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Abstract 

In Ref. [I] a signal reconstruction problem motivated by x-ray crystallography was 

solved using a Bayesian statistical approach. The signal is zero-one, periodic, and 

substantial statistical a priori information is known, which is modeled with a Markov 

random field. The data are inaccurate magnitudes of the Fourier coefficients of the sig- 

nal. The solution is explicit and the computational burden is independent of the signal 

dimension. In Ref, [2] a detailed parameterization of the a prion' model appropriate for 

crys:tallography was proposed and symmetry-breaking parameters in the riolution were 



usecl t o  perform data-dependent adaptation of the estimator. The adaptation attempts 

t o  minimize the effects of the spherical model approximation used in the solution. In 

this paper these ideas are extended to  signals that obey a space group syrrlmetry, which 

is a crucial extension for the x-ray crystallography application. Performance statistics 

for  reconstruction in the presence of a space group symmetry based on simulated data 

are presented. 

[I.] I?eter C. Doerschuk. UBayesian Signal Reconstruction, Markov Random Fields, and 

X-Ray Crystallography." Journal of the Optical Society of America A, 8('B):1207-1221, 

1991. 

[2] Peter C. Doerschuk. "Adaptive Bayesian Signal Reconstruction with A. Priori Model 

Implementation 'and Synthetic Examples for X-ray Crystallography." ~ 'oumal  of the 

Optical Society of America A, 8(8):1222-1232,1991. 



1 Introduction 

In Ref. [I] a novel Bayesian statistical approach was presented to a class of phase-retrieval 

problems exemplified by the inverse problem of single-crystal x-ray crystallography. In 

Ref. [2] parameters were proposed in the a pn'on' model that are suitable for the x-ray 

crystallography application, free parameters in the estimator were employed in order to de- 

sign a data-dependent adaptive estimator, and several numerical examples were presented. 

In this paper these ideas are extended to signals that are invariant under the actions of a 

space group symmetry. This extension is crucial for the x-ray crystallography application 

since essentially all crystallographic data displays a space group symmetry. Similar symme- 

tries occur in computer vision problems. Three different approaches to the extension are 

presented and, for a particular space group, the three algorithms that result are compared 

numerically on simulated data. 

The novel contribution of this paper is the incorporation of space group symmetries [3, 

4, 51. A space group, denoted Q, is a set of operators on vectors in Rd where the operators 

form a group. To say that a function p  : Rd -+ R is invariant under the actions of the space 

group means that p ( T x )  = p ( x )  for any x  E Rd and any T E Q. The theory of space groups 

deals with topics such as the number of space groups for a given dimension d, their subgroup 

relationships, methods of describing the operators T in the group, and so forth. 

The purpose of an x-ray crystallography experiment is to measure the positions in three 

dimensiorial space of each atom making up a molecule of interest. The data is the magnitude 

of the Fourier transform of the electron density in a crystal composed of the molecule of 

interest. Because the electron density is highly peaked around the nuclear locations, the 

desired three dimensional locat ions can be found by reconstructing the electron density. 

Hence this is a phase retrieval problem. Millane [6] summarizes and compares phase retrieval 

methods in optics and crystallography. An important contrast is that in x-ray crystallography 

the Fourier transform magnitude is sampled, the sampling is due to the periodic crystal 



structure and is therefore fixed, and the sampling is an undersampling. Therefore, uniqueness 

of the sollition is a serious issue which, however, is not addressed in this paper. In the x-ray 

crystallography application it is the electron density in the crystal that is invariant under 

the space group. Furthermore, the identity of the space group is determined by preliminary 

experime~~ts and can be considered known before the electron density reco~lstruction is done. 

Therefore the x-ray crystallography problem is to reconstruct a signal that is known, among 

other information, to be invariant under a particular space group symmet;ry. 

In an!{ dimension d there is a trivial space group P1 with d operators which are trans- 

lation by the period (possibly different) in each of the d directions. This is exactly the idea 

of a periodic signal in d dimensions. Therefore, though it was not emphasized, the work in 

Refs. (1, '21 actually concerned signals invariant under the trivial space group. In crystallog- 

raphy ter,minology the d-dimensional repeat unit of the periodic signal is called the unit cell. 

The change in going from the trivial space group to any nontrivial space group is that in the 

nontrivial space group there is structure within the unit cell. An example of such structure 

is division of the unit cell in half with one half the mirror image of the other half. 

The itpproach taken to the x-ray crystallography problem in Refs. [ l ,  21 and the current 

paper is Bayesian signal reconstruction in the spirit of, for example, Ref. [7, 8, 9). There is 

a periodic object which takes only values zero and one, and the observerr makes corrupted 

measure:ments, denoted yk, of the magnitude of the object's Fourier trimsform. The goal 

is to reconstruct the object from these measurements and from a priori probabilistic in- 

formation concerning the class of likely objects. One period of the object is modeled as a 

binary-valued finite-lattice Markov random field (MRF) denoted 4, and the corruption of 

the measurements is modeled as additive independent zero-mean Gaussian random variables 

with k-dependent variances. Both the MRF and the Gaussian observittion errors can be 

put in t:he form of energy functions with the corresponding probabi1itie:i in the form of the 

Gibbs distribution. A Bayesian estimation problem is approximately solved. The criteria is 

to mini~nize the mean squared reconstruction error for the field 4. [Throughout this paper, 



a subscripted variable (i.e., "4,") appearing without subscript (i.e., "v) means the set of 

variables as the subscript ranges over its possible values]. Therefore the optimal estima- 

tor first computes the conditional mean of the field 4 given the data y, i.e., E(&ly), and 

then thresholds the conditional mean at value 112 to derive the optimal estimate dn, i.e., 
A [ 1. E(4.19) 2 1/2 
6 n  = . In order to compute E(4, Jy ) one computes averages. However, 

( 0, otherwise 
because orrly the magnitude of the Fourier transform is available, the definition of the coordi- 

nate syste:rn on the object is lost. For example, in one dimension, all information concerning 

the origin in the sense of translation and concerning the handedness in the (sense of inversion 

through the origin (n + -n) is lost. Furthermore, the a priori information described by 

the MRF is also invariant under translation and inversion. If one blindly averages over all 

configurations of 4, the result is a DC field. Therefore, an additional term in the energy 

function of the MRF is introduced which favors certain configurations. Foi: example, in one 

dimension, the additional term breaks the symmetries of the previous energy function with 

respect to translation and inversion. The term has the form of a convolution of the field 4, 

with a kernel function $,. 

There are several differences between this approach and traditional methods in x-ray 

crystallogl-aphy. The first difference is to directly estimate the atomic locations without 

passing through an intermediate step of estimating scattering phase variables. There are 

two reasons for taking this approach. In many experiments there are many more scattering 

phases than atomic locations and therefore from a statistical point of view it is undesirable 

to first estimate the scattering phases. In addition, most good a priori models of atomic 

locations tire in terms of positions rather than scattering phases. 

Secondl, traditional methods use very simple models of atomic locations. They assume 

that the electron distribution is impulsive but that the locations of the impulses are inde- 

pendent identically (often uniformly) distributed random variables. A major component of 

the approach proposed in these papers is to invest a great deal of effort in modeling of the 

correlations between the atomic locations. That is, a large effort is made to improve the 



accuracy of the the chemistry model. At present, these correlations are modeled in a purely 

statistica:l sense. 

Third, traditional methods take a complicated view of the inaccuracies in the actual 

observations. These inaccuracies are due to photon counting statistics, detector errors, and 

deviations of the actual physical process from the idealized mathematical model. In current 

methods these inaccuracies are ignored at the phase-retrieval level, but included in the least 

squares optimization. The approach proposed in these papers includes these inaccuracies in 

a fundamental way from the very start of the calculation. 

In sollving the estimation problem in Ref. [l] two approximations were made. The first 

approxinlation was the spherical model which relaxed the 0-1 nature of the lattice variables 

4,. The second approximation was to evaluate integrals asymptotically as the observation 

noise variance approached zero. Given these two approximations, explicit (e.g., no numeri- 

cal quadratures or nonlinear optimizations) formulae were computed for an approximation, 

denoted m,, to E(4,ly) as a function of 111 and y. These formulae are easy to compute, can 

accommodate missing data and varying observation noise variance, and are essentially the 

same in any dimensional space. Finally, the estimate d, of the field 4, is m, thresholded at - .  

1/2: Jn = . The emphasis on analytical calculations contrasts with much of 
I, 0, otherwise 

the esti~nation work based on MRFs which is either simulation oriented [7, 8, 91 or requires 

restrictions on the neighborhood structure of the MRF [lo]. 

For #any choice of this is a valid Bayesian estimation problem. Therefore, the q5 are 

chosen I>y optimizing a data-dependent cost function that minimizes the effects of the two 

approxiimations made in the solution of the estimation problem. 

In this paragraph the Hamiltonian is recalled from Ref. [l]. The Harniltonian is in three 

parts-the a priori probability part Hapriori, the conditional observatio~~al probability part 

Hob, arid the symmetry breaking part HSsb.. That is, H = Ha~'iO'i + H~~~ + HSeb-. Equations 

are stated for the one-dimensional case. In d dimensions exactly the same equations hold 

with indices, lattice dimensions, and sums all expanded to d dimensions. The a priori part 



is the most general shift-invariant quadratic, specifically, 

L-1 L-I 

where L is the size of the lattice which is also the period of the crystal when measured in 

lattice spacings. The conditional observational part is Gaussian, specifically, 

where yk ;and ak are observed in the experiment. However, the uk values are assumed to be 

exact. Fi:nally, the symmetry breaking part is a convolution of the field q5 with the kernel 

function tb, specifically, 

n=O 

where +, is real and periodic with period L. 

A major concern in Ref. [I, 2) was symmetry breaking. Recall that symmetry breaking 

was necessary because all information about the origin and the handedness of the coordinate 

system foir the electron density is lost when the phases of the Fourier coefficients of the elec- 

tron density are not recorded. For example, in one dimension, x(t), x(t + T ) ,  and x(-t) have 

Fourier transforms with the same magnitude function. However, when th.e signal is known 

to satisfy a particular space group symmetry, then there is partial or full retention of this in- 

formation even though the phases of the Fourier coefficients are still not recorded. Therefore 

it may be possible to do away with symmetry breaking. Dropping symmetry breaking has 

both posiltive and negative aspects. It is desirable since symmetry breaking does not have a 

basis in the physical model and since it requires a numerical optimization of the kernel of the 

symmetry breaking function. It is undesirable because the data adaptation, which attempts 



to minimize the effects of the spherical model approximation, occurs thrtough optimization 

of the sy~nmetry breaking function. One of the major conclusions of the numerical experi- 

ments reported here is that data adaptation is important and therefore n:taining symmetry 

breaking is desirable. 

From the point of view of signal reconstruction, ignoring the space group causes two 

problems. 

1. The presence of a space group implies that the electron density is c:qual at physically 

separated locations. This. reduces the number of electron density variables that have 

to be estimated from the data. Estimation of fewer variables from the same data set 

improves the quality of each estimate. In three dimensional space groups, the reduction 

is usually by a factor of four or more. If the presence of the space group is ignored, 

then it is not possible to directly exploit this reduction. 

2. If the space group is ignored, then the estimated electron density. will typically not 

exhibit the space group symmetry because of inaccuracies in the data. 

Furthermore, if the space group is ignored, then symmetry breaking is necessary. 

There are three approaches to solving signal reconstruction problems in the presence of 

nontrivial space groups using extensions of the ideas in Ref. [I, 21. In Approach 1, the basic 

point of view is to replace the space group Q present in the data by the subgroup P I .  The 

resulting; signal reconstruction problem has been solved [I, 21. Then the space group informa- 

tion is added back into the signal reconstruction problem in two ways: First, reconstructions 

that are invariant under P1 but not G are transformed into reconstructions invariant under 

8 by averaging. This solves Problem 2 and ameliorates Problem 1. Second, the invariance 

of the signal under G is applied as a soft constraint by adding a tern1 to the symmetry 

breaking; optimization criteria. This ameliorates Problem 1. The advantage of Approach 1 is 

simplicil,y since the work of Ref. [I, 2) is applied with little alteration to any space group G. 

The disztdvantage is the suboptimal use of space group information. Syinmetry breaking is 



retained. 

The second and third approaches both integrate the presence of the space group as a 

hard consliraint into the signal reconstruction process rather than treating it as primarily a 

soft constraint added to fundamentally P1 oriented processing. The two approaches differ 

by the order in which noncommuting nonlinear operations are performed: in Approach 2 the 

spherical model is applied before the space group symmetry is enforced while in Approach 3 

the order is reversed. In both cases the symmetry constraint is applied as a hard constraint 

that is satisfied exactly. The advantage of Approach 2 is that the calculation of the critical 

point in the small observation noise asymptotics is essentially unchanged from the corre- 

sponding (calculation in Refs. [1:1[2, Appendix A]. Therefore it can be done analytically. The 

disadvantage is that the spherical model approximation is applied over a larger number of 

sites (the entire unit cell) and so it is less accurate. Symmetry breaking is required. The 

advantage of Approach 3 is that the spherical model is applied over a smaller number of sites 

(only the fundamental domain) and so it is more accurate. The disadvantage is that the 

calculatio~n of the critical point in the small observation noise  asymptotic:^ is substantially 

more difficult than the corresponding calculation in Refs. [1][2, Appendix 141 and to date an 

analytical solution is available only for a special case. Symmetry breaking is not required, 

mirroring the fact that symmetry breaking is not required in an exact solution. In fact, if 

used, symmetry breaking only influences the value of second and higher order terms in the 

asymptotic expansion. 

The purpose of this paper is to present methodology for the extension of ideas in Ref. [I, 21 

to signal reconstruction problems where the signal is invariant under the iwtions of a space 

group. Because the calculations are complicated in two and three dimensions, the methods 

are illu~tr~ated in one dimension. The desire for a one dimensional example chooses the space 

group because in one dimension there are only two space groups (4, p. 121: the group P1 

treated in Ref. [I, 21 and the group Pi used as the example in this paper. These calculations 

are preserltly being continued, with surprisingly little modification, for the monoclinic C2 



space gro,up in three dimensions. This space group was chosen because it is not centrosym- 

metric (so the Fourier coefficients of the electron density will be complex) and because I 

happened to be given data in this space group. It is convenient that monoclinic C2 is a 

symmorphic [3, p. 1141 space group. 

The remainder of this paper is organized in the following fashion. In Section 2 the Pi 

space group is described. The numerical example that is studied throup;hout this paper is 

intr0ducc.d in Section 3. Approach 1 based on averaging and soft constraints is described in 

Section 4.. Numerical results for Approach 1 are discussed in Section 5. In the second half of 

the paper Approaches 2 and 3 are presented jointly through a sequence of sections starting 

with an introduction (Section 6). In Section 7 the spherical model is covered. For Approach 3, 

where tbe symmetry constraint is applied before the spherical model, the constraint is also 

covered. In Section 8 the Fourier coordinates are discussed. For Approach 2, where the 

symmetry constraint is applied after the spherical model, the constraint is also discussed. 

Approaches 2 and 3 are parallel for Sections 9-11. In these sections the Bayesian integrals 

in Fourier coordinates (Section 9), the motivation and definition of the small noise asymp- 

totics (Section lo), and the notation for the asymptotic evaluation of the Bayesian integrals 

(Section 11) are presented. The presentation then diverges with sections on Approach 2 [cal- 

culation of the critical point (Section 12), asymptotic formulae (Section 13), and numerical 

results (Section 14)] and a corresponding development concerning Approach 3 [calculation 

of the c:ritical point (Section 15), asymptotic formulae (Section 16), and numerical results 

(Section 17)]. Finally, the results to date and direction for future research are discussed in 

Section 18. 

2 The Pi Space Group 

In this ~~ection the Pi space group is described and several properties are noted. 

Space groups are typically studied as transformations on Rd. However, because this 



paper applies these ideas to MRF lattices, space groups are described as transformations on 

Zd. For many space groups, including the Pi space group of interest in this paper and the 

three-dimensional monoclinic C2 space group for which crystallographic (data is available, 

there are simple discretizations of Rd which preserve the necessary prope~:ties of the space 

group. There may exist space groups for which this is a more difficult tran.sformation. 

Part of the definition of a space group is the dimension d of the space. For that reason it is 

strictly speaking incorrect to discuss Pi without giving a dimension. The standard notation, 

which includes the dimension in the name, is p i  for d = 1 [4, p. 381, p2 for d = 2 [4, p. 831, 

and Pi for d = 3 [4, p. 1041. As is seen in the following, these three groups are so close in 

concept that in this paper the same label Pi is used for all of them. The same comments 

apply to what is called the P1 space group in Section 1. In that case the standard notation 

is p l  for d = 1 [4, p. 381, pl for d = 2 [4, p. 821, and P1 for d = 3 [4, p. 1021. 

In one dimension, signals invariant under the Pi space group are periodic signals that 

are symmc!tric around the midpoint of the period. In more detail, let the signal be 4.  Then 

4 is invariant under Pi if there exists an L such that 4,  = t $ ,+~  (trans1,ation by L )  and 

4,  = 4-,  (inversion through the origin). L is the period and, since the signal is periodic, 

the inversion condition can be rewritten as 4, = which makes clearer the symmetry 

around t hc: midpoint of the period. 

In the crystallography application, the preliminary experiments mentioned in Section 1 

provide both the space group, i.e., Pi, and the value of the group parameters, i.e., L for 

Pi in one dimension. In other words, L does not have to be estimated in the course of the 

reconstruction. 

In d dimensions Pi has several instead of just one translation operation. Let Zi be the 

i th s t a n d i ~ d  unit vector in Rd. Then 4 is invariant under Pi in d dimensi~ons if there exist 

L,  , . . . , L,- such that for each i E (1, . . . , d), 4% = &+LiZi (translation by L, in coordinate i), 

and in addlition 4% = 4-% (inversion through the origin). 

Note that in any dimension the Fourier coefficients of a signal invariant under Pi are real 



since 4~ =: 4-R. This simplification likely contributes to the performance of the algorithms 

described here. However, related algorithms have already been shown to work in the presence 

of P 1  synlmetry in which case the Fourier coefficients are complex. 

As described in Section 1, the d-dimensional repeat unit of the periodic signal is called 

the unit cell. It is not unique. For the one-dimensional Pi space group it is most convenient 

to take the unit cell as U = (0, ..., L - 1). 

The fundamental domain of a space group is the smallest region F' c Zd such that 

knowledge of 4a for n' E F implies knowledge of for all n' E Zd. It is also not unique. For 

the one-dimensional Pi space group it is most convenient to take 

{ O , . . . , } ,  Lodd 
F = {  L 

0 , .  . , ,  L even 

That the preceding choice of F is adequate can be verified in two steps: first use inversion 

(4 ,  = 4.-,) to compute 4, on an entire period and then use translation (4 ,  = 4n+L) to 

extend the period to all of Z. 

An orbit [4, p. 7241 of a space group is the set of all locations in Zd that can be reached 

from a particular location in Zd by application of the space group operations. If N is an orbit 

of the spisce group and 4 is invariant under the space group then = for all n',, Z2 E N. 

It may uell be that $a takes this same value for some Z 4 N, but that is purely fortuitous. 

Clearly exactly one point of each orbit must fall in the fundamental domain. An orbit 

defined in this fashion is typically infinite in size because of the translation operator. For the 

one-dimensional Pi case with L odd there are 9 + 1 orbits which are {nL : n E Z} and 

{ m + n L :  n E Z}U{-m+nL : n E Z} form E {I, . . . ,?} whilefor ~ e v e n t h e r e a r e  + + I  

orbits which are {nL : n E Z}, { I ( + ~ L  : n E Z}, and {m+nL : n E Z}U{-m+nL : n E 2) 

for m E 1 , .  . , - 1 In the following, the term 'orbitn is used to mean the intersection 

of these infinite sets with the unit cell U. These finite sets are, for L ocld, {O}, (1, L - I}, 

..., {&I 2 ' 1  m} and, for L even, {O}, {1,L - I}, ..., {f - 1,f  + I}, I$}. The length of 

an orbit is the number of elements in the set. For the one-dimensional ,Pi space group the 



Figure 1: Symmetry breaking in Pi for L odd, specifically L = 9: different symbols represent 

values that need not be equal. (a) Example of an invariant signal. (b) Example translation, 

specifically by 2, of the signal from (a) demonstrat'ing the lack of invariance in the translated 

signal. 

length is either 1 or 2. 

As described in Section 1, knowledge that a signal is invariant under the actions of a 

particular space group can obliterate the need for symmetry breaking. Consider a signal 4 

in one dimension that is invariant under Pi with L odd. In that case L -- 1 of the points 

in the unit cell are paired in orbits of length 2 therefore sharing the same value and one 

point in tlie unit cell is isolated in an orbit of length 1 therefore having a unique value. 

First consider the choice of origin location (Figure 1). If 4' is some transl.ation of 4 by an 

interval not equal to the period then 4' will typically not be invariant. For instance, the 

point isola.ted in an orbit of length 1 and therefore having a unique value will now be in 

an orbit of length 2 and the other point in the orbit will have a different 'value. Therefore, 

even though the phase of the Fourier coefficients is not recorded, there ia~ a unique choice 

of origin-the only choice for which 4 is invariant under Pi. The situation concerning the 

handedness of the coordinate system is slightly different. Since 4 is invariant under Pi it 

must be that 4, = 4,,. Therefore, the two functions 4, and 4,, that, result from the 

two choices of handedness are the same function and so the choice of hanldedness does not 



Figure 2: Symmetry breaking in Pi for L even, specifically L = 8: different symbols represent 

values that need not be equal. (a) Example of an invariant signal. (b) Example translation, 

specifically by 2, of the signal from (a) demonstrating the lack of invariance in the translated 

signal. (.c) Example demonstrating that translation of the signal from (a11 by half the period 

results i ~ i  a different, but still invariant, signal. 

matter. Therefore an exact estimator which knows that the signal is invariant under the PI 

space group with L odd does not need to use symmetry breaking. This is demonstrated in 

a numerical example in Section 3. 

Now consider L even. In that case L - 2 of the points in the unit cell are paired in orbits 

of length 2 therefore sharing the same value and two points in the unit cell are isolated in 

separate orbits of length 1 therefore each having unique values. First consider the choice of 

origin location (Figure 2) .  If 4' is some translation of 4 by an interval not equal to L or L / 2  

then 4' will typically not be invariant for the same reasons as for the rase of L odd. The 

special case not considered for L odd is the case of translation by L/2 .  Let 4: = r ~ 5 , , + ~ / 2 .  

Then d:, = 4k+L is obvious and also #-, = 4-n+L/2 = 4+n-L12 = q5+n+1,12 = #,. Therefore 

4: is a different, but still invariant, signal. The situation concerning the handedness of the 



coordinate system is exactly the same as for L odd. Therefore an exact estimator which 

knows that the signal is invariant under the Pi space group with L even continues to require 

at  least a limited form of symmetry breaking in order to distinguish between dn and dn+t/2. 

Because L even, relative to L odd, has this complication of requiring symmetry breaking 

even for a11 exact estimator, all of the calculations in this paper are for the L odd case. 

In this problem the signals 4 are 0-1. Therefore fortuitous equality of the values of 4 at 

locations which are not in the same orbit is common. However, it seems unlikely that this 

will influe11c.e the need for symmetry breaking to a significant degree. 

3 Introduction to the Numerical Example 

The purpose of this section is to describe the numerical example that is stu.died with several 

algorithms in the course of this paper and to describe the results achieved using three basic 

estimatorr~ on this example. Two of the basic estimators are exactly-coml?uted conditional 

mean estilmators which differ only in the extent of their a priori knowledge concerning the 

symmetry. The first estimator, denoted uE-PTn, includes symmetry knowledge that the 

signal is i:nvariant under Pi (and therefore under P1 since P1 is a subgroup of Pi). The 

second estimator, denoted 'E-Pl", includes symmetry knowledge only that the signal is 

invariant under P1. E-P1 was used in Ref. [2, Section 61. The third estimator, denoted 

'An, is the approximate estimator with Problem 2 asymptotics from Ftef [2, Section 61 

which, likle E-P1, includes symmetry knowledge only that the signal is invariant under P1. 

The a priori Hamiltonian H'P"o* used to generate and analyize the synthetic data in 

this example is the crystallographically motivated Haprion presented in Ref. [2, Section 21. 

Specificalliy, wl and w2 in Eq. 1 have the form wl = 0 and w2(nl,n2) = :(62(nl,n2)+ 

62(n2, nl);) where G2(nl, n2) is defined by 



I PI, 1 l In21 < 11 

62(O,n2) = pa, 11IIn2l<I2 

0, otherwise 

and where pl > 0, pz < 0, and 1 5 l1 < 12. The range of atomic bond lengths that occur 

with high probability is [Il, 12). This Hamiltonian can be used for any dimensional lattice. 

As discussed in Section 1, the formulae and examples in this paper are all one dimensional. 

As discussed in Section 1, the formulae and examples in this paper are all for the space 

group Pi[. This Hamiltonian -signs an energy to any lattice configuration. Nothing in this 

~ a p r i o r i  guarantees that the lattice configuration will obey the Pi space group symmetry. 

Therefore, in order to compute realizations that obey this symmetry, a modified Metropolis 

algorithrn which incorporates the symmetry as a hard constraint is used. Specifically, rather 

than flipping the random variable 4, at site n, all the random variables 45,, , +,,, . . .at sites 

nl, n2, . . .that lie on a particular orbit are simultaneously flipped. Therefore, if the initial 

configuristion of the lattice is invariant under the PI space group symmetry, then all later 

configuristions are also invariant. 

Com:parison of the performance of the various approximate estimators with the exact 

estimators requires using a small lattice because the performance statistics are computed 

by the Monte Carlo method and the calculation of an individual estimate for the exact 

estimatclrs is done by exhaustive enumeration. Therefore a one-dimensional lattice with 

period L = 17 is used. The remaining parameters in H
a

priori ar e l1 3: 3, Ill = 5, p1 = 1.5, and 

pa = -0.5. 

The simulated data are produced in three steps. First N = 1000 configurations of the 

field 4 are produced by the modified Metropolis algorithm with the parameters given above 

for Hapn0". In running the algorithm, the first 200000 configurations are discarded and then 

every lClOOO t h configuration is retained. Then the observational transformation (Fourier 

transfona followed by the magnitude squared operation) is performed for each configura- 

tion. T'here are no parameters for this step. Finally, independent zaremean Gaussian 



pseudoran~dom variables with variance u2 are added to the Fourier coefficients for each con- 

figuration. The only parameter is u2 and for a particular data set u2 is constant for all 

Fourier ccefficients. A range of u1 is coneidered-see the figures. 

The fields 4 that result from the simulation typically have four or five occupied sites. 

Therefore the Fourier coefficients typically do not exceed 4 or 5 in magnitude. Since real 

crystallographic data has 1 to 3 percent errors [ll, p. 1931, it is the performance of esti- 

mators al; the low to moderate levels of a (i.e., u 5 .75) that is most iimportant for the 

crystal1og:raphic application. 

In general all of the numerical calculations discussed in this concern the perfor- 

mance of .matched estimators. That is, the parameters in the estimator match the parameters 

used to generate the synthetic data. In addition, typically the estimator has additional pa- 

rameters that are described for each particular calculation. 

Performance statistics are computed by Monte Carlo on N simulated data sets for a 

given choice of parameters such as a2. Two measures of performance are considered. Both 

measures are expectations which are approximately computed by averaging the results of the 

N trials. Weighting by the probability mass function is not necessary since the configurations 

are drawn from the probability mass function. 

Let jn be an estimate of A. Because the phases of the Fourier coefficients of 4 are 

not measured, dn+, (translation by no) or J-. (inversion through the origin) are equally 

satisfa~to~ry estimates. Therefore in this section min means a minimization over a possible 

inversion through the origin and a translation applied to Jn. 

The 1, norm is denoted llxll, = ( E n  ~,IP)'/P. The first performance measure is the 

expected value of the l2 norm of the difference between the true and reconstructed signals 

after a plossible translation and reflection in order to achieve the best match, i.e., E(l2) = 

E rnin l ( Q  - &12. In the estimators that guarantee to provide an estimate that satisfies the 

space group symmetry, the minimum for this minimization problem is often attained at  

no = 0 because the true configuration is invariant under the symmetry and only the no = 0 



translation results in an estimate that is also invariant under the symrnetiry. It is, however, 

conceivablle that on some occasions a shifted estimate which is no longer invariant will be 

chosen because it is a bettei. match. This would typically happen at low signal to noise ratios 

when the estimator is performing poorly. 

Let p(),t$) be the minimum number of lattice ~ i t e s  where )n # & and the minimum 

is taken over a possible inversion through the origin and a translation of t& Note that 

min 11) - )I(: = min 11) - ) ( I l  = p(q5,J). Therefore the performance results for mean squared 

error, mean absolute error, and mean number of lattice site differences are all the same. 

The second measure, denoted fpdect, is the probability of an error-free estimate, i.e., 4, = 

& for dl n, again modulo inversion and translation. That is, fpedect = Pr(p(),)) = 0) = 
1, i = j  

E6p(,,i),-, where throughout this paper b i j  = . The same comments regarding 
0, ifi . . , - 

the minilnization apply here also. 

The first goal of the numerical work described in this paper is to demor~strate the increase 

in performance that is achieved by using E-Pi rather than E-PI .  That is, the first goal 

is to denionstrate the value of the additional symmetry information. Figures 3 and 4 each 

have three traces showing the performance of estimators E-Pi, E-PI ,  and A. All three 

estimators are matched to the synthetic data. Estimator E-Pi has in addition q = 0 for the 

symmetry breaking parameter (i.e., no symmetry breaking whatsoever). Estimator E-P1 has 

in addition q = 1.0 for the symmetry breaking parameter and $, = n fc~r the kernel of the 

symmetry breaking function. Estimator A has in addition q = 1.0 for the rymmetry breaking 
(0 ,  n = O  

parameter, $? = the initial condition for the symmetry breaking 
~. 

kernel (which makes P o b .  equal to the first moment of the field )), 71 == 7 2  = = 1.0 for 

the symlnetry breaking optimization criteria, (1$kc.1(2 as the target for the 12 norm of $ in 

the symmetry breaking optimization criteria, x = 1.0, X = 1.0, and /3 = 1.0. For E-P1 and 

A these are the same parameters used in Rcf. [2, Section 61. 

Cleu.ly, knowledge that the signal is invariant is valuable. For instance, in both perfor- 

mance measures, E-PI provides essentially perfect performance for a < 3 while for E-P1 the 





Figure 4: Estimator performance rtatistica: E(lz) versus u for E-PI (trace "E"'), E-P1 

(trace "I:"), and A (trace "An). 



corresponding region is a < 1.5. Furthermore, for a > 3 the performance of E-Pideclines 

at a s1owt:r rate than does the performance of E-PI  for a > 1.5. 

The scxond goal of the'numerical part of this paper is to demonstrate an estimator that 

as near as possible closes the gap in Figures 3 and 4 between A, which has no knowledge 

of the invariance, and E-Pi, which has complete knowledge of the invisriance. It is not 

possible to close this gap completely. However, using knowledge of the invariance, it proves 

possible to develop a practical approximate estimator that, over a large range of a', provides 

performance meeting or exceeding that provided by the impractical exac.t estimator E-P1 

which lacks knowledge of the invariance. 

In Section 1 it is claimed that symmetry breaking is not required if apace group infor- 

mation is fully exploited. This fact is demonstrated in this example since .E-Pi achieves the 

indicated performance without any symmetry breaking. 

The traces for E-P1 and A in Figures 3 and 4 correspond to Ref. [2, Figures 5 and 61 

but are computed on different synthetic data sets which are not statistic:ally equivalent to 

the synthetic data sets of Ref. [2, Figures 5 and 61 because the new data is guaranteed to 

satisfy the PI symmetry. Figures 5 and 6 compare the performances of E-P1 and A on 

the two dlata sets. For both estimators the performance on the guaranteed-symmetric data 

set is slightly superior. For A this superiority is maintained throughoufb the entire range 

of obserw3tion noise variance 0' while for E-P1 it is present only for low to moderate a'. 

An under~standing of this characteristic of A might lead to changes that would improve its 

performa~nce. 

As described in Ref. [2, Section 41, the numerical optimization of the kernel of the symme- 

try break.ing function for A was done using a multidimensional downhill sirnplex method [12, 

Section N.4 pp. 3053091 applied to the $, starting from an initial condition for which the 

symmetry breaking Hamiltonian was proportional to the first moment o:f the field 4. The 

same technique is used for all of the other approximate estimators descr:ibed in this paper 

with the change that sometimes the multidimensional downhill simplex method is started 



Figure 5: Estimator performance statistics: versus a for E-P1 (trace "En) md A 

(trace 'A"). Solid lines: data that is invariant under the actions of space group Pi. Dashed 

lines: data that is invariant only under the actions of space group PI. 



Figure 6: Estimator performance statistics: E(12) versus a for E-P1 (trace "En) and A 

(trace "A'"). Solid lines: data that is invariant under the actions of space group Pi. Dashed 

lines: datg that is invariant only under the actions of space group PI. 



from a fixed number of randomly chosen initial conditions and the best of the results taken as 

the optinlal rl,. If random initial conditions are used, they are always vectors whose compo- 

nents are independent idelitically distributed pseudorandom variables uniformly distributed 

over [-I, 1). The number and type of initial conditions are described in 1.ater sections. 

Recall that in the cost function for the optimal selection of rl, there is a penalty on 

deviation of the l2 norm of rl, from a target value. The default for this target value i$ the 
(0. n = O  

same value used in Ref. [2, Section 41 which is the I2 norm of rl,: = 
L f  - / n Z 0 

4 Approach 1: space groups via averaging and soft 

constraints 

Approacll 1, where the space group symmetry is accounted for by averaging and soft con- 

straints, is described in this section. The signal, in d-dimensions, is i~lvariant under the 

actions of some space group denoted G. The basic idea, as described in Section 1, is to 

replace 6; by the subgroup P1. The resulting signal reconstruction problem was solved [l, 21. 

Then tht: information provided by knowledge that the signal is invariant under G is added 

back into the signal reconstruction algorithm using two methods which are denoted "aver- 

aging" and "soft constraints". 

The averaging method is described first. Recall that A, mirroring the optimal estimator, 

operates in two steps: first compute m,, an approximation to E(+,(y), and then compute the 

estimate & by thresholding m,, at 1/2. If G is replaced by P1 then mn and therefore 6, are 

typically not invariant under the actions of G. The averaging method is to replace rn, by the 

average of rn, over the orbit of Q than includes location n. This method fixes two problems. 

First the averaged mn and therefore the reconstruction 6, that results from thresholding the 

averaged m, are invariant under the actions of G as desired. Second, the signal to noise ratio 

is improved, though not to  the degree possible if the information containeld in the invariance 

under G is used from the start as a hard constraint. 



The use of the averaging method is not trivial, however, because the P1 estimator is 

not guaranteed to give an estimate that has the same coordinate system as the true field. 

Specificdl~y, the estimate b u l d  be translated and/or reflected through the origin relative 

to the true field. Therefore it would be foolish to average over the orbits in the true field 

coordinate system. 

In light of the difficulties described in the previous paragraph, the averaging method is 

applied in two steps: first estimate the coordinate system in m, and setand average over 

the orbits in this new coordinate system. The only information concerni~ng the coordinate 

system comes from the invariance of the true signal under the actions of G. Therefore, in this 

paper chclose as an estimate of the coordinate system that coordinate system which makes 

m, and the orbit-averaged m, most nearly equal in the 12 sense. 

Specifiically, define m?vr = m,,+, where s E {f 1). Therefore m?t" is1 a translated and 

reflected version of m,. Let On be the orbit that includes location n and let 10,1 be the 

length of the orbit. Then the orbit-averaged m?lr, denoted m?*", is 

the l2 difference between m?sr and fi?*', denoted C4(no, s), is 

and no mid s are chosen as the location of the minimum of C4(no, s): 

The averaged estimate of E(&ly), denoted mi ,  is 

Finally, the reconstruction, denoted k, is 



For the case of one-dimensional signals invariant under the actions of PI, it is necessary 

to consider translations no but not reflections s = -1 because Pi itself includes reflections. 

In addition, the criteria C;(no, s = 1) simplifies to 

It is also necessary to consider when the averaging ia done. One could average m, at 

every itenstion of the optimization for the symmetry breaking kernel before the optimization 

criteria is computed and during the computation of the estimate using the optimized sym- 

metry breaking kernel. ~ l t e r n i t i v e l ~ ,  one could average mn only during the computation 

of the estimate using the optimized symmetry breaking kernel. The first approach might 

be expected to give better results than the second but runs the risk of making the kernel 

optimizat ion difficult because it makes the optimization problem nondifferent iable. In fact, 

as seen in Section 5, given the numerical optimization tools available, the second approach 

provides superior performance. 

The second method is the soft constraints method. Recall that the estimate computed 

by estimator A depends on an optimization criteria for the symmetry breaking kernel. In 

Ref [2, Section 31 a three term choice for the criteria was motivated. Since the optimization 

is numerical, it is relatively straightforward to add an additional term, though it is possible 

that such a term would make the optimization more difficult. The soft corlstraint method is 

to include the invariance of 4 under the actions of E as a soft constraint by modifying this 

criteria. Specifically, the modification is to add a term which penalizes deviations of 4 from 

invariana:. 

The srme general point of view as in the averaging method is used. Specifically, define 

the orbit-averaged m,, denoted fin, as 



the l2 diffkrence between mn and fin, denoted C4, as 

and add a term 74C4 to the cost function developed in Ref. [2, Section 31 where 7 4  is a 

constant weight. For the case of one dimensional signals invariant under the actions of Pi 

this simp:lifies to the addition of the term 

to the cord function of Ref. [2, Section 31. 

Note that while invariance failure is penalized, it is not forbidden. Thai; is, the constraint 

is soft rather than hard. Therefore estimates computed using the soft constraints met hod 

alone will typically not exhibit Pi symmetry. For that reason, the soft constraints method 

is always used in combination with the averaging method. 

5 Approach 1: numerical results 

In this section the performances of three estimators based on Approacll 1 are presented 

and compared with the three basic estimators. The problem and the three basic estimators 

(E-Pi ,  E-PI ,  and A) are discussed in Section 3. 

The tliree estimators based on Approach 1 are 

1. Averaging applied at the end only (denoted 'Al-end"). 

2. Averaging applied at the end and at every $ optimization iteration (denoted 'Al- 

alwczys" ). 

3. Cost function modification plus averaging applied at  the end only (denoted "Al"). 

The primary results are shown in Figures 7 and 8. The three basic estimators are described 



Figure 7: Estimator performance statistice: fpdect versus 0 for the three basic estimators of 

Section 3 (dotted lines) md Al-end (trace 'In), Al-always (trace "2"), and A1 (trace "3"). 



Figure 8: Estimator performance statistics: E(12) versus a for the three basic estimators of 

Section 3 (dotted lines) and Al-end (trace "I"), Al-alwaus (trace "2"), and A1 (trace "3"). 



in Section 3. The three new estimators are matched to the synthetic data. Estimators Al- 

end and Al-always have in addition q = 1.0 for the symmetry breaking parameter, e = 
I 0, n = O  

as the initial condition for the 11, optimization, 71 = y2 = 73 = 1.0 I ( L  - n l / L .  n  + 0 
ahd 3 = ' o  for the 11, optimization criteria, the default target (see Section 3) for JJ11,112 in 

the 11, optimization criteria, x = 1.0, X = 1.0, and ,i9 = 1.0. Estimator A1 has in addition 

q = 1.0 fbr the symmetry breaking parameter, 50 independent choices of random initial 

condition13 for the 11, optimization (see Section 3), = 7 2  = 73 = 1.0 and 7 4  = 4.0 for the 

11, optimi2:ation criteria, the default target (see Section 3) for Illl,llz in the 11, optimization 

criteria, 1; = 1.0, X = 1.0, and /3 = 1.0. 

Estimators Al-end and A provide essentially the same performance: Estimator Al-end 

outperforms A only slightly, only at low signal to noise ratios, and only in the fpcdect perfor- 

mance measure. The essentially equal performance of these two estimatorrs tends to indicate 

that the (errors made by A are rather global in nature rather than isolated errors at single 

lattice sites since averaging pairs of symmetry related conditional mean estimates has little 

effect on performance. 

Estim.ator Al-always provides uniformly poor performance. This is probably due to 

the fact that the 11, optimization criteria in Al-always is noncontinuous, the optimization 

technique is of a down-hill search nature, and only one initial condition is considered. Rather 

than explore noncontinuous optimization techniques, this estimator was clropped in favor of 

Estimato,r Al. 

Estimator A1 provides uniformly superior performance. At high signal to noise ratios it 

equals E-P1 (the exact estimator without knowledge that the signal is irrvariant under P i )  

while at moderately low to low signal to noise ratios it substantially outperforms E-PI. 

In summary, the averaging and soft constraints methods, as combined in Al, are able to 

extract a, significant fraction of the performance increase available due to the knowledge that 

the field $ is invariant under the symmetry. The example used here is simple-one dimensional 

with Pi symmetry. Therefore it is important to emphasize that these ideas extend without 
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significant modification to two and three dimensions and complicated symnetries. The only 

information needed to implement the estimator is knowledge of the orbits of the space group 

and this information is tabulated for all two and three dimensional space groups in, for 

example, 'Ref. [4]. 

6 Approaches 2 and 3: Introduction 

In Approi~hes 2 and 3 the space group is accounted for by viewing it as a hard constraint 

on the 4,, variables. Due to the hard constraint, only a subset of the 4, variables can 

be set inclependently. A valid subset is exactly a valid fundamental domain for the space 

group. In both Approaches 2 and 3 the estimates are computed for 4, where n ranges over 

a fundamental domain. The remaining values of 4, are then set by the constraint. 

The errtimation calculation continues to use the spherical model. The difference between 

Approaches 2 and 3 is whether the spherical model is applied before (Approach 2) or after 

(Approach 3) the constraints implied by the space group. Equivalently, the distinction is 

whether the spherical model is applied to the entire unit cell (Approach 2) or only to one 

fundamental domain (Approach 3). 

Relative to the calculations of Ref. [I], which were reused in Approach 1, the calculations 

for Approaches 2 and 3 follow the same principles but are quite different in details and 

results. Specifically, for Approach 2 there is a large set of critical points each of which makes 

a contrib~~tion to the value of the integral. These contributions can be analytically summed. 

On the other hand, for Approach 3 there is only a single critical point but its location cannot 

be determined analytically except in a special case. 

Because the principles of the calculations are the same as in Ref. [I], the calculation is 

divided into the same steps to the extent possible. First, the entire ca1c:ulation is done in 

terms of the coefficients of the Fourier series of the MRF field 4,. This is the natural choice 

of variables because Hob, which is quartic in the 4,, is *diagonaln (see Section 8) in this 



choice of variables. This is the reason for the care in choosing Hap"& and Ha". as described 

in Ref. [I]. Second, two approximations are introduced to address two different problems. 

First, the! zereone nature.of the MRF lattice variables is difficult to deal with. Therefore, 

the spherical model, which is a relaxation of this constraint, is introdutxd. Second, even 

with the spherical model, the problem has high-dimensional exponential-of-quartic integrals 

which cannot be computed exactly. Therefore an asymptotic small noise approximation is 

introduced where the observation noise is assumed to have small variance. That is, in H O ~  

it is assu:med that a k  J. 0. 

Two different asymptotic approximations are considered. In the first approximation 

("Probleln I"), a k  J. 0 so that Hob 1 00. Therefore, the a priorimodel Hapriori is progressively 
apriori 

forgotten. In the second approximation ("Problem 2"), Hapriori 1 also, but -+ X ,  a 

nonzero :Finite constant. In this case the a priori model never becomes insignificant. 

In more detail, once the symmetry breaking term is introduced and H = Haptiori + 
H " ~ +  d~'.~. is defined, the calculation using the spherical model and asymptotic approxi- 

mation precedes in the following fashion. The sums over the lattice variables are written as 

integrals over a singular measure and then the desired measure is approximated by a second, 

also singular, measure (Step 1). The spherical model ie this change of measure. Specifi- 

cally, inritead of concentrating the measure at the corners of a hypercube representing the 

binary constraints on the lattice variables, the new measure weighs equally all points on a 

sphere circumscribed around the hypercube. The integrals are written in terms of Fourier 

coordina,tes (Step 2). Step 3 in Ref. [I, Section 61, writing the Fourier coefficients in terms 

of magnitude and phase variables, and Step 4 in Ref. [I, Section 71, exact evaluation of the 

phase variable integrals, are greatly changed because the Fourier coefficients of a function 

invariant under Pi turn out to be real. In Step 3 in the present paper the Hkmiltonian is 

additively partitioned as before, notation is defined to make the correspoiidence with Ref. [I] 

as close as possible, and the spherical model constraints for Approaches 2 and 3 are com- 

pared. 'In Step 4 in the present paper the conditional mean integrals rue written out and 



the need :lor symmetry breaking in Approach 2 is demonstrated even if the integrals could 

be evaluated exactly. 

The conditional mean .integrals over the red-valued Fourier coefficie~its are performed 

by the asjrmptotic approximation. The two different asymptotic approximations are defined 

(Step 5). In both cases the integral is of Laplace type and the integration region is a manifold 

due to  the spherical model constraint. The two different asymptotic approximations turn 

out to diflkr only in the definition of certain constants. Some notation is defined (Step 6) and 

some properties of the nonexponential portion of the integrand are noted (Step 7). Through 

Step 7 the calculations for Approaches 2 and 3 are parallel and are presented jointly. 

The critical point for the asymptotic small noise approximation is computed (Step 8). 

Formal citlculations rather than rigorous proofs of the asymptotic formulae are provided. 

Several si,eps are required. An important part of the calculation which is common to Ap- 

proaches :2 and 3 is the computation of a second order asymptotic expansion of a multivariable 

integral when there is a single critical point that is internal to the region of' integration. This 

calculatisn is performed in Appendix 26. The plan for using the results iin Appendix 26 is 

outlined (:Step 9). The necessary Taylor expansion results and quantities derived from them 

are computed in Appendices 22, 23, 24, and 25 (Step 10). Finally, the chain of approxima- 

tions implied by the plan is applied in order to compute the formulae for the leading term of 

the asymptotic expansions; ratios of the asymptotic expansions, which axe the approxima- 

tions to iY(Qk(y), are computed; and the inverse Fourier series and nonlinear thresholding' 

leading to  the estimate 6. of the field 0, are described (Step 11). Following the sections d e  

riving tht: estimator for Approach 2 (3) there is a section describing the results of numerical 

experiments using the estimator. 



7 Spherical Model 

The purpose of this section is to describe the two different spherical models used respectively 

in Approi~ches 2 and 3. Because Approach 2 (3) focuses on the unit cell (fundamental 

domain), the subscript 'ucn ("fd") is used to label functions pertaining to Approach 2 (3). 

For Approach 2 first the spherical model and then the symmetry constraint are applied. 

The startiing point is the sums that express the estimator that is exact, th'ough not aware of 

the symmetry. These sums are 

1 
Eexact (dn 1 v) = 

where the sums are over configurations of the lattice in the entire unit cell, that is, n E 

{O, ..., L- 1). 

The summations of Eqs. 2 and 3 over configurations of the binary-valued 4, for n E 

(0,. . . , L - 1) are written as integrals over RL with a weighting function 

where ti(:c) is the Dirac delta function and ti(f (x)) means 

M 

in the di:stributional sense. Let dUc = (do,. . . , q5L,1). The spherical model approximation is 

to replace wEUt, which constrains kc to lie at the corners of an L-dimensional hypercube, by 

w:?"', which is defined to constrain kc to lie on the hyparphere circumscribed around the 

hypercube. Specifically, unchanged from Ref. [I.], the spherical model is w ~ ~ ~ ~ ' " '  = ti(cuc(4) ) 

where 



For Approach 2, the application of the symmetry constraint, which fo1lo.w~ the application 

of the apherical model, occurs with the change to Fourier coordinates and is described in 

Section 8. 

For Approach 3 first the symmetry constraint and then the spherical :model are applied. 

The starting point is Eqs. 2 and 3 which express the estimator that is exact, though not 

aware of the symmetry. These sums are over configurations of the lattice! in the entire unit 

cell. Application of the symmetry constraint reduces the sums to sums over configurations 

of the sublattice contained in the fundamental domain. The natural fuxidamental domain 

for Pi, as discussed in Section 2, is {0, . . . ,+I. The new equations are 

where the sums are only over configurations of the sublattice n E {0, . . ., , Y} and H has 

been changed to Hfd to indicate that it is now a function of a limited set of 4. 

The ~~ummations of Eqs. 5 and 6 over configurations of the binary-valued 4, for n E 

(0,. . . , y} are written as integrals over RY+' with a weighting function 

n=O 

Let & == (40,. . . , 4M). The apherical model approximation is to replace wiiYt, which 
2 

apherical 
wnstrain.~ Jfd to  lie at  the corners of an 9 + 1-dimensional hypercube, by wfd , which 

is defined to  constrain Jfd to lie on the hypersphere circumscribed around the hypercube. 

apherical - Specifically, the spherical model is wfd - b(Crd(4)) where 

Note hovv the number of sites included in Cfd and therefore wfd is roughly 1/2 the number 

in Cuc and therefore wuc which implies that the w~d approximation is more accurate. 



In future sections, any material not specifically labeled Approach 2 versus Approach 3 

applies to both and in particular the notation wmphenu' and C applies to either Approach 2 

with w*"'".'*"~ and C,, or Approach 3 with wmphel'*vM and Cfd. This completes Step 1. 

8 Fourier coordinates 

In this section 'the Hsmiltonian and spherical model constraint are expressed in terms of the 

Fourier coefficients of (by denoted b, rather than (b. This is the natural set of coordinates 

because t'he Hamiltonian, which is quartic in terms of either (b or 9, is diagonal in terms 

of 9. Th#at is, in terms of b, the Hamiltonian does not have any cross product terms, e.g., 

terms such as Qklbk2 with kl # k2. 

The first task is to determine how (b, E R and (b invariant under Pi constrains the 

Fourier coefficients b of 4. First recall a standard fact: 

Fact 1 $n E R if and only if bk = 

The desired result is a generalization of this standard result to the case where 4 is invariant 

under Pj:. The generalization is: 

Fact 2 (6, E R and q5 invariant under Pi if and only i f a k  = bL-k  and ak E R. 

The dem.onstration of this fact, a straightforward calculation, is omitted. 

In colmparison with Step 2 in Ref. (1, Section 61, the present calculation is changed since 

O now has fewer independent degrees of freedom. Specifically, since 9 is real and conjugate 

symmetric it is convenient to  take bo = 34, Q1 = L a l ,  . . . , bt = Rb5 as the 4 + 1 

independent degrees of freedom for L even and bo = %ao, bl = LQ1, . . . , b9 = 39? 

as the 9 + 1 independent degrees of freedom for L odd. As explained in Section 2, all of 

the calculations in this paper are for the L odd case. 

The ritatement that these are all of the possible degrees of freedom in Q carries with it the 

information that (b is invariant under the actions of the PI space group. For the estimator 



of Approach 3 this is not any additional information since that constraint has already been 

imposed iin terms of 4. However, for Approach 2, this constraint has not been previously 

applied. Therefore, as de~cribed in Section 7, the symmetry constraint is applied in the 

process of transforming from 4 to iP. Once this information has been applied, the Hamilt* 

nians for Approachs 1 and 2 are again identical and the symbol "Hn is used. To elaborate 

on this point (for L odd), for Approach 3 the original function H($o,. , . , $L-l) is trans- 

formed tal HI(&, . . . , 4+) by applying the symmetry constraint and then is transformed to 

H"(%iPo, . . . , P a + )  by changing variables while for Approach 2 the same original function 

is transformed to Ht(3200, %a1, W1,. . . , PO?, WL+) by changing variables and then is 

transformed to Htt(3200,. . . , %aq) by applying the symmetry constraint. The result is 

that H" == Htt. 

Define OrVk = %ak, Oi,* = OiPk = 0, = {0,1,. . . ,?I, and Kij = (1  ,..., 9). 
Writing out the total Hamiltonian, using iPrlk rather than iPk in order to emphasize that iP 

is real gives 

1 -1 + a;. [t ~ ' ( 0 . 0 )  + 'YO] 
Qo 

For Approach 2, Eq. 4 implies 



For Approach 3, the Fourier analysis and synthesis equations for a function 4, that is 

invariant under the actions of Pi can be written 

Using these formulae in Eq. 7 gives 



where vk = (2 - 6kr)/(2L), k E KL; v = (vO,vl,. . . , v + ) ~  = (9, i,. , . , i ) T ;  and O = 

(@o, al,. . . , @y)T. This completes Step 2. 

Introduce a parameter P, analogous to inverse temperature in statistical mechanics, that 

allows the entire Harniltonian to be simultaneously scaled. Take advantage of the fact that 

the contribution to H of each ak is additive by defining 

for any k f KL where the ak,j definitions are stated in Appendix 20. (The definitions of 

both Phk and U k , j  are changed relative to Ref. [I, Section 6 and Append,ix A], though the 

only change in the akj is in ak ,~  for k # 0). Then, 

Because of the new form for -Bhk relative to Ref. [I, Section 61, there is no need to in- 

troduce rotated variables 9: k E Ki and change to magnitude (rk) and phase (Ok) variables. 

However, in order to make the current equations as similar to the equations of Ref. [l] as 

possible, introduce the notation 

emphasizing that rk takes values in R not R+ U (0). In these variables tlhe equations have 

the form 



It is helpful to better understand the difference between two constraints Cuc and Cfd. 

Both are quadratic forms. In the natural rk = Qk coordinates, CUc is diagonal while Cfd is 

not. In this and the following paragraphs these quadratic forms are transformed to standard 

form and their eigenvectors and eigenvalues are computed. 

The t~:ansformation of Cuc to standard form is simple since the quadratic form is already 

diagonal. All that is required is to complete the square in ro with the result that 

k r l  

where du,,: = (-I, 0,. . . , O)T. Therefore there are 9 eigenvalues with value $ and with an 

eigenvector subspace spanned by el,. . . , e 9 ,  and a single eigenvalue with value and with 

eigenvector ea where ei E R?+' are the standard basis vectors numbered from 0 to F. 
That is, t,i is a vector of zeros except for a single 1 in component i where the first component 

is numbered 0 rather than the more conventional 1. 

The transformation of Cfd to standard form requires the matrix version of completing the 

square. This formula, for any symmetric invertible matrix C, is rTCr + b3'r = (r + d)TC(r + 
d) - 8 C d  where d = iC-'6. For Cfd the matrix C has the form Cfd := diag(vi) + 2vvT. 

Application of the Woodbury formula [12, p. 761 to compute gives the result that 

I ;  = a )  vi - ( 1 , .  . , l )T(l , .  . . 1 . Since brd = (-?,0,. . . , o ) ~  - v, it follows that 

dfd = (-,*,0,. . . , o ) ~  and &Cfddfd = 9. Note that drd = due. Comb'ining these results 

gives 

In order to compute the eigenvectors and eigenvalues of Era, begin by noting that the 

matrix 



is only of rank 2. Therefore, the first 9 - 1 eigenvalues are equal with common value 

denoted x = i. Furthermore the null space of this matrix, and hence the eigenvector 

subspace 'corresponding t a  X, is all vectors ( = (wO, wl,. . . , w -1 of the form wo = 0 and t) 
wl, . . . , w y  such that & w, = 0. One basis for the eigenvector subspace is 

f o r i ~  {1,,2 ,..., T -  L-l I}. A second basis is 

for any fixed j E {1,2,. . . ,?} and for i E {1,2,. . . , j - 1, j + 1,. . . , v). 
The remaining two eigenvalues and eigenvectors are more difficult to compute. F'rom 

numerical experiments using MAT LAB=^[^^] it appeared that the final two eigenvectors 

were of the form 

The corresponding eigenvalue x is, by definition, the number such that ( lies in the null 

space of A - XI, i.e., (A - XI)( = 0. Since 

it is necessary and sufficient to require that a and p satisfy a homogeneous two-dimensional 

linear system which is 

The result for this 2 x 2 eigenvalue/eigenvector problem for the matrix 

(2;" iyp) 



is that 

x* = + ;i[L - 1 f ,/(L - l)(9L - l)] 

Returni~lg to  the original eigenvector/eigenvalue problem, the result in the 2 x 2 problem 

implies that the last two eigenvalues and eigenvectors of Crd are 

The C,, = 0 constraint (Eq. 8) can be rewritten 

which iis a sphere of radius & which is stretched and displaced frorn the origin in the 

(1,0,. . . ,O)T direction. Let Trd be the matrix whose columns are an orthonormal set of 

eigenvectors of Cfd. The Crd = 0 constraint (Eq. 9) can be rewritten 

In the c:orrect rotated coordinate system defined by the unitary matrix Trd, this is a sphere 

of radius .* which is stretched in two coordinates and displaced from the origin. Thus 

these two constraints are quite similar. However, the fact that the natural coordinates for 

the Cfd constraint are not the coordinates in which the Hamiltonian i~ diagonal makes it 

much more difficult to solve for the critical point location analytically.. (The eigenvector- 

eigenvalue structure of Crd is also used in Section 17 to chose initial conditions for a numerical 

computation). This completes Step 3. 



9 Bayesian integrals 

The central quantities in the Bayesian estimators described in this paper are the condi- 

tional mleans E(#,ly) and approximations to them. In this section app:roximations to the 

conditioxlal means are expressed as multidimensional integrals using the r~pherical model in- 

tegration. measure, the inability to compute these integrals in terms of standard functions is 

noted which motivates the asymptotic evaluation of these integrals, and for Approach 2 the 

role of sjrmmetry breaking in the asymptotic evaluation is elucidated. 

Invariance of # under the actions of the Pi space group guarantees that Q is real and 

therefore, in comparison with Ref. [I, Section 71, there are no longer any. angular integrals. 

The expressions for Approach 2 and Approach 3 are identical. Writing out the approximation 

under th,e spherical model to the partition function Zex"'(y) (Eq. 5) gives 

Follo1uing Ref. [I], the mean of the field is computed in terms of the rnean of its Fourier 

coefficients. That is, an approximation under the spherical model to Eex"'(Qk Iy) rather than 

to Eex"'l(#,ly) is computed. For the mean of Qk, the integrand for Z is multiplied by 

and the result is scaled by ). Therefore, 

where k E KL. The remaining E(QTkly) are specified by Qk = QL-k, that is, E(QTk(y) = 

E(@L-~(IY).  

Thest: integrals do not appear to be solvable in terms of standard functions. Therefore, 

as detailed in Sections 10, 13, and 16, an asymptotic evaluation is performed. 



A magior difference between Approaches 2 and 3 is the necessity of symmetry breaking 

in Approach 2 since without symmetry breaking the conditional expectations for k # 0 

are identically 0. This fhct is not an undesirable side effect of the aqymptotic method 

of evaluation but is true in the original integral (Eq. 11). The remainder of this section 

describes the situation. 

The absence of symmetry breaking corresponds to t,bn = 0 for all a E {0, . . . , L - 1) 

and/or tc3 q = 0. In this case, aince oi,l = 0 for all k except k = 0, E(ObkJy) for k # 0 can 

be written as 

Order the integrations so that the r b  integration is performed last and perform the other 

integrations in order to get 

where f (.) is an even function because r k  only enters the delta and exponential functions 

through r: and the region of integration for rl for I # k does not involve r k .  Since f is even 

it follows that rk f (rk) is odd. Since the region of integration is even it then follows that the 

integral is zero as claimed. This completes Step 4. 

10 Asymptotics 

The asymptotic ideas of Ref. [I, Section 81 are used to evaluate Eqs. 10 and 11. Two different 

asymptotic limits are considered. One limit, denoted Problem 1, is purely a small observation 

noise limit. That is, these integrals are evaluated in the limit a; 1 0. More precisely, it is 



assumed that u i  = and A oo. The second limit, denoted Probleak 2, combines the 

small observation noise limit with a proportional scaling of the a priori Hamiltonian. That 

is, it is w u m e d  that u i  = fa;, W2(k1, k2) = AXw2(kl, k2), wl = AxB1, )L t m, and x is a 

fixed real number. This completes Step 5. 

With sthe correct notation, the asymptotic evaluation of Eqs. 10 and 11 requires the 

asymptotic expansion of integrals of the form J, a(z)eh(ddz in the limit k + oo where y is 

real, and .D is all of R?+'. This is a problem of Laplace type 114, Section 6.4 pp. 261-2761. 

Not only the order in A but also the numerical coefficient of the first nolizero term in the 

A + oo asymptotic series is required. 

The points where the exponent y attains a global maximum, called ckitical points, play 

an important role in the large-A asymptotics because as A + oo the entire contribution 

to the integral comes from a neighborhood of these points. Though it does not contribute 

to the determination of the critical points, the behavior of a (the nonexponential part of 

the integrand), especially the points at which a and perhaps its derivatives vanish, is also 

important because these points may, and in fact do, occur at  the critical ,points. Therefore 

the following sections define notation so that the integrals are of this form (Section l l ) ,  

locate the points where a vanishes (Section l l ) ,  and locate the critical points (Sections 12 

and 15). 

The first goal of this section is to define notation so that the partition function (Eq. 10) and 

conditionirl means (Eq. 11) can be written 

(A ) = / g z w ~ h ~ d e - ~ ~ ~  

1 
E(@.*IY)(A) = /gkw rpheride-XPH~ k E K,., 

First tiefine some quantities related to the exponent. Having introduced A and X, it is 

helpful to have a second set of constants that show the dependencies mobre explicitly than 



the ak,n. Define bk,nr where n is the order of the @ dependence and s is s suffix. The three 

suffixes are s = a for dependence on uk (which automatically implies dependence on A), 

s = b for dependence on A but not cr (this can only occur in Problem 2 asymptotics), and 

s = c for no dependence on A. Because h k l e ,  and h k ,  have different order of dependence on 

ak, a given bk,,,, constant automatically enters into one or the other but :not both. 

The two sets of bkln, definitions, one for Problem 1 and one for Problem 2, are in' Ap- 

pendix 20. The only differences relative to the definitions of Ref. [I, Appendix A] are in bk,], 

for both Problem 1 and 2. The only difference between Problems 1 and 2 is the definition of 

these constants bk,nr and for both Problem 1 and Problem 2 it follows from the definitions 

that, as in Ref. [I], 

Make! explicit the X dependence of the exponent by defining 

so that 

and there is no other X dependence in hk.  Define 

(In comparison with Ref. [I, Section 91 these definitions are unchanged except that the 

irrelevant "rn subscript is removed since there are no longer any angular "On variables and 

bk,lc for k E Kt are no longer hidden within 0: and 0; [I, Section 7 Ecp. 5 and 91). 



Second, define some quantities related to the nonexponential part of the integrand. 

SpecificPilly, define 

which a ~ :  all independent of A. 

The second goal is to  fix some notation concerning the critical point. This notation is 

carried over unchanged from Ref. [I, Section 91. Let p E Rlfl+', p = (po, pl, . . . , p+) 

be the critical point, and define jj t~ R?, p = (pl, . . . , p?) Simila:rly, the variable r 

always denotes a variable in R?+' while the variable i always denotes a, variable in R?. 

Components of the critical point p that are zero play an important role. :lDefine 

Therefore:, the integrals of Eqs. 10 and 11 are over the manifold defined by C(r0, rl, . . . , 
r ) = 0. (Compare with Ref. (1, Section 91 where the integration is only over a subset of 

the mani.fold). The implicit function theorem assures the existence in a neighborhood of p 

of a continuously differentiable function t), : R? -+ R such that 

in this neighborhood assuming that (B,C)(p) = ipo - 1 # 0 which is true so long as po # f .  

For notational convenience define 

. Rq -+#+I FP 
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7P(f), k = 0 

r k  , k €  K,+ 
(20) 

Note tha't Fp(p) = p. Note also that there are actually two qp functions (qPtuc and qp,rd) and 

therefore! two Fp functions (F,,, and Fp,fd) corresponding to the two C functions (C,, and 

Cfd). This completes Step 6. 

The third goal is to state properties of the zeros of g and the derivatives of g. First, gz 

never vanishes; Second, gk vanishes if and only if r k  = 0. This completes; Step 7. 

Gaussian integrals play an important role. Define as in Ref. [l, Section 91 

N : RnXn -+ R 

which is the normalization factor for a Gaussian density with covariance matrix Q-' (i.e., 

p,,g-l (r)  = N(Q) exp(-i(r - m)=Q(r - m))). In addition, because it appears frequently 

throughout Approaches 2 and 3, define 

Finally, the invariance properties of gz(po, pl, . . . , p?) under sign reversals on components 

pk for k > 0 are important. Define pk = po and pi = Ipk( for k > 0. Define 

Then 

9 
gz(po, P I , .  . . , PV ) = exp( C -Bhk.o(pk)) 

k=O 

= ~ ~ P ( - ~ ~ o , o ( ~ o ) )  ~ X P (  C -phk,O(ph 1) exp( -phk,O(~k)) 
~ E A ,  kc@-A, 

where hkto(0) = 0 and po = ph have been used. 



12 A.symptotics-critical point for Approach 2 

The critical point is the minimum of  HA. The definition of pHA is unchanged from Ref. [l, 

Section 91, including the same definitions for those bk,,, that enter pHA. Two minimization 

problems were discussed in Ref. [I, Section 101, speci fically, 

Opt 1 : min pHA 

subject to C = O,rk 2 o k E Ki 

Opt 2 : min pHA 

subject to C = 0. 

In Ref. [I], the solution of Opt 1 was required, but it was possible to show that any solution 

of Opt 2 reflected into the orthant {ro E R ) x  {rk 2 Olk E Ie) was a solution of Opt 1 

and that there were no solutions of Opt 1 that were not also solutions of Opt 2 (i.e., there 

were no s,olutions due to the boundary). In the present paper the solution of Opt 2 itself 

is required. Therefore, Ref. [l , Section 101 actually contains the needed results. However, 

in Ref. [I., Section 101 the reflection into {ro E R) x {rk 2 Olk E I<:) is performed in the 

process of computing the solution rather than computing the solution to Opt 2 and then 

reflecting. The change amounts to the introduction of a plus/minus sign in Ref. [l,  Eqs. 23 

and 241. The new equations are 

0, r > t b k , 2 b  

P = { I ~ E I ( L + - B  
arbitrary, r = $bk12b 

where B := {k E Kt+( an observation was taken at frequency k or frequency L - k). Ref. [I, 

Eqs. 19 and 211, which are, 



1 2 9  
- P ; - P D + ~ ~ P : = O ,  L 

k-1 
(27) 

complete the solution. Eq. 25 amounts to pk(r) = 0 k f K i  - B since the probability that 

T = f bk,2,, is zero. 

Note how Eq. 26 is independent of pk(r) for k f K t  and how Eq. 27 depends on ~ ~ ( 7 )  for 

k E KL only through p k ( ~ ) ~  and is therefore independent of the plus/minus sign in Eq. 24 

or the arhitrary/nonnegative distinction in Eq. 25. Therefore, dl rolutionu can be generated 

with the following steps: first require pk(r) 2 0 for all k E K t ,  second solve for po and 7, 

and third generate all the other solutions by flipping the signs of pk for k E KL while keeping 

PO and 7 fixed. Denote the solution from the combination of the first and second steps by p'. 

Reca:l:l the definition of A, from Eq. 18, specifically, A, = {k E I(L+)pk = 0). In terms 

of A,, the number of solutions that are generated is 21Ki-ApI. Each of these solutions is a 

critical point. Because pHx depends on rk k E I(L+ only through r i  it follows that 

That is, .the exponent has the same value at each of the critical points and therefore none 

of the critical points are dominant over others and therefore all need to be included in the 

solution. This completes Step 8 for Approach 2. 

13 Asymptotics-formulae for Approach 2 

In this se:ction, asymptotic formulae for Approach 2 are presented. As in I b f .  [l, Section 111, 

the calcu.lations are formal, in the spirit of Ref. [14], rather than rigorous proofs. In all cases 

the lowest order nonzero term in the asymptotic expansion is computed. In d l  but the final 

case, the lowest order nonzero term is of order 0 while in the find c u e  ib is of order 2. 

Formulae for second order asymptotic expansions of multivrriable in~tegrdr in the case 

where there is a single critical point which is internal to the region of integration are given in 

Appendix 26. An important difference between the present calculation lsnd the calculation 

50 



of Ref. [I] is that the region of integration for the present problem has no finite boundaries. 

Formulae for the necessary derivatives and derived quantities are given im Appendices 22, 

23, 24, and 25. 

Recall from Section 12 that there are 21K2-41 critical points for this problem. Because 

the criticaa points are all isolated, following Ref. [14], the expansion of t'he entire integral 

is the sum. of the contributions due to each critical point. Furthermore, the contribution of 

a parti~ul~ar critical point p can be computed by restricting the region of integration to a 

neighborh,wd of p which excludes all other critical points and then applying the single-critical 

point forn~ulae given in Appendix 26. Therefore, the plan has four steps: 

1. Decompose the integral into a sum of critical point contributions. 

2. Perform the ro integration for each individual critical point contribution using the 

6-function of the spherical model. 

3. Approximate the remaining integrations for each individual critical point contribution 

using the asymptotic formulae from Appendix 26. 

4. Sum the individual critical point contributions. 

This completes Step 9 for Approach 2. 

The normalizer Z  of the probability density (equivalently, partition function) is 

Apply the four step plan from the previous paragraph. Decompose the integral into a sum 

over the critical points p which are all related to p' as described in Section 12 to get 

where 

z p  = / drjgz (r)b(~Uc(r) )e - A P H A ( ~ )  

ro€(Po-c,Po+e) j=l 



and c describes the neighborhood which is taken sufficiently small such that it contains only 

the single critical point p. The value of an individual contribution Zp can be computed by 

first performing the r o  integration (taking advantage of the &function of the ephericd model 

constraint:) and then using the formulae of Appendix 26. Because gz never vanishes, the 

leading no~nzero term of the asymptotic expansion is the zeroth order term (i.e., the term 

proportior~d to  'qn in Eq. 84). Specifically, in terms of L, defined in Appendix 22 Eq. 49, 

where the multiplicative factor derived from the 6(C,,,(r)) integration which is common to all 

integrals and therefore cancels from the ratios has been dropped. More specifically, this factor 

derives from the fact that under suitable limitations on g one has J f (x)b(g(x))dx = 

where g' :is the derivative of g. The denominator is common to all integrals, cancels from 

the ratios of interest, and therefore can be dropped. This completer the first three steps in 

the computation of Z .  

The fourth and final step in the computation of Z is to sum Z, over t,he critical points. 

As shown1 in Eq. 23, the term gz(p) is the product of two terms, one term (gjt"* defined in 

Eq. 22) which is invariant with respect to the sign changes in k E I(: that generate p from 

p' and one term which is not invariant. Specifically, 

Furthermore, from Appendix 21, det L, is invariant under there sign changes and therefore 

Finally, ria noted in Eq. 28, 



Therefore:, 

Summing Eq. 30 over all of the critical points (Eq. 29) gives 

where the definition (Eq. 14) of -/3hk,o has been used. 

Next <:ompute E(Qkly) when k E ~(t+-&. (Note that k = 0 is not in this set). Therefore, 

pk # 0 wliich implies that gk is not zero at the critical point. Therefore t:he contribution of 

interest ~ E I  again the zeroth order contribution. 

The plan for the Z calculation can be followed unchanged to Eq. 31 which now takes the 

form 

Therefore:, 

Next compute E(Qo(y), i.e., the k = 0 case. Assume po # 0. Tlhen go is nonzero 

everywhere so that the contribution of interest is again the zeroth order contribution. 



The plan for the Z calculation can be followed to Eq. 32 which takes the form 

which im.plies that 

Finally compute E(OkJy) when k f Apt. Therefore pk = 0 which implies that gk = rkgZ 

is zero at the critical point. As in Ref. [I], the case 0 E APl is not considered because 0 E Ap# 

implies pk = 0 for all k f Kt. 

In the previous three calculations, I performed the ro integration and then found that 

a zeroth order asymptotic expansion was nonzero. The reason is that the n~nex~onent ia l  

part of the integrand (i-e., gz(Fp(f)) or gk(Fp(i'))) did not vanish at the critical point. For 

the present case, after performing the ro integration, a higher order asymptotic expansion is 

required. The first order expansion, as described in Appendix 26, is always zero by symmetry 

for this particular type of integral. However, the second order expansion is in general nonzero. 

The first two steps (decomposition into individual critical point contributions and per- 

forming the ro integrations) are unchanged. The third step involves the calculation of the 

second order terms in Eq. 84. The terms Jl , ,  and Jl,* are zero because they are proportional 

to gk(p) ("qn in Eq. 84) which is zero. Furthermore, as calculated in Appendix 24 (Eq. 73), 

J1,, = 0. However, as calculated in Appendix 25 (Eq. 78), Jl,r is nonzero, specifically, 

Using Eq. 78 in Eq. 84 and then Eq. 23 gives the result 



This result can be summed over p in a fashion analogous to the summaticw of Zp over p to 

yield 

Finally, dividing through by the approximation to Z gives 

where fk  is defined in Eq. 21. 

In this' and the preceding sections one method is described for performing the calculations 

needed in Approach 2. A different method is to reduce the region of integration for the 

original integral (Eq. 11) to r k  E R+ U (0) for k # 0. This is similar t;o performing the 

sum over the critical points. Then, with this reduced region of integration,, the critical point 

calculations of Ref. [I, Section 101 can be used unchanged. However, in this second method, 

the criticd point could fall on the boundary of the region of integration and this complication 

outweighs the advantages of this method. 

The final two steps in the estimator are 

1. to compute m, % E(4, ly) from Mk % E(Qkly) by computing the inverse Fourier series 

of hlk m d  

1, mn 1 1 / 2  
2. to compute the estimate On of the field 4, by thresholding mn at 1/2: = 

0, otherwise 

Phase estimates, if desired, can be computed by computing the phase of ,the Fourier coeffi- 

cients of the estimate 4,. 
In pre:paration for the numerical results, note that bk,,, (defined in Appendix 20) depend 

on \Ir only through R\Ir (recall that t,6 is real so that Qo is guaranteed to be real). Therefore, 

without loss of generality, it is possible to assume that Wk = 0 for all k ,  Since $, is real, 

it is already guaranteed that \Irk = jEli,k. Therefore, with this assumption, it follows that 



\Ek = \EL-lk and \Ek E R. Application of Fact 2 (Section 8) leads to the conclusion that tC, is 

invariant under Pi. Therefore, for L odd, an independent parameterization of tC, is . . . , 
$+I. This completes Step 11 for Approach 2. 

14 Numerical results-Approach 2 

In this section the performance of the estimator based on Approach 2, denoted A2, is pre- 

sented a i d  compared with four alternative estimators. The problem and three of the alter- 

native estimators-the basic estimators E-PI, E-PI ,  and A-are discussecl in Section 3. The 

fourth alternative estimator, A1 based on Approach 1, is discussed in Sections 4 and 5. 

The primary results are shown in Figures 9 and 10. Parameters for the three basic 

estimators are described in Section 3. Parameters for A1 are described in Section 5. Esti- 

mator A2 is matched to the synthetic data. It has in addition q = 1.01 for the symmetry 

breaking parameter, 50 independent choices of random initial conditions for the tC, optimiza- 

tion (see Section 3), 71 = 72 = 7 3  = 1.0 for the tC, optimization criteria,, the default target 

(see Seclion 3) for (ItC,IJ2 in the tC, optimization criteria, x = 0.5, X = 1.0, and ,f3 = 1.0. 

In terms of the fPedect performance measure, A1 and A2 provide similar performance. 

At low to moderate observation noise variance (u2) A2 has a slight advantage while at  high 

u2 A1 has a modest advantage. The same is true in terms of the El2 performance measure 

though i ~ t  low to moderate u2 the performance of A2 at best equals that of A1 rather than 

exceeding it slightly. Recall (Section 3) that it is the low to moderate levels of c2 that are 

relevant to the crystallography application. 

However, there is a second aspect that consistently favors A2. Specifically, u discussed 

in Section 13, for A2 the symmetry breaking kernel tC, can be parameterized by + 1 real 

numberri. On the other hand, the kernel tC, for A1 requires r full L red numbers. Therefore 

the sym:metry breaking optimization for A2 occurs in r space of essentially half the dimension 

of the 01)timization for A l .  It is anticipated that the dimension of the parameterization of tC, 



Figure 9: :Estimator performance statistics: fdwr versus a for the three basic estimators of 

Section 3 [(dotted lines), A1 (solid line labeled uA1n), and A2 (solid line la,beled uA2"). 



Figure 10: Estimator performance ~tatisticr: E(12) verpur u for the three buic estimators of 

Section 3 (dotted lines), A1 (rolid line labeled 'Aln), and A2 ( d i d  line labeled 'A2"). 



in A2 relittive to A1 will track the ratio of the fundamental domain volurne to the unit cell 

volume. Therefore in more complicated space groups in higher dimensions the advantage in 

this sense of A2 relative toeAl will increase. While the dimension of the space is not the only 

determinant of the level of difficulty of an optimization problem, it is an important issue. 

On the other hand, note that for each new space group the computation of A2 requires 

possibly difficult analytic calculations in order to (1) locate the critical points for the small 

noise asymptotics and (2) sum the contributions of the critical points to the asymptotic 

expansior~. However, in the only three-dimensional space group that has been investigated 

(monoclinic C2), the calculations can be done and in fact are a combination of the results 

for Approach 2 as described in this paper and the results of Ref. [I]. In summary, it will 

require further analytical calculations for other space groups and numerical experimentation 

in order to determine the relative merits of these two estimators. 

15 Asymptotics-critical point for Approach 3 

In this section the system of equations defining the critical point for Approach 3 is derived 

corresponding to the equations of Ref. [I, Section 101. The general solution of these equations 

is not known but the solution for a special case is briefly sketched. 

Define: the Lagrangian L by 

Taking derivatives with respect to r and t and setting them equal to zero gives the following 

system of equations for the stationary points p, 7: 



The secortd order condition, specifically, yTQ(p,~)y  2 0 for all y E M(p), involves the 

subspace 

and the Hessian matrix 

Approximate numerical results seemed to indicate that solutions of the gradient equations 

often hacl one or more p components that were roughly three orders of magnitude smaller 

than the remaining p components. It oecmed possible that if the numerical results were 

exact then these components would be exactly zero. Recall that exactly zero components 

can occur in the original critical point problem solved in Refs. [I, 21. 

Themfore the following special case seemed of interest. Assume that there are one or 

more soliltions of the gradient equations in which there exists a k E Kl such that pk = 0. 

(Even if such solutions exist, they may not correspond to minima let alone global minima of 

the opticnization problem). It turns out that having even one such pk greatly simplifies the 

solution of the gradient equations. 

Consider the k gradient equation. Since pk = 0 this equation simplifies to 

Therefore, either T = 0 or 4vTp = 1. 



Assume T = 0. The k = 0 gradient equation simplifies to 

which has three solutions a t  least one of which is guaranteed to be real. The k E K t  - {k) 
gradient ecluations simply to 

which has the three solutions 

of which at least one is guaranteed to be real. It seems highly unlikely that some choice 

among these finite set of p solutions, each of which depends on the data, will satisfy the 

constraint equation which does not depend on the data. Therefore it seems highly unlikely 

that T = 0 will ever occur in practice. 

Now assume that T $ 0. Then 4vTp - 1 = 0. This dramatically simplifit:~, and especially 

uncouples, the stationary point equations. Specifically, the equation 0 = (atL)(p, T) becomes 

the equation 0 = (&,L) (p, T) becomes 

the equation 0 = (b,,L)(p, T )  becomes 

and the su.bspace M(p) becomes 



The Hessian matrix Q(p, T )  does not simplify. 

These equations are sufficiently simple that the techniques of Ref. [I, Section 101 can 

be used to compute an analytic solution. However, when the solutions to many problems 

are carefully computed by numerical methods (see Section 17), it s eem that the crucial 

assumption, that there exists a k such that pk = 0 which implies that 4vTp - 1 = 0, is 

often violated. Specifically, Section 17 contains a plot (Figure 12) of 4vTp - 1 = 0 for 1000 

different problems which shows that for some numerically-obtained p, 4vTp - 1 = 0 is far 

from zero. Therefore the analytical solution is omitted. Recall that the critical point is the 

global minimum. Therefore, though the problem seems difficult, further progress in this area 

is desirable because it is difficult to compute global solutions with purely numerical methods. 

This cornpletes Step 8 for Approach 3. 

16 .Asymptotics-formulae for Approach 3 

In this election the asymptotic formulae for Approach 3 are presented. 'This section closely 

parallels; the corresponding section for Approach 2 (Section 13) but is simpler because there 

is only s i  single critical point. 

The normalizer Z of the probability density is 

where the first transformation stems from integrating the ro variable and the second from 

taking the zeroth order term in Eq. 84 since gz never vanishes. 

Next consider E(Ok(y) when k E I{: -AP#. (Note that k = 0 is not in thir set). Therefore, 

pk # 0 which implies that gk is not zero at the critical point and therefore only the zeroth 



order terrrr of Eq. 84 is required with the result that 

which implies that 

For E(;QoJy), i.e., the k = 0 case, assume as before that pk # 0. Then only the zeroth 

order tern1 of Eq. 84 is required with the result that 

Finally, consider E(Qk(y) when k E which implies that pk = 0 so it is necessary to 

compute the second order terms in Eq. 84. As in Section 13, the terms J 1 ,  and Jl,b of Eq. 84 

are zero. ]However, neither Jl , ,  (Appendix 24 Eq. 75) nor Jl,d (Appendix 2ti Eq. 79) are zero. 

Application of Eq. 84 and division by Z give the result 

The formillae for J1,,  and Jltd are quite complicated and are in the appemdices. There are 

two important features: 

1. Though the formulae are complicated, the computation required to implement the 

forniulae is linear in the size of the lattice and is therefore practical. 

2. The ratio Jl, , /gz is independent of the symmetry breaking function but Jl,d/g2 is 

dependent on \Zlo and Qk. This dependence is the only dependence present in Ap- 

proach 3. 

Once approximations to E(Qkly) are computed, the final estimate J,, of the field #,, ia 

computed, exactly as in Approach 2 a s  is described at the close of Section 13. This completes 

Step 11 for Approach 3. 



Numerical results-Approach 3 

In this section the performance of the estimator based on Approach 3 is presented. First the 

method of computing the location of the critical point for the small noise asymptotics must 

be described. 

The location of the critical point for the small noise asymptotics is determined by a 

nonlinearly-constrained nonlinear optimization problem where both the tmnstraint and the 

objective function are polynomials. In order for a correct asymptotic calculation, the critical 

point must be the global minimum of this optimization problem. Two methods are used for 

locating the critical point: 

1. a homotopy continuation method as implemented in Ref. [15] and 

2. a silccessive quadratic programming method using gradients as implemented in IMSL 

Edition 10.0 subroutine N20NG (a special case of subroutine NCONG) documented 

in :Ref. [16, Section 8.4, pp. 903-9081. 

The homotopy method works on the system of polynomial equations that determine the 

stationary points. It is guaranteed in theory to compute all rooto of the system, in particular 

including all minima and maxima. Then the value of the objective function evaluated at the 

stationary points is compared in order to determine the critical point. In exchange for the 

guarantee of a complete set of roots, the computational cost is high since each root requires 

the integration of a differential equation. Therefore this method it not of practical use in 

realistic problems for the crystallography application. However, it provides a computational 

fix to the fact that it is not possible to compute the critical point analytically and thereby 

allows e~dimator performance to be separated from the performance of a numerical algorithm 

for the location of the critical point. In terms of size, the problem of Section 3 represents 

the uppjer limit of practicality for this method and in fact, given the available computer 

resources, it is not possible to use this method to compute the estimator performance via 



Monte Carlo methods for the problem of Section 3. Therefore results using this method are 

not presented. 

The successive quadratic programming method works on the optimization problem di- 

rectly. It does not guarantee convergence to the global minimum. In order to deal with this 

difficulty, ~nultiple initial conditions are used. An important issue is how ~nany initial con- 

ditions of what type are required in order to have a reasonably high proba'bility of reaching 

the global minimum. 

In the work reported here, only randomly chosen initial conditions are considered. The 

distribution of the initial conditions takes advantage of the known eigenvector and eigenvalue 

structure c t  the spherical-model constraint quadratic form Cfd(r) = (r+dfd)'Cfd(r+drd)-+ 

as computed in Section 8. Specifically, define x,,,jn = min(x, x+, X - ) .  It would be desirable 

to sample uniformly over the set {r : (r + dfd)T~rd(r  + dfd) = F }  but this is difficult so 

instead sample uniformly over the larger set {r : -,/= < ri + dfdVi 5 JE llxmin Vi} which is 

a larger set since {r : (r + dfd)TCfd(r + dfd) = +} C {r : (r + dfd)TCy(r + dfd) 5 +} C 

{r : llr + clfdll:xmin 5 *) C {r : Iri + dfd,i12xmin - < Vi} = {r : -pez 5 ri + drdti 5 

V . Uniform sampling over the final set can be achieved by taking vectors with 

components that are independent pseudorandom variables where the i th variable in a vector 

has a uniform distribution over the interval [-dF - dfd,i, ,/= - dfd,i) . In view of this 
8xrnnn 

collection (of set inclusions, more sophisticated methods of sampling are obviously possible. 

The second issue is the number of such initial conditions that are required. A rough 

idea of this number is determined by experimentation. For two examples tlhe position p and 

values pH' of the local minima starting from 10000 initial conditions, the position p' and 

value pH' of the minimum of the 10000 local minima, and the differences IJp - p'((; and 

(pH - PH"I are computed. A two-dimensional histogram (essentially an estimate of the joint 

probabilitly density function) of the differences JJp - p'llj: and JPH - pH'( is computed and 

portions are displayed as surface plots. 

The first example problem is one for which the observation noise standard deviation is 



u = 2. Cidculations are done in double precision using DN20NG rather than N20NG. For 

this problem, the minimum objective function local minima is -168.6 and the maximum is 

-162.1 and the minimum location difference between some other p and p* (i.e., (Jp - p'JJi) 

is 2.044 X. and the maximum is 125.6. A 16 by 16 bin histogram dis'playing the entire 

range of observed values for ((p - p*)li (roughly 0 to 125.6) and JPH - PH'I (roughly 0 to 

6.48) is slhown in Figure l la .  There are more than 10 peaks correspondi~~g to local minima 

that are found starting from multiple initial conditions. A 16 by 16 bin histogram displaying 

-the entire range of J(p- p'(Ji but only 1/64 of the range of IPH - PH*I is shown in Figure l lb .  

At this higher scale, many of the peaks of Figure l l a  are subdivided, and there are 4 local 

minima that, at  this scale, achieve the lowest value of PH. The (0,O) bin contains 327 initial 

condition, trials. Finally a 16 by 16 bin histogram displaying the entire range of Jlp - p*IJi 

but only 114096 of the range of IPH - PH*J is shown in Figure l lc .  Only two local minima 

appear and only one of them [the (0,O) bin] achieves the lowest value of pH. The (0,O) 

bin continues to contain 327 initial condition trials. These 327 trials have the 327 lowest 

values of' P H  among the 10000 trials. Within this class, the norm squared (JlplJ2,) of the 

locations p have the following sample statistics: the minimum is 57.456, the maximum is 

57.457, the sample mean is 57.456, and the sample variance is 8.0 x Within this class, 

the nornn squared of pairwise differences (((p - p'J(i) of the locations p has the following 

sample statistics: the minimum is 1.1 x lo-", the maximum is 1.3 x lo", the sample mean 

is 1.7 x 10'' and, the sample variance is 3.1 x 10-13. Therefore the diff'erences among the 

results of trials in this class are of the order of numerical errors. 

Consider a Bernoulli proccse model of the sequence of trial8 where o successful trial is 

defined \to be a trial that locates the global minimum. Then m estimate of the probability 

of success on an individual trial is p = 327/10000, and the probability of no successes in 

n trials is (1 - p)". By taking 2000 trials for problem8 with u = 2, the probability of no 

successes, (i.e., failure to locate the global minimum) as computed by thir model is small. 

The second example problem is for u = -5. For this problem a larger number, specifically 



v n  ooo 

m ooo 

Y 0000 

(c) 
---. 

Figure 11: Two dimensional histograms for I(p - p'JJ; and JBH - BH'I shown as surface 

plots. Each plot shows the entire observed range of values for Jlp - p'(1;. Different fractions 

starting from the origin of the entire observed range of values for IBH - BH"( are displayed: 

Part (a) displays the entire range, Part (b) displays 1/64, and Part (c) displays 114096. 



4000, initial conditions seem worthwhile based on histograms that are not shown. Therefore, 

for all problems at a = .5, 4000 initial conditions are tried. 

Having settled on this-method for computing the critical points in the estimator using 

Approaclh 3, the applicability of the special-case analytical solution described in Section 15 

can be considered. Recall that the special case is defined by the assumption that there 

exists a k such that pk = 0. This assumption then implia that 4vTp - 1 = 0. Based 

on the previously described numerical method for computing the critical points, Figure 12 

shows a plot of the fraction of a = 2 data sets for which 4vTp - 1 is; less than a given 

value. This is essentially an estimate of the cumulative probability distribution function of 

4vTp - 1. Clearly, there are many data sets for which 4vTp - 1 is far from 0. Whether these 

represent failures of the numerical algorithm for locating the critical points or true cases 

of 4vTp - 1 far from 0 is not clear. However, for this initial investigation, it seemed more 

interesting to focus on the performance of the complete estimator rather than the critical 

point determination especially since this estimator has a novel featurt-little need for and 

opportuility for symmetry breaking optimization. 

The ,performance of the estimator based on Approach 3, denoted "A3", can now be com- 

puted and compared with five alternative estimators. The problem and three of alternative 

estimatc~rs-the basic estimators E-pi, E-PI,  and A-are discussed in Selction 3. The fourth 

alternat:ive estimator, A1 based on Approach 1, is discussed in Sections 4 and 5. The fifth 

alternative estimator, A2 based on Approach 2, is discussed in Sections 6, 7, 8,9, 10, 11, 12, 

13, and 14. 

The primary results are shown in Figures 13 and 14. Parmeters for the three basic 

estimators are described in Section 3. Parameters for A1 (A2) are dclcribed in Section 5 

(14). Estimator A3 is matched to the synthetic data. Btcaune the critical point locations 

are determined numerically, there are no identically m o  components. Therefore the zeroth 

order term in the asymptotic expansion is nonzero, the second order term is not computed, 

the symmetry breaking kernel iC, does not influence the final solution, and symmetry breaking 



Figure 1.2: Estimate of the cumulative probability distribution function of 4vTp - 1. 



Figure 13: Estimator performance otrtisticr: fMcL VCITUS o for the throe buic estimators 

of Sectiox~ 3 (dotted lines), A1 (oolid line labeled "Aln), A2 (solid line labeled 'A2"), and 

A3 (solid line labeled "A3"). 



Figure 14: Estimator performance statistics: E(lz) versus o for the three barsic estimators of 

Section 3 (dotted lines), A1 (solid line labeled "AlW), A2 (aolid line labeled "A2"), and A3 

(solid line labeled "A3"). 



optimization is turned off. This is discussed in Section 16. Estimator /L3 has in addition 

x = 0.5, .\ = 1.0, and /3 = 1.0. 

The performance of estimator A3 is consistently poor. For that reason it is only computed 

for the t'wo values of a indicated in Figures 13 and 14. Since estimator A3 is the only 

estimator studied which lacks significant symmetry breaking and the data adaptation that 

symmetry breaking optimization allows, it is natural to attribute the poor performance to 

this reason. Therefore, one of the main conclusions of the numerical work described in this 

paper is the importance of data adaptation in achieving good estimator  performance. This 

is not an unexpected result since it is only through data adaptation that the spherical model 

approxirrlation is ameliorated. However, there are two areas where improvements might lead 

to better performance. First, the assumptions behind the asymptotic cdculations require 

that the critical point be the global minimum. The numerical techniques used here may 

not relialbly locate the global rather than a local minimum. Therefore, further development 

of solution techniques (especially analytical techniques) is desirable. Second, if Figure 12 

is an accurate representation of the local minima structure of typical examples, then there 

are multiple local minima lying close in value to the global minimum. In the X -, oo limit 

the cont1:ibutions from these local minima are negligible. However, at the X = 1 value used 

in compi~ting the estimators, the contributions may be significant. Therefore asymptotic 

formulae and computer software that include contributionr from multiple low-lying local 

minima are desirable. The algorithm to include contributionr from multiple local minima is 

not trivial when the minima are located numerically because the same local minimum will 

typically be located many times with slightly different locations and the clustering of the 

locations must be recognized in order to avoid including the single local minimum as several 

distinct local minima. 



18 D~iscussion and Future Directions 

In this paper three methods are presented for incorporating symmetry c.onstraints into a 

signal recc~nstruction problem based on Fourier transform magnitude measurements that was 

introduced in Ref. [I]. As shown in Figures 3 and 4, the performance gain possible through 

exploitation of the symmetry is large. Approach 1 in its most powerfuil form (i.e., A l )  

encourages symmetric solutions by adding an appropriate term to the symmetry-breaking 

optimization criteria and then, in a postprocessing phase, enforces a syrnn~etric solution by 

averaging around orbits. Approachs 2 and 3 (i.e., A2 and A3) apply the sy~nrnetry as a hard 

constraint in the basic signal reconstruction algorithm. They differ in the order in which 

two nonco~mmuting nonlinear operations are performed. In Approach 2 the spherical model 

is applied before the symmetry constraint while in Approach 3 the reverse order is used. 

In terrns of performance, Approaches 1 and 2 have a clear advantage over Approach 3. 

In fact, either of Approaches 1 or 2 outperforms the exact estimator E-P:L which, however, 

is not aware of the presence of symmetry. On the other hand, Approach 3 is outperformed 

by estimator A of Refs. [l, 21 which is not aware of the presence of symmetry. The inferior 

performarice of Approach 3 is likely due to the limited opportunities irk Approach 3 for 

data-adaptive symmetry breaking optimization which is used to ameliorate the effects of 

the spherical model approximation in all of the other approximate estinnators. However, 

two aspects of the implementation of the small noise asymptotics may play a role: First, 

the numerical rather than analytical calculation of the critical point location may fail to 

locate tht: global minimum and second the asymptotic formulae which include only the 

global minimum may be misleading when used at X = 1 because of the presence of several 

low-lying local minima. 

In terms of computation, Approach 2 has an important advantage over Approach 1 

because, in the case of Pi, the symmetry breaking optimization occurs in a space of one 

half the dimension. In more complicated space groups for which the fundamental domain is 



a smaller fraction of the unit cell than the fraction 1/2 that occurs in the case of Pi, it is 

anticipate:d that this advantage will increase. Approach 3, so long as the critical point must 

be located numerically, is a t  a disadvantage relative to both Approaches I. and 2. 

The number of space groups is quite large [4, p. 121: in d-dimensions there are 2 for d = 1, 

17 for d = 2, and 230 for the d = 3 case of primary interest in the crystallography application. 

Therefore the amount of analysis required to apply an approach to a particular space group 

is a concern. (Note, however, that especially for large-molecule structures, a relatively small 

subset of the space groups accounts for the bulk of the structures). Approach 1 requires 

the least work since tabulations of the orbits for each space group are readily available. 

Approach 2 requires an intermediate amount of work. For example, in the case of Pi in 

one dimension, the critical point location from Ref. [I] is used essentially unchanged but the 

asymptotic evaluation of the conditional mean integrals differs. Further~nore, in the three 

dimensiol~al monoclinic C2 space group, both the critical point location and the asymptotics 

require nlodifications which, however, can be done with a combination of the ideas from 

Ref [I] arid the present paper. Approach 3 requires the most work since even in the case of 

the one dimensional Pi space group the calculation of the critical point must be redone and 

to  date only a special case has been solved analytically. 

In surnmary, Approaches 1 and 2 appear to be rather equally matched with both having 

strong arid weak points. As mentioned previously, both of these approaches are currently 

being pursued for the three dimensional monoclinic C2 space group for which experimental 

data for &he crystallography application is available. 

Finally, throughout this paper the symmetries considered have a11 been, space group sym- 

metries. However, in certain crystallographic problems, there is a second form of symmetry 

called noncrystallographic symmetry. This occurs when the object making up the crys- 

tal has a type of symmetry itself, such ar a five fold axis of rotation, that is forbidden to 

any space group symmetry [6, Section 81. It should be possible to use the ideas of Ap- 

proach 1--postprocessing by averaging and modification of the symmetry breaking objective 



function-to include this type of symmetry in both Approachs 1 and 2. Aplproach 3, because 

of the weak dependence of the answer on the symmetry breaking kernel. $J, would be less 

appropria.t e. 
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20 Appendix-definitions of U k j  and bk,n, 

This appendix defines the ak,, constants (see Section 8) and the bk,,, constants (see Sec- 

tion 11). 'The a k , j  are 

There are two different sets of bk,,, constants corresponding to the two different definitions 

of the asymptotics. For Problem 1 the definitions are 



For Problem 2 the definitions are 

For both Problems 1 and 2 note that the only dependence on 9, is in bk,',. 

21 Appendix-invariance of det L,,, 

In this appendix it is shown that det L,,", is constant for d l  p derived from r fixed p' by 

sign changes. Consider p' and p2 differing only in the sign of one component call it k'. 

Corresponding elements of L , I , ~ ,  and L,a,,, are equal except for r posoi'ble change of sign. 

The signs differ only on the k' th row and the k' th column with the lexception that the 



diagonal clement (kt, kt) has the same sign in both L,I,,,, and Lp2,,,,. Therefore, 

where the '-1" is in the kt position of each diagonal matrix. Therefore, det L,ilUc = det L,z,,,, 

since det( AB) = det(A) det(B) and det diag(1, . . . , I ,  -1,1, . . . ,1) = -1. Since any p can be 

reached from p' by a sequence of pk where pk and pk+l differ only by one sign, det L, = det L,I 

for any p. 

22 ALppendix-Derivat ives of P H x ( F p  (e ) )  for Approaches 2 

and 3 

In this appendix the zeroth through third order partial derivatives of D,p) = PHA(Fp(F)) 

are complited and the results are evaluated at the critical point p. In the! formulae for the 

asymptotic evaluation of integrals such as Eqs. 10,11, and 12 it is necessary to have formulae 

for the inverse of the Hessian matrix of D,(F) evaluated at  the critical ploint F = p. (The 

Hessian matrix, denoted V2DP(F), is the matrix of mixed second partial dt:rivatives). These 

formulae itre also computed in this appendix. Since D, is a function of F, these derivatives 

are with respect to ri for i # 0. 

Fkcall the definitions of q, and F p  from Eqs. 19 and 20 and that there! are actually two 

qp and two F, functions corresponding to the two C functions C,,, and Cfd. In the remainder 

of this appendix, when the argument of C, HA and their derivatives (respe!ctively q, and its 

derivatives) is omitted, then F,(P) = (qp(?), F ) ~  (respectively F) is to be assumed. 

Using the chain rule, take a derivative of Eq. 19, the definition of q,, to get 

Taking a derivative of Eq. 35 gives 



- (aroc)-l(ar1ar,c). (36) 

If the partial derivatives of C do not depend on the order in which they are taken (i.e., 

(ar,ar,C) = (a,, &,C) and so forth) then the partial derivatives of 7, are also independent of 

the order. 

Since Fp(p) = p, the zeroth order coefficient Dp(p) is simply D,(p) = ,!3Hx(p). 

The first and second order coefficients are more complicated. The definition of Dp and 

Eqs. 35 and 36 imply that 

Eqs. 37 and 39 are valid for my  argument i. Now specialize to the case when i = p. 

The first order conditions for a local minimum of PHA(r) subject to C(r) .r 0 include 

(ariPHA)I:p) = -r(ariC)(p) for all i E I(t where T is the Lagrange multiplier. Using this 

condition in Eqs. 37 and 39 gives simpler results, valid only at the critical point p, which are 

and (requiring only the k = 0 case of the first order condition) 



The function HA is the same for Approaches 2 and 3. Recall Eq. 21 which defines fk(rk). 

Computing the partial derivatives of PHA and substituting into Eq. 41 gives 

At thiis point Approaches 2 and 3 diverge because they have different definitions for C. 

In the fo:llowing paragraphs, first for Approach 2 and then for Approach 3, V2DP(p) (the 

Hessian matrix evaluated at  the critical point) and then ( v 2 ~ , ( j ) ) - '  are computed. 

The calculation for Approach 2 is simpler than for Approach 3 because all of the mixed 

second older partial derivatives of C,, are zero. Computing the partial derivatives of C,, 

and s~bst~ituting into Eq. 42 gives the result 

2 
(ari&Dp,uc)(C) = [fo(~o) + r z ]  + 6ij  [fi( pi) + T t] (43) 

(L Po - q2 
valid only at  the critical point p. This result can be written in the form 

where 

and pi = Pi 
(i Po - 1) 



for i f 'K:. Therefore V2DP,,&) = diag(eivUc) + ptpT which is a diagonal matrix plus a 

rank 1 matrix. The Woodbury formula [12, p. 761 can be used to compute the inverse of this 

matrix with the result that 

1 1 
[ V ~ D , . ~ ~ ( P ) ]  -l = diag(-1 - T 

+L+R ruc rut: 
eisuc Ck=l 

where 

[ P '  ,..., ruc = - 
e1,uc "1 e q , u c  

and R  = 

The computation of V 2  DPbfd(p) and [v2 ~ ~ , f ~ ( p ) ] - '  is more complicated than the compu- 

tation of V 2  Dp,uc(p) and [v2 ~ ~ , ~ ~ ( p ) ] - '  because the second mixed partial derivatives of Cfd 

are nonzero. However, the Hessian of Cfd is a diagonal matrix plus a rank 2 matrix so, as is 

seen in t.he following, it is again possible to use the Woodbury formula effectively. 

Define z with components zi for i E I(t by 

Computing the other partial derivatives of Cfd and substituting into Eq. 42 gives the result 

1 1 2 
(8,. 8 ,  Dp,fd)(p) = [fo(Po) + zi lj  + r-(li - ~ ) ( Z J '  - 2) + 6.j [fi (pi) + lZ] L2 

Define 



Then V2~3plrd(f) = diag(eiJd) + I'rT which is a diagonal matrix plus a rank 2 matrix. 

Application of the Woodbury formula [12, p. 761 followed by simplification leads to the 

result that 

where 

a = (a l , . . . ,ay)T 

I a' = (a',, . . . , a y ) T .  

For notational convenience and to correspond to Ref. [I, Section 111, define 

and L,g = v2Dp.rd(p)* (50) 

Now compute the third partial derivatives of Dp. First compute the third partial deriva- 

tives of r),, then the third partial derivatives of D, in terms of the derhatives of r),, and 



finally an expression for the third partial derivative of Dp in terms of HA and C. Then 

specialize to C,, and Crd. 

Taking a derivative of Eq. 36 gives 

As before, if the partial derivatives of C do not depend on the order in which they are 

taken (i.e., (a,a,C) = (Br,,B,.C) and so forth) then the partial derivatives of 11, are also 

independent of the order. 

Take a derivative of Eq. 38 to get 



For the problems of interest in this paper, all third partial derivatives of C are zero (C 

is a quadratic form) and all mixed partial derivatives of HA are zero. Specializing Eqs. 51 

and 52 to this case gives the results that 

and 

Now specialize Eqs. 35, 36, and 53 to the case where the mixed second partial derivatives 

of C are zero. Because this case includes CUc but excludes Cfd, change notoation from "C" to 

'C,,". The results are 



Substituting the actud values for Cu, and its derivatives d l  evaluated at the critical point 

f = j j  gives the results: 

and 

where 



Return to Eq. 54 and consider the case where C = Cfd. Eq. 35 is used unchanged except 

for replacing ''C" by ''Cfdn. Eq. 36 specializes to 

Combining Eqs. 35 and 62 gives 

and 

Finally, specializing Eq. 53 gives 



Use Eqs. 35, 62, 63, 64, and 65 in Eq. 54 to get 

where 

23 Appendix-Derivat ives of gk(FP(p)) for Approaches 2 

and 3 

In this appendix the first and second mixed partial derivatives of gk(F,(i;)) with respect to 

ri for 1 > 0 for both C,,, and Crd are computed. 



Using Eqs. 20 and 19 in Eqs. 15 and 16 gives 

= I 
Taking derivatives with respect to r j ,  j E IG one finds that 

where 

Note that w j ( f )  depends on !Do and !Dj  through Phbp and phi,,. It is useful to have the 

formula 

Note that (& ,wj ) ( f )  depends on Qo through PhLo but does not depend on @ j  since @hIo is 

independent of \kj. Note that (d r ,w j ) ( f )  = (dTjwi ) ( f ) .  

Considering only k # 0, compute the first and second derivatives of gk(Fp( f ) ) :  

a r j  [gk (Fp(f))] = bj,kg~(Fp(f )) + r k g Z ( F p ( f ) ) ~ j ( f )  

biarj [gk (Fp(f))] = [4,kaj ( f )  + bj,kwi ( f ) ]  gZ(Fp(f ) )  + rkgZ(Fp(?)) [~ i ( f )u j  ( 7 )  + ( a r i ~ j  ) ( f  )] . 

87 



Note that &, [gk(Fp(P))] and hi&, bk(FP(e))] both depend on Q k  for d l  A. Note that 

a r i a r ,  [gk (Fp(e)) ] = ar ,  hi [gk (Fp(e))] 

because (a, w j ) ( e )  = ( & j ~ i ) ( T ) .  

Evduibte these results for f = p: 

Note that only wi(P) and (Orjwi)(p) have explicit dependence on C. The other functions 

depend on C only indirectly throught p, w i (p ) ,  and (&,wi)(P). 

Evaluizte Ui(p) and (8,,wi)(p) for CUc and Cfd. For the case of C,: 



For the case of Cra: 

Speciailize to the case where pk = 0. In general the expressions for w ~ , ~ ~ ( ~ ~ ,  pi), (aq~i,uc)(po, pi, pj), 

wqd(h ,  pi), and (arjwilrd)(po, pi, pj ) do not simplify (except in the special cases where i = k,  

j = k, or i = j = k). Similarly, the expression for gz(p) does not have significant changes. 

However, for any C, a,, [ g & ( ~ ~ ( i ) ) ] )  and &,a,, [gk(~p( i ) ) ]  l p  are greatly sirnpified. Specifi- 
P 

cally, 

In the case where pk = 0, define the vector q,,k and the matrix Qp,k by 

24 Appendix-J1, Formulae for Approaches 2 and 3 

In this appendix J1,, is computed for Approaches 2 and 3. Because J1,, i~ a contribution to 

E(@k (y  ), there is a k dependence for J 1 ,  that is suppressed in the notation. As is seen in the 

following, for Approach 2 J1,, is zero for any k while for Approach 3 it in  typically nonzero 



for all k. The term JlmC determines a part of the second order contribution, which is required 

only when pk = 0 so only that case is considered. 

The quantity JlVc is defined in Eq. 82 which, in terms of the standard notation, is 

Since pk := 0, Eq. 67 applies which leads to the simplified form 

Therefore, J 1 ,  is proportional to gZ(p)  and depends on P only through g,&). 

Consider Approach 2. ( L ; , : ~ ) ~ , ~  is defined in Eqs. 49 and 45 which in turn depend on 

Eqs. 44, 21, 46 and 47. Note especially that the second term of Eq. 45 is proportional to 

yi,uc (defined in Eq. 46) which in turn is proportional to pi. Therefore, since pk = 0, 

Using thi:s result in Eq. 72 gives 

Because pk = 0, the r ~ p i p j p k  (because pk = 0) and ~ ~ 6 ~ , ~ 6 ~ , ~  (because r l  =: 0) terms are zero 

in Eq. 61. Use this result in the previous expression for J1,c,uc to get 

since pk == 0. Simplifying gives 

since (L,$). , = (Litc) j l i .  Finally taking the i ,  k element of Eqa. 49 and 45 with h,w = A, ek,nc 
8 I3 

and pk = 0 gives 



as claimed. This completes the calculation for Approach 2. 

Consider Approach 3. From Eqs. 48 and 50 it follows that 

Define 



s;, = C a i o : ~  
i 

Note that the computation of each of these S variables is linear in the size of the lattice 

and therefore is practical. Furthermore, the values of the S variables are the same for any 

value of I; so the linear computation need be done only once per reconstruction. Finally, the 

values of the S variables are independent of @, for all I so no form of s:ymmetry breaking 

optimizai;ion can require recalculation of the S variables. 

Substitution of Eq. 74 into Eq. 72 leads to four terms denoted Jl,c,fd,l, . . . , JI,~,~~,Q. These 

terms, sixnplified through use of the S variables, are 





Note the k dependence of the J1,c,, quantities through terms such as ek,f& Finally, 

This coml?letes the calculation for Approach 3. 

25 - ALppendi~-J~,~ Formulae for Approaches 2 and 3 

In this appendix expressions are computed for J l , d  for Approaches 2 and 3. Similar to JlgC, 

because J l , d  is a contribution to E ( a k J y ) ,  there is a k dependence for J l , d  that is suppressed 

in the notation. These expressions are required for the second order terms in the asymptotic 

expansions. Because second order terms are only required when pk = 0, only that case is 



considered.. 

The quantity Jl,d is defined in Eq. 83 which, in terms of the standard motation, is 

Taking advantage of pk = 0, this simplifies to 

1 
Ji,d = - t r  (L;'Q~,~). 2 

First, tmnsider Cut. Define 

and use Eqs. 45 and 70 in Eq. 76 to compute that 

I wk,uc(p~, ~ k )  
+ 

= 9z(p) ek,uc - tlrk,uc C 1 4  w~,uc(p~, pl)l,uc 1 . 
Since pk =: 0 by assumption, Eq. 46 simplifies to yk,,, = 0 and Eq. 66 simplifies to 

Therefore, using Eq. 44, Eq. 77 simplifies to  

In this equation, gz(p) depends on 8 1  for all I, bknle depends on 8 k ,  and fk(0) and r are 

independent of Q. 

Second, consider Cfd. Use Eqs. 48 and 70 to compute that 



In this equation, gz(p)  depends on QI for all 1, ~ k ~ d  depends on Qo and Qk, and al, a!, (1, 

CI, ekJd, and A are independent of Q. Unlike the C,,, case, the assumption that pk = 0 does 

not drarn,atically simplify the equation. Note, however, that the 1 sumrnations are linear 

in the size of the lattice and independent of k (so they need only be computed one per 

reconstruction). Therefore this is a practical computation. 

26 ALppendix-Multivariable second order asymptotic 

expansion formulae 

In this appendix the second order asymptotic expansion is computed by Laplace's method 

of the n-dimensional integral 

when r(z) has a single global maximum which is located in the interior of the region D c El". 

The location, denoted p, of the global maximum is the critical point. 

The plan, as described for the scalar case in Ref. [14, pp. 272-2741, has, four steps: 

1. Exp:ress q and r by Taylor series expansions around the critical point p. 

2. Exp:ress the exponential of the Taylor series of r by the product of two terms: The 

first term is the exponential of the first three terms in the Taylor series expansion of r. 

The second term is the Taylor series expansion around 0 of the exponential function, 

evaluated at the sum of the fourth and higher order terms in the Taylor series expansion 

of r. 

3. Collect terms of the same order in the asymptotic parameter A. 

4. Finally, approximate the region D by El" and exactly evaluate the resulting Gaussian 

integrals. 



In order .to compute a second order asymptotic expansion of the integral it turns out that 

Taylor wries terms up to order 4 in r and order 2 in q must be accountecl for. 

Let 

where M is the total number of indices i ,  j, . . . , m. Use corresponding notation for r (x ) .  

Note the important fact that r i  = 0 for all i because the critical point is in the interior of D. 

Let (F) be the Hessian matrix for q ( r )  with entries q i  j ( r i j )  and define R = -F" with 

entries Sums over indices always range from 0 to n - 1 for each index. 

Define s = d ( x  - p )  with components s i ,  i E (0,. . . , n - 1). Then the Taylor series 

around p  of q and r are 

and 

1 1 1 1 
r ( x )  = r + - C r i ~ i  + - x r i  , j s i s j  + x r i , j , k & s j s k  + - r i , j , k , l s i s j s k s l  + . . . . 4 ;  2A ii *,j ,k 4!A2 i j , k , ~  

The PI-eviously described plan leads to the following series of equations: 

1 1 1 1 
= ~ ( 9 + ~ ~ ~ ~ i + ~ ~ ' l . , j ~ i ~ j + ~ ~ - ) ~ ~ p ( . \ ( ~ + - ~ r i ~ i + - ~ r i ~ ~ i ~ ~  i , j  Jj; i  2A i , j  

1 1 + - C r i  , j , k d i s j S k  + - C Ti  , j ,k , lS iSjSkSl  + . . . 3!A3/2 i,jC 
) ) dsn/Anr~ 

4!A2 i j , k , l  
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The zero order term is Jot., the first order terms are jk (JlI2, + and the second 

order terms are (J1,. + J1.b + J I , ~  + Jl ,d). 

Each of the J M ,  is related to moments of a zero mean Gaussian random vector with 

covariancle matrix -F. These integrals can be evaluated in two steps: 

1. Apply Gaussian moment factoring [I?, p. 2291. 

2. Simplify the results by symmetry arguments based on the equa1it:y of mixed partial 

derivatives that differ only in the order of the derivatives. For instance, r i j , k  = r ; , k j  = 



rj,i,k = rk,i,j = rj,k,i = rk,j,i for ally choice of d,  j ,  a d  k. In particular, rij = r,,i a d  

therefore R; ,j = Rj,i. 

Therefort!, 



Therefore the final result is 

Note that a particular coefficient from the Taylor series, say the n-th order coefficient, 

appears in multiple terms of the asymptotic expansion (essentially the n-t h and higher order 

terms). :For example, qi, the first order coefficient in the q Taylor series, would appear in 

the first order term of the asymptotic expansion (i.e., the term Jl12,,), except that both 

the first order terms are zero by symmetry, and does appear in the secontl order term of the 

asymptotic expansion (i.e., the term Jl ,J. 
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