Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-22-1992

NONLINEAR ADAPTIVE SIGNAL
PROCESSING

S-W.Deng
Purdue University School of Electrical Engineering

OK. Ersoy
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Deng, S.-W. and Ersoy, O.K., "NONLINEAR ADAPTIVE SIGNAL PROCESSING" (1992). ECE Technical Reports. Paper 290.
http://docs.lib.purdue.edu/ecetr/290

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages

NONLINEAR ADAPTIVE SIGNAL PROCESING

S.-W. Deng and O.K. Ersoy

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907-1285







TABLE OF CONTENTS

Page
LIST OF TABLES ...t ssssre s ssr s sns s ssnn s s s snnn s vi
LIST OF FIGURES........ooiiitiitiieee ettt ettt ettt ee e iX
ABSTRACT .ttt eeeerece ettt st e et srsas e ee et s e sassbeaeteseaesessssnsnnanarenins xi
CHAPTER 1- INTRODUCTION ...ooeuiiiiiiiieieiiiirerireteeenecrenicmenenereereeee oo |
0 O 1 14 o [ o 1 1) 1
[..2. ThesiS Organi Zation ......uccccssssssrreeisss s 6
CHAPTER 2 - PARALLEL, SELF-ORGANIZING,
HIERARCHICAL NEURAL NETWORKS
WITH CONTINUOUS INPUTS AND OUTPUTS.......cooccvvviviinin, 7
P SR 1 014 Yo (102 1 ) N 7
2.2. System Model with Univariate Output Signal ........cccoeeooiiniiiniiiii. 8
2.3, Error REAUCHION ....cceevimiemmmiiiiiiiitii et e esa s 10
2.4. System Model with Multivariate Output Signal .....cooceeevvevneiienenennnn 14
5  Suboptimal Error Reduction Property .......eeeveceveninvieiecsennieiinvninnninenn 16
2.6. EXperimental RESUILS iuiiieermeemmmmmmmmmmmmmmsmmmmsssssssnsssssssssssssssssssssnssms 13
2.7. Learning Input Nonlinear Transformation by
Revised Backpropagation ....cceeeesssssiiininmimimmsssssssssssann 20.
CHAPTER 3- INCORPORATION OF SEQUENTIAL
LEAST-SQUARES .tttttttttsmsrsssssssssssssssssssssssssssssssssssssssssssssssssssnnnnns 30
K20 W 101 o T [ o2 {0 o OO 30
3.2, Incorporation of Sequential Learning ...eeeeceveesessessrnneenerererssens seevrreesens 31
3.3. The RBP Networks with the SLS
AlQOrthMuiissssssss s ———————— 32




3.4.

Experimental RESUIS......covveireriiries e 33

CHAPTER 4 . PARALLEL, SELF-ORGANIZING,

4.1.
4.2.
4.3.

4.4.

4.5.

4.6.

HIERARCHICAL NEURAL NETWORKS

WITH FORWARD-BACKWARD TRAINING .....cccovveriiiiiriericnnn 48
INEFOAUCTION ...ttt ettt e et se e s este s 48
PSHNN with Forward-Backward Training .....c..eeceeviceemrneeiinnienenes 50
Asymptotic Properties of a Two-Stage PSHNN
with Forward-Backward Training.....cccccceeriemiiveneeeneneiereenerioneeenennns 54
Asymptotic Properties for an
N-StA0E NEIWOIK ....cocvreirrereeraeiererersiereite e e e s s eesrneraeesesinesaessansanes 59
Asymptotic Propertiesfor the
SUbOopPtimal SOIULIONS .. .ecvreiecreereeiirereerearreceneesreneressacenessneesennreas 63
Experimental RESUIS.......ccceervrreeeirirnrnirrnnerrreneeessnesenanes reeeerarenenns 68

CHAPTER 5 . LEARNING INPUT NONLINEAR TRANSFORMATIONS .83

5.1, INIFOAUCTION «..eeeeereerennirenieeeesreeeraeesanaanessessnareeseasessresessassatanssssanenssas 83
5.2. RBP with the LMAV Algorithm .......ccccccciviiiniiiinii, A
5.3. Error Reduction Property of PSHNN
with BP Stages and Forward-Backward
THAINING vveeiteinnrtre e ieirierers et aesnert bt s arreseesssreesteessbiaraeensrenesss 87
5.4. Experiments on Nonlinear Speech PrediCtion......ceceeiicemmeeresccvnenricnnns 90
5.5. Nonlinear Prediction of ChaotiC Time SEeS cuummmrmrrmmssssssrnsnnnns 92
CHAPTER 6 - CONCLUSIONS................... preenenres veeeeessnressraresesnntenensearees 115
6.1, CONCIUSIONS c.uveveeercsvnseesereensssansaeesssenessnriesssnssaesssesssssnnessones RN 115
6.2. FUrther RESEAICN.... cvieieiicererieeicisnrersransianaeetssresenetsessssssne eosoneoaeeses 116
LIST OF REFERENCES......cciccccttiiitreiientiiesaeecssessessesesssessssressessestessossasse 119
VT A iiiiiiiieiiiaranetsiasseanoiirsssssmestrnstsrassssesssssnsassasessssrosssssrsuessssrnsssoresorasssss 123




LIST OF TABLES

Table

2.1.

2.2.

2.3.

2.4.

3.1.

3.2.

3.3.

3.4.

4.1.

4.2.

43..

Performance of One-Stage and Two-Stage PSHNN as a

Function of Input NONINEAItIES.....cvoeeecierriieiireeeiereirerereeeeieneeeens

Performance of One-Stage and Two-Stage PSHNN's as a
Function of the Length of the Weight Vector When

the Input Nonlinearity iS Thl....c.vvireriiiiirrnecrrrrrnnnnnreesiossnenees

Performance of One-Stage, Two-Stage and Three-Stage

PSHNN'’s as a Function of Input Nonlinearities......cc.eevreereenne.

Performance when the Input NLT isLearned by RBP...............

Nonlinear Speech Prediction Performance of One-Stage

and Two-Stage PSHNN’s Trained with SLS Learning................

Nonlinear Speech Prediction Performance of One-Sage

and Two-Stage PSHNN's Trained with SLS Learning...............

Performance of a5 Hidden Unit Two-Stage PSHNN with

the RBP and the SLS Rule in the Second Stage........cccvvieeennnee.

Performance of a 4 Hidden Unit Two-Stage PSHNN

with the RBP and the SLS Rule in the Second Stage........cuuueeees

Performance of the Function-Link Network in

SPEECh PrediCtioN.....coove e e

Performance of PSHNN with NLT Sig.Iin

SPEECH PreadiCtioN oo eccereeveeecieenreeccciinnreeranesesreessesesssssanunsenens

Performance of PSHNN with NLT Sig.II in

SPEECh PrediCtion ........eiicmiriiieeiiiieiiieieire it

vi

Page




Table

4.4,

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

5.1.

5.3.

Page

Performance of PSHNN with NLT Th.I in

Speech PrediCtion ........coovviiiiiiiiiccci e 74
Performance of PSHNN with NLT Th.II in

SPEECh PrediCtion ......ccciverveiereiieeieiieecieeeiiniiie ittt 75
Performance of PSHNN with NLT Squarein

SPEECh PrediCtioN .....ieevieeceieteitie e eer st et 76
3-Stage Function-Link Network as a Function of

Input Nonlinearity with 900 IterationsS.....ccceeeumeriimmirenieeeeneierinieninennn, 77
3-Stage Function-Link Network as a Function of

Input Nonlinearity with 2800 Iterations .......c.cccceevieeirininininienineniiiannens 77
Performance of PSHNN with NLTI Sig.] & NLT2 Th.II

in Speech PrediCtion .. 78
Performance of PSHNN with NLTI Th.I & NLTZ Sig.1

iN SPEECH PrediCtioN. .. ccviereceircrieieeereiirentircceate e esrer e enias s e 78
Performance of PSHNN with NLTI Square & NLT2 Sig.I

IN Speech PrediClioN. i sssssssssssssssssssssnssssssssssssssssssssns 79
Nonlinear Speech Prediction Performance of a One-Stage

RBP Network and the LIMAV RUIE.........covvieiiriecienieniinereieaie e 96
Error Reduction with a Single Stage Network with 12

Hidden Units Trained by BP.....c.ccoovviiiiiiiiiininiiiinninee s 97
Error Reduction with a Two-Stage PSHNN with 6 Hidden

Units per SNN Trained by Forward-Backward BP .......ccccvieiinnianeenne. 98
Error Reduction with a Three-Stage PSHNN with 4 Hidden

Units per SNN Trained by Forward-Backward BP .........cccccoevviviiinnnn, 99

Error Reduction with a Four-Stage PSHNN with 3 Hidden
Units per SNN Trained by Forward-Backward BP ......cccoireeninenannnns 100




Table

5.6. Prediction with Feigenbaum Chaotic Time Series Data Using a
2 Hidden Node Network with the RBP Stage and the Delta Rule......

5.7. Prediction with Feigenbaum Chaotic Time Series Data Using a
4 Hidden Node Network with the RBP Stage and the DeltaRule......

5.8. Prediction with Feigenbaum Chaotic Time Series Data Using a
8 Hidden Node Network with the RBP Stage and the Delta Rule......

5.9. Prediction with Feigenbaum Chaotic Time Series Data Using a
2 Hidden Node Network with the RBP Stage and the LMAV Rule....

5.10. Prediction with Feigenbaum Chaotic Time Series Data Using a
4 Hidden Node Network with the RBP Stage and the LMAV Rule....

5.11. Prediction with Feigenbaum Chaotic Time Series Data Using a
8 Hidden Node Network with the RBP Stage and the LMAV Rule....

5.12. Prediction with Mackey-Glass Chaotic
Time Series Data Using a 10 Hidden
Node Network with the RBP Stage and the Delta Rule ......oovviiiiininn,

5.13. Prediction with Mackey-Glass Chaotic
Time Series Data Using a 10 Hidden
Node Network with the RBP Stage and the LMAV Rule.........ceeenee.

viii

Page

104

105

106




LIST OF FIGURES

Figure Page
2.1. Block Diagram for a Three-Stage PSHNN............ RO PP PSPV PPPPPPPPI 27
2.2. Representation of Suboptimal Solution ...cccceeriirisnnirnnninnnn e, 28
2.3. Two-Stage PSHNN with RBP Stages........cccoviviviiii, 29
1 Two-Stage PSHNN with RBP Stages and the SLS Algorithm.............. 39
2 Original Speech Signal (solid line) and the

Predicted Speech Signal (dotted line) with

One-Stage HNN Trained with the SLS Algorithm.....ueeeeeeesennnnnnnnnnnnn, A0
3.3. Original Speech Signal (solid line) and the

Predicted Speech Signal (dotted line) with

Two-Stage HNN Trained with the SLS Algorithm .....coceeeevivneeennnnines 41
3.4. TheError Signals with One-Stage HNN (solid line)

and Two-Stage HNN (dotted line) Trained with the SLS

Algorithm ....cceeieeeeiinvennnenne. fereenrterevaseniesenarieerorernettnriiseetternne reeeereenenennees 42
3.,5. Original Speech Signal (Solid Line) and the Predicted

Speech Signal (Dotted Line) with One-Stage PSHNN

Trained with the SLS Algorithm (Re==5) .....c.ceuvvrrnvriireniesinsrerinnenens 43
3.6. Original Speech Signal (Solid Line) and the Predicted

Speech Signal (Dotted Line) with Two-Stage PSHNN

Trained with the SLS Algorithm (De==8) ....c.ccvcurrrererieeierreecrsinrenrnnaen 44
37 TheError Signals with One-Stage PSHNN (Solid Line)

and Two-Stage PSHNN (Dotted Line) Trained with the
SLS AIGOrithm (ne==5)......cccccvrvrereiiiiniiiiiiiiiiii e 45




Figure

3.8.

3.9.

4.1.

4.2.

4.3.

5.1

5.2

5.3.

5.4.

9.5.

5.6.

Original Speech Signal (Solid Line) and the Predicted
Speech Signal (Dotted Line) with Two-Stage PSHNN
with the RBP and SLS Rule on the Second Stage (nc=5)........cceuuun.... 46

The Error Signals with Two-Stage PSHNN (Solid Line)

with NLT2="Th.1l and Two-Stage PSHNN (Dotted Line)

with the RBP and the SLS Rule on the Second

StAJE (NE=25) ittt e 47

Block Diagram of a Functional-Link Network ............ccccccovviinnninnn, 80

Graphical Representation of Suboptimal
SOIULION FOr SININT ..ottt ettt eee e e e e eeeenes 81

Graphical Representation of Suboptimal
SOIULION FOr SNINZ.....iiiiiiiirene et et aeeaes 82

One-Stage Network with the RBP and the LMAV Rule......... v 109

Two-Stage PSHNN with BP Stages and
Forward-Backward Training .........cceeevvveveiinininiies e cenenecin 110

Normalized Feigenbaum Time Series (Solid Line)
and the Predicted Time Series (Dotted Line)
with the RBP and the Delta RuUl€..........coovrviiiiiiniiiiiiiiiiirene 111

Normalized Feigenbaum Time Series (Solid Line)
and the Predicted Time Series (Dotted Line)
with the RBP and the LMAV RUl€........c.cccovvvviviininnnnn . 112

Mackey-Glass Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the
RBP and theDeltaRuUIE........cccccoveviireiiiii i i 113

Mackey-Glass Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the
RBP and the LMAV RUIE........cccoeveiiiiiiimmi e 114




X1

ABSTRACT

Deng, Shi-Wee. Ph.D., Purdue University, May 1992. Nonlinear Adaptive Signal
Processing. Major Professor: Okan K. Ersoy.

Nonlinear techniques for signal processing and recognition have the promise
of achieving systems which are superior to linear systems in a number of ways
such as better performance in terms of accuracy, fault-tolerance, resolution,
highly parallel architectures and closer similarity to biological intelligent systems.
The nonlinear techniques proposed are in the form of multistage neural networks
in which each stage can be a particular neural network and all the stages operate
in parallel. The specific approach focused upon is the parallel, self-organizing,
hierarchical neural networks (PSHNN's). A new type of PSHNN is discussed such
that the outputs are allowed to be continuous-valued. The performance of the
resulting networks is tested in problems of prediction of speech and of chaotic
time-series. Three types of networks in which the stages are learned by the delta
rule, sequential least-squares, and the backpropagation (BP) algorithm, respec-
tively, are described. In al cases studied, the new networks achieve better perfor-
mance than linear prediction. This is shown both theoretically and experimen-
tally. A revised BP algorithm is discussed for learning input nonlinearities. The
advantage of the revised BP algorithm is that the PSHNN with revised BP stages
can be extended to use the sequential least-squares (SLS) or the least mean abso-

lute value rule (LMAYV) in the last stage.

A forward-backward training algorithm for parallel, self-organizing hierarch-

ical neural networks is described. Using linear algebra, it is shown that the




forward-backward training of an n-stage PSHNN until convergence is equivalent
to the pseudo-inverse solution for a single, total network designed in the least-
squares sense with the total input vector consisting of the actual input vector and
its additional nonlinear transformations. These results are also valid when a sin-
gle long input vector is partitioned into smaller length vectors. A number of
advantages achieved are small modules for easy and fast learning, parallel imple-
mentation of small modules during testing, faster convergence rate, better numer-
ical error-reduction, and suitability for learning input nonlinear transformations
by the backpropagation algorithm. Better performance in terms of deeper
minimum of the error function and faster convergence rate is achieved when a
single BP network is replaced by a PSHNN of equal complexity in which each

stage is a BP network of smaller complexity than the single BP network.




CHAPTER 1
INTRODUCTION

1.1. Introduction

Linear signal processing is useful in many applications and relatively simple
from conceptual and implementational view points, but there are still many
applications in which nonlinear techniques of signal processing are effective.
Nonlinear filters are very useful in modeling biologica phenomena |[KaPo85],
myoelectrical signal processing [JaMF84], image processing and several other
areas |AgEr81]. The method of adaptive polynomial filters which use Volterra
series expansion was discussed by Mathews [Math91]. The Volterra filters with
large enough order terms can approximate complex nonlinear systems; the
disadvantage is large computational complexity and training time. Some neural
networks can be characterized as nonlinear adaptive filters. Using neural
networks, one can reduce the computational and the implementational
cornplexity of adaptive polynomial filters. In this thesis, the specific approach
focused upon for the purpose is the parallel, self-organizing, hierarchical neural

networks.

Parallel, self-organieing, hierarchical neural networks (PSHNN's) are
multistage networks in which stages operate in parallel rather than in series
during testing [ErHo90|, [ErHoll|. The PSHNN is self-organizing in. the sense of

number of stages. Each stage is a particular neural network referred to as the




stage neural network (SNN). At the output of each SNN in previous PSHNN's,
there is an error detection scheme which allows acceptance or rejection o input
vectors. If an input vector is rejected, it goes through a nonlinear transformation
before being inputted to the next stage. Only those input vectors which are
rejected by present stage are fed into the next stage after nonlinear
transformations. The PSHNN has many attractive properties. The experiments
performed in comparison with backpropagation training indicated the
superiority of the new architecture in the sense of classification accuracy,

training time, parallelism and robustness [Hong90).

The PSHNN's as developed previously assumed quantieed or continuous-
valued inputs and quantized, say, binary outputs. In this thesis, a new type o
FSHNN is discussed such that the outputs are allowed to be continuous-valued
[ErDe$11], [ErDe912]. In order to achieve this, al the input vectors are fed into
all the stages after nonlinear transformations. The resulting networks are
applied to the applications of predicting speech signals and simulating chaotic
systems. The PSHNN's with continuous inputs and outputs are both
theoretically and experimentally shown to make the square error sum (SES)
smaller than that of linear filters [ErDe811], [ErDe912]. It is also shown that
any input nonlinear transformation helps the system to achieve smaller SES
than one-stage filters. During testing, the speed of processing with the PSHNN's
are almost the same as with the one stage networks. In real applications, the
square error sum we get by using the delta rule or backpropagation at each
stage of the PSHNN is based on a suboptimal least-square solution. The
suboptimal error reduction property is derived in Chapter 2 We find that the
error reduction .property still holds when the delta rule is used (ErDe912].




Even though any kind of input nonlinearity guarantees better performance
over a one-stage network, how to optimize the nonlinearities remain an open
research issue. In this thesis, a revised backpropagation (RBP) network is
proposed for learning input nonlinear transformations (NLT’s) [ErDe912|. The
RBP algorithm consists of two training steps, denoted as step | and step I,
respectively. The RBP is the same as usual backpropagation |Rurne88] during
step |. During step II, we fix the weights between the input layer and the hidden
layers, but retrain the weights between the last hidden and the output layers by
the delta rule. There are several reasons why the RBP network may be
preferable over the usual network with the BP algorithm. The first advantage is
that the algorithm used during step II of RBP can be extended to satisfy other
criteria such as the absolute error. The second reason is that the RBP algorithm
allows faster learning. For this purpose the gain factor is chosen large for
learning the input NLT during the first step, and the gain factor is reduced for

fine training during the second step.

In adaptive signal processing, the sequential least-squares algorithm (SLS)
allows each input sample to be used without the need for previous input samples
[Grau84]. One advantage of the PSHNN with linear output nodes is that the
SL5 algorithm can be used [ErDe911]. This is generally not possible with other
multistage neural networks. Sequential learning allows recursive updating of
weight vectors in terms of the previous weight vectors, and the present input.
For real-timesignal processing, the SLS algorithm isessential. In Chapter 3, the
PSHNN with the RBP stages and the SLS algorithm during step II is also
discussed [DeEr922|. If a large block of N data points is being processed by the
SLS or the least mean square (LMS) algorithm, we can choose the first K data

points of the block (K << N) to learn the input NLT at each stage of the




PSHNN by the RBP. This technique can be repeated every N data points. In
this way, short-time quasistationary signals like speech can be processed in real

tirne.

In Chapter 2, we also discuss further error reduction in an n-stage network
by circularly transmitting the remaining error through the stages a number of
times until convergence [DeEr91]. Another important technique we propose in
Chapter 4 is caled the PSHNN with forward-backward training [DeEr§21].
Asymptotic properties of the PSHNN with forward-backward training are
discussed on a rigorous mathematical basis, in addition to providing additional
experimental results. It is shown that the forward-backward training of an n-
stage PSHNN until convergence is equivalent to the pseudo-inverse solution for
a single, total network designed in the least-squares sense with the total input
vector consisting of the actual input vector and its additional nonlinear
transformations. These results are also valid when a single long input vector is
partitioned into smaller vectors. The suboptimal asymptotic properties of the

PSHNN's due to the use of the delta rule are also proved in Chapter 4.

Among deterministic optimization techniques, there is a method called the
coordinate-descent algorithm ([Luen84]. Given a pth order weight vector
W=(w,w, - - - wp), descent with respect to the coordinate w; rneans that one
minimizes the cost function f(W) with respect to w;, with other weight values
fixed. Thus, changes in the single weight w; are allowed in seeking a new and
better weight vector W. The convergence rate of the coordinate-descent
algorithm is usually slower than steepest descent. There is a similar phenomenon
when the PSHNN with forward-backward training is comparecl to a one-stage
total network. If we divide the linear input vectors of length p into p segments,

then we can use a pstage PSHNN with forward-backward training (each stage




with only one weight). The convergence rate of p-stage PSHNN with forward-
backward training is usually slower than the one-stage network with p inputs.
The PSHNN with forward-backward training can divide input vector into
arbitrary segments with arbitrary length segments. For example, in function-link
net,-works with higher order terms, the input vector gets very long |[Pao89|.
Using the PSHNN, we divide the input vector into a number of segments. Then,
we observe in many cases that the PSHNN with forward-backward training
converges faster than the function-link networks without partitioning. Beside
faster convergence rate, another advantage of the PSHNN'’s is that each stage is

much easier to implement than the function-link networks without partitioning.

Other criteria like least mean absolute value (LMAYV) is superior to mean
square error (MSE) in some applications. The LMAYV rule is robust to outliers in
a dataset [Bell87]. In Chapter 5, the algorithm used during step II of the RBP is
extended to the incorporation of the LMAV rule [DeEr922]. We also illustrate
another method which use the BP algorithm with forward-backward training to
learn input NLT's of the PSHNN. In this case, the interconnection weights
between the input and the hidden layers are allowed to change sweep by sweep.
The error reduction property by forward-backward training stated in Chapter 4
is based on the fixed input NLT of each stage of the PSHNN in every sweep.
The PSHNN with BP stages and forward-backward training has different input
NLT at each stage and at every sweep. We show the reason why the error
reduction property still holds for this method in Chapter 5. Using this technique
of learning input NLT'’s, better performance in terms of deeper minimum of the
error function and faster convergence rate is achieved when a single BP network
is replaced by a PSHNN of equal complexity in which each stage is a BP

network of smaller complexity than the single BP network.




1.2. Thesis Organization

This thesis consists of six chapters. Chapter 2 illustrates the background for
the model of the PSHNN with continuous inputs and outputs. Error reduction
property is discussed both with single and multivariate inputs and outputs. The
suboptimal error reduction property due to the use of the delta rule in practise
is proved. A revised BP algorithm is proposed for learning input NLT’s. In
Chapter 3, we focus on incorporation of sequential learning. The PSHNN with
SLS algorithm during step II of the RBP is also discussed. We introduce an
algorithm called the PSHNN with forward-backward training and prove the
asymptotic properties, both with optimal and suboptimal least-squares, in
Chapter 4. Chapter 5 illustrates other methods of learning input NLT’s. The
RBP with the LMAV rule and the PSHNN with BP stages and forward-
backward training are discussed. Conclusions and further research issues are

presented in Chapter 6.




CHAPTER 2
PARALLEL, SELF-ORGANIZING,

HIERARCHICAL NEURAL NETWORKS
WITH CONTINUOUS INPUTS AND OUTPUTS

2.1. Introduction

Parallel, self-organizing, hierarchical neural networks (PSHNN's) are
multistage networks in which stages operate in parallel rather than in series
during testing [ErHo90], [ErHoll]. The PSHNN’s as developed previously assume
quantized or continuous-valued inputs and quantized, say, binary outputs
[ErDe811). In this chapter, a new type of PSHNN is proposed such that the
outputs are alowed tOo be continuous-valued. A revised backpropagation
algorithm (RBP) is discussed for learning input nonlinear transformations
(NLT’s) [ErDe912]. In order to achieve this, al theinput vectors are fed into all
the stages after nonlinear transformations. The performance of the resulting
network is studied in the application of predicting speech signal samples from
past samples.

Given a linear discrete-time system, the object of linear prediction is to
estimate the output sequence from a linear combination of tbe past input
samples. There are several ways to compute LPC (linear predictive coding)
coefficients. One way is to solve the autocorrelation equations to find the LPC
coefficients [Pars86|. Another way is by using the linear delta rule learning

algorithm in a one-stage network [Rumes88].




The PSHNN is both theoretically and experimentally shown to make the
mean square error (MSE) smaller than with linear prediction. It isaso shown
that any input nonlinear transformation helps the system to achieve smaller
mean square error than the MSE with linear prediction. By implementing the
PSHNN stages in parallel, the speed of processing with several stages is almost

the same as with one stage.

The chapter consists of 7 sections. In Sec. 2.2, the system model with a
univariate output signal is discussed. The error reduction properties of the
system are proved in Sec. 23. The results are generalized to a multivariate
output signal in Sec. 24. The suboptimal error reduction property due to the
use of the delta rule is derived in Sec. 25. The experimental results testing the
model and the theory of the preceding sections with speech data are discussed in
Sec. 2.6. So far the input nonlinear transformations are assumed to be known
and constant. In Sec. 2.7, we describe how to learn the input NLT’s by a revised
backpropagation (RBP) network. Simulation results of learning input NLT’s by

the RBP are also given in thissection.

2.2. System Model with Univariate Output Signal

The new PSHNN architecture proposed is shown in Fig. 21 In this
section, we will assume a single output. SNN(i) represents the ith stage neural
network which is trained by using the delta rule as discussed below. X(n) is the
input vector sequence, and d(n) is the desired output sequence. X'(n), Y(n) and
Z(n) are obtained by nonlinear transformations NLT1, NLT2 and NLT3 of X{n),
respectively. NLT1, NLT2 and NLT3 are all different.




After SNN1 istrained with the delta rule, the error signal is
e;(n)=d(n)—0,(n).

We use e;(n) as the desired output of SNN2, and Y(n) as the input signal to

train SNN2 by the delta rule. The error signal for the second stage is

ey(n)=e; (n)—0y(n) .

After SNN2 is trained, we use e;(n) as the desired output of SNN3 to train
SNN3 by using the delta rule. This process of adding stages is continued until
the final error is negligible with white noise properties. Assuming three stages,

the final output is
of(n)=o0,(n)+02(n)+o3(n).

The delta rule is identically used in al the stages. For example, in the first

stage, the sum of squared error minized by the delta rule is given by

E=3: [d(i)—o, ()], (2.1)

i=1

where

P
0, (i)=Y ajx(i—j), (2.2)
j=1
a),ay ' *,a, are the weights to be learned.
First, SNNI generates the output o,(n) corresponding to the input vector
X(n)=[x(n-1), x(n-2), ... ,x(n-p)]. Thevalueof a;, (i=1,...,p) is modified at each

iteration according to
Ayai=n(d(k)—o, (K)x(i) , (2:3)

where 7 is the gain factor of SNN(i).

The iterations are continued until Aya; becomes negligible. The procedure




10

described above for the first stage also applies to the succeeding stages. The final

error signal e¢(n) is
er(n)2d(n)—or(n) (2.4)

with of(n)=0, (n)40,(n)+4o03(n) .
In Fig. 2.1, it isobserved that

0;(n)=d(n)—e,(n)
02(n)=e, (n)—ez(n)
03(n)=e;(n)—e3(n)
=> e;(n)=¢3(n). (2.5)
Let theerror vectors for the first, second, and third stages be the following -
e;=(e;(1),e:(2), .. .,e1(n)),
ez=(ez(1),€2(2), . . - ,e3(n)),
e3=(e3(1),e3(2), - . . ,e3(n)).
We define
Her |12 =|les | |* £<esves>.

We prove ||e; ||2>1le2|12>]les||? in sections 2.3 and 2.4.

2.3. Error Reduction

In order to prove the properties of error reduction, we will first consider a
two-stage PSHNN as shown in Fig. 2.1, and then generalize the properties to n
stages. Assuming m training input vectors of length p and NLT1 to be the
identity operator (X(n)=X'(n)), we define




11

xi
x$
X=|"
X:nj
v
¥
Y=|"
Y:nj
t
D= [dl d2 c dm]
t
Wl = [81 ag " °° 3p]
t
wzz[bl b2 t . bp].

X and Y are m X p matrices. Each row of X or Y represents input vector of
SNNI or SNN2, respectively. D is the desired output vector of length m. W; and
W, are vectors of length p. W; and W, are the weight vectors of SNNI and
SNN2, respectively. The elements a;,a9 * .+ ,ap in W, are actually the LPC
coefficients. Usually m is greater than p. Using the delta rule to {rain W; and
W, corresponds approximately to finding the least-squares solution to the

equation
XW, =D. (2.8)
The least-squares solution is {Erso88|

W, =X*'D, (2.7)




12

where X* is the pseudo-inverse of X.

The output of SNN1 is oy, which can be expressed as
0, =XW, =XX*D. (2.8)
The error vector of SNNI is
e, =D—o;, = (I-XX*)D. (2.9)

We define A 2XX*, which is positive semidefinite [DuHa73|. A is known as the

projection operator.

The squared error ||e; ||? is given by
[{e, [1? = ele; = DY(I-A) (I-A)D. (2.10)
Since (I-A) is symmetric and idempotent [Stra86],
lle, |2 = DY{1-A)D. (2.11)

For SNN2, the input vector matrix is Y, and the desired output vector is e;. A

similar derivation yields
YW, =e,
W, =Y'e,
Y* is pseudo-inverse of matrix Y, and therefore
0, =YY%e; = Be,,
where we defineYY™ _—é‘B, which is aso positive semidefinite. Then,
ey =e;—0p = (I-B)ey,
Hlea||? = ei(1-B)ey, (2.12)

since (1-B) is also symmetric and idempotent.

Because B is positive semidefinite, we have




13

”92 | |2 = e&(I—B)el
<Vle 12 (2.13)

This reasoning can be continued to any number d stages. For example, we let Z
be the input vector matrix to stage 3, and define C22Z* which is symmetric,

ideinpotent and positive semidefinite. We conclude that
[les]1? = e3(I~C)eq
< eI (2.14)
From Egs. (2.5), (2.6), (2.13), and (2.14), it follows that

Heel1? = lleal1? < Hea |1 < Iles I1%.

Let us again consider the two-stage PSHNN. We can improve the results
discussed above further by forward-backward training of stages. After we have
trained W, and W,, we use D'=o; +e; as our new desired signal to train W, and

W, once more. The new trained weights for SNNI become
W'} = X% (o0; te,),
So, the new output of SNNI is
o'} = Alo;+ez) = 0; + Aey,

since A is the projection operator, o; is already in the space spanned by A, and

thereby Aoy;=0,. The new error signal at the output of SNNI is
¢ = D'~0/) = (I-A)ez. (2.15)
Then, we get

He's |12 = eF (1-A)ea, (2.18)




=> |eh[* < lle| . (217)

The new desired output for SNN2 is €', +o0,. Following the same procedure, the

error vector for this stageis

‘ e'y = (I-B)e';. (2.18)

And also,
lle'21}? = e'T (1-B)e'y, (2.19)
=> |l ||* < [{en]]* (2.20)

From Egs. (2.17) and (2.20), we conclude that
e |12 < ez |- (2.21)

Eq. (2.21) shows that we can make further error reduction by forward-backward
training in which the desired output of each stage is modified as the previous
output plus the remaining error from the previously trained stage, and the
training with the delta rule is repeated. It is straightforward to generalize the

procedure above for any number of stages.

2.4. System Model with Multivariate Output Signal
If the output signal d; is not ascalar but an X 1 vector denoted as gi, then

the desired output D becomes

D=[d_1 d,

[«
i
. -

W, and W, of Section 2.3 become

t
wl=[§lgﬂ .'.‘%]v




15

t
w2 = h1 b‘l T 'b‘p} )
where a and Q are vectors of length n.

Now, D isan m X n matrix. W; and Wy are p X n matrices. Based on the
same derivation as in Section 2.3, the output of SNNI is an output matrix O,
which is ideally

0, =XW, = XX*D. (2.22)
The error of SNNI is
E, =D-0, = (I-XX*)D. (2.23)
E, isan m X n matrix, and can be expressed as
t
Bi=la e gl
We can define square error sum of stage 1 (ERR1) as
e, 112 +l1e 114 - 4] le 1.
Therefore,
ERR1 = tr(E,ET) = tr(ETE,). (2.24)
Similar to Eq. (2.10), we get
ERR1 = tr(DT(I-A)D). (2.25)

Let ERR2 be the square error sum of SNN2. Repeating the same procedure, we

get,
ERR2 = tr(E] (I-B)E,). (2.26)
Since B is positive semidefinite, we conclude that

ERR2<ERR1. (2.27)




16

The procedure discussed above can be easily extended to any number of stages.

2.5. Suboptimal Error Reduction Property

Assuming a two-stage network, the square error sum ||e;]|? in Eq. (2.12),
is based on the optimal least-squares solution for the second stage. The least-
squares error vector e, is in the null space of YY'. Defining &,2}le;||?, Eq.

(2.12) can be written as
Es=I11=YY*)e; | =] [Pniyyyes 117, (2.28)
where Pn(yyy is the projection matrix to the null space of YYL

In reality, the square error sum we get by using the deltarule is based on a
suboptimal least-squares solution. The suboptimal square error sum denoted as

&), can be expressed as [Alex86], [Hayk91]

gls=m(€min +£exc)’ (2'29)

where m denotes the number o input vectors. €g;p IS the minimum mean square

error (MSE) by solving the normal equation
E[Yn(0)Yn(n)'|Wn=Ele; (n)Yn(n)), (2.30)

where Yn(n)=[y(n),y(n—1), - - . ,y(n—N+1)]*, and N denotes the number of
weights of SNN2 of Fig. 21; €. is due to the actual LMS weights jitter, and is
sometimes referred to as the excess MSE. If we assume the sequence y(n) is
stationary and ergodic, then mé€g;, in Eq. (2.29) will gradually approach the
optimal square error sum &), as m grows. Thus, approximating mégiz by &,

Eqg. (2.29) can be written as

gll=£ls+mgexc (231)




17

€exc 1S proportional to gain n used in training. Choosing smaller n aclhieves better

suboptimal square error sum &, but then the learning rate isslower. So, there is

a trade-off involved in choosing the value of 7.

We show below that the error reduction properties in Sec. 2.3 still hold

with the square error sum &, based on a suboptimal least-squares solution.

Referring to Eq. (2.12), we let col[YY'| denote the column space of [YY'] and
Pcol[YY‘]=YY+: (2.32)

where Pgyyy is the projection matrix to the column space of [YY']. Then, the
output vector of the second stage based on the optimal least square-solutions is

[HoKu71}, [RaMi71]
03=Pql|yy!]€1 - (2.33)
The output vector 6, based on the suboptimal least-squares solution W', is
8y=YW',. (2.34)

Eq. (2.34) shows that &, isin the column space of [YY'], since it is generated by

the data matrix Y. Consequently, 6, can be written as
02 =P col[yy'|€1 1D, (2.35)

where the vector b also belongs to the column space of [YY']. This is

graphically shown in Fig. 22. The magnitude of b can be written as

I Ibl I=c| |Pcol[YY‘]ex I I ' (2.36)

where c satisfies 0<e<1 in practise since the delta rule is a good approximation

to the least-squares solution. Thus, the error vector of SNN2 is
€y =e; —0,

=[I—Pcayyyyles—b




=P Njyy|e1—b. (2.37)

Since Pnjyy+e; and b are orthogonal to each other, the magnitude of €, satisfies
Heo 12 <I1e | [*=I{Pnjyyjes |12+ [b] 12, (2.38)

He2 |12 <IIPxpryjer [+ Peoryyjen [12=[les | . (2.39)

Thus, ||é2]]? is less than |]e;||? as long as c is less than 1, which is definitely

true in practise.

2.6. Experimental Results

The theoretical results discussed above were tested in the application of
speech prediction. For this purpose, 100 speech samples at the sampling rate of
10 Khz were used to train and to test the network. A sliding window of length
between 4 and 10 data points were used to predict the next signal value

following the window.

Properly choosing the value of the gain factor # in EQ. 2.3 is important. If
we choose 7 too small, the convergence speed is too slow, but choosing too large
n makes network oscillate. After trying different values of the gain factor, it was
found that using a value between 0.001 to 0.1 was reasonable. In our

experiments, we did not use momentum term.

We started with a two-stage PSHNN. The pointwise nonlinear
transformations used in the experiments were the following:

(A) SIGMOID 1 (Sig. 1)

1

Y(x) = ——m8m —
(x) 14+e7*

(B) SIGMOID 2 (Sig. II)




19

Y(x) = 2 X sigmoid (x) - 1
(C) THRESHOLD 1 (Th. )
y=1ifx>0
y=0 ifx <0
(D) THRESHOLD 2 (Th.II)
y=1ifx>0
y=-1ifx<0
In the experiments, we first normalized the data in the range [-1, 1]. In all
experiments, NLT1 of the first stage is the identity operator, and 100 iterations

of training were used for the first stage.

Table 2.1 shows the results, with 10 weight values as a function of the four
types of nonlinearities. We used n=0.001 in the case of Th.I, Th.II and Sig.l,
and n=0.1 in the case of Sig.Il. The second stage converged after 300 iterations
with Th.I and Th.1I, and 100 iterations with Sig.I and Sig.II. It is observed in
Table 2.1 that the two-stage PSHNN is always better in error performance than
the one-stage network, the best result being the case of Sig.I nonlinearity. It is
also observed that there is negligible error reduction in the case of Sig.Il. Thisis
because the input data was normalized in the range [-1,1}, and this causes X and

Y to be almost the same in this range.

The comparative performances of the one-stage and two-stage networks as
a function of the length nc of the sliding window are shown in Table 22. The
input nonlinearity used was Th.Il. It is observed that both networks reach
maximal performance at about nc equal to 10. Again, in al cases, the two-stage
network has better error performance. In these experiments, the number of

iterations in the two stages were 100 and 300, respectively.




The experiments discussed above were extended to three stages, with ne=5
for each stage. The results are shown in Table 2.3. It is observed that further
reduction of error depends on the combination of nonlinearities used. An
important research issue is how to optimize the nonlinearities. An effective
approach is by using the revised backpropagation (RBP) network discussed in

the next section.

2.7. Learning Input Blonlinear Transformation by Revised Backpropagation

In the proceeding sections, it became clear that how to choose the input
nonlinearities for optimal performance is an important issue. In this section, a

revised backpropagation (RBP) network is proposed for this purpose.

The RBP network consists of linear input and output units and nonlinear
hidden units. One hidden layer is often sufficient. The hidden layers represent
the nonlinear transformation of the input vector. The output of the jth unit of

the kth layer is of the form

Ny
0y (3)=f( 3> Wi (3,i)0x—1 (1)) ,

im1
where Ny_,; is the number of output nodes of the (k-1)th layer; Oyx_, is the
output vector of the (k-1)th layer; Wy (.,.) are the weights connecting the (k-1)th

and the kth layers, and f(.) is the nonlinear activation function, assumed to be

differentiable and usually chosen monotone nondecreasing.

Fig. 2.3 is a two-stage PSHNN with RBP Stages. The RBP algorithm
consists of two training steps, denoted as step | and step II, respectively. During

step I, the RBP is the same as the usual backpropagation (BP) algorithm




21

[Rume88|. During step II, we fix the weights between the input layer and the
hidden layers, but retrain the weights between the last hidden and the output

layers by the delta rule.

Each stage of the PSHNN now consists of a RBP network, except possibly
the first stage which can be learned by the delta rule alone, with NLT1 equal to
the identity operator. In thisway, the first stage can be considered as the linear

part of the system.

There are a number of reasons why the two-step training described above is
preferable over the usual training with the BP algorithm. The first reason is
that it is possible to use the PSHNN with RBP stages together with the SLS
algorithm or the delta rule. For this purpose, we assume that the signal is
reasonably stationary for short time duration. Thus, the weights between the
input and the hidden layers of the RBP stages can be kept constant during such
a time window. Only the last stage of the RBP network is then made adaptive
by the SLS algorithm or the delta rule, which is much faster than the BP

algorithm requiring many sweeps over a data block.

The second reason is that the two-step algorithm allows faster learning.
During the first step, the gain factor is chosen rather large for fast learning.
During the second step, the gain factor is reduced for fine training. The end
result is considerably faster learning than with the regular BP algorithm. It can
be argued that the final error vector may not be as optimal as the error vector
with the regular BP algorithm. We believe that this is not a problem since
successive RBP stages compensate for the error. As a matter of fact,
considerably larger errors, for example, due to imperfect implementation of the
interconnection” weights and nonlinearities can be tolerated due to error

compensation [ErHolI].




The results of the computer experiments carried out with the same speech
data are shown in Table 2.4. 1In these experiments, the length of the input vector
was five; the gain factor was 1.0 in step | and 0.01 in step II; tbe number of
iterations was 1000 in step | and 100 in step 1I. It is observed in Table 25 that
the best performance is obtained with four bidden units. It isalso observed that
the error performance is considerably better than the results in the previous

tables with fixed NLT’s.




Table 2.1.

23

Performance of One-Stage and Two-Stage PSHNN as a Function

of Input Nonlinearities (err1 = ||e, ||2, err2 = |leg}|?).

square error sum
type of NLT

errl err2
Th.I 1.3785 1.3500
Th.Il 1.3785 1.3360
Sig.1 1.3785 1.1221
Sig.11 1.3785 1.3766




Table 2.2.  Performance of One-Stage and Two-Stage PSHNN's as a Function
of the Length of the Weight Vector When the Input Nonlinearity
is Th.II {(err1 = ||e; ||%, err2 = |ley|]?).

square error sum

nc j

errl err2

4 | 21707 | 2.1151

5 | 2.1359 | 2.0813

6 | 2.1317 | 2.0721

7 | 1.7876 1.7465

8 | 1.4419 1.4058

9 | 1.3789 | 1.3345

10 | 1.3780 | 1.3346




25

Table 2.3.  Performance of One-Stage, Two-Stage and Three-Stage PSHNN's
TT a Function of Input Nonlinearities (errl= [le, |12, err2=
es[|%, err3=|[eg][*).
Type of NLT square error sum Number of Iterations
Stage II | Stage II] errl err2 err3 Stage [ | Stage I | Stage Il
Th.II Sig.II 2.1357 | 2.1346 | 2.0988 [ 00 500 100
Sig.I1 Th.l 2.1357 | 2.0943 | 2.0789 100 500 100
Sig.l Sig.II 2.1357 | 2.1346 | 2.1345 100 500 2000
Sig.I1 Th.l 2.1357 | 2.1348 | 2.100 100 500 100




26

Table 24. Performance when the Input NLT is Learned by RBP
(err1=|le, | |*,err2=|le; ||*,err3=||es ||, erra=|[e, | [*).
Number
of Hidden 3
Nodes
square step 11 step | step I step | step 11 step | step 11
step |
error sum
errl 21352 2.1352 2.1352 2.1352
err2 2.1369 21347 1.4857 1.4625 1.2191 11917 1.8991 1.8333
err3 2.1047 2.0974 1.1818 1.1357 1.1675 1.1697 1.6982 15758
err4 1.6779 1.6646 1.0795 1.0731 1.0164 0.9790 1.3681 1.3527




27

X(n) X'(n)
-T—NLTI SNN1
Y(n)
—NLT SNN2
Z(n)
&~NLT SNN3

e3(n)

Figure 2.1. Bl ock Diagram for a Three-Stage PSHNN.




col[YY?!)

Figure 2.2. Representation of Suboptimal Solution.

28




First RBP Stage

NLT1 SNN1

Delta Rule

Second RBP Stage

NLT2 SNN2

02

€

Delta Rule

Figure 2.3. Two-Stage PSHNN with RBP Stages.

29




30

CHAPTER 3
INCORPORATION OF SEQUENTIAL LEAST-SQUARES

3.1. Introduction

One advantage of PSHNN is that the sequential least-squares (SLS)
algorithm can be used for learning. This does not seem possible with other

multistage neural networks.

The least-squares solution discussed in Chapter 2 is commonly referred to
as batch processing least-squares because the data D=(d;d,...d,) are
processed simultaneously [Sore85]. If new data dy4; are to be processed after
having determined an estimate based on the data D, it is necessary to
completely reprocess the old data with previous neural networks. To avoid this
inefficient procedure, we need to consider the determination of the least-squares
estimate from an estimate based on D and the new data dy4+; without explicitly

using D in PSHNN.

In adaptive signal processing, the SLS algorithm allows each input samples
to be used without the need for previous input samples. In real-time adaptive
signal processing, it is not possible to use a batch method with long training
time, and the SLS algorithm is essential. In this chapter, the algorithm used
during step II of the RBP is extended with the incorporation of the SLS. In this
way, the RBP" networks with the SLS can be used to process short-time

stationary signals in real time.




31

The chapter consists of 4 sections. In Sec. 3.2, the PSIINN with the S1.8
algerithm is discussed. The RBP network with the SLS is proposed in Sec. 3.3.

Experimental results are provided in Sec. 3.4.

3.2. Incorporation of Sequential Learning

In Chapter 2, we found optimal solutions for the weight vectors in terms of
the generalized inverse of the input data matrix X. Sequential learning alows
recursive updating of weight vectors in terms of the previous weight vectors, and
the present input. In this way, it is not necessary to store past data vectors in

memory.

It can be shown that the SLS algorithm reduces to the following set of two

recursive equations [Kell90] [Grau84].
Wi (r) = Wi(r=1) T P X (x, — X{ W, {r-1)) (3.1)

P, X.XTP,_
P,=P_, — ————— . (3.2)
_ 1 +XFP, X,

Here X, is the column vector containing the input signals x,_; t0 x,_p, r isan
index representing the current input signal, and p is the number of LPC
coefficients. W, (r) is the present estimate of LPC coefficients expressed as a
column vector, and W,(r—1) is the previous estimate of this vector at time r-1.
P, is a pXp matrix which corresponds to the rth iteration. The value of P, can
be calculated recursively by Eq.(3.2). Initially, W,(0), which is a column vector,
is zeroed, and the matrix P, isset equal to some constant product of the p by p

identity matrix [Mend73].




For SNN2, we replace X, by Y,, and the recursive SLS equations are
W2(r) = WQ(I'—I) t PrYr(el(r) - Y;TWQ(I'—-I)) ’ (3'3)

P._,Y,YP,_
P,=P,; - ——- 0. (3.4)
1+err—er

Here e, (r) isthe error signal for the SNN1 at the present time, given by
er(r) =x - oi(r) .
For SNN3, we replace X, by Z,, and get
Ws(r) = Wy(r=1) T P, Z; (e (r) — 27 W5(r-1)) (3.5)

P._,2,2TP,_
P,=P,_, - 1. (3.6)
1+ZrPr-—lzr

Where ey (r)=e; (r)—o,(r) .

Thefinal output is

of =0; + 03 +03 .

3.3. The RBP Networks with the SLS Algorithm

We have discussed the revised backpropagation (RBP) algorithm in
Chapter 2. Referring to Fig. 3.1, the RBP network with the SLS uses the
sequential least-squares during step II of the RBP algorithm. Thus, the weights
between the input and the hidden layers of the RBP stages can be kept constant
during such a time window. Only the last stage of the RBP network is made
adaptive by the SLS algorithm, which is much faster than the BP algorithm
requiring many.sweeps over a data block. For this purpose, we assume that the

signal is reasonably stationary for N data points. While the block of N data




33

points is being processed with the SLS algorithm, the first M << N data points
of the block can be used to train the stages of the PSHNN by the BP algorithm.
At the start of the next time window of N data points, the RBP stages are
renewed with the new weights between the input and the hidden layers of the
RBP stages. This process is repeated periodically every N data points. In this
way, nhonstationary signals which can be assumed to be stationary over short

time intervals can be effectively processed.

3.4. Experimental Results

We experimented with two-stage PSHNN'’s using the SLS learning
algorithm. The nonlinear transformations used in the experiments are the same
as in Chapter 2. The error performance results are shown in Tables 3.1 and 3.2.
Previous conclusions are again valid in this case. Another observation is that it
is necessary to optimize the networks both in terms of the length of the weight

vectors and the number of stages.

Fig.3.2 through Fig.3.4 show the prediction results with sequential learning.
The prediction was started after 7 initial speech samples. Nonlinearity of Th.II
was used and the length of the weight vector was 7. Figs. 3.2 and 3.3 show the
original speech signal versus the predicted speech signal with one-stage and
two-stage networks, respectively. Fig.3.4 shows the prediction error with the
same networks. These results show that the two-stage network with SLS
learning has better prediction performance than the traditional one-stage
network with SLS learning. Since the two stages are implemented ia parallel, the

gains are achieved with almost the same processing time as the one-stage




network.

The simulations in Table 3.3 and Table 3.4 used a RBP stage with the SLS
rule in place of the second stage of the PSHNN of the previous experiments. In
these two simulations, the RBP networks had 5 input units, and 1 output unit;
five hidden nodes were used in Table 3.3 and four hidden nodes in Table 3.4.
The gain factors used during step | were 0.5 in Table 3.3 and 1.0 in Table 3.4.
Tables 3.3 and 3.4 show that the performance of learning input NLT2 by the

RBP stage is better than any pointwise NLT2.

Figs. 3.5 thru 3.7 show the prediction results with sequential learning. The
prediction was started after 5 initial speech samples. Th.Il was used as the
nonlinearity and the length of the sliding window was 5. Figs. 3.5 and 3.6 show
the original speech signal versus the predicted speech signal with the one-stage
and the two-stage networks, respectively. Fig. 3.7 shows the prediction error
with both networks. These results also show that the two-stage network with
SLS learning has better prediction performance than the traditional one-stage
network with SLS learning. Fig. 3.8 shows the original versus the predicted
signals of the two-stage PSHNN with the RBP and the SLS rule in the second
stage and 1000 iterations used during step | of RBP. Fig. 3.9 shows the
predicted error of the two-stage network with Th. II pointwise NLT2 versus the
predicted error of the two-stage network with the RBP and the SLS rulein the

second stage.




Table 3.1.

35

Nonlinear Speech Prediction Performance of One-Stage and Two-
Stage PSHNN’s Trained with SLS Learning (ne=7, errl= )]es ))*,

err2—

”92“ )

square error suimn

type of NLT

errl err2
Th.l 1.3255 | 1.2960
Th.Il 1.32565 | 1.2856
Sig.1 1.3265 | 1.3221
Sig.II 1.3256 | 1.3252




36

Table 3.2.  Nonlinear Speech Prediction Performance of One-Stage and Two-
Stage PSHNN's Trained with SLS Learning (nc=5, errl= | |e;

err2= | |e2

square error sum

type of NLT
errl err2

Th.I 1.7799 1.7332
Th.II 1.7799 | 1.7197
Sig.1 1.7799 1.7783
Sig.II 1.7799 1.7797




Table 33

37

Performance of a5 Hidden Unit Two-Stage PSHNN with the RBP
and the SLS Rule in the Second Stage.

# of

training

square error sum

step | step II

500
600
700
800
900
1000

1.4783 | 14711

1. 4042 1. 4002
1.3387 | 1.3360
1.2748 | 1.2718
1.1935 1. 1903

1. 1189 11178




Table 3.4.  Performance of a 4 Hidden Unit Two-Stage PSHNN with the RBP
and the SLS Rule in the Second Stage.

# of sguare error sum

iterations

step 1 step II

500 1.4314 1.4099
600 1.3272 1.2180
700 1.1170 1.0130
800 0.9646 0.9221
900 0.9148 0.8842

1000 0.8850 | 0.8568




First RBP Stage

NLT1

Figure 3.1.

X'

SNN1

SLS

Second RBP Stage

= NLT2

SNN2

€

SS

Two-Stage PSHNN with RBP Stages and the SLS Algorithm.

39




-0.5 —

msec

Figure3.2. Original Speech S%nal (solid line) and the Predicted Speech Signal
(dotted Ilne) with One-Stage HNN Trained with the .S
Algorithm.




41

-0.5 <

20 40 60 80 100

Figure 3.3. Original Speech Signal (solid line) and the Predicted Speech Signal
(dotted line) with Two-Stage HNN Trained with the S.S
Algorithm.




42

0.5 —

-0.5 =

20 40 60 80 100
msec

Figure 3.4. TheError Signals with One-Stage HNN (solid line) and Two-Stage
HNN (dotted line) Trained with the SLS Algorithm.




43

100

Figure 3.5. Original Speech Signal (Solid Line) and the Predicted Speech
Signal (Dotted Line) with One-Stage PSHNN Trained with the
SLS Algorithm {nc=S5).




100

Figure 3.6. Original Speech Signal -(Solid Line) and the Predicted Speech
Signal (Dotted Line) with Two-Stage PSHNN Trained with the
SLS Algorithm (ne==5).




45

0.5~

-0.5

20 40 60 80 100

Figure 3.7. The Error Signals with One-Stage PSHNN (Solid Lice) and Two-
Stage PSHNN (Dotted Line) Trained with the SLS Algorithm

(ne=5).




msecC

Figure 3.8. Original Speech Signal (Solid Line) and the Predicted Speech
Signal SDotted Line) with Two-Stage PSHNN with the RBP and
SLS Rule on the Second Stage (ne==5).




47

0.5 —

Figure 3.9.

20

40 60 80 100
msecC

The Error Signals with Two-Stage PSHNN (Solid Line) with
NLT2=Th.IIl and Two-Stage PSHNN (Dotted Line) with the RBP
and the SLS Rule on the Second Stage

nc=>5).




48

CHAPTER 4
PARALLEL, SELF-ORGANIZING,

HIERARCHICAL N E W NETWORKS
WITH FORWARD-BACKWARD TRAINING

4.1. Introduction

In Chapter 2, we discussed the generalization of parallel, self-organizing,
hierarchical neural networks (PSHNN’s) to continuous inputs as well as
continuous outputs [ErDe912]. The block diagram for such a 3-stage PSHNN is
shown in Fig. 21. It was shown that the stages are generated by nonlinearly
transforming input vectors, and each new stage attempts to correct the errors of
the previous stage. It was also discussed that further error reduction in an o-
stage network is possible by circularly transmitting the remaining error through
the stages a number of times until convergence. Running through all the stages
once can be called one sweep. At each successive sweep, the desired output of
each stage is modified as the previous output of the stage plus the remaining
error from the previous stage. The first stage receives the error from the last
stage. Both in Ref. [ErDe912] and in this Chapter, the output nodes are assumed

o be linear.

In this chapter, forward-backward training oOf n-stage PSHNN’s are
introduced and discussed on a rigorous mathemnatical basis, in addition to
providing experimental resuts. The results are actually valid for all linear

least-squares problems if we consider the input vector and the vectors generated




from it by nonlinear transformations as the decomposition of a single, long
vector. In this sense, the techniques discussed represent the decomposition of a
large problem into smaller problems which are related through errors and
forward-backward training [DeEr921]. Generation of additional nodes at the
input is common to a number of techniques such as generalized discriminant
functions [DuHa73], higher order networks {GiMa87], and function-link networks
[Pao89]. After this is done, a single total network can be trained by the delta
rule [WiHo60]. At convergence, the result is approximately the same as tbe
pseudo-inverse solution, disregarding any possible numerical problems
[ErDe812]. The PSHNN'’s are different because the single total network are

replaced by a number of subnetworks.

The main result in this chapter is that forward-backward training of an n-
stage network until convergence is equivalent to the pseudo-inverse solution for
a single total network with the total number of input nodes if each stage is
optimized in the sense of least-squares. There are a number of advantages in
achieving the pseudo-inverse solution in this fashion. The most obvious
advantage is that each stage is much easier to implement as a module to be
trained than the whole network. In addition, al stages can be processed in
parallel during testing. If the complexity of implementation without parallel
stages is denoted by f(N) where N is the length of input vectors, the parallel
complexity of the forward-backward training algorithm during testing is f(K)

where K equals N/M with M equal to the number of stages.

The chapter consists of d9x sections. In Sec. 4.2, the forward-backward
training algorithm is described in detail. In Sec. 4.3, the asymptotic properties
with a two-stage network are discussed. These properties are extended to n-stage

networks in Sec. 44. The suboptimal asymptotic properties due to the use of




50

the delta rule during training are proved in Sec. 4.5. Experimental results are

provided in Sec. 4.6.

4.2. PSHNN with Forward-Backward Training

The system model is shown in Fig. 21. In this section, a single output is
assumed. In Fig. 2.1, SNN(i) represents the i-th stage neural network. In this
chapter, the stage neural network is assumed to be trained by the delta rule
[Rume88|. The output nodes are assumed to be linear. X(n) is the input vector
sequence; d(n) is the desired output sequence; X'(n), Y(n) and Z(n) are obtained
by different nonlinear transformations NLT1, NLT2 and NLT3.

We first consider a two-stage PSHNN, and then generalize the properties to
n stages. Assuming m training vectors of length p and NLT1 in Fig. 2.1 to be

the identity operator (X(n)=X'(n}), we define

.
X

X

Lo ‘N9 e
J

[ XY
i 1




X and Y are m X p matrices. Each row of X or Y represents an input
vector of SNNI or SNNZ, respectively. D} is the desired output vector of length
m. Using the delta rule to train SNNI corresponds idedly to finding the least-

squares solution for XW,;=D}. The output of SNNI is o} which can be
expressed as [DeEr91]

0}=XX*D}]=AD]}, (4.1)
where X* is the generdized inverse of X, and the projection operator A is XX,
which is positive semidefinite.

Theerror vector of SNNI is
el=D}—ol=(I-A)D]. (4.2)

We use e} as the desired output for SNNZ, to be also trained by the delta rule.
The output of SNNZ after training can be expressed as

03=YY%e]=Be], (4.3)
where we define YY* 2B, which is aso positive and semidefinite. Then,
e} =e] —0}=(1-B)e]. (4.4)
With two stages, ol 4o} is the output, and the system error e; is
er=D]—(0]+03)=e}. (4.5)

The above results can be considered to be the first sweep in a number of sweeps
of forward-backward training. In the second sweep, the desired vector for SNNI

isset equal to




52

Di=o0]+e}. (4.6)
The new output of SNN1 is

o?=A(o}+e})=0]+Ael, (4.7)

because A is the projection operator, o} is in the space spanned by A, and

Ao}=o0}.
The new error signal for SNN1 is

e2=D?—o?=(I-A)e}. (4.8)
After a straightforward derivation, we get

ei=D}—(o}+o3). (4.9)

If we terminate the training at this point, the system output is o¢}+40}.
Therefore e? is just the error of the system. If we continue to train SNN2, the

new desired signal for SNN2 is
Di=ol+el. (4.10)

The output of SNN2 becomes
03=BD%=0} +Be}, (4.11)

since o4 isin the space spanned by B.

The error vector for SNN2, is
e2=D%—03=(I-B)e}. (4.12)
Using the same derivation leading to Eq.(9), we get
e3=Di—(o} +03), (4.13)

where e} is the error signal of the system at the end of the second sweep.




At the nth sweep, the desired output signal for SNNI is
D=0} '4el7 1.

After training, the output of SNNI is

The error vector is

The error vector can also be written as

el=Di—(o}+o§7!).
At the nth sweep, the desired signal for SNN2 is

D3 =031 +el.

Theoutput is

of =BD3=03"" +Be}.
Theerror is

e3=Dj—o3=(I-B)ej.
Again, we note that

e3=D]—(of +o}),
where ef isthe system error after the nth sweep.
From Eqg. (4.2) and Eg. (4.4), we get

[lel[|*=(D})*(1-A)(D}),

Hez |1 =(e})' 1-B)e1)<Ilei |-

53

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)




Frorn Eq.(4.8) and Eq.(4.12), we get

Hef |12 <(ed) (1-A)(e2)< I le2|[?,

HeZ |12 =(e}) (1-B)e])<I e 1*.
From Eq.(4.16) and Eq.(4.20). we conclude that

[ed [1? =(e3~ ") (1-A) (3™ )<[le3 |1,

|le2 112 =(e)"(1-B)(e})<Ile | |*.

Therefore,

ez P<let 12<He3 M 11P<, -, <lleHl*<llez]|*<llei |}*

We will see in the next section that

lim {led][?=llel{?,
D — OO

lim |le3|1*=|le]|*
n—+ 0o

54

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

where ||e||? is the square error sum of the function-link network which has the

same input NLT's as used in the PSHNN.

4.3. Asymptotic Properties of a Two-Stage PSHNN with
Forward-Backward Training

Consider a function-link network as shown in Fig. 41. Let X denote an

input vector, Y -be a nonlinear transformation of X and D be the desired output

vector, X and Y are mXn matrices, D is an mX1 vector, and W is a 2nX1




weight matrix.

Using the delta rule to train W corresponds approximately to finding the

leastsquar es solution for
(X,Y)W=D,

where (X,Y) denotes the concatenation of X and Y. The leastsquares solution is
W=(X,Y)*D,

where (X,Y)* isthe pseudo-inverseof (X,Y).

The output vector is
o=(X,Y)(X,Y)"D,
Therefore, the error vector is
e=D—o=(I—{X,Y)(X,Y)*)D. (4.31)

If we use PSHNN with forward-backward training, Eos. (4.2), (4.4), (4.8), (4.13)

and D} = D in thiscase lead to

el =(I-XX*)D, (4.32)
el =(I-YY*)(I-XX*)D, (4.33)
ef =(1—XX*)|(I-YY ™" )(1-XX")[D, (4.34)

e} =[(I-YY*)(I-XX*)|D, (4.35)




56

e} =(1-XX*)|(I-YY™* )(1-XX*)|*! D, (4.36)
e} ={(I-YY* )(I—XX*)|"D, (4.37)
el =(1-XX*)[(I-YY*)(1-XX*)["D. (4.38)

We will need the following properties to prove the main theorem o this

section:

Property 1: The null space N(XX'+YY!) is equivalent to the intersection of the
null space N(XX*) and the null space N(YY*).

Proof:

(i) For any vector yeN(XX*)N(YY*)

it is obvious that yeN(XXt+YY?Y.

(ii) For any vector yeN(XX'+YY*)

O +YY )y=0

=> XXly=—YY'y

Therefore, y*XXty=—y'YY'y

Since XX* and YY* are positive semidefinite
yEN(XX') and yeN(YY') O




57

In addition, the following properties are needed:

Property 2 The projection operators Pyixoxy and Pngyy) satisfy

lim (PnooeyPaeyy )* =Pnpoc)Neryy) (4.39)

o—oC

which can be found in Nakano [Nakas3|. This property tells us that the
projection not in the intersection of N(XX*) and N(YY") will gradually vanish as
n goes to infinity. The projection in the intersection of N(XX*) and N(YY") will

be preserved.

Property 3.
P iy Py vy =P Npoe) (N yyy)» (4.40)
which can be found in Hartwig and Drazin [HaDr82] and Nakano [Naka53].

Next, we will state and prove the main theorem:

Theorem 1:
lim e}*'=lim e} =e, (4.41)
n—+00 D—+ 00
lim e} =e. (4.42)
nD—+00
Proof:

The projection matrices are

(I_X)(+ )-éPN(XX') ’




58

(I=YY*)EPniyy).

Cornparing Egs. (4.31), (4.37) and (4.38), sufficient conditions for Eq. (4.41) and
Eq. (4.42) to hold are

lim (I-XX*)[(I-YY ) (1I-XXH)|* =[I-(X, Y)(X, Y)*}, (4.43)
lim [(1=YY*)(1-XXH)] ={1-(X, V)X, V). (449

Using the projection operators, we get
(=YY )(I-XX)]" =(Pneyy )P nexxy))"- (4.45)
From Property 1, we have
NXX)N(YY")=NXX"+YY")=N((X, Y)(X,Y)").

Therefore,

P e ey =P, vy, v)')- (4.46)
We know that

PN, v)x, v ={I—(X, Y)(X,Y)"| (4.47)
From Egs. (4.39), (4.45), (4.46) and (4.47), we conclude that

lim [(I-YY*)(I-XX ) =[I-(X, Y)(X,Y)"].

EqQ. (4.44) to be proved follows directly from Property 3:

lim (I-XXH)[(I-YY*)(I-XXH)]P =[I+X, Y)(X,Y)*] o

n— 00




59

The theorem proved above means that, as n grows larger, the error vectors
e] and ez approach the error vector e for the pseudoinverse solution if a single

total network was built without stages with the total input vector.

4.4. Asymptotic Properties for an N-Stage Network

When the number of stages is 2, forward-backward training is the same as
circular training discussed in Ref. [DeErg81]. In the circular training algorithm
with n stages, after training SNN(n), we train SNN(1). In forward-backward
training, we will train SNN(n-1) after training SNN(n), followed by SNN(n-2)
and so on. From the first stage to the last stage, we have a forward path
training, and then from the last stage to the first stage, we have a backward
path training. One sweep training consists of a forward path and a backward
path training. We will call this training procedure the forward-backward traing

algorithm.

For the sake of brevity , we will discuss the 3-stage PSHNN. All the
properties of the 3-stage network can be derived for the n-stage network in the
same way. Referring to Fig. 21 and supposing X=X, we define N[XX'|=A,
N[YY!=B, and N|[ZZ']=C to represent the null space of (XX'), (YY®) and (ZZ'),

respectively. After the first stage is trained, the error vector is
eir=[PA|D, (4.48)

where P, is the projection matrix of A, and D is the desired output vector. The
superscript of the error vector denotes the number of sweeps, the Arabic number
on the subscript denotes the number of stages, and the letter "’ on the subscript

means forward path training. Following the same procedure as in Section 4.3,




60

we have
esr=[PpP4D, (4.49)
ely=[PcPpPa|D. (4.50)

After training three stages in the forward path, we transmit the error of the
third stage to the second stage and modify the desired output of the second

stage in order to train the second stage, and get the error vector
e3,=[PaPcPpPA|D, (4.51)

where the letter "b" in the subscript means backward training path. After

training the second stage, we train the first stage and get the error vector
e}b'—_[PAPBPCPBPA]D- (4.52)
Now, the first sweep is over, and the second sweep starts.

Following the same procedure as above, we get the following error vectors

in the second sweep:
e};=Pa[PAPpPcPpPaAlD

=[PAPBPAPBPA]D

=eib, (4.53)
e3=PpPs[PAPpPcPBPAID, (4.54)
e3r=PcPpPA[PAPRPcPpPA[D, (4.55)

e3,=PpPcPpPA[PAPsPcPpPAD, (4.586)




81

e}o=[PAPpPcP3P,|’D

=ed;. (4.57)

After the nth sweep training, the error vector of the first stage becomes
efp=eli’ ' =[PAPgPcPgP4)"D. (4.58)

Similar to the derivation of Eq. (4.31), the error vector for a 3-stage

function-link network is
e=I(X,Y,Z)(X,Y, AN D

=[PNpoc+yy+229]P, (4.59)
where N(XX'+YY*'+ZZ") denotes the null space of (XX'+YY'+ZZ").

We also need the following properties:

Property 1.a: The null space N(XX*+YY!'+ZZ!) isequivalent to the intersection
of the null space N(XX*), the null space N(YY*") and the null space N(ZZ*).

Proof:

(i) For any vector aEN(XX')N(YY*)\N(ZZ"),

it is obvious that aEN(XX*+YY'+2Z").

(i) For any vector aEN(XX*+YY'+2Z}),

then (XX'+YY'+ZZ%)a=0.

Therefore, a' (XX*+YY'+2ZZ")a=0,

== atXXta+a'YYta+aZZ'a=0.

Because (XX*), (YY*), and (ZZ*) are positive semidefinite,
we have a*XXta=0, atYY*a=0 and a'ZZ‘a=0.




These imply 2EN(XX'), a€N(YY'), and a€N(zZ'). O

Property 2.a

lim (PAPBPC})BPA)D =PAﬂBﬂC (4.60)

D—+OC
which was proved by Pyle [Pyle67].

From Eqg. (4.59) and property 1.a, we get
e=(Pnpox+ vy +22:) )D=(ParBc)D- (4.61)

By using Property 2.a, Eq. (4.58) and Eg. (4.61), we obtain the main theorem of

this section:

Theorem 2;

lim e?, =e. (4.62)

D— 00

Since Property 2.a still holds for the intersection of n projection matrices, the
generalization of Theorem 2 to the n-stage PSHNN with forward-backward
training is obvious.

The results of Theorem 1 of Sec. 4.3 is based on the two-stage PSHNN.
For the two-stage PSHNN, circular training is the same as the forward-
backward training. An interesting question is whether circular training gives the
same results as forward-backward training for the n-stage networks. This is

conjectured to be true since many experiments show that [Pyle67]

lim (PCPBPA)n=PAr]BﬂC' (4.63)

n— 00

Experimentally, we have also observed that circular training gives the same

results as forward-backward training.




63

4.5. Asymptotic Properties for the Suboptimal Solutions

In Sec. 4.4, we discussed the asymptotic property of PSHNN with forward-
backward training when each stage gives the exact least-squares solution. In this
section, we generalize the asymptotic property to the suboptimal least-squares
solution due to the use of the delta rule. We discuss the case of the two-stage

PSHNN, and the results can be easily extended to the n-stage PSHNN.

Assuming a two-stage network, the square error sum ||e3||? in Eq. (4.23) is
based on the optimal least-squares solution for the second stage. The least-
squares error vector e} isin the null space of [YY']. Defining £:2]lei||?, Eq.

(4.23) can be written as
&= 11=YY*)el [I*=||Pngyyyel 1, (4.64)
where Pnyy') is the projection matrix to the null space of YY.

In reality, the square error sum we get by using the delta rule is based on a

suboptimal least-squares solution. The suboptimal square error sum denoted as

&, can be expressed as [Alex86], [Hayk91]

E1s=m(Emin +Eexe), (4.85)

where m denotes the number of input vectors. &pipx iS the minimum mean

square error (MSE) by solving the normal equation
E[Yn(n)Yn(n)'|Wn=E[e](n)Yn(n)], (4.66)
where Yy(n)=[y(n),y(n—1), - . - ,y(n—N+1)}}, and N denotes the number of
weights of SNN2 of Fig. 2.1; ¢, isdue to the actual LMS weights jitter, and is
sometimes referred to as the excess MSE. If we assume the sequence y(n) is

stationary and ergodic, then mégy;, in Eq. (4.65) gradually approaches the

optimal square error sum &, as m grows. Thus, approximating m&gix by &,




64

EqQ. (4.65) can be written as

~

fls=€ls+m€exc . (4'67)
€exc 1S proportional to gain » used in training. Choosing smaller 7 achieves better

suboptimal square error sum &, but then the learning rate is slower. So, there

is a trade-off involved in choosing the value of 7.

We show below that the error reduction properties derived in Sec. 4.2 still

hold in practise with the square error sum €|s based on a suboptimal |east-

squares solution.

For the sake of brevity, we consider a two-stage PSHNN with NLT1 being
the identity operator. D} is the desired vector for the first stage network in the
first sweep. The output vector of the first stage based on the optimal |east

squares solution is (HoKu71|, [RaMi71]
01 =P coxx D1 - (4.68)

1 . , :
The output vector 6; based on the suboptimal leastsquares solutions W', is

written as
5y =XW/, . (4.69)
This shows that 6:€col[XXt]. 6: can be written as
61 =P oxxyDi+b1 | (4.70)

where the vector b} aso belongs to the column space of [¥XX'. This is

graphically shown in Fig. 42. The magnitude of b} can be written as
|16 H=cilIPeapexyDiI (4.72)

where ¢} satisfies 0<c! <1 in practise. Thus the error vector of SNN1 in the

first sweep is




65

.1
€ =PN|}D(11D}—b} . (4.72)

1. . . .
€; is aso the desired vector for the second stage network in the first sweep.

Referring to Fig. 4.3, and using the same procedure as above, we get the

suboptimal output vector 6; of SNN2 in thefirst sweep as
1 R 1 :
°2=Pcol[YY‘]el +bs , (4.73)
where the vector bl belongs to the column space of [YY‘], and the magnitude of
bl is
R
b3 [ =ci Peapyyyéi |l (4.74)
where ¢} also satisfies 0<c3 <1 in practise. Theerror vector of SNN2 in the first
sweep is
A1 R
82=PN|YYl]el—b2 . (4.75)
Since Ple‘léi and b} are orthogonal to each other, we get
B 1
&z [12=]1Pnpyyyer [12+] 102117
.1 1 .1
<HPnpyyies |2+ [Peoipyyy s [ 12 =1 &1 [ (4.76)

Thus, IIé;,H2 is less than lléj,LH2 as long as ¢} is less than 1, which is definitely

true in practise.

On the second sweep, the desired vector of SNNI is é;+6:. Following the
same procedure as above, the suboptimal output vector 63 of SNNI in the

second sweep is found as
.2 W1
8y =P coipxx|(€2 +6,)+b}
=5, +P o €2 +b1 (4.77)

and




66

2 .1
[163 1 =ct P coypxxy(e1+61) 1] (4.78)

A1 .
where &, Ecol[XX!|, b}€col[XX!] and 0<c?<1. The error vector é: of SNN1 in

the second sweep is

e |
=PN|xxt]eg‘—b¥ . (479)

The desired vector of SNN2 in the second sweep is éf+6; The suboptimal

oulput vector 63 of SNN2 in the second sweep is
.2 L2 .1
82 =P cailyyy (€1 +67)+b3
Al A2 2
=09 +P col[yy!|€1+b3 , (4.80)
and
.21
”bgll"‘cg||Pcol[YY‘](el+°2)“ ) (4.81)
where 6;€col[YY‘], bi€col[YY'], and 0<c?<1. The error vector é:i of SNN2 in
the second sweep is
W2 .2 L1 2
€,=(&,+02)—0,
“2 9
=PN[yy€1—bs . (4.82)
Using Eq. (4.72) and Eq. {4.75), and letting ASN[XX!],BAN[YY'}; the
suboptimal error vector é} of the first stage in the first sweep becomes
=P,D}-bl. (4.83)
The suboptimal error vector é; of the second stage in the first sweep becomes
82=Ppé, b}

=PpP,D]-Pgbl-bl. (4.84)




67

Using Eq. (4.79) and Eq. (4.84), the suboptimal error vector éf of the first stage

in the second sweep becomes
~2
€, =(PAPp)PAD]—P,Pgbi—P,b; b}, (4.85)

where b3 €col[XX']. The suboptimal error vector 42 of the second stage in the

second sweep becomes
2
&2=(PpPA)’D}{—(PpPA)Ppbi—(P5P,)b}—Ppb}—b3 , (4.86)
where b3 Ecol [YY?).

Following the same procedure, the suboptimal error vector él: of the first

stage in the nth sweep becomes

D 21 12 n—kik_ oot n-1-kp 1.k
€,=(PAPp)" 'PoDi— 3 (PAPp)" b —3 (PAPp) P,bs . (4.87)
k=1 ke1

The suboptimal error vector é; of the second stage in the nth sweep becomes

") a1 o n—k ko n—kp. k
€,=(PgP,) D1~ (PgPA)* *Pgbi~ 3 (PgP,)" “b3 , (4.88)
k=1 k=1

where bi€col[XXt], and bhecol[YY'] for any positive integer i. Since the
directions of b} and biz are random, the magnitudes of the summation terms in
Eq. (4.87) and Eq. (4.88) are small in the mean sense. Therefore, the first term
on the right hand side of Eq. (4.87) or Eg. (4.88) can be considered as the
dominant term in real-world applications. Then, the error reduction property of
Eq. (4.28) in Sec. 4.2 still holdsfor this suboptimal case.

In practise, if n is large enough such that (PBPA)°=PAOB, and m>n, we
can rewrite Eq. (87) and Eqg. (88) as follows:

m m-—1
&r=6— 3 (PAPp)™ b~ 'Y (PoPp)™ !"*P,bk, (4.89)

k=m-n+1 k=m—n+1




68

and

m
&, =e— (PgPA)™ *Pgbk— 3> (PgPA.)™ *bk (4.90)

k=m-n+1 k=m-n+1
The error vector e in Eq. (4.89) and Eq. (4.90) is the vector in Eq. (4.31), which
is the optimal least-squares error vector of the function-link network as shown in

Fig..4.1. We also see that no matter how big m is, there are at most n vectors in

each summation term of Eq. (4.89) and Eq. (4.90).

4.6. Experimental Results

The theoretical results discussed above were tested with a speech signal
sampled at 10 khz. 100 Samples were used to train the network by the delta
rule, The gain factor we used in the experiments was 0.001. No momentum term
was used. The input pointwise nonlinear transformations used in the

experiments are the following:

(A) SIGMOID 1 (Sig. 1) :(0<y<1)

1
1+4+e*

y=
(B) SIGMOID 2 (Sig. 1) : (-1<y<1)

y = 2 Xsigmoid (x) - 1

(C) THRESHOLD 1 (Th. I):
y=1ifx>0
y=0 ifx <0




(D) THRESHOLD 2 (Th. II):
y=11ifx>0

y=-1 ifx <0

(E) SQUARE :

y=x

In the experiments,.we first normalized the input data in the range {-1,1}.
Five weights were used for each stage of a two-stage PSHNN. Ten weights were
used for the function-link network. The initial matrix of the network was set

equal to the covariance matrix of the input data.

Table 4.1 are the results of the function-link network with the ten weights

listed as a function of the five types of NLT's.

Tables 4.2 thru 4.6 are the results of the two-stage PSHNN with forward-
backward training. Table 4.2 is for Sig.I, Table 4.3 for Sig.Il, Table 4.4 for Th.I,
Table 45 for Th.II, and Table 4.6 for the square NLT.

Tables 4.2 and 4.3 for Sig.I and Sig.II cases show that the PSHNN with
forward-backward training has more error reduction and faster convergence rate
than the function-link network. With Th.Il and square NLT's, the PSHNN and
the function-link network are about the same both in error reduction and
convergence rate. With Sig.JI NLT, there is negligible error reduction both in
the PSHNN and the function-link network. This is because the input data was
normalized in the range {-1,1}, and this causes x and y to be ailmost the same in

this range.




70

Tables 4.7 and Table 4.8 are the results of the function-link network with
three-stage input vectors of length 5 concatenated as a total input vector to the
network. Tables 4.9 thru 4.11 show the error reduction performance of the
corresponding three-stage PSHNN with forward-backward training, In the first
stage, 100 iterations were used during the first sweep, and 300 iterations were
used during the succeeding sweeps. The number of iterations of the second and
the third stages were 500, and 900, respectively. In Tables 4.9, 4.10 and 4.11, the
notations used mean errlf = ||eis||?, err2f = |lek]|?, err3f = ||ei]]?, and
err2b = ||eby||%. The superscript "i"* denotes the number of sweeps as in
Section 4.2. From Tables 4.7 and 4.8, we see that the convergence irate is rather
slow for the function-link networks. Comparing Tables 4.7 and 4.8 to Tables
4.9, 4.10 and 4.11, we observe that PSHNN with forward-backward training is
superior to the function-link network in terms of both convergence rate and

error reduction.




Table 4.1. Performance of the Functior—hi{sk Network in Speech Prediction
e .

(err=]|
type number of
err
of NLT iterations
Sig.1 2.1344 1000
Th.II 2.027 1000
Sig.II 2.1291 1000
Th.I 2.0459 600
Sgre. 1.8862 1000

71




Table 4.2. Performance of PSHNN with NLT Si;.l in Speech Prediction
(err1=][e} | |?,err2=[]e}|[?).

# of iterations
n-th
errl er2
stagel | stage2
sweep
n=| 2.1353 | 1.9336 100 1000
n=2 1.8718 1.8524 900 100
n=3 1.8460 1.8416 900 100




Table 4.3. Performance of PSHNN with NLTi ?ig
2

(err1=[[ey [I?,err2=| e} ||

11 in Speech Prediction

).

# of iterations

n-th
errl er2
stagel | stage2
sweep
n=| 2.1353 | 2.1390 100 1000
n=2 2.1343 | 2.1385 900 100
n==3 2.1336 - 900 -

73




Table 4.4. Performance of PSHNN with NLT Th.I in Speech Prediction
(err1=]le} ||?,err2=] e} | [*).

# of iterations

n-th
errl err2
stagel | stage2
sweep
n= 2.1352 | 2.0925 100 200

n—=2 2.0699 | 2.0585 900 200
n=3 2.0514 | 2.0481 900 200
n=4 | 2.0457 | 2.0448 900 200




Table 4.5. Performance of PSHNN with NLT Th.II in Speech Prediction
(err1=|[e} [|?,err2=] e} [[*).

# of iterations

n-th
errl er2

stagel | stage2
sweep
n=I 2.1353 | 2.0282 100 100
n—=2 2.0312 | 2.0250 500 100
n=3 2.0034 - 600 -




Table 4.6. Performance of PSHNN with NLT Slqluare in Speech Prediction

(errl=| |ei, | |2,err2=| Ieiz

2).

# of iterations
n-th
errl er2
stagel | stage2
sweep
n=I 2.1353 | 1.9326 100 600
n=2 1.8973 | 1.8896 900 600
n=3 1.8872 | 1.8867 900 600
n=4 1.8864 | 1.8863 900 600

76




Table 4.7. 3-Stage Function-Link Network as a

Nonlinearity with 900 Iterations (err=

Type of NLT

err
Stagell  Stage Il
Sig.1 Th.1I 2.0167
Th.I Sig.I 1.9980
Square Sig.1 1.8818

Function of

lell?).

Table 4.8. 3-Stage Function-Link Network as a Function of
Nonlinearity with 2900 Iterations (err=

le]|%)

Type of NLT

err
Stage I  Stage I
Sig.I Th.II 2.0149
Th.1 Sig.1 1.9906
Square | Sig.I 1.8811

I nput

Input




Table 4.9. Performance of PSHNN with NLT1 Sig.l1 & NLT2 Th.II
in Speech Prediction.

n-th Square Error Sum

Sweep

Training err1f err2f err3f err2b

n=1 21353 | 19377 | 1.8393 | 1.8758
n=2 1.8122 | 1.7584 | 1.7543 -

Table 4.10. Performance of PSHNN with NLT1 Th.I & NLTZ2 Sig.1
in Speech Prediction.

n-th Square Error Sum

Sweep

Training errlf err2f err3f err2b

n=I 21353 | 20924 | 1.9210 | 1.8957
n=2 1.8750 | 1.8592 | 1.8264 -




in Speech Prediction.

Table 4.11. Performance of PSHNN with NLT1 Square & NLTB Sig.1

n-th Square Error Sum
Sweep
Training | errlf err2f err3f err2b
n=1 21353 | 19330 | 1.6973 | 1.6812
n=2 1.6705 | 1.6631 | 1.6399

79




80

/

Figure 4.1. Block Diagram of a Function-Link Network.




Figure 4.2. Graphical Representation of Suboptimal Solution for SNN1.




82

Figure 4.3. Graphical Representation of Suboptimal Solution for SNN2.




83

CHAPTER S
LEARNING INPUT NONLINEAR TRANSFORMATIONS

5.1. Introduction

In Chapter 2, we discussed the generalieation of the PSHNN’s with
continuous input and output [ErDe911]. It was shown that stages are generated
by nonlinearly transforming input vectors, and each new stage attempts to
correct the errors of the previousstage. It is also shown that any input nonlinear
transformation helps the system achieve smaller mean square error (MSE) than
the MSE with linear prediction. By implementing the PSHNN stages in parallel,
the speed of processing with several stages is the same as with one stage. The
suboptimal error reduction property was also proved. An important research
issue is how to minimiee the input NLT's. We proposed an effective approach
called the revised backpropagation (RBP) network [ErDe912]. The RBP
algorithm consists of two training steps, denoted as step | and step 0O,
respectively. During step |, the RBP is the same as the usual backpropagation
(BP) algorithm. During step 1I, we fix the weights between the input layer and
the hidden layers, but retrain the weights between the last hidden and the
output layers by the delta rule. In this chapter, the algorithm used during step
II of the RBP is extended to incorporate the least mean absolute value (LMAV)

criterion.




84

It was discussed in Chapter 4 that further error reduction can be achieved
in as n-stage PSHNN by forward-backward or circular training. The asymptotic
properties show that the forward-backward training of n-stage PSHNN'’s until
convergence is equivalent to the pseudo-inverse solution for a single total
network designed in the least-squares sense to the total input vector consisting
of the actual input vector and its additional nonlinear transformations [DeEr91],
[DeEr921]. The error reduction property by forward-backward training stated
above was based on the fixed input NLT of each stage of the PSHNN in every
forward-backward sweep. In this chapter, we illustrate the technique which uses
the BP algorithm with forward-backward training to learn the input NLT’s of
the PSHNN. In this case, the interconnection weights between the input and the
hidden layers are allowed to change sweep by sweep. This means the PSHNN
has different input NLT at each stage sweep by sweep. In this chapter, we also

show the reason why the error reduction property still holds for this technique.

The chapter consists of 5 sections. In Seec. 52, we illustrate the method
which uses the LMAV algorithm during step II of RBP. In Sec. 5.3, we show the
reason why error reduction property of PSHNN which has BP stages with
forward-backward training still holds. The experimental results of nonlinear
speech prediction are given in See. 5.4. Simulations on nonlinear prediction of

chaotic time series are discussed in Sec. 5.5.

6.2. RBP with the LMAV Algorithm

The RBP network consists of linear input and output units and nonlinear
hidden units. One hidden layer is often sufficient [Miya88]. The hidden layers

represent the nonlinear transformation of the input vector. The output of the




85

jth unit of the kth layer isof the form

Ny |
0y (5)=f( 3 Wi(3,1)0k1 () »
im1
where Ny_,; is the number' of output nodes of the (k-1)th layer; Oy_, is the
output vector of the (k-1)th layer; Wy(.,.) are the weights connecting the (k-1)th
and the kth layers, and f(.) is the nonlinear activation function, assumed to be

differentiable and usually chosen monotone nondecreasing.

The RBP with the LMAV algorithm also consists of two training steps,
denoted as step | and step II, respectively. During step |, the RBP is the same as
the usual backpropagation (BP) algorithm [Rume88]. During step II, we fix the
weights between the input layer and the hidden layers, but retrain the weights

between the last hidden and the output layers by the LMAYV rule.

The RBP network with the LMAV algorithm is shown in Fig. 51. Let X(n)
be the input vector sequence; the output vector of the last hidden layer is Y(n)
which can be considered as the result of nonlinear transformation of X(n). W are
weights between the last hidden and the output layers. The least mean absolute
value (LMAV) rule for the weight vector W is [Bell87|

W(n+1)=W(n)+nY(n+1) sign e(n+1) , (5.1)

¢(n+1)=d(n+1)~Y'(n+1)W(n) , (5.2)

wheresign eis +1 if e is positive, and -1 otherwise. The adaptation step factor 7
is a positive constant. We now want to study the convergence of LMAYV rule by
considering the'weight vector W as it moves toward the optimum W,. Eq. (5.1)

can be rewritten as




86

W(n+1)—W_ =W(n)—-W,4+7Y(n+1) sign e(n+1) . (5.3)
Taking the square error sum of both sides, we get
[IW(n+1)-W, | |2=]IW(a)-W, [ [?+7* || Y(n+1)[|*~27|e(n+1)]
+27 sign e(n+1)[d(n+1)-Y'(n+1)W,] , (5.4)
and
[IW(a+1)-W, | |? <HTW(@)=W, | [+ || Y(2+1)| I ~27]e(n+1)|
+2n[d(n+1)-Y'(o+1)W, | . (5.5)
Let the length of W be N; taking the expectation of both sides yields
E(| IW(a+1)-W, | [*)<E(] IW(a)-W.|[*)+n*No}
—2nE(|le(n+1))+2nEmin (5.6)
where the minimal error Ep;, is
Epin=E(|d(n+1)—-Y'(n+1)W.|) . (5.7)

Convergence is obtained for any positive n, and the residual error Eg is bounded

by [Bell87]
Ep <Eqia+5Noj , (5.8)
where Eg is
1 n+l
Eg=——2E . 5.9
R=TT (p2_31|e(P)|) (5.9)

The advantage of RBP networks with the LMAV rule is that the LMAV

rule isrobust to outliersin a data set [MoTu87].




5.3. Error Reduction Property of PSHNN with BP Stages and
Forward-Backward Training

Each stage of PSHNN can be any type of neural network. In this section,
BP stages are utilized together with forward-backward training [DeEr921]. The
BP stages are chosen as linear input and output units and a single hidden layer.
The input vector is fed into all the BP stages in parallel as shown in Fig. 5.2.
With a k-stage network, the first, the second, ... , the kth BP stage are trained
in this order, followed by retraining of the (k-1)th, the (k-2)th, ... , the second
BP stage. This constitutes one sweep. The interconnection weights between the
input and the hidden layers are allowed to change sweep by sweep. Therefore,
we generate a different input NLT in each sweep at every stage.

Referring to Fig. 5.2, X is the input vector and D} is the desired vector in
the first sweep. After the first BP stage is trained, Y, is the vector after input
NLT1 of X, and o} is the output vector of the first stage in the first sweep.
When the number of training iterations is sufficiently large, the weight vector
between the hidden and the output layer will be near the least-squares solution.
The simulation results in Table 3.3 also show this fact. Thus, we have

approximately, [DeEr922]
01 =Py, vy D1 » (5.10)
e}'—:PN[Y,Y}]D} ’ (5.11)

where Pegpy,yy] is the projection matrix to the column space of [Y:Y%] and
PNy,yy is the projection matrix to the null space of [Y,Y}]. After the second
stage is trained, 2, is the vector after input NLT2 of X; o} is the output vector

of the second stage of the first sweep, and similarly,

03 =Pyz,24)¢l » (5.12)




88

e§=PN[z'z=]e} . (5.13)
Therefore, ||e3]|*<[[e}||?.

In the second sweep, the desired vector for the first stage becomes
p$=ol+ei. A sufficient condition for further error reduction in the :second sweep
is that the BP network produces the vector Y, after input NLT1 of X in the
second sweep such  that  col[Y;Y}]Ceol[Y,Y}], or equivalently,
N[Y,Y5|CN[Y, Yt]. In other words, the vector Y, is obtained by a better input
NLT1 of X in the second sweep than that in the first sweep. All the: experiments
discussed in Sec. 5 always showed that further error reduction is achieved in the
second sweep. Hence, we assume that the BP network has the ability to produce
Y, satisfying the above sufficiency condition. Then, the output vector o? of the
first stage in the second sweep is

°¥=PcoI[Y9Y§](°{+e;)
=01 +Peai[v,v3/€2 » (5.14)
since o} €col[Y; Y}] and col[Y,Y!|Ceol[Y,Y]. The error vector e} of the first
stage in the second sweep is
ef=D%—o?
=PN[y2Y§]e% . (5.15)
Therefore, ||le?[12<||e3|]?.

The desired vector D% of the second stage in the second sweep is e} +oi.
The vector Z, is obtained after the input NLT2 of X in the second sweep. Under
the same assumption discussed above, we have col|Z,2}|Ceol(Zy2Z%], or
egaivalently, N[Z,Z5]CN|[Z,Z%]. The output vector of of the second stage in the

second sweep is




03 =Poijz,z5) (€1 +03)
=°;+Pcol[z.zz.3]e¥ . (5.16)
The error vector e2 of the second stage in the second sweep is
el=D2%-ol
=Pnjz.zy/e] . (5.17)
Therefore, ||e3|12<]]e?]|>.
Following the same procedure and under the same assumption, the vector
Y, is obtained after the input NLT1 of X in the nth sweep. The error vector e}
of the first stage in the nth sweep becomes
e} =Pnjy,yied ", (5.18)
where: N[Y4 Y1 |CN|[Ypou Yo |G - - - CN[Y, YECN]Y, Yi. :
Therefore, ||e}||?<||e3~||?. The vector Z, is obtained after the input NLT2
of X in the nth sweep, and the error vector e} of the second stage in the nth
sweep becomes
e =Pyjz.zyel , (5.19)
where N[Z,2%]|CN[Z,_,2%_,]C - - - CN[Z,Z4]|CN[Z,Z}].
We conclude that
leg 1> <lled |1 <Ile3 ™ |[*< - - - <llet|I*<llez|I*<[lel]|* . ~(5.20)

This result can be generalized tO n-stage PSHNN's,




90

5.4. Experiments on Nonlinear Speech Prediction

The theoretical results discussed above were tested in the application of
speech prediction. For this purpose, 100 speech samples at the sampling rate of
10 Khz were used to train and to test the network. In the experiments, we first
normalized the data in the range [-1, I.]. A sliding window of length 5 data

points was used to predict the next signal value following the window.

Table 51 shows the performance in terms of the absolute error sum
|[err]]; of a one stage network with the RBP stage and the LMAV rule,
tabulated as a function of the training iterations of step | and step II. In this
experiment, the gain factor n=1.0 was used during step I, and 7==0.01 during
step II; five input nodes and eight hidden nodes were used, resulting in 40
weights between the input and the hidden layers, and 8 weights between the
hidden and the output layers. Thus, 48 weights need to be learned during step |,
and only 8 weights need to be revised during step II. This indicates that the
learning time of six iterations during step II is approximately the :learning time
of one iteration during step I. We see from Table 51 that the absolute error
sum ||err]|,=6.9461 after 500 learning iterations in step | and 200 learning
iterations in step II. The learning time of 500 iterations in step | and 200
iterations in step II for this one stage network with RBP and the LMAYV rule is
approximately the learning time of 534 iterations for the same network with the
usual BP algorithm. The network with the usual BP algorithm achieved
||err||,=7.1472 after 650 iterations. In other words, the network with the RBP
and the LMAV rule is observed to achieve a deeper minimum in absolute error

sum by ashorter learning time than the network with the usual BP algorithm.

Next we discuss the experimental results when using PSHINN with BP

stages and forward-backward training. Tables5.2 thru 5.5 are the experiments




81

on the PSHNN's with BP stages and forward-backward training as discussed in
Sec. 5.3. The length of the input layer at each stage isfive, and a gain factor of
0.5 is used throughout. Table 5.2 shows how error was reduced as a function of
the number of iterations with a single BP network having 12 hidden units. The
corresponding PSHNN's with the same number of interconnection weights were
chosen as 3-stage, 3-stage and 4-stage networks in which each stage had 6, 4,
and 3 hidden nodes respectively, and its training was based on backpropagation.
Tables 5.3, 54 and 5.5 show how error was reduced stage by stage and sweep by
sweep of forward-backward training. 1000 forward-backward sweeps of 2-stage
network, 750 forward-backward sweeps of 3-stage network and 666 forward-
backward sweeps of 4-stage network are equivalent to 50000 iterations of the
previous single BP network since 50 iterations were used to train each stage of
the PSHNN's. It is observed that the error reduction properties of the PSHNN's
with two stages and three stages are better than those of the single BP network.
The PSHNN's achieve the same error performance at about 600 sweeps with the
2-stage PSHNN and at 423 sweeps with the 3-stage PSHNN as the single BP
network achieves with 50000 iterations. Both 2-stage and 3-stage PSHNN's had
a reduction of learning time by about 40%. It also appears that both 2-stage and
3-stage PSHNN's converge towards a deeper minimum than the single stage BP
network. However, the 4-stage PSHNN performed actually worse than the
single BP network. Thus, there exists on optimal number of hidden nodes per
stage for best performance. The 3-stage PSHNN performs best in terms of
deeper minimum and faster convergence rate. More experiments with different
sets of data are needed to substantiate this property. However, we think that
this is the case since the same property was observed in other applications with

systems having nonlinearities [AgEr91), [ErZB90].




92

5.5. Nonlinear Prediction of Chaotic Time Series

Chaotic systems arise in many physical situations such as onset of
turbulence in fluids [RuTa71], [SwGo78], chemical reactions [ToKa79|, lasers
[Hake75], and plasma physics [RuHO80|. We selected two chaotic time series to
test the RBP networks. The first chaotic time series was generated according to

the classic logistic, or Feigenbaum map given by [Feig78], [LaFa87]
x(n)=x(n—1)[1.—x(n—-1)] .

In the following simulations, we used 100 data points generated by the chaotic
system according to the equation above, and normalized the data in the range
[O,l].

Tables 56 thru 5.8 are the simulation results with the RBP networks using
the delta rule, tabulated as a function of the number of training iterations
during step I. The number of hidden units are 2, 4 and 8, respectively. The
number of training iterations was 200 during step Il. The gain factor during step
| was 0.1 in Tables 5.6 and 5.8, and was 1.0 in Table 5.8. The gain factor was
0.01 during step II. In Table 56, we see that the RBP network with 360
iterations during step | and 200 iterations during step II can reach the same
square error sum by the usual BP network with 2000 training iterations. This
means we need only 21% training time with the RBP network to achieve the
same performance as with the usual BP network trained with 2000 iterations. In
Table 5.7, after 120 iterations during step | and 200 iterations during step II, the
RBP network reached the same performance as with the usual BP trained with
2000 iterations. Therefore, the training time of the RBP network is 10% of the
training time of the usual BP network for the same performance. In Table 5.8,

after 60 iterations and 200 iterations during step | and step II, respectively, the




93

RBP network achieved the same performance as the usual BP trained with 2000
iterations. In this case, the training time of the RBP network is 6% of the usual

BP network.

Tables 5.9 thru 5.11 show the simulation results using the RBP networks
with the LMAYV rule, tabulated as a function o training iterations during step 1
The number of hidden unitsare 2, 4 and 8, respectively. The number of training
iterations was 100 during step II. The gain factor during step | was 1 in Tables
5.10 and 5.11, and was 0.1 in Table 5.8. The gain factor was |.E-6 during step
II. In Table 5.9, we see that the RBP network with 460 iterations during step |
and 100 iterations during step II can reach the same absolute error sum as the
usual BP network with 600 training iterations. This means we need only 81%
training time with the RBP network with the LMAV rule to achieve the same
performance by usual BP with 600 training iterations. In Table 5.10, after 412
iterations during step | and 100 iterations during step I, the RBP network with
the LMAV rule can reach the same performance as with the usual BP network
with 600 training iterations. Therefore, the training time by the RBP network
with delta rule is 76% of the training time by the usual BP network. In Table
5.8, after 220 iterations and 100 iterations during step | and step II, respectively,
the RBP with LMAYV rule achieved the same performance as with the usual BP
network with 600 training iterations. In this case, the training time of the RBP
network is 42% of the usual BP network. Fig. 5.3 shows the normalized
Feigenbaum chaotic time series data versus the predicted time series data of the
one-stage network (4 hidden node) with the RBP stage and the delta rule. 2000
iterations and 200 iterations were used during step | and step I, respectively.
Fig. 5.4 shows the normalieed Feigenbaum chaotic time aeries data versus the

predicted time series data of the one-atage network (4 hidden node) with the




94

RBP stage and the LMAV rule. In this experiment, there were 600 training

iterations during step I, and 100 iterations during step 11

The second time series we used to test the RBP network was the Mackey-
Glass time series. The Mackey-Glass equation in the discrete-time domain can
be written as [Farm82]

ax(t—A)

x(t+)= 14+x°(t—A)

+(1—b)x(t)

The constant were taken to be a=0.2, b=0.1 and ¢=10. Choosing A=17, we

generated 500 data points which were used in the following experiments.

Table 5.12 shows the performance using the RBP networks with the delta
rule, listed as a function of training iterations during step I. The length of input
vector is 4 and 10 hidden units were used. The gain factor was 0.1 (duringstep |
and 0.01 during step II. In this table, we see that the RBP network with 100
iterations during step | and 200 iterations during step II can reach a deeper
minimum than the usual BP network with 1000 iterations. Therefore, we need
only 14% training time with the RBP network to achieve better performance
than that by the usual BP network with 1000 iterations. Table 5.13 shows the
performance using the RBP network with the LMAYV rule, listed as a function of
training iterations during step I.\The length of the input vector was 4 and 10
hidden units were used. The gain factor was 0.1 during step | and. 1.E-6 during
step II. In this table, we see that the RBP network with 100 iterations during
step.l and 100 iterations during,step II can reach a deeper minimum than the
usual BP network with 1000 iterations. We also need only 12% training time
with the RBP network with LMAV rule to achieve better performance than that
by the usual BP network with 1000 iterations. Fig. 55 shows the original

Mrrckey-Glass chaotic time series data versus the predicted time series data of




the one-stage network with the RBP stage and the delta rule. 1000 iterations
and 200 iterations were used during step | and step II, respectively. Fig. 5.6
shows the original Mackey-Glass chaotic time series data versus the predicted
time series data of the one-stage network with the RBP stage and the LMAV
rule. In this experiment, there were 1000 training iterations during step I, and

100 iterations during step I1.




Ta'ble 5.1.

96

Nonlinear Speech Prediction Performance of a One-Stage RBP
Network and the LMAV Rule (err=|[e]],).

# of iterations er

step | step II step | step I1
400 200 8.1649 7.6647
450 200 7.8115 7.2349
500 200 7.4919 6.9461
550 200 7.3080 6.9169
600 200 7.2612 6.8658
650 200 7.1472 6.7187




Table 52 Error Reduction with a Single Stage Network with 12 Hidden
Units Trained by BP (err]—-—lF 12).

# of

' ' err
iterations

1000 1144
2000 0. 8413
5000 0. 6822
10000 0. 4464
20000 0. 2424
30000 0. 2506
40000 0. 2205
50000 0. 1962




Table 5.3.

98

Error Reduction with a Two-Stage PSHNN with 6 Hidden Units

per

(err1=

SNN Tran
[ley |13, err2=]]e,

|e(|jz) by Forwar d-Backward

# of errl
er2

sweeps

20 1.0528 | 1.0473
40 0.8962 | 0.8945
100 0.6031 | 0.6023
200 0.4374 | 0.4368
300 0.3367 | 0.3364
400 0.2714 | 0.2711
500 0.2133 | 0.2133
600 0.1927 | 0.1925
700 0.1895 | 0.1962
800 0.1771 | 0.1816
900 0.1731 0. 1859
1000 0.1658 | 0.1708

BP




Table 5.4. Error Reduction with a Three-Stage PSHNN with 4 Hidden Units
per SNN Trained by Forward-Backward BP.

# of errlf err2f err3f

err2b
sweep
10 1,2380 1.2157 1.2138 1.1982
50 0.6486 0.6464 0.6462 0.6447

100 0.5240 | 0.5236 0,5236 | 0.5235
200 04488 | 0.4487 | 0.4483 | 04484
300 02825 | 0.2823 | 02819 | 0.2817
423 0.1965 | 0.1965 | 0.1962 | 0.1962
500 01705 | 01704 | 01704 | 0.1703
600 0.1604 | 01604 | 0.1604 | 0.1603
700 01551 | 0.1551 | 0.1551 | 0.1551
750 0.1529 | 0.1529 01529 | 0.1529




100

Units

Table 55.  Error Reduction with a Four-Stage PSHNN with 3 Hidden
per SNN Trained by Forward-Backward BP.
# of errlf err2f err3f err4f err3b
err2b
sweep
10 1.3594 1.3561 1.3238 1.3195 1.2963 1.2914
50 0.6716 0.6707 0.6682 0.6682 0.6662 0.6662
100 0.5121 0.5119 0.5116 0.5116 0.5115 0.5114
200 0.4136 0.4136 04134 04134 04134 04132
300 0.3540 0.3540 0.3539 0.3538 0.3538 0.3537
400 0.3093 0.3093 0.3092 0.3091 0.3090 0.3090
500 0.2620 0.2619 0.2618 0.2618 0.2618 0.2617
600 0.2306 0.2306 0.2305 0.2304 0.2303 0.2304
666 0.2210 0.2209 0.2209 0.2208 0.2208 0.2208




Table 5.6 Prediction with Feigenbaum Chaotic Time Series Data Using a 2
Hidden Node Network with the RBP Stage and the Delta Rule

(err=|le[]?).

# of iterations er

step 1 step 11 step I step II

100 200 1.46E-3 | 6.183-4
200 200 8.283-4 | 5.68E-4
360 200 7.153-4 | 5.07E-4
500 200 6.52E-4 | 4.78E-4
1000 200 5.57E-4 | 4.46E-4
1500 200 5.27E-4 | 4.40E-4
2000 200 5.10E-4 | 4.343-4




Table 5.7.

102

Prediction with Feigenbaum Chaotic Time Series Data Using a 4
Hidden Node Network with the RBP Stage and the Delta Rule

(err=]le[]?).

# of iterations err

step | step 11 step | step I1
100 200 1.71E-2 7.91E-4
120 200 1.23E-3 1.40E-4
200 200 191E-4 1.24E-4
500 200 1.81E-4 1.21E-4

1000 200 1.71E-4 1.19E-4

1500 200 1.65E-4 1.18E-4

2000 200 1.60E-4 1.18E-4




Table 5.8.

103

Prediction with Feigenbaum Chaotic Time Series Data Using a 8
Hidden Node Network with the RBP Stage and Delta Rule

(err=||e
# o iterations err
step | step 11 step | step 11
60 200 4.333-4 4.81E-5
100 200 8.81E-5 4.383-5
200 200 8.34E-5 4.21E-5
500 200 7.31E-5 3.87E-5
1000 200 6.34E-5 3.61E-5
1500 200 5.82E-5 3.50E-5
2000 200 5.51E-5 3.44E-5




Table 5.9.

104

Prediction with Feigenbaum Chaotic Time Series Data Using a 2
Hidden Node Network with the RBP Stage and the LMAV Rule

(err=][e]],).

# of iterations er

step | step II step | step 11
200 100 0.5290 0.4949
300 100 0.4532 0.4206
400 100 0.4075 0.3789
452 100 0.3907 0.3619
500 100 0.3782 0.3519
600 100 0.3622 0.3336




Table 5.10.

105

Prediction with Feigenbaum Chaotic Time Series Data Using a 4
Hidden Node Network with the RBP Stage and the LMAV Rule

(err=]le]],).

# of iterations er

step | step 11 step | step II
200 100 0.2772 0.2148
300 100 0.2340 0.1778
400 100 0.1983 0.1492
412 100 0.1945 0.1460
500 100 0.1693 0.1258
600 100 0.1462 0.1076




Table 5.11.

106

Prediction with Feigenbaum Chaotic Time Series Data Using a 8
Hidden Node Network with tbe RBP Stage and the LMAV Rule

(err=|le][).

# of iterations er

step | step II step | step II
200 100 0.2077 0.1493
220 100 0.2036 0.1410
300 100 0.1881 0.1298
400 100 0.1705 0.1174
500 100 0.1550 0.1062
600 100 0.1412 0.0965




Table 5.12.

107

Prediction with Mackey-Glass Chaotic Time Series Data Using a
10 Hidden Node Network with the RBP Stage and the Delta Rule

(err=]e]|?).

# of iterations er

step | step I step | step II
100 200 0.7201 0.1702
200 200 0.6766 0.1621
300 200 0.6378 0.1542
500 200 0.5717 0.1393
700 200 0.5173 0.1256
900 200 0.4715 0.1130

1000 200 0.4512 0.1071




Table 5.13.

108

Prediction with Mackey-Glass Chaotic Time Series Data Using a
10 Hidden Node Network with the RBP Stage and the LMAV Rule

(err=]le]];).

# of iterations err
step | step I step | step II
100 100 15. 5708 99152
200 100 15. 0856 9. 6504
400 100 14. 2424 9. 1584
600 100 13.5287 8.7164
800 100 12. 9120 8.3077
1000 100 12. 3674 7.9273




RBP Stage

LMAV | e(n)

Figure 5.1. One-Stage Network with the RBP and the LMAV Rule.




Firss BP Stage

NLT1

SNN1

110

Second BP Stage

NLT2

SNN2

Figure 5.2. Two-Stage PSHNN with BP Stages and Forward-Backward

Training.




0.8 —
0.6 —
0.4 -
0.2 =
-0 T T T T
20 4Q . 60 80 100
time index

Figure 5.3. Normalized Feigenbaum Time Series (Solid Line) and the
Pr?dicted Time Series (Dotted Line) with the RBP and the Delta
Rule.




112

0.8 -
0.6 —
0.4
0.2
-0 T ] T |
20 40 . 60 80 100
time index

Figure 5.4. Normalized Feigenbaum Time Series (Solid Line) and the
Predicted Time Series (Dotted Line) with the RBP and the LMAV
Rule.




113

1.5

\ U

1 L
0 100 200 . 300 400 500
time index

Figure 5.5. Mackey-Glass Time Series (Solid Line) and the Predicted Time
Series (Dotted Line) with the RBP and the Delta Rule.




114

1.5

A

I 1
0 100 200 . 300 400 500
time index

Figure 5.6. Mackey-Glass Time Series (Solid Line) and the Predicted Time
Series (Dotted Line) with the RBP and the LMAV Rule.




115

CHAPTER 6
CONCLUSIONS

6.1. Conclusions

PSHNN's with continuous inputs and outputs have many advantages such.
as error reduction, better prediction than linear prediction, parallel operation of
stages, self-organizing number of stage, realizability of sequential learning, and

error criterion other than mean-square error.

Computer experiments showed that linear outputs give better results when
the outputs are continuous. Consequently, nonlinearities were used at other
layers. In addition, linear outputs allow the use of sequential |eastsquares. Even
though any kind of input nonlinearity guarantees better performance over a
one-stage network, the optimization of the input nonlinearities is an important
issue to minimize output errors. The RBP algorithm is one effective solution to
this problem. Another advantage of the RBP algorithm is that we have
flexibility of choosing a different training rule due to different error criterion
during step II. For example, the delta rule, the SLS and the LMAV rule can be
used during step II of the RBP algorithm. Other criteria such as total |east
squares can also be applied.

We showed theoretically that PSHNN's with forward-backward training of
n-stage networks will achieve the same error reduction asthe total function-link

network with the leastsquares pseudoinverse solution. In practice ,




116

experimental results show that PSHNN's in many cases have faster convergence
rate and better numerical error reduction than the total function-link networks.
The property that PSHNN's can divide a large size network into several smaller
size networks which can learn faster and more easily in training and operate in

parallel in testing is believed to be significant for real-time implementation.

We proved that the PSHNN's with any input nonlinear transformation
have better performance than one-stage networks [ErDe811]. By using
additional neural networks, one can learn input NLT's at every parallel stage of
the PSHNN. The PSHNN with BP stages and forward-backward training is one
effective solution to this problem. When backpropagation is to be used,
experiments indicate that better performance in terms of a deeper minimum and
convergence rate is achieved when a single BP network is replaced by a PSHNN
of equal complexity in which each stage is a BP network of smaller complexity
than the single BP network. With these properties, PSHNN's with continuous
inputs and outputs and forward-backward training are expected to be useful in
various applications of neural networks, adaptive signal processing, system

identification and adaptive control.

6.2. Further Research

The following is an outline of future research topics.

(1) The proof of Theorem 4.1a has been based on n-stage PSHNN's with
forward-backward training. Experimentally, we have also observed that circular

training gives the same results as forward-backward training. It is desirable to

give a rigorous proof for the n-stage PSHNN with circular training.




(2) The theoretical and experimental investigations so far have been carried out
with stages based on the delta rule, the usua BP or the RBP. An interesting
question is whether these and/or similar results are valid for stages based on

other learning algorithms.

(3) The input nonlinearities may be replaced by output nonlinearities. However,
we have not investigated the simultaneous use of input and output nonlinearities
yet. This is especially an important problem in the case o forward-backward
training. In this casg, it is no longer possible to compare the PSHNN stages with
forward-backward training to a single total network which converges to the

pseudoinverse solution.

(4) A major consideration is whether it is possible with the forward-backward
training algorithm to achieve a minimum the same as or closer to the global

minimum than what other architecture yield.

(5) One important advantage o the PSHNN with continuous inputs and outputs
is the ability to incorporate sequential learning o that the network continues to
learn with each new input data without requiring the storage o past
information. This has been implemented with stages without forward-backward
training. It is desirable to apply SLS learning with forward-backward training as

wel as more complex networks.

(6) Another important problem is how to optimize input and/or output
nonlinearities. It is desirable to have simple, pointwise nonlinearities for real-

time implementation, and they should be learned, probably adaptively in time,




118

for optimal performance. It is possible to incorporate fast transforms in addition
to pointwise nonlinearities as preprocessing to the network. The fast transforms
provide a number of advantages such as feature selection, achieving invariance
to a number of distortions like translation, rotation and scaling, and minimizing

network size.

(7) The theoretical and experimental results obtained are mostly with respect to
the mean-square error criterion. We have also developed the method which uses
the LMAYV rule during step II of the RBP stages. Other error criteria such as
weighted leastsquares and total |eastsquares during step Il of the RBP stages

should be investigated.

(8) An interesting area in systems and signal processing is system modeling and
identification. Neural networks with nonlinear activation functions are an
effective way to construct a model for the transfer function of an unknown
system with only a finite data set of inputs, and associated outputs of the
system. Techniques concerning nonlinear system modeling by PSHNN'’s are
expected tO be useful in spectral estimation, biomedical signal modeling, and

other applications. Further studies need to be carried out on such topics.




[AgEr91]

[Alex86]

[Bell87]

[DeEr91]

[DeEr921]

[DeEr922]

[DuHa73]

[ErDe011]

[ErDe912]

[ErHo90]

119

LI ST OF REFERENCES

S. Aghagolzadeh, O. K. Ersoy, "Optima Multistage Transform
Image Coding", IEEE Tran. Circuits and Systems for Video
Technology, December 1991.

S. T. Alexander, “"Adaeptive Signal Processing, Theory and
Applications’, Springer-Verlag, New Y ork, pp. 68-85, 1986.

M. G. Bellanger, "Adaptive Digital Filter and Sgnal Analysis’,
Mauricel Dekker Inc., pp. 114-121, 1987.

S-W. Deng, O. K. Ersoy, "Parallel, Self-Organizing, Hierarchical
Neural Networks with Circular Training", Purdue University
Tech. Report No. TR-EE-91-16, April 1991.

S-W. Deng, O. K. Ersoy, "Farald, Self-Organizing, Hierarchical
Neural Networks with Forward-Backward Training*,submitted to
Circuits, Systems and Sgnal Processing, January 1992.

SW. Deng, O. K. Ersoy, "Parallel, Self-Organizing Neural
Networks for Nonlinear Prediction, Filtering and System
Identification", submitted to IEEE Tran. Neural Networks, 1992.

R. O. Duda, PE Hart, "Pattern Classification and Scene
Analysis’, John Wiley & Sons Inc., pp. 159-162, 1973.

0. K. Ersoy and SW. Deng, "Parallel, Self-Organieing,
Hierarchical Neural Networks with Continuous Inputs and
Outputs"”, Proe. Hawaii Int. Conf. System Sciences, HICCS-24, pp.
486-492, Kauai, January 1991.

O. K. Ersoy and S-W. Deng, "Parallel, Self-Organizing,
Hierarchical Neural Networks, with Continuous Inputs and
Outputs”, Purduc University Tech. Report, No. TR-EE-81-517?
December 1991, and to appear in IEEE Tran. Neural Networks.

O. K. Ersoy, D. Hong, *Parallel, Self-Organizing, Hierarchical
Neural Networks', IEEE Trans. Neural Networks, Vol. 1, No. 2,
pp. 167-178, June 1990.




[ErHoll]

[Erso88]

(ErZB90]

[Farm82]

[Feig78)

[GiMa87]

[Grau84|

[HaDr82]

[Hake75)

[Hayk91]

[Hong90]

[HoKu71]

[JaMF 84|

120

0. K. Ersoy, D. Hong, "Parallel, Self-Organizing, Hierarchical
Neural Networks II", to appear in IEEE Tran. Industrial
Electronics, Special Issue on Neural Networks.

O. K. Ersoy, "A Study of Associative Memory Based on the Delta
Rule", IEEE Int. Conf. Neural Networks , San Diego, Calif., July
1988.

Approach to the Synthesis of Computer-Generated Holograms',
Purdue University Tech. Report, No. TR-EE-90-59, November
1990, and submitted to Applied Optics.

0. K. Ersoy, J. Y. Zhuang, J. Brede, "An lIterative Interlacing

J. D. Farmer, "Chaotic Attractors of an Infinite-Dimensional
Dynamical System", Physica D, Vol. D 4, pp. 366-393, 1982.

M. Feigenbaum, "Quantitative Universality for a Class of
Nonlinear Transformations”, J. Statistical Physics, Vol. 19, pp.
25-52, 1978.

C. L. Giles, T. Maxwell, "learning, Invariance and Generalization
in Higher Order Networks,” Applies Optics, Vol. 26, No.23, pp.
4972-4978, December 1987.

D. Graupe, "Time Series Analysis, Identification, and Adaptive
Filtering', Robert F. Krieger, 1984.

R. E. Hartwig and M. P. Drazin, 'Lattice Properties of the *-Order
for Complex Matrices”, J d Math. Analysis and Applications,
Academic Press, Inc. 1982.

H. Haken, "Analogy between Higher Instabilities in Fluids and
Lasers’, Physics Letters, Vol. A53, pp. 77-78, 1975.

Simon Haykin, " Adaptive Filter Theory"', 2nd ed., Prentice-Hall,
Inc., pp. 299-341, 1991.

D. Hong, "Pardlel, Self-Organizing, Hierarchica Neural
Networks', Ph.D. Dissertation, Purdue University, August 1990.

K. Hoffman, R. Kunze, "Linear Algebra”, 2nd ed., Prentice-Hall,
Inc., p. 211, 1971.

S. C. Jacobsen, S. G. Meek, R. R. Fullmer, "An Adaptive
Myoelectric Filter, 6th IEEE Conf. Eng. in Med. and Biol. Soc.,
1984.




[Kell90]

[KoPo85]

[LaFa87]

[Luen84|

[Math91]
[Mend73]
[Miya8s]

[MoTu77]

[Naka53|
[Pars86|
[Pao89]

[Pyle67]

[RaMi71]

[RuHOS80)

M. F. Kelly, "The Application of Neural Networks to Myoelectric
Signal Analysis. A Preliminary Study”, I|EEE Transaction on
Biomedical Engineering, Vol. 37 No. 3, March 1990.

T. Koh, E. J. Powers, "Second-Order Volterra Filtering and its
Application to Nonlinear System Identification”, |EEE Tran. on
ASSP, Vol. ASSP-33, No. 6, pp. 1445-1455, December 1985.

A. Lapedes, R. Farber, "Nonlinear Processing Using Neurd
Networks: Prediction and System Modeling’, Los Alamos
National Laboratory, LA-UR-87-2662, 1987.

D. G, Luenberger, "Introduction to Linear and Nonlinear
Programming”, Addison-Wesley Pub. Company, second edition,
pp. 227-230, 1984.

V. J. Mathews, "Adaptive Polynomial Filter", |EEE Sgnal
Processing Magazine, Vol. 8, No. 3, pp. 10-26, July 1991.

J. M. Mendel, "Discrete Techniques d Parameter Estimation”,
Marcel Dekker, pp. 91-107, 1973.

Irie, Miyake, "Capabilities of Three-Layered Perceptrons”, Proc.
|IEEE ICNN, Vol. 1, pp. 641-648, San Diego, July 1988.

F. Mosteller, J. Tukey, "Data Analysis and Regression: a Second
Course in Statistics', Addison-Wesley Publishing Company, pp.
365-369, 1977.

H. Nakano, "Spectral Theory in the Hislbert Space’, Japan Society
for the Promotion of Science, 1953.

T. W. Parson, "Voice and Speech Processing’, McGraw-Hill,
pp.138-145, 1986.

Y-M. Pao, "Adaptive Pattern Recognition and Neural Networks",
Addison-Wesley Pub. Company, Inec., 1989.

L. D. Pyle, "A Generalieed Inverse e-Algorithm for Constructing
Intersection Projection Matrices with Applications”, Numerssche
Mathematik 10, pp 88-102, 1967.

C. R. Rao, S. K. Mitra, "Generalized Inverse & Matrices and its
Applications”, John Wiley & Sons, Inc., pp. 108-107, 1971.

D. Russell, J. Hanson, E. Ott, "Dimension of Strange Attractors",
Physical Review Letters, Vol. 45, pp. 1175-1178, 1980.




[Rume88|

[RuTa71]

[Sore85]

[Stra86]

[SwGo78]

[ToKa79]

[WiHo60]

122

D. E. Rumelhart, "Parallel Distributed Processing’, The MIT
Press, Cambridge Mass. , 1988.

D. Ruell, F. Takens, "On the Nature of Turbulence",
Communications in Mathematical Physics, Vol. 20, pp. 167-192,
1971.

H. W. Soremen, "Parameter Estimation, Principles and
Problems", M. Dekker, New Y ork, 1985.

G. Strang, "Linear Algebra and its Applications’, Gilbert Strang,
third edition, 1986.

H. Swinney, J. P. Gollub, "The Transition for Turbulence",
Physics Todey, Vol. 45 PP 41-49, August 1978.

K. Tomita, T. Kai, "Chaotic Response of a Limit Cycle", J
Statistical Physics, Vol. 21, pp. 65-86, 1979.

G. Widrow, M. E. Hofl, "Adaptive Switching Circuits,”" Inst.
Radio Engineers Western Electronic Show and Convention Record,
Part 4, pp. 96-104, 1960.




	Purdue University
	Purdue e-Pubs
	4-22-1992

	NONLINEAR ADAPTIVE SIGNAL PROCESSING
	S.-W. Deng
	O.K. Ersoy


