage PSHNN (Solid Line) with
NLTB=Th.II and Two-Stage PSHNN Line:) with the RBP
and the SLS Rule on the Second Stage

CHAPTER 4

PARALLEL, SELF-ORGANIZING,
HIERARCHICAL N E W NETWORKS

WITH FORWARD-BACKWARD TRAINING

4.1. Introduction

In Chapter 2, we discussed the generalization of parallel, self-organizing,

hierarchical neural networks (PSHNN's) to continuous inputs as well as

continuous outputs [ErDe912]. The block diagram for such a 3-stage PSHNN is

shown in Fig. 2.1. It was shown that the stages are generated by nonlinearly

transforming input vectors, and each new stage attempts to correct the errors of

the previous stage. It was also discussed that further error reduction in an n-

stage network is possible by circuiariy transmitting the remaining error through

the stages a number of times until convergence. Running through all the stages

once can be called one sweep. At each successive sweep, the de~ired output of

each stage is modified as the previous output of the stage plus the remaining

error from the previous stage. The first stage receives the error from the last

s8tage. Both in Ref. (ErDe9121 and in this Chapter, the output nodes are assumed

tx, be linear.

In this chapter, forward-backward t~aining of n-stage PSHNN's are

introduced and discussed on a rigorous msbhematicaI basis, in addition to

providing experimental results. The results are actually valid for all linear

leastsquares problems if we consider the input vector and the vectors generated

from it by nonlinear transformations as the decomposition of a single, long

vector. In this sense, the techniques discussed represent the decomposition of a

large problem into smaller problems whicb are related through errors and

forward-backward training (DeEr9211. Generation of additional nodes a t the

input is common to a number of techniques such as generalized discriminant

functions [DuHa73], higher order networks (GiMa871, and function-link networks

[Pao89]. After this is done, a single total network can be trained by the delta

rule [WiHo60]. At convergence, the result is approximately the same as tbe

pseudeinverse solution, disregarding any possible numerical problems

IErDe9121. The PSHNN's are different because the single total network are

replaced by a number of subnetworks.

The main result in this chapter is that forward-backward training of an n-

stage network until convergence is equivalent to the pseudeinverse solution for

a single total network with the total number of input nodes if each stage is

optimized in the sense of leastsquares. There are a number of advantages in

achieving the pseudeinverse solution in this fashion. The most obvious

advantage is that each stage is much easier to implement as a mmode to be

trained than the whole network. In addition, all stages can be processed in

parallel during testing. If the complexity of implementation without parallel

stages is denoted by f(N) where N is the length of input vectors, the parallel

complexity of the forward-backward training algorithm during testing is f(K)

where K equals N/M with M equal to the number of stages.

The chapter consists of six sections. In Sec. 4.2, the forward-backward

training algorithm is described in detail. In Sec. 4.3, the asymptotic properties

with a twestage network are discussed. These properties are extended to n-stage

networks in Sec. 4.4. The suboptimal asymptotic properties due to the use of

the delta rule during training are proved in Sec. 4.5. Experimentla1 results are

provided in Sec. 4.6.

4.2. PSHNN with Forward-Backward Training

The system model is shown in Fig. 2.1. In this section, a single output is

ass,umed. In Fig. 2.1, SNN(i) represents the i-th stage neural network. In this

chispter, the stage neural network is assumed to be trained by the delta rule

[R.ume88]. The output nodes are assumed to be linear. X(n) is the input vector

sequence; d(n) is the desired output sequence; X'(n), Y(n) and Z(n) are obtained

by different nonlinear transformations NLT1, NLT2 and NLT3.

We first consider a twestage PSHNN, and then generalize the properties to

n stages. Assuming m training vectors of length p and NLTl in Fig. 2.1 to be

the identity operator (X(n)=X'(n)), we define

X and Y are m X p matrices. Each row of X or Y represents a n input

vector of SNNl or SNNZ, respectively. D; is the desired output vector of length

m. Using the delta rule to train SNNl corresponds ideally to finding the least

squares solution for X W ~ = D ~ . The output of SNNl is oi which can be

expressed as [DeErgl]

where X+ is the generalized inverse of X, and the projection operator A is XX',

which is positive semidefinite.

The error vector of SNNl is

We use e f as the desired output for SNNZ, to be also trained by the delta rule.

The output of SNNZ after training can be expressed as

where we define w + ~ B , which is also positive and semidefinite. Then,

With two stages, o!+o: is the output, and the system error q is

er =D -(o: + ~ i) = e k . (4.5)

The above results can be considered to be the first sweep in a number of sweeps

of forward-backward training. In the second sweep, the desired vector for SNNl

is set equal to

The new output of SNNl is

of =A(O I +el)-; +Aei, (4-7)

because A is the projection operator, o i is in the space spanned by A, and

Ao1':=0,'.

The new error signal for SNNl is

After a straightforward derivation, we get

If we terminate the training a t this point, the system output is o:+oi.

Therefore e: is just the error of the system. If we continue to t r a i n s ~ ~ 2 , the

new desired signal for SNN2 is

D$O;i-e:. (4.10)

The output of SNN2 becomes

O$=BD;=~;+B~:,

since oi is in the space spanned by B.

The error vector for SNN2, is

Using the same derivation leading to Eq.(9), we get

eg =D -(of +og),

where ef is the error signal of the system a t the end of the second sweep.

At the nth sweep, the desired output signal for SNNl is

D;=O;-'+e;-'.

After training, the output of SNNl is

0: =AD~=o~- ' +Ae;-'.

The error vector is

e; =D; -of =(I-A)e;-'.

The error vector can also be written as

ef =D: -(o; $0 ; - I) .

At the nth sweep, the desired signal for SNN2 is

D;=o;-'+e;.

The output is

of =BD;=o;-' +Be;.

The error is

e;=Df-of=(I-B)ey,

Again, we note that

e;=D: -(of b;),

where ef is the system error after the nth sweep.

From Eq. (4.2) and Eq. (4.4), we get

I lei 1 1 2 = (~ :) t (~ - ~) (~ :) ,

Frorn Eq.(4.8) and Eq.(4.12), we get

I 14 1 12=(e:)t(~-~)(e:)Ll 14 1 1 2 , (4.24)

I lei 1 12=(e!)t(~-~)(e:)<l 1,: 1 I * , (4.25)

From Eq.(4.16) and Eq.(4.20). we conclude that

1 le: 1 12=(ei-1)t(1-~)(e$-1)<l lei-' 1 1 2 , (4.26)

I 1.; 1 12=(e;)t(~-~)(e?)<l lei' 1 1 2 . (4.27)

Therefore,

1 2 I leg 1 1211 lei' 1 I25I 14-' 1 121 . . 51 lei 1l251 lei 1 12Ll lei 1 I (4.28)

We will see in the next section that

lim I lef 1 I 2 = l 14 l 2 , (4.30)
n+oo

where ((el l 2 is the square error sum of the function-link network which has the

same input NLT's as used in the PSHNN.

4.3. Asymptotic Properties of a Two-Stage PSHNN with
Forward-Backward Training

Consider a function-link network as shown in Fig. 4.1. Let X denote an

input vector, Y -be a nonlinear transformation of X and D be the d.esired output

ve'ctor. X and Y are mXn matrices, D is an mX1 vector, and 'W is a 2nX1

weight matrix.

Using the delta rule to train W corresponds approximately to finding the

leastsquares solution for

(X, Y) W =D ,

where (X,Y) denotes the concatenation of X and Y. The leastsquares solution is

W=(X,Y)+D,

where (X,Y)+ is the pseudo-inverse of (X,Y).

The output vector is

Therefore, the error vector is

If we use PSHNN with forward-backward training, Eqs. (4.2), (4.4), (4.8), (4.13)

and D: = D in this case lead to

We will need the following properties to prove the main theorem of this

section:

Property 1: The null space N(XXt+YYt) is equivalent to the intersection of the

null space N(XXt) and the null space N(YY~).

Proof:

,

(i)]?or any vector ~ € N (X X ~) ~ N (Y Y ')

i t ie obvious that y€N(XXt +YYt).

(ii) FOT any vector y ~ ~ (~ t + Y Y ")

=:> XXty=--Yyty

Therefore, y t~ ty=-y tYY'y

Since XX' and YY' are positive semidefinite

yev(XX') m d ;EN(YY~)

In addition, the following properties are needed:

Property 2: The projection operators PN(Xxl) and PN(wl) satisfy

lim (PN(xx')~N(w')) n = P ~ (n l) n ~ (~ ') I (4.39)
n+OC

which can be found in Nakano [Naka53]. This property tells us tha t the

projection not in the intersection of N(XX~) and N(YY~) will gradually vanish as

n goes to infinity. The projection in the intersection of N(XX~) and N(YY~) will

be preserved.

Property 3:

p ~ (r c ~) p ~ p u c ~) n ~ (w ~ ~) =PN(XXI)~N(WL) 9 (4.40)

which can be found in Hartwig and Drazin [HaDr82] and Nakano [Naka53].

Next, we will s ta te and prove the main theorem:

Theorem 1:

lim e:+' = lim e; 3e,
P+W D+W

lim eq-.
D+W

Proof:

T h e projection matrices are

(I - I U C +) & P N ~) ,

Cornparing Eqs. (4.31), (4.37) and (4.38), sufficient conditions for Eq. (4.41) and

Eq. (4.42) to hold are

Iim (I-XX+)[(I-YY+)(I-XX+)ID =[I-(X,Y)(X, Y)+ 1, (4.43) .
n + c c

lim [(I-YY+)(I-XX+)jD=[I-(X,Y)(X,Y)+]. (4.44)
n+cc

Using the projection operators, we get

[(I-YY+)(I-XX+) I D =(PN(w~)PN(xxL) In.

From Property 1, we have

N(XX')~N(YY')=N(XX'+YY')=N((X,Y)(X,Y)~).

Therefore,

P N (X X L) ~ (W L) =PN((x,Y)(x,Y)~ -

We know that

PN((x,Y)(x,Y)L) =lI-(X,Y)(X,Y)+ I

From Eqs. (4.39), (4.45), (4.46) and (4.47), we conclude that

Eq. (4.44) to be proved follows directly from Property 3:

The theorem proved above means that, as n grows larger, the error vectors

ey and e i approach the error vector e for the pseudoinverse solution if a single

total network was built without stages with the total input vector.

4.4. Asymptotic Properties for an N-Stage Network

When the number of stages is 2, forward-backward training is the same as

circular training discussed in Ref. [D e E r ~ l] . In the circular training algorithm

with n stages, after training SNN(n), we train SNN(1). In forward-backward

training, we will train SNN(n-1) after training SNN(n), followed by SNN(n-2)

and so on. From the first stage to the last stage, we have a forward path

training, and then from the last stage to the first stage, we have a backward

path training. One sweep training consists of a forward path and a backward

path training. We will call this training procedure the forward-backward traing

algorithm.

For the sake of brevity , we will discuss the 3-stage PSHNN. All the

properties of the 3-stage network can be derived for the n-stage network in the

same way. Referring to Fig. 2.1 and supposing X=X1, we define N ~ ~] = A ,

N[w~]=B, and N[ZZ~]=C to represent the null space of m), (YYt) and (zz~) ,
respectively. Mter the first stage is trained, the error vector is

e ; r = [P a] ~ , (4.48)

where PA is the projection matrix of A, and D is the desired output vector. The

superscript of the error vector denotes the number of sweeps, the Arabic number

on the subscript denotes the number of stages, and the letter "f" on the subscript

means forward path training. Following the same procedure as in Section 4.3,

we have

After training three stages in the forward path, we transmit the error of the

third stage to the second stage and modify the desired output of the second

stage in order to train the second stage, and get the error vector

~!~~=[PBPcPBPA]D, (4.51)

where the letter "b" in the subscript means backward training path. After

training the second stage, we train the first stage and get the error vcxtor

e :b=[PA~BPCPBPA]D. (4.52)

Now, the first sweep is over, and the second sweep starts.

Following the same procedure as above, we get the following error vectors

in the second sweep:

e:f=pA [P A ~ B ~ C ! P B ~ A] D

= [P A ~ B P A ~ B ~ A] ~

-:b,

After the nth sweep training, the error vector of the first stage becomes

e t b - t f + l = [~ A ~ B ~ c ~ B ~ A] n ~ . (4.58)

Similar to the derivation of Eq, (4.31), the error vector for a 3-stage

function-link network is

e=[I-(X,Y, Z)(X,Y, Z)+]D

=~PN(xxL+w~+zz~) ID, (4.59)

where N(xx'+YY'+zz~) denotes the null space of (xx~+YY'+zz~).

We also need the following properties:

Property 1.a: The null space N(XXt+YYt+zzt) is equivalent to the intersection

of the null space N(XXt), the null space N (w t) and the null space N(zzt).

Proof:

(i) For any vector a€N(XXt)n~(YY')nN(zZt) ,

it is obvious that ~EN(xx~+YY~+zz').

(ii) For any vector ~EN(xX'+YY~+ZZ~) ,

then (XXt +YY'+zz')~=o.

Therefore, at (xx~+YY~+zz~)~=o,

= > a t X X t a + a t ~ t a + a ~ ~ t a ~ .

Because (XXt), (YYt), and (ZZt) are positive semidefinite,

we have a t X X t a 4 , atYY'a=O and atzzta=O.

These imply ~ E N (x x ~) , ~ E N (Y Y ~) , and ~ E N (z z ~) . 0

Property 2.a:

lim (PAPBPcPBPA)'=PAypnc
D + c c

which was proved by Pyle [Pyie67].

From Eq. (4.59) and property l.a, we get

e = (P ~ (x x ~ + w ~ + z z ~)) D = (P A ~ ~ , ID. (4.61)

By using Property 2.a, Eq. (4.58) and Eq. (4.61), we obtain the main theorem of

this section:

Theorem 2:

lim eib=e.
n+oo

Since Property 2.a still holds for the intersection of n projection matrices, the

generalization of Theorem 2 to the n-stage PSHNN with forward-backward

training is obvious.

The results of Theorem 1 of Sec. 4.3 is based on the two-stage PSHNN.

For the two-stage PSHNN, circular training is the same as t'he forward-

backward training. An interesting question is whether circular training gives the

same results as forward-backward training for the n-stage networks. This is

conjectured to be true since many experiments show that [Pyle67]

lim (PCPePA)n=PA,-pn,.
n+oo

Experimentally, we have also observed that circular training gives the same

resiults as forward-backward training.

4.5. Asymptotic Properties for the Suboptimal Solutions

In Sec. 4.4, we discussed the asymptotic property of PSHNN with forward-

backward training when each stage gives the exact leastsquares solution. In this

section, we generalize the asymptotic property to the suboptimal leastsquares

solution due to the use of the delta rule. We discuss the case of the two-stage

PSHNN, and the results can be easily extended to the n-stage PSHNN.

Assuming a two-stage network, the square error sum (le: 1 I * in Eq. (4.23) is

based on the optimal least-squares solution for the second stage. The least-

squares error vector e i is in the null space of [Wt]. Defining cl,sl lei 1 1 2 , Eq.

(4.23) can be written as

f,.=I l (~ - ~ +) e i 1 I 2 = I l P ~ (w t) e I 1 1 2 , (4.64)

where PN(yytJ is the projection matrix to the null space of Wt.

In reality, the square error sum we get by using the delta rule is based on a

suboptimal leastsquares solution. The suboptimal square error sum denoted as

6, can be expressed as [Alex86], [Haykgl]

where m denotes the number of input vectors. tmin is the minimum mean

square error (MSE) by solving the normal equation

E [Y N (~) Y N (~) ~] w N = E [~ : (n)y~(n) l , (4.66)

where YN(n)=[y(n),y(n-l), . ,y(n--~+l)]t , and N denotes the number of

weights of SNN2 of Fig. 2.1; c,,, is due to the actual LMS weights jitter, and is

sometimes referred to as the excess MSE. If we assume the sequence y(n) is

stationary and. ergodic, then rntmin in Eq. (4.65) gradually approaches the

optimal square error sum cl, as m grows. Thus, approximating rncmi, by El,,

Eq. (4.65) can be written as

teX,, is proportional to gain 77 used in training. Choosing smaller 7 achieves better
-

suboptimal square error sum ti,, but then the learning rate is slower. So, there

is a trade-off involved in choosing the value of q.

We show below that the error reduction properties derived in Sec. 4.2 still

hold in practise with the square error sum PIS based on a subo:ptimal least-

squares solution.

For the sake of brevity, we consider a two-stage PSHNN with NLTl being

the identity operator. Di is the desired vector for the first stage network in the

first sweep. The output vector of the first stage based on the optimal least

squiares solution is (HoKu711, [RaMi'll]

1
The output vector 61 based on the suboptimal leastsquares solutions Wtl is

written as

This shows that 8: €col[XXt~. 6; can be written as

6 : = ~ ~ ~ ~ ~ ~ ~ ~ ~ + b ~ , (4.70)

where the vector b; also belongs to the column space of [3Xt]. This is

gr;~phically shown in Fig. 4.2. The magnitude of b; can be written :as

I lbl 1 I*; 1 I ~ r n l p X ~] ~ ; 1 1 9 (4.71)

where c: satisfi.es O<C; <1 in practise. Thus the error vector of SNNl in the

first sweep is

6: is also the desired vector for the second stage network in the first sweep.

Referring to Fig. 4.3, and using the same procedure as above, we get the

1
suboptimal output vector b2 of SNNP in the first sweep as

where the vector b i belongs to the column space of [YY~], and the magnitude of

b l is

1 lb: I 1 l ~ c O l ~ n ' ~ ~ : I 1 (4.74)

where c; also satisfies O<C: <1 in practise. The error vector of SNN2 in the first

sweep is

Since ~ ~ ~ ~ t ~ i : and b: are orthogonal to each other, we get

1 2 I 16: I l 2 = 1 I P ~ ~ ~ G : I 1 2 + 1 1b2 I I

51 I P ~ ~ ~ ~ ~ ~ : I 1 2 + 1 I P ~ ~ ~ W ~ ~ ~ : I I ~ = I 14 I 1' . (4.76)

1
Thus, (10: 11' is less than 1 lh l (1 ' as long as ck is less than 1, which is definitely

true in practise.

-1 1
On the second sweep, the desired vector of SNNl is e 2 G 1 . Following the

same procedure as above, the suboptimal output vector 8; of SNNl in the

second sweep is found as

1 1
6: =P,~~XX~~ (62 -6l)+b:

=ti: + ~ , l ~ ~ G : + b : ,

and

2
where ~ ~ E C O I [X X '] ~ b:€collXXt] and 0<c;<l. The error vector i l of SNNl in

the second sweep is

2 1
The desired vector of SNN2 in the second sweep is GIG2. The suboptimal

oul.put vector 8: of SNN2 in the second sweep is

and

1
where b2~col [YYt] , b:~col[YY'], and 0<c:<l. The error vector 6: of SNN2 in

the second sweep is

Using Eq. (4.72) and Eq. (4.75), and letting A&N[XX~] ,B~~N[YY'] ; the

1
suboptimal error vector i l of the first stage in the first sweep becomes

1
The suboptimal error vector i2 of the second stage in the first sweep becomes

Using Eq. (4.79) and Eq. (4.84), the suboptimal error vector 6; of the first stage

in the second sweep becomes

6 :=(pApB)pA~: -pApBb; -pAbi-b; , (4.85)

2
where b : € c o l [~ ~ ~] . The suboptimal error vector i2 of the second stage in the

second sweep becomes

6: = (P ~ P ~) ~ D i -(PBPA)PBb -(PBPA)b: -pB b: -b: , (4.86)

where b €col [YY~].

Following the same procedure, the suboptimal error vector 6; of the first

stage in the nth sweep becomes

The suboptimal error vector 6; of the second stage in the nth sweep becomes

where b ~ ~ c o l [~] , and b \ ~ e o l ~ ~] for any positive integer i. Since the

directions of bil and bh are random, the magnitudes of the summation terms in

Eq. (4.87) and Eq. (4.88) are amall in the mean sense. Therefore, the first term

on the right hand side of Eq. (4.87) or Eq. (4.88) can be considered as the

dominant term in real-world applications. Then, the error reduction property of

Eq. (4.28) in Sec. 4.2 still holds for this suboptimal case.

In practise, if n is large enough such that (PBPA)"=PAm, and m>n, we

can rewrite Eq. (87) and Eq. (88) as follows:

and

, m
e2 ==e- (P ~ P ~) ~ - ~ P ~ ~ ~ - , (4.90)

k - r n - n + l k-rn-n+l

The error vector e in Eq. (4.89) and Eq. (4.90) is the vector in Eq. (4.31), which

is the optimal least-squares error vector of the function-link network as shown jn

Fig.. 4.1. We also see that no matter how big m is, there are at most n vectors in

each summation term of Eq. (4.89) and Eq. (4.90).

4.6. Experimental Results

The theoretical results discussed above were tested with a speech signal

sampled at 10 khz. 100 Samples were used to train the network by the delta

rulc!. The gain factor we used in the experiments was 0.001. No monlentum term

I used. The input pointwise nonlinear transformations used in the

experiments are the following:

(A) SIGMOID 1 (Sig. I) :(O<y<l)

(B) SIGMOID 2 (Sig. 11) : (-l<y<l)

y = 2 X sigmoid (x) - 1

(C]. THRESHOLD 1 (Th. I):

y = - 1 i f x L 0

y = O i f x < O

(D) THRESHOLD 2 (Th. 11):

y = 1 i f x > O

y = - 1 i f x < O

(E) SQUARE :

In the experiments,.we first normalized the input data in the range {-l,l}.

Five weights were used for each stage of a two-stage PSHNN. Ten weights were

used for the function-link network. The initial matrix of the network was set

equal to the covariance matrix of the input data.

Table 4.1 are the results of the function-link network with the ten weights

listed as a function of the five types of NLT's.

Tables 4.2 thru 4.6 are the results of the two-stage PSHNN with forward-

backward training. Table 4.2 is for Sig.1, Table 4.3 for Sig.11, Table 4.4 for Th.1,

Table 4.5 for Th.11, and Table 4.6 for the square NLT.

Tables 4.2 and 4.3 for Sig.1 and Sig.11 cases show that the PSHNN with

forward-backward training has more error reduction aod faster convergence rate

than the function-link network. With Th.11 and square NLT's, the PSHNN and

the function-link network are about the same both in error reduction and

convergence rate. With Sig.11 NLT, there is negligible error reduction both in

the PSHNN and the function-link network. This is because the input data was

normalized in the range {-],I), and this causes x and y to be almost the same in

this range.

Tables 4.7 and Table 4.8 are the results of the function-link network with

three-stage input vectors of length 5 concatenated as a total input vector to the

network. Tables 4.9 thru 4.11 show the error reductiori pcrforr~lancc of tile

corresponding three-stage PSHNN with forward-backward training, In the first

stage, 100 iterations were used during the first sweep, and 300 iterations were

used during the succeeding sweeps. The number of iterations of thle second and

the third stages were 500, and 900, respectively. In Tables 4.9, 4.10 ;and 4.11, the

notations used mean err l f = 1 leir 1 1 2 , err2f = I leir 1 1 2 , err3f = I leir 1 1 2 , and

14. I 4

err2b = (l e i b l 1'. The superscript 1 denotes the number of sweeps as in

Section 4.2. F rom Tables 4.7 and 4.8, we see tha t the convergence irate is rather

slow for the function-link networks. Comparing Tables 4.7 and 4.8 to Tables

4.9, 4.10 and 4.11, we observe t ha t PSHNN with forward-backward training is

superior to the function-link network in terms of both convergence rate and

error reduction.

Table 4.1. Performance of the Function-Link Network in Speech Prediction
(err=l lei 1 2) .

number of

iterations

1000

1000

lo00

600

1000

type

of NLT

Sig.1

Th.11

Sig.11

Th.1

Sqre.

err

2.1344

2.027

2.1291

2.0459

1.8862

Table 4.2. Performance of PSHNN with NLT Si .I in Speech Prediction B (errl=I lell I I2,err2=l lei I I).

n-th

sweep

n = l

n=2

n=3

err1

2.1353

1.8718

1.8460

err2

1.9336

1.8524

1.8416

of iterations

stage1

100

900

900

stage2

lo00

100

100

Table 4.3. Performance of PSHNNIwith NLT Sil.11 in Speech Prediction
(errl=I lei I I ,err2=l lei 1 I).

err2

2.1390

2.1385

-

n- th

sweep

n = l

n=2

n=3

of iterations

err1

2.1353

2.1343

2.1336

stage1

100

900

900

stage2

1000

100

-

Table 4.4. Performance of PSH,NN with NLT Th.1 in Speech Prediction
(errl=l lei I I2,err2=l lei [I 2) .

n-th

sweep

n=1

n=2

n=3

n=4 '

err2

2.0925

2.0585

2.0481

2.0448

err1

2.1352

2.0699

2.0514

2.0457

of iterations

stage1

100

900

900

900

stage2

200

200

200

200

Table 4.5. Performance of PSHNN2with NLT Th.11 in Speech Prediction
(errl=l lei I I ,err2=l lei 1 1 2) .

n-th

sweep

n = l

n=2

n=3

of iterations

err1

2.1353

2.0312

2.0034

stage1

100

500

600

err2

2.0282

2.0250

-

stage2

100

100

-

Table 4.6. Performance of PSHNN with NLT S uare in Speech Prediction
(errl=l lei I 12,err2=l lei t2).

n-th

sweep

n = l

n=2

n=3

n=4

err1

2.1353

1.8973

1.8872

1.8864

err2

1.9326

1.8896

1.8867

1.8863

of iterations

stage1

100

900

900

900

stage2

600

600

600

600

Table 4.7. 3-Stage Function-Link Network as a Function of Input
Nonlinearity with 900 Iterations (err= 1 l e J 1 2) .

Table 4.8. &Stage Function-Link Network as a Function of Input
Nonlinearity with 2900 Iterations (err= (le 1 12) .

err

2.0167

1.9980

1.8818

Type of NLT

Stage I1 Stage 111

Sig.1

Th.1

Square

Th.11

Sig.1

Sig.1

err

2.0149

1.9906

1.8811

Type of NLT

Stage I1 Stage I11

Sig.1

Th.1

Square

Th.11

Sig.1

Sig.1

Table 4.9. Performance of PSHNN with NI,Tl Sig.1 & NI,'I12 'I'h.11
in Speech Predictio11.

Table 4.10. Performance of PSHNN with NLTl Th.1 & NLT:! Sig.1
in Speech Prediction.

n-th

Sweep

Training

n= 1

n=2

Square Error Sum

n-th

Sweep

Training

n = l

n=2

err lf

2.1353

1.8122

Square Error Sum

err2f

1.9377

1.7584

err2b

1.8957

-

errlf

2.1353

1.8750

err3f

1.8393

1.7543

err2b

1.8758

-

err2f

2.0924

1.8592

err3f

1.9210

1.8264

Table 4.1 1. Performance of PSHNN with NLTl Square & NLTB Sig.1
in Speech Prediction.

n-th

Sweep

Training

n = l

n=2

Square Error Sum

errlf

2.1353

1.6705

err2b

1.6812

err2f

1.9330

1.6631

err3f

1.6973

1.6399

Figure 4.1. Block Diagram of a Function-Link Network.

col [XX']

L

Figure 4.2. Graphical Representation of Suboptimal Solution for SNNI.

Figure 4.3. Graphical Representation of Suboptimal Solution for SNN2.

CHAPTER 5

LEARNING INPUT NONLINEAR TRANSFORMATIONS

5.1. Introduction

In Chapter 2, we discussed the generalieation of the PSHNN's with

continuous input and output (ErDeBll]. I t was shown that stages are generated

by nonlinearly transforming input vectors, and each new stage attempts to

correct the errors of the previous stage. I t is also shown that any input nonlinear

transformation helps the system achieve smaller mean square error (MSE) than

the MSE with linear prediction. By implementing the PSHNN stages in parallel,

the speed of processing with several stages is the same as with one stage. The

suboptimal error reduction property was also proved. An important research

issue is how to minimiee the input NLT's. We proposed an effective approach

called the revised backpropagation (FU3P) network (ErDe9121. The RBP

algorithm consists of two training steps, denoted as step I and step II,

respectively. During step I, the FU3P is the same as the usual backpropagation

(BP) algorithm. During step 11, we fix the weights between the input layer and

the hidden layers, but retrain the weights between the last hidden and the

output layers by the delta rule. In this chapter, the algorithm used during step

I1 of the RBP is extended to incorporate the least mean absolute value (LMAV)

criterion.

It was discussed in Chapter 4 that further error reduction can be achieved

in a s n-stage PSHNN by forward-backward or circular training. The asymptotic

properties show that the forward-backward training of n-stage PSHNN's until

convergence is equivalent to the pseudo-inverse solution for a single total

network designed in the least-squares sense to the total input vector consisting

of the actual input vector and its additional nonlinear transformations [DeErgl],

[De'Er921.]. The error reduction property by forward-backward training stated

above was based on the fixed input NLT of each stage of the PSHNN in every

fonvard-backward sweep. In this chapter, we illustrate the technique which uses

the BP algorithm with forward-backward training to learn the input NLT's of

the PSHNN. In this case, the interconnection weights between the input and the

hidden layers are allowed to change sweep by sweep. This means the PSHNN

has different input NLT a t each stage sweep by sweep. In this chapter, we also

show the reason why the error reduction property still holds for this technique.

The chapter consists of 5 sections. In Sec. 5.2, we illustrate the method

whkh uses the LMAV algorithm during step I1 of RBP. In Sec. 5.3, we show the

reason why error reduction property of PSHNN which has BP stages with

forward-backward training still holds. The experimental results of nonlinear

speech prediction are given in Sec. 5.4. Simulations on nonlinear prediction of

chamtic time series are discussed in Sec. 5.5.

6.2. REP with the LMAV Algorithm

The RBP network consists of linear input and output units and nonlinear

hidlden units. One hidden layer is often sufficient [Miya88]. The hidden layers

represent the nonlinear transformation of the input vector. The alutput of the

jth unit of the kth layer is of the form

where Nk-l is the number' of output nodes of the (k-1)th layer; Ok-l is the

output vector of the (k-1)th layer; Wk(.,.) are the weights connecting the (k-1)th

and the kth layers, and f(.) is the nonlinear activation function, assumed to be

differentiable and usually chosen monotone nondecreasing.

The RBP with the LMAV algorithm also consists of two training steps,

denoted as step I and step 11, respectively. During step I, the RBP is the same as

the usual backpropagation (BP) algorithm [Rume88]. During step 11, we fix the

weights between the input layer and the hidden layers, but retrain the weights

between the last hidden and the output layers by the LMAV rule.

The RBP network with the LMAV algorithm is shown in Fig. 5.1. Let X(n)

be the input vector sequence; the output vector of the last hidden layer is Y(n)

which can be considered as the result of nonlinear transformation of X(n). W are

weights between the last hidden and the output layers. The least mean absolute

value (LMAV) rule for the weight vector W is [Bell871

W(n+l)=W(n)+qY(n+l) sign e(n+l) ,

where sign e is +1 if e is positive, and -1 otherwise. The adaptation step factor rl

is a positive constant. We now want to study the convergence of LMAV rule by

considering the'weight vector W as it moves toward the optimum W,. Eq. (5.1)

can be rewritten as

W(n+l)-W, =W(n)-W, +rjY(n+l) sign e(n+l) . (5.3)

Taking the square error sum of both sides, we get

I I w (~ + I) - W , I I 2 = I Iw(n)-W, I I2+q2 I Jy(n+l) I 12-2rl(e(n+1)I

+2q sign e(n+l)[d(n+l)-Yt(n+l)w,] , (5.4)

and

I Iw(n+l)-w* 1 I2LI Iw(n)-w* 1 I2+q2 I l ~ (n + l) l 12-2rlle(n.+l)I

+2v(d(n+l)-Yt(n+l)w, I . (5.5)

Let, the length of W be N; taking the expectation of both sides yields

E(I lw(n+l)-w* I I2)<E(I Iw(~)-w* I 12)+q2~02y

-WE(Ie(n+l) I) + 2 ~ ~ m i n , (5.6)

where the minimal error Emin is

Emin =E(I d(n+l)-yt(n+l)w* I) . (5.7)

Convergence is obtained for any positive q, and the residual error ER is bounded

by [Bell871

where ER is

The advantage of RBP networks with the LMAV rule is thart the LMAV

rule is robust to outliers in a data set [MoTu87].

5.3. Error Reduction Property of PSHNN with BP Stages and
Forward-Backward Training

Each stage of PSHNN can be any type of neural network. In this section,

BP stages are utilized together with forward-backward training [DeEr921]. The

BP stages are chosen as linear input and output units and a single hidden layer.

The input vector is fed into all the BP stages in parallel as shown in Fig. 5.2.

With a k-stage network, the first, the second, ... , the kth BP stage are trained

in this order, followed by retraining of the (k-l)th, the (k-2)th, ... , the second

BP stage. This constitutes one sweep. The interconnection weights between the

input and the hidden layers are allowed to change sweep by sweep. Therefore,

we generate a different input NLT in each sweep a t every stage.

Referring to Fig. 5.2, X is the input vector and Di is the desired vector in

the first sweep. After the first BP stage is trained, Y1 is the vector .after input

NLTl of X, and o: is the output vector of the first stage in the first sweep.

When the number of training iterations is sufficiently large, the weight vector

between the hidden and the output layer will be near the least-squares solution.

The simulation results in Table 3.3 also show this fact. Thus, we have

approximately, [DeEr922]

o ~ = P ~ ~ [Y , Y :] D ~ 9 (5.10)

~ ~ = P N [Y , Y ; I D I I (5.11)

where Pwl~YIY~I is the projection matrix to the column space of [Y ~ Y ~] and

PN~Y,Y;I is the projection matrix to the null space of [Y~Y~]. After the second

stage is trained, Z1 is the vector after input NLT2 of X; o: is the output vector

of the second stage of the first sweep, and similarly,

1
o : = ~ ~ ~ [z , z :] e l 9 (5.12)

In the second sweep, the desired vector for the first stage becomes

~ 2 - 1 -ol+e:. 1 A sufficient condition for further error reduction in the :second sweep

is that the BP network produces the vector Yp after input NLTl of X in the

second sweep such that C O ~ [Y ~ Y ~] C C O ~ [Y ~ Y ~] , or equivalently,

N [' ~ ~ Y ~] c N [Y ~ Y ~] . In other words, the vector Y2 is obtained by a better input

NLTl of X in the second sweep than that in the first sweep. All the: experiments

discussed in Sec. 5 always showed that further error reduction is achieved in khe

second sweep. Hence, we assume that the BP network has the ability to produce

Y2 satisfying the above sufficiency condition. Then, the output vector o: of the

first stage in the second sweep is

since O : E C O ~ [Y ~ Y ~] and C O ~ [Y ~ Y ~] C C O ~ [Y ~ Y ~] . The error vector e l of the first

stage in the second sweep is

2 2 2 e l=DI-ol

Therefore, l (el((2LlIe:1 12.
The desired vector ~f of the second stage in the second sweep is e:+o:.

The vector Z2 is obtained after the input NLT2 of X in the second sweep. Under

the same assumption discussed above, we have col[Z1 z ;]Ct:ol [z2 Z% or

eqaivalently, N ~ z ~ z ! ~] c N [z ~ z ~] . The output vector of of the second stage in the

second sweep is

The error vector e i of the second stage in the second sweep is

=PN[Z,Z.',]~: .
2 2 Therefore, I lei 1 1251 lei 1 I .

Following the same procedure and under the same assumption, the vector

Y, is obtained after the input NLTl of X in the nth sweep. The error vector ef

of the first stage in the nth sweep becomes

ef = P N ~ Y , , Y ;] ~ ~ - ~ , (5.18)

w~~~~N[Y,Y~]cN[Y,~Y~-~]C CN{Y~Y~~CN[YIY:] . h

Therefore, (le: I 1'5 I lei-' 1 12. The vector 2, is obtained after the input NLT2

of X in the ~ t h sweep, end the error vector ei of the second stege in the nth

where N[z,z~]cN[z,-I z ~ - ~] c C N [Z ~ Z ~] C N [Z ~ Z:].

We conclude that

This result can be generali~ed to n-stage PSHNN's.

5.4. Experiments on Nonlinear Speech Prediction

The theoretical results discussed above were tested in the application of

speech prediction. For this purpose, 100 speech samples a t the sanlpling rate of

10 Khz were used to train and to test the network. In the experiments, we first

no]-malized the data in the range 1-1, I.]. A sliding window of length 5 data

points was used to predict the next signal value following the window.

Table 5.1 shows the performance in terms of the absolute error sum

I lerrl l 1 of a one stage network with the RBP stage and the LMAV rule,

tabulated as a function of the training iterations of step I and step 11. In this

experiment, the gain factor q=1.0 was used during step I, and q==0.01 during

step 11; five input nodes and eight hidden nodes were used, resulting in 40

weights between the input and the hidden layers, and 8 weights between the

hidden and the output layers. Thus, 48 weights need to be learned during step I,

and only 8 weights need to be revised during step 11. This indicjates tha t the

learning time of six iterations during step I1 is approximately the :learning time

of one iteration during step I. We see from Table 5.1 that the a,bsolute error

sum 1 (err(1 4.9461 after 500 learning iterations in step I and 200 learning

iterations in step 11. The learning time of 500 iterations in step I and 200

iterations in step 11 for this one stage network with RBP and the 1,MAV rule is

approximately the learning time of 534 iterations for the same network with the

usiial BP algorithm. The network with the usual BP algorithm achieved

1 lerrl Il=7.1472 after 650 iterations. In other words, the network with the RBP

an'd the LMAV rule is observed to achieve a deeper minimum in absolute error

suin by a shorter learning time than the network with the usual BP algorithm.

Next we discuss the experimental results when using PSHINN with BP

sta.ges and forward-backward training. Tables 5.2 thru 5.5 are the experiments

on the PSHNN's with BP stages and forward-backward training as discussed in

Sec. 5.3. The length of the input layer a t each stage is five, and a gain factor of

0.5 is used throughout. Table 5.2 shows how error was reduced as a function of

the number of iterations with a single BP network having 12 hidden units. The

corresponding PSHNN's with the same number of interconnection weights were

chosen as 3-stage, 3-stage and 4-stage networks in which each stage hqd 6, 4,

and 3 hidden nodes respectively, and its training was based on backpropagation.

Tables 5.3, 5.4 and 5.5 show how error was reduced stage by stage and sweep by

sweep of forward-backward training. 1000 forward-backward sweeps of Zstage

network, 750 forward-backward sweeps of 3-stage network and 666 forward-

backward sweeps of 4-stage network are equivalent to 50000 iterations of the

previous single BP network since 50 iterations were used to train each stage of

the PSHNN's. It is observed that the error reduction properties of the PSHNN's

with two stages and three stages are better than those of the single BP network.

The PSHNN's achieve the same error performance a t about 600 sweeps with the

2-stage PSHNN and a t 423 sweeps with the 3-stage PSHNN as the single BP

network achieves with 50000 iterations. Both %stage and 3-stage PSHNN's had

a reduction of learning time by about 40%. It also appears that both Zstage and

3-stage PSHNN's converge towards a deeper minimum than the single stage BP

network. However, the 4-stage PSHNN performed actually worse than the

single BP network. Thus, there exists on optimal number of hidden nodes per

stage for best performance. The bstsge PSHNN performs best in terms of

deeper minimum and faster convergence rate. More experiments with different

sets of data are needed to substantiate this property. However, we think that

this is the case since the same property was observed in other applications with

systems having nonlinearities (AgEr9 11, (ErZB901.

5.5. Nonlinear Prediction of Chaotic Time Series

Chaotic systems arise in many physical situations such as onset of

tul-bulence in fluids [RuTa7l], [SwGo78], chemical reactions (ToKa791, lasers

[H:nke75], and plasma physics [RuH080]. We selected two chaotic 1,ime series to

test the RBP networks. The first chaotic time series was generated according to

the classic logistic, or ~ e i ~ e n b a u m map given by [Feig78], [LaFa87]

In the following simulations, we used 100 data points generated b:y the chaotic

system according to the equation above, and normalized the data in the range

lo, 11.

Tables 5.6 thru 5.8 are the simulation results with the RBP networks using

tht! delta rule, tabulated as a function of the number of training iterations

during step I. The number of hidden units are 2, 4 and 8, resp~ectively. The

number of training iterations was 200 during step II. The gain factor during step

I was 0.1 in Tables 5.6 and 5.8, and was 1.0 in Table 5.8. The gain factor was

0.01 during step 11. In Table 5.6, we see that the RBP network with 360

iterations during step I and 200 iterations during step II can reach the same

square error sum by the usual BP network with 2000 training iterations. This

means we need only 21% training time with the RBP network to achieve the

same performance 8s with the usual BP network trained with 2000 iterations. In

Table 5.7, after 120 iterations during step I and 200 iterations during step 11, the

RBP network reached the same performance as with the usual BP trained with

2000 iterations. Therefore, the training time of the RBP network is 10% of the

training time of the usual BP network for the same performance. In Table 5.8,

after 60 iterations and 200 iterations during step I and step 11, res]>ectively, the

RBP network achieved the same performance as the usual BP trained with 2000

iterations. In this case, the training time of the RBP network is 6% of the usual

BP network.

Tables 5.9 thru 5.11 show the simulation results using the RBP networks

with the LMAV rule, tabulated as a function of training iterations during step 1.

The number of hidden units are 2, 4 and 8, respectively. The number of training

iterations was 100 during step 11. The gain factor during step I was 1 in Tables

5.10 and 5.11, and was 0.1 in Table 5.8. The gain factor was l.E-6 during step

11. In Table 5.9, we see that the RBP network with 460 iterations during step I

and 100 iterations during step I1 can reach the same absolute error sum as the

usual BP network with 600 training iterations. This means we need only 81%

training time with the RBP network with the LMAV rule to achieve the same

performance by usual BP with 600 training iterations. In Table 5.10, after 412

iterations during step I and 100 iterations during step 11, the RBP network with

the LMAV rule can reach the same performance as with the usual BP network

with 600 training iterations. Therefore, the training time by the RBP network

with delta rule is 76% of the training time by the usual BP network. In Table

5.8, after 220 iterations and 100 iterations during step I and step II, respctively,

the RBP with LMAV rule achieved the same performance as with the usual BP

network with 600 training iterations. In this case, the training time of the RBP

network is 42% of the usual BP network. Fig. 5.3 shows the normalized

Feigenbaum chaotic time series data versus the predicted time series data of the

one-stage network (4 hidden node) with the RBP stage and the delta rule. 2000

iterations and 200 iterations were used during step I and step II, respectively.

Fig. 5.4 shows the normalieed Feigenbaum chaotic time aeries data versus the

predicted time seriea data of the one-atage network (4 hidden node) with the

RB:P stage and the LMAV rule. In this experiment, there were 600 training

iterations during step I, and 100 iterations during step 11.

The second time series we used to test the RBP network was the Mackey-

Glass time series. The Mackey-Glass equation in the discrete-time domain can

be .written as [Farm821

The constant were taken to be a=0.2, b=0.1 and c=10. Cho0sin.g A=17, we

generated 500 data points which were used in the following experiments.

Table 5.12 shows the performance using the RBP networks with the delta

rule, listed as a function of training iterations during step I. The length of input

vector is 4 and 10 hidden units were used. The gain factor was 0.1 (during step I

ant1 0.01 during step 11. In this table, we see that the RBP network with 100

iterations during step I and 200 iterations during step I1 can reach a deeper

miriimum than the usual BP network with 1000 iterations. Therefore, we need

only 14% training time with the RBP network to achieve better performance

tha,n tha t by the usual BP network with 1000 iterations. Table 5.13 shows the

performance using the RBP network with the LMAV rule, listed as a function of
\

training iterations during step I. The length of the input vector was 4 and 10

hid.den units were used. The gain factor was 0.1 during step I and. 1.E-6 during

step 11. In this table, we see that the RBP network with 100 iter:stions during

step. I and 100 iterations during, step I1 can reach a deeper minim.um than the

usual BP network with 1000 iterations. We also need only 12% training time

with the RBP network with LMAV rule to achieve better performance than that

by the usual BP network with 1000 iterations. Fig. 5.5 shows the original

Mrrckey-Glass chaotic time series data versus the predicted time series data of

the one-stage network with the RBP stage and the delta rule. 1000 iterations

and 200 iterations were used during step I and step 11, respectively. Fig. 5.6

shows the original Mackey-Glass chaotic time series data versus the predicted

time series data of the one-stage network with the RBP stage and the LMAV

rule. In this experiment, there were 1000 training iterations during step I, and

100 iterations during step 11.

Ta'ble 5.1. Nonlinear Speech Prediction Performance of a One-Stage RBP
Network and the LMAV Rule (err=l (el I l) .

of iterations err

step I

400

450

500

550

600

650

step I

8.1649

7.8115

7.4919

7.3080

7.2612

7.1472

step I1

200

200

200

200

200

200

step I1

7.6647

7.2349

6.9461

6.9169

6.8658

6.7187

Table 5.2. Error Reduction with a Sin le Stage Network with 12 Hidden
Units Trained by BP (errl= (reI I I 2).

of

iterations

lo00

2000

5000

10000

20000

30000

40000

50000

err

1.1454

0.8413

0.6822

0.4464

0.2424

0.2506

0.2205

0.1962

Table 5.3. Error Reduction with a Two-Stage PSHNN with 6 Hidden Units
per SNN Trained by Forward-Backward BP
(errl=I le, 1 I2,err2=((e2 1 1 2) .

of

sweeps

20

40

100

200

300

400

500

600

700

800

900

lo00

err1

1.0528

0.8962

0.6031

0.4374

0.3367

0.2714

0.2133

0.1927

0.1895

0.1771

0.1731

0.1658

err2

1.0473

0.8945

0.6023

0.4368

0.3364

0.2711

0.2133

0.1925

0.1962

0.1816

0.1859

0.1708

Table 5.4. Error Reduction with a Three-Stage PSHNN with 4 Hidden Units
per SNN Trained by Forward-Backward BP.

of

sweep

10

50 ,

100

200

300

423

500

600

700

750

errlf

1,2380

0.6486

0.5240

0.4488

0.2825

0.1965

0.1705

0.1604

0.1551

0.1529

err2f

1.2157

0.6464

0.5236

0.4487

0.2823

0.1965

0.1704

0.1604

0.1551

0.1529

err3f

1.2138

0.6462

0,5236

0.4483

0.2819

0.1962

0.1704

0.1604

0.1551

0.1529

err2b

1.1982

0.6447

0.5235

0.4484

0.2817

0.1962

0.1703

0.1603

0.1551

0.1529

Ta.ble 5.5. Error Reduction with a Four-Stage PSHNN with 3 Hidden Units
per SNN Trained by Forward-Backward BP.

of

sweep

10

50

100

200

300

400

500

600

666

errlf

1.3594

0.6716

0.5121

0.4136

0.3540

0.3093

0.2620

0.2306

0.2210

err2f

1.3561

0.6707

0.5119

0.4136

0.3540

0.3093

0.2619

0.2306

0.2209

err3f

1.3238

0.6682

0.5116

0.4134

0.3539

0.3092

0.2618

0.2305

0.2209

err4f

1.3195

0.6682

0.5116

0.4134

0.3538

0.3091

0.2618

0.2304

0.2208

err3b

1.2963

0.6662

0.5115

0.4134

0.3538

0.3090

0.2618

0.2303

0.2208

err2b

1.2914

0.6662

0.5114

0.4132

0.3537

0.3090

0.2617

0.2304

0.2208

Table 5.6. Prediction with Feigenbaum Chaotic Time Series Data Using a 2
Hidden Node Network with the RBP Stage and the Delta Rule
(err=[lei 1 2) .

jf of iterations

step1

100

200

360

500

1000

1500

2000

err

step11

200

200

200

200

200

200

200

step1

1.463-3

8.283-4

7.153-4

6.523-4

5.573-4

5.273-4

5.10E-4

step I1

6.183-4

5.683-4

5.073-4

4.783-4

4.463-4

4.403-4

4.343-4

Table 5.7. Prediction with Feigenbaum Chaotic Time Series Daka Using a 4
Hidden Node Network with the RBP Stage and the Delta Rule
(err=l lei I*).

of iterations err

step I

100

120

200

500

1000

1500

2000

step I

1.71E-2

1.233-3

1.9 1E-4

1.81E-4

17lE-4

1.653-4

1.60E-4

step 11

200

200

200

200

200

200

200

step I1

7.913-4

1.40E-4

1.243-4

1.21E-4

1.19E-4

1.18E-4

1.18E-4

Table 5.8. Prediction with Feigenbaum Chaotic Time Series Data Using a 8
Hidden Node Network with the RBP Stage and Delta Rule
(err=] lei 1 2) .

of iterations

1 2000 1 , 200 I s . s e - s / 3.44.-s I

err

step1

60

100

200

500

1OOO

1500

s tep1

4.333-4

8.813-5

8.343-5

7.313-5

6.343-5

5.823-5

step11

200

200

200

200

200

200

step 11

4.813-5

4.383-5

4.213-5

3.873-5

3.613-5

3.503-5

Ta.ble 5.9. Prediction with Feigenbaum Chaotic Time Series Data Using a 2
Hidden Node Network with the RBP Stage and the LMAV Rule
(err=l lelI1).

of iterations err

step I
i

200

300

400

452

500

600

step I

0.5290

0.4532

0.4075

0.3907

0.3782

0.3622

step I1

100

100

100

100

100

100

step I1

0.4949

0.4206

0.3789

0.3619

0.3519

0.3336

Table 5.10. Prediction with Feigenbaum Chaotic Time Series Data Using a 4
Hidden Node Network with the RBP Stage and the LMAV Rule
(err=l lel I , 1.

of iterations

step I

200

300.

400

4 12

500

600

err

step I1

100

100

100

100

100

100

step I

0.2772

0.2340

0.1983

0.1945

0.1693

0.1462

step I1

0.2148

0.1778

0.1492

0.1460

0.1258

0.1076

Ta'ble 5.11. Prediction with Feigenbaum Chaotic Time Series Data Using a 8
Hidden Node Network with tbe RBP Stage and the LMAV Rule
(err=l lel I,).

of iterations err

step I

200

220

300

400

500

600

step I

0.2077

0.2036

0.1881

0.1705

0.1550

0.1412

step I1

100

100

100

100

100

100

step I1

0.1493

0.14 10

0.1298

0.1174

0.1062

0.0965

Table 5.12. Prediction with Mackey-Glass Chaotic Time Series Data Using a
10 Hidden Node Network with the RBP Stage and the Delta Rule
(err=l l e i I*).

of iterations err

step I

100

200

300

500

7 00

900

1000

step I

0.7201

0.6766

0.6378

0.5717

0.5173

0.4715

0.4512

step II

200

200

200

200

200

200

200

step II

0.1702

0.1621

0.1542

0.1393

0.1256

0.1130

0.1071

Ta.ble 5.13. Prediction with Mackey-Glass Chaotic Time Series Data Using a
10 Hidden Node Network with the RBP Stage and the LMAV Rule
(err=l lelI1).

of iterations err

step I

100

200

400

600

800

lo00

step I

15.5708

15.0856

14.2424

13.5287

12.9120

12.3674

step I1

100

100

100

100

100

100

step I1

9.9 152

9.6504

9.1584

8.7164

8.3077

7.9273

RBP Stage

Figure 5.1. One-Stage Network with the RBP and the LMAV Rule.

First BP Stage

Second BP Stage

Figure 5.2. TwctStage PSHNN with BP Stages and Forward-Backward
Training.

20 40 60 80 100
time index

Figure 5.3. Normalized Feigenbaum Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the RBP and the Delta
Rule.

40 60
time index

Figure 5.4. Normalized Feigenbaum Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the RBP and the LMAV
Rule.

200 300
time index

Figure 5.5. Mackey-Glass Time Series (Solid Line) and the Predicted Time
Series (Dotted Line) with the RBP and the Delta Rule.

0 100 200 300 400 500
time index

Figure 5.6. Mackey-Glass Time Series (Solid Line) and the Predicted Time
Series (Dotted Line) with the RBP and the LMAV Rude.

CHAPTER 6

CONCLUSIONS

6.1. Conclusions

PSHNN's with continuous inputs and outputs have many advantages such.

as error reduction, better prediction than linear prediction, parallel operation of

stages, self-organizing number of stage, realizability of sequential learning, and

error criterion other than mean-square error.

Computer experiments showed that linear outputs give better results when

the outputs are continuous. Consequently, nonlinearities were used a t other

layers. In addition, linear outputs allow the use of sequential leastsquares. Even

though any kind of input nonlinearity guarantees better performance over a

one-stage network, the optimization of the input nonlinearities is an important

issue to minimize output errors. The RBP algorithm is one effective solution to

this problem. Another advantage of the RBP algorithm is that we have

flexibility of choosing a different training rule due to different error criterion

during step 11. For example, the delta rule, the SLS and the LMAV rule can be

used during step I1 of the RBP algorithm. Other criteria such as total leas t

squares can also be applied.

We showed theoretically that PSHNN's with forward-backward training of

n-stage networks will achieve the same error reduction as the total function-link

network with the leastsquares pseudoinverse solution. In practice ,

experimental results show that PSHNN's in many cases have faster convergence

rate and better numerical error reduction than the total function-link networks.

The property that PSHNN's can divide a large size network into several smaller

size networks which can learn faster and more easily in training arrd operate in

pal-allel in testing is believed to be significant for real-time implementation.

We proved that the PSHNN's with any input nonlinear tr,ansformation

have better performance than one-stage networks (ErDe9111. By using

additional neural networks, one can learn input NLT's a t every parallel stage of

the PSHNN. The PSHNN with BP stages and forward-backward training is one

effective solution to this problem. When backpropagation is to be used,

experiments indicate that better performance in terms of a deeper minimum and

convergence rate is achieved when a single BP network is replaced by a PSHNN

of equal complexity in which each stage is a BP network of smalle!r complexity

than the single BP network. With these properties, PSHNN's with continuous

inputs and outputs and forward-backward training are expected tc~ be useful in

val-ious applications of neural networks, adaptive signal processing, system

identification and adaptive control.

6.21. Further Research

The following is an outline of future research topics.

(1) The proof of Theorem 4.la has been based on n-stage PSHNN's with

forward-backward training. Experimentally, we have also observed that circular

training gives the same results as forward-backward training. It its desirable to

give a rigorous proof for the n-stage PSHNN with circular training.

(2) The theoretical and experimental investigations so far have been carried out

with stages based on the delta rule, the usual BP or the RBP. An interesting

question is whether these and/or similar results are valid for stages based on

other learning algorithms.

(3) The input nonlinearities may be replaced by output nonlinearities. However,

we have not investigated the simultaneous use of input and output nonlinearities

yet. This is especially an important problem in the case of forward-backward

training. In this case, it is no longer possible to compare the PSHNN stages with

forward-backward training to a single total network which converges to the

pseudoinverse solution.

(4) A major consideration is whether it is possible with the forward-backward

training algorithm to achieve a minimum the same as or closer to the global

minimum than what other architecture yield.

(5) One important advantage of the PSHNN with continuous inputs and outputs

is the ability to incorporate sequential learning so that the network continues to

learn with each new input data without requiring the storage of past

information. This has been implemented with stages without forward-backward

training. It is desirable to apply SLS learning with forward-backward training as

well as more complex networks.

(6) Another important problem is how to optimize input and/or output

nonlinearities. It is desirable to have simple, pointwise nonlinearities for real-

time implementation, and they should be learned, probably adaptively in time,

for optimal performance. It is possible to incorporate fast transforrrrs in addition

to pointwise nonlinearities as preprocessing to the network. The fast transforms

provide a number of advantages such as feature selection, achieving invariance

to a number of distortions like translation, rotation and scaling, and minimizing

nel,work size.

(7) The theoretical and experimental results obtained are mostly with respect to

the mean-square error criterion. We have also developed the method which uses

thct LMAV rule during step I1 of the RBP stages. Other error criteria such as

weighted leastsquares and total leastsquares during step I1 of the RBP stages

should be investigated.

(8) An interesting area in systems and signal processing is system inodeling and .

identification. Neural networks with nonlinear activation functions are an

effective way to construct a model for the transfer function of an unknown

system with only a finite data set of inputs, and associated outputs of the

system. Techniques concerning nonlinear system modeling by I'SHNN's are

exipected to be useful in spectral estimation, biomedical signal modeling, and

otlier applications. Further studies need to be carried out on such topics.

LIST OF REFERENCES

S. Aghagolzadeh, 0. K. Ersoy, "Optimal Multistage Transform
Image Coding", IEEE Tran. Circuits and Systems for Video
Technology, December 1991.

11 S. T. Alexander, ~ d a ~ t i v e Signal Processing, Theory and
Applications", Springer-Verlag, New York, pp. 68-85, 1986.

M. G. Bellanger, "Adaptive Digital Filter and Signal Analysis",
Maurice1 Dekker Inc., pp. 114-121, 1987.

S-W. Deng, 0. K. Ersoy, 'Parallel, Self-Organizing, Hierarchical
Neural Networks with Circular Training", Purdue University
Tech. Report No. TR-EE-91-16, April 1991.

S-W. Deng, 0. K. Ersoy, "F'arallel, Self-Organizing, Hierarchical
Neural Networks with Forward-Backward Training*, submitted to
Circuits, Systems and Signal Processing, January 1992.

S-W. Deng, 0. K. Ersoy, *'Parallel, Self-organiring Neural
Networks for Nonlinear Prediction, Filtering and System
Identification", submitted to IEEE Tran. Neural Networks, 1992.

R. 0. Duda, P.E. Hart, "Pattern Classification and Scene
~nalysis", John Wiley & Sons Inc., pp. 159-162, 1973.

0. K. Ersoy and S-W. Deng, "F'arallel, Self-Organieing,
Hierarchical Neural Networks with Continuous Inputs and
Outputs", Proc. Hawaii Int. Conf. System Sciences, HICCS-24, pp.
486-492, Kauai, January 1991.

0. K. Ersoy and S-W. Deng, "Parallel, Self-organicing,
Hierarchical Neural Networks, with Continuous Inputs and
Outputs", Purduc University Tech. Report, No. TR-EE-81-51?
December 1991, and to appear in IEEE Tran. Neural Networks.

0. K. Ersoy, D. Hang, *Parallel, Self-Organizing, Hierarchical
Neural Networks", IEEE Trans. Neural Networks, Vol. 1, No. 2,
pp. 167-178, June 1990.

IEr HoII]

[Er so881

[E r.ZB901

0. K. Ersoy, D. Hong, "F'arallel, Self-Organizing, Hierarchical
Neural Networks II", to appear in IEEI.: Tran. Industrial
Electronics, Special lssue on Neural Networks.

0. K. Ersoy, "A Study of Associative Memory Based on the Delta
Rule", IEEE Int. Conf. Neural Networks , San Diego, Calif., July
1988.

0. K. Ersoy, J. Y. Zhuang, J. Brede, "An Iterative Interlacink
Approach to the Synthesis of Computer-Generated Holograms',
Purdue University Tech. Report, No. TR-EE-90-5!2, November
1990, and submitted to Applied Optics.

J. D. Farmer, "Chaotic Attractors of an Infinite-Dimensional
Dynamical System", Physica D, Vol. D 4, pp. 366-393, 1982.

M. Feigenbaum, "Quantitative Universality for a Class of
Nonlinear Transformations", J. Statistical Physics, Vol. 19, pp.
25-52, 1978.

C. L. Giles, T . Maxwell, "learning, Invariance and C;eneralization
in Higher Order ~e tworks , " Applies Optics, Vol. 26, No.23, pp.
4972-4978, December 1987.

D. Graupe, "Time Series Analysis, Identafication, and Adaptive
Filtering', Robert F. Krieger, 1984.

R. E. Hartwig and M. P. Drazin, 'Lattice Properties of the *-Order
for Complex Matrices", J. of Math. Analysis and Applications,
Academic Press, Inc. 1982.

H. Haken, "Analogy between Higher Instabilities in Fluids and
Lasers", Physics Letters, Vol. A53, pp. 77-78, 1975.

Simon Haykin, "Adaptive Filter Theory", 2nd ed., .Prentice-Hall,
Inc., pp. 299-341, 1991.

D. Hony, "Parallel, Self-Organizing, Hierarchical Neural
Networks , Ph.D. Dissertation, Purdue University, August 1990.

K. Hoffman, R. Kunze, "Linear ~ l ~ e b r a ' : 2nd ed., Prentice-Hall,
Inc., p. 211, 1971.

S. C. Jacobsen, S. G. Meek, R. R. Fullmer, "An Adaptive
Myoelectric Filter", 6th IEEE Conf. Eng. in Med. and Biol. Soc.,
1984.

IMath9l.j

[Mend 7 31

[Miya88]

[MoTu77]

M. F. Kelly, "The Application of Neural Networks to Myoelectric
Signal Analysis: A Preliminary Study", IEEE Transaction on
Biomedical Engineering, Vol. 37 No. 3, March 1990.

T. Koh, E. J. Powers, "Second-Order Volterra Filtering and its
Application to Nonlinear System Identification", IEEE Tran. on
ASSP, Vol. ASSP-33, No. 6, pp. 1445?1455, December 1985.

A. Lapedes, R. Farber, "Nonlinear Processin6 Using Neural
Networks: Prediction and System Modeling , Los Alamos
National Laboratory, LA-UR-87-2662, 1987.

D. G, Luenberger, "Introduction to Linear and Nonlinear
Programming", Addison-Wesley Pub. Company, second edition,
pp. 227-230, 1984.

V. J. Mathewa, "~dap t ive Polynomial Filter", IEEE Signal
Processing Magazine, Vol. 8, No. 3, pp. 10-26, July 1991.

J. M. Mendel, "Discrete Techniques of Parameter Estimation",
Marcel Dekker, pp. 91-107, 1973.

Irie, Miyake, "Capabilities of Three-Layered Perceptrons", Proc.
IEEE ICNN, Vol. 1, pp. 641-648, San Diego, July 1988.

F. Mosteller, J. Tukey, "Data Analysis and Regression: a Second
Course in Statistics", Addison-Wesley Publishing Company, pp.
365-369, 1977.

H. Nakano, "Spectral Theory in the Hilbert Space", Japan Society
for the Promotion of Science, 1953.

T. W. Parson, "Voice and Speech Processing", McGraw-Hill,
pp.138-145, 1986.

Y-M. Pao, "Adaptive Pattern Recognition and Neural Networks",
Addison-Wesley Pub. Company, Inc., 1989.

L. D. Pyle, "A Generalieed Inverse €-Algorithm for Constructing
Intemction Projection Matrices with Applications", Numerisehe
Mathematik 10, pp 86-102, 1967.

C. R. Rao, S. K. Mitra, "Generalized Inverse of Matrices and its
Application8", John Wiley & Sons, Inc., pp. 106-107, 1971.

D. Russell, J. Hanson, E. Ott, "Dimeneion of Strange Attractors",
Physical Review Letters, Vol. 45, pp. 1175-1178, 1980.

[Rume88] D. E. Rumelhart, "Parallel Distributed Processin!q", The MIT
Press, Cambridge Mass. , 1988.

[RuTa71] D. Ruell, F. Takens, "On the Nature of Turbulence",
Communications in Mathematical Physics, Vol. 20, pp. 167-192,
1971.

[Sore851 H. W. Soremen, "Parameter Estimation, Principles and
Problems", M. Dekker, New York, 1985.

[S,tra86]
I t

G. Strang, Linear Algebra and its ApplicationsH, Gilbert Strang,
third edition, 1986.

[S.wGo78] H. Swinney, J. P . Gollub, "The Transition for Turbulence",
Physics To.day, Vol. 45 PP 41-49, August 1978.

[ToKa79] K. Tomita, T. Kai, "Chaotic Response of a Limik Cycle", J.
Statistical Physics, Vol. 21, pp. 65-86, 1979.

[V,'iHo60] G. Widrow, M. E. Hoff, "Adaptive Switching Circuits," Inst.
Radio Engineers Western Electronic Show and Convention Record,
P a r t 4, pp. 96-104, 1960.

	Purdue University
	Purdue e-Pubs
	4-22-1992

	NONLINEAR ADAPTIVE SIGNAL PROCESSING
	S.-W. Deng
	O.K. Ersoy

